

C++17 STL Cookbook

Over 90 recipes that leverage the powerful features of the
standard library in C++17

Jacek Galowicz

BIRMINGHAM - MUMBAI

C++17 STL Cookbook
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2017

Production reference: 1230617

Published by Packt Publishing Ltd.

Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78712-049-5

www.packtpub.com

http://www.packtpub.com

Credits

Author
Jacek Galowicz

Copy Editor
Muktikant Garimella

Reviewer
Arne Mertz

Project Coordinator
Ulhas Kambali

Commissioning Editor
Aaron Lazar

Proofreader
Safis Editing

Acquisition Editor
Nitin Dasan

Indexer
Francy Puthiry

Content Development Editor
Vikas Tiwari

Graphics
Abhinash Sahu

Technical Editor
Hussain Kanchwala

Production Coordinator
Shantanu Zagade

 

About the Author
Jacek Galowicz obtained his master of science in electrical engineering/computer
engineering at RWTH Aachen University, Germany. While at university, he enjoyed
working as a student assistant in teaching and research, and he participated in several
scientific publications. During and after his studies, he worked as a freelancer and
implemented applications as well as kernel drivers in C and C++, touching various areas,
including 3D graphics programming, databases, network communication, and physics
simulation. In recent years, he has been programming performance- and security-sensitive
microkernel operating systems for Intel x86 virtualization at Intel and FireEye in
Braunschweig, Germany. He has a strong passion for modern C++ implementations of low-
level software, and he tries hard to combine high performance with an elegant coding style.
Learning purely functional programming and Haskell in recent years triggered his drive to
implement generic code with the aid of meta programming.

Writing a book and founding a company at the same time was a great and interesting
experience in my life and a lot of fun. The fun aspects, however, were only possible because
of the support and patience of my wonderful girlfriend Viktoria, my fellow co-founders,
and all my friends. Special thanks go to Arne Mertz for his invaluable and meticulous
review suggestions, as well as Torsten Robitzki and Oliver Bruns from the C++ user group
Hannover for their great feedback.

About the Reviewer
Arne Mertz is a C++ expert with over a decade of experience. He studied physics at the
university of Hamburg, and he switched careers to become a software developer. His main
background is in financial enterprise applications written in C++. Arne works at Zühlke
Engineering, Germany and is known for his blog, Simplify C++! (h t t p s ://a r n e - m e r t z . d e)
on clean and maintainable C++.

https://arne-mertz.de
https://arne-mertz.de
https://arne-mertz.de
https://arne-mertz.de
https://arne-mertz.de
https://arne-mertz.de
https://arne-mertz.de
https://arne-mertz.de
https://arne-mertz.de
https://arne-mertz.de
https://arne-mertz.de
https://arne-mertz.de
https://arne-mertz.de
https://arne-mertz.de
https://arne-mertz.de
https://arne-mertz.de
https://arne-mertz.de
https://arne-mertz.de
https://arne-mertz.de
https://arne-mertz.de
https://arne-mertz.de
https://arne-mertz.de
https://arne-mertz.de
https://arne-mertz.de
https://arne-mertz.de
https://arne-mertz.de
https://arne-mertz.de
https://arne-mertz.de
https://arne-mertz.de
https://arne-mertz.de
https://arne-mertz.de
https://arne-mertz.de
https://arne-mertz.de
https://arne-mertz.de
https://arne-mertz.de
https://arne-mertz.de

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s ://w w w . p a c k t p u b . c o m /m a p t

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at h t t p s ://w w w . a m a z o n . c o m /d p /178712049X .

If you'd like to join our team of regular reviewers, you can e-mail us at
customerreviews@packtpub.com. We award our regular reviewers with free eBooks and
videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

https://www.amazon.com/dp/178712049X
https://www.amazon.com/dp/178712049X
https://www.amazon.com/dp/178712049X
https://www.amazon.com/dp/178712049X
https://www.amazon.com/dp/178712049X
https://www.amazon.com/dp/178712049X
https://www.amazon.com/dp/178712049X
https://www.amazon.com/dp/178712049X
https://www.amazon.com/dp/178712049X
https://www.amazon.com/dp/178712049X
https://www.amazon.com/dp/178712049X
https://www.amazon.com/dp/178712049X
https://www.amazon.com/dp/178712049X
https://www.amazon.com/dp/178712049X
https://www.amazon.com/dp/178712049X
https://www.amazon.com/dp/178712049X
https://www.amazon.com/dp/178712049X
https://www.amazon.com/dp/178712049X
https://www.amazon.com/dp/178712049X
https://www.amazon.com/dp/178712049X
https://www.amazon.com/dp/178712049X
https://www.amazon.com/dp/178712049X
https://www.amazon.com/dp/178712049X
https://www.amazon.com/dp/178712049X
https://www.amazon.com/dp/178712049X
https://www.amazon.com/dp/178712049X
https://www.amazon.com/dp/178712049X
https://www.amazon.com/dp/178712049X
https://www.amazon.com/dp/178712049X
https://www.amazon.com/dp/178712049X
https://www.amazon.com/dp/178712049X
https://www.amazon.com/dp/178712049X
https://www.amazon.com/dp/178712049X
https://www.amazon.com/dp/178712049X
https://www.amazon.com/dp/178712049X
https://www.amazon.com/dp/178712049X
https://www.amazon.com/dp/178712049X
https://www.amazon.com/dp/178712049X
https://www.amazon.com/dp/178712049X
https://www.amazon.com/dp/178712049X
https://www.amazon.com/dp/178712049X
https://www.amazon.com/dp/178712049X
https://www.amazon.com/dp/178712049X
https://www.amazon.com/dp/178712049X

Table of Contents
Preface 1

Chapter 1: The New C++17 Features 10

Introduction 10
Using structured bindings to unpack bundled return values 11

How to do it... 11
How it works... 13
There's more... 13

Limiting variable scopes to if and switch statements 15
How to do it... 16
How it works... 16
There's more... 18

Profiting from the new bracket initializer rules 19
How to do it... 19
How it works... 20

Letting the constructor automatically deduce the resulting template
class type 21

How to do it... 21
How it works... 22
There's more... 23

Simplifying compile time decisions with constexpr-if 24
How to do it... 24
How it works... 25
There's more... 26

Enabling header-only libraries with inline variables 28
How it's done... 28
How it works... 29
There's more... 31

Implementing handy helper functions with fold expressions 31
How to do it... 32
How it works... 32
There's more... 33

Match ranges against individual items 35
Check if multiple insertions into a set are successful 36
Check if all the parameters are within a certain range 37
Pushing multiple items into a vector 38

[ii]

Chapter 2: STL Containers 39

Introduction 40
Contiguous storage 40
List storage 41
Search trees 41
Hash tables 42
Container adapters 42

Using the erase-remove idiom on std::vector 42
How to do it... 43
How it works... 45
There's more... 46

Deleting items from an unsorted std::vector in O(1) time 47
How to do it... 47
How it works... 50

Accessing std::vector instances the fast or the safe way 51
How to do it... 51
How it works... 52
There's more... 53

Keeping std::vector instances sorted 53
How to do it... 53
How it works... 55
There's more... 56

Inserting items efficiently and conditionally into std::map 56
How to do it... 57
How it works... 59
There's more... 60

Knowing the new insertion hint semantics of std::map::insert 60
How to do it... 60
How it works... 61
There's more... 62

Efficiently modifying the keys of std::map items 63
How to do it... 64
How it works... 66
There's more... 66

Using std::unordered_map with custom types 67
How to do it... 67
How it works... 69

Filtering duplicates from user input and printing them in alphabetical
order with std::set 70

[iii]

How to do it... 71
How it works... 72

std::istream_iterator 72
std::inserter 73
Putting it together 74

Implementing a simple RPN calculator with std::stack 74
How to do it... 75
How it works... 78

Stack handling 78
Distinguishing operands from operations from user input 79
Selecting and applying the right mathematical operation 80

There's more... 80
Implementing a word frequency counter with std::map 81

How to do it... 81
How it works... 84

Implement a writing style helper tool for finding very long sentences in
text with std::multimap 85

How to do it... 86
How it works... 89
There's more... 90

Implementing a personal to-do list using std::priority_queue 90
How to do it... 91
How it works... 93

Chapter 3: Iterators 94

Introduction 94
Iterator categories 96

Input iterator 97
Forward iterator 97
Bidirectional iterator 97
Random access iterator 98
Contiguous iterator 98
Output iterator 98
Mutable iterator 98

Building your own iterable range 98
How to do it... 99
How it works... 101

Making your own iterators compatible with STL iterator categories 102
How to do it... 102
How it works... 105
There's more... 105

Using iterator adapters to fill generic data structures 106

[iv]

How to do it... 106
How it works... 108

std::back_insert_iterator 108
std::front_insert_iterator 108
std::insert_iterator 109
std::istream_iterator 109
std::ostream_iterator 109

Implementing algorithms in terms of iterators 109
How to do it... 110
There's more... 113

Iterating the other way around using reverse iterator adapters 113
How to do it... 114
How it works... 115

Terminating iterations over ranges with iterator sentinels 116
How to do it... 117

Automatically checking iterator code with checked iterators 119
How to do it... 120
How it works... 122
There's more... 123

Building your own zip iterator adapter 124
How to do it... 126
There's more... 129

Ranges library 130

Chapter 4: Lambda Expressions 131

Introduction 131
Defining functions on the run using lambda expressions 133

How to do it... 133
How it works... 136

Capture list 137
mutable (optional) 138
constexpr (optional) 138
exception attr (optional) 138
return type (optional) 138

Adding polymorphy by wrapping lambdas into std::function 138
How to do it... 139
How it works... 141

Composing functions by concatenation 142
How to do it... 143
How it works... 145

Creating complex predicates with logical conjunction 146
How to do it... 146

[v]

There's more... 148
Calling multiple functions with the same input 149

How to do it... 149
How it works... 151

Implementing transform_if using std::accumulate and lambdas 153
How to do it... 153
How it works... 156

Generating cartesian product pairs of any input at compile time 159
How to do it... 160
How it works... 162

Chapter 5: STL Algorithm Basics 164

Introduction 165
Copying items from containers to other containers 167

How to do it... 168
How it works... 170

Sorting containers 172
How to do it... 172
How it works... 176

Removing specific items from containers 176
How to do it... 177
How it works... 180

Transforming the contents of containers 180
How to do it... 181
How it works... 183

Finding items in ordered and unordered vectors 183
How to do it... 184
How it works... 188

Limiting the values of a vector to a specific numeric range with
std::clamp 190

How to do it... 191
How it works... 194

Locating patterns in strings with std::search and choosing the optimal
implementation 194

How to do it... 195
How it works... 197

Sampling large vectors 199
How to do it... 200
How it works... 203

Generating permutations of input sequences 204

[vi]

How to do it... 204
How it works... 205

Implementing a dictionary merging tool 206
How to do it... 207
How it works... 209

Chapter 6: Advanced Use of STL Algorithms 210

Introduction 210
Implementing a trie class using STL algorithms 211

How to do it... 212
How it works... 216

Implementing a search input suggestion generator with tries 217
How to do it... 218
How it works... 222
There's more... 223

Implementing the Fourier transform formula with STL numeric
algorithms 223

How to do it... 224
How it works... 230

Calculating the error sum of two vectors 232
How to do it... 232
How it works... 235

Implementing an ASCII Mandelbrot renderer 236
How to do it... 237
How it works... 241

Building our own algorithm - split 242
How to do it... 243
How it works... 245
There's more... 246

Composing useful algorithms from standard algorithms - gather 246
How to do it... 247
How it works... 249

Removing consecutive whitespace between words 251
How to do it... 252
How it works... 253

Compressing and decompressing strings 254
How to do it... 255
How it works... 257
There's more... 258

[vii]

Chapter 7: Strings, Stream Classes, and Regular Expressions 260

Introduction 261
Creating, concatenating, and transforming strings 262

How to do it... 263
How it works... 265

Trimming whitespace from the beginning and end of strings 266
How to do it... 266
How it works... 268

Getting the comfort of std::string without the cost of constructing
std::string objects 269

How to do it... 270
How it works... 272

Reading values from user input 273
How to do it... 273
How it works... 275

Counting all words in a file 276
How to do it... 277
How it works... 279

Formatting your output with I/O stream manipulators 279
How to do it... 280
How it works... 284

Initializing complex objects from file input 286
How to do it... 286
How it works... 288

Filling containers from std::istream iterators 289
How to do it... 290
How it works... 293

Generic printing with std::ostream iterators 294
How to do it... 295
How it works... 298

Redirecting output to files for specific code sections 299
How to do it... 300
How it works... 303

Creating custom string classes by inheriting from std::char_traits 304
How to do it... 305
How it works... 309

Tokenizing input with the regular expression library 310
How to do it... 311
How it works... 313

[viii]

Comfortably pretty printing numbers differently per context on the fly 315
How to do it... 316

Catching readable exceptions from std::iostream errors 318
How to do it... 319
How it works... 321

Chapter 8: Utility Classes 322

Introduction 323
Converting between different time units using std::ratio 323

How to do it... 324
How it works... 327
There's more... 329

Converting between absolute and relative times with std::chrono 329
How to do it... 330
How it works... 332

Safely signalizing failure with std::optional 333
How to do it... 334
How it works... 336

Applying functions on tuples 338
How to do it... 338
How it works... 340

Quickly composing data structures with std::tuple 341
How to do it... 341
How it works... 346

operator< 346
The zip function for tuples 347

Replacing void* with std::any for more type safety 349
How to do it... 349
How it works... 352

Storing different types with std::variant 352
How to do it... 353
How it works... 357

Automatically handling resources with std::unique_ptr 358
How to do it... 359
How it works... 362

Automatically handling shared heap memory with std::shared_ptr 363
How to do it... 363
How it works... 366
There's more... 368

Dealing with weak pointers to shared objects 369

[ix]

How to do it... 370
How it works... 372

Simplifying resource handling of legacy APIs with smart pointers 374
How to do it... 375
How it works... 377

Sharing different member values of the same object 378
How to do it... 379
How it works... 380

Generating random numbers and choosing the right random number
engine 382

How to do it... 382
How it works... 387

Generating random numbers and letting the STL shape specific
distributions 389

How to do it... 389
How it works... 396

Chapter 9: Parallelism and Concurrency 398

Introduction 398
Automatically parallelizing code that uses standard algorithms 399

How to do it... 400
How it works... 402

Which STL algorithms can we parallelize this way? 402
How do those execution policies work? 403
What does vectorization mean? 405

Putting a program to sleep for specific amounts of time 406
How to do it... 406
How it works... 407

Starting and stopping threads 408
How to do it... 409
How it works... 411

Performing exception safe shared locking with std::unique_lock and
std::shared_lock 413

How to do it... 414
How it works... 417

Mutex classes 417
Lock classes 418

Avoiding deadlocks with std::scoped_lock 421
How to do it... 422
How it works... 424

Synchronizing concurrent std::cout use 425

[x]

How to do it... 426
How it works... 428

Safely postponing initialization with std::call_once 429
How to do it... 430
How it works... 431

Pushing the execution of tasks into the background using std::async 432
How to do it... 433
How it works... 436
There's more... 437

Implementing the producer/consumer idiom with
std::condition_variable 438

How to do it... 438
How it works... 441

Implementing the multiple producers/consumers idiom with
std::condition_variable 443

How to do it... 444
How it works... 448

Parallelizing the ASCII Mandelbrot renderer using std::async 450
How to do it... 451
How it works... 454

Implementing a tiny automatic parallelization library with std::future 455
How to do it... 456
How it works... 460

Chapter 10: Filesystem 465

Introduction 465
Implementing a path normalizer 466

How to do it... 466
How it works... 468
There's more... 468

Getting canonical file paths from relative paths 469
How to do it... 470
How it works... 472

Listing all files in directories 473
How to do it... 473
How it works... 477

Implementing a grep-like text search tool 478
How to do it... 479
How it works... 481
There's more... 482

[xi]

Implementing an automatic file renamer 482
How to do it... 483

Implementing a disk usage counter 485
How to do it... 486
How it works... 488

Calculating statistics about file types 488
How to do it... 489

Implementing a tool that reduces folder size by substituting duplicates
with symlinks 492

How to do it... 492
How it works... 496
There's more... 496

Index 498

Preface
The C++17 STL Cookbook will teach you how to get the most out of C++17 by providing
coding recipes that combine the C++ language and its standard library, the STL. Indeed, this
book uses as much STL as possible, which is worth a bit of explanation.

C++ is such a great and powerful language. It allows us to hide complex solutions behind
simple high-level interfaces but, at the same time, to write low-level code where high
performance and low overhead really matter. The ISO C++ Standard Committee works hard
on improving the C++ standard. C++11 brought a lot of great features to C++, and so did
C++14 and C++17.

As of today, C++ is a language that provides language features and standard library
facilities for sophisticated standard data structures and algorithms, automatic resource
management pointers, lambda expressions, constant expressions, portable thread control
for concurrent programming, regular expressions, random number generators, exceptions,
variadic templates (the part of C++ for expressing template types is even Turing-complete!),
user-defined literals, portable filesystem traversal, and so much more. This giant bunch of
features makes it a general-purpose language ideal for implementing high-quality and
high-performance software in all fields of the software industry.

However, many C++ programmers eagerly learn C++ as a language but put its standard
library, the STL, in the second place. Using the C++ language without the help that the
standard library provides often leads to programs that look like C with classes, but not
what modern programs in the 21st century should look like. This is very sad because using
C++ like that means dropping half its strength.

In the C++11 edition of his book, The C++ Programming Language, Bjarne Stroustrup writes,
"Please remember that those libraries and language features exist to support programming
techniques for developing quality software. They are meant to be used in combination--as
bricks in a building set--rather than to be used individually in relative isolation to solve a
specific problem."

This is exactly what this book and its recipes are about. All the recipes in this book are
designed to be as near as possible to real-life problems, while at the same time, they do not
rely on any external libraries other than the STL. This way, it is very simple to play around
with each of them, without having to do confusing setup work. I really hope that you find
inspiration in the recipes and, maybe, find some of them to be nice standard building blocks
for solving higher-level problems with this great programming language.

Preface

[2]

What this book covers
Chapter 1, The New C++17 Features, specializes on the new and game-changing additions
that the C++17 standard brought to C++ as a language, so we can concentrate on the
additions to the STL in the following chapters.

Chapter 2, STL Containers, explains how the STL's rich variety of container data structures
got some upgrades with C++17. After having a look at the entire collection of the different
containers, we will have a closer look on the new additions they got.

Chapter 3, Iterators, explains iterators, which are an extremely important abstraction as they
are the glue between the STL's algorithms and the container data structures, whenever they
are combined. We are going to roll up the whole iterator concept from the ground to learn
how to put them to the best use in all our programs.

Chapter 4, Lambda Expressions, explores lambda expressions, which allow for some very
interesting programming patterns. Inspired by purely functional programming languages,
lambda expressions, which were first introduced in C++11, got some new features with
C++14 and C++17.

Chapter 5, STL Algorithm Basics, introduces the basics of the STL’s standard algorithms that
are easy to use, very performant, well-tested, and highly generic. We will learn how to use
them, so we can be productive by concentrating on solutions, instead of wasting time
reinventing the wheel.

Chapter 6, Advanced Use of STL Algorithms, demonstrates how to combine the STL’s basic
algorithms in order to compose more complex ones in clean ways without code duplication.
In this chapter, we will be creative and stick tightly to the STL while implementing
solutions to more complex problems, and we will learn how to combine existing algorithms
to create new ones that really fit our needs.

Chapter 7, Strings, Stream Classes, and Regular Expressions, provides a detailed overview
over the STL's powerful classes around strings, generic I/O streaming, and regular
expressions. We will have an in-depth look into these parts of the STL in this chapter.

Chapter 8, Utility Classes, explains the STL ways of generating random numbers, taking
and measuring the time, managing dynamic memory, elegantly signalizing error
conditions, and more. We will have a look at the extremely useful and portable utility
classes that the C++ STL provides for such tasks and introduce the brand new ones that
came with C++17.

Preface

[3]

Chapter 9, Parallelism and Concurrency, showcases the existing C++ extensions for
parallelism and concurrency which became very important topics at the time we entered the
era of multi-core processors. First C++11, and then C++17, came with great additions that are
of an enormous help whenever we need to implement programs that run on multiple cores
and do things concurrently. So, we make sure we grasp these concepts in this chapter.

Chapter 10, Filesystem, shows that although the STL always provided support for reading
and manipulating individual files, C++17 got a lot of new value with its whole new
operating system-independent library for the handling of filesystem paths and the traversal
of directories. In this chapter, we will learn how to use it.

What you need for this book
All recipes in this book are kept as simple and self-contained as possible. They are easy to
compile and run, but depending on the reader’s choice of operating system and compiler,
there are differences. Let’s have a look how to compile and run all the recipes, and what else
to pay attention to.

Compiling and running the recipes
All the code in this book has been developed and tested on Linux and MacOS, using the
GNU C++ compiler, g++, and the LLVM C++ compiler, clang++.

Building an example in the shell can be done with the following command using g++:

$ g++ -std=c++1z -o recipe_app recipe_code.cpp

Using clang++, the command is similar:

$ clang++ -std=c++1z –o recipe_app recipe_code.cpp

Both the command-line examples assume that the file recipe_code.cpp is the text file
containing your C++ code. After compiling the program, the executable binary will have the
filename recipe_app and can be executed as follows:

$./recipe_app

Preface

[4]

In a lot of examples, we read the content of entire files via standard input. In such cases, we
use the standard UNIX pipes and the UNIX cat command to direct the file content into our
app, as follows:

$ cat file.txt | ./recipe_app

This works on Linux and MacOS. In the Microsoft Windows shell, it works as follows:

> recipe_app.exe < file.txt

If you do not happen to run your programs from the command-line shell, but from the
Microsoft Visual Studio IDE, then you need to open the dialogue, "Configuration
properties > Debugging", and add the "< file.txt" part to the command line of the
app that Visual Studio uses for launching.

Requirements for early adopters
If you happen to read this book in the earliest days of C++17 and use bleeding- edge
compilers to compile the code, you might experience that some recipes do not compile yet.
This depends on how much of the C++17 STL has been implemented already in your STL
distribution.
While writing this book, it was necessary to add the path prefix experimental/ to the
headers <execution_policy> and <filesystem>. There might also be additional
includes such as algorithm, numeric, and so on, in the experimental/ folder of your STL
distribution, depending on how new and stable it is.

The same applies for the namespace of brand new features. The parts of the library that
were included from the experimental part of the STL are usually exported not within the
std namespace but the std::experimental namespace.

Who this book is for
This book is not for you if you have no prior knowledge of writing and compiling C++
programs. If you read about the basics of this language already, this book is the ideal
second book about C++ to take your knowledge to an advanced level.

Preface

[5]

Apart from that, you are a good candidate for reading this book if you can identify yourself
with one of the following bullet point descriptions:

You have learned the basics of C++, but now, you don't have a clue where to go
next, since the gap between your knowledge and the knowledge of an
experienced C++ veteran is still large.
You know C++ well, but your knowledge of the STL is limited.
You know C++ from one of the older standards, such as C++98, C++11, or C++14.
Depending on how far in the past you used C++ the last time, this book has a lot
of nice new STL features and perks in store, ready for you to discover.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to
do it, How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous
section.

There's more…
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

Preface

[6]

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "The next
step is to edit build.properties file."

A block of code is set as follows:

my_wrapper<T1, T2, T3> make_wrapper(T1 t1, T2 t2, T3 t3)
{
 return {t1, t2, t3};
}

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Once done, click on
Activate."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[7]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply e-mail
feedback@packtpub.com, and mention the book's title in the subject of your message. If
there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p ://w w w . p

a c k t p u b . c o m . If you purchased this book elsewhere, you can visit h t t p ://w w w . p a c k t p u b . c

o m /s u p p o r t and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[8]

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at h t t p s ://g i t h u b . c o m /P a c k t P u b l

i s h i n g /C p p 17- S T L - C o o k b o o k . We also have other code bundles from our rich catalog of
books and videos available at h t t p s ://g i t h u b . c o m /P a c k t P u b l i s h i n g /. Check them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p ://w w w . p a c k t p u b . c o m /s u b m i t - e r r a t a , selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to h t t p s ://w w w . p a c k t p u b . c o m /b o o k s /c o n t e n

t /s u p p o r t and enter the name of the book in the search field. The required information will
appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/Cpp17-STL-Cookbook
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[9]

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

1
The New C++17 Features

In this chapter, we will cover the following recipes:

Using structured bindings to unpack bundled return values
Limiting variable scopes to if and switch statements
Profiting from the new bracket initializer rules
Letting the constructor automatically deduce the resulting template class type
Simplifying compile-time decisions with constexpr-if
Enabling header-only libraries with inline variables
Implementing handy helper functions with fold expressions

Introduction
C++ got a lot of additions in C++11, C++14, and, most recently, C++17. By now, it is a
completely different language compared to what it was just a decade ago. The C++ standard
does not only standardize the language, as it needs to be understood by the compilers, but
also the C++ standard template library (STL).

This book explains how to put the STL to the best use with a broad range of examples. But
at first, this chapter will concentrate on the most important new language features.
Mastering them will greatly help you write readable, maintainable, and expressive code a
lot.

The New C++17 Features

[11]

We will see how to access individual members of pairs, tuples, and structures comfortably
with structured bindings and how to limit variable scopes with the new if and switch
variable initialization capabilities. The syntactical ambiguities, which were introduced by
C++11 with the new bracket initialization syntax, which looks the same for initializer lists,
were fixed by new bracket initializer rules. The exact type of template class instances can now
be deduced from the actual constructor arguments, and if different specializations of a
template class will result in completely different code, this is now easily expressible with
constexpr-if. The handling of variadic parameter packs in template functions became much
easier in many cases with the new fold expressions. At last, it became more comfortable to
define static globally accessible objects in header-only libraries with the new ability to
declare inline variables, which was only possible for functions before.

Some of the examples in this chapter might be more interesting for implementers of
libraries than for developers who implement applications. While we will have a look at
such features for completeness reasons, it is not too critical to understand all the examples
of this chapter immediately in order to understand the rest of this book.

Using structured bindings to unpack
bundled return values
C++17 comes with a new feature, which combines syntactic sugar and automatic type
deduction: structured bindings. These help to assign values from pairs, tuples, and structs
into individual variables. In other programming languages, this is also called unpacking.

How to do it...
Applying a structured binding in order to assign multiple variables from one bundled
structure is always one step. Let's first see how it was done before C++17. Then, we can have
a look at multiple examples that show how we can do it in C++17:

Accessing individual values of an std::pair: Imagine we have a mathematical
function, divide_remainder, which accepts a dividend and a divisor parameter
and returns the fraction of both as well as the remainder. It returns those values
using an std::pair bundle:

 std::pair<int, int> divide_remainder(int dividend, int divisor);

The New C++17 Features

[12]

Consider the following way of accessing the individual values of the resulting
pair:

 const auto result (divide_remainder(16, 3));
 std::cout << "16 / 3 is "
 << result.first << " with a remainder of "
 << result.second << '\n';

Instead of doing it as shown in the preceding code snippet, we can now assign the
individual values to individual variables with expressive names, which is much
better to read:

 auto [fraction, remainder] = divide_remainder(16, 3);
 std::cout << "16 / 3 is "
 << fraction << " with a remainder of "
 << remainder << '\n';

Structured bindings also work with std::tuple: Let's take the following
example function, which gets us online stock information:

 std::tuple<std::string,
 std::chrono::system_clock::time_point, unsigned>
 stock_info(const std::string &name);

Assigning its result to individual variables looks just like in the example before:

 const auto [name, valid_time, price] = stock_info("INTC");

Structured bindings also work with custom structures: Let's assume a structure
like the following:

 struct employee {
 unsigned id;
 std::string name;
 std::string role;
 unsigned salary;
 };

Now, we can access these members using structured bindings. We can even do
that in a loop, assuming we have a whole vector of those:

 int main()
 {
 std::vector<employee> employees {
 /* Initialized from somewhere */};
 for (const auto &[id, name, role, salary] : employees) {
 std::cout << "Name: " << name

The New C++17 Features

[13]

 << "Role: " << role
 << "Salary: " << salary << '\n';
 }
 }

How it works...
Structured bindings are always applied with the same pattern:

auto [var1, var2, ...] = <pair, tuple, struct, or array expression>;

The list of variables var1, var2, ... must exactly match the number of
variables contained by the expression being assigned from.
The <pair, tuple, struct, or array expression> must be one of the
following:

An std::pair.
An std::tuple.
A struct. All members must be non-static and defined in the same
base class. The first declared member is assigned to the first
variable, the second member to the second variable, and so on.
An array of fixed size.

The type can be auto, const auto, const auto&, and even auto&&.

Not only for the sake of performance, always make sure to minimize
needless copies by using references when appropriate.

If we write too many or not enough variables between the square brackets, the compiler will
error out, telling us about our mistake:

std::tuple<int, float, long> tup {1, 2.0, 3};
auto [a, b] = tup; // Does not work

This example obviously tries to stuff a tuple variable with three members into only two
variables. The compiler immediately chokes on this and tells us about our mistake:

error: type 'std::tuple<int, float, long>' decomposes into 3 elements, but
only 2 names were provided
auto [a, b] = tup;

The New C++17 Features

[14]

There's more...
A lot of fundamental data structures from the STL are immediately accessible using
structured bindings without us having to change anything. Consider, for example, a loop
that prints all the items of an std::map:

std::map<std::string, size_t> animal_population {
 {"humans", 7000000000},
 {"chickens", 17863376000},
 {"camels", 24246291},
 {"sheep", 1086881528},
 /* … */
};

for (const auto &[species, count] : animal_population) {
 std::cout << "There are " << count << " " << species
 << " on this planet.\n";
}

This particular example works because when we iterate over an std::map container, we
get the std::pair<const key_type, value_type> nodes on every iteration step.
Exactly these nodes are unpacked using the structured bindings feature (key_type is the
species string and value_type is the population count size_t) in order to access them
individually in the loop body.

Before C++17, it was possible to achieve a similar effect using std::tie:

int remainder;
std::tie(std::ignore, remainder) = divide_remainder(16, 5);
std::cout << "16 % 5 is " << remainder << '\n';

This example shows how to unpack the resulting pair into two variables. The std::tie is
less powerful than structured bindings in the sense that we have to define all the variables
we want to bind to before. On the other hand, this example shows a strength of std::tie
that structured bindings do not have: the value std::ignore acts as a dummy variable.
The fraction part of the result is assigned to it, which leads to that value being dropped
because we do not need it in that example.

When using structured bindings, we don't have tie dummy variables, so
we have to bind all the values to named variables. Doing so and ignoring
some of them is efficient, nevertheless, because the compiler can optimize
the unused bindings out easily.

The New C++17 Features

[15]

Back in the past, the divide_remainder function could have been implemented in the
following way, using output parameters:

bool divide_remainder(int dividend, int divisor,
 int &fraction, int &remainder);

Accessing it would have looked like the following:

int fraction, remainder;
const bool success {divide_remainder(16, 3, fraction, remainder)};
if (success) {
 std::cout << "16 / 3 is " << fraction << " with a remainder of "
 << remainder << '\n';
}

A lot of people will still prefer this over returning complex structures like pairs, tuples, and
structs, arguing that this way the code would be faster, due to avoided intermediate copies
of those values. This is not true any longer for modern compilers, which optimize
intermediate copies away.

Apart from the missing language features in C, returning complex
structures via return value was considered slow for a long time because
the object had to be initialized in the returning function and then copied
into the variable that should contain the return value on the caller side.
Modern compilers support return value optimization (RVO), which
enables for omitting intermediate copies.

Limiting variable scopes to if and switch
statements
It is good style to limit the scope of variables as much as possible. Sometimes, however, one
first needs to obtain some value, and only if it fits a certain condition, it can be processed
further.

For this purpose, C++17 comes with if and switch statements with initializers.

The New C++17 Features

[16]

How to do it...
In this recipe, we use the initializer syntax in both the supported contexts in order to see
how they tidy up our code:

The if statements: Imagine we want to find a character in a character map using
the find method of std::map:

 if (auto itr (character_map.find(c)); itr != character_map.end()) {
 // *itr is valid. Do something with it.
 } else {
 // itr is the end-iterator. Don't dereference.
 }
 // itr is not available here at all

The switch statements: This is how it would look to get a character from the
input and, at the same time, check the value in a switch statement in order to
control a computer game:

 switch (char c (getchar()); c) {
 case 'a': move_left(); break;
 case 's': move_back(); break;
 case 'w': move_fwd(); break;
 case 'd': move_right(); break;
 case 'q': quit_game(); break;

 case '0'...'9': select_tool('0' - c); break;

 default:
 std::cout << "invalid input: " << c << '\n';
 }

How it works...
The if and switch statements with initializers are basically just syntax sugar. The
following two samples are equivalent:

Before C++17:

{
 auto var (init_value);
 if (condition) {
 // branch A. var is accessible
 } else {
 // branch B. var is accessible

The New C++17 Features

[17]

 }
 // var is still accessible
}

Since C++17:

if (auto var (init_value); condition) {
 // branch A. var is accessible
} else {
 // branch B. var is accessible
}
// var is not accessible any longer

The same applies to switch statements:

Before C++17:

{
 auto var (init_value);
 switch (var) {
 case 1: ...
 case 2: ...
 ...
 }
 // var is still accessible
}

Since C++17:

switch (auto var (init_value); var) {
case 1: ...
case 2: ...
 ...
}
// var is not accessible any longer

This feature is very useful to keep the scope of a variable as short as necessary. Before
C++17, this was only possible using extra braces around the code, as the pre-C++17
examples show. The short lifetimes reduce the number of variables in the scope, which
keeps our code tidy and makes it easier to refactor.

The New C++17 Features

[18]

There's more...
Another interesting use case is the limited scope of critical sections. Consider the following
example:

if (std::lock_guard<std::mutex> lg {my_mutex}; some_condition) {
 // Do something
}

At first, an std::lock_guard is created. This is a class that accepts a mutex argument as a
constructor argument. It locks the mutex in its constructor, and when it runs out of scope, it
unlocks it again in its destructor. This way, it is impossible to forget to unlock the mutex.
Before C++17, a pair of extra braces was needed in order to determine the scope where it
unlocks again.

Yet another interesting use case is the scope of weak pointers. Consider the following:

if (auto shared_pointer (weak_pointer.lock()); shared_pointer != nullptr) {
 // Yes, the shared object does still exist
} else {
 // shared_pointer var is accessible, but a null pointer
}
// shared_pointer is not accessible any longer

This is another example where we would have a useless shared_pointer variable leaking
into the current scope, although it has a potentially useless state outside the if conditional
block or noisy extra brackets!

The if statements with initializers are especially useful when using legacy APIs with output
parameters:

if (DWORD exit_code; GetExitCodeProcess(process_handle, &exit_code)) {
 std::cout << "Exit code of process was: " << exit_code << '\n';
}
// No useless exit_code variable outside the if-conditional

GetExitCodeProcess is a Windows kernel API function. It returns the exit code for a
given process handle but only if that handle is valid. After leaving this conditional block,
the variable is useless, so we don't need it in any scope any longer.

Being able to initialize variables within if blocks is obviously very useful in a lot of
situations and, especially, when dealing with legacy APIs that use output parameters.

The New C++17 Features

[19]

Keep your scopes tight using if and switch statement initializers. This
makes your code more compact, easier to read, and in code refactoring
sessions, it will be easier to move around.

Profiting from the new bracket initializer
rules
C++11 came with the new brace initializer syntax {}. Its purpose was to allow for aggregate
initialization, but also for usual constructor calling. Unfortunately, it was too easy to
express the wrong thing when combining this syntax with the auto variable type. C++17
comes with an enhanced set of initializer rules. In this recipe, we will clarify how to
correctly initialize variables with which syntax in C++17.

How to do it...
Variables are initialized in one step. Using the initializer syntax, there are two different
situations:

Using the brace initializer syntax without auto type deduction:

 // Three identical ways to initialize an int:
 int x1 = 1;
 int x2 {1};
 int x3 (1);
 std::vector<int> v1 {1, 2, 3}; // Vector with three ints: 1, 2, 3
 std::vector<int> v2 = {1, 2, 3}; // same here
 std::vector<int> v3 (10, 20); // Vector with 10 ints,
 // each have value 20

Using the brace initializer syntax with auto type deduction:

 auto v {1}; // v is int
 auto w {1, 2}; // error: only single elements in direct
 // auto initialization allowed! (this is new)
 auto x = {1}; // x is std::initializer_list<int>
 auto y = {1, 2}; // y is std::initializer_list<int>
 auto z = {1, 2, 3.0}; // error: Cannot deduce element type

The New C++17 Features

[20]

How it works...
Without auto type deduction, there's not much to be surprised about in the brace {}
operator, at least, when initializing regular types. When initializing containers such as
std::vector, std::list, and so on, a brace initializer will match the
std::initializer_list constructor of that container class. It does this in a greedy
manner, which means that it is not possible to match non-aggregate constructors (non-
aggregate constructors are usual constructors in contrast to the ones that accept an
initializer list).

std::vector, for example, provides a specific non-aggregate constructor, which fills
arbitrarily many items with the same value: std::vector<int> v (N, value). When
writing std::vector<int> v {N, value}, the initializer_list constructor is
chosen, which will initialize the vector with two items: N and value. This is a special pitfall
one should know about.

One nice detail about the {} operator compared to constructor calling using normal ()
parentheses is that they do no implicit type conversions: int x (1.2); and int x =
1.2; will initialize x to value 1 by silently rounding down the floating point value and
converting it to int. int x {1.2};, in contrast, will not compile because it wants to exactly
match the constructor type.

One can controversially argue about which initialization style is the best
one.
Fans of the bracket initialization style say that using brackets makes it very
explicit, that the variable is initialized with a constructor call, and that this
code line is not reinitializing anything. Furthermore, using {} brackets
will select the only matching constructor, while initializer lines using ()
parentheses try to match the closest constructor and even do type
conversion in order to match.

The additional rule introduced in C++17 affects the initialization with auto type deduction--
while C++11 would correctly make the type of the variable auto x {123}; an
std::initializer_list<int> with only one element, this is seldom what we would
want. C++17 would make the same variable an int.

The New C++17 Features

[21]

Rule of thumb:

auto var_name {one_element}; deduces var_name to be of the same type as
one_element

auto var_name {element1, element2, ...}; is invalid and does not
compile
auto var_name = {element1, element2, ...}; deduces to an
std::initializer_list<T> with T being of the same type as all the elements
in the list

C++17 has made it harder to accidentally define an initializer list.

Trying this out with different compilers in C++11/C++14 mode will show
that some compilers actually deduce auto x {123}; to an int, while
others deduce it to std::initializer_list<int>. Writing code like
this can lead to problems regarding portability!

Letting the constructor automatically deduce
the resulting template class type
A lot of classes in C++ are usually specialized on types, which could be easily deduced from
the variable types the user puts in their constructor calls. Nevertheless, before C++17, this
was not a standardized feature. C++17 lets the compiler automatically deduce template types
from constructor calls.

How to do it...
A very handy use case for this is constructing std::pair and std::tuple instances.
These can be specialized and instantiated and specialized in one step:

std::pair my_pair (123, "abc"); // std::pair<int, const char*>
std::tuple my_tuple (123, 12.3, "abc"); // std::tuple<int, double,
 // const char*>

The New C++17 Features

[22]

How it works...
Let’s define an example class where automatic template type deduction would be of value:

template <typename T1, typename T2, typename T3>
class my_wrapper {
 T1 t1;
 T2 t2;
 T3 t3;

public:
 explicit my_wrapper(T1 t1_, T2 t2_, T3 t3_)
 : t1{t1_}, t2{t2_}, t3{t3_}
 {}

 /* … */
};

Okay, this is just another template class. We previously had to write the following in order
to instantiate it:

my_wrapper<int, double, const char *> wrapper {123, 1.23, "abc"};

We can now just omit the template specialization part:

my_wrapper wrapper {123, 1.23, "abc"};

Before C++17, this was only possible by implementing a make function helper:

my_wrapper<T1, T2, T3> make_wrapper(T1 t1, T2 t2, T3 t3)
{
 return {t1, t2, t3};
}

Using such helpers, it was possible to have a similar effect:

auto wrapper (make_wrapper(123, 1.23, "abc"));

The STL already comes with a lot of helper functions such as that one:
std::make_shared, std::make_unique, std::make_tuple, and so on.
In C++17, these can now mostly be regarded as obsolete. Of course, they
will be provided further for compatibility reasons.

The New C++17 Features

[23]

There's more...
What we just learned about was implicit template type deduction. In some cases, we cannot
rely on implicit type deduction. Consider the following example class:

template <typename T>
struct sum {
 T value;

 template <typename ... Ts>
 sum(Ts&& ... values) : value{(values + ...)} {}
};

This struct, sum, accepts an arbitrary number of parameters and adds them together using a
fold expression (have a look at the fold expression recipe a little later in this chapter to get
more details on fold expressions). The resulting sum is saved in the member variable
value. Now the question is, what type is T? If we don't want to specify it explicitly, it surely
needs to depend on the types of the values provided in the constructor. If we provide string
instances, it needs to be std::string. If we provide integers, it needs to be int. If we
provide integers, floats, and doubles, the compiler needs to figure out which type fits all the
values without information loss. In order to achieve that, we provide an explicit deduction
guide:

template <typename ... Ts>
sum(Ts&& ... ts) -> sum<std::common_type_t<Ts...>>;

This deduction guide tells the compiler to use the std::common_type_t trait, which is able
to find out which common type fits all the values. Let's see how to use it:

sum s {1u, 2.0, 3, 4.0f};
sum string_sum {std::string{"abc"}, "def"};

std::cout << s.value << '\n'
 << string_sum.value << '\n';

In the first line we instantiate a sum object with constructor arguments of type unsigned,
double, int, and float. The std::common_type_t returns double as the common type,
so we get a sum<double> instance. In the second line, we provide an std::string
instance and a C-style string. Following our deduction guide, the compiler constructs an
instance of type sum<std::string>.

When running this code, it will print 10 as the numeric sum and abcdef as the string sum.

The New C++17 Features

[24]

Simplifying compile time decisions with
constexpr-if
In templated code, it is often necessary to do certain things differently, depending on the
type the template is specialized for. C++17 comes with constexpr-if expressions, which
simplify the code in such situations a lot.

How to do it...
In this recipe, we'll implement a little helper template class. It can deal with different
template type specializations because it is able to select completely different code in some
passages, depending on what type we specialize it for:

Write the part of the code that is generic. In our example, it is a simple class,1.
which supports adding a type U value to the type T member value using an add
function:

 template <typename T>
 class addable
 {
 T val;
 public:
 addable(T v) : val{v} {}
 template <typename U>
 T add(U x) const {
 return val + x;
 }
 };

The New C++17 Features

[25]

Imagine that type T is std::vector<something> and type U is just int. What2.
shall it mean to add an integer to a whole vector? Let's say it means that we add
the integer to every item in the vector. This will be done in a loop:

 template <typename U>
 T add(U x)
 {
 auto copy (val); // Get a copy of the vector member
 for (auto &n : copy) {
 n += x;
 }
 return copy;
 }

The next and last step is to combine both worlds. If T is a vector of U items, do the3.
loop variant. If it is not, just implement the normal addition:

 template <typename U>
 T add(U x) const {
 if constexpr (std::is_same_v<T, std::vector<U>>) {
 auto copy (val);
 for (auto &n : copy) {
 n += x;
 }
 return copy;
 } else {
 return val + x;
 }
 }

The class can now be put to use. Let's see how nicely it works with completely4.
different types, such as int, float, std::vector<int>, and
std::vector<string>:

 addable<int>{1}.add(2); // is 3
 addable<float>{1.0}.add(2); // is 3.0
 addable<std::string>{"aa"}.add("bb"); // is "aabb"

 std::vector<int> v {1, 2, 3};
 addable<std::vector<int>>{v}.add(10);
 // is std::vector<int>{11, 12, 13}

 std::vector<std::string> sv {"a", "b", "c"};
 addable<std::vector<std::string>>{sv}.add(std::string{"z"});
 // is {"az", "bz", "cz"}

The New C++17 Features

[26]

How it works...
The new constexpr-if works exactly like usual if-else constructs. The difference is that the
condition that it tests has to be evaluated at compile time. All runtime code that the compiler
creates from our program will not contain any branch instructions from constexpr-if
conditionals. One could also put it that it works in a similar manner to preprocessor #if
and #else text substitution macros, but for those, the code would not even have to be
syntactically well-formed. All the branches of a constexpr-if construct need to be
syntactically well-formed, but the branches that are not taken do not need to be semantically
valid.

In order to distinguish whether the code should add the value x to a vector or not, we use
the type trait std::is_same. An expression std::is_same<A, B>::value evaluates to
the Boolean value true if A and B are of the same type. The condition used in our recipe is
std::is_same<T, std::vector<U>>::value, which evaluates to true if the user
specialized the class on T = std::vector<X> and tries to call add with a parameter of
type U = X.

There can, of course, be multiple conditions in one constexpr-if-else block (note that a and b
have to depend on template parameters and not only on compile-time constants):

if constexpr (a) {
 // do something
} else if constexpr (b) {
 // do something else
} else {
 // do something completely different
}

With C++17, a lot of meta programming situations are much easier to express and to read.

There's more...
In order to relate how much constexpr-if constructs are an improvement to C++, we can
have a look at how the same thing could have been implemented before C++17:

template <typename T>
class addable
{
 T val;

public:
 addable(T v) : val{v} {}

The New C++17 Features

[27]

 template <typename U>
 std::enable_if_t<!std::is_same<T, std::vector<U>>::value, T>
 add(U x) const { return val + x; }

 template <typename U>
 std::enable_if_t<std::is_same<T, std::vector<U>>::value,
 std::vector<U>>
 add(U x) const {
 auto copy (val);
 for (auto &n : copy) {
 n += x;
 }
 return copy;
 }
};

Without using constexpr-if, this class works for all different types we wished for, but it
looks super complicated. How does it work?

The implementations alone of the two different add functions look simple. It's their return
type declaration, which makes them look complicated, and which contains a trick--an
expression such as std::enable_if_t<condition, type> evaluates to type if
condition is true. Otherwise, the std::enable_if_t expression does not evaluate to
anything. That would normally considered an error, but we will see why it is not.

For the second add function, the same condition is used in an inverted manner. This way, it
can only be true at the same time for one of the two implementations.

When the compiler sees different template functions with the same name and has to choose
one of them, an important principle comes into play: SFINAE, which stands for
Substitution Failure is not an Error. In this case, this means that the compiler does not
error out if the return value of one of those functions cannot be deduced from an erroneous
template expression (which std::enable_if is, in case its condition evaluates to false).
It will simply look further and try the other function implementation. That is the trick; that is
how this works.

What a hassle. It is nice to see that this became so much easier with C++17.

The New C++17 Features

[28]

Enabling header-only libraries with inline
variables
While it was always possible in C++ to declare individual functions inline, C++17
additionally allows us to declare variables inline. This makes it much easier to implement
header-only libraries, which was previously only possible using workarounds.

How it's done...
In this recipe, we create an example class that could suit as a member of a typical header-
only library. The target is to give it a static member and instantiate it in a globally available
manner using the inline keyword, which would not be possible like this before C++17:

The process_monitor class should both contain a static member and be1.
globally accessible itself, which would produce double-defined symbols when
included from multiple translation units:

 // foo_lib.hpp
 class process_monitor {
 public:
 static const std::string standard_string
 {"some static globally available string"};
 };
 process_monitor global_process_monitor;

If we now include this in multiple .cpp files in order to compile and link them,2.
this would fail at the linker stage. In order to fix this, we add the inline
keyword:

 // foo_lib.hpp

 class process_monitor {
 public:
 static const inline std::string standard_string
 {"some static globally available string"};
 };

 inline process_monitor global_process_monitor;

Voila, that's it!

The New C++17 Features

[29]

How it works...
C++ programs do often consist of multiple C++ source files (these do have .cpp or .cc
suffices). These are individually compiled to modules/object files (which usually have .o
suffices). Linking all the modules/object files together into a single executable or
shared/static library is then the last step.

At the link stage, it is considered an error if the linker can find the definition of one specific
symbol multiple times. Let's say, for example, we have a function with a signature such as
int foo();. If two modules define the same function, which is the right one? The linker
can't just roll the dice. Well, it could, but that's most likely not what any programmer would
ever want to happen.

The traditional way to provide globally available functions is to declare them in the header
files, which will be included by any C++ module that needs to call them. The definition of
every of those functions will be then put once into separate module files. These are then
linked together with the modules that desire to use these functions. This is also called the
One Definition Rule (ODR). Check out the following illustration for better understanding:

The New C++17 Features

[30]

However, if this were the only way, then it would not have been possible to provide
header-only libraries. Header-only libraries are very handy because they only need to be
included using #include into any C++ program file and then are immediately available. In
order to use libraries that are not header-only, the programmer must also adapt the build
scripts in order to have the linker link the library modules together with his own module
files. Especially for libraries with only very short functions, this is unnecessarily
uncomfortable.

For such cases, the inline keyword can be used to make an exception in order to allow
multiple definitions of the same symbol in different modules. If the linker finds multiple
symbols with the same signature, but they are declared inline, it will just choose the first
one and trust that the other symbols have the same definition. That all equal inline symbols
are defined completely equal is basically a promise from the programmer.

Regarding our recipe example, the linker will find the
process_monitor::standard_string symbol in every module that includes
foo_lib.hpp. Without the inline keyword, it would not know which one to choose, so it
would abort and report an error. The same applies to the global_process_monitor
symbol. Which one is the right one?

After declaring both the symbols inline, it will just accept the first occurrence of each
symbol and drop all the others.

Before C++17, the only clean way would be to provide this symbol via an additional C++
module file, which would force our library users to include this file in the linking step.

The inline keyword traditionally also has another function. It tells the compiler that it can
eliminate the function call by taking its implementation and directly putting it where it was
called. This way, the calling code contains one function call less, which can often be
considered faster. If the function is very short, the resulting assembly will also be shorter
(assuming that the number of instructions that do the function call, saving and restoring the
stack, and so on, is higher than the actual payload code). If the inlined function is very long,
the binary size will grow and this might sometimes not even lead to faster code in the end.
Therefore, the compiler will only use the inline keyword as a hint and might eliminate
function calls by inlining them. But it can also inline some functions without the
programmer having it declared inline.

The New C++17 Features

[31]

There's more...
One possible workaround before C++17 was providing a static function, which returns a
reference to a static object:

class foo {
public:
 static std::string& standard_string() {
 static std::string s {"some standard string"};
 return s;
 }
};

This way, it is completely legal to include the header file in multiple modules but still
getting access to exactly the same instance everywhere. However, the object is not
constructed immediately at the start of program but only on the first call of this getter
function. For some use cases, this is indeed a problem. Imagine that we want the
constructor of the static, globally available object to do something important at program start
(just as our reciple example library class), but due to the getter being called near the end of
the program, it is too late.

Another workaround is to make the non-template class foo a template class, so it can profit
from the same rules as templates.

Both strategies can be avoided in C++17.

Implementing handy helper functions with
fold expressions
Since C++11, there are variadic template parameter packs, which enable implementing
functions that accept arbitrarily many parameters. Sometimes, these parameters are all
combined into one expression in order to derive the function result from that. This task
became really easy with C++17, as it comes with fold expressions.

The New C++17 Features

[32]

How to do it...
Let's implement a function that takes arbitrarily many parameters and returns their sum:

At first, we define its signature:1.

 template <typename ... Ts>
 auto sum(Ts ... ts);

So, we have a parameter pack ts now, and the function should expand all the2.
parameters and sum them together using a fold expression. If we use any
operator (+, in this example) together with ... in order to apply it to all the
values of a parameter pack, we need to surround the expression with
parentheses:

 template <typename ... Ts>
 auto sum(Ts ... ts)
 {
 return (ts + ...);
 }

We can now call it this way:3.

 int the_sum {sum(1, 2, 3, 4, 5)}; // Value: 15

It does not only work with int types; we can call it with any type that just4.
implements the + operator, such as std::string:

 std::string a {"Hello "};
 std::string b {"World"};
 std::cout << sum(a, b) << '\n'; // Output: Hello World

How it works...
What we just did was a simple recursive application of a binary operator (+) to its
parameters. This is generally called folding. C++17 comes with fold expressions, which help
expressing the same idea with less code.

The New C++17 Features

[33]

This kind of expression is called unary fold. C++17 supports folding parameter packs with
the following binary operators: +, -, *, /, %, ^, &, |, =, <, >, <<, >>, +=, -=, *=, /=, %=, ^=, &=,
|=, <<=, >>=, ==, !=, <=, >=, &&, ||, ,, .*, ->*.

By the way, in our example code, it does not matter if we write (ts + …) or (… + ts);
both work. However, there is a difference that may be relevant in other cases--if the … dots
are on the right-hand side of the operator, the fold is called a right fold. If they are on the left-
hand side, it is a left fold.

In our sum example, a unary left fold expands to 1 + (2 + (3 + (4 + 5))), while a
unary right fold will expand to (((1 + 2) + 3) + 4) + 5. Depending on the operator in
use, this can make a difference. When adding numbers, it does not.

There's more...
In case someone calls sum() with no arguments, the variadic parameter pack contains no
values that could be folded. For most operators, this is an error (for some, it is not; we will
see this in a minute). We then need to decide if this should stay an error or if an empty sum
should result in a specific value. The obvious idea is that the sum of nothing is 0.

This is how it’s done:

template <typename ... Ts>
auto sum(Ts ... ts)
{
 return (ts + ... + 0);
}

This way, sum() evaluates to 0, and sum(1, 2, 3) evaluates to (1 + (2 + (3 + 0))).
Such folds with an initial value are called binary folds.

Again, it works if we write (ts + ... + 0), or (0 + ... + ts), but this makes the
binary fold a binary right fold or a binary left fold again. Check out the following diagram:

The New C++17 Features

[34]

When using binary folds in order to implement the no-argument case, the notion of an
identity element is often important--in this case, adding a 0 to any number changes nothing,
which makes 0 an identity element. Because of this property, we can add a 0 to any fold
expression with the operators + or -, which leads to the result 0 in case there are no
parameters in the parameter pack. From a mathematical point of view, this is correct. From
an implementation view, we need to define what is correct, depending on what we need.

The same principle applies to multiplication. Here, the identity element is 1:

template <typename ... Ts>
auto product(Ts ... ts)
{
 return (ts * ... * 1);
}

The result of product(2, 3) is 6, and the result of product() without parameters is 1.

The logical and (&&) and or (||) operators come with built-in identity elements. Folding an
empty parameter pack with && results in true, and folding an empty parameter pack with
|| results in false.

Another operator that defaults to a certain expression when applied on empty parameter
packs is the comma operator (,), which then defaults to void().

The New C++17 Features

[35]

In order to ignite some inspiration, let's have a look at some more little helpers that we can
implement using this feature.

Match ranges against individual items
How about a function that tells whether some range contains at least one of the values we
provide as variadic parameters:

template <typename R, typename ... Ts>
auto matches(const R& range, Ts ... ts)
{
 return (std::count(std::begin(range), std::end(range), ts) + ...);
}

The helper function uses the std::count function from the STL. This function takes three
parameters: the first two parameters are the begin and end iterators of some iterable range,
and as the third parameter, it takes a value which will be compared to all the items of the
range. The std::count method then returns the number of all the elements within the
range that are equal to the third parameter.

In our fold expression, we always feed the begin and end iterators of the same parameter
range into the std::count function. However, as the third parameter, each time we put
one other parameter from the parameter pack into it. In the end, the function sums up all
the results and returns it to the caller.

We can use it like this:

std::vector<int> v {1, 2, 3, 4, 5};

matches(v, 2, 5); // returns 2
matches(v, 100, 200); // returns 0
matches("abcdefg", 'x', 'y', 'z'); // returns 0
matches("abcdefg", 'a', 'd', 'f'); // returns 3

As we can see, the matches helper function is quite versatile--it can be called on vectors or
even on strings directly. It would also work on initializer lists, on instances of std::list,
std::array, std::set, and so on!

The New C++17 Features

[36]

Check if multiple insertions into a set are successful
Let's write a helper that inserts an arbitrary number of variadic parameters into an
std::set and returns if all the insertions are successful:

template <typename T, typename ... Ts>
bool insert_all(T &set, Ts ... ts)
{
 return (set.insert(ts).second && ...);
}

So, how does this work? The insert function of std::set has the following signature:

std::pair<iterator, bool> insert(const value_type& value);

The documentation says that when we try to insert an item, the insert function will return
an iterator and a bool variable in a pair. The bool value is true if the insertion is
successful. If it is successful, the iterator points to the new element in the set. Otherwise, the
iterator points to the existing item, which would collide with the item to be inserted.

Our helper function accesses the .second field after insertion, which is just the bool
variable that reflects success or fail. If all the insertions lead to true in all the return pairs,
then all the insertions were successful. The fold expression combines all the insertion results
with the && operator and returns the result.

We can use it like this:

std::set<int> my_set {1, 2, 3};

insert_all(my_set, 4, 5, 6); // Returns true
insert_all(my_set, 7, 8, 2); // Returns false, because the 2 collides

Note that if we try to insert, for example, three elements, but the second element can
already not be inserted, the && ... fold will short-circuit and stop inserting all the other
elements:

std::set<int> my_set {1, 2, 3};

insert_all(my_set, 4, 2, 5); // Returns false
// set contains {1, 2, 3, 4} now, without the 5!

The New C++17 Features

[37]

Check if all the parameters are within a certain range
If we can check if one variable is within some specific range, we can also do the same thing
with multiple variables using fold expressions:

template <typename T, typename ... Ts>
bool within(T min, T max, Ts ...ts)
{
 return ((min <= ts && ts <= max) && ...);
}

The expression, (min <= ts && ts <= max), does tell for every value of the parameter
pack if it is between min and max (including min and max). We choose the && operator to
reduce all the Boolean results to a single one, which is only true if all the individual results
are true.

This is how it looks in action:

within(10, 20, 1, 15, 30); // --> false
within(10, 20, 11, 12, 13); // --> true
within(5.0, 5.5, 5.1, 5.2, 5.3) // --> true

Interestingly, this function is very versatile because the only requirement it imposes on the
types we use is that they are comparable with the <= operator. And this requirement is also
fulfilled by std::string, for example:

std::string aaa {"aaa"};
std::string bcd {"bcd"};
std::string def {"def"};
std::string zzz {"zzz"};

within(aaa, zzz, bcd, def); // --> true
within(aaa, def, bcd, zzz); // --> false

The New C++17 Features

[38]

Pushing multiple items into a vector
It's also possible to write a helper that does not reduce any results but processes multiple
actions of the same kind. Like inserting items into an std::vector, which does not return
any results (std::vector::insert() signalizes error by throwing exceptions):

template <typename T, typename ... Ts>
void insert_all(std::vector<T> &vec, Ts ... ts)
{
 (vec.push_back(ts), ...);
}

int main()
{
 std::vector<int> v {1, 2, 3};
 insert_all(v, 4, 5, 6);
}

Note that we use the comma (,) operator in order to expand the parameter pack into
individual vec.push_back(...) calls without folding the actual result. This function also
works nicely with an empty parameter pack because the comma operator has an implicit
identity element, void(), which translates to do nothing.

2
STL Containers

We will cover the following recipes in this chapter:

Using the erase-remove idiom on std::vector
Deleting items from an unsorted std::vector in O(1) time
Accessing std::vector instances the fast or the safe way
Keeping std::vector instances sorted
Inserting items efficiently and conditionally into std::map
Knowing the new insertion hint semantics of std::map::insert
Efficiently modifying the keys of std::map items
Using std::unordered_map with custom types
Filtering duplicates from user input and printing them in alphabetical order with
std::set

Implementing a simple RPN calculator with std::stack
Implementing a word frequency counter with std::map
Implementing a writing style helper tool for finding very long sentences in texts
with std::set
Implementing a personal to-do list using std::priority_queue

STL Containers

[40]

Introduction
The C++ standard library comes with a wide range of standard containers. A container
always contains a collection of data or objects. The cool thing is that containers can be used
with practically any kind of object, so we just need to pick the right containers for our
specific application. The STL gives us stacks, automatically growing vectors, maps, and so
on. This way we can concentrate on our app and don't need to reinvent the wheel. Knowing
all containers well is therefore crucial for every C++ programmer.

All containers the STL provides can be categorized as follows, which is explained in detail
in the subsequent subsection:

Contiguous storage
List storage
Search trees
Hash tables
Container adapters

Contiguous storage
The simplest way to store objects is to put them just next to each other in one large chunk of
memory. Such memory can be accessed in a random access manner in O(1) time.

The easiest way to do that is using std::array, which is just a wrapper around normal C-
style arrays. It should always be preferred over normal C-style arrays, because it comes
with no runtime cost, but adds some comfort and safety. Just as C-style arrays, it has a fixed
size once it is created.

The std::vector comes into play when array-like storage is needed, but with varying
sizes. It uses memory from the heap to store objects. Whenever new objects are pushed into
the vector exceeding its current size, it will automatically move all items to a larger chunk of
newly allocated memory, and delete the old chunk. Furthermore, if a new item shall be
inserted between old ones, it can even move the existing items back and forth. If an item
somewhere in the middle shall be removed, the vector class will automatically close the gap
by moving the other objects together.

STL Containers

[41]

If lots of objects are inserted/removed at the front and/back of an std::vector that leads to
a lot of new memory allocations in order to gain space, with potentially costly object move,
std::deque offers an interesting trade off here. The objects are stored in fixed-size chunks
of contiguous memory, but these chunks are independent of each other. This makes it very
simple and quick to arbitrarily grow the deque, because objects in existing chunks can stay
where they are, whenever a new chunk is allocated and put at the front or the end of the
container. Deque stands for double-ended queue.

List storage
The std::list is a classical doubly-linked list. Not less, and not more. If only uni-
directional list traversal is needed, std::forward_list may be more performant in both
space and maintenance complexity, because it maintains only list item pointers in one
direction. Lists can only be traversed linearly with O(n) time. Inserting and removing items
at specific positions can be done in O(1) time.

Search trees
Whenever objects have a natural order so that they can be sorted using some notion of the
mathematical smaller < relation, they can be maintained in that order using search trees. As
the name suggests, search trees can easily be searched for specific items using a search key,
which allows O(log(n)) search times.

The STL provides such trees in different flavors, where std::set is the simplest one of
them, storing just unique, sortable objects in a tree structure.

std::map is different in that regard, that it stores data in pairs. A pair consists of a key, and
a value. The search tree uses the key part for sorting the items, which enables for using
std::map as an associative container. As in std::set, all key items must only exist once in
the whole tree.

std::multiset and std::multimap are specializations, which drop the requirement for
uniqueness of the key objects.

STL Containers

[42]

Hash tables
When talking about associative containers, search trees are not the only way to implement
them. With hash tables, items can be found in O(1) time, but they ignore the natural order of
the items, so they can't be easily traversed in a sorted manner. The size of the hash table can
be manipulated by the user, and the hash function can also be chosen individually, which is
important, because the performance versus space consumption characteristics depend on
that.

std::unordered_set and std::unordered_map have so much interface in common with
their std::set and std::map pendants, that they can be used almost interchangeably.

Just as for the search tree implementations, both containers have their multipendants:
std::unordered_multiset and std::unordered_multimap both drop the constraint
on the uniqueness of the objects/keys, so we can store multiple elements with the same key.

Container adapters
Arrays, lists, trees, and hash tables are not the only way to store and access data, as there
are also stacks, queues, and so on. Similar, more sophisticated structures, however, can be
implemented using the more primitive ones, and the STL does that with the following ones
in the form of container adapters: std::stack, std::queue, and std::priority_queue.

The cool thing is that whenever we need such a data structure, we can just pick such an
adapter. Then, when we realize that they do not work out well regarding their performance,
we can just change a template parameter in order to let the adapter use a different container
implementation, and that's it. In practice, this means, for example, that we can switch the
implementation of an std::stack instance from std::vector to std::deque.

Using the erase-remove idiom on std::vector
A lot of novice C++ programmers learn about std::vector, that it basically works like an
automatically growing array, and stop right there. Later, they only lookup its documentation
in order to see how to do very specific things, for example, removing items. Using STL
containers like this will only scratch the surface of how much they help writing clean,
maintainable, and fast code.

STL Containers

[43]

This section is all about removing items from in-between a vector instance. When an item
disappears from a vector, and sits somewhere in the middle between other items, then all
items right from it must move one slot to the left (which gives this task a runtime cost within
O(n)). Many novice programmers will do that using a loop, since it is also not really a hard
thing to do. Unfortunately, they will potentially ignore a lot of optimization potential while
doing that. And in the end, a hand crafted loop is neither faster, nor prettier to read than the
STL way, which we will see next.

How to do it...
In this section, we are filling an std::vector instance with some example integers, and
then prune some specific items away from it. The way we are doing it is considered the
correct way of removing multiple items from a vector.

Of course we need to include some headers before we do anything.1.

 #include <iostream>
 #include <vector>
 #include <algorithm>

Then we declare that we are using namespace std to spare us some typing.2.

 using namespace std;

Now we create us a vector of integers and fill it with some example items.3.

 int main()
 {
 vector<int> v {1, 2, 3, 2, 5, 2, 6, 2, 4, 8};

The next step is to remove the items. What do we remove? There are multiple 24.
values. Let's remove them.

 const auto new_end (remove(begin(v), end(v), 2));

Interestingly, that was only one of the two steps. The vector still has the same5.
size. The next line makes it actually shorter.

 v.erase(new_end, end(v));

STL Containers

[44]

Let's stop by here in order to print the vector's content to the terminal, and then6.
continue.

 for (auto i : v) {
 cout << i << ", ";
 }
 cout << '\n';

Now, let's remove a whole class of items, instead of specific values. In order to do7.
that, we define a predicate function first, which accepts a number as parameter,
and returns true, if it is an odd number.

 const auto odd ([](int i) { return i % 2 != 0; });

Now we use the remove_if function and feed it with the predicate function.8.
Instead of removing in two steps as we did before, we do it in one.

 v.erase(remove_if(begin(v), end(v), odd), end(v));

All odd items are gone now, but the vector's capacity is still at the old 10 elements.9.
In a last step, we reduce that also to the actual current size of the vector. Note that
this might lead the vector code to allocate a new chunk of memory that fits and
moves all items from the old chunk to the new one.

 v.shrink_to_fit();

Now, let's print the content after the second run of removing items and that's it.10.

 for (auto i : v) {
 cout << i << ", ";
 }
 cout << '\n';
 }

Compiling and running the program yields the following two output lines from11.
the two item removing approaches.

 $./main
 1, 3, 5, 6, 4, 8,
 6, 4, 8,

STL Containers

[45]

How it works...
What became obvious in the recipe is that when removing items from the middle of a
vector, they first need to be removed and then erased. At least the functions we used have
names like this. This is admittedly confusing, but let's have a closer look at it to make sense
of these steps.

The code which removes all values of 2 from the vector, looked like this:

const auto new_end (remove(begin(v), end(v), 2));
v.erase(new_end, end(v));

The std::begin and std::end functions both accept a vector instance as parameter, and
return us iterators, which point to the first item, and past the last item, just as sketched in the
upcoming diagram.

After feeding these and the value 2 to the std::remove function, it will move the non-2
values forward, just like we could do that with a manually programmed loop. The
algorithm will strictly preserve the order of all non-2 values while doing that. A quick look
at the illustration might be a bit confusing. In step 2, there still is a value of 2, and the vector
should have become shorter, as there were four values of 2, which all ought to be removed.
Instead, the 4 and the 8 which were in the initial array, are duplicated. What's that?

STL Containers

[46]

Let's only take a look at all the items, which are within the range and which spans from the
begin iterator on the illustration, to the new_end iterator. The item, to which the new_end
iterator points, is the first item past the range, so it's not included. Just concentrating on that
region (these are only the items from 1 to including 8), we realize that this is the correct
range from which all values of 2 are removed.

This is where the erase call comes into play: We must tell the vector that it shall not
consider all items from new_end to end to be items of the vector any longer. This order is
easy to follow for the vector, as it can just point its end iterator to the position of new_end
and it's done. Note that new_end was the return value of the std::remove call, so we can
just use that.

Note that the vector did more magic than just moving an internal pointer.
If that vector was a vector of more complicated objects, it would have
called all the destructors of the to-be-removed items.

Afterward, the vector looks like in step 3 of the diagram: it's considered smaller now. The
old items which are now out of the range, are still in memory.

In order to make the vector occupy only as much memory as it needs, we make the
shrink_to_fit call in the end. During that call, it allocates exactly as much memory as
needed, moves over all the items and deletes the larger chunk we don't need any longer.

In step 8, we define a predicate function and use it with std::remove_if in only one step.
This works, because whatever iterator the remove function returns, it is safe to be used in
the vector's erase function. Even if no odd item was found, the std::remove_if function
will do just nothing, and return the end iterator. Then, a call like v.erase(end, end); also
does nothing, hence it is harmless.

There's more...
The std::remove function also works on other containers. When used with std::array,
note that it does not support the second step of calling erase, because they do not have
automatic size handling. Just because std::remove effectively only moves items around
and does not perform their actual deletion, it can also be used on data structures such as
arrays that do not support resizing. In the array case, one could overwrite the values past
the new end iterator with sentinel values such as '\0' for strings, for example.

STL Containers

[47]

Deleting items from an unsorted std::vector
in O(1) time
Deleting items from somewhere in the middle of an std::vector takes O(n) time. This is
because the resulting gap from removing an item must be filled by moving all the items
which come after the gap one slot to the left.

While moving items around like this, which might be expensive if they are complex and/or
very large and include many items, we preserve their order. If preserving the order is not
important, we can optimize this, as this section shows.

How to do it...
In this section, we will fill an std::vector instance with some example numbers, and
implement a quick remove function, which removes any item from a vector in O(1) time.

First, we need to include the required header files.1.

 #include <iostream>
 #include <vector>
 #include <algorithm>

Then, we define a main function where we instantiate a vector with example2.
numbers.

 int main()
 {
 std::vector<int> v {123, 456, 789, 100, 200};

The next step is to delete the value at index 2 (counting from zero of course, so it's3.
the third number 789). The function we will use for that task is not implemented
yet. We do that some steps later. Afterward, we print the vector's content.

 quick_remove_at(v, 2);
 for (int i : v) {
 std::cout << i << ", ";
 }
 std::cout << '\n';

STL Containers

[48]

Now, we will delete another item. It will be the value 123, and let's say we don't4.
know its index. Therefore, we will use the std::find function, which accepts a
range (the vector), and a value, and then searches for the value's position.
Afterward, it returns us an iterator pointing to the 123 value. We will use the
same quick_remove_at function, but this is an overloaded version of the previous
one which accepts iterators. It is also not implemented, yet.

 quick_remove_at(v, std::find(std::begin(v), std::end(v), 123));
 for (int i : v) {
 std::cout << i << ", ";
 }
 std::cout << '\n';
 }

Apart from the two quick_remove_at functions, we are done. So let's5.
implement these. (Note that they should be at least declared before the main
function. So let's just define them there.)
Both the functions accept a reference to a vector of something (in our case, its int
values), so we leave that open what kind of vector the user will come up with.
For us, it's a vector of T values. The first quick_remove_at function we used
accepts index values, which are numbers, so the interface looks like the following:

 template <typename T>
 void quick_remove_at(std::vector<T> &v, std::size_t idx)
 {

Now comes the meat of the recipe--how do we remove the item quickly without6.
moving too many others? First, we simply take the value of the last item in the
vector and use it to overwrite the item which shall be deleted. Second, we cut off
the last item of the vector. These are the two steps. We surround this code with a
little sanity check. If the index value is obviously out of the vector range, we do
nothing. Otherwise, the code would, for example, crash on an empty vector.

 if (idx < v.size()) {
 v[idx] = std::move(v.back());
 v.pop_back();
 }
 }

STL Containers

[49]

The other implementation of quick_remove_at works similar. Instead of7.
accepting a numeric index, it accepts an iterator for std::vector<T>. Obtaining
its type in a generic manner is not complicated because STL containers already
define such types.

 template <typename T>
 void quick_remove_at(std::vector<T> &v,
 typename std::vector<T>::iterator it)
 {

Now, we will access the value, at which the iterator is pointing. Just as in the8.
other function, we will overwrite it by the last element in the vector. Because we
are handling not a numeric index, but an iterator this time, we need to check a bit
differently if the iterator position is sane. If it points to the artificial end position,
we are not allowed to dereference it.

 if (it != std::end(v)) {

Within that if block, we do the same thing as before--we overwrite the item to be9.
removed with the value of the item from the last position--then we cut off the last
element from the vector:

 *it = std::move(v.back());
 v.pop_back();
 }
 }

That's it. Compiling and running the program leads to the following output:10.

 $./main
 123, 456, 200, 100,
 100, 456, 200,

STL Containers

[50]

How it works...
The quick_remove_at function removes items pretty quickly without touching too many
other items. It does this in a relatively creative way: It kind of swaps the actual item, which
shall be removed with the last item in the vector. Although the last item has no connection to
the actually selected item, it is in a special position: Removing the last item is cheap! The
vector's size just needs to be shrunk down by one slot, and that's it. No items are moved
during that step. Have a look at the following diagram which helps imaging how this
happens:

Both the steps in the recipe code look like this:

v.at(idx) = std::move(v.back());
v.pop_back();

This is the iterator version, which looks nearly identical:

*it = std::move(v.back());
v.pop_back();

Logically, we swap the selected item and the last one. But the code does not swap items, it
moves the last one over the first one. Why? If we swapped the items, then we would have to
store the selected item in a temporary variable, move the last item to the selected item, and
then store the temporary value in the last slot again. This seems useless, as we are just about
to delete the last item anyway.

STL Containers

[51]

Ok, fine, so the swap is useless, and a one-way overwrite is a better thing to do. Having
seen that, we can argue that this step could also be performed with a simple *it =
v.back();, right? Yes, this would be completely correct, but imagine we stored some very
large strings in every slot, or even another vector or map--in that situation, that little
assignment would lead to a very expensive copy. The std::move call in between is just an
optimization: In the example case of strings, the string item internally points to a large string
in the heap. We do not need to copy that. Instead, when moving a string, the destination of
the move gets to point at the string data of the other. The move source item is left intact, but in
a useless state, which is fine because we are removing it anyway.

Accessing std::vector instances the fast or
the safe way
The std::vector is probably the most widely used container in the STL, because it holds
data just like an array, and adds a lot of comfort around that representation. However,
wrong access to a vector can still be dangerous. If a vector contains 100 elements, and by
accident our code tries to access an element at index 123, this is obviously bad. Such a
program could just crash, which might be the best case, because that behavior would make
it very obvious that there is a bug! If it does not crash, we might observe that the program
just behaves strangely from time to time, which could lead to even more headaches than a
crashing program. The experienced programmer might add some checks before any directly
indexed vector access. Such checks do not increase the readability of the code, and many
people do not know that std::vector already has built-in bound checks!

How to do it...
In this section, we will use the two different ways to access an std::vector, and then see
how we can utilize them to write safer programs without decreasing readability.

Let's include all the needed header files, and fill an example vector with 10001.
times the value 123, so we have something we can access:

 #include <iostream>
 #include <vector>

 using namespace std;

STL Containers

[52]

 int main()
 {
 const size_t container_size {1000};
 vector<int> v (container_size, 123);

Now, we access the vector out of bounds using the [] operator:2.

 cout << "Out of range element value: "
 << v[container_size + 10] << '\n';

Next, we access it out of bounds using the at function:3.

 cout << "Out of range element value: "
 << v.at(container_size + 10) << '\n';
 }

Let's run the program and see what happens. The error message is GCC specific.4.
Other compilers would emit different but similar error messages. The first read
succeeds in a strange way. It doesn't lead the program to crash, but it's a
completely different value than 123. We can't see the output line of the other
access because it purposefully crashed the whole program. If that out of bounds
access was an accident, we would catch it much earlier!

 Out of range element value: -726629391
 terminate called after throwing an instance of 'std::out_of_range'
 what(): array::at: __n (which is 1010) >= _Nm (which is 1000)
 Aborted (core dumped)

How it works...
The std::vector provides the [] operator and the at function, and they basically do
exactly the same job. The at function, however, performs additional bounds checks and
throws an exception if the vector bounds are exceeded. This is super useful in situations like
ours, but also makes the program a little bit slower.

Especially when doing numeric computations with indexed members which need to be
really fast, it is advantageous to stick to [] indexed access. In any other situation, the at
function helps uncovering bugs with usually negligible performance loss.

It is good practice to use the at function by default. If the resulting code is
too slow but has proven to be bug-free, the [] operator can be used in
performance-sensitive sections instead.

STL Containers

[53]

There's more...
Of course, we can handle out of bounds accesses, instead of letting the whole app crash. In
order to handle it, we catch the exception, in case it was thrown by the at function. Catching
such an exception is simple. We just surround the at call with a try block and define the
error handling in a catch block.

try {
 std::cout << "Out of range element value: "
 << v.at(container_size + 10) << '\n';
} catch (const std::out_of_range &e) {
 std::cout << "Ooops, out of range access detected: "
 << e.what() << '\n';
}

By the way, std::array also provides an at function.

Keeping std::vector instances sorted
Arrays and vectors do not sort their payload objects themselves. But if we need that, this
does not mean that we always have to switch to data structures, which were designed to do
that automatically. If an std::vector is perfect for our use case, it is still very simple and
practical to add items to it in a sorting manner.

How to do it...
In this section, we will fill an std::vector with random words, sort it, and then insert
more words while keeping the vector's sorted word order intact.

Let's first include all headers we're going to need.1.

 #include <iostream>
 #include <vector>
 #include <string>
 #include <algorithm>
 #include <iterator>
 #include <cassert>

STL Containers

[54]

We also declare that we are using namespace std in order to spare us some2.
std:: prefixes:

 using namespace std;

Then we write a little main function, which fills a vector with some random3.
strings.

 int main()
 {
 vector<string> v {"some", "random", "words",
 "without", "order", "aaa",
 "yyy"};

The next thing we do is sorting that vector. Let's do that with some assertions and4.
the is_sorted function from the STL before, which shows that the vector really
was not sorted before, but is sorted afterward.

 assert(false == is_sorted(begin(v), end(v)));
 sort(begin(v), end(v));
 assert(true == is_sorted(begin(v), end(v)));

Now, we finally add some random words into the sorted vector using a new5.
insert_sorted function, which we still need to implement afterward. These
words shall be put at the right spot so that the vector is still sorted afterward:

 insert_sorted(v, "foobar");
 insert_sorted(v, "zzz");

So, let's now implement insert_sorted a little earlier in the source file.6.

 void insert_sorted(vector<string> &v, const string &word)
 {
 const auto insert_pos (lower_bound(begin(v), end(v), word));
 v.insert(insert_pos, word);
 }

STL Containers

[55]

Now, back in the main function where we stopped, we can now continue printing7.
the vector and see that the insert procedure works:

 for (const auto &w : v) {
 cout << w << " ";
 }
 cout << '\n';
 }

Compiling and running the program yields the following nicely sorted output:8.

 aaa foobar order random some without words yyy zzz

How it works...
The whole program is constructed around the insert_sorted function, which does what
this section is about: For any new string, it locates the position in the sorted vector, at which
it must be inserted, in order to preserve the order of the strings in the vector. However, we
assume that the vector was sorted before. Otherwise, this would not work.

The locating step is done by the STL function lower_bound, which accepts three
arguments. The first two denote beginning and end of the underlying range. The range is our
vector of words in this case. The third argument is the word, which shall be inserted. The
function then finds the first item in the range, which is greater than or equal to that third
parameter and returns an iterator pointing to it.

Having the right position at hand, we gave it to the std::vector member method insert,
which accepts just two arguments. The first argument is an iterator, which points to the
position in the vector, at which the second parameter shall be inserted. It appears very
handy that we can use the same iterator, which just dropped out of the lower_bound
function. The second argument is, of course, the item to be inserted.

STL Containers

[56]

There's more...
The insert_sorted function is pretty generic. If we generalize the types of its parameters,
it will also work on other container payload types, and even on other containers such as
std::set, std::deque, std::list, and so on! (Note that set has its own lower_bound
member function that does the same as std::lower_bound, but is more efficient because it
is specialized for sets.)

template <typename C, typename T>
void insert_sorted(C &v, const T &item)
{
 const auto insert_pos (lower_bound(begin(v), end(v), item));
 v.insert(insert_pos, item);
}

When trying to switch the type of the vector in the recipe from std::vector to something
else, note that not all containers support std::sort. That algorithm requires random
access containers, which std::list, for example, does not fulfill.

Inserting items efficiently and conditionally
into std::map
Sometimes we want to fill a map with key-value pairs and while filling the map up, we
might run into two different cases:

The key does not exist yet. Create a fresh key-value pair.1.
The key does exist already. Take the existing item and modify it.2.

We could just naively use the insert or emplace methods of map and see if they succeed.
If it doesn't, we have case 2 and modify the existing item. In both cases, insert and emplace
create the item which we try to insert, and in case 2 the freshly created item is dropped. We
get a useless constructor call in both cases.

Since C++17, there is the try_emplace function, which enables us to create items only
conditionally upon insertion. Let's implement a program that takes a list of billionaires and
constructs a map that tells us the number of billionaires per country. In addition to that, it
stores the wealthiest person in every country. Our example will not contain expensive to
create items, but whenever we find ourselves in such a situation in real-life projects, we
know how to master it with try_emplace.

STL Containers

[57]

How to do it...
In this section, we will implement an application that creates a map from a list of
billionaires. The map maps from each country to a reference to the wealthiest person in that
country and a counter that tells how many billionaires that country has.

As always, we need to include some headers first and we declare that we use1.
namespace std by default.

 #include <iostream>
 #include <functional>
 #include <list>
 #include <map>

 using namespace std;

Let's define a structure that represents billionaire items for our list.2.

 struct billionaire {
 string name;
 double dollars;
 string country;
 };

In the main function, we first define the list of billionaires. There are many3.
billionaires in the world, so let's construct a limited list with just some of the
richest persons in some countries. This list is already ordered. The rankings are
actually taken from the Forbes 2017 list The World's Billionaires at h t t p s ://w w w . f o
r b e s . c o m /b i l l i o n a i r e s /l i s t /:

 int main()
 {
 list<billionaire> billionaires {
 {"Bill Gates", 86.0, "USA"},
 {"Warren Buffet", 75.6, "USA"},
 {"Jeff Bezos", 72.8, "USA"},
 {"Amancio Ortega", 71.3, "Spain"},
 {"Mark Zuckerberg", 56.0, "USA"},
 {"Carlos Slim", 54.5, "Mexico"},
 // ...
 {"Bernard Arnault", 41.5, "France"},
 // ...
 {"Liliane Bettencourt", 39.5, "France"},
 // ...
 {"Wang Jianlin", 31.3, "China"},
 {"Li Ka-shing", 31.2, "Hong Kong"}

https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/
https://www.forbes.com/billionaires/list/

STL Containers

[58]

 // ...
 };

Now, let's define the map. It maps from the country string to a pair. The pair4.
contains a (const) copy of the first billionaire of every country from our list. That
is automatically the richest billionaire per country. The other variable in the pair
is a counter, which we will increment for every following billionaire in that
country.

 map<string, pair<const billionaire, size_t>> m;

Now, let's go through the list and try to emplace a new payload pair for every5.
country. The pair contains a reference to the billionaire we are currently looking
at and a counter value of 1.

 for (const auto &b : billionaires) {
 auto [iterator, success] = m.try_emplace(b.country, b, 1);

If that step was successful, then we don't need to do anything else. The pair for6.
which we provided the constructor arguments b, 1 has been constructed and
inserted into the map. If the insertion was not successful because the country key
exists already, then the pair was not constructed. If our billionaire structure was
very large, this would have saved us the runtime cost of copying it.
However, in the nonsuccessful case, we still need to increment the counter for
this country.

 if (!success) {
 iterator->second.second += 1;
 }
 }

Ok, that's it. We can now print how many billionaires there are per country, and7.
who is the wealthiest one in each country.

 for (const auto & [key, value] : m) {
 const auto &[b, count] = value;
 cout << b.country << " : " << count
 << " billionaires. Richest is "
 << b.name << " with " << b.dollars
 << " B$\n";
 }
 }

STL Containers

[59]

Compiling and running the program yields the following output. (Of course, the8.
output is limited, because we limited our input map.)

 $./efficient_insert_or_modify
 China : 1 billionaires. Richest is Wang Jianlin with 31.3 B$
 France : 2 billionaires. Richest is Bernard Arnault with 41.5 B$
 Hong Kong : 1 billionaires. Richest is Li Ka-shing with 31.2 B$
 Mexico : 1 billionaires. Richest is Carlos Slim with 54.5 B$
 Spain : 1 billionaires. Richest is Amancio Ortega with 71.3 B$
 USA : 4 billionaires. Richest is Bill Gates with 86 B$

How it works...
The whole recipe revolves around the try_emplace function of std::map, which is a new
C++17 addition. It has the following signature:

std::pair<iterator, bool> try_emplace(const key_type& k, Args&&... args);

Thus, the key being inserted is parameter k and the associated value is constructed from the
parameter pack args. If we succeed in inserting the item, then the function returns an
iterator, which points to the new node in the map, paired with a Boolean value being set to
true. If the insertion was not successful, the Boolean value in the return pair is set to false,
and the iterator points to the item with which the new item would clash.

This characteristic is very useful in our case--when we see a billionaire from a specific
country for the first time, then this country is not a key in the map yet. In that case, we must
insert it, accompanied with a new counter being set to 1. If we did see a billionaire from a
specific country already, we have to get a reference to its existing counter, in order to
increment it. This is exactly what happened in step 6:

if (!success) {
 iterator->second.second += 1;
}

Note that both the insert and emplace functions of std::map work
exactly the same way. A crucial difference is that try_emplace will not
construct the object associated with the key if the key already exists. This
boosts the performance in case objects of that type are expensive to create.

STL Containers

[60]

There's more...
The whole program still works if we switch the type of the map from std::map to
std::unordered_map. This way, we can simply switch from one implementation to
another, which has different performance characteristics. In this recipe, the only observable
difference is that the billionaire map is not printed in alphabetical order any longer, because
hash maps do not order their objects the same way as search trees do.

Knowing the new insertion hint semantics of
std::map::insert
Looking up items in an std::map takes O(log(n)) time. This is the same for inserting new
items, because the position where to insert them must be looked up. Naive insertion of M
new items would thus take O(M * log(n)) time.

In order to make this more efficient, std::map insertion functions accept an optional
insertion hint parameter. The insertion hint is basically an iterator, which points near the
future position of the item that is to be inserted. If the hint is correct, then we get amortized
O(1) insertion time.

How to do it...
In this section, we will insert multiple items into an std::map, and use insertion hints for
that, in order to reduce the number of lookups.

We are mapping strings to numbers, so we need the header files included for1.
std::map and std::string.

 #include <iostream>
 #include <map>
 #include <string>

The next step is to instantiate a map, which already contains some example2.
characters.

 int main()
 {
 std::map<std::string, size_t> m {{"b", 1}, {"c", 2}, {"d", 3}};

STL Containers

[61]

We will insert multiple items now, and for each item we will use an insertion3.
hint. Since we have no hint in the beginning to start with, we will just do the first
insertion pointing to the end iterator of the map.

 auto insert_it (std::end(m));

We will now insert items from the alphabet backward while always using the4.
iterator hint we have, and then reinitialize it to the return value of the insert
function. The next item will be inserted just before the hint.

 for (const auto &s : {"z", "y", "x", "w"}) {
 insert_it = m.insert(insert_it, {s, 1});
 }

And just for the sake of showing how it is not done, we insert a string which will5.
be put at the leftmost position in the map, but give it a completely wrong hint,
which points to the rightmost position in the map--the end.

 m.insert(std::end(m), {"a", 1});

Finally, we just print what we have.6.

 for (const auto & [key, value] : m) {
 std::cout << "\"" << key << "\": " << value << ", ";
 }
 std::cout << '\n';
 }

And this is the output we get when we compile and run the program. Obviously,7.
the wrong insertion hint did not hurt too much, as the map ordering is still
correct.

 "a": 1, "b": 1, "c": 2, "d": 3, "w": 1, "x": 1, "y": 1, "z": 1,

How it works...
The only difference to normal map insertions in this recipe was the additional hint iterator.
And we spoke about correct and wrong hints.

A correct hint will point to an existing element, which is greater than the element to be
inserted so that the newly inserted key will be just before the hint. If this does not apply for
the hint the user provided during an insertion, the insert function will fall back to a
nonoptimized insertion, yielding O(log(n)) performance again.

STL Containers

[62]

For the first insertion, we got the end iterator of the map, because we had no better hint to
start with. After installing a "z" in the tree, we knew that installing "y" will insert a new item
just in front of the "z", which qualified it to be a correct hint. This applies to "x" as well, if
put into the tree after inserting the "y", and so on. This is why it is possible to use the
iterator, which was returned by the last insertion for the next insertion.

It is important to know, that before C++11, insertion hints were considered
correct when they pointed before the position of the newly inserted item.

There's more...
Interestingly, a wrong hint does not even destroy or disturb the order of the items in the
map, so how does that even work, and what did that mean, that the insertion time is
amortized O(1)?

The std::map is usually implemented using a binary search tree. When inserting a new
key into a search tree, it is compared against the keys of the other nodes, beginning from the
top. If the key is smaller or larger than the key of one node, then the search algorithm
branches left or right to go down to the next deeper node. While doing that, the search
algorithm will stop at the point where it reached the maximum depth of the current tree,
where it will put the new node with its key. It is possible that this step destroyed the tree's
balance, so it will also correct that using a re-balancing algorithm afterward as a
housekeeping task.

When we insert items into a tree with key values which are direct neighbors of each other
(just as the integer 1 is a neighbor of the integer 2, because no other integer fits between
them), they can often also be inserted just next to each other in the tree, too. It can easily be
checked if this is true for a certain key and an accompanying hint. And if this situation
applies, the search algorithm step can be omitted, which spares some crucial runtime.
Afterward, the re-balancing algorithm might nevertheless have to be run. When such an
optimization can often be done, but not always, this can still lead to an average performance
gain. It is possible to show a resulting runtime complexity which settles down after multiple
insertions, and then it's called amortized complexity.

STL Containers

[63]

If the insertion hint is wrong, the insertion function will simply waive the hint and start over
using the search algorithm. This works correctly but is obviously slower.

Efficiently modifying the keys of std::map
items
Since the std::map data structure maps from keys to values in a way that the keys are
always unique and sorted, it is of crucial value that users cannot modify the keys of map
nodes that are already inserted. In order to prevent the user from modifying the key items
of perfectly sorted map nodes, the const qualifier is added to the key type.

This kind of restriction is perfectly sane because it makes it harder for the user to use
std::map the wrong way. But what shall we do if we really need to change the keys of
some map items?

Prior to C++17, we had to remove the items of which we need to change the key value from
the tree, in order to reinsert them. The downside of this approach is that this always
needlessly reallocates some memory, which sounds bad in terms of performance.

Since C++17, we can remove and reinsert map nodes without any reallocation of memory.
We will see how that works in this recipe.

STL Containers

[64]

How to do it...
We implement a little application that orders the placement of drivers in a fictional race in
an std::map structure. While drivers pass each other during the race, we need to change
their placement keys, which we do the new C++17 way.

Let's first include the necessary headers and declare that we use namespace std.1.

 #include <iostream>
 #include <map>

 using namespace std;

We will print the race placements before and after manipulating the map2.
structure, so let's implement a little helper function for that.

 template <typename M>
 void print(const M &m)
 {
 cout << "Race placement:\n";
 for (const auto &[placement, driver] : m) {
 cout << placement << ": " << driver << '\n';
 }
 }

In the main function, we instantiate and initialize a map that maps from integer3.
values that denote the driver's place to strings that contain the driver's name. We
also print the map because we will modify it in the next steps.

 int main()
 {
 map<int, string> race_placement {
 {1, "Mario"}, {2, "Luigi"}, {3, "Bowser"},
 {4, "Peach"}, {5, "Yoshi"}, {6, "Koopa"},
 {7, "Toad"}, {8, "Donkey Kong Jr."}
 };
 print(race_placement);

STL Containers

[65]

Let's say that during one race lap, Bowser had a little accident and dropped to the4.
last place and Donkey Kong Jr. took the chance to jump from the last place to the
third place. In that case, we first need to extract their map nodes from the map
because this is the only way to manipulate their keys. The extract function is a
new C++17 feature. It removes items from a map without any allocation-related
side effects. Let's also open a new scope for this task.

 {
 auto a (race_placement.extract(3));
 auto b (race_placement.extract(8));

Now we can swap Bowser's and Donkey Kong Jr.'s keys. While the keys of map5.
nodes are usually not mutable because they are declared const, we can modify
the keys of items which we extracted using the extract method.

 swap(a.key(), b.key());

std::map's insert method got a new overload in C++17 that accepts the6.
handles of extracted nodes, in order to insert them without touching the allocator.

 race_placement.insert(move(a));
 race_placement.insert(move(b));
 }

After leaving the scope, we're done. We print the new race placement and let the7.
application terminate.

 print(race_placement);
 }

Compiling and running the program yields the following output. We see the race8.
placement in the fresh map instance first, and then we see it again after swapping
Bowser's and Donkey Kong Jr.'s positions.

 $./mapnode_key_modification
 Race placement:
 1: Mario
 2: Luigi
 3: Bowser
 4: Peach
 5: Yoshi
 6: Koopa
 7: Toad
 8: Donkey Kong Jr.
 Race placement:
 1: Mario

STL Containers

[66]

 2: Luigi
 3: Donkey Kong Jr.
 4: Peach
 5: Yoshi
 6: Koopa
 7: Toad
 8: Bowser

How it works...
In C++17, std::map got a new member function extract. It comes in two flavors:

node_type extract(const_iterator position);
node_type extract(const key_type& x);

In this recipe, we used the second one, which accepts a key and then finds and extracts the
map node that matches the key parameter. The first one accepts an iterator, which implies
that it is faster because it doesn't need to search for the item.

If we try to extract an item that doesn't exist with the second method (the one that searches
using a key), it returns an empty node_type instance. The empty() member method
returns us a Boolean value that tells whether a node_type instance is empty or not.
Accessing any other method on an empty instance leads to undefined behavior.

After extracting nodes, we were able to modify their keys using the key() method, which
gives us nonconst access to the key, although keys are usually const.

Note that in order to reinsert the nodes into the map again, we had to move them into the
insert function. This makes sense because extract is all about avoiding unnecessary
copies and allocations. Note that while we move a node_type instance, this does not result
in actual moves of any of the container values.

There's more...
Map nodes that have been extracted using the extract method are actually very versatile.
We can extract nodes from a map instance and insert it into any other map or even multimap
instance. It does also work between unordered_map and unordered_multimap instances,
as well as with set/multiset and respective unordered_set/unordered_multiset.

STL Containers

[67]

In order to move items between different map/set structures, the types of key, value, and
allocator need to be identical. Note that even if that is the case, we cannot move nodes from
a map to an unordered_map, or from a set to an unordered_set.

Using std::unordered_map with custom
types
If we use std::unordered_map instead of std::map, we have a different degree of
freedom for the choice of the key type which shall be used. std::map demands that there is
a natural order between all key items. This way, items can be sorted. But what if we want,
for example, mathematical vectors as a key type? There is no meaning in a smaller < relation
for such types, as a vector (0, 1) is not smaller or larger than (1, 0). They just point in
different directions. This is completely fine for std::unordered_map because it will not
distinguish items via their smaller/greater ordering relationship but via hash values. The
only thing we need to do is to implement a hash function for our own type, and an equal to ==
operator implementation, which tells whether two objects are identical. This section will
demonstrate this in an example.

How to do it...
In this section, we will define a simple coord struct, which has no default hash function, so
we need to define it ourselves. Then we put it to use by mapping coord values to numbers.

We first include what's needed in order to print and use std::unordered_map.1.

 #include <iostream>
 #include <unordered_map>

Then we define our own custom struct, which is not trivially hashable by existing2.
hash functions:

 struct coord {
 int x;
 int y;
 };

STL Containers

[68]

We do not only need a hash function in order to use the structure as a key for a3.
hash map, it also needs a comparison operator implementation:

 bool operator==(const coord &l, const coord &r)
 {
 return l.x == r.x && l.y == r.y;
 }

In order to extend the STL's own hashing capabilities, we will open the std4.
namespace and create our own std::hash template struct specialization. It
contains the same using type alias clauses as other hash specializations.

 namespace std
 {
 template <>
 struct hash<coord>
 {
 using argument_type = coord;
 using result_type = size_t;

The meat of this struct is the operator() definition. We are just adding the5.
numeric member values of struct coord, which is a poor hashing technique,
but for the sake of showing how to implement it, it's good enough. A good hash
function tries to distribute values as evenly over the whole value range as
possible, in order to reduce the amount of hash collisions.

 result_type operator()(const argument_type &c) const
 {
 return static_cast<result_type>(c.x)
 + static_cast<result_type>(c.y);
 }
 };
 }

STL Containers

[69]

We can now instantiate a new std::unordered_map instance, which accepts6.
struct coord instances as a key, and maps it to arbitrary values. As this recipe
is about enabling our own types for std::unordered_map, this is pretty much it
already. Let's instantiate a hash-based map with our own type, fill it with some
items, and print its :

 int main()
 {

 std::unordered_map<coord, int> m {{{0, 0}, 1}, {{0, 1}, 2},
 {{2, 1}, 3}};
 for (const auto & [key, value] : m) {
 std::cout << "{(" << key.x << ", " << key.y
 << "): " << value << "} ";
 }
 std::cout << '\n';
 }

Compiling and running the program yields the following output:7.

 $./custom_type_unordered_map
 {(2, 1): 3} {(0, 1): 2} {(0, 0): 1}

How it works...
Usually, when we instantiate a hash-based map implementation like
std::unordered_map, we write:

std::unordered_map<key_type, value_type> my_unordered_map;

It is not too obvious that there happens a lot of magic in the background when the compiler
creates our std::unordered_map specialization. So, let's have a look at the complete
template-type definition of it:

template<
 class Key,
 class T,
 class Hash = std::hash<Key>,
 class KeyEqual = std::equal_to<Key>,
 class Allocator = std::allocator< std::pair<const Key, T> >
> class unordered_map;

STL Containers

[70]

The first two template types are those we filled with coord and int, which is the simple
and obvious part. The other three template types are optional, as they are automatically
filled with existing standard template classes, which themselves take template types. Those
are fed with our choice for the first two parameters as default values.

Regarding this recipe, the class Hash template parameter is the interesting one: when we
do not explicitly define anything else, it is going to be specialized on
std::hash<key_type>. The STL already contains std::hash specializations for a lot of
types such as std::hash<std::string>, std::hash<int>, std::hash<unique_ptr>,
and many more. These classes know how to deal with such specific types in order to
calculate optimal hash values from them.

However, the STL does not know how to calculate a hash value from our struct coord,
yet. So what we did was to just define another specialization, which knows how to deal with
it. The compiler can now go through the list of all std::hash specializations it knows, and
will find our implementation to match it with the type we provided as key type.

If we did not add a new std::hash<coord> specialization, and named it my_hash_type
instead, we could still use it with the following instantiation line:

std::unordered_map<coord, value_type, my_hash_type> my_unordered_map;

That is obviously more to type, and not as nice to read as when the compiler finds the right
hashing implementation itself.

Filtering duplicates from user input and
printing them in alphabetical order with
std::set
std::set is a strange container: It kind of works like std::map, but it contains only keys
as values, no key-value pairs. So it can hardly be used as a way to map values of one type to
the other. Seemingly, just because there are less obvious use cases for it, a lot of developers
do not even know about its existence. Then they start to implement things themselves,
although std::set would be of great help in some of these situations.

This section shows how to put std::set to use in an example where we collect potentially
many different items, in order to filter them and output a selection of the unique ones.

STL Containers

[71]

How to do it...
In this section, we will read a stream of words from the standard input. All unique words
are put into an std::set instance. This way we can then enumerate all unique words from
the stream.

We will use several different STL types, for which we need to include multiple1.
headers.

 #include <iostream>
 #include <set>
 #include <string>
 #include <iterator>

In order to spare us some typing, we will declare that we are using namespace2.
std:

 using namespace std;

Now we're already writing the actual program, which begins with the main3.
function instantiating an std::set which stores strings.

 int main()
 {
 set<string> s;

The next thing to do is to get the user input. We're just reading from standard4.
input, and do that using the handy istream_iterator.

 istream_iterator<string> it {cin};
 istream_iterator<string> end;

Having a pair of begin and end iterators, which represent the user input, we can5.
just fill the set from it using an std::inserter.

 copy(it, end, inserter(s, s.end()));

That's already it. In order to see what unique words we got from standard input,6.
we just print the content of our set.

 for (const auto word : s) {
 cout << word << ", ";
 }
 cout << '\n';
 }

STL Containers

[72]

Let's compile and run our program with the following input. We get the7.
following output for the preceding input, where all duplicates are stripped out,
and the words which were unique, are sorted alphabetically.

 $ echo "a a a b c foo bar foobar foo bar bar" | ./program
 a, b, bar, c, foo, foobar,

How it works...
This program consists of two interesting parts. The first part is using
std::istream_iterator to access the user input, and the second part is to combine this
with our std::set instance using the std::copy algorithm, after we wrapped it into an
std::inserter instance! It might look surprising that there is only one line of code which
does all the work of tokenizing the input, putting it into the alphabetically sorted set, and
dropping all duplicates.

std::istream_iterator
This class is really interesting in cases where we want to process masses of data of the same
type from a stream, which is exactly the case in this recipe: we parse the whole input word
by word and put it into the set in the form of std::string instances.

The std::istream_iterator takes one template parameter. That is the type of the input
we want to have. We chose std::string because we assume text words, but it could also
have been float numbers, for example. It can basically be every type for which it is
possible to write cin >> var;. The constructor accepts an istream instance. The standard
input is represented by the global input stream object std::cin, which is an acceptable
istream parameter in this case.

istream_iterator<string> it {cin};

The input stream iterator it which we have instantiated, is able to do two things: when it is
dereferenced (*it), it yields the current input symbol. As we have typed the iterator to
std::string via its template parameter, that symbol will be a string containing one word.
When it is incremented (++it), it will jump to the next word, which we can access by
dereferencing again.

STL Containers

[73]

But wait, we need to be careful after every increment before we dereference it again. If the
standard input ran empty, the iterator must not be dereferenced again. Instead, we should
terminate the loop in which we dereference the iterator to get at every word. The abort
condition, which lets us know that the iterator became invalid, is a comparison with the end
iterator. If it == end holds, we are past the end of the input.

We create the end iterator by creating an std::istream_iterator instance with its
parameterless standard constructor. It has the purpose of being the counterpart of the
comparison which shall act as the abort condition in every iteration:

istream_iterator<string> end;

As soon as std::cin runs empty, our it iterator instance will notice that and make a
comparison with end returning true.

std::inserter
We used the it and end pair as input iterators in the std::copy call. The third parameter
must be an output iterator. For that, we cannot just take s.begin() or s.end(). In an
empty set, both are the same, so we are not even allowed to dereference it, regardless if that is
for reading from it or assigning to it.

This is where std::inserter comes into play. It is a function which returns an
std::insert_iterator that behaves like an iterator but does something else than what
usual iterators do. When we increment it, it does nothing. When we dereference it and
assign something to it, it will take the container it is attached to, and insert that value as a
new item into it!

When instantiating an std::insert_iterator via std::inserter, two parameters are
needed:

auto insert_it = inserter(s, s.end());

The s is our set, and s.end() is an iterator that points to where the new item shall be
inserted. For an empty set which we start with, this makes as much sense as s.begin().
When used for other data structures as vectors or lists, that second parameter is crucial for
defining where the insert iterator shall insert new items.

STL Containers

[74]

Putting it together
In the end, all the action happens during the std::copy call:

copy(input_iterator_begin, input_iterator_end, insert_iterator);

This call pulls the next word token out of std::cin via the input iterator and pushes it into
our std::set. Afterward, it increments both iterators, and checks whether the input
iterator is equal to the input end iterator counterpart. If it is not, then there are still words
left in the standard input, so it will repeat.

Duplicate words are automatically dropped. If the set already contains a specific word,
adding it again has no effect. This would be different in an std::multiset as, in contrast, it
would accept duplicates.

Implementing a simple RPN calculator with
std::stack
The std::stack is an adapter class which lets the user push objects onto it like on a real
stack of objects, and pop objects down from it again. In this section, we construct a reverse
polish notation (RPN) calculator around that data structure, in order to show how to use it.

The RPN is a notation that can be used to express mathematical expressions in a way that is
really simple to parse. In RPN, 1 + 2 is 1 2 +. Operands first, then the operation. Another
example: (1 + 2) * 3 would be 1 2 + 3 * in RPN and that already shows why it is
easier to parse, as we do not need parentheses to define subexpressions.

STL Containers

[75]

How to do it...
In this section, we will read a mathematical expression in RPN from the standard input, and
then feed it into a function that evaluates it. In the end, we print the numeric result back to
the user.

We will use a lot of helpers from the STL, so there are a few includes:1.

 #include <iostream>
 #include <stack>
 #include <iterator>
 #include <map>
 #include <sstream>
 #include <cassert>
 #include <vector>
 #include <stdexcept>
 #include <cmath>

And we do also declare that we are using namespace std in order to spare us2.
some typing.

 using namespace std;

Then, we immediately start implementing our RPN parser. It will accept an3.
iterator pair, which denotes the beginning and end of a mathematical expression
in string form, which will be consumed token by token.

 template <typename IT>
 double evaluate_rpn(IT it, IT end)
 {

While we iterate through the tokens, we need to memorize all operands on the4.
way until we see an operation. This is where we need a stack. All the numbers will
be parsed and saved in double precision floating point, so it's going to be a stack
of double values.

 stack<double> val_stack;

STL Containers

[76]

In order to comfortably access elements on the stack, we implement a helper. It5.
modifies the stack by pulling the highest item from it and then returns that item.
This way we can perform this task in one single step later.

 auto pop_stack ([&](){
 auto r (val_stack.top());
 val_stack.pop();
 return r;
 });

Another preparation is to define all the supported mathematical operations. We6.
save them in a map, which associates every operation token with the actual
operation. The operations are represented by callable lambdas, which take two
operands, add or multiply them, for example, and then return the result.

 map<string, double (*)(double, double)> ops {
 {"+", [](double a, double b) { return a + b; }},
 {"-", [](double a, double b) { return a - b; }},
 {"*", [](double a, double b) { return a * b; }},
 {"/", [](double a, double b) { return a / b; }},
 {"^", [](double a, double b) { return pow(a, b); }},
 {"%", [](double a, double b) { return fmod(a, b); }},
 };

Now we can finally iterate through the input. Assuming that the input iterators7.
give us strings, we feed a new std::stringstream per token, because it can
parse numbers.

 for (; it != end; ++it) {
 stringstream ss {*it};

Now with every token, we try to get a double value out of it. If that succeeds, we8.
have an operand, which we push on the stack.

 if (double val; ss >> val) {
 val_stack.push(val);
 }

STL Containers

[77]

If it does not succeed, it must be something other than an operator; in that case, it9.
can only be an operand. Knowing that all the operations we support are binary, we
need to pop the last two operands from the stack.

 else {
 const auto r {pop_stack()};
 const auto l {pop_stack()};

Now we get the operand from dereferencing the iterator it, which already emits10.
strings. By querying the ops map, we get a lambda object which accepts the two
operands l and r as parameters.

 try {
 const auto & op (ops.at(*it));
 const double result {op(l, r)};
 val_stack.push(result);
 }

We surrounded the application of the math part with a try clause, so we can11.
catch possibly occurring exceptions. The at call of the map will throw an
out_of_range exception in case the user provides a mathematical operation we
don't know of. In that case, we will rethrow a different exception, which says
invalid argument and carries the operation string which was unknown to us.

 catch (const out_of_range &) {
 throw invalid_argument(*it);
 }

That's already it. As soon as the loop terminates, we have the final result on the12.
stack. So we return just that. (At this point, we could assert if the stack size is 1. If
it wasn't, then there would be missing operations.)

 }
 }
 return val_stack.top();
 }

STL Containers

[78]

Now we can use our little RPN parser. In order to do this, we wrap the standard13.
input into an std::istream_iterator pair, and feed that into the RPN parser
function. Finally, we print the result:

 int main()
 {
 try {
 cout << evaluate_rpn(istream_iterator<string>{cin}, {})
 << '\n';
 }

We do again have that line wrapped into a try clause because there's still the14.
possibility that the user input contains operations we did not implement. In that
case, we must catch the exception which we throw in such cases, and print an
error message:

 catch (const invalid_argument &e) {
 cout << "Invalid operator: " << e.what() << '\n';
 }
 }

After compiling the program, we can play around with it. The input "3 1 2 + *15.
2 /" represents the expression (3 * (1 + 2)) / 2 and yields the correct
result:

 $ echo "3 1 2 + * 2 /" | ./rpn_calculator
 4.5

How it works...
The whole recipe revolves around pushing operands onto the stack until we see an
operation in the input. In that situation, we pop the last two operands from the stack again,
apply the operation to them, and push the result onto the stack again. In order to
understand all of the code in this recipe, it is important to understand how we distinguish
operands and operations from the input, how we handle our stack, and how we select and
apply the right mathematical operation.

Stack handling
We push items onto the stack, simply using the push function of std::stack:

val_stack.push(val);

STL Containers

[79]

Popping values from it looks a bit more complicated because we implemented a lambda for
that, which captures a reference to the val_stack object. Let's look at the same code,
enhanced with some more comments:

auto pop_stack ([&](){
 auto r (val_stack.top()); // Get top value copy
 val_stack.pop(); // Throw away top value
 return r; // Return copy
});

This lambda is necessary to get the top value of the stack and remove it from there in one
step. The interface of std::stack is not designed in a way which would allow doing that
in a single call. However, defining a lambda is quick and easy, so we can now get values like
this:

double top_value {pop_stack()};

Distinguishing operands from operations from user
input
In the main loop of evaluate_rpn, we take the current string token from the iterator and
then see whether it is an operand or not. If the string can be parsed into a double variable,
then it is a number, and hence also an operand. We consider everything which is not easily
parseable as a number (such as "+", for example) to be an operation.

The naked code skeleton for exactly this task is as follows:

stringstream ss {*it};
if (double val; ss >> val) {
 // It's a number!
} else {
 // It's something else than a number - an operation!
}

The stream operator >> tells us if it is a number. First, we wrapped the string into an
std::stringstream. Then we use the stringstream object's capability to stream from an
std::string into a double variable, which involves parsing. If the parsing fails, we know
that it does so, because we asked it to parse something into a number, which is no number.

STL Containers

[80]

Selecting and applying the right mathematical operation
After we realize that the current user input token is not a number, we just assume that it is
an operation, such as + or *. Then we query our map, which we called ops, to look that
operation up and return us a function, which accepts two operands, and returns the sum, or
the product, or whatever is appropriate.

The type of the map itself looks relatively complicated:

map<string, double (*)(double, double)> ops { ... };

It maps from string to double (*)(double, double). What does the latter mean? This
type description shall read "pointer to a function which takes two doubles, and returns a double".
Imagine that the (*) part is the name of the function, such as in double sum(double,
double), which is immediately easier to read. The trick here is that our lambda
[](double, double) { return /* some double */ } is convertible to a function
pointer that actually matches that pointer description. Lambdas that don't capture anything
are generally convertible to function pointers.

This way, we can conveniently ask the map for the correct operation:

const auto & op (ops.at(*it));
const double result {op(l, r)};

The map implicitly does another job for us: If we say ops.at("foo"), then "foo" is a valid
key value, but we did not store any operation named like this. In such a case, the map will
throw an exception, which we catch in the recipe. We rethrow a different exception
whenever we catch it, in order to provide a descriptive meaning of this error case. The user
will know better what an invalid argument exception means, compared to an out of
range exception. Note that the user of the evaluate_rpn function might not have read its
implementation, hence it might be unknown that we are using a map inside at all.

There's more...
As the evaluate_rpn function accepts iterators, it is very easy to feed it with different
inputs than the standard input stream. This makes it very easy to test, or to adapt to
different sources of user input.

STL Containers

[81]

Feeding it with iterators from a string stream or from a string vector, for example, looks like
the following code, for which evaluate_rpn does not have to be changed at all:

int main()
{
 stringstream s {"3 2 1 + * 2 /"};
 cout << evaluate_rpn(istream_iterator<string>{s}, {}) << '\n';

 vector<string> v {"3", "2", "1", "+", "*", "2", "/"};
 cout << evaluate_rpn(begin(v), end(v)) << '\n';
}

Use iterators wherever it makes sense. This makes your code very
composable and reusable.

Implementing a word frequency counter with
std::map
The std::map is very useful when categorizing something in order to collect statistics
about that data. By attaching modifiable payload objects to every key which represents an
object category, it is pretty simple to implement a histogram of word frequencies for
example. This is what we will do in this section.

How to do it...
In this section, we will read all user input from standard input, which might, for example,
be a text file containing an essay. We tokenize the input to words, in order to count which
word occurs how often.

As always, we need to include all the headers from the data structures we are1.
going to use.

 #include <iostream>
 #include <map>
 #include <vector>
 #include <algorithm>
 #include <iomanip>

STL Containers

[82]

To spare us some typing, we declare that we use namespace std.2.

 using namespace std;

We will use one helper function in order to crop possibly appended commas,3.
dots, or colons from words.

 string filter_punctuation(const string &s)
 {
 const char *forbidden {".,:; "};
 const auto idx_start (s.find_first_not_of(forbidden));
 const auto idx_end (s.find_last_not_of(forbidden));
 return s.substr(idx_start, idx_end - idx_start + 1);
 }

Now we start with the actual program. We will collect a map that associates4.
every word we see with a counter of that word's frequency. Additionally, we
maintain a variable which records the size of the longest word we've seen so far,
so we can indent the word frequency table nicely when we print it at the end of
the program.

 int main()
 {
 map<string, size_t> words;
 int max_word_len {0};

When we stream from std::cin into an std::string variable, the input stream5.
will cut out white space on the way. This way we get the input word by word.

 string s;
 while (cin >> s) {

The word which we have now, could contain a comma, dots, or a colon, because6.
it might be at the end of a sentence or similar. We filter that out with the helper
function we defined before.

 auto filtered (filter_punctuation(s));

In case this word is the longest word so far, we need to update the7.
max_word_len variable.

 max_word_len = max<int>(max_word_len, filtered.length());

STL Containers

[83]

Now we will increment the counter value of the word in our words map. If it8.
occurs for the first time, it is implicitly created before we increment it.

 ++words[filtered];
 }

After the loop terminated, we know that we saved all unique words from the9.
input stream in the words map, paired with a counter denoting every word's
frequency. The map uses words as keys and is sorted by their alphabetical order.
What we want is to print all words sorted by their frequency, so the words with
the highest frequency shall come first. In order to get that, we will first instantiate
a vector where all these word-frequency pairs fit in and move them from the map
to the vector.

 vector<pair<string, size_t>> word_counts;
 word_counts.reserve(words.size());
 move(begin(words), end(words), back_inserter(word_counts));

The vector does now still contain all word-frequency pairs in the same order as10.
the words map maintained them. Now we sort it again, in order to have the most
frequent words at the beginning, and the least frequent ones at the end.

 sort(begin(word_counts), end(word_counts),
 [](const auto &a, const auto &b) {
 return a.second > b.second;
 });

All data is in order now, so we push it out to the user terminal. Using the11.
std::setw stream manipulator, we format the data in a nicely indented format,
so it looks kind of like a table.

 cout << "# " << setw(max_word_len) << "<WORD>" << " #<COUNT>\n";
 for (const auto & [word, count] : word_counts) {
 cout << setw(max_word_len + 2) << word << " #"
 << count << '\n';
 }
 }

STL Containers

[84]

After compiling the program, we can pipe any text file into it in order to get a12.
frequency table.

 $ cat lorem_ipsum.txt | ./word_frequency_counter
 # <WORD> #<COUNT>
 et #574
 dolor #302
 sed #273
 diam #273
 sit #259
 ipsum #259
 ...

How it works...
This recipe concentrates on collecting all words in an std::map and then shoves all items
out of the map and into an std::vector, which is then sorted differently, in order to print
the data. Why?

Let's look at an example. When we count the word frequency in the string "a a b c b b
b d c c", we would get the following map content:

a -> 2
b -> 4
c -> 3
d -> 1

However, that is not the order which we want to present to the user. The program should
print b first because it has the highest frequency. Then c, then a, then d. Unfortunately, we
cannot request the map to give us the "key with the highest associated value", then the "key with
the second highest associated value", and so on.

Here, the vector comes into play. We typed the vector to contain pairs of strings and
counter values. This way it can hold items exactly in the form as they drop out of the map.

vector<pair<string, size_t>> word_counts;

STL Containers

[85]

Then we fill the vector using the word-frequency pairs using the std::move algorithm.
This has the advantage that the part of the strings which is maintained on the heap will not
be duplicated, but will be moved over from the map to the vector. This way we can avoid a
lot of copies.

move(begin(words), end(words), back_inserter(word_counts));

Some STL implementations use short string optimization--if the string is
not too long, it will not be allocated on the heap and stored in the string
object directly instead. In that case, a move is not faster. But moves are
also never slower!

The next interesting step is the sort operation, which uses a lambda as a custom comparison
operator:

sort(begin(word_counts), end(word_counts),
 [](const auto &a, const auto &b) { return a.second > b.second; });

The sort algorithm will take items pairwise, and compare them, which is what sort
algorithms do. By providing that lambda function, the comparison does not just compare if
a is smaller than b (which is the default implementation), but also compares if a.second is
larger than b.second. Note that all objects are pairs of strings and their counter values, and
by writing a.second we access the word's counter value. This way we move all high-
frequency words toward the beginning of the vector, and the low-frequency ones to the
back.

Implement a writing style helper tool for
finding very long sentences in text with
std::multimap
Whenever a lot of items shall be stored in a sorted manner, and the key by which they are
sorted can occur multiple times, std::multimap is a good choice.

Let's find an example use case: When writing text in German, it is okay to use very long
sentences. When writing texts in English, it is not. We will implement a tool that helps
German authors to analyze their English text files, focusing on the length of all sentences. In
order to help the author in improving the text style, it will group the sentences by their
length. This way the author can pick the longest ones and break them down.

STL Containers

[86]

How to do it...
In this section, we will read all user input from standard input, which we will tokenize by
whole sentences, and not words. Then we will collect all sentences in an std::multimap
paired with a variable carrying their length. Afterward, we output all sentences, sorted by
their length, back to the user.

As usual, we need to include all needed headers. std::multimap comes from1.
the same header as std::map.

 #include <iostream>
 #include <iterator>
 #include <map>
 #include <algorithm>

We use a lot of functions from namespace std, so we declare its use2.
automatically.

 using namespace std;

When we tokenize strings by extracting what's between dot characters in the text,3.
we will get text sentences surrounded by white space such as spaces, new line
symbols, and so on. These would increase their size in a wrong way, so we filter
them out using a helper function, which we now define.

 string filter_ws(const string &s)
 {
 const char *ws {" \r\n\t"};
 const auto a (s.find_first_not_of(ws));
 const auto b (s.find_last_not_of(ws));
 if (a == string::npos) {
 return {};
 }
 return s.substr(a, b);
 }

The actual sentence length counting function shall take a giant string containing4.
all the text, and then return an std::multimap, which maps sorted sentence
lengths to the sentences.

 multimap<size_t, string> get_sentence_stats(const string &content)
 {

STL Containers

[87]

We begin by declaring the multimap structure, which is intended to be the return5.
value, and some iterators. As we will have a loop, we need an end iterator. Then
we use two iterators in order to point to consecutive dots within the text.
Everything between is a text sentence.

 multimap<size_t, string> ret;
 const auto end_it (end(content));
 auto it1 (begin(content));
 auto it2 (find(it1, end_it, '.'));

The it2 will be always one dot further than it1. As long as it1 did not reach6.
the end of the text, we are fine. The second condition checks whether it2 is really
at least some characters further. If that was not the case, there would be no
characters left to read between them.

 while (it1 != end_it && distance(it1, it2) > 0) {

We create a string from all characters between the iterators, and filter all white7.
space from its beginning and end, in order to count the length of the pure
sentence.

 string s {filter_ws({it1, it2})};

It's possible that the sentence does not contain anything other than white space.8.
In that case, we simply drop it. Otherwise, we count its length by determining
how many words there are. This is easy, as there are single spaces between all
words. Then we save the word count together with the sentence in the multimap.

 if (s.length() > 0) {
 const auto words (count(begin(s), end(s), ' ') + 1);
 ret.emplace(make_pair(words, move(s)));
 }

For the next loop iteration, we put the leading iterator it1 on the next sentence's9.
dot character. The following iterator it2 is put one character after the old position
of the leading iterator.

 it1 = next(it2, 1);
 it2 = find(it1, end_it, '.');
 }

STL Containers

[88]

After the loop is terminated, the multimap contains all sentences paired with10.
their word count and can be returned.

 return ret;
 }

Now we put the function to use. First, we tell std::cin to not skip white space,11.
as we want sentences with spaces in one piece. In order to read the whole file, we
initialize an std::string from input stream iterators which encapsulate
std::cin.

 int main()
 {
 cin.unsetf(ios::skipws);
 string content {istream_iterator<char>{cin}, {}};

As we only need the multimap result for printing, we put the12.
get_sentence_stats call directly in the loop and feed it with our string. In the
loop body, we print the items line by line.

 for (const auto & [word_count, sentence]
 : get_sentence_stats(content)) {
 cout << word_count << " words: " << sentence << ".\n";
 }
 }

After compiling the code, we can feed the app with text from any text file. An13.
example Lorem Ipsum text yields the following output. As the output is very
long for long text with many sentences, it prints the shortest sentences first and
the longest last. This way we see the longest sentences first as terminals usually
scroll to the end of the output automatically.

 $ cat lorem_ipsum.txt | ./sentence_length
 ...
 10 words: Nam quam nunc, blandit vel, luctus pulvinar,
 hendrerit id, lorem.
 10 words: Sed consequat, leo eget bibendum sodales,
 augue velit cursus nunc,.
 12 words: Cum sociis natoque penatibus et magnis dis
 parturient montes, nascetur ridiculus mus.
 17 words: Maecenas tempus, tellus eget condimentum rhoncus,
 sem quam semper libero, sit amet adipiscing sem neque sed ipsum.

STL Containers

[89]

How it works...
The whole recipe concentrates on breaking down a large string into sentences of text, which
are assessed for their length, and then ordered in a multimap. Because std::multimap
itself is so easy to use, the complex part of the program is the loop, which iterates over the
sentences:

const auto end_it (end(content));
auto it1 (begin(content)); // (1) Beginning of string
auto it2 (find(it1, end_it, '.')); // (1) First '.' dot

while (it1 != end_it && std::distance(it1, it2) > 0) {
 string sentence {it1, it2};

 // Do something with the sentence string...

 it1 = std::next(it2, 1); // One character past current '.' dot
 it2 = find(it1, end_it, '.'); // Next dot, or end of string
}

Let's look at the code with the following diagram in mind, which consists of three sentences:

STL Containers

[90]

The it1 and it2 are always moved forward through the string together. This way they
always point to the beginning and end of one sentence. The std::find algorithm helps us a
lot in that regard because it works like "start at the current position and then return an iterator
to the next dot character. If there is none, return the end iterator."

After we extract a sentence string, we determine how many words it contains, so we can
insert it into the multimap. We are using the number of words as the key for the map nodes,
and the string itself as the payload object associated with it. There can easily be multiple
sentences which have the same length. This would render us unable to insert them all into
one std::map. But since we use std::multimap, this is no problem, because it can easily
handle multiple keys of the same value. It will keep them all ordered in line, which is what
we need to enumerate all sentences by their length and output them to the user.

There's more...
After having read the whole file into one large string, we iterate through the string and
create copies of every sentence again. This is not necessary, as we also could have used
std::string_view, which will be covered later in this book.

Another way to iteratively get the strings between two consecutive dots is
std::regex_iterator, which will also be covered in a later chapter of this book.

Implementing a personal to-do list using
std::priority_queue
The std::priority_queue is another container adapter class, such as std::stack. It is a
wrapper around another data structure (std::vector by default) and provides a queue-
like interface for it. This means that items can stepwise be pushed into it, and stepwise be
popped out of it again. What is pushed into it first, will be popped out of it first. This is
usually also abbreviated as a first in, first out (FIFO) queue. This is the opposite of a stack,
where the last item pushed onto it is popped out of it first.

While we just described the behavior of std::queue, this section shows how
std::priority_queue works. That adapter is special, as it does not only take FIFO
characteristics into account but also mixes it with priorities. This means that the FIFO
principle is kind of broken down into sub-FIFO queues, which are ordered by the priorities
their items have.

STL Containers

[91]

How to do it...
In this section, we will set up a cheap to-do list organizing structure. We do not parse user
input in order to keep this program short and concentrate on std::priority_queue. So
we're just filling an unordered list of to-do items with priorities and descriptions into a
priority queue, and then read them out like from a FIFO queue data structure, but grouped
by the priorities of the individual items.

We need to include some headers first. std::priority_queue is in the header1.
file <queue>.

 #include <iostream>
 #include <queue>
 #include <tuple>
 #include <string>

How do we store to-do items in the priority queue? The thing is, we cannot add2.
items and additionally attach a priority to them. The priority queue will try to use
the natural order of all items in the queue. We could now implement our own
struct todo_item, and give it a priority number, and a string to-do
description, and then implement the comparison operator < in order to make
them orderable. Alternatively, we can just take std::pair, which enables us to
aggregate two things in one type and implements comparison for us
automatically.

 int main()
 {
 using item_type = std::pair<int, std::string>;

We now have a new type item_type, which consists of an integer priority and a3.
string description. So, let's instantiate a priority queue, which maintains such
items.

 std::priority_queue<item_type> q;

STL Containers

[92]

We will now fill the priority queue with different items which have different4.
priorities. The goal is to provide an unstructured list, and then the priority queue
tells us what to do in which order. If there are comics to read, and homework to do,
of course, the homework must be done first. Unfortunately,
std::priority_queue has no constructor, which accepts the initializer lists,
which we can use to fill the queue from the beginning on. (With a vector or a
normal list, it would have worked that way.) So we first define the list and insert
it in the next step.

 std::initializer_list<item_type> il {
 {1, "dishes"},
 {0, "watch tv"},
 {2, "do homework"},
 {0, "read comics"},
 };

We can now comfortably iterate through the unordered list of to-do items and5.
insert them step by step using the push function.

 for (const auto &p : il) {
 q.push(p);
 }

All items are implicitly sorted, and therefore we have a queue which gives us out6.
items with the highest priority.

 while(!q.empty()) {
 std::cout << q.top().first << ": " << q.top().second << '\n';
 q.pop();
 }
 std::cout << '\n';
 }

Let's compile and run our program. Indeed, it tells us, to do our homework first,7.
and after washing the dishes, we can finally watch TV and read comics.

 $./main
 2: do homework
 1: dishes
 0: watch tv
 0: read comics

STL Containers

[93]

How it works...
The std::priority list is very easy to use. We have only used three functions:

The q.push(item) pushes an item into the queue.1.
The q.top() returns a reference to the item which is coming out of the queue2.
first.
The q.pop() removes the frontmost item in the queue.3.

But how did the item ordering work? We grouped a priority integer and a to-do item
description string into an std::pair and got automatic ordering. If we have an
std::pair<int, std::string> instance p, we can write p.first to access the integer
part, and p.second to access the string part. We did that in the loop which prints out all to-
do items.

But how did the priority queue infer that {2, "do homework"} is more important than {0,
"watch tv"}, without us telling it to compare the numeric part?

The comparison operator < handles different cases. Let's assume we compare left <
right and left and right are pairs.

The left.first != right.first, then it returns left.first <1.
right.first.
The left.first == right.first, then it returns left.second <2.
right.second.

This way, we can order the items as we need. The only important thing is that the priority is
the first member of the pair, and the description is the second member of the pair. Otherwise,
std::priority_queue would order the items in a way where it looks like the alphabetic
order of the items is more important than their priorities. (In that case, watch TV would be
suggested as the first thing to do, and do homework some time later. That would at least be
great for those of us who are lazy!)

3
Iterators

We cover the following recipes in this chapter:

Building your own iterable range
Making your own iterators compatible with STL iterator categories
Using iterator wrappers to fill generic data structures
Implementing algorithms in terms of iterators
Iterating the other way around using reverse iterator adapters
Terminating iterations over ranges with iterator sentinels
Automatically checking iterator code with checked iterators
Building your own zip iterator adapter

Introduction
Iterators are an extremely important concept in C++. The STL aims to be as flexible and generic
as possible, and iterators are a great help in that regard. Unfortunately, they are sometimes
a bit tedious to use, which is why many novices avoid them and fall back to C-Style C++. A
programmer who avoids iterators basically waives half the potential of the STL. This chapter
deals with iterators and quickly casts some light on how they work. That very quick
introduction is probably not enough, but the recipes are really here to give a good feeling for
iterator internals.

Iterators

[95]

Most container classes, but also old-school C-style arrays, in one or the other way, contain a
range of data items. A lot of day-to-day tasks that process a lot of data items do not care how
to get at that data. However, if we regard, for example, an array of integers and a linked list
of integers and want to calculate the sum of all the items of both the structures, we would
end up with two different algorithms, which could look like the following:

One algorithm, which deals with the array by checking its size and summing it
up as follows:

 int sum {0};
 for (size_t i {0}; i < array_size; ++i) { sum += array[i]; }

Another algorithm, which deals with the linked list by iterating until it reaches its
end:

 int sum {0};
 while (list_node != nullptr) {
 sum += list_node->value; list_node = list_node->next;
 }

Both of them are about summing up integers, but how large is the percentage of characters
that we typed, which is directly related to the actual summing up task? And does one of
them work with a third kind of data structure, let's say std::map, or do we have to
implement another version of it? Without iterators, this would lead us into ridiculous
directions.

Only with the help of iterators is it possible to implement this in a generic form:

int sum {0};
for (int i : array_or_vector_or_map_or_list) { sum += i; }

This pretty and short, so-called, range-based for loop has been in existence since C++11. It
is just a syntax sugar, which expands to something similar to the following code:

{
 auto && __range = array_or_vector_or_map_or_list ;
 auto __begin = std::begin(__range);
 auto __end = std::end(__range);
 for (; __begin != __end; ++__begin) {
 int i = *__begin;
 sum += i;
 }
}

Iterators

[96]

This is an old hat for everyone who has worked with iterators already and looks completely
magic for everyone who didn't. Imagine our vector of integers looks like the following:

The std::begin(vector) command is the same as vector.begin() and returns us an
iterator that points to the first item (the 1). std::end(vector) is the same as
vector.end() and returns an iterator that points at one item past the last item (past the 5).

In every iteration, the loop checks if the begin iterator is non-equal to the end iterator. If so,
it will dereference the begin iterator and thus access the integer value it points to. Then, it
increments the iterator, repeats the comparison against the end iterator, and so on. In that
moment, it helps to read the loop code again while imagining that the iterators are plain C-
style pointers. In fact, plain C-style pointers are also a valid kind of iterators.

Iterator categories
There are multiple categories of iterators, and they have different limitations. They are not
too hard to memorize, just remember that the capabilities one category requires are
inherited from the next powerful category. The whole point of iterator categories is that if
an algorithm knows what kind of iterator it is dealing with, it can be implemented in an
optimized way. This way, the programmer can lean back and express his intent, while the
compiler can choose the optimal implementation for the given task.

Iterators

[97]

Let's go through them in the right order:

Input iterator
Input iterators can be dereferenced only for reading the values they point to. Once they are
incremented, the last value they pointed to has been invalidated during the incrementation.
This means that it is not possible to iterate over such a range multiple times. The
std::istream_iterator is an example for this category.

Forward iterator
Forward iterators are the same as input iterators, but they differ in that regard that the
ranges they represent can be iterated over multiple times. The std::forward_list
iterators are an example of that. Such a list can only be iterated over forward, not backward,
but it can be iterated over as often as we like to.

Bidirectional iterator
The bidirectional iterator, as the name suggests, can be incremented and decremented, in
order to iterate forward or backward. The iterators of std::list, std::set, and
std::map, for example, support that.

Iterators

[98]

Random access iterator
Random access iterators allow jumping over multiple values at once, instead of single-
stepping. This is the case for iterators of std::vector and std::deque.

Contiguous iterator
This category specifies all of the aforementioned requirements, plus the requirement that
the data that is being iterated through lies in contiguous memory, like it does in an array, or
std::vector.

Output iterator
Output iterators are detached from the other categories. This is because an iterator can be a
pure output iterator, which can only be incremented and used to write to the data it points
to. If they are being read from, the value will be undefined.

Mutable iterator
If an iterator is an output iterator and one of the other categories at the same time, it is a
mutable iterator. It can be read from and written to. If we obtain an iterator from a non-
const container instance, it will usually be of this kind.

Building your own iterable range
We already realized that iterators are, kind of, the standard interface for iterations over
containers of all kinds. We just need to implement the prefix increment operator, ++, the
dereference operator, *, and the object comparison operator, ==, and then we already have a
primitive iterator that fits into the fancy C++11 range-based for loop.

In order to get used to this a bit more, this recipe shows how to implement an iterator that
just emits a range of numbers when iterating through it. It is not backed by any container
structure or anything similar. The numbers are generated ad hoc while iterating.

Iterators

[99]

How to do it...
In this recipe, we will implement our own iterator class, and then, we will iterate through it:

First, we include the header, which enables us to print to the terminal:1.

 #include <iostream>

Our iterator class will be called num_iterator:2.

 class num_iterator {

Its only data member is an integer. That integer is used for counting. The3.
constructor is for initializing it. It is generally a good form to make constructors
explicit, which create a type from another type to avoid accidental implicit
conversion. Note that we also provide a default value for position. This makes
the instances of the num_iterator class default-constructible. Although we will
not use the default constructor in the whole recipe, this is really important
because some STL algorithms depend on iterators being default-constructible:

 int i;
 public:

 explicit num_iterator(int position = 0) : i{position} {}

When dereferencing our iterator (*it), it will emit an integer:4.

 int operator*() const { return i; }

Incrementing the iterator (++it) will just increment its internal counter, i:5.

 num_iterator& operator++() {
 ++i;
 return *this;
 }

A for loop will compare the iterator against the end iterator. If they are unequal,6.
it will continue iterating:

 bool operator!=(const num_iterator &other) const {
 return i != other.i;
 }
 };

Iterators

[100]

That was the iterator class. We still need an intermediate object for writing for7.
(int i : intermediate(a, b)) {...}, which then contains the begin and
end iterator, which is preprogrammed to iterate from a to b. We call it
num_range:

 class num_range {

It contains two integer members, which denote at which number the iteration8.
shall start, and which number is the first number past the last number. This
means if we want to iterate from 0 to 9, a is set to 0 and b to 10:

 int a;
 int b;

 public:
 num_range(int from, int to)
 : a{from}, b{to}
 {}

There are only two member functions that we need to implement: the begin and9.
end functions. Both return iterators that point to the beginning and the end of the
numeric range:

 num_iterator begin() const { return num_iterator{a}; }
 num_iterator end() const { return num_iterator{b}; }
 };

That's it. We can use it. Let's write a main function which just iterates over a10.
range that goes from 100 to 109 and prints all its values:

 int main()
 {
 for (int i : num_range{100, 110}) {
 std::cout << i << ", ";
 }
 std::cout << '\n';
 }

Compiling and running the program yields the following terminal output:11.

 100, 101, 102, 103, 104, 105, 106, 107, 108, 109,

Iterators

[101]

How it works...
Consider that we write the following code:

for (auto x : range) { code_block; }

The compiler will evaluate it to the following:

{
 auto __begin = std::begin(range);
 auto __end = std::end(range);
 for (; __begin != __end; ++__begin) {
 auto x = *__begin;
 code_block
 }
}

While looking at this code, it becomes obvious that the only requirements for the iterators
are the following three operators:

operator!=: unequal comparison
operator++: prefix increment
operator*: dereference

The requirements of the range are that it has a begin and an end method, which return two
iterators that denote the beginning and the end of a range.

In this book, we're mostly using std::begin(x) instead of x.begin().
This is generally a good style because std::begin(x) automatically calls
x.begin() if that member method is available. If x is an array that does
not have a begin() method, std::begin(x) will automatically find out
how to deal with it. The same applies to std::end(x). User defined types
that do not provide begin()/end() members do not work with
std::begin/std::end.

What we did in this recipe is just fit a simple number counting algorithm into the forward
iterator interface. Implementing an iterator and a range always involves this minimum
amount of boilerplate code, which can be a little bit annoying on the one hand. A look at the
loop that uses num_range is, on the other hand, very rewarding because it looks so perfectly
simple!

Iterators

[102]

Scroll back and have a thorough look on which of the methods of the
iterator and the range class are const. Forgetting to make those functions
const can make the compiler reject your code in a lot of situations because
it is a common thing to iterate over const objects.

Making your own iterators compatible with
STL iterator categories
Whatever own container data structure we come up with, in order to effectively mix it with
all the STL goodness, we need to make them provide iterator interfaces. In the last section,
we learned how to do that, but we do soon realize that some STL algorithms do not compile
well with our custom iterators. Why?

The problem is that a lot of STL algorithms try to find out more about the iterators they are
asked by us to deal with. Different iterator categories have different capabilities, and hence,
there might be different possibilities to implement the same algorithm. For example, if we
copy plain numbers from one std::vector to another, this may be implemented with a fast
memcpy call. If we copy data from or to std::list, this is not possible any longer and the
items have to be copied individually one by one. The implementers of the STL algorithms
put a lot of thought into this kind of automatic optimization. In order to help them, we can
equip our iterators with some information about them. This section shows how to achieve
the same.

How to do it...
In this section, we will implement a primitive iterator that counts numbers and use it
together with an STL algorithm, which initially does not compile with it. Then we do what's
necessary to make it STL-compatible.

First, we need to include some headers, as always:1.

 #include <iostream>
 #include <algorithm>

Iterators

[103]

Then we implement a primitive number counting iterator, as in the previous2.
section. When iterating over it, it will emit plain increasing integers. The
num_range acts as a handy begin and end iterator donor:

 class num_iterator
 {
 int i;
 public:
 explicit num_iterator(int position = 0) : i{position} {}
 int operator*() const { return i; }
 num_iterator& operator++() {
 ++i;
 return *this;
 }
 bool operator!=(const num_iterator &other) const {
 return i != other.i;
 }
 bool operator==(const num_iterator &other) const {
 return !(*this != other);
 }
 };
 class num_range {
 int a;
 int b;
 public:
 num_range(int from, int to)
 : a{from}, b{to}
 {}
 num_iterator begin() const { return num_iterator{a}; }
 num_iterator end() const { return num_iterator{b}; }
 };

In order to keep the std:: namespace prefix out and keep the code readable, we3.
declare that we use namespace std:

 using namespace std;

Iterators

[104]

Let's now just instantiate a range that goes from 100 to 109. Note that the value4.
110 is the position of the end iterator. This means that 110 is the first number that
is outside the range (which is why it goes from 100 to 109):

 int main()
 {
 num_range r {100, 110};

And now, we use it with std::minmax_element. This algorithm returns us5.
std::pair with two members: an iterator pointing to the lowest value and
another iterator pointing to the highest value in the range. These are, of course,
100 and 109 because that's how we constructed the range:

 auto [min_it, max_it] (minmax_element(begin(r), end(r)));
 cout << *min_it << " - " << *max_it << '\n';
 }

Compiling the code leads to the following error message. It's some error related6.
to std::iterator_traits. More on that later. It might happen that there are
other errors on other compilers and/or STL library implementations or no errors at
all. This error message occurs with clang version 5.0.0 (trunk 299766):

In order to fix this, we need to activate iterator trait functionality for our iterator7.
class. Just after the definition of num_iterator, we write the following template
structure specialization of the std::iterator_traits type. It tells the STL that
our num_iterator is of the category forward iterator, and it iterates over int
values:

 namespace std {
 template <>
 struct iterator_traits<num_iterator> {
 using iterator_category = std::forward_iterator_tag;
 using value_type = int;
 };
 }

Iterators

[105]

Let's compile it again; we can see that it works! The output of the min/max8.
function is the following, which is just what we expect:

 100 - 109

How it works...
Some STL algorithms need to know the characteristics of the iterator type they are used
with. Some others need to know the type of items the iterators iterate over. This has
different implementation reasons.

However, all STL algorithms will access this type information via
std::iterator_traits<my_iterator>, assuming that the iterator type is my_iterator.
This traits class contains up to five different type member definitions:

difference_type: What type results from writing it1 - it2?
value_type: Of what type is the item which we access with *it (note that this is
void for pure output iterators)?
pointer: Of what type must a pointer be in order to point to an item?
reference: Of what type must a reference be in order to reference an item?
iterator_category: Which category does the iterator belong to?

The pointer, reference, and difference_type type definitions do not make sense for
our num_iterator, as it doesn't iterate over real memory values (we just return int values
but they are not persistently available like in an array). Therefore it's better to not define
them because if an algorithm depends on those items being referenceable in memory, it
might be buggy when combined with our iterator.

There's more...
Until C++17, it was encouraged to let iterator types just inherit from std::iterator<...>,
which automatically populates our class with all the type definitions. This still works, but it
is discouraged since C++17.

Iterators

[106]

Using iterator adapters to fill generic data
structures
In a lot of situations, we want to fill any container with masses of data, but the data source
and the container have no common interface. In such a situation, we would need to write our
own hand-crafted algorithms that just deal with the question of how to shove data from the
source to the sink. Usually, this distracts us from our actual work of solving a specific
problem.

Tasks where we simply transport data between conceptually different data structures can
be implemented with a one-liner code, thanks to another abstraction provided by the STL:
iterator adapters. This section demonstrates the use of some of them in order to give a
feeling how useful they are.

How to do it...
In this section, we use some iterator wrappers just for the sake of showing that they exist
and how they can help us in everyday programming tasks.

We need to include some headers first:1.

 #include <iostream>
 #include <string>
 #include <iterator>
 #include <sstream>
 #include <deque>

Declaring that we use namespace std spares us some typing later:2.

 using namespace std;

We start with std::istream_iterator. We specialize it on int. This way, it3.
will try to parse the standard input to integers. For example, if we iterate over it,
it will look as if it was std::vector<int>. The end iterator is instantiated of the
same type but without any constructor arguments:

 int main()
 {
 istream_iterator<int> it_cin {cin};
 istream_iterator<int> end_cin;

Iterators

[107]

Next, we instantiate std::deque<int> and just copy over all the integers from4.
the standard input into the deque. The deque itself is not an iterator, so we wrap
it into std::back_insert_iterator using the std::back_inserter helper
function. This special iterator wrapper will execute v.push_back(item) with
each of the items we get from the standard input. This way the deque is grown
automatically!

 deque<int> v;

 copy(it_cin, end_cin, back_inserter(v));

In the next exercise, we use std::istringstream to copy items into the middle5.
of the deque. So, let's first define some example numbers in the form of a string
and instantiate the stream object from it:

 istringstream sstr {"123 456 789"};

Then, we need a hint of where to insert into the deque. It will be the middle, so6.
we use the begin pointer of the deque and feed it to the std::next function. The
second argument of this function says that it will return an iterator advanced by
v.size() / 2 steps, that is, half the deque. (We cast v.size() to int because
the second parameter of std::next is difference_type of the iterator used as
the first parameter. In this case, this is a signed integer type. Depending on the
compiler flags, the compiler might warn at this point if we didn't cast explicitly.)

 auto deque_middle (next(begin(v),
 static_cast<int>(v.size()) / 2));

Now, we can copy parsed integers step by step from the input string stream into7.
the deque. Again, the end iterator of a stream iterator wrapper is just an empty
std::istream_iterator<int> without constructor arguments (that is, the
empty {} braces in the code line). The deque is wrapped into an inserter
wrapper, which is an std::insert_iterator, which is pointed to the deque's
middle using the deque_middle iterator:

 copy(istream_iterator<int>{sstr}, {}, inserter(v, deque_middle));

Now, let's use std::front_insert_iterator to insert some items at the front8.
of the deque:

 initializer_list<int> il2 {-1, -2, -3};
 copy(begin(il2), end(il2), front_inserter(v));

Iterators

[108]

In the last step, we print the whole content of the deque out to the user shell. The9.
std::ostream_iterator works like an output iterator which, in our case, just
forwards all the integers it gets copied from to std::cout and then appends ",
" after each item:

 copy(begin(v), end(v), ostream_iterator<int>{cout, ", "});
 cout << '\n';
 }

Compiling and running the program yields the following output. Can you10.
identify which number was inserted by which code line?

 $ echo "1 2 3 4 5" | ./main
 -3, -2, -1, 1, 2, 123, 456, 789, 3, 4, 5,

How it works...
We used a lot of different iterator adapters in this section. They all have one thing in
common, which is they wrap an object into an iterator that is not an iterator itself.

std::back_insert_iterator
The back_insert_iterator can be wrapped around std::vector, std::deque,
std::list, and so on. It will call the container's push_back method, which inserts the new
item past the existing items. If the container instance is not large enough, it will be grown
automatically.

std::front_insert_iterator
The front_insert_iterator does exactly the same thing as back_insert_iterator,
but it calls the container's push_front method, which inserts the new item before all the
existing items. Note that for a container like std::vector, this means that all the existing
items need to be moved one slot further in order to leave space for the new item at the front.

Iterators

[109]

std::insert_iterator
This iterator adapter is similar to the other inserters, but is able to insert new items between
existing ones. The std::inserter helper function which constructs such a wrapper takes
two arguments. The first argument is the container and the second argument is an iterator
that points to the position where new items shall be inserted.

std::istream_iterator
The istream_iterator is another very handy adapter. It can be used with any
std::istream object (which can be the standard input or files for example) and will try to
parse the input from that stream object according to the template parameter it was
instantiated with. In this section, we used std::istream_iterator<int>(std::cin),
which pulls integers out of the standard input for us.

The special thing about streams is that we often cannot know in advance how long the
stream is. That leaves the question, where will the end iterator point to if we do not know
where the stream's end is? The way this works is that the iterator knows when it reaches the
end of the stream. When it is compared to the end iterator, it will effectively not really
compare itself with the end iterator but return if the stream has any tokens left. That's why
the end iterator constructor does not take any arguments.

std::ostream_iterator
The ostream_iterator is the same thing as the istream_iterator, but it works the
other way around: It doesn't take tokens from an input stream--it pushes tokens into an
output stream. Another difference to istream_iterator is that its constructor takes a
second argument, which is a string that shall be pushed into the output stream after each
item. That is useful because this way we can print a separating ", " or a new line after each
item.

Implementing algorithms in terms of
iterators
Iterators usually iterate by moving their position from one item of a container to another. But
they do not necessarily need to iterate over data structures at all. Iterators can also be used
to implement algorithms, in which case, they would calculate the next value when they are
incremented (++it) and return that value when they are dereferenced (*it).

Iterators

[110]

In this section, we demonstrate this by implementing the Fibonacci function in form of an
iterator. The Fibonacci function is recursively defined like this: F(n) = F(n - 1) + F(n
- 2). It starts with the beginning values of F(0) = 0 and F(1) = 1. This leads to the
following number sequence:

F(0) = 0

F(1) = 1

F(2) = F(1) + F(0) = 1

F(3) = F(2) + F(1) = 2

F(4) = F(3) + F(2) = 3

F(5) = F(4) + F(3) = 5

F(6) = F(5) + F(4) = 8

... and so on

If we implement this in the form of a callable function that returns the Fibonacci value for
any number, n, we will end up with a recursive self-calling function, or a loop
implementation. This is fine, but what if we write some program where have to consume
Fibonacci numbers in some pattern, one after the other? We would have two possibilities--
either we recalculate all the recursive calls for every new Fibonacci number, which is a
waste of computing time, or we save the last two Fibonacci numbers as temporary variables
and use them to calculate the next. In the latter case, we reimplemented the Fibonacci
algorithm loop implementation. It seems that we would end up mixing Fibonacci code with
our actual code, which solves a different problem:

size_t a {0};
size_t b {1};

for (size_t i {0}; i < N; ++i) {
 const size_t old_b {b};
 b += a;
 a = old_b;
 // do something with b, which is the current fibonacci number
}

Iterators are an interesting way out of this. How about wrapping the steps that we do in the
loop-based iterative Fibonacci implementation in the prefix increment ++ operator
implementation of a Fibonacci value iterator? This is pretty easy, as this section
demonstrates.

Iterators

[111]

How to do it...
In this section, we concentrate on implementing an iterator that generates numbers from the
Fibonacci number sequence while iterating over it.

In order to be able to print the Fibonacci numbers to the terminal, we need to1.
include a header first:

 #include <iostream>

We call the Fibonacci iterator, fibit. It will carry a member i, which saves the2.
index position in the Fibonacci sequence, and a and b will be the variables that
hold the last two Fibonacci values. If instantiated with the default constructor, a
Fibonacci iterator will be initialized to the value F(0):

 class fibit
 {
 size_t i {0};
 size_t a {0};
 size_t b {1};

Next, we define the standard constructor and another constructor, which allows3.
us to initialize the iterator at any Fibonacci number step:

 public:
 fibit() = default;
 explicit fibit(size_t i_)
 : i{i_}
 {}

When dereferencing our iterator (*it), it will just emit the Fibonacci number of4.
the current step:

 size_t operator*() const { return b; }

Iterators

[112]

When incrementing the iterator (++it), it will move its state to the next Fibonacci5.
number. This function contains the same code as the loop-based Fibonacci
implementation:

 fibit& operator++() {
 const size_t old_b {b};
 b += a;
 a = old_b;
 ++i;
 return *this;
 }

When used in a loop, the incremented iterator is compared against an end6.
iterator, for which we need to define the != operator. We are only comparing the
step at which the Fibonacci iterators currently reside, which makes it easier to
define the end iterator for step 1000000, for example, as we do not need to
expensively calculate such a high Fibonacci number in advance:

 bool operator!=(const fibit &o) const { return i != o.i; }
 };

In order to be able to use the Fibonacci iterator in the range-based for loop, we7.
have to implement a range class beforehand. We call it fib_range, and its
constructor will accept one parameter that tells how far in the Fibonacci range we
want to iterate:

 class fib_range
 {
 size_t end_n;
 public:
 fib_range(size_t end_n_)
 : end_n{end_n_}
 {}

Its begin and end functions return iterators which point to the positions, F(0)8.
and F(end_n):

 fibit begin() const { return fibit{}; }
 fibit end() const { return fibit{end_n}; }
 };

Iterators

[113]

Okay, now let's forget about all the iterator-related boilerplate code. We do not9.
need to touch it again as we have a helper class now which nicely hides all the
implementation details from us! Let's print the first 10 Fibonacci numbers:

 int main()
 {
 for (size_t i : fib_range(10)) {
 std::cout << i << ", ";
 }
 std::cout << '\n';
 }

Compiling and running the program yields the following shell output:10.

 1, 1, 2, 3, 5, 8, 13, 21, 34, 55,

There's more...
In order to use this iterator with the STL, it must support the std::iterator_traits
class. To see how to do that, have a look at the other recipe, which deals with exactly that
matter: Making your own iterators compatible with STL iterator categories.

Try to think in terms of iterators. This leads to very elegant code in many
situations. Don't worry about performance: compilers find it trivial to
optimize away the iterator-related boilerplate code!

In order to keep the example simple, we did not do anything about this, but if we do
publish the Fibonacci iterator as a library, it would become apparent that it has a usability
flaw--a fibit instance that was created with a constructor parameter will only be used as
an end iterator because it does not contain valid Fibonacci values. Our tiny library does not
enforce such usage. There are different possibilities to fix it:

Make the fibit(size_t i_) constructor private and declare the fib_range
class as a friend of the fibit class. This way, users can only use it the right way.
Use iterator sentinels in order to prevent users to dereference the end iterator.
Have a look at the recipe in which we introduce those: Terminating iterations over
ranges with iterator sentinels

Iterating the other way around using reverse

Iterators

[114]

iterator adapters
Sometimes, it is valuable to iterate over a range the other way around, not forward but
backward. The range-based for loop, as well as all STL algorithms usually iterate over the
given ranges by incrementing iterators, although iterating backward requires decrementing
them. Of course, it is possible to wrap iterators into a layer that transforms an increment call
effectively into a decrement call. This sounds like a lot of boilerplate code for every type on
which we would like to support that.

The STL provides a helpful reverse-iterator adapter, which helps us set up such iterators.

How to do it...
In this section, we will use reverse iterators in different ways, just to show how they are
used:

We need to include some headers first, as always:1.

 #include <iostream>
 #include <list>
 #include <iterator>

Next, we declare that we use namespace std in order to spare us some typing:2.

 using namespace std;

For the sake of having something to iterate over, let's instantiate a list of integers:3.

 int main()
 {
 list<int> l {1, 2, 3, 4, 5};

Now let's print these integers in the reverse form. In order to do that, we iterate4.
over the list by using the rbegin and rend functions of std::list and shove
those values out via the standard output using the handy ostream_iterator
adapter:

 copy(l.rbegin(), l.rend(), ostream_iterator<int>{cout, ", "});
 cout << '\n';

Iterators

[115]

If a container does not provide handy rbegin and rend functions but at least5.
provides bidirectional iterators, the std::make_reverse_iterator function
helps out. It accepts normal iterators and converts them to reverse iterators:

 copy(make_reverse_iterator(end(l)),
 make_reverse_iterator(begin(l)),
 ostream_iterator<int>{cout, ", "});
 cout << '\n';
 }

Compiling and running our program yields the following output:6.

 5, 4, 3, 2, 1,
 5, 4, 3, 2, 1,

How it works...
In order to be able to transform a normal iterator into a reverse iterator, it must at least have
support for bidirectional iteration. This requirement is fulfilled by any iterator of the
bidirectional category or higher.

A reverse iterator kind of contains a normal iterator and mimics its interface completely, but
it rewires the increment operation to a decrement operation.

The next detail is about the begin and end iterator positions. Let's have a look at the
following diagram, which shows a standard numeric sequence kept in an iterable range. If
the sequence goes from 1 to 5, then the begin iterator has to point to the element 1, and the
end iterator must point one element past 5:

Iterators

[116]

When defining reverse iterators, the rbegin iterator must point to 5, and the rend iterator
must point to the element before 1. Turn the book upside down, and see that it completely
makes sense.

If we want our own custom container classes to support reverse iteration, we do not need to
implement all these details ourselves; we can just wrap the normal iterators into reverse
iterators by using the std::make_reverse_iterator helper function, and it does all the
operator rewiring and offset corrections for us.

Terminating iterations over ranges with
iterator sentinels
Both STL algorithms and the range-based for loop assume that the begin and end positions
of the iteration are known in advance. In some situations, however, it is hardly possible to
know the end position before reaching it by iteration.

A very simple example for this is iterating over plain C-Style strings, the length of which is
not known before runtime. The code which iterates over such strings usually looks like this:

for (const char *c_ponter = some_c_string; *c_pointer != '\0'; ++c_pointer)
{
 const char c = *c_pointer;
 // do something with c
}

The only way to put this into a range-based for loop seems to be wrapping it into an
std::string, which has begin() and end() functions:

for (char c : std::string(some_c_string)) { /* do something with c */ }

However, the constructor of std::string will iterate over the whole string before our for
loop can iterate over it. Since C++17, we also have std::string_view, but its constructor
will also iterate through the string once. This is not worth the real hassle for short strings,
but this is also only an example for a problem class, which can be worth the hassle in other
situations. The std::istream_iterator also has to deal with this when it captures input
from std::cin, as its end iterator cannot realistically point to the end of the user input
while the user is still typing keys.

Iterators

[117]

C++17 comes with the great news that it does not constrain begin and end iterators to be of
the same type. This section demonstrates how to put this little rule change to great use.

How to do it...
In this section, we will build an iterator together with a range class, which enables us to
iterate over a string with unknown length, without finding the end position in advance.

First, as always, we need to include headers:1.

 #include <iostream>

The iterator sentinel is a very central element of this section. Surprisingly, its class2.
definition can stay completely empty:

 class cstring_iterator_sentinel {};

Now we implement the iterator. It will contain a string pointer, which is the3.
container we iterate over:

 class cstring_iterator {
 const char *s {nullptr};

The constructor just initializes the internal string pointer to whatever string the4.
user provides. Let's make the constructor explicit in order to prevent accidental
implicit conversions from strings to string iterators:

 public:
 explicit cstring_iterator(const char *str)
 : s{str}
 {}

When dereferencing the iterator at some point, it will just return the character5.
value at this position:

 char operator*() const { return *s; }

Incrementing the iterator just increments the position in the string:6.

 cstring_iterator& operator++() {
 ++s;
 return *this;
 }

Iterators

[118]

This is the interesting part. We implement the != operator for comparison, as it is7.
used by STL algorithms and the range-based for loop. However, this time, we do
not implement it for the comparison of iterators with other iterators, but for
comparing iterators with sentinels. When we compare an iterator with another
iterator we can only check if their internal string pointers both point to the same
address, which is somewhat limiting. By comparing against an empty sentinel
object, we can perform a completely different semantic–we check if the character
our iterator points to is a terminating '\0' character because this represents the
end of the string!

 bool operator!=(const cstring_iterator_sentinel) const {
 return s != nullptr && *s != '\0';
 }
 };

In order to use this in a range-based for loop, we need a range class around it,8.
which emits the begin and end iterators:

 class cstring_range {
 const char *s {nullptr};

The only thing the user needs to provide during instantiation is the string that9.
will be iterated over:

 public:
 cstring_range(const char *str)
 : s{str}
 {}

We return a normal cstring_iterator from the begin() function, which10.
points to the beginning of the string. From the end() function, we just return the
sentinel type. Note that without the sentinel type, we would also return an
iterator, but from where should we know the end of the string if we didn't search
for it in advance?

 cstring_iterator begin() const {
 return cstring_iterator{s};
 }
 cstring_iterator_sentinel end() const {
 return {};
 }
 };

Iterators

[119]

That's it. We can immediately use it. Strings that come from the user are one11.
example of an input we cannot know the length of in advance. In order to force
the user to give some input, we will abort the program if the user did not provide
at least one parameter when launching the program in the shell:

 int main(int argc, char *argv[])
 {
 if (argc < 2) {
 std::cout << "Please provide one parameter.\n";
 return 1;
 }

If the program is still being executed up to this point, then we know that12.
argv[1] contains some user string:

 for (char c : cstring_range(argv[1])) {
 std::cout << c;
 }
 std::cout << '\n';
 }

Compiling and running the program yields the following output:13.

 $./main "abcdef"
 abcdef

That the loop prints what we just entered is not a surprise, as this is just quite a micro-
example for the implementation of a sentinel-based iterator range. This iteration
termination method will help you in implementing your own iterators wherever you
run into a situation where the comparison with an end position approach is not helpful.

Automatically checking iterator code with
checked iterators
No matter how useful iterators are, and what generic interface they represent, iterators can
easily be misused, just as pointers. When dealing with pointers, code must be written in a
way that it never dereferences them when they point to invalid memory locations. Same
applies to iterators, but there are a lot of rules that state when an iterator is valid and when it
is invalidated. Those can easily be learned by studying the STL documentation a bit, but it
will still always be possible to write buggy code.

Iterators

[120]

In the best case, such buggy code blows up in front of the developer while it is being tested,
and not on the client's machine. However, in many cases, the code just silently seems to
work, although it dereferences dangling pointers, iterators, and so on. In such cases, we
want to be eagerly alarmed if we produce code showing undefined behavior.

Fortunately, there's help! The GNU STL implementation has a debug mode, and the GNU
C++ compiler as well as the LLVM clang C++ compiler both support additional libraries that
can be used to produce extra-sensitive and verbose binaries for us, which immediately blow
up on a large variety of bugs. This is easy to use and super useful, as we will demonstrate in
this section. The Microsoft Visual C++ standard library also provides a possibility to activate
additional checks.

How to do it...
In this section, we'll write a program that deliberately accesses an invalidated iterator:

First, we include headers.1.

 #include <iostream>
 #include <vector>

Now, let's instantiate a vector of integers and get an iterator to the first item, the2.
value 1. We apply shrink_to_fit() on the vector in order to ensure that its
capacity is really 3, as its implementation might allocate more memory than
necessary as a little reserve to make future item insertions faster:

 int main()
 {
 std::vector<int> v {1, 2, 3};
 v.shrink_to_fit();
 const auto it (std::begin(v));

Then we print the dereferenced iterator, which is completely fine:3.

 std::cout << *it << '\n';

Next, let's append a new number to the vector. As the vector is not large enough4.
to take another number, it will automatically increase its size. It does this by
allocating a new and larger chunk of memory, moving all the existing items to
that new chunk and then deleting the old memory chunk:

 v.push_back(123);

Iterators

[121]

Now, let's print 1 from the vector through this iterator again. This is bad. Why?5.
Well, when the vector moved all its values to the new chunk of memory and
threw away the old chunk, it did not tell the iterator about this change. This
means that the iterator is still pointing to the old location, and we cannot know
what really happened to it since then:

 std::cout << *it << '\n'; // bad bad bad!
 }

Compiling and running this program leads to a flawless execution. The app6.
doesn't crash, but what it prints when dereferencing the invalidated pointer is
pretty much random. Leaving it like this is pretty dangerous, but at this point, no
one tells us about that bug if we don't see it ourselves:

Debug flags come to the rescue! The GNU STL implementation supports a7.
preprocessor macro called _GLIBCXX_DEBUG, which activates a lot of sanity
checking code in the STL. This makes the program slower, but it finds bugs. We
can activate it by adding a -D_GLIBCXX_DEBUG flag to our compiler command
line, or define it in the head of the code file before the include lines. As you can
see, it kills the app in the mactivate different sanitizers. Let's compile the code
with clan useful (the activation flag for checked iterators with the Microsoft
Visual C++ compiler is /D_ITERATOR_DEBUG_LEVEL=1):

Iterators

[122]

The LLVM/clang implementation of the STL also has debug flags, but they serve8.
the purpose of debugging the STL itself, not user code. For user code, you can
activate different sanitizers. Let's compile the code with clang using the -
fsanitize=address -fsanitize=undefined flags and see what happens:

Wow, this is a very precise description of what went wrong. The screenshot would have
spanned multiple pages of this book if it had not been truncated. Note that this is not a clang-
only feature, as it also works with GCC.

If you get runtime errors because some library is missing, then your
compiler did not automatically ship with libasan and libubsan. Try to
install them via your package manager or something similar.

How it works...
As we have seen, we did not need to change anything in the code in order to get this kind of
tripwire feature for buggy code. It basically came for free, just by appending some compiler
flags to the command line when compiling the program.

Iterators

[123]

This feature is implemented by sanitizers. A sanitizer usually consists of an additional
compiler module and a runtime library. When sanitizers are activated, the compiler will
add additional information and code to the binary, which results from our program. At
runtime, the sanitizer libraries that are then linked into the program binary can, for
example, replace the malloc and free functions in order to analyze how the program deals
with the memory it acquires.

Sanitizers can detect different kinds of bugs. Just to list a few valuable examples:

Out-of-bounds: This triggers whenever we access an array, vector, or anything
similar outside its legitimate memory range.
Use-after-free: This triggers if we reference heap memory after it was already
freed (which we did in this section).
Integer overflow: This triggers if an integer variable overflows by calculating
with values that do not fit into the variable. For signed integers, the arithmetic
wraparound is undefined behavior.
Pointer alignment: Some architectures cannot access memory if it has a weird
alignment in memory.

There are many more such bugs that sanitizers can detect.

It is not feasible to always activate all available sanitizers because they make the program
slower. However, it is good style to always activate sanitizers in your unit tests and
integration tests.

There's more...
There are a lot of different sanitizers for different bug categories, and they are all still under
development. We can and should inform ourselves on the internet about how we can
improve our test binaries. The GCC and LLVM project homepages list their sanitizing
capabilities in their online documentation pages:

h t t p s ://g c c . g n u . o r g /o n l i n e d o c s /g c c /I n s t r u m e n t a t i o n - O p t i o n s . h t m l

h t t p ://c l a n g . l l v m . o r g /d o c s /i n d e x . h t m l (look for sanitizers in the table of
contents)

https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html
http://clang.llvm.org/docs/index.html

Iterators

[124]

Thorough testing with sanitizers is something that every programmer should be aware of
and should always be doing. Unfortunately, this is not the case in alarmingly many
companies, although buggy code is the most important entry point for all the malware and
computer viruses out there.

When you get a new job as a software developer, check if your team really uses all the
sanitizing possibilities there are. If not, you have the unique chance to fix important and
sneaky bugs on your first day at work!

Building your own zip iterator adapter
Different programming languages lead to different programming styles. This is, because
there are different ways to express things, and they are differing in their elegance for each
use case. That is no surprise because every language was designed with specific objectives.

A very special kind of programming style is purely functional programming. It is magically
different from the imperative programming which C or C++ programmers are used to. While
this style is very different, it enables extremely elegant code in many situations.

One example of this elegance is the implementation of formulas, such as the mathematical
dot product. Given two mathematical vectors, applying the dot product to them means
pairwise multiplying of the numbers at the same positions in the vector and then summing
up all of those multiplied values. The dot product of two vectors (a, b, c) * (d, e, f)
is (a * e + b * e + c * f). Of course, we can do that with C and C++, too. It could
look like the following:

std::vector<double> a {1.0, 2.0, 3.0};
std::vector<double> b {4.0, 5.0, 6.0};

double sum {0};
for (size_t i {0}; i < a.size(); ++i) {
 sum += a[i] * b[i];
}
// sum = 32.0

How does it look like in those languages that can be considered more elegant?

Iterators

[125]

Haskell is a purely functional language, and this is how you can calculate the dot product of
two vectors with a magical one-liner:

Python is not a purely functional language, but it supports similar patterns to some extent,
as seen in the next example:

The STL provides a specific algorithm called std::inner_product, which solves this
specific problem in one line, too. But the point is that in many other languages, such code
can be written on the fly in only one line without specific library functions that support that
exact purpose.

Without delving into the explanations of such foreign syntax, an important commonality in
both examples is the magical zip function. What does it do? It takes the two vectors a and b
and transforms them to a mixed vector. Example: [a1, a2, a3] and [b1, b2, b3] result
in [(a1, b1), (a2, b2), (a3, b3)] when they are zipped together. Have a close
look at it; it's really similar to how zip fasteners work!

The relevant point is that it is now possible to iterate over one combined range where
pairwise multiplications can be done and then summed up to an accumulator variable.
Exactly the same happens in the Haskell and Python examples, without adding any loop or
index variable noise.

It will not be possible to make the C++ code exactly as elegant and generic as in Haskell or
Python, but this section explains how to implement similar magic using iterators, by
implementing a zip iterator. The example problem of calculating the dot product of two
vectors is solved more elegantly by specific libraries, which are beyond the scope of this
book. However, this section tries to show how much iterator-based libraries can help in
writing expressive code by providing extremely generic building blocks.

Iterators

[126]

How to do it...
In this section, we will recreate the zip function as known from Haskell or Python. It will be
hardcoded to vectors of double variables in order to not distract from iterator mechanics:

First, we need to include some headers:1.

 #include <iostream>
 #include <vector>
 #include <numeric>

Next, we define the zip_iterator class. While iterating over a zip_iterator2.
range, we will get a pair of values from the two containers at every iteration step.
This means that we iterate over two containers at the same time:

 class zip_iterator {

The zip iterator needs to save two iterators, one for each container:3.

 using it_type = std::vector<double>::iterator;

 it_type it1;
 it_type it2;

The constructor simply saves the iterators from the two containers that we would4.
like to iterate over:

 public:
 zip_iterator(it_type iterator1, it_type iterator2)
 : it1{iterator1}, it2{iterator2}
 {}

Incrementing the zip iterator means incrementing both the member iterators:5.

 zip_iterator& operator++() {
 ++it1;
 ++it2;
 return *this;
 }

Iterators

[127]

Two zip iterators are unequal if both the member iterators are unequal to their6.
counterparts in the other zip iterator. Usually, one would use logical or (||)
instead of and (&&), but imagine that the ranges are not of equal length. In such a
case, it would not be possible to match both the end iterators at the same time.
This way, we can abort the loop when we reach the first end iterator of either
range:

 bool operator!=(const zip_iterator& o) const {
 return it1 != o.it1 && it2 != o.it2;
 }

The equality comparison operator is just implemented using the other operator,7.
but negating the result:

 bool operator==(const zip_iterator& o) const {
 return !operator!=(o);
 }

Dereferencing the zip iterator gives access to the elements of both the containers8.
at the same position:

 std::pair<double, double> operator*() const {
 return {*it1, *it2};
 }
 };

This was the iterator code. We need to make the iterator compatible with STL9.
algorithms, so we define the needed type trait boilerplate code for that. It
basically says that this iterator is just a forward iterator, and it returns pairs of
double values when dereferenced. Although we do not use difference_type in
this recipe, different implementations of the STL might need it in order to
compile:

 namespace std {
 template <>
 struct iterator_traits<zip_iterator> {
 using iterator_category = std::forward_iterator_tag;
 using value_type = std::pair<double, double>;
 using difference_type = long int;
 };
 }

Iterators

[128]

The next step is to define a range class that returns us zip iterators from its begin10.
and end functions:

 class zipper {
 using vec_type = std::vector<double>;
 vec_type &vec1;
 vec_type &vec2;

It needs to reference two existing containers in order to form zip iterators from11.
them:

 public:
 zipper(vec_type &va, vec_type &vb)
 : vec1{va}, vec2{vb}
 {}

The begin and end functions just feed pairs of begin and end pointers in order to12.
construct zip iterator instances from that:

 zip_iterator begin() const {
 return {std::begin(vec1), std::begin(vec2)};
 }
 zip_iterator end() const {
 return {std::end(vec1), std::end(vec2)};
 }
 };

Just as in the Haskell and Python examples, we define two vectors of double13.
values. We also define that we use namespace std within the main function by
default:

 int main()
 {
 using namespace std;
 vector<double> a {1.0, 2.0, 3.0};
 vector<double> b {4.0, 5.0, 6.0};

The zipper object combines them to one vector-like range where we see pairs of a14.
and b values:

 zipper zipped {a, b};

Iterators

[129]

We will use std::accumulate in order to sum all the items of the range15.
together. We can't do it directly because that would mean that we sum up the
instances of std::pair<double, double> for which the concept of sum is not
defined. Therefore, we will define a helper lambda that takes a pair, multiplies its
members, and adds it to an accumulator. The std::accumulate works well
with lambdas with such a signature:

 const auto add_product ([](double sum, const auto &p) {
 return sum + p.first * p.second;
 });

Now, we feed it to std::accumulate, together with the begin and end iterator16.
pair of the zipped ranges and a start value of 0.0 for the accumulator variable,
which, in the end, contains the sum of the products:

 const auto dot_product (accumulate(
 begin(zipped), end(zipped), 0.0, add_product));

Let's print the dot product result:17.

 cout << dot_product << '\n';
 }

Compiling and running the program yields the correct result:18.

 32

There's more...
OK, that was a lot of work for a little bit of syntax sugar, and it's still not as elegant as
Haskell code can be without any effort. A big flaw is the hardcoded nature of our little zip
iterator--it only works on the std::vector ranges of double variables. With a bit of
template code and some type traits, the zipper can be made more generic. This way, it could
combine lists and vectors, or deques and maps, even if these are specialized on completely
different container item types.

The amount of work and thought needed in order to really and correctly make such classes
generic is not to be underestimated. Luckily, such libraries do already exist. One popular
non-STL library is the Boost zip_iterator. It is very generic and easy to use.

Iterators

[130]

By the way, if you came here to see the most elegant way to do a dot product in C++, and
don't really care about the concept of zip-iterators, you should have a look at
std::valarray. See for yourself:

#include <iostream>
#include <valarray>

int main()
{
 std::valarray<double> a {1.0, 2.0, 3.0};
 std::valarray<double> b {4.0, 5.0, 6.0};

 std::cout << (a * b).sum() << '\n';
}

Ranges library
There is a very, very interesting C++ library, which supports zippers and all other kinds of
magic iterator adapters, filters, and so on: the ranges library. It is inspired by the Boost
ranges library, and for some time, it looked like it would find its way into C++17, but
unfortunately, we will have to wait for the next standard. The reason why this is so
unfortunate is that it will vigorously improve the possibilities of writing expressive and fast
code in C++ by composing complex functionality from generic and simple blocks of code.

There are some very simple examples in its documentation:

Calculating the sum of the squares of all numbers from 1 to 10:1.

 const int sum = accumulate(view::ints(1)
 | view::transform([](int i){return i*i;})
 | view::take(10), 0);

Filtering out all uneven numbers from a numeric vector, and transforming the2.
rest to strings:

 std::vector<int> v {1,2,3,4,5,6,7,8,9,10};
 auto rng = v | view::remove_if([](int i){return i % 2 == 1;})
 | view::transform([](int i){return std::to_string(i);});
 // rng == {"2"s,"4"s,"6"s,"8"s,"10"s};

If you are interested and can't wait for the next C++ standard, have a look at the ranges
documentation at h t t p s ://e r i c n i e b l e r . g i t h u b . i o /r a n g e - v 3/.

https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/
https://ericniebler.github.io/range-v3/

4
Lambda Expressions

We will cover the following recipes in this chapter:

Defining functions on the run using lambda expressions
Adding polymorphy by wrapping lambdas into std::function
Composing functions by concatenation
Creating complex predicates with logical conjunction
Calling multiple functions with the same input
Implementing transform_if using std::accumulate and lambdas
Generating cartesian product pairs of any input at compile time

Introduction
One important new feature of C++11 was lambda expressions. In C++14 and C++17, the
lambda expressions got some new additions, which have made them even more powerful.
But first, what is a lambda expression?

Lambda expressions or lambda functions construct closures. A closure is a very generic
term for unnamed objects that can be called like functions. In order to provide such a
capability in C++, such an object must implement the () function calling operator, with or
without parameters. Constructing such an object without lambda expressions before C++11
could still look like the following:

#include <iostream>
#include <string>

int main() {
 struct name_greeter {
 std::string name;

Lambda Expressions

[132]

 void operator()() {
 std::cout << "Hello, " << name << '\n';
 }
 };

 name_greeter greet_john_doe {"John Doe"};
 greet_john_doe();
}

Instances of the name_greeter struct obviously carry a string with them. Note that both
this structure type and instance are not unnamed but lambda expressions can be, as we will
see. In terms of closures, we would say they capture a string. When the example instance is
called like a function without parameters, it prints "Hello, John Doe" because we
constructed it with this name.

Since C++11, it has become easier to create such closures:

#include <iostream>

int main() {
 auto greet_john_doe ([] {
 std::cout << "Hello, John Doe\n";
 });

 greet_john_doe();
}

That's it. The whole struct, name_greeter, is replaced by a little [] { /* do something
*/ } construct, which might look a bit like magic at first, but the first section of this chapter
will explain it thoroughly in all the possible variants.

Lambda expressions are of a great help to make code generic and tidy. They can be used as
parameters for very generic algorithms in order to specialize what those do when
processing specific user-defined types. They can also be used to wrap work packages
together with data in order to be run in threads or just to save work and postpone the actual
execution. Since C++11 came out, more and more libraries work with lambda expressions
because they became a very natural thing in C++. Another use case is metaprogramming,
because lambda expressions can also be evaluated at compile time. However, we are not
going much into that direction, as this would quickly blast the scope of this book.

Lambda Expressions

[133]

This chapter does heavily rely on some functional programming patterns, which might look
weird to novices or programmers who are already experienced but not with such patterns.
If you see lambda expressions in the coming recipes that return lambda expressions, which
again return lambda expressions, please don't feel frustrated or confused too quickly. We
are pushing the boundaries a bit in order to prepare ourselves for modern C++, where
functional programming patterns occur with increasing regularity. If some code in the
following recipes looks a bit too complex, take your time to understand it. Once you got
through this, complex lambda expressions in real projects in the wild will not confuse you
any longer.

Defining functions on the run using lambda
expressions
With lambda expressions, we can encapsulate code in order to call it later, and that also
might be somewhere else because we can copy them around. We can also just encapsulate
code to call it multiple times with slightly different parameters without having to
implement a whole new function class for that task.

The syntax of lambda expressions was really new in C++11, and it has slightly evolved with
the next two standard versions until C++17. In this section, we will see what lambda
expressions can look like and what they mean.

How to do it...
We are going to write a little program in which we play with lambda expressions in order
to get a feeling for them:

Lambda expressions do not need any library support, but we are going to write1.
messages to the terminal and use strings, so we need the headers for this:

 #include <iostream>
 #include <string>

Lambda Expressions

[134]

Everything happens in the main function this time. We define two function2.
objects that take no parameters and return integer constants with the values, 1
and 2. Note that the return statement is surrounded by curly brackets {}, like it is
in normal functions, and the () parentheses, which denote a parameterless
function, are optional, we don't provide them in the second lambda expression.
But the [] brackets have to be there:

 int main()
 {
 auto just_one ([](){ return 1; });
 auto just_two ([] { return 2; });

Now, we can call both the function objects just by writing the names of the3.
variables they are saved to and appending the parentheses. In this single line,
they are indistinguishable from normal functions for the reader:

 std::cout << just_one() << ", " << just_two() << '\n';

Now let's forget about those and define another function object, which is called4.
plus because it takes two parameters and returns their sum:

 auto plus ([](auto l, auto r) { return l + r; });

This is also easy to use, just like any other binary function. As we defined its5.
parameters to be of the auto type, it will work with anything that defines the
plus operator +, just as strings do:

 std::cout << plus(1, 2) << '\n';
 std::cout << plus(std::string{"a"}, "b") << '\n';

We do not need to store a lambda expression in a variable in order to use it. We6.
can also define it in place and then write the parameters in parentheses just
behind it (1, 2):

 std::cout
 << [](auto l, auto r){ return l + r; }(1, 2)
 << '\n';

Lambda Expressions

[135]

Next, we will define a closure that carries an integer counter value around with it.7.
Whenever we call it, it increments its counter value and returns the new value. In
order to tell it that it has an internal counter variable, we write count = 0 within
the brackets to tell it that there is a variable count initialized to the integer value
0. In order to allow it to modify its own captured variables, we use the mutable
keyword, as the compiler would not allow it otherwise:

 auto counter (
 [count = 0] () mutable { return ++count; }
);

Now, let's call the function object five times and print the values it returns, so we8.
can see the increasing number values later:

 for (size_t i {0}; i < 5; ++i) {
 std::cout << counter() << ", ";
 }
 std::cout << '\n';

We can also take existing variables and capture them by reference instead of9.
giving a closure its own value copy. This way, the captured variable can be
incremented by the closure, but it is still accessible outside. In order to do so, we
write &a between the brackets, where the & means that we store only a reference to
the variable, not a copy:

 int a {0};
 auto incrementer ([&a] { ++a; });

If this works, then we should be able to call this function object multiple times,10.
and then observe that it has really changed the value of variable a:

 incrementer();
 incrementer();
 incrementer();

 std::cout
 << "Value of 'a' after 3 incrementer() calls: "
 << a << '\n';

Lambda Expressions

[136]

The last example is currying. Currying means that we take a function that can11.
accept some parameters and store it in another function object, which accepts
fewer parameters. In this case, we store the plus function and only accept one
parameter, which we forward to the plus function. The other parameter is the
value 10, which we save in the function object. This way, we get a function,
which we call plus_ten because it can add that value to the single parameter it
accepts:

 auto plus_ten ([=] (int x) { return plus(10, x); });
 std::cout << plus_ten(5) << '\n';
 }

Before compiling and running the program, go through the code again and try to12.
foresee what it will print to the terminal. Then run it and check against the real
output:

 1, 2
 3
 ab
 3
 1, 2, 3, 4, 5,
 Value of a after 3 incrementer() calls: 3
 15

How it works...
What we just did was not overly complicated--we added numbers, and incremented and
printed them. We even concatenated strings with a function object, which was implemented
to add up numbers. But for anyone who didn't know lambda expression syntax yet, it might
have looked confusing.

So, let's first have a look at all the lambda expression peculiarities:

Lambda Expressions

[137]

We can usually omit most of this, which spares us some typing, in the average case. The
shortest lambda expression possible is []{}. It accepts no parameters, captures nothing,
and essentially does nothing.

So what does the rest mean?

Capture list
Specifies if and what we capture. There are several forms to do so. There are two lazy
variants:

If we write [=] () {...}, we capture every variable the closure references from
outside by value, which means that the values are copied
Writing [&] () {...} means that everything the closure references outside is
only captured by reference, which does not lead to a copy.

Of course, we can set the capturing settings for every variable individually. Writing [a,
&b] () {...} means, that we capture the variable a by value, and b by reference. This is
more typing work, but it's generally safer to be that verbose because we cannot accidentally
capture something we don't want to capture from outside.

In the recipe, we defined a lambda expression as such: [count=0] () {...}. In this
special case, we did not capture any variable from outside, but we defined a new one called
count. Its type is deduced from the value we initialized it with, namely 0, so it's an int.

It is also possible to capture some variables by value and some, by reference, as in:

[a, &b] () {...}: This captures a by copy and b by reference.
[&, a] () {...}: This captures a by copy and any other used variable by
reference.
[=, &b, i{22}, this] () {...}: This captures b by reference, this by
copy, initializes a new variable i with value 22, and captures any other used
variable by copy.

If you try to capture a member variable of an object, you cannot do this
directly using [member_a] () {...}. Instead, you have to capture either
this or *this.

Lambda Expressions

[138]

mutable (optional)
If the function object should be able to modify the variables it captures by copy ([=]), it must
be defined mutable. This includes calling non-const methods of captured objects.

constexpr (optional)
If we mark the lambda expression explicitly as constexpr, the compiler will error out if it
does not satisfy the criteria of constexpr functions. The advantage of constexpr functions
and lambda expressions is that the compiler can evaluate their result at compile time if they
are called with compile-time constant parameters. This leads to less code in the binary later.

If we do not explicitly declare the lambda expression to be constexpr but it fits the
requirements for that, it will be implicitly constexpr anyway. If we want a lambda
expression to be constexpr, it helps to be explicit because the compiler will then help us by
erroring out if we did it wrong.

exception attr (optional)
This is the place to specify if the function object can throw exceptions when it's called and
runs into an error case.

return type (optional)
If we want to have ultimate control over the return type, we may not want the compiler to
deduce it for us automatically. In such a case, we can just write [] () -> Foo {}, which
tells the compiler that we will really always return the Foo type.

Adding polymorphy by wrapping lambdas
into std::function
Let's say we want to write an observer function for some kind of value, which might change
sometimes, which then notifies other objects; like a gas pressure indicator, or a stock price,
or something similar. Whenever the value changes, a list of observer objects should be
called, which then react their way.

Lambda Expressions

[139]

In order to implement this, we could store a range of observer function objects in a vector,
which all accept an int variable as the parameter, which represents the observed value. We
do not know what these function objects do in particular when they are called with the new
value, but we also don't care.

Of what type will that vector of function objects be? The std::vector<void (*)(int)>
type would be correct if we were capturing pointers to functions with signatures such as
void f(int);. This would indeed also work with any lambda expression that does not
capture any variables, such as [](int x) {...}. But a lambda expression that captures
something is actually a completely different type compared with a normal function because it's
not just a function pointer. It is an object that couples a certain amount of data with a
function! Think of pre-C++11 times, when there were no lambdas. Classes and structs are
the natural way of coupling data with functions, and if you change the data member types
of a class, you get a completely different class type. It's just natural that a vector can't store
completely different types using the same type name.

Telling the user that it's only possible to save observer function objects that do not capture
anything is bad because it limits the number of use cases very much. How can we allow the
user to store any kind of function object, only constraining to the call interface, which takes
a specific set of parameters that represent the value that shall be observed?

This section shows how to solve this problem using std::function, which can act as a
polymorphic wrapper around any lambda expression, no matter if and what it captures.

How to do it...
In this section, we are going to create several lambda expressions that are completely
different in regard to the variable types they capture but have the same function call
signature in common. These will be saved in one vector using std::function:

Let's first do some necessary includes:1.

 #include <iostream>
 #include <deque>
 #include <list>
 #include <vector>
 #include <functional>

Lambda Expressions

[140]

We implement a little function that returns a lambda expression. It accepts a2.
container and returns a function object that captures that container by reference.
The function object itself accepts an integer parameter. Whenever that function
object is fed with an integer, it will append that integer to the container it captures:

 static auto consumer (auto &container){
 return [&] (auto value) {
 container.push_back(value);
 };
 }

Another little helper function will print whatever container instance we provide3.
as a parameter:

 static void print (const auto &c)
 {
 for (auto i : c) {
 std::cout << i << ", ";
 }
 std::cout << '\n';
 }

In the main function, we first instantiate a deque, a list, and a vector, which4.
all store integers:

 int main()
 {
 std::deque<int> d;
 std::list<int> l;
 std::vector<int> v;

Now we use the consumer function with our container instances, d, l, and v: we5.
produce consumer function objects for those and store them all in a vector
instance. Then we have a vector that stores three function objects. These function
objects each capture a reference to one of the container objects. These container
objects are of completely different types and so are the function objects.
Nevertheless, the vector holds instances of std::function<void(int)>. All
the function objects are implicitly wrapped into such std::function objects,
which are then stored in the vector:

 const std::vector<std::function<void(int)>> consumers
 {consumer(d), consumer(l), consumer(v)};

Lambda Expressions

[141]

Now, we feed 10 integer values to all the data structures by looping over the6.
values and then looping over the consumer function objects, which we call with
those values:

 for (size_t i {0}; i < 10; ++i) {
 for (auto &&consume : consumers) {
 consume(i);
 }
 }

All the three containers should now contain the same 10 number values. Let's7.
print their content:

 print(d);
 print(l);
 print(v);
 }

Compiling and running the program yields the following output, which is just8.
what we expect:

 $./std_function
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

How it works...
The complicated part of this recipe is the following line:

const std::vector<std::function<void(int)>> consumers
 {consumer(d), consumer(l), consumer(v)};

The objects d, l, and v are each wrapped into a consumer(...) call. This call returns
function objects, which then each capture references to one of d, l, and v. Although these
function objects all accept int values as parameters, the fact that they capture completely
different variables also makes them completely different types. This is like trying to stuff
variables of type A, B, and C into a vector, although these types have nothing in common.

Lambda Expressions

[142]

In order to fix this, we need to find a common type, which can store very different function
objects, that is, std::function. An std::function<void(int)> object can store any
function object or traditional function, which accepts an integer parameter and returns
nothing. It decouples its type from the underlying function object type, using polymorphy.
Consider we write something like this:

std::function<void(int)> f (
 [&vector](int x) { vector.push_back(x); });

Here, the function object which is constructed from the lambda expression is wrapped into
an std::function object, and whenever we call f(123), this leads to a virtual function call,
which is redirected to the actual function object inside it.

While storing function objects, std::function instances apply some intelligence. If we
capture more and more variables in a lambda expression, it must grow larger. If its size is
not too large, std::function can store it within itself. If the size of the stored function
object is too large, std::function will allocate a chunk of memory on the heap and then
store the large function object there. This does not affect the functionality of our code, but
we should know about this because this can impact the performance of our code.

A lot of novice programmers think or hope that std::function<...>
actually expresses the type of a lambda expression. No, it doesn't. It is a
polymorphic library helper, which is useful for wrapping lambda
expressions and erasing their type differences.

Composing functions by concatenation
A lot of tasks are not really worthy of being implemented in completely custom code. Let's,
for example, have a look on how a programmer might solve the task of finding out how
many unique words a text contains with the programming language Haskell. The first line
defines a function unique_words and the second one demonstrates its use with an example
string:

Lambda Expressions

[143]

Wow, that is short! Without explaining Haskell syntax too much, let's see what the code
does. It defines the function called unique_words, which applies a series of functions to its
input. It first maps all the characters from the input to lowercase with map toLower. This
way, words like FOO and foo can be regarded as the same word. Then, the words function
splits a sentence into individual words, as from "foo bar baz" to ["foo", "bar",
"baz"]. Next step is sorting the new list of words. This way, a word sequence such as
["a", "b", "a"] becomes ["a", "a", "b"]. Now, the group function takes over. It
groups consecutive equal words into grouped lists, so ["a", "a", "b"] becomes [
["a", "a"], ["b"]]. The job is now nearly done, as we now only need to count how
many groups of equal words we got, which is exactly what the length function does.

This is a wonderful style of programming, as we can read what happens from right to left
because we are just, kind of, describing a transformation pipeline. We don't need to care
how the individual pieces are implemented (unless it turns out that they are slow or buggy).

However, we are not here to praise Haskell but to improve our C++ skills. It is possible to
work like this in C++ too. We will not completely reach the elegance of the Haskell example
but we still have the fastest programming language there is. This example explains how to
imitate function concatenation in C++ with lambda expressions.

How to do it...
In this section, we define some simple toy function objects and concatenate them, so we get a
single function that applies the simple toy functions after each other to the input we give it.
In order to do so, we write our own concatenation helper function:

First, we need some includes:1.

 #include <iostream>
 #include <functional>

Then, we implement the helper function, concat, which arbitrarily takes many2.
parameters. These parameters will be functions, such as f, g, and h, and the result
will be another function object that applies f(g(h(...))) on any input:

 template <typename T, typename ...Ts>
 auto concat(T t, Ts ...ts)
 {

Lambda Expressions

[144]

Now, it gets a little complicated. When the user provides functions f, g, and h,3.
we will evaluate this to f(concat(g, h)), which again expands to f(g(
concat(h))), where the recursion aborts, so we get f(g(h(...))). This
chain of function calls representing the concatenation of these user functions is
captured by a lambda expression, which can later take some parameters, p, and
then forward them to f(g(h(p))). This lambda expression is what we return.
The if constexpr construct checks whether we are in a recursion step with
more than one function to concatenate left:

 if constexpr (sizeof...(ts) > 0) {
 return [=](auto ...parameters) {
 return t(concat(ts...)(parameters...));
 };
 }

The other branch of the if constexpr construct is selected by the compiler if we4.
are at the end of the recursion. In such a case, we just return the function, t,
because it is the only parameter left:

 else {
 return t;
 }
 }

Now, let's use our cool new function concatenation helper with some functions5.
we want to see concatenated. Let's begin with the main function, where we define
two cheap simple function objects:

 int main()
 {
 auto twice ([] (int i) { return i * 2; });
 auto thrice ([] (int i) { return i * 3; });

Now let's concatenate. We concatenate our two multiplier function objects with6.
the STL function, std::plus<int>, which takes two parameters and simply
returns their sum. This way, we get a function that does twice(thrice(plus(
a, b))).

 auto combined (
 concat(twice, thrice, std::plus<int>{})
);

Lambda Expressions

[145]

Now let's use it. The combined function looks like a single normal function now,7.
and the compiler is also able to concatenate those functions without any
unnecessary overhead:

 std::cout << combined(2, 3) << '\n';
 }

Compiling and running our program yields the following output, which we also8.
expected, because 2 * 3 * (2 + 3) is 30:

 $./concatenation
 30

How it works...
The complicated thing in this section is the concat function. It looks horribly complicated
because it unpacks the parameter pack ts into another lambda expression, which
recursively calls concat again, with less parameters:

template <typename T, typename ...Ts>
auto concat(T t, Ts ...ts)
{
 if constexpr (sizeof...(ts) > 0) {
 return [=](auto ...parameters) {
 return t(concat(ts...)(parameters...));
 };
 } else {
 return [=](auto ...parameters) {
 return t(parameters...);
 };
 }
}

Let's write a simpler version, which concatenates exactly three functions:

template <typename F, typename G, typename H>
auto concat(F f, G g, H h)
{
 return [=](auto ... params) {
 return f(g(h(params...)));
 };
}

Lambda Expressions

[146]

This already looks similar, but less complicated. We return a lambda expression, which
captures f, g, and h. This lambda expression arbitrarily accepts many parameters and just
forwards them to a call chain of f, g, and h. When we write auto combined (concat(f,
g, h)), and later call that function object with two parameters, such as combined(2, 3),
then the 2, 3 are represented by the params pack from the preceding concat function.

Looking at the much more complex, generic concat function again; the only thing we do
really differently is the f (g(h(params...))) concatenation. Instead, we write f(
concat(g, h))(params...), which evaluates to f(g(concat(h)))(params...)
in the next recursive call, which then finally results in f(g(h(params...))).

Creating complex predicates with logical
conjunction
When filtering data with generic code, we end up defining predicates, which tell what data
we want, and what data we do not want. Sometimes predicates are the combinations of
different predicates.

When filtering strings, for example, we could implement a predicate that returns true if its
input string begins with "foo". Another predicate could return true if its input string ends
with "bar".

Instead of writing custom predicates all the time, we can reuse predicates by combining
them. If we want to filter strings that begin with "foo" and end with "bar", we can just
pick our existing predicates and combine them with a logical and. In this section, we play
with lambda expressions in order to find a comfortable way to do this.

How to do it...
We will implement very simple string filter predicates, and then we will combine them with
a little helper function that does the combination for us in a generic way.

As always, we'll include some headers first:1.

 #include <iostream>
 #include <functional>
 #include <string>
 #include <iterator>
 #include <algorithm>

Lambda Expressions

[147]

Because we are going to need them later, we implement two simple predicate2.
functions. The first one tells if a string begins with the character 'a' and the
second one tells if a string ends with the character 'b':

 static bool begins_with_a (const std::string &s)
 {
 return s.find("a") == 0;
 }

 static bool ends_with_b (const std::string &s)
 {
 return s.rfind("b") == s.length() - 1;
 }

Now, let's implement a helper function, which we call combine. It takes a binary3.
function as its first parameter, which could be the logical AND function or the
logical OR function, for example. Then, it takes two other parameters, which shall
be two predicate functions that are then combined:

 template <typename A, typename B, typename F>
 auto combine(F binary_func, A a, B b)
 {

We simply return a lambda expression that captures the new predicate4.
combination. It forwards a parameter to both predicates and, then, puts the results
of both into the binary function and returns its result:

 return [=](auto param) {
 return binary_func(a(param), b(param));
 };
 }

Let's state that we use the std namespace to spare us some typing in the main5.
function:

 using namespace std;

Lambda Expressions

[148]

Now, let's combine our two predicate functions in another predicate function,6.
which tells if a given string begins with a and ends with b, as "ab" does or
"axxxb". As the binary function, we choose std::logical_and. It is a template
class that needs to be instantiated, so we use it with curly braces in order to
instantiate it. Note that we don't provide a template parameter because for this
class, it defaults to void. This specialization of the class deduces all parameter
types automatically:

 int main()
 {
 auto a_xxx_b (combine(
 logical_and<>{},
 begins_with_a, ends_with_b));

We iterate over the standard input and print all words back to the terminal,7.
which satisfies our predicate:

 copy_if(istream_iterator<string>{cin}, {},
 ostream_iterator<string>{cout, ", "},
 a_xxx_b);
 cout << '\n';
 }

Compiling and running the program yields the following output. We feed the8.
program with four words, but only two satisfy the predicate criteria:

 $ echo "ac cb ab axxxb" | ./combine
 ab, axxxb,

There's more...
The STL already provides a useful bunch of functional objects such as std::logical_and,
std::logical_or, as well as many others, so we do not need to reimplement them in
every project. It's a good idea to have a look at the C++ reference and explore what's there
already:
h t t p ://e n . c p p r e f e r e n c e . c o m /w /c p p /u t i l i t y /f u n c t i o n a l

http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional
http://en.cppreference.com/w/cpp/utility/functional

Lambda Expressions

[149]

Calling multiple functions with the same
input
There are a lot of tasks, which lead to repetitive code. A lot of repetitive code can be
eliminated easily using lambda expressions and a lambda expression helper that wraps
such repetitive tasks is created very quickly.

In this section, we will play with lambda expressions in order to forward a single call with
all its parameters to multiple receivers. This is going to happen without any data structures
in between, so the compiler has a simple job to generate a binary without overhead.

How to do it...
We are going to write a lambda expression helper, which forwards a single call to multiple
objects, and another lambda expression helper, which forwards a single call to multiple
calls of other functions. In our example, we are going to use this to print a single message
with different printer functions:

Let's include the STL header we need for printing first:1.

 #include <iostream>

At first, we implement the multicall function, which is central to this recipe. It2.
accepts an arbitrary number of functions as parameters and returns a lambda
expression that accepts one parameter. It forwards this parameter to all the
functions that were provided before. This way, we can define auto call_all
(multicall(f, g, h)), and then, call_all(123) leads to a sequence of
calls,f(123); g(123); h(123);. This function looks really complicated
because we need a syntax trick in order to expand the parameter pack,
functions, into a series of calls by using an std::initializer_list
constructor:

 static auto multicall (auto ...functions)
 {
 return [=](auto x) {
 (void)std::initializer_list<int>{
 ((void)functions(x), 0)...
 };
 };
 }

Lambda Expressions

[150]

The next helper accepts a function, f, and a pack of parameters, xs. What it does3.
is it calls f with each of those parameters. This way, a for_each(f, 1, 2, 3)
call leads to a series of calls: f(1); f(2); f(3);. This function essentially uses
the same syntax trick to expand the parameter pack, xs, to a series of function
calls, as the other function before:

 static auto for_each (auto f, auto ...xs) {
 (void)std::initializer_list<int>{
 ((void)f(xs), 0)...
 };
 }

The brace_print function accepts two characters and returns a new function4.
object, which accepts one parameter, x. It will print it, surrounded by the two
characters we just captured before:

 static auto brace_print (char a, char b) {
 return [=] (auto x) {
 std::cout << a << x << b << ", ";
 };
 }

Now, we can finally put everything to use in the main function. At first, we5.
define functions f, g, and h. They represent print functions that accept values and
print them surrounded by different braces/parentheses each. The nl function
takes any parameter and just prints a line break character:

 int main()
 {
 auto f (brace_print('(', ')'));
 auto g (brace_print('[', ']'));
 auto h (brace_print('{', '}'));
 auto nl ([](auto) { std::cout << '\n'; });

Let's combine all of them using our multicall helper:6.

 auto call_fgh (multicall(f, g, h, nl));

Lambda Expressions

[151]

For each of the numbers we provide, we want to see them individually printed7.
three times surrounded by different pairs of braces/parentheses. This way, we
can do a single function call and end up with five calls to our multifunction,
which does another four calls to f, g, h, and nl.

 for_each(call_fgh, 1, 2, 3, 4, 5);
 }

Before compiling and running, think about what output to expect:8.

 $./multicaller
 (1), [1], {1},
 (2), [2], {2},
 (3), [3], {3},
 (4), [4], {4},
 (5), [5], {5},

How it works...
The helpers we just implemented look horribly complicated. This is because we expand
parameter packs with std::initializer_list. Why did we even use that data
structure? Let's have a look at for_each again:

auto for_each ([](auto f, auto ...xs) {
 (void)std::initializer_list<int>{
 ((void)f(xs), 0)...
 };
});

The heart of this function is the f(xs) expression. xs is a parameter pack, and we need to
unpack it in order to get the individual values out of it and feed them to individual f calls.
Unfortunately, we cannot just write f(xs)... using the ... notation, which we already
know.

Lambda Expressions

[152]

What we can do is constructing a list of values using std::initializer_list, which has
a variadic constructor. An expression such as return
std::initializer_list<int>{f(xs)...}; does the job, but it has downsides. Let's have
a look at an implementation of for_each which does just this, so it looks simpler than what
we have:

auto for_each ([](auto f, auto ...xs) {
 return std::initializer_list<int>{f(xs)...};
});

This is easier to grasp, but its downsides are the following:

It constructs an actual initializer list of return values from all the f calls. At this1.
point, we do not care about the return values.
It returns that initializer list, although we want a "fire and forget" function, which2.
returns nothing.
It's possible that f is a function, which does not even return anything, in which3.
case, this would not even compile.

The much more complicated for_each function fixes all these problems. It does the
following things to achieve that:

It does not return the initializer list, but it casts the whole expression to void1.
using (void)std::initializer_list<int>{...}.
Within the initializer expression, it wraps f(xs)... into an (f(xs), 0)...2.
expression. This leads to the return value being thrown away, while 0 is put into
the initializer list.
The f(xs) in the (f(xs), 0)... expression is again cast to void, so the return3.
value is really not processed anywhere if it has any.

Putting all this together unluckily leads to an ugly construct, but it does it's work right and
compiles with a whole variety of function objects, regardless of whether they return
anything or what they return.

A nice detail of this technique is that the order in which the function calls are applied is
guaranteed to be in a strict sequence.

Casting anything using the old C-style notation (void)expression is
advised against because C++ has its own cast operators. We should have
used reinterpret_cast<void>(expression) instead, but this would
have decreased the readability of the code further.

Lambda Expressions

[153]

Implementing transform_if using
std::accumulate and lambdas
Most developers who have used std::copy_if and std::transform may have asked
themselves already, why there is no std::transform_if. The std::copy_if function
copies items from a source range to a destination range, but skips the items that are not
selected by a user-defined predicate function. The std::transform unconditionally copies
all items from a source range to a destination range but transforms them in between. The
transformation is provided by a user-defined function, which might do simple things, such
as multiplying numbers or transforming items to completely different types.

Such functions have been there for a long time now, but there is still no
std::transform_if function. In this section, we are going to implement this function. It
would be easy to do this by just implementing a function that iterates over the ranges while
copying all the items that are selected by a predicate function and transforming them in
between. However, we'll use this occasion to delve deeper into lambda expressions.

How to do it...
We are going to build our own transform_if function which works by supplying
std::accumulate with the right function objects:

We need to include some headers, as always:1.

 #include <iostream>
 #include <iterator>
 #include <numeric>

First, we will implement a function called map. It accepts an input-transforming2.
function as parameter and returns a function object, which works well together
with std::accumulate:

 template <typename T>
 auto map(T fn)
 {

Lambda Expressions

[154]

What we return is a function object that accepts a reduce function. When this3.
object is called with such a reduce function, it returns another function object,
which accepts an accumulator and an input parameter. It calls the reduce function
on this accumulator and the fn transformed input variable. Don't worry if this
looks complicated, we'll put it together later and see how it really works:

 return [=] (auto reduce_fn) {
 return [=] (auto accum, auto input) {
 return reduce_fn(accum, fn(input));
 };
 };
 }

Now we implement a function called filter. It works exactly the same way as4.
the map function, but it leaves the input untouched, while the map function
transforms it using a transform function. Instead, we accept a predicate function
and skip input variables without reducing them in case they are not accepted by
the predicate function:

 template <typename T>
 auto filter(T predicate)
 {

The two lambda expressions have exactly the same function signature as the5.
expressions in the map function. The only difference is that the input parameter
is left untouched. The predicate function is used to distinguish if we call the
reduce_fn function on the input or if we just reach the accumulator forward
without any change:

 return [=] (auto reduce_fn) {
 return [=] (auto accum, auto input) {
 if (predicate(input)) {
 return reduce_fn(accum, input);
 } else {
 return accum;
 }
 };
 };
 }

Lambda Expressions

[155]

Now let's finally use those helpers. We instantiate iterators that let us read integer6.
values from the standard input:

 int main()
 {
 std::istream_iterator<int> it {std::cin};
 std::istream_iterator<int> end_it;

Then we define a predicate function, even, which just returns true if we have an7.
even number. The transformation function twice multiplies its integer parameter
with the factor 2:

 auto even ([](int i) { return i % 2 == 0; });
 auto twice ([](int i) { return i * 2; });

The std::accumulate function takes a range of values and accumulates them.8.
Accumulating means summing the values up with the + operator in the default
case. We want to provide our own accumulation function. This way, we do not
maintain a sum of the values. What we do is we assign each value of the range to
the dereferenced iterator, it, and then return this iterator after advancing it
further:

 auto copy_and_advance ([](auto it, auto input) {
 *it = input;
 return ++it;
 });

Now we finally put together the pieces. We iterate over the standard input and9.
provide an output, ostream_iterator, which prints to the terminal. The
copy_and_advance function object works on that output iterator by assigning
the user input integers to it. Assigning to the output iterator effectively prints the
assigned items. But we only want the even numbers from the user input, and we
want to multiply them. To achieve this, we wrap the copy_and_advance function
into an even filter and then into a twice mapper:

 std::accumulate(it, end_it,
 std::ostream_iterator<int>{std::cout, ", "},
 filter(even)(
 map(twice)(
 copy_and_advance
)
));
 std::cout << '\n';
 }

Lambda Expressions

[156]

Compiling and running the program leads to the following output. The values 1,10.
3, and 5 are dropped because they are not even, and the values 2, 4, and 6 are
printed after they have been doubled:

 $ echo "1 2 3 4 5 6" | ./transform_if
 4, 8, 12,

How it works...
This recipe looks really complicated because we are nesting lambda expressions a lot. In
order to understand how this works, let's first have a look at the inner workings of
std::accumulate. This is how it will look like in a typical STL implementation:

template <typename T, typename F>
T accumulate(InputIterator first, InputIterator last, T init, F f)
{
 for (; first != last; ++first) {
 init = f(init, *first);
 }
 return init;
}

The function parameter, f, does the main work here, while the loop collects its results in the
user provided init variable. In a usual example case, the iterator range may represent a
vector of numbers, such as 0, 1, 2, 3, 4, and the init value is 0. The f function is then
just a binary function that might calculate the sum of two items using the + operator.

In this example case, the loop just sums up all the items into the init variable, such as in
init = (((0 + 1) + 2) + 3) + 4. Writing it down like this makes obvious that
std::accumulate is just a general folding function. Folding a range means applying a
binary operation to an accumulator variable and stepwise every item contained in the range
(the result of each operation is then the accumulator value for the next one). As this function
is so general, we can do all kinds of things with it, just like implementing
std::transform_if! The f function is then also called the reduce function.

Lambda Expressions

[157]

A very direct implementation of transform_if will look as follows:

template <typename InputIterator, typename OutputIterator,
 typename P, typename Transform>
OutputIterator transform_if(InputIterator first, InputIterator last,
 OutputIterator out,
 P predicate, Transform trans)
{
 for (; first != last; ++first) {
 if (predicate(*first)) {
 *out = trans(*first);
 ++out;
 }
 }
 return out;
}

This looks quite similar to std::accumulate, if we regard the parameter out as the init
variable, and somehow get function f to substitute the if-construct and its body!

We actually did that. We constructed that if-construct and its body with the binary function
object we provided as a parameter to std::accumulate:

auto copy_and_advance ([](auto it, auto input) {
 *it = input;
 return ++it;
});

The std::accumulate function puts the init variable into the binary function's it
parameter. The second parameter is the current value from the source range per loop
iteration step. We provided an output iterator as the init parameter of std::accumulate..
This way, std::accumulate does not calculate a sum, but forwards the items it iterates
over to another range. This means that we just reimplemented std::copy without any
predicate and transformation, yet.

The filtering using a predicate was added by us by wrapping the copy_and_advance
function object into another function object, which employs a predicate function:

template <typename T>
auto filter(T predicate)
{
 return [=] (auto reduce_fn) {
 return [=] (auto accum, auto input) {
 if (predicate(input)) {
 return reduce_fn(accum, input);
 } else {

Lambda Expressions

[158]

 return accum;
 }
 };
 };
}

This construction does not look too simple at first but have a look at the if construct. If the
predicate function returns true, it forwards the parameters to the reduce_fn function,
which is copy_and_advance in our case. If the predicate returns false, the accum
variable, which is the init variable of std::accumulate, is just returned without change.
This implements the skipping part of a filter operation. The if construct is located within the
inner lambda expression, which has the same binary function signature as the
copy_and_advance function, which makes it a fitting substitute.

Now we are able to filter but are still not transforming. This is done with the map function
helper:

template <typename T>
auto map(T fn)
{
 return [=] (auto reduce_fn) {
 return [=] (auto accum, auto input) {
 return reduce_fn(accum, fn(input));
 };
 };
}

This code looks much easier. It again contains an inner lambda expression, which has the
same signature as copy_and_advance has, so it can substitute it. The implementation just
forwards the input values but transforms the right parameter of the binary function call with
the fn function.

Later, when we used those helpers, we wrote the following expression:

filter(even)(
 map(twice)(
 copy_and_advance
)
)

The filter(even) call captures the even predicate and gives us a function, which takes a
binary function in order to wrap it into another binary function, which does additional
filtering. The map(twice) function does the same with the twice transformation function
but wraps the binary function, copy_and_advance, into another binary function, which
always transforms the right parameter.

Lambda Expressions

[159]

Without any optimization, we would get a horribly complicated nested construction of
functions that call functions and do only a very little amount of work in between. However,
it is a very simple task for the compiler to optimize all the code. The resulting binary is as
simple as if it resulted from a more direct implementation of transform_if. We pay
nothing in terms of performance this way. But what we get is a very nice composability of
functions because we were able to stick the even predicate together with the twice
transformation function, nearly as simply as if they were lego bricks.

Generating cartesian product pairs of any
input at compile time
Lambda expressions in combination with parameter packs can be used for complex tasks. In
this section, we will implement a function object that accepts an arbitrary number of input
parameters and generates the cartesian product of this set with itself.

The cartesian product is a mathematical operation. It is noted as A x B, meaning the
cartesian product of set A and set B. The result is another single set, which contains pairs of
all item combinations of the sets A and B. The operation basically means, combine every item
from A with every item from B. The following diagram illustrates the operation:

In the preceding diagram, if A = (x, y, z), and B = (1, 2, 3), then the cartesian
product is (x, 1), (x, 2), (x, 3), (y, 1), (y, 2), and so on.

If we decide that A and B are the same set, say (1, 2), then the cartesian product of that is
(1, 1), (1, 2), (2, 1), and (2, 2). In some cases, this might be declared redundant,
because the combination of items with themselves (like in (1, 1)) or redundant
combinations of (1, 2) and (2, 1) may not be needed. In such a case, the cartesian
product can be filtered with a simple rule.

Lambda Expressions

[160]

In this section, we will implement the cartesian product without any loops but with lambda
expressions and parameter pack unpacking.

How to do it...
We implement a function object that accepts a function, f, and a set of parameters. The
function object will create the cartesian product of the parameter set, filter out the redundant
parts, and call the f function with each of them:

We only need to include the STL header that is needed for printing:1.

 #include <iostream>

Then, we define a simple helper function that prints a pair of values, and we2.
begin implementing the main function:

 static void print(int x, int y)
 {
 std::cout << "(" << x << ", " << y << ")\n";
 }

 int main()
 {

The hard part starts now. We first implement a helper for the cartesian3.
function that we are going to implement in the next step. This function accepts a
parameter, f, which will be the print function when we use it later. The other
parameters are x and the parameter pack rest. These contain the actual items of
which we want to have the cartesian product. Look at the f(x, rest)
expression: for x=1 and rest=2, 3, 4, this will result in calls such as f(1, 2);
f(1, 3); f(1, 4);. The (x < rest) test is for removing redundancy in the
generated pairs. We will look at this in more detail later:

 constexpr auto call_cart (
 [=](auto f, auto x, auto ...rest) constexpr {
 (void)std::initializer_list<int>{
 (((x < rest)
 ? (void)f(x, rest)
 : (void)0)
 ,0)...
 };
 });

Lambda Expressions

[161]

The cartesian function is the most complex piece of code in this whole recipe. It4.
accepts the parameter pack xs and returns a function object that captures it. The
returned function object accepts a function object, f.
For a parameter pack, xs=1, 2, 3, the inner lambda expression will generate
the following calls: call_cart(f, 1, 1, 2, 3); call_cart(f, 2, 1, 2,
3); call_cart(f, 3, 1, 2, 3);. From that range of calls, we can generate
all the cartesian product pairs we need.
Note that we use the ... notation for expanding the xs parameter pack twice,
which looks weird at first. The first occurrence of ... expands the entire xs
parameter pack into the call_cart call. The second occurrence leads to multiple
call_cart calls with a differing second parameter:

 constexpr auto cartesian ([=](auto ...xs) constexpr {
 return [=] (auto f) constexpr {
 (void)std::initializer_list<int>{
 ((void)call_cart(f, xs, xs...), 0)...
 };
 };
 });

Now, let's generate the cartesian product of the numeric set 1, 2, 3 and print5.
the pairs. Without the redundant pairs, this should result in the number pairs,
(1, 2), (2, 3), and (1, 3). More combinations are not possible if we ignore
the order and do not want the same number in one pair. This means that we do
not want (1, 1), and consider (1, 2) and (2, 1) the same pair.
First, we let cartesian generate a function object that already contains all
possible pairs and accepts our print function. Then, we use it to let our print
function being called with all these pairs.
We declare the print_cart variable, constexpr, so we can guarantee that the
function object it holds (and all the pairs it generates) is created at compile time:

 constexpr auto print_cart (cartesian(1, 2, 3));

 print_cart(print);
 }

Lambda Expressions

[162]

Compiling and running yields the following output, just as expected. Play6.
around with the code by removing the (x < xs) conditional in the call_cart
function and see that we get the full cartesian product with redundant pairs and
the same number pairs:

 $./cartesian_product
 (1, 2)
 (1, 3)
 (2, 3)

How it works...
That was another really complicated-looking lambda expression construct. But as soon as
we understand this thoroughly, we will not be confused by any lambda expression anytime
soon!

So, let's have a detailed look at it. We should get a mental picture of what needs to happen:

These are three steps:

We take our set 1, 2, 3 and compose three new sets from it. The first part of1.
each of these sets is consecutively a single item from the set, and the second part
is the whole set itself.
We combine the first item with every item from the set and get as many pairs out2.
of it.
From these resulting pairs, we only pick the ones that are not redundant (as for3.
example (1, 2) and (2, 1) are redundant) and not same-numbered (as for
example (1, 1)).

Lambda Expressions

[163]

Now, back to the implementation:

 constexpr auto cartesian ([=](auto ...xs) constexpr {
 return [=](auto f) constexpr {
 (void)std::initializer_list<int>{
 ((void)call_cart(f, xs, xs...), 0)...
 };
 };
 });

The inner expression, call_cart(xs, xs...), exactly represents the separation of (1,
2, 3) into those new sets, such as 1, [1, 2, 3]. The full expression,
((void)call_cart(f, xs, xs...), 0)... with the other ... outside, does this
separation for every value of the set, so we also get 2, [1, 2, 3] and 3, [1, 2, 3].

Step 2 and step 3 are done by call_cart:

auto call_cart ([](auto f, auto x, auto ...rest) constexpr {
 (void)std::initializer_list<int>{
 (((x < rest)
 ? (void)f(x, rest)
 : (void)0)
 ,0)...
 };
});

Parameter x always contains the single value picked from the set, and rest contains the
whole set again. Let's ignore the (x < rest) conditional at first. Here, the expression f(x,
rest), together with the ... parameter pack expansion generates the function calls f(1,
1), f(1, 2), and so on, which results in the pairs being printed. This was step 2.

Step 3 is achieved by filtering out only the pairs where (x < rest) applies.

We made all lambda expressions and the variables holding them constexpr. By doing so,
we can now guarantee that the compiler will evaluate their code at compile time and
compile a binary that already contains all the number pairs instead of calculating them at
runtime. Note that this only happens if all the function arguments we provide to a constexpr
function are known at compile time already.

5
STL Algorithm Basics

We will cover the following recipes in this chapter:

Copying items from containers to other containers
Sorting containers
Removing specific items from containers
Transforming the contents of containers
Finding items in ordered and unordered vectors
Limiting the values of a vector to a specific numeric range with std::clamp
Locating patterns in strings with std::search and choosing the optimal
implementation
Sampling large vectors
Generating permutations of input sequences
Implementing a dictionary merging tool

STL Algorithm Basics

[165]

Introduction
The STL does not only contain data structures but also algorithms, of course. While data
structures help store and maintain data in different ways with different motivations and
targets, algorithms apply specific transformations to the data in such data structures.

Let's have a look at a standard task, such as summing up items from a vector. This can be
done easily by looping over the vector and summing up all the items into an accumulator
variable called sum:

 vector<int> v {100, 400, 200 /*, ... */ };

 int sum {0};
 for (int i : v) { sum += i; }

 cout << sum << '\n';

But because this is quite a standard task, there is also an STL algorithm for this:

cout << accumulate(begin(v), end(v), 0) << '\n';

In this case, the handcrafted loop variant is not much longer, and it is also not significantly
harder to read than a one-liner which says what it does: accumulate. In a lot of cases,
however, it is awkward to read a 10-line code loop just to realize, "Did I just have to study
the whole loop in order to understand that it does a standard task, X?", rather than seeing
one line of code, which uses a standard algorithm whose name clearly states what it does,
such as accumulate, copy, move, transform, or shuffle.

The basic idea is to provide a rich variety of algorithms that can be used by programmers
on a daily basis in order to reduce the need to repeatedly reimplement them. This way,
programmers can just use off the shelf algorithm implementations and concentrate on the
new problems, instead of wasting time on problems that already have been solved by the STL.
Another perspective is correctness--if a programmer implements the same thing again and
again for a hundred times, there is some probability that this may introduce a slight error in
one or the other attempt. This would be completely unnecessary and also very embarrassing
if, for example, it is pointed out by a colleague during code review, whereas at the same
time, a standard algorithm could have been used.

STL Algorithm Basics

[166]

Another important point of STL algorithms is efficiency. Many STL algorithms provide
multiple specialized implementations of the same algorithm, which do things differently,
depending on the iterator type they are being used with. For example, if all the elements in a
vector of integers should be zeroed, this can be done with the STL algorithm std::fill.
Because the iterator of a vector can already tell the compiler that it iterates over contiguous
memory, it can select the implementation of std::fill which uses the C procedure
memset. If the programmer changes the container type from vector to list, then the STL
algorithm cannot use memset any longer and has to iterate over the list in order to zero the
items individually. In case the programmer uses memset himself, the implementation
would be unnecessarily hardcoded to using vectors or arrays because most other data
structures do not save their data in contiguous memory chunks. In most cases, it makes
little sense to try to be smart, as the implementers of the STL may already have
implemented the same ideas, which can be used for free.

Let's summarize the preceding points. Using STL algorithms is good for:

Maintainability: The names of the algorithms already state in a straightforward
manner what they do. Explicit loops are rarely both better to read and as data-
structure agnostic as standard algorithms.
Correctness: The STL has been written and reviewed by experts, and used and
tested by so many people that you are pretty unlikely to reach the same degree of
correctness when reimplementing the complex parts of it.
Efficiency: STL algorithms are, by default, at least as efficient as most
handcrafted loops.

Most algorithms work on iterators. The concept of how iterators work is already explained
in Chapter 3, Iterators. In this chapter, we'll concentrate on using STL algorithms for
different problems in order to get a feeling of how they can be profitably put to use.
Showing all STL algorithms would blow up this book to a very boring C++ reference,
although there is already a C++ reference publicly available.

The best way to become an STL ninja is having the C++ reference always at hand or, at least,
saved in a browser bookmark. When solving a task, every programmer should have a look
at it with the question back in his mind, "Is there an STL algorithm for my problem?", before
writing code himself.

STL Algorithm Basics

[167]

A very good and complete C++ reference is available for online viewing at:

h t t p ://c p p r e f e r e n c e . c o m

It can also be downloaded for offline viewing.

In job interviews, good fluency with the STL algorithms is often regarded
as an indicator of a strong knowledge of C++.

Copying items from containers to other
containers
The most important STL data structures have iterator support. This means that it is at least
possible to get iterators via begin() and end() functions, which point to the data
structure's underlying payload data and allow to iterate over that data. The iteration always
looks the same, no matter what kind of data structure is iterated over.

We can get iterators from vectors, lists, deques, maps, and so on. Using iterator adaptors,
we can even get iterators as an interface to files, standard input, and standard output.
Moreover, as we saw in the previous chapter, we can even wrap iterator interfaces around
algorithms. Now, where we can access everything with iterators, we can combine them
with STL algorithms, which accept iterators as parameters.

A really nice way to show how iterators help abstract the nature of different data structures
away is the std::copy algorithm, which just copies items from one set of iterators to an
output iterator. Where such algorithms are used, the nature of the underlying data structure
is not really relevant any longer. In order to demonstrate this, we will play a bit with
std::copy.

http://cppreference.com
http://cppreference.com
http://cppreference.com
http://cppreference.com
http://cppreference.com
http://cppreference.com
http://cppreference.com
http://cppreference.com
http://cppreference.com
http://cppreference.com
http://cppreference.com
http://cppreference.com
http://cppreference.com
http://cppreference.com
http://cppreference.com
http://cppreference.com
http://cppreference.com
http://cppreference.com
http://cppreference.com
http://cppreference.com
http://cppreference.com
http://cppreference.com
http://cppreference.com
http://cppreference.com
http://cppreference.com
http://cppreference.com
http://cppreference.com
http://cppreference.com
http://cppreference.com
http://cppreference.com
http://cppreference.com
http://cppreference.com
http://cppreference.com
http://cppreference.com
http://cppreference.com
http://cppreference.com
http://cppreference.com
http://cppreference.com
http://cppreference.com

STL Algorithm Basics

[168]

How to do it...
In this section, we will use different variants of std::copy:

Let's first include all headers we need for the data structures we use.1.
Additionally, we declare that we use the std namespace:

 #include <iostream>
 #include <vector>
 #include <map>
 #include <string>
 #include <tuple>
 #include <iterator>
 #include <algorithm>

 using namespace std;

We will use pairs of integer and string values in the following. In order to nicely2.
print them, we should first overload the << stream operator for them:

 namespace std {
 ostream& operator<<(ostream &os, const pair<int, string> &p)
 {
 return os << "(" << p.first << ", " << p.second << ")";
 }
 }

In the main function, we fill a vector of integer-string pairs with some default3.
values. And we declare a map variable, which associates integer values with
string values:

 int main()
 {
 vector<pair<int, string>> v {
 {1, "one"}, {2, "two"}, {3, "three"},
 {4, "four"}, {5, "five"}};
 map<int, string> m;

STL Algorithm Basics

[169]

Now, we use std::copy_n to copy exactly three integer-string pairs from the4.
front of the vector to the map. Because vectors and maps are completely different
data structures, we need to transform the items from the vector using the
insert_iterator adapter. The std::inserter function produces such an
adapter for us. Please be always aware that using algorithms like std::copy_n
combined with insert iterators is the most generic way to copy/insert items to
other data structures, but not the fastest. Using the data structure-specific member
functions for inserting items is usually the most efficient way:

 copy_n(begin(v), 3, inserter(m, begin(m)));

Let's print what's in the map afterward. Throughout the book, we have often5.
been printing a container's content using the std::copy function. The
std::ostream_iterator helps a lot in that regard because it allows us to treat
the user shell's standard output as another container we can copy data into:

 auto shell_it (ostream_iterator<pair<int, string>>{cout,
 ", "});
 copy(begin(m), end(m), shell_it);
 cout << '\n';

Let's clear the map again for the next experiment. This time, we move items from6.
the vector to the map, and this time, it's all the items:

 m.clear();
 move(begin(v), end(v), inserter(m, begin(m)));

We print the new content of the map again. Moreover, as std::move is an7.
algorithm that also alters the data source, we will print the source vector too. This
way, we can see what happened to it when it acted as a move source:

 copy(begin(m), end(m), shell_it);
 cout << '\n';
 copy(begin(v), end(v), shell_it);
 cout << '\n';
 }

STL Algorithm Basics

[170]

Let's compile and run the program and see what it says. The first two lines are8.
simple. They reflect what the map contained after applying the copy_n and move
algorithms. The third line is interesting because it shows that the strings in the
vector that we used as move source are now empty. This is because the content of
the strings has not been copied but efficiently moved (which means that the map
uses the string data in heap memory that was previously referenced by the string
objects in the vector). We should usually not access items that were a move
source before we reassigned them, but let's ignore that for the sake of this
experiment:

 $./copying_items
 (1, one), (2, two), (3, three),
 (1, one), (2, two), (3, three), (4, four), (5, five),
 (1,), (2,), (3,), (4,), (5,),

How it works...
As std::copy is one of the simplest STL algorithms, its implementation is very short. Let's
have a look at how it could be implemented:

template <typename InputIterator, typename OutputIterator>
OutputIterator copy(InputIterator it, InputIterator end_it,
 OutputIterator out_it)
{
 for (; it != end_it; ++it, ++out_it) {
 *out_it = *it;
 }
 return out_it;
}

This looks exactly as one would implement the copying of items from one iterable range to
the other by hand, naively. At this point, one could also ask, "So why not implementing it
by hand, the loop is simple enough and I don't even need the return value?", which is, of
course, a good question.

STL Algorithm Basics

[171]

While std::copy is not the best example for making code significantly shorter, a lot of
other algorithms with more complex implementations are. What is not obvious is the
hidden automatic optimization of such STL algorithms. If we happen to use std::copy
with data structures that store their items in contiguous memory (as std::vector and
std::array do), and the items themselves are trivially copy assignable, then the compiler
will select a completely different implementation (which assumes the iterator types to be
pointers):

template <typename InputIterator, typename OutputIterator>
OutputIterator copy(InputIterator it, InputIterator end_it,
 OutputIterator out_it)
{
 const size_t num_items (distance(it, end_it));
 memmove(out_it, it, num_items * sizeof(*it));
 return it + num_items;
}

This is a simplified version of how the memmove variant of the std::copy algorithm can
look in a typical STL implementation. It is faster than the standard loop version, and this
time, it is also not as nice to read. But nevertheless, std::copy users automatically profit
from it if their argument types comply with the requirements of this optimization. The
compiler selects the fastest implementation possible for the chosen algorithm, while the
user code nicely expresses what the algorithm does without tainting the code with too many
details of the how.

STL algorithms often simply provide the best trade-off between readability and optimal
implementation.

Types are usually trivially copy assignable if they only consist of one or
multiple (wrapped by a class/struct) scalar types or classes, which can
safely be moved using memcopy/memmove without the need to invoke a
user-defined copy assignment operator.

We also used std::move. It works exactly like std::copy, but it applies std::move(*it)
to the source iterator in the loop in order to cast lvalues to rvalues. This makes the compiler
select the move assignment operator of the target object instead of the copy assignment
operator. For a lot of complex objects, this performs better but destroys the source object.

STL Algorithm Basics

[172]

Sorting containers
Sorting values is quite a standard task, and it can be done in various ways. Every computer
science student who was tortured with having to learn a majority of existing sorting
algorithms (together with their performance and stability trade-offs for exams) knows that.

Because this is a solved problem, programmers should not waste their time in solving it
again, except if it is for learning purposes.

How to do it...
In this section, we are going to play with std::sort and std::partial_sort:

First, we include all that's necessary and declare that we use the std namespace:1.

 #include <iostream>
 #include <algorithm>
 #include <vector>
 #include <iterator>
 #include <random>

 using namespace std;

We will print the state of a vector of integers multiple times, so let's abbreviate2.
this task by writing a small procedure:

 static void print(const vector<int> &v)
 {
 copy(begin(v), end(v), ostream_iterator<int>{cout, ", "});
 cout << '\n';
 }

We begin with a vector that contains some example numbers:3.

 int main()
 {
 vector<int> v {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

STL Algorithm Basics

[173]

Because we will shuffle the vector multiple times in order to play with different4.
sort functions, we need a random number generator:

 random_device rd;
 mt19937 g {rd()};

The std::is_sorted function tells us if the content of a container is sorted. This5.
line should print 1:

 cout << is_sorted(begin(v), end(v)) << '\n';

With std::shuffle, we shake around the content of the vector in order to sort it6.
again later. The first two arguments denote the range that will be shuffled and
the third argument is the random number generator:

 shuffle(begin(v), end(v), g);

The is_sorted function should now return false so that 0 is printed, and the7.
values in the vector should be the same but in a different order. We will see after
we have printed both again to the shell:

 cout << is_sorted(begin(v), end(v)) << '\n';
 print(v);

Now, we reestablish the original item ordering by using std::sort. The same8.
prints to the terminal should now again give us the sorted ordering from the
beginning:

 sort(begin(v), end(v));
 cout << is_sorted(begin(v), end(v)) << '\n';
 print(v);

STL Algorithm Basics

[174]

Another interesting function is std::partition. Maybe, we do not want to9.
fully sort the list because it is sufficient to just have the items that are smaller than
some value at the front. So, let's partition the vector in order to move all the items
that are smaller than 5 to the front and print it:

 shuffle(begin(v), end(v), g);
 partition(begin(v), end(v), [] (int i) { return i < 5; });
 print(v);

The next sort-related function is std::partial_sort. We can use it to sort the10.
content of a container, but only to some extent. It will put the N smallest of all
vector elements in the first half of the vector in a sorted order. The rest will reside
in the second half, which will not be sorted:

 shuffle(begin(v), end(v), g);
 auto middle (next(begin(v), int(v.size()) / 2));
 partial_sort(begin(v), middle, end(v));
 print(v);

What if we want to sort a data structure that has no comparison operator? Let's11.
define one and make a vector of such items:

 struct mystruct {
 int a;
 int b;
 };
 vector<mystruct> mv {{5, 100}, {1, 50}, {-123, 1000},
 {3, 70}, {-10, 20}};

The std::sort function optionally accepts a comparison function as its third12.
argument. Let's use that and provide it with such a function. Just to show that
this is possible, we compare them by their second field, b. This way, they will
appear in the order of mystruct::b and not mystruct::a:

 sort(begin(mv), end(mv),
 [] (const mystruct &lhs, const mystruct &rhs) {
 return lhs.b < rhs.b;
 });

STL Algorithm Basics

[175]

The last step is printing the sorted vector of mystruct items:13.

 for (const auto &[a, b] : mv) {
 cout << "{" << a << ", " << b << "} ";
 }
 cout << '\n';
 }

Let's compile and run our program.14.
The first 1 results from the std::is_sorted call after initializing the sorted
vector. Then, we shuffled the vector and got a 0 from the second is_sorted call.
The third line shows all the vector items after the shuffling. The next 1 is the
result of the is_sorted call after sorting it again with std::sort.
Then, we shuffled the whole vector again and partitioned it using
std::partition. We can see that all the items that are less than 5 are also to the
left of 5 in the vector. All items that are greater than 5 are to its right. Apart from
that, they seem shuffled.
The second last line shows the result of std::partial_sort. All items up to the
middle appear strictly sorted but the rest do not.
In the last line, we can see our vector of mystruct instances. They are strictly
sorted by their second member values:

 $./sorting_containers
 1
 0
 7, 1, 4, 6, 8, 9, 5, 2, 3, 10,
 1
 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
 1, 2, 4, 3, 5, 7, 8, 10, 9, 6,
 1, 2, 3, 4, 5, 9, 8, 10, 7, 6,
 {-10, 20} {1, 50} {3, 70} {5, 100} {-123, 1000}

STL Algorithm Basics

[176]

How it works...
We have used different algorithms, which have to do with sorting:

Algorithm Purpose

std::sort Accepts a range as arguments and simply sorts it.

std::is_sorted Accepts a range as argument and tells if that range is sorted.

std::shuffle This is, kind of, the reverse operation to sorting; it accepts a range as
arguments and shuffles its items around.

std::partial_sort Accepts a range as arguments and another iterator, which tells until
where the input range should be sorted. Behind that iterator, the rest
of the items appear unsorted.

std::partition Accepts a range and a predicate function. All items for which the
predicate function returns true are moved to the front of the range.
The rest is moved to the back.

For objects that do not have a comparison operator < implementation, it is possible to
provide custom comparison functions. These should always have a signature such as bool
function_name(const T &lhs, const T &rhs) and should not have any side effects
during execution.

There are also other algorithms such as std::stable_sort, which also sort but preserve
the order of items with the same sort key and std::stable_partition.

std::sort has different implementations for sorting. Depending on the
nature of the iterator arguments, it is implemented as selection sort,
insertion sort, merge sort, or completely optimized for a smaller number
of items. On the user side, we usually do not even need to care.

Removing specific items from containers
Copying, transforming, and filtering are perhaps the most common operations on ranges of
data. In this section, we concentrate on filtering items.

STL Algorithm Basics

[177]

Filtering items out of data structures, or simply removing specific ones, works completely
differently for different data structures. In linked lists (such as std::list), for example, a
node can be removed by making its predecessor point to its successor. After a node is
removed from the link chain in this way, it can be given back to the allocator. In
contiguously storing data structures (std::vector, std::array, and, to some extent,
std::deque), items can only be removed by overwriting them with other items. If an item
slot is marked to be removed, all the items that are behind it must be moved one slot further
to the front in order to fill the gap. This sounds like a lot of hassle, but if we want to simply
remove whitespace from a string, for example, this should be achievable without much
code.

When having either data structure at hand, we do not really want to care how to remove an
item. It should just happen. This is what std::remove and std::remove_if can do for us.

How to do it...
We will transform a vector's content by removing items in different ways:

Let's import all the needed headers and declare that we use the std namespace:1.

 #include <iostream>
 #include <vector>
 #include <algorithm>
 #include <iterator>

 using namespace std;

A short print helper function will print our vector:2.

 void print(const vector<int> &v)
 {
 copy(begin(v), end(v), ostream_iterator<int>{cout, ", "});
 cout << '\n';
 }

STL Algorithm Basics

[178]

We'll begin with an example vector containing some simple integer values. We'll3.
also print it, so we can see how it changes with the function we apply to it later:

 int main()
 {
 vector<int> v {1, 2, 3, 4, 5, 6};
 print(v);

Now let's remove all the items with the value 2 from the vector. std::remove4.
moves the other items in a way that the one value 2 we actually have in the
vector vanishes. Because the vector's actual content is shorter after removing
items, std::remove returns us an iterator pointing to the new end. The items
between the new end iterator and the old end iterator are to be considered
garbage, so we tell the vector to erase them. We surround the two removal lines
with a new scope because the new_end iterator is invalidated afterward anyway,
so it can go out of scope immediately:

 {
 const auto new_end (remove(begin(v), end(v), 2));
 v.erase(new_end, end(v));
 }
 print(v);

Now let's remove all the odd numbers. In order to do so, we implement a5.
predicate, which tells us if a number is odd and feed it into the std::remove_if
function, which accepts such predicates:

 {
 auto odd_number ([](int i) { return i % 2 != 0; });
 const auto new_end (
 remove_if(begin(v), end(v), odd_number));
 v.erase(new_end, end(v));
 }
 print(v);

STL Algorithm Basics

[179]

The next algorithm we try out is std::replace. We use it to overwrite all values6.
of 4 with the value 123. The std::replace function also exists as
std::replace_if, which also accepts predicate functions:

 replace(begin(v), end(v), 4, 123);
 print(v);

Let's pump completely new values into the vector and create two new empty7.
vectors in order to do another experiment with those:

 v = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
 vector<int> v2;
 vector<int> v3;

Then, we implement a predicate for odd numbers again and another predicate8.
function, which tells the opposite if a number is even:

 auto odd_number ([](int i) { return i % 2 != 0; });
 auto even_number ([](int i) { return i % 2 == 0; });

The next two lines do exactly the same thing. They copy even values to the9.
vectors, v2 and v3. The first line does this with the std::remove_copy_if
algorithm, which copies everything from a source container to another container
which does not fulfill the predicate constraint. The other line uses std::copy_if,
which copies everything that does fulfill the predicate constraint:

 remove_copy_if(begin(v), end(v),
 back_inserter(v2), odd_number);
 copy_if(begin(v), end(v),
 back_inserter(v3), even_number);

Printing both the vectors should now result in the same output:10.

 print(v2);
 print(v3);
 }

STL Algorithm Basics

[180]

Let's compile and run the program. The first output line shows the vector after its11.
initialization. The second line shows it after removing all the values of 2. The next
line shows the result of removing all the odd numbers. Before the fourth line, we
replaced all the values of 4 with 123.
The last two lines show vectors v2 and v3:

 $./removing_items_from_containers
 1, 2, 3, 4, 5, 6,
 1, 3, 4, 5, 6,
 4, 6,
 123, 6,
 2, 4, 6, 8, 10,
 2, 4, 6, 8, 10,

How it works...
We have used different algorithms, which have to do with filtering:

Algorithm Purpose

std::remove Accepts a range and a value as arguments and removes any
occurrence of the value. Returns a new end iterator of the modified
range.

std::replace Accepts a range and two values as arguments and replaces all the
occurrences of the first value with the second value.

std::remove_copy Accepts a range, an output iterator, and a value as arguments and
copies all the values that are not equal to the given value from the
range to the output iterator.

std::replace_copy Works similar to std::replace but analogous to
std::remove_copy. The source range is not altered.

std::copy_if Works like std::copy but additionally accepts a predicate function
as an argument in order to copy only the values that the predicate
accepts, which makes it a filter function.

For every one of the listed algorithms, there also exists an *_if version,
which accepts a predicate function instead of a value, which then decides
which values are to be removed or replaced.

STL Algorithm Basics

[181]

Transforming the contents of containers
If std::copy is the simplest STL algorithm for application on ranges, std::transform is
the second simplest STL algorithm. Just as copy, it copies items from one range to another
but additionally accepts a transformation function. This transformation function can alter
the value of the input type before it is assigned to an item in the destination range.
Furthermore, it can even construct a completely different type, which is useful if the source
range and destination range differ in their payload item types. It is simple to use but still
very useful, which makes it an ordinary standard component used in portable day-to-day
programs.

How to do it...
In this section, we are going to use std::transform in order to modify the items of a
vector while copying them:

As always, we first need to include all the necessary headers and to spare us1.
some typing, we declare that we use the std namespace:

 #include <iostream>
 #include <vector>
 #include <string>
 #include <sstream>
 #include <algorithm>
 #include <iterator>

 using namespace std;

A vector with some simple integers will do the job as an example source data2.
structure:

 int main()
 {
 vector<int> v {1, 2, 3, 4, 5};

STL Algorithm Basics

[182]

Now, we copy all the items to an ostream_iterator adapter in order to print3.
them. The transform function accepts a function object, which accepts items of
the container payload type and transforms them during each copy operation. In
this case, we calculate the square of each number item, so the code will print the
squares of the items in the vector without us having to store them anywhere:

 transform(begin(v), end(v),
 ostream_iterator<int>{cout, ", "},
 [] (int i) { return i * i; });
 cout << '\n';

Let's do another transformation. From the number 3, for example, we could4.
generate a nicely readable string such as 3^2 = 9. The following
int_to_string function object does just that using the std::stringstream
object:

 auto int_to_string ([](int i) {
 stringstream ss;
 ss << i << "^2 = " << i * i;
 return ss.str();
 });

The function we just implemented returns us string values from integer values.5.
We could also say it maps from integers to strings. Using the transform function,
we can copy all such mappings from the integer vector into a string vector:

 vector<string> vs;
 transform(begin(v), end(v), back_inserter(vs),
 int_to_string);

After printing those, we're done:6.

 copy(begin(vs), end(vs),
 ostream_iterator<string>{cout, "\n"});
 }

STL Algorithm Basics

[183]

Let's compile and run the program:7.

 $./transforming_items_in_containers
 1, 4, 9, 16, 25,
 1^2 = 1
 2^2 = 4
 3^2 = 9
 4^2 = 16
 5^2 = 25

How it works...
The std::transform function works exactly like std::copy but while copy-assigning the
values from the source iterator to the destination iterator, it applies the user-provided
transformation function to the value before assigning the result to the destination iterator.

Finding items in ordered and unordered
vectors
Often, we need to tell if some kind of item exists within some range. And if it does, we often
also need to modify it or to access other data associated with it.

There are different strategies for finding items. If the items are present in a sorted order,
then we can do a binary search, which is faster than linearly going through the items one by
one. If it is not sorted, we are stuck with linear traversal again.

The typical STL search algorithms can do both for us, so it's good to know them and their
characteristics. This section is about the simple linear search algorithm std::find, the
binary search version std::equal_range, and their variants.

STL Algorithm Basics

[184]

How to do it...
In this section, we are going to use linear and binary search algorithms on a small example
data set:

We first include all the necessary headers and declare that we use the std1.
namespace:

 #include <iostream>
 #include <vector>
 #include <list>
 #include <algorithm>
 #include <string>

 using namespace std;

Our data set will consist of city structs, which just save a city's name, and its2.
population count:

 struct city {
 string name;
 unsigned population;
 };

Search algorithms need to be able to compare one item to the other, so we3.
overload the == operator for the city struct instances:

 bool operator==(const city &a, const city &b) {
 return a.name == b.name && a.population == b.population;
 }

We also want to print the city instances, so we overload the stream operator, <<:4.

 ostream& operator<<(ostream &os, const city &city) {
 return os << "{" << city.name << ", "
 << city.population << "}";
 }

STL Algorithm Basics

[185]

Search functions typically return iterators. These iterators point to the item if they5.
found it or, otherwise, to the end iterator of the underlying container. In the last
case, we are not allowed to access such an iterator. Because we are going to print
our search results, we implement a function that returns us another function
object, which encapsulates the end iterator of a data structure. When used for
printing, it will compare its iterator argument against the end iterator and then
print the item or, otherwise, just <end>:

 template <typename C>
 static auto opt_print (const C &container)
 {
 return [end_it (end(container))] (const auto &item) {
 if (item != end_it) {
 cout << *item << '\n';
 } else {
 cout << "<end>\n";
 }
 };
 }

We start with an example vector of some German cities:6.

 int main()
 {
 const vector<city> c {
 {"Aachen", 246000},
 {"Berlin", 3502000},
 {"Braunschweig", 251000},
 {"Cologne", 1060000}
 };

Using this helper, we build a city printer function, which captures the end7.
iterator of our city vector c:

 auto print_city (opt_print(c));

We use std::find to find the item in the vector, which saves the city item of8.
Cologne. At first, this search looks pointless because we get exactly the item we
searched for. But we did not know its position in the vector before, and the find
function returns us just that. However, we could, for example, make the operator
== of the city struct that we overloaded only compare the city name, then we
could search just using the city name, without even knowing its population. But
that would not be a good design. In the next step, we will do it differently:

STL Algorithm Basics

[186]

 {
 auto found_cologne (find(begin(c), end(c),
 city{"Cologne", 1060000}));
 print_city(found_cologne);
 }

Without knowing the population count of a city, and also without tampering9.
with its == operator, we can search only by comparing its name with the vector's
content. The std::find_if function accepts a predicate function object instead
of a specific value. This way, we can search for the Cologne city item when we
only know its name:

 {
 auto found_cologne (find_if(begin(c), end(c),
 [] (const auto &item) {
 return item.name == "Cologne";
 }));
 print_city(found_cologne);
 }

In order to make searching a bit prettier and expressive, we can implement10.
predicate builders. The population_higher_than function object accepts a
population size and returns us a function that tells if a city instance has a larger
population than the captured value. Let's use it to search for a German city with
more than two million inhabitants in our small example set. Within the given
vector, that city is only Berlin:

 {
 auto population_more_than ([](unsigned i) {
 return [=] (const city &item) {
 return item.population > i;
 };
 });
 auto found_large (find_if(begin(c), end(c),
 population_more_than(2000000)));
 print_city(found_large);
 }

STL Algorithm Basics

[187]

The search functions we just used, traverse our containers linearly. Thus they11.
have a runtime complexity of O(n). The STL also has binary search functions,
which work within O(log(n)). Let's generate a new example data set, which just
consists of some integer values, and build another print function for that:

 const vector<int> v {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

 auto print_int (opt_print(v));

The std::binary_search function returns boolean values and just tells us if it12.
found an item, but it does not return the item itself. It is important that the
container we are searching in is sorted because otherwise, binary search doesn't
work correctly:

 bool contains_7 {binary_search(begin(v), end(v), 7)};
 cout << contains_7 << '\n';

In order to get the items we are searching for, we need other STL functions. One13.
of them is std::equal_range. It does not return an iterator for the item we
found, but a pair of iterators. The first iterator points to the first item that is not
smaller than the value we've been looking for. The second iterator points to the
first item that is larger than it. In our range, which goes from 1 to 10, the first
iterator points to the actual 7, because it is the first item, that is not smaller than
7. The second iterator points to the 8 because it's the first item that is larger than
7. If we had multiple values of 7, both the iterators would, in fact, represent a
subrange of items:

 auto [lower_it, upper_it] (
 equal_range(begin(v), end(v), 7));
 print_int(lower_it);
 print_int(upper_it);

STL Algorithm Basics

[188]

If we just need one iterator; we can use std::lower_bound or14.
std::upper_bound. The lower_bound function only returns an iterator to the
first item that is not smaller than what we searched. The upper_bound function
returns an iterator to the first item that is larger than what we searched for:

 print_int(lower_bound(begin(v), end(v), 7));
 print_int(upper_bound(begin(v), end(v), 7));
 }

Let's compile and run the program to see if the output matches our assumptions:15.

 $./finding_items
 {Cologne, 1060000}
 {Cologne, 1060000}
 {Berlin, 3502000}
 1
 7
 8
 7
 8

How it works...
These are the search algorithms we have used in this recipe:

Algorithm Purpose

std::find Accepts a search range and a comparison value as arguments.
Returns an iterator that points to the first item equal to the
comparison value. Searches linearly.

std::find_if Works like std::find but uses a predicate function instead of a
comparison value.

std::binary_search Accepts a search range and a comparison value as arguments.
Performs a binary search and returns true if the range contains that
value.

std::lower_bound Accepts a search range and a comparison value, and then performs a
binary search for the first item that is not smaller than the comparison
value. Returns an iterator pointing to that item.

std::upper_bound Works like std::lower_bound but returns an iterator to the first
item that is larger than the comparison value.

STL Algorithm Basics

[189]

std::equal_range Accepts a search range and a comparison value and, then, returns a
pair of iterators. The first iterator is the result of
std::lower_bound and the second iterator is the result of
std::upper_bound.

All these functions accept custom comparison functions as an optional additional argument.
This way, the search can be customized, as we did in the recipe.

Let's have a closer look at how std::equal_range works. Imagine that we have a vector, v
= {0, 1, 2, 3, 4, 5, 6, 7, 7, 7, 8}, and call equal_range(begin(v),
end(v), 7); in order to perform a binary search for the value 7. As equal_range returns
us a pair of lower bound and upper bound iterators, these should afterward denote the
range {7, 7, 7}, as there are so many values of 7 in the sorted vector. Check out the
following diagram for more clarity:

At first, equal_range uses the typical binary search approach until it trips into the range of
values not smaller than the search value. Then, it splits up to a lower_bound call and an
upper_bound call in order to bundle their return values in a pair as the return value.

In order to get a binary search function, which just returns the first item that fits the
requirements, we could implement the following:

template <typename Iterator, typename T>
Iterator standard_binary_search(Iterator it, Iterator end_it, T value)
{
 const auto potential_match (lower_bound(it, end_it, value));
 if (potential_match != end_it && value == *potential_match) {
 return potential_match;
 }
 return end_it;
}

STL Algorithm Basics

[190]

This function uses std::lower_bound in order to find the first item not smaller than
value. The resulting potential_match can then have three different cases it points to:

No item is not smaller than value. In this case, it is identical to end_it.
The first item that is not smaller than value is also larger than value. Therefore
we must signal that we did not find it by returning end_it.
The item that potential_match points to is equal to value. So, it is not only a
potential match, but it is an actual match. Therefore we can return it.

If our type T does not support the == operator, it must at least support the < operator for the
binary search. Then, we can rewrite the comparison to !(value < *potential_match)
&& !(*potential_match < value). If it is neither smaller, nor larger, then it must be
equal.

One potential reason why the STL does not provide such a function out of the box is the
missing knowledge about the possibility that there are multiple hits, as in the diagram
where we have multiple values of 7.

Note that data structures such as std::map, std::set, and so on have
their own find functions. These are, of course, faster than the more general
algorithms because they are tightly coupled with the data structure's
implementation and data representation.

Limiting the values of a vector to a specific
numeric range with std::clamp
In a lot of applications, we get numeric data from somewhere. Before we can plot or
otherwise process it, it may need to be normalized because the values differ randomly far
from each other.

Usually, this would mean a little std::transform call over the data structure that holds all
these values, combined with a simple scaling function. But if we do not know how large or
small the values are, we need to go through the data first in order to find the right
dimensions for the scaling function.

The STL contains useful functions for this purpose: std::minmax_element and
std::clamp. Using these and combining them with some lambda expression glue, we can
perform such a task easily.

STL Algorithm Basics

[191]

How to do it...
In this section, we will normalize the values of a vector from an example numeric range to a
normalized one in two different ways, one of them using std::minmax_element and one
using std::clamp:

As always, we first need to include the following headers and declare that we use1.
the std namespace:

 #include <iostream>
 #include <vector>
 #include <algorithm>
 #include <iterator>

 using namespace std;

We implement a function for later use, which accepts the minimum and2.
maximum values of a range, and a new maximum so that it can project values
from the old range to a smaller range that we want to have. The function object
takes such values and returns another function object, which does exactly that
transformation. For the sake of simplicity, the new minimum is 0, so no matter
what offset the old data had, its normalized values will always be relative to 0.
For the sake of readability, we ignore the possibility that max and min could be of
the same value, which would lead to a division by zero:

 static auto norm (int min, int max, int new_max)
 {
 const double diff (max - min);
 return [=] (int val) {
 return int((val - min) / diff * new_max);
 };
 }

Another function object builder called clampval returns a function object that3.
captures the min and max values and calls std::clamp on values with those
values, in order to limit their values to this range:

 static auto clampval (int min, int max)
 {
 return [=] (int val) -> int {
 return clamp(val, min, max);
 };
 }

STL Algorithm Basics

[192]

The data we are going to normalize is a vector of varying values. This could be,4.
for example, some kind of heat data, landscape height, or stock prices over time:

 int main()
 {
 vector<int> v {0, 1000, 5, 250, 300, 800, 900, 321};

In order to be able to normalize the data, we need the highest and lowest values.5.
The std::minmax_element function is of a great help here. It returns us a pair
of iterators to exactly those two values:

 const auto [min_it, max_it] (
 minmax_element(begin(v), end(v)));

We will copy all the values from the first vector to a second one. Let's instantiate6.
the second vector and prepare it to accept as many new items as we have in the
first vector:

 vector<int> v_norm;
 v_norm.reserve(v.size());

Using std::transform, we copy the values from the first vector to the second.7.
While copying the items, they will be transformed with our normalization helper.
The minimum and maximum values of the old vector are 0 and 1000. The
minimum and maximum values after normalization are 0 and 255:

 transform(begin(v), end(v), back_inserter(v_norm),
 norm(*min_it, *max_it, 255));

Before we implement the other normalization strategy, we print what we have by8.
now:

 copy(begin(v_norm), end(v_norm),
 ostream_iterator<int>{cout, ", "});
 cout << '\n';

We reuse the same normalized vector with the other helper clampval, which9.
clamps the old range to the range with the minimum of 0 and the maximum of
255:

 transform(begin(v), end(v), begin(v_norm),
 clampval(0, 255));

STL Algorithm Basics

[193]

After printing these values too, we're done:10.

 copy(begin(v_norm), end(v_norm),
 ostream_iterator<int>{cout, ", "});
 cout << '\n';
 }

Let's compile and run the program. Having the values reduced to values from 011.
to 255, we could use them as brightness values for RGB color codes, for example:

 $./reducing_range_in_vector
 0, 255, 1, 63, 76, 204, 229, 81,
 0, 255, 5, 250, 255, 255, 255, 255,

When we plot the data, we get the following graphs. As we can see, the approach12.
where we divide the values by the difference between the min and max values is a
linear transformation of the original data. The clamped graph loses some
information. Both variations can be useful in different situations:

STL Algorithm Basics

[194]

How it works...
Apart from std::transform we used two algorithms:

std::minmax_element simply accepts the begin and end iterators of an input range. It
loops through the range and records the largest and the smallest element on the way to its
end. These values are returned in a pair, which we then used for our scaling function.

The std::clamp function, in contrast, does not operate on an iterable range. It accepts
three values: an input value, a min value, and a max value. The output of this function is the
input value cut-off in a way that it lies between the allowed minimum and maximum. We
could also write max(min_val, min(max_val, x)) instead of std::clamp(x,
min_val, max_val).

Locating patterns in strings with std::search
and choosing the optimal implementation
Searching for a string in a string is a slightly different problem than finding one object in a
range. On the one hand, a string is, of course, an iterable range (of characters) too. On the
other hand, finding a string in a string means finding a range in another range. And this
comes along with multiple comparisons per potential match position, so we need some
other algorithm for that.

std::string already contains a find function, which can do exactly what we are talking
about; nevertheless we'll concentrate on std::search in this section. Although
std::search might be used on strings mostly, it works on all kinds of containers. The
more interesting feature of std::search is that since C++17, it has a slightly different
additional interface and allows for simply exchanging the search algorithm itself. These
algorithms are optimized and can be freely chosen by the user, depending on what is better
in which use case. Additionally, we could implement our own search algorithms and plug
them into std::search if we ever come up with anything better than what is already
provided.

STL Algorithm Basics

[195]

How to do it...
We will use the new std::search function with strings and try its different variations
with searcher objects:

First, we will include all the necessary headers and declare that we use the std1.
namespace:

 #include <iostream>
 #include <string>
 #include <algorithm>
 #include <iterator>
 #include <functional>

 using namespace std;

We will print substrings from the positions the search algorithm returns to us, so2.
let's implement a little helper for that:

 template <typename Itr>
 static void print(Itr it, size_t chars)
 {
 copy_n(it, chars, ostream_iterator<char>{cout});
 cout << '\n';
 }

A lorem-ipsum style string will work as our example string, within which we will3.
search a substring. In this case, this is "elitr":

 int main()
 {
 const string long_string {
 "Lorem ipsum dolor sit amet, consetetur"
 " sadipscing elitr, sed diam nonumy eirmod"};
 const string needle {"elitr"};

STL Algorithm Basics

[196]

The old std::search interface accepts the begin/end iterators of the string4.
within which we are searching a specific substring and the begin/end iterators of
the substring. It then returns an iterator pointing to the substring it was able to
find. If it didn't find the string, the returned iterator will be the end iterator:

 {
 auto match (search(begin(long_string), end(long_string),
 begin(needle), end(needle)));
 print(match, 5);
 }

The C++17 version of std::search does not accept two pairs of iterators but one5.
pair of begin/end iterators and a searcher object. The std::default_searcher
takes the begin/end pair of iterators of the substring that we are searching for in
the larger string:

 {
 auto match (search(begin(long_string), end(long_string),
 default_searcher(begin(needle), end(needle))));
 print(match, 5);
 }

The point of this change is that it is easy to switch the search algorithm this way.6.
The std::boyer_moore_searcher uses the Boyer-Moore search algorithm for a
faster search:

 {
 auto match (search(begin(long_string), end(long_string),
 boyer_moore_searcher(begin(needle),
 end(needle))));
 print(match, 5);
 }

STL Algorithm Basics

[197]

The C++17 STL comes with three different searcher object implementations. The7.
third one is the Boyer-Moore-Horspool search algorithm implementation:

 {
 auto match (search(begin(long_string), end(long_string),
 boyer_moore_horspool_searcher(begin(needle),
 end(needle))));
 print(match, 5);
 }
 }

Let's compile and run our program. We should see the same string everywhere if8.
it runs correctly:

 $./pattern_search_string
 elitr
 elitr
 elitr
 elitr

How it works...
We utilized four different ways to use std::search in order to get exactly the same result.
Which one should we prefer in what situation?

Let's assume our large string within which we search the pattern is called s, and the pattern
is called p. Then, std::search(begin(s), end(s), begin(p), end(p)); and
std::search(begin(s), end(s), default_searcher(begin(p), end(p)); do
exactly the same thing.

The other searcher function objects are implemented with more sophisticated search
algorithms:

std::default_searcher: This redirects to legacy std::search
implementation
std::boyer_moore_searcher: This uses the Boyer-Moore search algorithm
std::boyer_moore_horspool_searcher: This analogously uses the Boyer-
Moore-Horspool algorithm

STL Algorithm Basics

[198]

What makes the other algorithms so special? The Boyer-Moore algorithm was developed
with a specific idea--the search pattern is compared with the string, beginning at the
pattern's end, from right to left. If the character in the search string differs from the character
in the pattern at the overlay position and does not even occur in the pattern, then it is clear
that the pattern can be shifted over the search string by its full length. Have a look at the
following diagram, where this happens in step 1. If the character being currently compared
differs from the pattern's character at this position but is contained by the pattern, then the
algorithm knows by how many characters the pattern needs to be shifted to the right in
order to correctly align to at least that character, and then, it starts over with the right-to-left
comparison. In the diagram, this happens in step 2. This way, the Boyer-Moore algorithm
can omit a whole lot of unnecessary comparisons, compared with a naive search
implementation:

Of course, this would have become the new default search algorithm if it hadn't brought its
own trade-offs. It is faster than the default algorithm, but it needs fast lookup data structures
in order to determine which characters are contained in the search pattern and at which
offset they are located. The compiler will select differently complex implementations of
those, depending on the underlying types of which the pattern consists (varying between
hash maps for complex types and primitive lookup tables for types such as char). In the
end, this means that the default search implementation will be faster if the search string is
not too large. If the search itself takes some significant time, then the Boyer-Moore
algorithm can lead to performance gains in the dimension of a constant factor.

STL Algorithm Basics

[199]

The Boyer-Moore-Horspool algorithm is a simplification of the Boyer-Moore algorithm. It
drops the bad character rule, which leads to shifts of the whole pattern width if a search
string character that does not occur in the pattern string is found. The trade-off of this
decision is that it is slightly slower than the unmodified version of Boyer-Moore, but it also
needs fewer data structures for its operation.

Do not try to reason about which algorithm should be faster in a specific
case. Always measure the performance of your code with data samples that
are typical for your users and base your decision on the results.

Sampling large vectors
When there are very large amounts of numeric data that need to be processed in some
situations, it may not be possible to process it all in feasible time. In such situations, the data
could be sampled in order to reduce the total amount of data for further processing, which
then speeds up the whole program. In other situations, this might be done not to reduce the
amount of work for processing but for saving or transferring the data.

A naive idea of sampling could be to only pick every Nth data point. This might be fine in a
lot of cases, but in signal processing, for example, it could lead to a mathematical
phenomenon called aliasing. If the distance between every sample is varied by a small
random offset, aliasing can be reduced. Have a look at the following diagram, which shows
an extreme case just to illustrate the point--while the original signal consists of a sine wave,
the triangle points on the graph are sampling points that are sampled at exactly every 100th
data point. Unfortunately, the signal has the same y-value at these points! The graph which
results from connecting the dots looks like a perfectly straight horizontal line. The square
points, however, show what we get when we sample every 100 + random(-15, +15)
points. Here, the signal still looks very different from the original signal, but it is at least not
completely gone as in the fixed step size sampling case.

STL Algorithm Basics

[200]

The std::sample function does not add random alterations to sample points with fixed
offset but chooses completely random points; therefore, it works a bit differently from this
example:

How to do it...
We will sample a very large vector of random data. This random data shows a normal
distribution. After sampling it, the resulting points should still show a normal distribution,
which we will check:

First, we need to include everything we use and declare that we use the std1.
namespace in order to spare us some typing:

 #include <iostream>
 #include <vector>
 #include <random>
 #include <algorithm>
 #include <iterator>
 #include <map>
 #include <iomanip>

 using namespace std;

STL Algorithm Basics

[201]

It is easier to play around with the code if we configure specific characteristics of2.
our algorithm in their own constant variables. These are the size of the large
random vector and the number of samples that we are going to take from it:

 int main()
 {
 const size_t data_points {100000};
 const size_t sample_points {100};

The large, randomly filled vector should get numbers from a random number3.
generator, which gives out numbers from a normal distribution. Any normal
distribution can be characterized by the mean value and the standard deviation
from the mean value:

 const int mean {10};
 const size_t dev {3};

Now, we set up the random generator. First, we instantiate a random device and4.
call it once to get a seed for the constructor of a random generator. Then, we
instantiate a distribution object that applies normal distribution to the random
output:

 random_device rd;
 mt19937 gen {rd()};
 normal_distribution<> d {mean, dev};

Now, we instantiate a vector of integers and fill it with a lot of random numbers.5.
This is achieved using the std::generate_n algorithm, which will call a
generator function object to feed its return value into our vector using a
back_inserter iterator. The generator function object just wraps around the
d(gen) expression, which gets a random number from the random device and
feeds it into the distribution object:

 vector<int> v;
 v.reserve(data_points);
 generate_n(back_inserter(v), data_points,
 [&] { return d(gen); });

STL Algorithm Basics

[202]

Now, we instantiate another vector that will contain the much smaller set of6.
samples:

 vector<int> samples;
 v.reserve(sample_points);

The std::sample algorithm works similar to std::copy, but it takes two7.
additional parameters: the number of samples, which it shall take from the input
range, and a random number generator object, which it will consult to get random
sampling positions:

 sample(begin(v), end(v), back_inserter(samples),
 sample_points, mt19937{random_device{}()});

We're already done with the sampling. The rest of the code is for displaying8.
purposes. The input data has a normal distribution, and if the sampling
algorithm works well, then the sampled vector should show a normal
distribution too. To see how much of a normal distribution is left, we will print a
histogram of the values:

 map<int, size_t> hist;

 for (int i : samples) { ++hist[i]; }

Finally, we loop over all the items in order to print our histogram:9.

 for (const auto &[value, count] : hist) {
 cout << setw(2) << value << " "
 << string(count, '*') << '\n';
 }
 }

STL Algorithm Basics

[203]

After compiling and running the program, we see that the sampled vector still10.
roughly shows the characteristics of a normal distribution:

How it works...
The std::sample algorithm is a new algorithm, which came with C++17. Its signature
looks like this:

template<class InIterator, class OutIterator,
 class Distance, class UniformRandomBitGenerator>
OutIterator sample(InIterator first, InIterator last,
 SampleIterator out, Distance n,
 UniformRandomBitGenerator&& g);

The input range is denoted by the first and last iterators, while out is the output
operator. These iterators have exactly the same function as in std::copy; items are copied
from one range to the other. The std::sample algorithm is special in the regard that it will
copy only a part of the input range because it samples only n items. It uses uniform
distribution internally, so every data point in the source range gets chosen with the same
probability.

STL Algorithm Basics

[204]

Generating permutations of input sequences
When testing code that must deal with sequences of inputs where the order of the
arguments is not important, it is beneficial to test whether it results in the same output for
all possible permutations of that input. Such a test could, for example, check whether a self-
implemented sort algorithm sorts correctly.

No matter for what reason we need all permutations of some value range,
std::next_permutation can conveniently do it for us. We can invoke it on a modifiable
range, and it changes the order of its items to the next lexicographical permutation.

How to do it...
In this section, we will write a program that reads multiple word strings from a standard
input, and then we will use std::next_permutation to generate and print all the
permutations of those strings:

First things first again; we include all the necessary headers and declare that we1.
use the std namespace:

 #include <iostream>
 #include <vector>
 #include <string>
 #include <iterator>
 #include <algorithm>

 using namespace std;

We begin with a vector of strings, which we feed with the whole standard input.2.
The next step is sorting the vector:

 int main()
 {
 vector<string> v {istream_iterator<string>{cin}, {}};
 sort(begin(v), end(v));

STL Algorithm Basics

[205]

Now, we print the vector's content on the user terminal. Afterward, we call3.
std::next_permutation. It systematically shuffles the vector to generate a
permutation of its items, which we then print again. The next_permutation
will return false as soon as the last permutation was reached:

 do {
 copy(begin(v), end(v),
 ostream_iterator<string>{cout, ", "});
 cout << '\n';
 } while (next_permutation(begin(v), end(v)));
 }

Let's compile and run the function with some example input:4.

 $ echo "a b c" | ./input_permutations
 a, b, c,
 a, c, b,
 b, a, c,
 b, c, a,
 c, a, b,
 c, b, a,

How it works...
The std::next_permutation algorithm is a bit weird to use. This is because it accepts
only a begin/end pair of iterators and then returns true if it is able to find the next
permutation. Otherwise, it returns false. But what does the next permutation even mean?

The algorithm with which std::next_permutation finds the next lexicographical order
of the items, works as follows:

Find the largest index i such that v[i - 1] < v[i]. If there is none, then return1.
false.
Now, find the largest index j such that j >= i and v[j] > v[i - 1].2.
Swap the items at position j and position i - 1.3.
Reverse the order of the items from position i to the end of the range.4.
Return true.5.

STL Algorithm Basics

[206]

The individually permuted orders we get out of this will always appear in the same
sequence. In order to see all the possible permutations, we sorted the array first, because if
we entered "c b a", for example, the algorithm would terminate immediately, as this
already is the last lexicographic order of the elements.

Implementing a dictionary merging tool
Imagine that we have a sorted list of things, and someone else comes up with another sorted
list of things, and we want to share the lists with each other. The best idea is to combine
both the lists. The combination of both the lists should be sorted too, as this way, it is easy
to look it up for specific items.

Such an operation is also called a merge. In order to merge two sorted ranges of items, we
would intuitively create a new range and feed it with items from both the lists. For every
item transfer, we would have to compare the frontmost items of our input ranges in order
to always select the smallest one from what is left from the input. Otherwise, the output
range would not be sorted any longer. The following diagram illustrates it better:

The std::merge algorithm can do exactly that for us, so we do not need to fiddle around
too much. In this section, we will see how to use the algorithm.

STL Algorithm Basics

[207]

How to do it...
We are going to build up a cheap dictionary of one-to-one mappings from English words to
their German translations, and store them in std::deque structures. The program will read
such a dictionary from a file and one from standard input, and print one large merged
dictionary on the standard output again.

There are a lot of headers to include this time, and we declare that we use the std1.
namespace:

 #include <iostream>
 #include <algorithm>
 #include <iterator>
 #include <deque>
 #include <tuple>
 #include <string>
 #include <fstream>

 using namespace std;

A dictionary entry should consist of a symmetric mapping from a string in one2.
language to a string in another language:

 using dict_entry = pair<string, string>;

We are going to both print such pairs to the terminal and read them from user3.
input, so we need to overload the << and >> operators:

 namespace std {
 ostream& operator<<(ostream &os, const dict_entry p)
 {
 return os << p.first << " " << p.second;
 }
 istream& operator>>(istream &is, dict_entry &p)
 {
 return is >> p.first >> p.second;
 }
 }

STL Algorithm Basics

[208]

A helper function that accepts any input stream object will help us in building a4.
dictionary from it. It constructs std::deque of dictionary entry pairs, and they
are all read from the input stream until it is empty. Before returning it, we sort it:

 template <typename IS>
 deque<dict_entry> from_instream(IS &&is)
 {
 deque<dict_entry> d {istream_iterator<dict_entry>{is}, {}};
 sort(begin(d), end(d));
 return d;
 }

We create two individual dictionary data structures from different input streams.5.
One input stream is opened from the dict.txt file, which we assume to exist. It
contains word pairs, line by line. The other stream is the standard input:

 int main()
 {
 const auto dict1 (from_instream(ifstream{"dict.txt"}));
 const auto dict2 (from_instream(cin));

As the helper function, from_instream, has already sorted both the dictionaries6.
for us, we can feed them directly into the std::merge algorithm. It accepts two
input ranges via its begin/end iterator pairs, and one output. The output will be
the user shell:

 merge(begin(dict1), end(dict1),
 begin(dict2), end(dict2),
 ostream_iterator<dict_entry>{cout, "\n"});
 }

We can compile the program now, but before running it, we should create the7.
dict.txt file with some example content. Let's fill it with some English words
and their translations to German:

 car auto
 cellphone handy
 house haus

STL Algorithm Basics

[209]

Now, we can launch the program while piping some English-German8.
translations into its standard input. The output is a merged and still sorted
dictionary, which contains the translations of both the inputs. We could create a
new dictionary file from that:

 $ echo "table tisch fish fisch dog hund" | ./dictionary_merge
 car auto
 cellphone handy
 dog hund
 fish fisch
 house haus
 table tisch

How it works...
The std::merge algorithm accepts two pairs of begin/end iterators, which denote the input
ranges. These ranges must be sorted. The fifth parameter is an output iterator that accepts
the incoming items during the merge.

There is also a variant called std::inplace_merge. This algorithm does the same as the
other, but it does not need an output iterator because it works in place, as the name already
suggests. It takes three parameters: a begin iterator, a middle iterator, and an end iterator.
These iterators must all reference data in the same data structure. The middle iterator is at
the same time the end iterator of the first range, and the begin iterator of the second range.
This means that this algorithm handles a single range, which actually consists of two
consecutive ranges, such as, for example, {A, C, B, D}. The first subrange is {A, C} and
the second subrange is {B, D}. The std::inplace_merge algorithm can then merge both
within the same data structure, which results in {A, B, C, D}.

6
Advanced Use of STL

Algorithms
We will cover the following recipes in this chapter:

Implementing a trie class using STL algorithms
Implementing a search input suggestion generator with tries
Implementing the Fourier transform formula with STL numeric algorithms
Calculating the error sum of two vectors
Implementing an ASCII Mandelbrot renderer
Building our own algorithm - split
Composing useful algorithms from standard algorithms - gather
Removing consecutive whitespace between words
Compressing and decompressing strings

Introduction
In the last chapter, we visited basic STL algorithms and performed simple tasks with them
in order to get a feeling of the typical STL interface: most STL algorithms accept one or more
ranges in the form of iterator pairs as input/output parameters. They often also accept
predicate functions, custom comparison functions, or transformation functions. In the end,
they mostly return iterators again because these can often be fed into some other algorithm
afterward.

Advanced Use of STL Algorithms

[211]

While STL algorithms aim to be minimal, their interfaces also try to be as general as
possible. This enables maximum code reuse potential but does not always look too pretty.
An experienced C++ coder who knows all algorithms has a better time reading other
people's code if it tries to express as many ideas using STL algorithms as possible. This
leads to a maximized common ground of comprehension between coder and reader. A
programmer's brain can simply parse the name of a well-known algorithm more quickly
than it can understand a complex loop, which does a mainly similar, but in some detail a
slightly different, job.

At this point, we are using STL data structures so intuitively that we can nicely avoid
pointers, raw arrays, and other crude legacy structures. The next step is lifting our
comprehension of STL algorithms up to the levels where we can avoid the use of
handcrafted loop-control-structure complexes by expressing them in terms of well-known
STL algorithms. Often, this is a real improvement because code becomes simply shorter and
more readable while at the same time being more general and data-structure agnostic. It is
practically always possible to avoid writing handcrafted loops and taking an algorithm out
of the std namespace instead, but sometimes, it admittedly leads to awkward code. We are
not going to differentiate between what is awkward and what is not; we'll only explore the
possibilities.

In this chapter, we will use STL algorithms in creative ways in order to look for new
horizons and to see how things can be implemented with modern C++. On the way, we will
implement our own STL-like algorithms, which can easily be combined with existing data
structures and other algorithms designed in the same way. We will also combine existing
STL algorithms to get new algorithms, which were not there before. Such combined
algorithms allow for more complex algorithms on top of the existing ones, while they are
themselves extremely short and readable this way. While on this little trip, we will also see
where exactly STL algorithms suffer from reusability or prettiness. Only when we know all
the ways well can we best decide which way is the right one.

Implementing a trie class using STL
algorithms
The so-called trie data structure poses an interesting way to store data in an easily
searchable manner. When segmenting sentences of text into lists of words, it is often
possible to combine the first few words that some sentences have in common.

Advanced Use of STL Algorithms

[212]

Let's have a look at the following diagram, where the sentences "hi how are you" and
"hi how do you do" are saved in a tree-like data structure. The first words they have in
common are "hi how", and then they differ and split up like a tree:

Because the trie data structure combines common prefixes, it is also called prefix tree. It is
very easy to implement such a data structure with what the STL gives us already. This
section concentrates on implementing our own trie class.

How to do it...
In this section, we will implement our own prefix tree only made from STL data structures
and algorithms.

We will include all the headers from the STL parts we use and declare that we1.
use the std namespace by default:

 #include <iostream>
 #include <optional>
 #include <algorithm>
 #include <functional>
 #include <iterator>
 #include <map>
 #include <vector>
 #include <string>

 using namespace std;

The entire program revolves around a trie for which we have to implement a2.
class first. In our implementation, a trie is basically a recursive map of maps.
Every trie node contains a map, which maps from an instance of the payload type
T to the next trie node:

 template <typename T>
 class trie
 {
 map<T, trie> tries;

Advanced Use of STL Algorithms

[213]

The code for inserting new item sequences is simple. The user provides a3.
begin/end iterator pair and we loop through it recursively. If the user input
sequence is {1, 2, 3}, then we look up 1 in the subtrie and then look up 2 in
the next subtrie, in order to get the subtrie for 3. If any of those subtries did not
exist before, they are implicitly added by the [] operator of std::map:

 public:
 template <typename It>
 void insert(It it, It end_it) {
 if (it == end_it) { return; }
 tries[*it].insert(next(it), end_it);
 }

We also define convenience functions, which enable the user to just provide a4.
container of items, which are then automatically queried for iterators:

 template <typename C>
 void insert(const C &container) {
 insert(begin(container), end(container));
 }

In order to allow the user to write my_trie.insert({"a", "b", "c"});, we5.
must help the compiler a bit to correctly deduce all the types from that line, so we
add a function, which overloads the insert interface with an initializer_list
parameter:

 void insert(const initializer_list<T> &il) {
 insert(begin(il), end(il));
 }

We will also want to see what's in a trie, so we need a print function. In order to6.
print, we can do a depth-first-search through the trie. On the way from the root
node down to the first leaf, we record all payload items we have seen already.
This way, we have a complete sequence together once we reach the leaf, which is
trivially printable. We see that we reached a leaf when tries.empty() is true.
After the recursive print call, we pop off the last added payload item again:

 void print(vector<T> &v) const {
 if (tries.empty()) {
 copy(begin(v), end(v),
 ostream_iterator<T>{cout, " "});
 cout << '\n';
 }
 for (const auto &p : tries) {
 v.push_back(p.first);

Advanced Use of STL Algorithms

[214]

 p.second.print(v);
 v.pop_back();
 }
 }

The recursive print function passes around a reference to a printable list of7.
payload items, but the user should call it without any parameters. Therefore, we
define a parameterless print function, which constructs the helper list object:

 void print() const {
 vector<T> v;
 print(v);
 }

Now that we can construct and print tries, we may want to search for subtries.8.
The idea is that if the trie contains sequences such as {a, b, c} and {a, b, d,
e}, and we give it a sequence, {a, b}, for search, it would return us the subtrie
that contains the {c} and {d, e} parts. If we find the subtrie, we return a const
reference to it. The possibility exists that there is no such subtrie in case the trie
does not contain the sequence we are searching for. In such cases, we still need to
return something. The std::optional is a nice helper because we can return an
empty optional object if there is no match:

 template <typename It>
 optional<reference_wrapper<const trie>>
 subtrie(It it, It end_it) const {
 if (it == end_it) { return ref(*this); }
 auto found (tries.find(*it));
 if (found == end(tries)) { return {}; }
 return found->second.subtrie(next(it), end_it);
 }

Similar to the insert method, we provide a one-parameter version of the9.
subtrie method, which automatically takes iterators from the input container:

 template <typename C>
 auto subtrie(const C &c) {
 return subtrie(begin(c), end(c));
 }
 };

Advanced Use of STL Algorithms

[215]

That's already it. Let's put the new trie class to use in our main function by10.
instantiating a trie specialized on std::string objects and fill it with some
example content:

 int main()
 {
 trie<string> t;
 t.insert({"hi", "how", "are", "you"});
 t.insert({"hi", "i", "am", "great", "thanks"});
 t.insert({"what", "are", "you", "doing"});
 t.insert({"i", "am", "watching", "a", "movie"});

Let's first print the whole trie:11.

 cout << "recorded sentences:\n";
 t.print();

Then we obtain the subtrie for all the input sentences that start with "hi", and12.
print it:

 cout << "\npossible suggestions after \"hi\":\n";
 if (auto st (t.subtrie(initializer_list<string>{"hi"}));
 st) {
 st->get().print();
 }
 }

Compiling and running the program shows that it does indeed return us only the13.
two sentences that start with "hi", when we query the trie for exactly that
subtrie:

 $./trie
 recorded sentences:
 hi how are you
 hi i am great thanks
 i am watching a movie
 what are you doing
 possible suggestions after "hi":
 how are you
 i am great thanks

Advanced Use of STL Algorithms

[216]

How it works...
Interestingly, the code for word sequence insertion is shorter and simpler than the code for
looking up a given word sequence in a subtrie. So, let's first have a look at the insertion code:

template <typename It>
void trie::insert(It it, It end_it) {
 if (it == end_it) { return; }
 tries[*it].insert(next(it), end_it);
}

The pair of iterators, it and end_it, represent the word sequence to be inserted. The
tries[*it] element looks up the first word in the sequence in the subtrie, and then,
.insert(next(it), end_it) restarts the same function on that lower subtrie, with the
iterator one word further advanced. The if (it == end_it) { return; } line just
aborts the recursion. The empty return statement does nothing, which is a bit weird at first.
All the insertion happens in the tries[*it] statement. The bracket operator [] of
std::map either returns an existing item for the given key or it creates one with that key.
The associated value (the mapped type is a trie in this recipe) is constructed from its default
constructor. This way, we are implicitly creating a new trie branch whenever we are looking
up unknown words.

Looking up in a subtrie looks more complicated because we were not able to hide so much
in implicit code:

template <typename It>
optional<reference_wrapper<const trie>>
subtrie(It it, It end_it) const {
 if (it == end_it) { return ref(*this); }
 auto found (tries.find(*it));
 if (found == end(tries)) { return {}; }

 return found->second.subtrie(next(it), end_it);
}

This code basically revolves around the auto found (tries.find(*it)); statement.
Instead of looking up the next deeper trie node using the bracket operator ([]), we use
find. If we use the [] operator for lookups, the trie will create missing items for us, which is
not what we want when just looking up whether an item exists! (By the way, try doing that.
The class method is const, so this will not even be possible. This can be quite a life saver,
which helps us in preventing bugs.)

Advanced Use of STL Algorithms

[217]

Another scary looking detail is the return type, optional<reference_wrapper<const
trie>>. We chose std::optional as the wrapper because it is possible that there is no
such subtrie for the input sequence we are looking for. If we only inserted "hello my
friend", there will be no "goodbye my friend" sequence to look up. In such cases, we
just return {}, which gives the caller an empty optional object. This still does not explain
why we use reference_wrapper instead of just writing optional<const trie &>. The
point here is that an optional instance with a member variable of the trie& type is not
reassignable and hence would not compile. Implementing a reference using
reference_wrapper leads to reassignable objects.

Implementing a search input suggestion
generator with tries
When entering something into a search engine on the Internet, the interface often tries to
guess how the full search query will look. This guessing is usually based on popular search
queries from the past. Sometimes, such search engine guesses are quite funny because it
appears that people type weird queries into search engines.

In this section, we are going to use the trie class that we implemented in the previous recipe
and build a little search query suggestion engine.

Advanced Use of STL Algorithms

[218]

How to do it...
In this section, we will implement a terminal app, which accepts some input and then tries
to guess what the user might want to look for, based on a cheap text file database:

As always, includes come first, and we define that we use the std namespace:1.

 #include <iostream>
 #include <optional>
 #include <algorithm>
 #include <functional>
 #include <iterator>
 #include <map>
 #include <list>
 #include <string>
 #include <sstream>
 #include <fstream>

 using namespace std;

We use the trie implementation from the trie recipe:2.

 template <typename T>
 class trie
 {
 map<T, trie> tries;
 public:
 template <typename It>
 void insert(It it, It end_it) {
 if (it == end_it) { return; }
 tries[*it].insert(next(it), end_it);
 }

 template <typename C>
 void insert(const C &container) {
 insert(begin(container), end(container));
 }
 void insert(const initializer_list<T> &il) {
 insert(begin(il), end(il));
 }
 void print(list<T> &l) const {
 if (tries.empty()) {
 copy(begin(l), end(l),
 ostream_iterator<T>{cout, " "});
 cout << '\n';
 }
 for (const auto &p : tries) {

Advanced Use of STL Algorithms

[219]

 l.push_back(p.first);
 p.second.print(l);
 l.pop_back();
 }
 }
 void print() const {
 list<T> l;
 print(l);
 }
 template <typename It>
 optional<reference_wrapper<const trie>>
 subtrie(It it, It end_it) const {
 if (it == end_it) { return ref(*this); }
 auto found (tries.find(*it));
 if (found == end(tries)) { return {}; }
 return found->second.subtrie(next(it), end_it);
 }
 template <typename C>
 auto subtrie(const C &c) const {
 return subtrie(begin(c), end(c));
 }
 };

Let's add a little helper function that prints a line that prompts the user to enter3.
some text:

 static void prompt()
 {
 cout << "Next input please:\n > ";
 }

Advanced Use of STL Algorithms

[220]

In the main function, we open a text file, which acts as our sentence database. We4.
read that text file line by line and feed those lines into a trie:

 int main()
 {
 trie<string> t;
 fstream infile {"db.txt"};
 for (string line; getline(infile, line);) {
 istringstream iss {line};
 t.insert(istream_iterator<string>{iss}, {});
 }

Now that we have constructed the trie from the content in the text file, we need to5.
implement an interface for the user to query it. We prompt the user to enter some
text and wait for a whole line of input:

 prompt();
 for (string line; getline(cin, line);) {
 istringstream iss {line};

With that text input, we query the trie in order to get a subtrie from it. If we have6.
such an input sequence in the text file already, then we can print how the input
can be continued, just as in the search engine suggestion feature. If we do not find
a matching subtrie, we just tell the user:

 if (auto st (t.subtrie(istream_iterator<string>{iss}, {}));
 st) {
 cout << "Suggestions:\n";
 st->get().print();
 } else {
 cout << "No suggestions found.\n";
 }

Afterward, we print the prompt text again and wait for the next line of user7.
input. That's it.

 cout << "----------------\n";
 prompt();
 }
 }

Advanced Use of STL Algorithms

[221]

Before thinking about launching the program, we need to fill some content into8.
db.txt. The input can be really anything, and it does not even need to be sorted.
Each line of text will be one trie sequence:

 do ghosts exist
 do goldfish sleep
 do guinea pigs bite
 how wrong can you be
 how could trump become president
 how could this happen to me
 how did bruce lee die
 how did you learn c++
 what would aliens look like
 what would macgiver do
 what would bjarne stroustrup do
 ...

We need to create db.txt before we can run the program. Its content could look9.
like this:

 hi how are you
 hi i am great thanks
 do ghosts exist
 do goldfish sleep
 do guinea pigs bite
 how wrong can you be
 how could trump become president
 how could this happen to me
 how did bruce lee die
 how did you learn c++
 what would aliens look like
 what would macgiver do
 what would bjarne stroustrup do
 what would chuck norris do
 why do cats like boxes
 why does it rain
 why is the sky blue
 why do cats hate water
 why do cats hate dogs
 why is c++ so hard

Advanced Use of STL Algorithms

[222]

Compiling and running the program and entering some input looks like the10.
following:

 $./word_suggestion
 Next input please:
 > what would
 Suggestions:
 aliens look like
 bjarne stroustrup do
 chuck norris do
 macgiver do

 Next input please:
 > why do
 Suggestions:
 cats hate dogs
 cats hate water
 cats like boxes

 Next input please:
 >

How it works...
How a trie works was explained in the last recipe, but how we fill it and how we query it
looks a bit strange here. Let's have a closer look at the code snippet that fills the empty trie
with the content of the text database file:

fstream infile {"db.txt"};
for (string line; getline(infile, line);) {
 istringstream iss {line};
 t.insert(istream_iterator<string>{iss}, {});
}

The loop fills the string line with the content of the text file, line by line. Then, we copy the
string into an istringstream object. From such an input stream object, we can create an
istream_iterator, which is useful because our trie does not only accept a container
instance for looking up subtries but also primarily iterators. This way, we do not need to
construct a vector or a list of words and can directly consume the string. The last piece of
unnecessary memory allocations could be avoided by moving the content of line into iss.
Unfortunately, std::istringstream does not provide a constructor that accepts
std::string values to be moved. It will copy its input string, nevertheless.

Advanced Use of STL Algorithms

[223]

When reading the user's input to look it up in the trie, we use exactly the same strategy but
we do not use an input file stream. We use std::cin, instead. This works completely
identically for our use case because trie::subtrie works with iterators just as
trie::insert does.

There's more...
It is possible to add counter variables to each node of the trie. This way, it is possible to count
how often a prefix occurs in some input. From that, we could sort our suggestions by their
occurrence frequency, which is actually what search engines do. Word suggestions for
smartphone touchscreen text input could also be implemented this way.

This modification is left as an exercise for the reader.

Implementing the Fourier transform formula
with STL numeric algorithms
The Fourier transformation is a very important and famous formula in signal processing. It
was invented nearly 200 years ago, but with computers, the number of use cases for it really
skyrocketed. It is used in audio/image/video compression, audio filters, medical imaging
devices, cell phone apps that identify music tracks while listening to them on the fly, and so
on.

Because of the vastness of general numeric application scenarios (not only because of the
Fourier transformation of course), the STL also tries to be useful in the context of numeric
computation. The Fourier transformation is only one example among them but a tricky one
too. The formula itself looks like the following:

Advanced Use of STL Algorithms

[224]

The transformation it describes is basically a sum. Each element of the sum is the
multiplication of a data point of the input signal vector, and the expression exp(-2 * i * ...).
The maths behind this is a bit scary for everyone who does not know about complex
numbers (or who just does not like maths), but it is also not really necessary to completely
understand the maths in order to implement it. When having a close look at the formula, it
says that the sum symbol loops over every data point of the signal (which is N elements
long) using the loop variable j. The variable k is another loop variable because the Fourier
transformation is not for calculating a single value, but a vector of values. In this vector,
every data point represents the intensity and phase of a certain repetitive wave frequency,
which is or is not a part of the original signal. When implementing this with manual loops,
we will end up with code similar to the following:

csignal fourier_transform(const csignal &s) {
 csignal t(s.size());
 const double pol {-2.0 * M_PI / s.size()};

 for (size_t k {0}; k < s.size(); ++k) {
 for (size_t j {0}; j < s.size(); ++j) {
 t[k] += s[j] * polar(1.0, pol * k * j);
 }
 }
 return t;
}

The csignal type may be an std::vector vector of complex numbers. For complex
numbers, there is an std::complex STL class, which helps represent those. The
std::polar function basically does the exp(-i * 2 * ...) part.

This works well already, but we are going to implement it using STL tools.

How to do it...
In this section, we are going to implement the Fourier transformation and its backward
transformation and then play around with it to transform some signals:

First, we include all the headers and declare that we use the std namespace:1.

 #include <iostream>
 #include <complex>
 #include <vector>
 #include <algorithm>
 #include <iterator>
 #include <numeric>

Advanced Use of STL Algorithms

[225]

 #include <valarray>
 #include <cmath>

 using namespace std;

A data point of a signal is a complex number and shall be represented by2.
std::complex, specialized on the double type. This way, the type alias cmplx
stands for two coupled double values, which represent the real and the imaginary
parts of a complex number. A whole signal is a vector of such items, which we
alias to the csignal type:

 using cmplx = complex<double>;
 using csignal = vector<cmplx>;

In order to iterate over an up-counting numeric sequence, we take the numeric3.
iterator from the numeric iterator recipe. The variables k and j in the formula
shall iterate over such sequences:

 class num_iterator {
 size_t i;
 public:
 explicit num_iterator(size_t position) : i{position} {}
 size_t operator*() const { return i; }
 num_iterator& operator++() {
 ++i;
 return *this;
 }
 bool operator!=(const num_iterator &other) const {
 return i != other.i;
 }
 };

Advanced Use of STL Algorithms

[226]

The Fourier transformation function shall just take a signal and return a new4.
signal. The returned signal represents the Fourier transformation of the input
signal. As the back transformation from a Fourier transformed signal back to the
original signal is very similar, we provide an optional bool parameter, which
chooses the transformation direction. Note that bool parameters are generally
bad practice, especially if we use multiple bool parameters in a function
signature. Here we just have one for brevity.
The first thing we do is allocate a new signal vector with the size of the initial
signal:

 csignal fourier_transform(const csignal &s, bool back = false)
 {
 csignal t (s.size());

There are two factors in the formula, which always look the same. Let's pack5.
them in their own variables:

 const double pol {2.0 * M_PI * (back ? -1.0 : 1.0)};
 const double div {back ? 1.0 : double(s.size())};

The std::accumulate algorithm is a fitting choice for executing formulas that6.
sum up items. We are going to use accumulate on a range of up-counting
numeric values. From these values, we can form the individual summands of
each step. The std::accumulate algorithm calls a binary function on every step.
The first parameter of this function is the current value of the part of sum that was
already calculated in the previous steps, and its second parameter is the next
value from the range. We look up the value of signal s at the current position and
multiply it with the complex factor, pol. Then, we return the new partly sum.
The binary function is wrapped into another lambda expression because we are
going to use different values of j for every accumulate call. Because this is a
two-dimensional loop algorithm, the inner lambda is for the inner loop and the
outer lambda is for the outer loop:

 auto sum_up ([=, &s] (size_t j) {
 return [=, &s] (cmplx c, size_t k) {
 return c + s[k] *
 polar(1.0, pol * k * j / double(s.size()));
 };
 });

Advanced Use of STL Algorithms

[227]

The inner loop part of the Fourier transform is now executed by7.
std::accumulate. For every j position of the algorithm, we calculate the sum
of all the summands for positions i = 0...N. This idea is wrapped into a lambda
expression, which we will execute for every data point in the resulting Fourier
transformation vector:

 auto to_ft ([=, &s](size_t j){
 return accumulate(num_iterator{0},
 num_iterator{s.size()},
 cmplx{},
 sum_up(j))
 / div;
 });

None of the Fourier code has been executed until this point. We only prepared a8.
lot of functional code, which we'll put to action now. An std::transform call
will generate values j = 0...N, which is our outer loop. The transformed values all
go to the vector t, which we then return to the caller:

 transform(num_iterator{0}, num_iterator{s.size()},
 begin(t), to_ft);
 return t;
 }

We are going to implement some functions that help us set up function objects for9.
signal generation. The first one is a cosine signal generator. It returns a lambda
expression that can generate a cosine signal with the period length that was
provided as a parameter. The signal itself can be of arbitrary length, but it has a
fixed period length. A period length of N means that the signal will repeat itself
after N steps. The lambda expression does not accept any parameters. We can call
it repeatedly, and for every call, it returns us the signal data point of the next
point in time:

 static auto gen_cosine (size_t period_len){
 return [period_len, n{0}] () mutable {
 return cos(double(n++) * 2.0 * M_PI / period_len);
 };
 }

Advanced Use of STL Algorithms

[228]

Another signal we are going to generate is the square wave. It oscillates between10.
the values -1 and +1 and has no other values than those. The formula looks
complicated, but it simply transforms the linearly up-counting value n to +1 and
-1, with an oscillating period length of period_len.
Note that we initialize n to a different value from 0 this time. This way, our
square wave starts at the phase where its output values begin at +1:

 static auto gen_square_wave (size_t period_len)
 {
 return [period_len, n{period_len*7/4}] () mutable {
 return ((n++ * 2 / period_len) % 2) * 2 - 1.0;
 };
 }

Generating an actual signal from such generators can be achieved by allocating a11.
new vector and filling it with the values generated from repeating signal
generator function calls. The std::generate does this job. It accepts a begin/end
iterator pair and a generator function. For every valid iterator position, it does
*it = gen(). By wrapping this code into a function, we can easily generate
signal vectors:

 template <typename F>
 static csignal signal_from_generator(size_t len, F gen)
 {
 csignal r (len);
 generate(begin(r), end(r), gen);
 return r;
 }

In the end, we need to print the resulting signals. We can simply print a signal by12.
copying its values into an output stream iterator, but we need to transform the
data first because the data points of our signals are complex value pairs. At this
point, we are only interested in the real value part of every data point; hence, we
throw it through an std::transform call, which extracts only this part:

 static void print_signal (const csignal &s)
 {
 auto real_val ([](cmplx c) { return c.real(); });
 transform(begin(s), end(s),
 ostream_iterator<double>{cout, " "}, real_val);
 cout << '\n';
 }

Advanced Use of STL Algorithms

[229]

The Fourier formula is now implemented, but we have no signals to transform13.
yet. That is what we do in the main function. Let's first define a standard signal
length to which all the signals comply.

 int main()
 {
 const size_t sig_len {100};

Let's now generate signals, transform them, and print them, which happens in14.
the next three steps. The first step is to generate a cosine signal and a square wave
signal. Both have the same total signal length and period length:

 auto cosine (signal_from_generator(sig_len,
 gen_cosine(sig_len / 2)));
 auto square_wave (signal_from_generator(sig_len,
 gen_square_wave(sig_len / 2)));

We have a cosine function and a square wave signal now. In order to generate a15.
third one in the middle between them, we take the square wave signal and
calculate its Fourier transform (saved in the trans_sqw vector). The Fourier
transform of a square wave has a specific form, and we are going to manipulate it
a bit. All items from index 10 till (signal_length - 10) are set to 0.0. The
rest remains untouched. Transforming this altered Fourier transformation back to
the signal time representation will give us a different signal. We will see how that
looks in the end:

 auto trans_sqw (fourier_transform(square_wave));
 fill (next(begin(trans_sqw), 10), prev(end(trans_sqw), 10), 0);
 auto mid (fourier_transform(trans_sqw, true));

Now we have three signals: cosine, mid, and square_wave. For every signal,16.
we print the signal itself and its Fourier transformation. The output of the whole
program will consist of six very long lines of printed double value lists:

 print_signal(cosine);
 print_signal(fourier_transform(cosine));
 print_signal(mid);
 print_signal(trans_sqw);
 print_signal(square_wave);
 print_signal(fourier_transform(square_wave));
 }

Compiling and running the program leads to the terminal getting filled with lots17.
of numeric values. If we plot the output, we get the following image:

Advanced Use of STL Algorithms

[230]

How it works...
This program contains two complicated sections. One is the Fourier transformation itself,
and the other is the generation of signals with mutable lambda expressions.

Let's concentrate on the Fourier transformation first. The core of the raw loop
implementation (which we did not use for our implementation but had a look at in the
introduction) looks like the following:

for (size_t k {0}; k < s.size(); ++k) {
 for (size_t j {0}; j < s.size(); ++j) {
 t[k] += s[j] * polar(1.0, pol * k * j / double(s.size()));
 }
}

Advanced Use of STL Algorithms

[231]

With the STL algorithms, std::transform and std::accumulate, we wrote code, which
can be summarized to the following pseudo code:

transform(num_iterator{0}, num_iterator{s.size()}, ...
 accumulate((num_iterator0}, num_iterator{s.size()}, ...
 c + s[k] * polar(1.0, pol * k * j / double(s.size()));

The result is exactly the same compared with the loop variant. This is arguably an example
situation where the strict use of STL algorithms does not lead to better code. Nevertheless,
this algorithm implementation is agnostic over the data structure choice. It would also work
on lists (although that would not make too much sense in our situation). Another upside is
that the C++17 STL algorithms are easy to parallelize (which we examine in another chapter
of this book), whereas raw loops have to be restructured to support multiprocessing (unless
we use external libraries like OpenMP for example, but these do actually restructure the
loops for us).

The other complicated part was the signal generation. Let's have another look at
gen_cosine:

static auto gen_cosine (size_t period_len)
{
 return [period_len, n{0}] () mutable {
 return cos(double(n++) * 2.0 * M_PI / period_len);
 };
}

Each instance of the lambda expression represents a function object that modifies its own
state on every call. Its state consists of the variables, period_len and n. The n variable is
the one which is modified on every call. The signal has a different value at every time point,
and n++ represents the increasing time points. In order to get an actual signal vector out of
it, we created the helper signal_from_generator:

template <typename F>
static auto signal_from_generator(size_t len, F gen)
{
 csignal r (len);
 generate(begin(r), end(r), gen);
 return r;
}

Advanced Use of STL Algorithms

[232]

This helper allocates a signal vector with a length of choice and calls std::generate to fill
it with data points. For every item of the vector r, it calls the function object gen once,
which is just the kind of self-modifying function object we can create with gen_cosine.

Unfortunately, the STL way does not make this code more elegant. As
soon as the ranges library joins the STL club (which is hopefully the case
with C++20), this will most probably change.

Calculating the error sum of two vectors
There are different possibilities to calculate the numerical error between a target value and
an actual value. Measuring the difference between signals consisting of many data points
usually involves loops and subtraction of corresponding data points, and so on.

One simple formula to calculate this error between a signal a and a signal b is the following:

For every i, it calculates a[i] - b[i], squares that difference (this way, negative and positive
differences become comparable), and, finally, sums those values up. This is again a situation
where one could use a loop, but for fun reasons, we will do it with an STL algorithm. The
good thing is that we get data-structure independence for free this way. Our algorithm will
work on vectors and on list-like data structures, where no direct indexing is possible.

How to do it...
In this section, we are going to create two signals and calculate their error sum:

As always, the include statements come first. Then, we declare that we use the1.
std namespace:

 #include <iostream>
 #include <cmath>
 #include <algorithm>
 #include <numeric>

Advanced Use of STL Algorithms

[233]

 #include <vector>
 #include <iterator>

 using namespace std;

We are going to calculate the error sum of two signals. The two signals will be a2.
sine wave and a copy of it, but with a different value type--the original sine wave
is saved in a vector of double variables and its copy is saved in a vector of int
variables. Because copying a value from a double variable to an int variable
cuts its decimal part after the point, we have some loss. Let's name the vector of
double values as, which stands for analog signal and the vector of int values ds,
which stands for digital signal. The error sum will then later tell us how large the
loss actually is:

 int main()
 {
 const size_t sig_len {100};
 vector<double> as (sig_len); // a for analog
 vector<int> ds (sig_len); // d for digital

In order to generate a sine wave signal, we implement a little lambda expression3.
with a mutable counter value n. We can call it as often as we want, and for every
call, it will return us the value for the next point in time of a sine wave. The
std::generate call fills the signal vector with the generated signal, and the
std::copy call copies all the values from the vector of double variables to the
vector of int variables afterward:

 auto sin_gen ([n{0}] () mutable {
 return 5.0 * sin(n++ * 2.0 * M_PI / 100);
 });
 generate(begin(as), end(as), sin_gen);
 copy(begin(as), end(as), begin(ds));

Let's first print the signals, as this way, they can be plotted later:4.

 copy(begin(as), end(as),
 ostream_iterator<double>{cout, " "});
 cout << '\n';
 copy(begin(ds), end(ds),
 ostream_iterator<double>{cout, " "});
 cout << '\n';

Advanced Use of STL Algorithms

[234]

Now to the actual error sum, we use std::inner_product because it can easily5.
be adapted to calculate the difference between every two corresponding elements
of our signal vectors. It will iterate through both the ranges, pick items at the
same corresponding positions in the ranges, calculate the difference between
them, square it, and accumulate the results:

 cout << inner_product(begin(as), end(as), begin(ds),
 0.0, std::plus<double>{},
 [](double a, double b) {
 return pow(a - b, 2);
 })
 << '\n';
 }

Compiling and running the program gives us two long lines of signal output and6.
a third line, which contains a single output value, which is the error between both
the signals. The error is 40.889. If we calculate the error in a continuous manner,
first for the first pair of items, then for the first two pairs of items, then for the
first three pairs of items, and so on, then we get the accumulated error curve,
which is visible on the plotted graph as shown:

Advanced Use of STL Algorithms

[235]

How it works...
In this recipe, we stuffed the task of looping through two vectors, getting the difference
between their corresponding values, squaring them, and finally summing them up into one
std::inner_product call. On the way, the only code we crafted ourselves was the lambda
expression [](double a, double b) { return pow(a - b, 2); }, which takes the
difference of its arguments and squares it.

A glance at a possible implementation of std::inner_product shows us why and how
this works:

template<class InIt1, class InIt2, class T, class F, class G>
T inner_product(InIt1 it1, InIt1 end1, InIt2 it2, T val,
 F bin_op1, G bin_op2)
{
 while (it1 != end1) {
 val = bin_op1(val, bin_op2(*it1, *it2));
 ++it1;
 ++it2;
 }
 return value;
}

The algorithm accepts a pair of begin/end iterators of the first range, and another begin
iterator of the second range. In our case, they are the vectors from which we want to
calculate the error sum. The next character is the initial value val. We have initialized it to
0.0. Then, the algorithm accepts two binary functions, namely bin_op1 and bin_op2.

At this point, we might realize that this algorithm is really similar to std::accumulate.
The only difference is that std::accumulate works on only one range. If we exchange the
bin_op2(*it1, *it2) statement with *it, then we have basically restored the
accumulate algorithm. We can, therefore, regard std::inner_product as a version of
std::accumulate that zips a pair of input ranges.

In our case, the zipper function is pow(a - b, 2), and that's it. For the other function,
bin_op1, we chose std::plus<double> because we want all the squares to be summed
together.

Advanced Use of STL Algorithms

[236]

Implementing an ASCII Mandelbrot renderer
In 1975, the mathematician Benoît Mandelbrot coined the term fractal. A fractal is a
mathematical figure or set, which has certain interesting mathematical properties, but in the
end, it just looks like a piece of art. Fractals also look infinitely repetitive when being zoomed
in. One of the most popular fractals is the Mandelbrot set, which can be seen on the following
poster:

A picture of the Mandelbrot set can be generated by iterating a specific formula:

Advanced Use of STL Algorithms

[237]

The variables z and c are complex numbers. The Mandelbrot set consists of all such values of
c for which the formula converges if it is applied often enough. This is the colored part of the
poster. Some values converge earlier, some converge later, so they can be visualized with
different colors. Some do not converge at all--these are painted black.

The STL comes with the useful std::complex class, and we will try to implement the
formula without explicit loops, just for the sake of getting to know the STL better.

How to do it...
In this section, we are going to print the same image from the wall poster as a little piece of
ASCII art in the terminal:

First, we include all the headers and declare that we use the std namespace:1.

 #include <iostream>
 #include <algorithm>
 #include <iterator>
 #include <complex>
 #include <numeric>
 #include <vector>

 using namespace std;

The Mandelbrot set and formula operate on complex numbers. So, we define a2.
type alias, cmplx to be of class std::complex, specializing on double values.

 using cmplx = complex<double>;

It is possible to hack together all the code for an ASCII Mandelbrot image in3.
something around 20 lines of code, but we will implement each logical step in a
separate form, and then assemble all the steps in the end. The first step is
implementing a function that scales from integer coordinates to floating point
coordinates. What we have in the beginning is columns and rows of character
positions on the terminal. What we want are complex-typed coordinates in the
coordinate system of the Mandelbrot set. For this, we implement a function that
accepts parameters that describe the geometry of the user terminal coordinate
system, and the system we want to transform to. Those values are used to build a
lambda expression, which is returned. The lambda expression accepts an int
coordinate and returns a double coordinate:

 static auto scaler(int min_from, int max_from,
 double min_to, double max_to)

Advanced Use of STL Algorithms

[238]

 {
 const int w_from {max_from - min_from};
 const double w_to {max_to - min_to};
 const int mid_from {(max_from - min_from) / 2 + min_from};
 const double mid_to {(max_to - min_to) / 2.0 + min_to};
 return [=] (int from) {
 return double(from - mid_from) / w_from * w_to + mid_to;
 };
 }

Now we can transform points on one dimension, but the Mandelbrot set exists in4.
a two-dimensional coordinate system. In order to translate from one (x, y)
coordinate system to another, we combine an x-scaler and a y-scaler and
construct a cmplx instance from their output:

 template <typename A, typename B>
 static auto scaled_cmplx(A scaler_x, B scaler_y)
 {
 return [=](int x, int y) {
 return cmplx{scaler_x(x), scaler_y(y)};
 };
 }

After being able to transform coordinates to the right dimensions, we can now5.
implement the Mandelbrot formula. The function that we're implementing now
knows absolutely nothing about the concept of terminal windows or linear plane
transformations, so we can concentrate on the Mandelbrot math. We square z
and add c to it in a loop until its abs value is smaller than 2. For some
coordinates, this never happens, so we also break out of the loop if the number of
iterations exceeds max_iterations. In the end, we return the number of
iterations we had to do until the abs value converged:

 static auto mandelbrot_iterations(cmplx c)
 {
 cmplx z {};
 size_t iterations {0};
 const size_t max_iterations {1000};
 while (abs(z) < 2 && iterations < max_iterations) {
 ++iterations;
 z = pow(z, 2) + c;
 }
 return iterations;
 }

Advanced Use of STL Algorithms

[239]

We can now begin with the main function, where we define the terminal6.
dimensions and instantiate a function object, scale, which scales our coordinate
values for both axes:

 int main()
 {
 const size_t w {100};
 const size_t h {40};
 auto scale (scaled_cmplx(
 scaler(0, w, -2.0, 1.0),
 scaler(0, h, -1.0, 1.0)
));

In order to have a one-dimensional iteration over the whole image, we write7.
another transformation function that accepts a one-dimensional i coordinate. It
calculates (x, y) coordinates from that, based on our assumed line of characters
width. After breaking i down to the row and column numbers, it transforms
them with our scale function and returns the complex coordinate.

 auto i_to_xy ([=](int i) { return scale(i % w, i / w); });

What we can do now is transform from one-dimensional coordinates (the int8.
type), via two-dimensional coordinates (the (int, int) type), to Mandelbrot set
coordinates (the cmplx type), and then calculate the number of iterations from
there (the int type again). Let's combine all that in one function, which sets up
this call chain for us:

 auto to_iteration_count ([=](int i) {
 return mandelbrot_iterations(i_to_xy(i));
 });

Advanced Use of STL Algorithms

[240]

Now we can set up all the data. We assume that our resulting ASCII image is w9.
characters wide and h characters high. This can be saved in a one-dimensional
vector that has w * h elements. We fill this vector using std::iota with the
value range, 0 ... (w*h - 1). These numbers can be used as an input source for our
constructed transformation function range, which we just encapsulated in
to_iteration_count:

 vector<int> v (w * h);
 iota(begin(v), end(v), 0);
 transform(begin(v), end(v), begin(v), to_iteration_count);

That's basically it. We now have the v vector, which we initialized with one-10.
dimensional coordinates, but which then got overwritten by Mandelbrot iteration
counters. From this, we can now print a pretty image. We could just make the
terminal window w characters wide, then we would not need to print line break
symbols in between. But we can also kind of creatively misuse std::accumulate
to do the line breaks for us. The std::accumulate uses a binary function to
reduce a range. We provide it a binary function, which accepts an output iterator
(and which we will link to the terminal in the next step), and a single value from
the range. We print this value as a * character if the number of iterations is higher
than 50. Otherwise, we just print a space character. If we are on a row end
(because the counter variable n is evenly divisible by w), we print a line break
symbol:

 auto binfunc ([w, n{0}] (auto output_it, int x) mutable {
 ++output_it = (x > 50 ? '' : ' ');
 if (++n % w == 0) { ++output_it = '\n'; }
 return output_it;
 });

By calling std:accumulate on the input range, combined with our binary print11.
function and an ostream_iterator, we can flush the calculated Mandelbrot set
out to the terminal window:

 accumulate(begin(v), end(v), ostream_iterator<char>{cout},
 binfunc);
 }

Advanced Use of STL Algorithms

[241]

Compiling and running the program leads to the following output, which looks12.
like the initial detailed Mandelbrot image, but in a simplified form:

How it works...
The whole calculation took part during an std::transform call over a one-dimensional
array:

vector<int> v (w * h);
iota(begin(v), end(v), 0);
transform(begin(v), end(v), begin(v), to_iteration_count);

Advanced Use of STL Algorithms

[242]

So, what exactly happened, and why does it work this way? The to_iteration_count
function is basically a call chain from i_to_xy, over scale to mandelbrot_iterations.
The following diagram illustrates the transformation steps:

This way, we can use the index of a one-dimensional array as input, and get the number of
Mandelbrot formula iterations at the point of the two-dimensional plane, which this array
point represents. The good thing is that these three transformations are completely agnostic
about each other. Code with such a separation of concerns can be tested very nicely because
each component can be tested individually without the others. This way, it is easy to find
and fix bugs, or just reason about its correctness.

Building our own algorithm - split
In some situations, the existing STL algorithms are not enough. But nothing hinders us from
implementing our own. Before solving a specific problem, we should think about it firmly
in order to realize that many problems can be solved in generic ways. If we regularly pile
up some new library code while solving our own problems, then we are also helping our
fellow programmers when they have similar problems to solve. Key is to know when it is
generic enough and when not to go for more genericity than needed--else we end up with a
new general purpose language.

In this recipe, we are implementing an algorithm, which we will call split. It can split any
range of items at each occurrence of a specific value, and it copies the chunks that result
from that into an output range.

Advanced Use of STL Algorithms

[243]

How to do it...
In this section, we are going to implement our own STL-like algorithm called split, and
then we check it out by splitting an example string:

First things first, we include some STL library parts and declare that we use the1.
std namespace:

 #include <iostream>
 #include <string>
 #include <algorithm>
 #include <iterator>
 #include <list>

 using namespace std;

The whole algorithm this section revolves around is split. It accepts a begin/end2.
pair of input iterators, and an output iterator, which makes it similar to
std::copy or std::transform at first. The other parameters are split_val
and bin_func. The split_val parameter is the value we are searching for in the
input range, which represents a splitting point at which we cut the input interval.
The bin_func parameter is a function that transforms a pair of iterators that
mark the beginning and the end of such a split chunk subrange. We iterate
through the input range using std::find, so we jump from occurrence to
occurrence of split_val values. When splitting a long string into its individual
words, we would jump from space character to space character. On every split
value, we stop by to form a chunk and feed it into the output range:

 template <typename InIt, typename OutIt, typename T, typename F>
 InIt split(InIt it, InIt end_it, OutIt out_it, T split_val,
 F bin_func)
 {
 while (it != end_it) {
 auto slice_end (find(it, end_it, split_val));
 *out_it++ = bin_func(it, slice_end);
 if (slice_end == end_it) { return end_it; }
 it = next(slice_end);
 }
 return it;
 }

Advanced Use of STL Algorithms

[244]

Let's use the new algorithm. We construct a string that we want to split. The item3.
that marks the end of the last chunk, and the beginning of the next chunk, shall
be the dash character '-':

 int main()
 {
 const string s {"a-b-c-d-e-f-g"};

Whenever the algorithm calls its bin_func on a pair of iterators, we want to4.
construct a new string from it:

 auto binfunc ([](auto it_a, auto it_b) {
 return string(it_a, it_b);
 });

The output range will be an std::list of strings. We can now call the split5.
algorithm, which has a similar design compared to all the other STL algorithms:

 list<string> l;
 split(begin(s), end(s), back_inserter(l), '-', binfunc);

In order to see what we got, let's print the new chunked list of strings:6.

 copy(begin(l), end(l), ostream_iterator<string>{cout, "\n"});
 }

Compiling and running the program yields the following output. It contains no7.
dashes anymore and shows that it has isolated the individual words (which are,
of course, only single characters in our example string):

 $./split
 a
 b
 c
 d
 e
 f
 g

Advanced Use of STL Algorithms

[245]

How it works...
The split algorithm works in a similar manner to std::transform because it accepts a
pair of begin/end iterators of an input range and an output iterator. It does something with
the input range, which, in the end, results in assignments to the output iterator. Apart from
that, it accepts an item value called split_val and a binary function. Let's revisit the
whole implementation to fully understand it:

template <typename InIt, typename OutIt, typename T, typename F>
InIt split(InIt it, InIt end_it, OutIt out_it, T split_val, F bin_func)
{
 while (it != end_it) {
 auto slice_end (find(it, end_it, split_val));
 *out_it++ = bin_func(it, slice_end);

 if (slice_end == end_it) { return end_it; }
 it = next(slice_end);
 }
 return it;
}

The loop demands to iterate until the end of the input range. During each iteration, an
std::find call is used to find the next element in the input range, which equals to
split_val. In our case, that element is the dash character ('-') because we want to split
our input string at all the dash positions. The next dash position is now saved in
slice_end. After the loop iteration, the it iterator is put on the next item past that split
position. This way, the loop jumps directly from dash to dash, instead of over every
individual item.

In this constellation, the iterator it points to the beginning of the last slice, while
slice_end points to the end of the last slice. Both these iterators, in combination, mark the
beginning and end of the subrange that represents exactly one slice between two dash
symbols. In a string, "foo-bar-baz", this would mean that we have three loop iterations
and we get a pair of iterators every time, which surround one word. But we do not actually
want iterators but substrings. The binary function, bin_func, does just that for us. When
we called split, we gave it the following binary function:

[](auto it_a, auto it_b) {
 return string(it_a, it_b);
}

Advanced Use of STL Algorithms

[246]

The split function throws every pair of iterators through bin_func, before feeding it into
the output iterator. And we actually get string instances out of bin_func, which results in
"foo", "bar", and "baz":

There's more...
An interesting alternative to implementing our own algorithm for splitting strings would be
implementing an iterator that does the same. We are not going to implement such an iterator
at this point, but let's have a brief look at such a scenario.

The iterator would need to jump between delimiters on every increment. Whenever it is
dereferenced, it needs to create a string object from the iterator positions it currently points
to, which it could do using a binary function such as binfunc, which we used before.

If we had an iterator class called split_iterator, instead of an algorithm split, the user
code would look as follows:

string s {"a-b-c-d-e-f-g"};
list<string> l;

auto binfunc ([](auto it_a, auto it_b) {
 return string(it_a, it_b);
});

copy(split_iterator{begin(s), end(s), ‘-‘, binfunc},{}, back_inserter(l));

The downside of this approach is that implementing an iterator is usually more complicated
than a single function. Also, there are many subtle edges in iterator code that can lead to
bugs, so an iterator solution needs more tedious testing. On the other hand, it is very simple
to combine such an iterator with the other STL algorithms.

Composing useful algorithms from standard
algorithms - gather
A very nice example for the composability of STL algorithms is gather. Sean Parent,
principal scientist at Adobe Systems at the time, popularized this algorithm because it is
both useful and short. The way it is implemented, it is the ideal poster child for the idea of
STL algorithm composition.

Advanced Use of STL Algorithms

[247]

The gather algorithm operates on ranges of arbitrary item types. It modifies the order of
the items in such a way that specific items are gathered around a specific position, chosen
by the caller.

How to do it...
In this section, we will implement the gather algorithm and a bonus variation of it.
Afterward, we see how it can be put to use:

First, we add all the STL include statements. Then, we declare that we use the1.
std namespace:

 #include <iostream>
 #include <algorithm>
 #include <string>
 #include <functional>

 using namespace std;

The gather algorithm is a nice example of standard algorithm composition.2.
gather accepts a begin/end iterator pair, and another iterator gather_pos,
which points somewhere in between. The last parameter is a predicate function.
Using this predicate function, the algorithm will push all that items that do satisfy
the predicate near the gather_pos iterator. The implementation of the item
movement is done by std::stable_partition. The return value of the gather
algorithm is a pair of iterators. These iterators are returned from the
stable_partition calls, and this way, they mark the beginning and the end of
the now gathered range:

 template <typename It, typename F>
 pair<It, It> gather(It first, It last, It gather_pos, F predicate)
 {
 return {stable_partition(first, gather_pos, not_fn(predicate)),
 stable_partition(gather_pos, last, predicate)};
 }

Advanced Use of STL Algorithms

[248]

Another variant of gather is gather_sort. It basically works the same way as3.
gather, but it does not accept a unary predicate function; it accepts a binary
comparison function instead. This way, it is possible to gather the values near
gather_pos, which appear smallest or largest:

 template <typename It, typename F>
 void gather_sort(It first, It last, It gather_pos, F comp_func)
 {
 auto inv_comp_func ([&](const auto &...ps) {
 return !comp_func(ps...);
 });
 stable_sort(first, gather_pos, inv_comp_func);
 stable_sort(gather_pos, last, comp_func);
 }

Let's put those algorithms to use. We start with a predicate, which tells if a given4.
character argument is the 'a' character. We construct a string, which consists of
wildly interleaved 'a' and '_' characters:

 int main()
 {
 auto is_a ([](char c) { return c == 'a'; });
 string a {"a_a_a_a_a_a_a_a_a_a_a"};

We construct an iterator, which points to the middle of our new string. Let's call5.
gather on it and see what happens. The 'a' characters should be gathered
around the middle afterward:

 auto middle (begin(a) + a.size() / 2);

 gather(begin(a), end(a), middle, is_a);
 cout << a << '\n';

Let's call gather again, but this time, the gather_pos iterator is not in the6.
middle but the beginning:

 gather(begin(a), end(a), begin(a), is_a);
 cout << a << '\n';

In a third call, we gather items around the end iterator:7.

 gather(begin(a), end(a), end(a), is_a);
 cout << a << '\n';

Advanced Use of STL Algorithms

[249]

With a last call of gather, we try to gather all the 'a' characters around the8.
middle again. This will not work as expected, and we will later see why:

 // This will NOT work as naively expected
 gather(begin(a), end(a), middle, is_a);
 cout << a << '\n';

We construct another string with underscore characters and some number values.9.
On that input sequence, we apply gather_sort. The gather_pos iterator is the
middle of the string, and the binary comparison function is std::less<char>:

 string b {"_9_2_4_7_3_8_1_6_5_0_"};
 gather_sort(begin(b), end(b), begin(b) + b.size() / 2,
 less<char>{});
 cout << b << '\n';
 }

Compiling and running the program yields the following interesting output. The10.
first three lines look like expected, but the fourth line looks like gather did
nothing to the string.
In the last line, we can see the result of the gather_short function. The numbers
appear sorted towards either direction:

 $./gather
 _____aaaaaaaaaaa_____
 aaaaaaaaaaa__________
 __________aaaaaaaaaaa
 __________aaaaaaaaaaa
 _____9743201568______

How it works...
Initially, the gather algorithm is hard to grasp because it is very short but has a seemingly
complex task. Therefore, let's step through it:

Advanced Use of STL Algorithms

[250]

The initial state is a range of items, for which we present a predicate function. In1.
the diagram, all items for which our predicate function returns true, are painted
in gray. The iterators a and c mark the whole range, and iterator b points to a
pivot element. The pivot element is the element around which we want to gather
all the gray items.
The gather algorithm calls std::stable_partition on the range [a, b) and2.
while doing that, it uses a negated version of the predicate. It negates the predicate
because std::stable_partition moves all items for which the predicate
returns true to the front. We want exactly the opposite to happen.
Another std::stable_partition call is done but, this time, on the range, [b,3.
c), and without negating the predicate. The gray items are moved to the front of
the input range, which means they are all moved towards the pivot element
pointed at by b.
The items are now gathered around b and the algorithm returns iterators to the4.
beginning and the end of the now consecutive range of gray items.

Advanced Use of STL Algorithms

[251]

We called gather multiple times on the same range. At first, we gathered all the items
around the middle of the range. Then we gathered the items around begin() and then
around end() of the range. These cases are interesting because they always lead one of the
std::stable_partition calls to operate on an empty range, which results in no action.

We did the last call to gather again with the parameters (begin, end, middle) of the
range, and that did not work. Why? At first, this looks like a bug, but actually, it is not.

Imagine the character range, "aabb", together with a predicate function, is_character_a,
which is only true for the 'a' items--if we call it with a third iterator pointing to the middle
of the character range, we would observe the same bug. The reason is that the first
stable_partition call would operate on the subrange, "aa", and the other
stable_partition call operates on the range, "bb". This series of calls cannot result in
"baab", which we initially naively hoped.

In order to get what we want in the last case, we could use
std::rotate(begin, begin + 1, end);

The gather_sort modification is basically the same as gather. The only difference is that
it does not accept a unary predicate function but a binary comparison function, just like
std::sort. And instead of calling std::stable_partition twice, it calls
std::stable_sort twice.

The negation of the comparison function cannot be done with not_fn, just like we did in
the gather algorithm because not_fn does not work on binary functions.

Removing consecutive whitespace between
words
Because strings are often read from user input, they may contain wild formatting and often
need to be sanitized. One example of this is strings containing too many whitespace.

In this section, we will implement a slick whitespace filtering algorithm, which removes
excess whitespace from strings but leaves single whitespace characters untouched. We call
that algorithm remove_multi_whitespace, and its interface will look very STL-like.

Advanced Use of STL Algorithms

[252]

How to do it...
In this section, we will implement the remove_multi_whitespace algorithm and check
out how it works:

As always, we do some includes first and then declare that we use the std1.
namespace by default:

 #include <iostream>
 #include <string>
 #include <algorithm>

 using namespace std;

We implement a new STL-style algorithm called remove_multi_whitespace.2.
This algorithm removes clustered occurrences of whitespace, but no single
spaces. This means that a string line "a b" stays unchanged, but a string like
"a b" is shrunk to "a b". In order to accomplish this, we use std::unique with
a custom binary predicate function. The std::unqiue walks through an iterable
range and always looks at consecutive pairs of payload items. Then it asks the
predicate functions whether two items are equal. If they are, then std::unique
removes one of them. Afterward, the range does not contain subranges with
equal items sitting next to each other. Predicate functions that are usually applied
in this context tell whether two items are equal. What we do, is give
std::unique a predicate, which tells if there are two consecutive spaces in order
to get those removed. Just like std::unique, we accept a pair of begin/end
iterators, and then return an iterator pointing to the new end of the range:

 template <typename It>
 It remove_multi_whitespace(It it, It end_it)
 {
 return unique(it, end_it, [](const auto &a, const auto &b) {
 return isspace(a) && isspace(b);
 });
 }

Advanced Use of STL Algorithms

[253]

That is already it. Let's construct a string that contains some unnecessary3.
whitespace:

 int main()
 {
 string s {"fooo bar \t baz"};
 cout << s << '\n';

Now, we use the erase-remove idiom on the string in order to get rid of the excess4.
whitespace characters:

 s.erase(remove_multi_whitespace(begin(s), end(s)), end(s));

 cout << s << '\n';
 }

Compiling and running the program yields the following output:5.

 $./remove_consecutive_whitespace
 fooo bar baz
 fooo bar baz

How it works...
We solved the whole complexity of the problem without any loop or manual comparison of
items. We only provided a predicate function, which tells if two given characters are
whitespace characters. Then we fed that predicate into std::unique and poof, all the excess
whitespace vanished. While this chapter also contains some recipes where we had to fight a
bit more to express our programs with STL algorithms, this algorithm is a really nice and
short example.

How does this interesting combination work in detail? Let's have a look at a possible
implementation of std::unique first:

template<typename It, typename P>
It unique(It it, It end, P p)
{
 if (it == end) { return end; }

 It result {it};
 while (++it != end) {
 if (!p(*result, *it) && ++result != it) {
 *result = std::move(*it);
 }
 }

Advanced Use of STL Algorithms

[254]

 return ++result;
}

The loop steps over the range items, while they do not satisfy the predicate condition. At
the point where an item satisfies the predicate, it moves such an item one item past the old
position, where the predicate fired the last time. The version of std::unique that does not
accept an additional predicate function checks whether two neighbor items are equal. This
way, it wipes out repeated characters as it can , for example, transform "abbbbbbc" to
"abc".

What we want is not wiping out all characters which are repetitive, but repetitive whitespace.
Therefore, our predicate does not say "both argument characters are equal", but "both argument
characters are whitespace characters".

One last thing to note is that neither std::unique nor remove_multi_whitespace really
removes character items from the underlying string. They only move characters within the
string according to their semantics and tell where its new end is. The removal of all now-
obsolete characters from the new end till the old end must still be done. This is why we
wrote the following:

s.erase(remove_multi_whitespace(begin(s), end(s)), end(s));

This adheres to the erase-remove idiom, which we already know from vectors and lists.

Compressing and decompressing strings
This section deals with a relatively popular task in coding interviews. The basic idea is a
function, which takes a string like "aaaaabbbbbbbccc" and transforms it to a shorter
string "a5b7c3". It is "a5" because there are five 'a' characters. And then it is "b7"
because there are seven 'b' characters. This is a very simple compression algorithm. For
normal text, it is of reduced utility because normal language is usually not so repetitive that
its text representation would become shorter with this compression scheme. However, it is
relatively easy to implement even if we have to do it on a whiteboard without a computer.
The tricky part is that it is easy to write a buggy code if the program is not structured very
well from the beginning. Dealing with strings is generally not a hard thing, but the chances
of implementing buffer overflow bugs lurk around a lot here if legacy C-style formatting
functions are used.

Advanced Use of STL Algorithms

[255]

Let's try an STL approach to implementing string compression and decompression using
this simple scheme.

How to do it...
In this section, we will implement simple compress and decompress functions for strings:

We include some STL libraries first, then we declare that we use the std1.
namespace:

 #include <iostream>
 #include <string>
 #include <algorithm>
 #include <sstream>
 #include <tuple>

 using namespace std;

For our cheap compression algorithm, we try to find chunks of text containing2.
ranges of the same characters, and we compress those individually. Whenever we
start at one string position, we want to find the first position where it contains a
different character. We use std::find to find the first character in the range,
which is different than the character at the current position. Afterward, we return
a tuple containing an iterator to that first different item, the character variable c,
which fills the range at hand, and the number of occurrences that this subrange
contains:

 template <typename It>
 tuple<It, char, size_t> occurrences(It it, It end_it)
 {
 if (it == end_it) { return {it, '?', 0}; }
 const char c {*it};
 const auto diff (find_if(it, end_it,
 [c](char x) { return c != x; }));
 return {diff, c, distance(it, diff)};
 }

Advanced Use of STL Algorithms

[256]

The compress algorithm continuously calls the occurrences function. This3.
way, we jump from one same character group to another. The r << c << n line
pushes the character into the output stream and then the number of occurrences
it has in this part of the input string. The output is a string stream that
automatically grows with our output. In the end, we return a string object from it,
which contains the compressed string:

 string compress(const string &s)
 {
 const auto end_it (end(s));
 stringstream r;

 for (auto it (begin(s)); it != end_it;) {
 const auto [next_diff, c, n] (occurrences(it, end_it));
 r << c << n;
 it = next_diff;
 }
 return r.str();
 }

The decompress method works similarly, but it is much simpler. It continuously4.
tries to get a character value out of the input stream and, then, the following
number. From those two values, it can construct a string containing the character
as often as the number says. In the end, we again return a string from the output
stream. By the way, this decompress function is not safe. It can be exploited
easily. Can you guess, how? We will have a look at this problem later:

 string decompress(const string &s)
 {
 stringstream ss{s};
 stringstream r;
 char c;
 size_t n;
 while (ss >> c >> n) { r << string(n, c); }
 return r.str();
 }

Advanced Use of STL Algorithms

[257]

In our main function, we construct a simple string with a lot of repetition, on5.
which the algorithm works very well. Let's print the compressed version, and
then the compressed and again decompressed version. In the end, we should get
the same string as we initially constructed:

 int main()
 {
 string s {"aaaaaaaaabbbbbbbbbccccccccccc"};
 cout << compress(s) << '\n';
 cout << decompress(compress(s)) << '\n';
 }

Compiling and running the program yields the following output:6.

 $./compress
 a9b9c11
 aaaaaaaaabbbbbbbbbccccccccccc

How it works...
This program basically revolves around two functions: compress and decompress.

The decompress function is really simple because it only consists of variable declarations, a
line of code, which actually does something, and the following return statement. The code
line which does something is the following one:

while (ss >> c >> n) { r << string(n, c); }

It continuously reads the character, c, and the counter variable, n, out of the string stream,
ss. The stringstream class hides a lot of string parsing magic from us at this point. While
that succeeds, it constructs a decompressed string chunk into the string stream, from which
the final result string can be returned back to the caller of decompress. If c = 'a' and n =
5, the expression string(n, c) will result in a string with the content, "aaaaa".

Advanced Use of STL Algorithms

[258]

The compress function is more complex. We also wrote a little helper function for it. We
called that helper function occurences. So, let's first have a glance at occurrences. The
following diagram shows how it works:

The occurences function accepts two parameters: an iterator pointing to the beginning of a
character sequence within a range and the end iterator of that range. Using find_if, it
finds the first character that is different from the character initially being pointed at. In the
diagram, this is the iterator, diff. The difference between that new position and the old
iterator position is the number of equal items (diff - it equals 6 in the diagram). After
calculating this information, the diff iterator can be reused in order to execute the next
search. Therefore, we pack diff, the character of the subrange, and the length of the
subrange into a tuple and return it.

With the information lined up like this, we can jump from subrange to subrange and push
the intermediate results into the compressed target string:

for (auto it (begin(s)); it != end_it;) {
 const auto [next_diff, c, n] (occurrences(it, end_it));
 r << c << n;
 it = next_diff;
}

There's more...
In step 4, we mentioned that the decompress function is not safe. Indeed, it can easily be
exploited.

Imagine the following input string: "a00000". Compressing it will result in the substring
"a1" because there is only one character, 'a'. That is followed by five times '0', which
will result in "05". Together, this results in the compressed string "a105". Unfortunately,
this compressed string says "105 times the character 'a'". This has nothing to do with our
initial input string. Even worse, if we decompress it, we get from a six-character string to a
105-character string. Imagine the same with larger numbers--the user can easily blow up our
heap usage because our algorithm is not prepared for such inputs.

Advanced Use of STL Algorithms

[259]

In order to prevent this, the compress function could, for example, reject input with
numbers, or it could mask them in a special way. And the decompress algorithm could
take another conditional, which puts an upper bound on the resulting string size. I am
leaving this as an exercise for you.

7
Strings, Stream Classes, and

Regular Expressions
We will cover the following recipes in this chapter:

Creating, concatenating, and transforming strings
Trimming whitespace from the beginning and end of strings
Getting the comfort of std::string without the cost of constructing
std::string objects
Reading values from user input
Counting all words in a file
Formatting your output with I/O stream manipulators
Initializing complex objects from file input
Filling containers from std::istream iterators
Generic printing with std::ostream iterators
Redirect output to files for specific code sections
Creating custom string classes by inheriting from std::char_traits
Tokenizing input with the regular expression library
Comfortably pretty printing numbers differently per context on the fly
Catching readable exceptions from std::iostream errors

Strings, Stream Classes, and Regular Expressions

[261]

Introduction
This chapter is devoted to string handling, parsing, and printing of arbitrary data. For such
jobs, STL provides its I/O stream library. The library basically consists of the following
classes, which are each depicted in gray boxes:

The arrows show the inheritance scheme of the classes. This might look very overwhelming
at first, but we will get to use most of these classes in this chapter and get familiar with
them class by class. When looking at those classes in the C++ STL documentation, we will
not find them directly with these exact names. That is because the names in the diagram are
what we see as application programmers, but they are really mostly just typedefs of classes
with a basic_ class name prefix (for example, we will have an easier job searching the STL
documentation for basic_istream rather than istream). The basic_* I/O stream classes
are templates that can be specialized for different character types. The classes in the
diagram are specialized on char values. We will use these specializations throughout the
book. If we prefix those class names with the w character, we get wistream, wostream, and
so on--these are the specialization typedefs for wchar_t instead of char, for example.

Strings, Stream Classes, and Regular Expressions

[262]

At the top of the diagram, we see std::ios_base. We will basically never use it directly,
but it is listed for completeness because all other classes inherit from it. The next
specialization is std::ios which embodies the idea of an object which maintains a stream
of data, that can be in good state, run empty of data state (EOF), or some kind of fail state.

The first specializations we are going to actually use are std::istream and
std::ostream. The "i" and the "o" prefix stand for input and output. We have seen them
in our earliest days of C++ programming in the simplest examples in form of the objects
std::cout and std::cin (but also std::cerr). These are instances of those classes,
which are always globally available. We do data output via ostream and input via
istream.

A class which inherits from both istream and ostream is iostream. It combines both
input and output capabilities. When we understand how all classes from the trio consisting
of istream, ostream and iostream can be used, we basically are ready to immediately
put all following ones to use, too:

ifstream, ofstream and fstream inherit from istream, ostream and iostream
respectively, but lift their capabilities to redirect the I/O from and to files from the
computer's filesystem.

The istringstream, ostringstream and iostringstream work pretty analogously.
They help build strings in memory, and/or consuming data from them.

Creating, concatenating, and transforming
strings
Even C++ programmers from the very old days will know about std::string. While
string handling is tedious and painful in C, especially when parsing, concatenating, copying
them, and so on, std::string is a real step forward regarding simplicity and safety.

Thanks to C++11, we don't even need to copy strings when we want to transfer ownership
to some other function or data structure anymore because we can move them. This way,
there's not much overhead involved in most cases.

Strings, Stream Classes, and Regular Expressions

[263]

The std::string got a few new features here and there over the last few standard
increments. What is completely new in C++17 is std::string_view. We will play with
both a bit (but there is another recipe, which concentrates more on std::string_view-
only features) to get a feeling of them and how they work in the C++17 era.

How to do it...
We will create strings and string views and do basic concatenation and transformation with
them in this section:

As always, we first include header files and declare that we use the std1.
namespace:

 #include <iostream>
 #include <string>
 #include <string_view>
 #include <sstream>
 #include <algorithm>

 using namespace std;

Let's first create string objects. The most obvious way is instantiating an object a2.
of class string. We control its content by giving the constructor a C-style string
(which will be embedded in the binary as a static array containing characters
after compiling). The constructor will copy it and make it the content of string
object a. Alternatively, instead of initializing it from a C-style string, we can use
the string literal operator ""s. It creates a string object on the fly. Using that to
construct object b, we can even use automatic type deduction:

 int main()
 {
 string a { "a" };
 auto b ("b"s);

Strings, Stream Classes, and Regular Expressions

[264]

The strings we just created are copying their input from the constructor argument3.
into their own buffer. In order to not copy, but reference the underlying string, we
can use string_view instances. This class does also have a literal operator, and
it is called ""sv:

 string_view c { "c" };
 auto d ("d"sv);

Okay, now let's play with our strings and string views. For both types, there are4.
operator<< overloads for the std::ostream class, so they can be printed
comfortably:

 cout << a << ", " << b << '\n';
 cout << c << ", " << d << '\n';

The string class overloads operator+, so we can add two strings and get their5.
concatenation as a result. This way, "a" + "b" results in "ab". Concatenating a
and b this way is easy. With a and c, it is not that easy, because c is not a string,
but a string_view. We have to get the string out of c first, and this can be done
by constructing a new string from c, and then adding it to a. At this point one
could ask, "Wait, why are you copying c into an intermediate string object just in
order to add it to a? Can't you avoid that copy by using c.data()?" That is a nice
idea, but it has a flaw--string_view instances do not have to carry zero-
terminated strings. And this is a problem that can lead to buffer overflows:

 cout << a + b << '\n';
 cout << a + string{c} << '\n';

Let's create a new string, which contains all of the strings and string views we just6.
created. By using std::ostringstream, we can print any variable into a stream
object that behaves exactly like std::cout, but it doesn't print to the shell.
Instead, it prints into a string buffer. After we streamed all the variables with some
separating space between them using operator<<, we can construct and print a
new string object from that with o.str():

 ostringstream o;
 o << a << " " << b << " " << c << " " << d;
 auto concatenated (o.str());
 cout << concatenated << '\n';

Strings, Stream Classes, and Regular Expressions

[265]

We can now also transform that new string by converting all its letters to upper7.
case, for example. The C library function toupper, which maps lower-case
characters to upper-case characters and leaves other characters unchanged, is
already available and can be combined with std::transform because a string is
basically also an iterable container object with char items:

 transform(begin(concatenated), end(concatenated),
 begin(concatenated), ::toupper);
 cout << concatenated << '\n';
 }

Compiling and running the program leads to the following output, which is just8.
what we expected:

 $./creating_strings
 a, b
 c, d
 ab
 ac
 a b c d
 A B C D

How it works...
Obviously, strings can be added with the + operator like numbers, but that has nothing to
do with math but results in concatenated strings. In order to mix this with string_view, we
need to convert to std::string first.

However, it is really important to note that when mixing strings and string views in code,
we must never assume that the underlying string behind a string_view is zero terminated!
This is why we would rather write "abc"s + string{some_string_view} than "abc"s
+ some_string_view.data(). Aside from that, std::string provides a member
function, append, which can handle string_view instances, but it alters the string instead
of returning a new one with the string view content appended.

std::string_view is useful, but be cautious when mixing it with strings
and string functions. We cannot assume that they are zero-terminated,
which breaks things quickly in a standard string environment.
Fortunately, there are often proper function overloads, which can deal
with them the right way.

Strings, Stream Classes, and Regular Expressions

[266]

If we want to do complex string concatenation with formatting and so on, we should
however not do that piece by piece on string instances. The std::stringstream,
std::ostringstream, and std::istringstream classes are much better suited for this,
as they enhance the memory management while appending, and provide all the formatting
features we know from streams in general. The std::ostringstream class is what we
chose in this section because we were going to create a string instead of parsing it. An
std::istringstream instance could have been instantiated from an existing string, which
we could have then comfortably parsed into variables of other types. If we want to combine
both, std::stringstream is the perfect all-rounder.

Trimming whitespace from the beginning
and end of strings
Especially when obtaining strings from user input, they are often polluted with unneeded
white space. In another recipe, we removed excess whitespace that occurred between
words.

Let's now have a look at strings that are surrounded by whitespace and remove that. The
std::string has some nice helper functions for getting this job done.

After reading this recipe that shows how to do this with plain string
objects, make sure to also read the following recipe. There we will see how
to avoid unnecessary copies or data modifications with the new
std::string_view class.

How to do it...
In this section, we will write a helper function that identifies surrounding white space in a
string and returns a copy without that, and then we are going to test it briefly.

As always, the header includes and using directive come first:1.

 #include <iostream>
 #include <string>
 #include <algorithm>
 #include <cctype>

 using namespace std;

Strings, Stream Classes, and Regular Expressions

[267]

Our function to trim whitespace surrounding a string takes a const reference to2.
an existing string. It will return a new string without any surrounding
whitespace:

 string trim_whitespace_surrounding(const string &s)
 {

The std::string provides two handy functions, which help us a lot. The first is3.
string::find_first_not_of, which accepts a string containing all the
characters we want to skip over. This is, of course, whitespace, meaning the
characters space ' ', tab '\t', and new line, '\n'. It returns us the first non-
whitespace character position. If there is only whitespace in the string, it returns
string::npos. This means that there is only an empty string left if we trim
whitespace from it. So, in such a case, let's just return an empty string:

 const char whitespace[] {" \t\n"};
 const size_t first (s.find_first_not_of(whitespace));
 if (string::npos == first) { return {}; }

We know now where the new string has to begin, but we don't yet know where it4.
has to end. Therefore, we use the other handy string function
string::find_last_not_of. It will return us the last character position in the
string which is no whitespace:

 const size_t last (s.find_last_not_of(whitespace));

Using string::substr, we can now return the part of the string, which is5.
surrounded by whitespace but without the white space. This function takes two
parameters--a position in the string to begin with and the number of characters after
this position:

 return s.substr(first, (last - first + 1));
 }

That's it. Let's write a main function in which we create a string that surrounds a6.
text sentence with all kinds of whitespace, in order to trim it:

 int main()
 {
 string s {" \t\n string surrounded by ugly"
 " whitespace \t\n "};

Strings, Stream Classes, and Regular Expressions

[268]

We print the untrimmed and trimmed versions of the string. By surrounding the7.
string with brackets, it's more obvious which whitespace belonged to it prior to
trimming:

 cout << "{" << s << "}\n";
 cout << "{"
 << trim_whitespace_surrounding(s)
 << "}\n";
 }

Compiling and running the program yields us the output we expected:8.

 $./trim_whitespace
 {
 string surrounded by ugly whitespace
 }
 {string surrounded by ugly whitespace}

How it works...
In this section, we used string::find_first_not_of and
string::find_last_not_of. Both functions accept a C-style string, which acts as a list of
characters that should be skipped while searching a different character. If we have a string
instance that carries the string, "foo bar", and we call find_first_not_of("bfo ") on
it, it will return us the value 5, because the 'a' character is the first one that is not in the
"bfo " string. The order of the characters in the argument string is not important.

The same functions exist with inverted logic, although we did not use them in this recipe:
string::find_first_of and string::find_last_of.

Similar to iterator based functions, we need to check if these functions return an actual
position in the string or a value that denotes that they did not find a character position
fulfilling the constraints. If they did not find one, they return string::npos.

From the character positions we retrieved from these functions in our helper function, we
built us a substring without surrounding whitespace, using string::substring. This
function accepts a relative offset and a string length and then returns a new string instance
with its own memory, which contains only that substring. For example,
string{"abcdef"}.substr(2, 2) will return us a new string "cd".

Strings, Stream Classes, and Regular Expressions

[269]

Getting the comfort of std::string without the
cost of constructing std::string objects
The std::string class is a really useful class because it simplifies dealing with strings so
much. A flaw is that if we want to pass around a substring of it, we need to pass a pointer
and a length variable, two iterators, or a copy of the substring. We did that in the previous
recipe, where we removed the surrounding whitespace from a string by taking a copy of the
substring range that does not contain the surrounding whitespace.

If we want to pass a string or a substring to a library that does not even support
std::string, we can only provide a raw string pointer, which is a bit disappointing,
because it sets us back to the old C days. Just as with the substring problem, a raw pointer
does not carry information about the string length with it. This way, one would have to
implement a bundle of a pointer and a string length.

In a simplified way, this is exactly what std::string_view is. It is available since C++17
and provides a way to pair a pointer to some string together with that string's size. It
embodies the idea of having a reference type for arrays of data.

If we design functions which formerly accepted std::string instances as parameters, but
did not change them in a way that would require the string instances to reallocate the
memory that holds the actual string payload, we could now use std::string_view and
be more compatible with libraries that are STL-agnostic. We could let other libraries
provide a string_view view on the payload strings behind their complex string
implementations and then use that in our STL code. This way, the string_view class acts
as a minimal and useful interface, which can be shared among different libraries.

Another cool thing is that string_view can be used as a non-copy reference to substrings
of larger string objects. There are a lot of possibilities to use it profitably. In this section, we
will play around with string_view in order to get a feeling for its ups and downs. We will
also see how we can hide the surrounding whitespace from strings by adapting string views
instead of modifying or copying the actual string. This method avoids unnecessary copying
or data modification.

Strings, Stream Classes, and Regular Expressions

[270]

How to do it...
We are going to implement a function that relies on some string_view features, and then,
we see how many different types we can feed into it:

The header includes and using directive come first:1.

 #include <iostream>
 #include <string_view>

 using namespace std;

We implement a function that accepts a string_view as its only argument:2.

 void print(string_view v)
 {

Before doing anything with the input string, we remove any leading and trailing3.
whitespace. We are not going to change the string, but the view on the string by
narrowing it down to the actual non-whitespace part of the string. The
find_first_not_of function will find the first character in the string, which is
not space (' '), not a tab character ('\t'), and not a newline character ('\n').
With remove_prefix, we advance the internal string_view pointer to the first
non-whitespace character. In case the string contains only whitespace, the
find_first_not_of function returns the value npos, which is size_type(-1).
As size_type is an unsigned variable, this boils down to a very large number.
So, we take the smaller one of both: words_begin or the string view's size:

 const auto words_begin (v.find_first_not_of(" \t\n"));
 v.remove_prefix(min(words_begin, v.size()));

We do the same with trailing whitespace. The remove_suffix shrinks down the4.
view's size variable:

 const auto words_end (v.find_last_not_of(" \t\n"));
 if (words_end != string_view::npos) {
 v.remove_suffix(v.size() - words_end - 1);
 }

Strings, Stream Classes, and Regular Expressions

[271]

Now we can print the string view and its length:5.

 cout << "length: " << v.length()
 << " [" << v << "]\n";
 }

In our main function, we play around with the new print function by feeding it6.
with completely different argument types. First, we give it a runtime char*
string from the argv pointer. At runtime, it contains the file name of our
executable. Then, we give it an empty string_view instance. We then feed it
with a C-style static character string, and with a ""sv literal, which constructs us
a string_view on the fly. And finally, we give it an std::string. The nice
thing is that none of these arguments are modified or copied in order to call the
print function. No heap allocations happen. For many and/or large strings, this
is very efficient:

 int main(int argc, char *argv[])
 {
 print(argv[0]);
 print({});
 print("a const char * array");
 print("an std::string_view literal"sv);
 print("an std::string instance"s);

We did not test the whitespace removal feature. So, let's give it a string that has a7.
lot of leading and trailing whitespace:

 print(" \t\n foobar \n \t ");

Another cool feature is that the strings string_view gives us access to do not8.
have to be zero-terminated. If we construct a string, such as "abc", without a
trailing zero, the print function can still safely handle it because string_view
also carries the size of the string it points to:

 char cstr[] {'a', 'b', 'c'};
 print(string_view(cstr, sizeof(cstr)));
 }

Strings, Stream Classes, and Regular Expressions

[272]

Compiling and running the program yields the following output. All the strings9.
are correctly handled. The string we filled with lots of leading and trailing
whitespace is correctly filtered, and the abc string without zero termination is
also correctly printed without any buffer overflows:

 $./string_view
 length: 17 [./string_view]
 length: 0 []
 length: 20 [a const char * array]
 length: 27 [an std::string_view literal]
 length: 23 [an std::string instance]
 length: 6 [foobar]
 length: 3 [abc]

How it works...
We have just seen that we can call a function that accepts a string_view argument with
basically anything that is string like in the sense that it stores characters in a contiguous
way. No copy of the underlying string was made in any of our print calls.

It is interesting to note that in our print(argv[0]) call, the string view automatically
determined the string length because this is a zero-terminated string by convention. The
other way around, one cannot assume that it is possible to determine a string_view
instances's data length by counting the number of items until a zero terminator is reached.
Because of this, we must always be careful about where we reach around a pointer to the
string view data using string_view::data(). Usual string functions mostly assume zero
termination and, thus, can buffer overflow very badly with raw pointers to the payload of a
string view. It is always better to use interfaces that already expect a string view.

Apart from that, we get a lot of the luxury interface we know from std::string already.

Use std::string_view for passing strings or substrings where you want
to avoid copies or heap allocations, without losing the comfort of string
classes. But be aware of the fact that std::string_view drops the
assumption that strings are zero terminated.

Strings, Stream Classes, and Regular Expressions

[273]

Reading values from user input
A lot of recipes in this book read values from an input source, such as standard input or a
file, and do something with it. This time we concentrate only on the reading and learn more
about error handling, which becomes important if reading something from a stream did not
go well and we need to handle it other than terminating the whole program.

We will only read from user input in this recipe, but as soon as we know how to do that, we
also know how to read from any other stream. User input is read via std::cin, and that is
essentially an input stream object, such as instances of ifstream and istringstream are.

How to do it...
In this section, we are going to read user input into different variables, and see how to
handle errors, as well as how to do a little bit more complex tokenizing of input into useful
chunks:

We only need iostream this time. So, let's include this single header and declare1.
that we use the std namespace by default:

 #include <iostream>

 using namespace std;

Let's first prompt the user to enter two numbers. We will parse them into an int2.
and a double variable. The user can separate them with white space. 1 2.3, for
example, is a valid input:

 int main()
 {
 cout << "Please Enter two numbers:\n> ";
 int x;
 double y;

Parsing and error checking is done at the same time in the condition part of our3.
if branch. Only if both the numbers could be parsed are they meaningful to us
and we print them:

 if (cin >> x >> y) {
 cout << "You entered: " << x
 << " and " << y << '\n';

Strings, Stream Classes, and Regular Expressions

[274]

If the parsing did not succeed for any reason, we tell the user that the parsing did4.
not go well. The cin stream object is now in a fail state and will not give us other
input until we clear the fail state again. In order to be able to parse a new input
afterward, we call cin.clear() and drop all input we received until now. The
dropping is done with cin.ignore, where we specify that we are dropping the
maximum number of characters until we finally see a newline character, which is
also dropped. Everything after that is interesting input again:

 } else {
 cout << "Oh no, that did not go well!\n";
 cin.clear();
 cin.ignore(
 std::numeric_limits<std::streamsize>::max(),
 '\n');
 }

Let's now ask for some other input. We let the user enter names. As names can5.
consist multiple words separated by spaces, the space character is not a good
separator any longer. Therefore, we use std::getline, which accepts a stream
object, such as cin, a string reference where it will copy the input into, and a
separating character. Let's choose comma (,) as the separating character. By not
just using cin alone and by using cin >> ws as a stream parameter for getline
instead, we can make cin drop any leading whitespace before any name. In
every loop step, we print the current name, but if a name is empty, we drop out
of the loop:

 cout << "now please enter some "
 "comma-separated names:\n> ";
 for (string s; getline(cin >> ws, s, ',');) {
 if (s.empty()) { break; }
 cout << "name: \"" << s << "\"\n";
 }
 }

Compiling and running the program leads to the following output, in which we6.
assumingly entered only valid inputs. The numbers are "1 2", which are parsed
correctly, and then we enter some names which are then also listed correctly. An
empty name input in the form of two consecutive commas quits the loop:

 $./strings_from_user_input
 Please Enter two numbers:
 > 1 2
 You entered: 1 and 2
 now please enter some comma-separated names:

Strings, Stream Classes, and Regular Expressions

[275]

 > john doe, ellen ripley, alice, chuck norris,,
 name: "john doe"
 name: "ellen ripley"
 name: "alice"
 name: "chuck norris"

When running the program again, while entering bad numbers in the beginning,7.
we see that the program correctly takes the other branch, drops the bad input and
correctly continues with the name listening. Play around with the cin.clear()
and cin.ignore(...) lines to see how that tampers with the name reading
code:

 $./strings_from_user_input
 Please Enter two numbers:
 > a b
 Oh no, that did not go well!
 now please enter some comma-separated names:
 > bud spencer, terence hill,,
 name: "bud spencer"
 name: "terence hill"

How it works...
We did some complex input retrieval in this section. The first noticeable thing is that we
always did the retrieval and error checking at the same time.

The result of the expression cin >> x is again a reference to cin. This way, we can write
cin >> x >> y >> z >> At the same time, it is possible to convert it into a Boolean
value by using it in a Boolean context such as if conditions. The Boolean value tells us if
the last read was successful. That is why we were able to write if (cin >> x >> y)
{...}.

Strings, Stream Classes, and Regular Expressions

[276]

If we, for example, try to read an integer, but the input contains "foobar" as the next
token, then parsing this into the integer is not possible and the stream object enters a fail
state. This is only critical for the parsing attempt but not for the whole program. It is okay to
reset it and then to try anything else. In our recipe program, we tried to read a list of names
after a potentially failing attempt to read two numbers. In the case of a failing attempt to
read those numbers in, we used cin.clear() to put cin back into a working state. But
then, its internal cursor was still on what we typed instead of numbers. In order to drop this
old input and clear the pipe for the names input, we used the very long expression,
cin.ignore(std::numeric_limits<std::streamsize>::max(), '\n');. This is
necessary to clear whatever is in the buffer at this point, because we want to start with a
really fresh buffer when we ask the user for a list of names.

The following loop might look strange at first, too:

for (string s; getline(cin >> ws, s, ',');) { ... }

In the conditional part of the for loop, we use getline. The getline function accepts an
input stream object, a string reference as an output parameter, and a delimiter character. By
default, the delimiter character is the newline symbol. Here, we defined it to be the comma
(,) character, so all the names in a list, such as "john, carl, frank", are read
individually.

So far, so good. But what does it mean to provide the cin >> ws function as a stream
object? This makes cin first flush all the whitespace, which lead before the next non-
whitespace character and after the last comma. Looking back at the "john, carl, frank"
example, we would get the substrings "john", " carl", and " frank" without using ws.
Notice the unnecessary leading space characters for carl and frank? These effectively
vanish because of our ws pretreatment of the input stream.

Counting all words in a file
Let's say we read a text file and we want to count the number of words in the text. We
define that one word is a range of characters between whitespace characters. How do we do
it?

We could count the number of spaces, for example, because there must be spaces between
words. In the sentence, "John has a funny little dog.", we have five space
characters, so we could say there are six words.

Strings, Stream Classes, and Regular Expressions

[277]

What if we have a sentence with whitespace noise, such as " John has \t a\nfunny
little dog ."? There are way too many unnecessary spaces in this string, and it's not
even only spaces. From the other recipes in this book, we already learned how we can
remove such excess whitespace. So, we could first preprocess the string into a normal
sentence form and then apply the strategy of counting space characters. Yes, that is doable,
but there is a much easier way. Why shouldn't we use what the STL already provides us?

In addition to finding an elegant solution for this problem, we will let the user choose if we
shall count the words from the standard input or a text file.

How to do it...
In this section, we will write a one-liner function that counts the words from an input
buffer, and let the user choose where the input buffer reads from:

Let's include all the necessary headers first and declare that we use the std1.
namespace:

 #include <iostream>
 #include <fstream>
 #include <string>
 #include <algorithm>
 #include <iterator>

 using namespace std;

Our wordcount function accepts an input stream, for example, cin. It creates an2.
std::input_iterator iterator, which tokenizes the strings out of the stream
and then feeds them to std::distance. The distance parameter accepts two
iterators as arguments and tries to determine how many incrementing steps are
needed in order to get from one iterator position to the other. For random access
iterators, this is simple because they implement the mathematical difference
operation (operator-). Such iterators can be subtracted from each other like
pointers. An istream_iterator however, is a forward iterator and must be
advanced until it equals the end iterator. Eventually, the number of steps needed
is the number of words:

 template <typename T>
 size_t wordcount(T &is)
 {
 return distance(istream_iterator<string>{is}, {});
 }

Strings, Stream Classes, and Regular Expressions

[278]

In our main function, we let the user choose if the input stream will be std::cin3.
or an input file:

 int main(int argc, char **argv)
 {
 size_t wc;

If the user launches the program in the shell together with a file name (such as $4.
./count_all_words some_textfile.txt), then we obtain that filename from
the argv command-line parameter array and open it, in order to feed the new
input file stream into wordcount:

 if (argc == 2) {
 ifstream ifs {argv[1]};
 wc = wordcount(ifs);

If the user launched the program without any parameter, we assume that the5.
input comes from standard input:

 } else {
 wc = wordcount(cin);
 }

That's already it, so we just print the number of words we saved in the variable6.
wc:

 cout << "There are " << wc << " words\n";
 };

Let's compile and run the program. First, we feed the program from standard7.
input without any file parameter. We can either pipe an echo call with some
words into it or launch the program and enter some words from the keyboard. In
the latter case, we can stop the input by pressing Ctrl+D. This is how echoing
some words into the program looks:

 $ echo "foo bar baz" | ./count_all_words
 There are 3 words

When launching the program with its source code file as input, it will count how8.
many words it consists of:

 $./count_all_words count_all_words.cpp
 There are 61 words

Strings, Stream Classes, and Regular Expressions

[279]

How it works...
There is not much left to say; most of it has been explained while implementing it as this
program is very short. One thing we could elaborate on a bit is the fact that we used
std::cin and an std::ifstream instance in a completely interchangeable way. The cin
is of the std::istream type, and std::ifstream inherits from std::istream. Have a
look at the class inheritance diagram at the beginning of this chapter. This way, they are
completely interchangeable, even at runtime.

Keep your code modular by using stream abstractions. This helps
decouple source code parts and makes your code easy to test because you
can just inject any other matching type of stream.

Formatting your output with I/O stream
manipulators
In many cases, just printing out strings and numbers is not enough. Sometimes, numbers
need to be printed as decimal numbers, sometimes as hexadecimal, and sometimes even as
octal. Sometimes we want to see a "0x" prefix in front of hexadecimal numbers, sometimes
not.

When printing floating-point numbers, there are also a lot of things we may want to have
an influence on. Should the decimal values always be printed with the same precision?
Should they be printed at all? Or perhaps, we want a scientific notation?

Apart from scientific presentation and hexadecimal, octal, and so on, we also want to
present the user output in a tidy form. Some output can be arranged in tables, for example,
in order to make it as readable as possible.

All these things are, of course, possible with output streams. Some of these settings are also
important when parsing values from input streams. In this recipe, we will get a feeling of
such so-called I/O manipulators by playing around with them. Sometimes, they appear
tricky, so we will also get into some details.

Strings, Stream Classes, and Regular Expressions

[280]

How to do it...
In this section, we will print numbers with wildly varying format settings, in order to get
familiar with I/O manipulators:

First, we include all the necessary headers and declare that we use the std1.
namespace by default:

 #include <iostream>
 #include <iomanip>
 #include <locale>

 using namespace std;

Next, we define a helper function that prints a single integer value with different2.
styles. It accepts a padding width and a filling character for padding, which is set
to space ' ' by default:

 void print_aligned_demo(int val,
 size_t width,
 char fill_char = ' ')
 {

With setw, we can set the minimum number of characters output for printing a3.
number. If we print 123 with a width of 6, for example, we get " 123", or "123
". We can control on which side the padding occurs with std::left,
std::right, and std::internal. When printing numbers in the decimal form,
internal looks identical to right. But if we print the value 0x1, for example,
with a width of 6 and with internal, we get "0x 6". The setfill manipulator
defines the character that will be used for padding. We will try different styles:

 cout << "================\n";
 cout << setfill(fill_char);
 cout << left << setw(width) << val << '\n';
 cout << right << setw(width) << val << '\n';
 cout << internal << setw(width) << val << '\n';
 }

Strings, Stream Classes, and Regular Expressions

[281]

In the main function, we start using the function we just implemented. At first,4.
we print the value 12345, with a width of 15. We do this twice, but the second
time, we use the '_' character for padding:

 int main()
 {
 print_aligned_demo(123456, 15);
 print_aligned_demo(123456, 15, '_');

Afterward, we print the value 0x123abc with the same width as before.5.
However, before doing this, we apply std::hex and std::showbase to tell the
output stream object cout that it should print numbers in the hexadecimal
format and that it should prepend "0x" to them so that it is obvious that they are
to be interpreted as hex:

 cout << hex << showbase;
 print_aligned_demo(0x123abc, 15);

We can do the same with oct, which tells cout to use the octal system for6.
printing numbers. The showbase is still active, so 0 will be prepended to every
printed number:

 cout << oct;
 print_aligned_demo(0123456, 15);

With hex and uppercase, we get the 'x' in "0x" printed upper case. The 'abc'7.
in '0x123abc' is also upper cased:

 cout << "A hex number with upper case letters: "
 << hex << uppercase << 0x123abc << '\n';

If we want to print 100 in the decimal format again, we have to remember that8.
we switched the stream to hex before. By using dec, we can put it back to
normal:

 cout << "A number: " << 100 << '\n';
 cout << dec;
 cout << "Oops. now in decimal again: " << 100 << '\n';

Strings, Stream Classes, and Regular Expressions

[282]

We can also configure how Boolean values are printed. By default, true is9.
printed as 1 and false as 0. With boolalpha, we can set it to a text
representation:

 cout << "true/false values: "
 << true << ", " << false << '\n';
 cout << boolalpha
 << "true/false values: "
 << true << ", " << false << '\n';

Let's have a look at floating-point variables of the float and double types. If we10.
print a number such as 12.3, it is printed as 12.3, of course. If we have a number
such as 12.0, the output stream will just drop the decimal point, which we can
change with showpoint. Using this, the decimal point is always displayed:

 cout << "doubles: "
 << 12.3 << ", "
 << 12.0 << ", "
 << showpoint << 12.0 << '\n';

The representation of a floating-point number can be scientific or fixed.11.
scientific means that the number is normalized to such a form that the first
digit is the only digit before the decimal point, and then the exponent is printed,
which is needed to multiply the number back to its actual size. For example, the
value 300.0 would be printed as "3.0E2", because 300 equals 3.0 * 10^2.
fixed reverts back to the normal decimal point notation:

 cout << "scientific double: " << scientific
 << 123000000000.123 << '\n';
 cout << "fixed double: " << fixed
 << 123000000000.123 << '\n';

Apart from the notation, we can also decide with what precision a floating-point12.
number is printed. Let's create a very small value and print it with 10 digits after
the decimal point, and once with just one digit after the decimal point:

 cout << "Very precise double: "
 << setprecision(10) << 0.0000000001 << '\n';
 cout << "Less precise double: "
 << setprecision(1) << 0.0000000001 << '\n';
 }

Strings, Stream Classes, and Regular Expressions

[283]

Compiling and running the program yields us the following lengthy output.13.
Those four first blocks of output are from the print helper function that tampered
around with the setw and left/right/internal modifiers. Afterward, we
played with the casing of base representations, Boolean representation, and
floating-point formatting. It is a good idea to play with each of these to get
familiar with them:

 $./formatting
 ================
 123456
 123456
 123456
 ================
 123456_________
 _________123456
 _________123456
 ================
 0x123abc
 0x123abc
 0x 123abc
 ================
 0123456
 0123456
 0123456
 A hex number with upper case letters: 0X123ABC
 A number: 0X64
 Oops. now in decimal again: 100
 true/false values: 1, 0
 true/false values: true, false
 doubles: 12.3, 12, 12.0000
 scientific double: 1.230000E+11
 fixed double: 123000000000.123001
 Very precise double: 0.0000000001
 Less precise double: 0.0

Strings, Stream Classes, and Regular Expressions

[284]

How it works...
All these, sometimes pretty long, << foo << bar stream expressions are really confusing if
it is not clear to the reader what each of them does. Therefore, let's have a look at a table of
existing formatting modifiers. They are all to be placed in a input_stream >> modifier
or output_stream << modifier expression and then affect the following input or
output:

Symbol Meaning

setprecision(int n) Sets the precision parameter when printing or parsing floating-
point values.

showpoint / noshowpoint Enables or disables the printing of the decimal point of
floating-point numbers even if they do not have any
decimal places.

fixed / scientific /
hexfloat / defaultfloat

Numbers can be printed in a fixed style (which is the most
intuitive one) or scientific style. fixed and scientific
stand for these modes. hexfloat activates both modes, which
formats floating-point numbers in hexadecimal floating-point
notation. defaultfloat deactivates both modes.

showpos / noshowpos Enable or disable printing a '+' prefix for positive floating-
point values.

setw(int n) Read or write exactly n characters. When reading, this
truncates the input. When printing, padding is applied if the
output would be shorter than n characters.

setfill(char c) When applying padding (see setw), fill the output with
character values, c. The default is space (' ').

internal / left / right left and right control where the padding for fixed-width
prints (see setw) occurs. internal puts padding characters
in the middle between integers and their negative sign, the hex
prefix and a hexadecimally printed value, or monetary units
and values.

dec / hex / oct Integral values can be printed and parsed in the decimal,
hexadecimal, and octal base systems.

Strings, Stream Classes, and Regular Expressions

[285]

setbase(int n) This is the numeric synonymous function to dec/hex/oct,
which are equivalent if used with the values 10/16/8. Other
values reset the base choice to 0, which leads to decimal
printing again, or parsing based on the prefix of the input.

quoted(string) Prints string in quotes or parse from quoted input, and then
drops the quotes. string can be a String class instance or a C-
style character array.

boolalpha / noboolalpha Prints or parses Boolean values as/from alphabetical
representation rather than 1/0 strings.

showbase / noshowbase Enables or disables base-prefixes when printing or parsing
numbers. For hex, this is 0x; for octal it is 0.

uppercase / nouppercase Enables or disables upper casing or alphabetical characters
when printing floating-point and hexadecimal values.

The best way to get familiar with those is studying their variety a bit and playing with
them.

When playing with them, however, we might have noticed already that most of these
modifiers appear to be sticky and a few of them, not so. Sticky means that once applied, they
appear to influence the input/output forever until they are reset again. The only non-sticky
ones from this table are setw and quoted. They only affect the next item in the
input/output. This is important to know because if we print some output with certain
formatting, we should tidy up our stream object formatting settings afterward, because the
next output from unrelated code may otherwise look crazy. Same applies to input parsing,
where things can break with the wrong I/O manipulator options.

We did not really use any of those because they do not have to do anything with
formatting, but for the reason of completeness, we should also have a look at some other
stream state manipulators:

Symbol Meaning

skipws / noskipws Enables or disables the feature of input streams skipping whitespace

unitbuf /
nounitbuf

Enables or disables immediate output buffer flushing after any output
operation

ws Can be used on input streams to skip any whitespace at the head of the
stream

ends Writes a string-terminating '\0' character into a stream

Strings, Stream Classes, and Regular Expressions

[286]

flush Immediately flushes out whatever is in the output buffer

endl Inserts a '\n' character into an output stream and flushes the output

From these, only skipws/noskipws and unitbuf/nounitbuf appear sticky.

Initializing complex objects from file input
Reading in individual integers, floats, and word strings is really easy, because the >>
operator of input stream objects is overloaded for all these types, and input streams
conveniently drop all in-between whitespace for us.

But what if we have a more complex structure that we want to read from an input stream,
and if we need to read strings that contain more than one word (as they would normally be
chunked into single words because of the whitespace skipping)?

For any type, it is possible to provide another input stream operator>> overload, and we
are going to see how to do it.

How to do it...
In this section, we'll define a custom data structure and provide facilities to read such items
from input streams as standard input:

We need to include some headers first and for comfort, we declare that we use1.
the std namespace by default:

 #include <iostream>
 #include <iomanip>
 #include <string>
 #include <algorithm>
 #include <iterator>
 #include <vector>

 using namespace std;

Strings, Stream Classes, and Regular Expressions

[287]

As a complex object example, we define a city structure. A city shall have a2.
name, a population count, and geographic coordinates:

 struct city {
 string name;
 size_t population;
 double latitude;
 double longitude;
 };

In order to be able to read such a city from a serial input stream, we need to3.
overload the stream function operator>>. In this operator, we first skip all the
leading whitespace with ws, because we do not want whitespace to pollute the
city name. Then, we read a whole line of text input. This implies that in the input
file, there is a whole text line only carrying the name of a city object. Then, after a
newline character, a whitespace-separated list of numbers follows, indicating the
population, the geographic latitude, and the longitude:

 istream& operator>>(istream &is, city &c)
 {
 is >> ws;
 getline(is, c.name);
 is >> c.population
 >> c.latitude
 >> c.longitude;
 return is;
 }

In our main function, we create a vector that can hold a range of city items. We4.
fill it using std::copy. The input of the copy call is an istream_iterator
range. By giving it the city struct type as a template parameter, it will use the
operator>> function overload, which we just implemented:

 int main()
 {
 vector<city> l;
 copy(istream_iterator<city>{cin}, {},
 back_inserter(l));

Strings, Stream Classes, and Regular Expressions

[288]

In order to see whether our city parsing went right, we print what we got in the5.
list. The I/O formatting, left << setw(15) <<, leads to the city name being
filled with whitespace, so we get our output in a nicely readable form:

 for (const auto &[name, pop, lat, lon] : l) {
 cout << left << setw(15) << name
 << " population=" << pop
 << " lat=" << lat
 << " lon=" << lon << '\n';
 }
 }

The text file from which we will feed our program looks like this. There are four6.
example cities with their population count and geographical coordinates:

 Braunschweig
 250000 52.268874 10.526770
 Berlin
 4000000 52.520007 13.404954
 New York City
 8406000 40.712784 -74.005941
 Mexico City
 8851000 19.432608 -99.133208

Compiling and running the program yields the following output, which is what7.
we expected. Try to tamper around with the input file by adding some
unnecessary whitespace before the city names in order to see how it gets filtered
out:

 $ cat cities.txt | ./initialize_complex_objects
 Braunschweig population=250000 lat=52.2689 lon=10.5268
 Berlin population=4000000 lat=52.52 lon=13.405
 New York City population=8406000 lat=40.7128 lon=-74.0059
 Mexico City population=8851000 lat=19.4326 lon=-99.1332

How it works...
This was another short recipe again. The only thing we did was creating a new struct city,
then we overloaded std::istream iterator's operator>> for this type and that's it. This
already enabled us to deserialize city items from standard input using
istream_iterator<city>.

Strings, Stream Classes, and Regular Expressions

[289]

There might be an open question left regarding error checking. For that, let's have a look at
the operator>> implementation again:

 istream& operator>>(istream &is, city &c)
 {
 is >> ws;
 getline(is, c.name);
 is >> c.population >> c.latitude >> c.longitude;
 return is;
 }

We are reading a lot of different things. What happens if one of them fails and the next one
doesn't? Does that mean that we are potentially reading all following items with a bad
"offset" in the token stream? No, this cannot happen. As soon as one of these items cannot
be parsed from the input stream, the input stream object enters an error state and refuses to
parse anything further. This means that if for example c.population or c.latitude
cannot be parsed, the remaining >> operands just "drop through", and we leave this
operator function scope with a half-deserialized city object.

On the caller side, we are notified by this when we write if (input_stream >>
city_object). Such a streaming expression is implicitly converted to a bool value when
used as a conditional expression. It returns false if the input stream object is in an error
state. Knowing that we can reset the stream and do whatever is appropriate.

In this recipe, we did not write such if conditionals ourselves because we let
std::istream_iterator<city> do the deserialization. The operator++ implementation
of this iterator class also checks for errors while parsing. If any errors occur, it will refuse
iterating further. In this state, it returns true when it is compared to the end iterator, which
makes the copy algorithm terminate. This way, we are safe.

Filling containers from std::istream iterators
In the last recipe, we learned how we can assemble compound data structures from an
input stream and then fill lists or vectors with those.

Strings, Stream Classes, and Regular Expressions

[290]

This time, we make it a little bit harder by filling an std::map from standard input. The
problem here is that we cannot just fill a single structure with values and push it back into a
linear container like a list or a vector is because map divides its payload into key and value
parts. It is, however, not completely different, as we will see.

After studying this recipe, we will feel comfortable with serializing and deserializing
complex data structures from and to character streams.

How to do it...
We are going to define another structure like in the last recipe, but this time we are going to
fill it into a map, which makes it more complicated because this container maps from keys
to values instead of just holding all values in a list:

First, we include all the needed headers and declare that we use the std1.
namespace by default:

 #include <iostream>
 #include <iomanip>
 #include <map>
 #include <iterator>
 #include <algorithm>
 #include <numeric>

 using namespace std;

We want to maintain a little Internet meme database. Let's say a meme has a2.
name, a description, and the year when it was born or invented. We will save
them in an std::map, where the name is the key, and the other information is
bunched up in a struct as the value associated with the key:

 struct meme {
 string description;
 size_t year;
 };

Strings, Stream Classes, and Regular Expressions

[291]

Let's first ignore the key and just implement a stream operator>> function3.
overload for struct meme. We assume that the description is surrounded by
quotation marks, followed by the year. This would look like "some
description" 2017 in a text file. As the description is surrounded by quotation
marks, it can contain whitespace because we know that everything between the
quotation marks belongs to it. By reading with is >>
quoted(m.description), the quotation marks are automatically used as
delimiters and dropped afterward. This is very convenient. Just after that, we
read the year number:

 istream& operator>>(istream &is, meme &m) {
 return is >> quoted(m.description) >> m.year;
 }

OK, now we take the meme's name as the key for the map into account. In order4.
to insert a meme into the map, we need an std::pair<key_type,
value_type> instance. key_type is string, of course, and value_type is
meme. The name is allowed to contain spaces too, so we use the same quoted
wrapper as for the description. p.first is the name and p.second is the whole
meme structure associated with it. It will be fed into the other operator>>
implementation that we just implemented:

 istream& operator >>(istream &is,
 pair<string, meme> &p) {
 return is >> quoted(p.first) >> p.second;
 }

Okay, that's it. Let's write a main function, which instantiates a map, and fill that5.
map. Because we overloaded the stream function operator>>,
istream_iterator can deal with this type directly. We let it deserialize our
meme items from standard input and use an inserter iterator in order to pump
them into the map:

 int main()
 {
 map<string, meme> m;
 copy(istream_iterator<pair<string, meme>>{cin},
 {},
 inserter(m, end(m)));

Strings, Stream Classes, and Regular Expressions

[292]

Before we print what we have, let's first find out what's the longest meme name in6.
the map. We use std::accumulate for this. It gets an initial value 0u (u for
unsigned) and will visit the map element-wise in order to merge them together. In
terms of accumulate, merging usually means adding. In our case, we want no
numeric sum of anything, but the largest string length. In order to get that, we
provide accumulate a helper function, max_func, which takes the current
maximum size variable (which must be unsigned because string lengths are
unsigned) and compares it to the length of the current item's meme name string,
in order to take the maximum of both values. This will happen for each element.
The accumulate function's final return value is the maximum meme name
length:

 auto max_func ([](size_t old_max,
 const auto &b) {
 return max(old_max, b.first.length());
 });
 size_t width {accumulate(begin(m), end(m),
 0u, max_func)};

Now, let's quickly loop through the map and print each item. We use << left7.
<< setw(width) to get a nice table-like printing:

 for (const auto &[meme_name, meme_desc] : m) {
 const auto &[desc, year] = meme_desc;
 cout << left << setw(width) << meme_name
 << " : " << desc
 << ", " << year << '\n';
 }
 }

That's it. We need a small Internet meme database file, so let's fill a text file with8.
some examples:

 "Doge" "Very Shiba Inu. so dog. much funny. wow." 2013
 "Pepe" "Anthropomorphic frog" 2016
 "Gabe" "Musical dog on maximum borkdrive" 2016
 "Honey Badger" "Crazy nastyass honey badger" 2011
 "Dramatic Chipmunk" "Chipmunk with a very dramatic look" 2007

Strings, Stream Classes, and Regular Expressions

[293]

Compiling and running the program with the example meme database yields the9.
following output:

 $ cat memes.txt | ./filling_containers
 Doge : Very Shiba Inu. so dog. much funny. wow., 2013
 Dramatic Chipmunk : Chipmunk with a very dramatic look, 2007
 Gabe : Musical dog on maximum borkdrive, 2016
 Honey Badger : Crazy nastyass honey badger, 2011
 Pepe : Anthropomorphic frog, 2016

How it works...
There were three specialties in this recipe. One was that we did not fill a normal vector or a
list from a serial character stream, but a more complex container like std::map. The other
was that we used those magic quoted stream manipulators. And the last was the
accumulate call, which finds out the largest key string size.

Let's start with the map part. Our struct meme only contains a description field and
year. The name of the Internet meme is not part of this structure because it is used as the
key for the map. When we insert something into a map, we can provide an std::pair with
a key type and a value type. This is what we did. We first implemented stream operator>>
for struct meme, and then we did the same for pair<string, meme>. Then we used
istream_iterator<pair<string, meme>>{cin} to get such items out of the standard
input, and fed them into the map using inserter(m, end(m)).

When we deserialized meme items from the stream, we allowed the names and descriptions
to contain whitespace. This was easily possible, although we only used one line per meme
because we quoted those fields. An example of the line format is as follows: "Name with
spaces" "Description with spaces" 123

When dealing with quoted strings both in input and output, std::quoted is a great help. If
we have a string, s, printing it using cout << quoted(s) will put it in quotes. If we
deserialize a string from a stream, for example, via cin >> quoted(s), it will read the
next quotation mark, fill the string with what is following, and continue until it sees the
next quotation mark, no matter how many whitespace are involved.

Strings, Stream Classes, and Regular Expressions

[294]

The last strange looking thing was max_func in our accumulate call:

auto max_func ([](size_t old_max, const auto &b) {
 return max(old_max, b.first.length());
});

size_t width {accumulate(begin(m), end(m), 0u, max_func)};

Apparently, max_func accepts a size_t argument and another auto-typed argument
which turns out to be a pair item from the map. This looks really weird at first as most
binary reduction functions accept arguments of identical types and then merge them
together with some operation, just as std::plus does. In this case, it is really different
because we are not merging actual pair items. We only pick the key string length from
every pair, drop the rest, and then reduce the resulting size_t values with the max function.

In the accumulate call, the first call of max_func gets the 0u value we initially provided as
the left argument and a reference to the first pair item on the right side. This results in a
max(0u, string_length) return value, which is the left argument in the next call with
the next pair item as the right parameter, and so on.

Generic printing with std::ostream iterators
It is pretty easy to print anything with output streams, as the STL is already shipped with
many useful operator<< overloads for the most basic types. This way, data structures
containing items of such types can easily be printed using the std::ostream_iterator
class, which we've already done quite often in this book.

In this recipe, we will concentrate on how to do this with a custom type, and what else we
can do to manipulate printing via template type choices without much code at the caller
side.

Strings, Stream Classes, and Regular Expressions

[295]

How to do it...
We will play with std::ostream_iterator by enabling for combination with a new
custom class and have a look into its implicit conversion capabilities, which can help us
with printing:

The include files come first and then we declare that we use the std namespace1.
by default:

 #include <iostream>
 #include <vector>
 #include <iterator>
 #include <unordered_map>
 #include <algorithm>

 using namespace std;

Let's implement a transformation function, which maps numbers to strings. It2.
shall return "one" for the value 1, "two" for the value 2, and so on:

 string word_num(int i) {

We fill a hash map with the mappings we need in order to access them later:3.

 unordered_map<int, string> m {
 {1, "one"}, {2, "two"}, {3, "three"},
 {4, "four"}, {5, "five"}, //...
 };

Now, we can feed the hash map's find function with the argument, i, and return4.
what it finds. If it doesn't find anything, because there is no translation for a
given number, we return the string, "unknown":

 const auto match (m.find(i));
 if (match == end(m)) { return "unknown"; }
 return match->second;
 };

Another thing with which we will play later with is struct bork. It only5.
contains an integer and is also implicitly constructible from an integer. It has a
print function, which accepts an output stream reference and prints the "bork"
string repeatedly, depending on the value of its member integer borks:

 struct bork {
 int borks;

Strings, Stream Classes, and Regular Expressions

[296]

 bork(int i) : borks{i} {}

 void print(ostream& os) const {
 fill_n(ostream_iterator<string>{os, " "},
 borks, "bork!"s);
 }
 };

In order to gain convenience with bork::print we overload operator<< for6.
stream objects, so they automatically call bork::print whenever bork objects
are streamed into an output stream:

 ostream& operator<<(ostream &os, const bork &b) {
 b.print(os);
 return os;
 }

Now we can finally begin implementing the actual main function. We initially7.
just create a vector with some example values:

 int main()
 {
 const vector<int> v {1, 2, 3, 4, 5};

Objects of type ostream_iterator need a template parameter, which denotes8.
which type of variables they can print. If we write ostream_iterator<T>, it
will later use ostream& operator(ostream&, const T&) for printing. This is
exactly what we implemented before for the bork type, for example. This time,
we are just printing integers, so it is ostream_iterator<int>. It shall use cout
for printing, so we provide it as the constructor parameter. We go through our
vector in a loop and assign each item i to the dereferenced output iterator. This is
how stream iterators are used by STL algorithms too:

 ostream_iterator<int> oit {cout};
 for (int i : v) { *oit = i; }
 cout << '\n';

Strings, Stream Classes, and Regular Expressions

[297]

The output of the iterator we just produced is fine, but it prints the number9.
without any separator. If we want a bit of separating whitespace between all
printed items, we can provide a custom spacing string as a second parameter of
the output stream iterator's constructor. This way, it prints "1, 2, 3, 4, 5, "
instead of "12345". Unfortunately, we cannot easily tell it to drop the comma-
space string after the last number, because the iterator does not know of its end
before it reaches it:

 ostream_iterator<int> oit_comma {cout, ", "};
 for (int i : v) { *oit_comma = i; }
 cout << '\n';

Assigning items to an output stream iterator in order to print them is not a wrong10.
way to use it, but this is not what they were invented for. The idea is to use them
in combination with algorithms. The simplest one is std::copy. We can provide
the begin and end iterators of the vector as an input range and the output stream
iterator as the output iterator. It will print all the numbers of the vector. Let's do
that with both the output iterators and later compare the output with the loops
we wrote before:

 copy(begin(v), end(v), oit);
 cout << '\n';
 copy(begin(v), end(v), oit_comma);
 cout << '\n';

Remember the function, word_num, which maps numbers to strings, as 1 to11.
"one", 2 to "two", and so on? Yes, we can use those for printing too. We just
need to use an output stream operator, which is template specialized on string
because we are not printing integers any longer. And instead of std::copy, we
use std::transform because it allows us to apply a transformation function to
each item in the input range before copying it to the output range:

 transform(begin(v), end(v),
 ostream_iterator<string>{cout, " "},
 word_num);
 cout << '\n';

Strings, Stream Classes, and Regular Expressions

[298]

The last output line in this program finally puts struct bork to use. We could,12.
but do not provide a transformation function to std::transform. Instead, we
can just create an output stream iterator, which is specialized on the bork type in
an std::copy call. This leads to the bork instances being implicitly created from
the input range integers. That will give us some interesting output:

 copy(begin(v), end(v),
 ostream_iterator<bork>{cout, "\n"});
 }

Compiling and running the program yields us the following output. The first two13.
lines are completely identical to the next two lines, which is what we suspected.
Then, we get nice, written-out number strings in a line, followed by a lot of
bork! strings. These occur in multiple lines because we used a "\n" separator
string instead of spaces for those:

 $./ostream_printing
 12345
 1, 2, 3, 4, 5,
 12345
 1, 2, 3, 4, 5,
 one two three four five
 bork!
 bork! bork!
 bork! bork! bork!
 bork! bork! bork! bork!
 bork! bork! bork! bork! bork!

How it works...
We have seen that std::ostream_iterator is really just a syntax hack, which kind of
squeezes the act of printing into the form and syntax of an iterator. Incrementing such an
iterator does nothing. Dereferencing it only returns us a proxy object whose assignment
operator forwards its argument to an output stream.

Output stream iterators that are specialized on a type T (as in ostream_iterator<T>)
work with all types for which an ostream& operator<<(ostream&, const T&)
implementation is provided.

Strings, Stream Classes, and Regular Expressions

[299]

ostream_iterator always tries to call operator<< for the type it was specialized for, via
its template parameter. It will try to implicitly convert types if the same is allowed. When
we iterate over a range of A-typed items but we copy those items over to
output_iterator instances, this will work if A is implicitly convertible to B. We did
exactly the same thing with struct bork: a bork instance is implicitly convertible from an
integer value. That is why it was so easy to throw a lot of "bork!" strings onto the user
shell.

If implicit conversion is not possible, we can do that ourselves, using std::transform,
which is what we did in combination with the word_num function.

Note that it is, in general, bad style to allow implicit conversions for custom
types because this is a common source of bugs that are really hard to find
later. In our example use case, the implicit constructor is more useful than
dangerous because the class is used for nothing else but printing.

Redirecting output to files for specific code
sections
The std::cout provides a really nice way to print whatever we want, whenever we want
because it is simple to use, easily extensible, and globally accessible. Even if we want to
print special messages, such as error messages, which we want to isolate from normal
messages, we can just use std::cerr, which is the same as cout but prints to the standard
error channel instead of the standard output channel.

We might have some more complicated desires for logging sometimes. Let's say, for
example, we want to redirect the output of a function to a file, or we want to mute the output
of a function, without changing the function at all. Perhaps, it is a library function we
cannot access the source code of. Maybe, it was never designed to write to a file but we
want its output in a file.

Strings, Stream Classes, and Regular Expressions

[300]

It is indeed possible to redirect the output of stream objects. In this recipe, we are going to
see how to do that in a very simple and elegant way.

How to do it...
We are going to implement a helper class that solves the problem of redirecting a stream
and reverting that redirection again with constructor/destructor magic. And then we see
how we can put it to use:

We only need the headers for input, output, and file streams this time. And we1.
declare the std namespace as a default namespace for lookup:

 #include <iostream>
 #include <fstream>

 using namespace std;

We implement a class, which holds a file stream object and a pointer to a stream2.
buffer. The cout as a stream object has an internal stream buffer, which we can
simply exchange. And while we exchange it, we can save what it was before, so
we can undo any change later. We could look its type up in the C++ reference, but
we can also use decltype to find out what type cout.rdbuf() returns. This is
not generally good practice in all situations, but in this case, it's just a pointer
type:

 class redirect_cout_region
 {
 using buftype = decltype(cout.rdbuf());
 ofstream ofs;
 buftype buf_backup;

Strings, Stream Classes, and Regular Expressions

[301]

The constructor of our class accepts a filename string as its only parameter. The3.
filename is used to initialize the file stream member, ofs. After initializing it, we
can feed it into cout as a new stream buffer. The same function that accepts the
new buffer also returns a pointer to the old one, so we can save it in order to
restore it later:

 public:
 explicit
 redirect_cout_region (const string &filename)
 : ofs{filename},
 buf_backup{cout.rdbuf(ofs.rdbuf())}
 {}

The default constructor does the same as the other constructor. The difference is,4.
that it does not open any file. Feeding a default-constructed file stream buffer into
the cout stream buffer leads to cout being kind of deactivated. It will just drop its
input we give it for printing. This can also be useful in some situations:

 redirect_cout_region()
 : ofs{},
 buf_backup{cout.rdbuf(ofs.rdbuf())}
 {}

The destructor just restores our change. When an object of this class runs out of5.
scope, the stream buffer of cout is the old one again:

 ~redirect_cout_region() {
 cout.rdbuf(buf_backup);
 }
 };

Let's mock an output-heavy function, so we can play with it later:6.

 void my_output_heavy_function()
 {
 cout << "some output\n";
 cout << "this function does really heavy work\n";
 cout << "... and lots of it...\n";
 // ...
 }

Strings, Stream Classes, and Regular Expressions

[302]

In the main function, we first produce some completely normal output:7.

 int main()
 {
 cout << "Readable from normal stdout\n";

Now we're opening another scope, and the first thing we do in this scope is8.
instantiating our new class with a text file parameter. File streams open files in
read and write mode by default, so it creates this file for us. Any following output
will now be redirected to this file, although we use cout for printing:

 {
 redirect_cout_region _ {"output.txt"};
 cout << "Only visible in output.txt\n";
 my_output_heavy_function();
 }

After leaving the scope, the file is closed and the output is redirected to the9.
normal standard output again. Let's now open another scope in which we
instantiate the same class, but via its default constructor. This way the following
printed line of text will not be visible anywhere. It will just be dropped:

 {
 redirect_cout_region _;
 cout << "This output will "
 "completely vanish\n";
 }

After leaving that scope also, our standard output is resurrected and the last line10.
of text output will be readable in the shell again:

 cout << "Readable from normal stdout again\n";
 }

Compiling and running the program yields the output as we expected it. Only11.
the very first and the very last lines of output are visible in the shell:

 $./log_regions
 Readable from normal stdout
 Readable from normal stdout again

Strings, Stream Classes, and Regular Expressions

[303]

We can see that a new file, output.txt, has been created and contains the12.
output of the first scope. The output of the second scope vanishes completely:

 $ cat output.txt
 Only visible in output.txt
 some output
 this function does really heavy work
 ... and lots of it...

How it works...
Every stream object has an internal buffer for which it acts as a front end. Such buffers are
exchangeable. If we have a stream object, s, and want to save its buffer into a variable, a,
and install a new buffer, b, this looks like the following: a = s.rdbuf(b). Restoring it can
be simply done with s.rdbuf(a).

This is exactly what we did in this recipe. Another cool thing is that we can stack those
redirect_cout_region helpers:

{
 cout << "print to standard output\n";

 redirect_cout_region la {"a.txt"};
 cout << "print to a.txt\n";
 redirect_cout_region lb {"b.txt"};
 cout << "print to b.txt\n";
}
cout << "print to standard output again\n";

This works because objects are destructed in the opposite order of their construction. The
concept behind this pattern that uses the tight coupling between construction and
destruction of objects is called Resource Acquisition Is Initialization (RAII).

Strings, Stream Classes, and Regular Expressions

[304]

There is one really important thing that should be mentioned--the initialization order of the
member variables of the redirect_cout_region class:

class redirect_cout_region {
 using buftype = decltype(cout.rdbuf());

 ofstream ofs;
 buftype buf_backup;

public:
 explicit
 redirect_cout_region(const string &filename)
 : ofs{filename},
 buf_backup{cout.rdbuf(ofs.rdbuf())}
 {}

...

As we can see, the member, buf_backup, is constructed from an expression that depends
on ofs. This obviously means that ofs needs to be initialized before buf_backup.
Interestingly, the order in which these members are initialized does not depend on the order
of the initializer list items. The initialization order only depends on the order of the member
declarations!

If one class member variable needs to be initialized after another member
variable, they must also appear in that order in the class member
declaration. The order of their appearance in the initializer list of the
constructor is not critical.

Creating custom string classes by inheriting
from std::char_traits
The std::string is extremely useful. However, as soon as people need a string class with
slightly different semantics for string handling, some tend to write their own string class.

Strings, Stream Classes, and Regular Expressions

[305]

Writing your own string class is rarely a good idea because safe string handling is hard.
Fortunately, std::string is only a specializing typedef of the template class,
std::basic_string. This class contains all the complicated memory handling stuff, but it
does not impose any policy on how strings are copied, compared, and so on. This is
something that is imported into basic_string by accepting a template parameter that
contains a traits class.

In this recipe, we will see how to build our own trait classes and, this way, how to create
custom strings without reimplementing anything.

How to do it...
We are going to implement two different custom string classes: lc_string and
ci_string. The first class constructs lower case strings from any string input. The other
class does not transform any string, but it can do case-insensitive string comparison:

Let's include the few necessary headers first and then declare that we use the std1.
namespace by default:

 #include <iostream>
 #include <algorithm>
 #include <string>

 using namespace std;

Then we reimplement the std::tolower function, which is already defined in2.
<cctype>. The already existing function is fine, but it is not constexpr. Some
string functions are constexpr since C++17, however, and we want to be able
to make use of that with our own custom string trait class. The function maps
upper-case characters to lower case and leaves other characters unchanged:

 static constexpr char tolow(char c) {
 switch (c) {
 case 'A'...'Z': return c - 'A' + 'a';
 default: return c;
 }
 }

Strings, Stream Classes, and Regular Expressions

[306]

The std::basic_string class accepts three template parameters: the3.
underlying character type, a character traits class, and an allocator type. We are
only changing the character traits class in this section because it defines the
behavior of strings. In order to reimplement only what should differ from the
ordinary strings, we are publicly inheriting from the standard traits class:

 class lc_traits : public char_traits<char> {
 public:

Our class accepts input strings but transforms them to lower case. There is one4.
function, which does this character-wise, so we can put our own tolow function
here. This function is constexpr, which is why we reimplemented ourselves a
constexpr tolow function:

 static constexpr
 void assign(char_type& r, const char_type& a) {
 r = tolow(a);
 }

The other function handles the copying of an entire string into its own memory.5.
We use an std::transform call to copy all the characters from the source string
to the internal destination string and, at the same time, map every character to its
lower-case version:

 static char_type* copy(char_type* dest,
 const char_type* src,
 size_t count) {
 transform(src, src + count, dest, tolow);
 return dest;
 }
 };

The other trait helps build a string class that effectively transforms strings to6.
lower case. We are going to write another trait that leaves the actual string
payload untouched but which is case insensitive when it comes to comparing
strings. We inherit from the existing standard character traits class again, and this
time, we redefine some other member functions:

 class ci_traits : public char_traits<char> {
 public:

Strings, Stream Classes, and Regular Expressions

[307]

The eq function tells whether two characters are equal. We do this too, but we7.
compare their lower-case versions. This way 'A' equals 'a':

 static constexpr bool eq(char_type a, char_type b) {
 return tolow(a) == tolow(b);
 }

The lt function tells whether the value of a is less than the value of b. We apply8.
the correct logical operator for that, just after lower-casing both the characters
again:

 static constexpr bool lt(char_type a, char_type b) {
 return tolow(a) < tolow(b);
 }

The last two functions worked on character-wise input and the next two9.
functions work on string-wise input. The compare function works similar to the
old-school strncmp function. It returns 0 if both the strings are equal within the
length that count defines. If they differ, it returns a negative or positive number,
which tells which input string is lexicographically smaller. Calculating the
difference between both the characters at every position must, of course, be done
on their lower-case versions. The nice thing is that this whole loop code has been
part of a constexpr function since C++14:

 static constexpr int compare(const char_type* s1,
 const char_type* s2,
 size_t count) {
 for (; count; ++s1, ++s2, --count) {
 const char_type diff (tolow(*s1) - tolow(*s2));
 if (diff < 0) { return -1; }
 else if (diff > 0) { return +1; }
 }
 return 0;
 }

The last function we need to implement for our case-insensitive string class is10.
find. For a given input string, p, and length, count, it finds the position of a
character, ch. Then, it returns a pointer to the first occurrence of that character, or
it returns nullptr if there is none. The comparison in this function has to be
done using the tolow "glasses" in order to make the search case-insensitive.
Unfortunately, we cannot use std::find_if, because it is not constexpr, and
must write a loop ourselves:

Strings, Stream Classes, and Regular Expressions

[308]

 static constexpr
 const char_type* find(const char_type* p,
 size_t count,
 const char_type& ch) {
 const char_type find_c {tolow(ch)};
 for (; count != 0; --count, ++p) {
 if (find_c == tolow(*p)) { return p; }
 }
 return nullptr;
 }
 };

Okay, that's it for the traits. Since we have them in place now, we can define two11.
new string class types. lc_string means lower-case string. ci_string means
case-insensitive string. Both the classes only differ from std::string by their
character traits class:

 using lc_string = basic_string<char, lc_traits>;
 using ci_string = basic_string<char, ci_traits>;

In order to make the output streams accept these new classes for printing, we12.
quickly need to overload the stream operator<<:

 ostream& operator<<(ostream& os, const lc_string& str) {
 return os.write(str.data(), str.size());
 }
 ostream& operator<<(ostream& os, const ci_string& str) {
 return os.write(str.data(), str.size());
 }

Now we can finally begin implementing the actual program. Let's instantiate a13.
normal string, a lower-case string, and a case-insensitive string, and print them
immediately. They should all look normal on the terminal, but the lower case
strings should be all lower-cased:

 int main()
 {
 cout << " string: "
 << string{"Foo Bar Baz"} << '\n'
 << "lc_string: "
 << lc_string{"Foo Bar Baz"} << '\n'
 << "ci_string: "
 << ci_string{"Foo Bar Baz"} << '\n';

Strings, Stream Classes, and Regular Expressions

[309]

In order to test the case-insensitive string, we can instantiate two strings that are14.
basically equal but differ in the casing of some characters. When doing a really
case-insensitive comparison, they should appear equal nevertheless:

 ci_string user_input {"MaGiC PaSsWoRd!"};
 ci_string password {"magic password!"};

So, let's compare them and print that they match if they do:15.

 if (user_input == password) {
 cout << "Passwords match: \"" << user_input
 << "\" == \"" << password << "\"\n";
 }
 }

Compiling and running the program yields us the expected results. When we16.
first printed the same string three times in different types, we got unchanged
results, but the lc_string instance is all lower case. The comparison of the two
strings that only differ in their character casing was indeed successful and yields
us the right output:

 $./custom_string
 string: Foo Bar Baz
 lc_string: foo bar baz
 ci_string: Foo Bar Baz
 Passwords match: "MaGiC PaSsWoRd!" == "magic password!"

How it works...
All the subclassing, and function reimplementing we did will surely look a bit crazy for
beginners. Where did all the function signatures come from, of which we magically knew
that we need to reimplement?

Let's first have a look where std::string really comes from:

template <
 class CharT,
 class Traits = std::char_traits<CharT>,
 class Allocator = std::allocator<CharT>
 >
class basic_string;

Strings, Stream Classes, and Regular Expressions

[310]

The std::string is really an std::basic_string<char> and that expands to
std::basic_string<char, std::char_traits<char>, std::allocator<char>>.
Okay, that is a long type description, but what does it mean? The point of all of this is that it
is possible to base a string not only on single-byte char items but also on other, larger,
types. This enables for string types, which can handle more than the typical American
ASCII character set. This is not something we will have a look into now.

The char_traits<char> class, however, contains algorithms that basic_string needs
for its operation. The char_traits<char> knows how to compare, find, and copy
characters and strings.

The allocator<char> class is also a traits class, but its special job is handling string
allocation and deallocation. This is not important for us at this time as the default behavior
satisfies our needs.

If we want a string class to behave differently, we can try to reuse as much as possible from
what basic_string and char_traits already provide. And this is what we did. We
implemented two char_traits subclasses called case_insentitive and lower_caser
and configured two completely new string types with them by using them as substitutes for
the standard char_traits type.

In order to explore what other possibilities there are to adapt
basic_string to your own needs, look up the C++ STL documentation
for std::char_traits and see what other functions it has that can be
reimplemented.

Tokenizing input with the regular expression
library
When parsing or transforming strings in complex ways or breaking them into chunks,
regular expressions are a great help. In many programming languages, they are already built
in because they are so useful and handy.

If you do not know regular expressions yet, have a look at the Wikipedia article about them,
for example. They will surely extend your horizon, as it is easy to see how useful they are
when parsing any kind of text. Regular expressions can, for example, test whether an e-mail
address string or an IP address string is valid, find and extract substrings out of large
strings, which follow a complex pattern, and so on.

Strings, Stream Classes, and Regular Expressions

[311]

In this recipe, we will extract all the links out of an HTML file and list them for the user. The
code will be amazingly short because we have regular expression support built in the C++
STL since C++11.

How to do it...
We are going to define a regular expression that detects links, and we apply it to an HTML
file in order to pretty print all the links that occur in that file:

Let's first include all the necessary headers, and declare that we use the std1.
namespace by default:

 #include <iostream>
 #include <iterator>
 #include <regex>
 #include <algorithm>
 #include <iomanip>

 using namespace std;

We will later generate an iterable range, which consists of strings. These strings2.
always occur in pairs of a link and a link description. Therefore, let's write a little
helper function, which pretty prints these:

 template <typename InputIt>
 void print(InputIt it, InputIt end_it)
 {
 while (it != end_it) {

In each loop step, we increment the iterator twice and take copies of the link and3.
the link description they contain. Between the two iterator dereferences, we add
another guarding if branch that checks whether we prematurely reached the end
of the iterable range, just for safety:

 const string link {*it++};
 if (it == end_it) { break; }
 const string desc {*it++};

Strings, Stream Classes, and Regular Expressions

[312]

Now, let's print the link with its description in a nicely prettified form and that's4.
it:

 cout << left << setw(28) << desc
 << " : " << link << '\n';
 }
 }

In the main function, we are reading in everything that comes from standard5.
input. To do this, we are constructing a string from the whole standard input via
an input stream iterator. In order to prevent tokenizing, because we want the
whole user input as-is, we use noskipws. This modifier deactivates whitespace
skipping and tokenizing:

 int main()
 {
 cin >> noskipws;
 const std::string in {istream_iterator<char>{cin}, {}};

Now we need to define a regular expression that describes how we assume an6.
HTML link to look. The parentheses, (), within the regular expression define
groups. These are the parts of the link we want to access--the URL it links to, and
its description:

 const regex link_re {
 "<a href=\"([^\"]*)\"[^<]*>([^<]*)"};

The sregex_token_iterator class has the same look and feel as of7.
istream_iterator. We give it the whole string as iterable input range and the
regular expression we just defined. There is also a third parameter, {1, 2},
which is an initializer list of integer values. It defines that we want to iterate over
the groups 1 and 2 from the expressions it captures:

 sregex_token_iterator it {
 begin(in), end(in), link_re, {1, 2}};

Now we have an iterator that will emit the links and link descriptions if it finds8.
any. We provide it together with a default constructed iterator of the same type to
the print function we implemented before:

 print(it, {});
 }

Strings, Stream Classes, and Regular Expressions

[313]

Compiling and running the program gives us the following output. I ran the9.
curl program on the ISO C++ homepage, which simply downloads an HTML
page from the Internet. Of course, it would also be possible to write cat
some_html_file.html | ./link_extraction. The regular expression we
used is pretty much hardcoded to a fixed assumption of how links look in the
HTML document. It may be exercised by you to make it more general:

 $ curl -s "https://isocpp.org/blog" | ./link_extraction
 Sign In / Suggest an Article : https://isocpp.org/member/login
 Register : https://isocpp.org/member/register
 Get Started! : https://isocpp.org/get-started
 Tour : https://isocpp.org/tour
 C++ Super-FAQ : https://isocpp.org/faq
 Blog : https://isocpp.org/blog
 Forums : https://isocpp.org/forums
 Standardization : https://isocpp.org/std
 About : https://isocpp.org/about
 Current ISO C++ status : https://isocpp.org/std/status
 (...and many more...)

How it works...
Regular expressions (or regex in short) are extremely useful. They can look really cryptic,
but it is worth learning how they work. A short regex can spare us writing many lines of
code if we did the matching manually.

In this recipe, we first instantiated an object of type regex. We fed its constructor with a
string that describes a regular expression. A very simple regular expression is ".", which
matches every character because a dot is the regex wildcard. If we write "a", then this
matches only on the 'a' characters. If we write "ab*", then this means "one a, and zero or
arbitrarily many b characters". And so on. Regular expressions are another large topic, and
there are great explanations on Wikipedia and other websites or literature.

Strings, Stream Classes, and Regular Expressions

[314]

Let's have another look at our regular expression that matches what we assume to be HTML
links. A simple HTML link can look like A great
link. We want the some_url.com/foo part, as well as A great link. So we came
up with the following regular expression, which contains groups for matching substrings:

The whole match itself is always Group 0. In this case, this is the full <a href
 string. The quoted href-part that contains the URL being linked to is Group 1. The (
) parentheses in the regular expression define such a group of which we have 2. The other
one is the part between the <a ...> and , which contains the link description.

There are various STL functions that accept regex objects, but we directly used a regex
token iterator adapter, which is a high-level abstraction that uses std::regex_search
under the hood in order to automate recurring matching work. We instantiated it like this:

sregex_token_iterator it {begin(in), end(in), link_re, {1, 2}};

The begin and end part denote our input string over which the regex token iterator shall
iterate and match all links. The link_re is, of course, the complex regular expression we
implemented to match links. The {1, 2} part is the next complicated looking thing. It
instructs the token iterator to stop on each full match and first yield Group 1, then after
incrementing the iterator to yield Group 2, and after incrementing it again, it would finally
search for the next match in the string. This somewhat intelligent behavior really spares us
some code lines.

Strings, Stream Classes, and Regular Expressions

[315]

Let's have a look at another example to make sure we got the idea. Let's imagine the regular
expression, "a(b*)(c*)". It will match strings that contain an a character, then none or
arbitrarily many b characters, and then none or arbitrarily many c characters:

const string s {" abc abbccc "};
const regex re {"a(b*)(c*)"};

sregex_token_iterator it {begin(s), end(s), re, {1, 2}};

print(*it); // prints b
++it;
print(*it); // prints c
++it;
print(*it); // prints bb
++it;
print(*it); // prints ccc

There is also the std::regex_iterator class, which emits the substrings that are between
regex matches.

Comfortably pretty printing numbers
differently per context on the fly
In the last recipe, we learned how to format the output with output streams. And while
doing the same, we realized two facts:

Most I/O manipulators are sticky, so we have to revert their effect after use in
order to not tamper with other unrelated code, which also prints
It can be very tedious and does not look very readable if we have to set up long
chains of I/O manipulators in order to get only a few variables printed with
specific formatting

A lot of people do not like I/O streams for such reasons, and even in C++, they still use
printf for formatting their strings.

In this recipe, we will see how to format types on the fly without too much I/O manipulator
noise in our code.

Strings, Stream Classes, and Regular Expressions

[316]

How to do it...
We are going to implement a class, format_guard, which can automatically revert any
format setting. Additionally, we add a wrapper type, which can contain any value, but
when it is printed, it gets special formatting without burdening us with I/O manipulator
noise:

First, we include some headers and declare that we use the std namespace:1.

 #include <iostream>
 #include <iomanip>

 using namespace std;

The helper class that tidies up our stream formatting states for us is called2.
format_guard. Its constructor saves the formatting flags, which std::cout has
set at the moment. Its destructor restores them to the state it had when the
constructor was called. This effectively revokes any formatting settings that were
applied in between:

 class format_guard {
 decltype(cout.flags()) f {cout.flags()};
 public:
 ~format_guard() { cout.flags(f); }
 };

Another little helper class is scientific_type. Because it's a class template, it3.
can wrap any payload type as a member variable. It basically does nothing:

 template <typename T>
 struct scientific_type {
 T value;
 explicit scientific_type(T val) : value{val} {}
 };

Strings, Stream Classes, and Regular Expressions

[317]

We can define completely custom formatting settings for any type that was4.
wrapped into scientific_type before because if we overload the stream
operator>> for it, the stream library executes completely different code when
printing such types. This way, we can print scientific values in scientific floating-
point notation, with uppercase formatting and explicit + prefix if they have
positive values. We do also use our format_guard class in order to tidy up all
our settings when leaving this function again:

 template <typename T>
 ostream& operator<<(ostream &os, const scientific_type<T> &w) {
 format_guard _;
 os << scientific << uppercase << showpos;
 return os << w.value;
 }

In the main function, we will first play around with the format_guard class. We5.
open a new scope, first get an instance of the class, and then we apply some wild
formatting flags to std::cout:

 int main()
 {
 {
 format_guard _;
 cout << hex << scientific << showbase << uppercase;
 cout << "Numbers with special formatting:\n";
 cout << 0x123abc << '\n';
 cout << 0.123456789 << '\n';
 }

After we printed some numbers with many formatting flags enabled, we left the6.
scope again. While this happened, the destructor of format_guard tidied the
formatting up. In order to test this, we are printing exactly the same numbers
again. They should appear different:

 cout << "Same numbers, but normal formatting again:\n";
 cout << 0x123abc << '\n';
 cout << 0.123456789 << '\n';

Strings, Stream Classes, and Regular Expressions

[318]

Now we put scientific_type to use. Let's print three floating-point numbers7.
in a row. We wrap the second number in scientific_type. This way, it is
printed in our special scientific style, but the numbers before and after it get
default formatting. At the same time, we avoid ugly formatting line noise:

 cout << "Mixed formatting: "
 << 123.0 << " "
 << scientific_type{123.0} << " "
 << 123.456 << '\n';
 }

Compiling and running the program yields us the following result. The first two8.
numbers are printed with specific formatting. The next two numbers appear with
default formatting, which shows us that our format_guard works just nicely.
The three numbers in the last lines also look just as expected. Only the one in the
middle has the formatting of scientific_type, the rest has default formatting:

 $./pretty_print_on_the_fly
 Numbers with special formatting:
 0X123ABC
 1.234568E-01
 Same numbers, but normal formatting again:
 1194684
 0.123457
 Mixed formatting: 123 +1.230000E+02 123.456

Catching readable exceptions from
std::iostream errors
In none of the recipes in this chapter, we used exceptions to catch errors. While this is
certainly possible, working on stream objects without exceptions is already very convenient.
If we try to parse in 10 values, but this fails somewhere in the middle, the whole stream
object sets itself into a fail state and stops further parsing. This way, we do not run into the
danger of parsing variables from the wrong offset in the stream. We can just do the parsing
in a conditional, such as if (cin >> foo >> bar >> ...). If this fails, we handle it. It
does not appear very advantageous to embrace parsing in a try { ... } catch ...
block.

In fact, the C++ I/O stream library already existed before there were exceptions in C++.
Exception support was added later, which might be an explanation why they are not a first-
class supported feature in the stream library.

Strings, Stream Classes, and Regular Expressions

[319]

In order to use exceptions in the stream library, we must configure each stream object
individually to throw an exception, whenever it sets itself into a fail state. Unfortunately,
the error explanations in the exception objects, which we can then catch later, are not
thoroughly standardized. This leads to not really helpful error messages, as we will see in
this section. If we really want to use exceptions with stream objects, we can additionally poll
the C library for filesystem error states to get some additional information.

In this section, we are going to write a program that can fail in different ways, handle those
with exceptions, and see how to squeeze more information out of those afterward.

How to do it...
We will implement a program that opens a file (which might fail), and then we'll read an
integer out of it (which might fail, too). We do this with activated exceptions and then we
see how we can handle those:

First, we include some headers and declare that we use the std namespace:1.

 #include <iostream>
 #include <fstream>
 #include <system_error>
 #include <cstring>

 using namespace std;

If we want to use stream objects with exceptions, we have to enable them first. In2.
order to get a file stream object to throw an exception if the file we are letting it
access does not exist, or if there are parsing errors, we need to set some fail bits in
an exception mask. If we do something afterward that fails, it will trigger an
exception. By activating failbit and badbit, we enable exceptions for
filesystem errors and parsing errors:

 int main()
 {
 ifstream f;
 f.exceptions(f.failbit | f.badbit);

Strings, Stream Classes, and Regular Expressions

[320]

Now we can open a try block and access a file. If opening the file is successful,3.
we try to read an integer from it. Only if both steps succeed, we print the integer:

 try {
 f.open("non_existant.txt");

 int i;
 f >> i;

 cout << "integer has value: " << i << '\n';
 }

In both the expected possibilities of an error, an instance of4.
std::ios_base::failure is thrown. This object has a what() member
function, which ought to explain what triggered the exception. Unfortunately, the
standardization of this message was left out, and it does not give too much
information. However, we can at least distinguish if there is a filesystem problem
(because the file does not exist, for example) or a format parsing problem. The
global variable, errno, has been there even before C++ was invented, and it is set
to an error value, which we can check now. The strerror function translates
from an error number to a human readable string. If errno is 0, there is, at least,
no filesystem error:

 catch (ios_base::failure& e) {
 cerr << "Caught error: ";
 if (errno) {
 cerr << strerror(errno) << '\n';
 } else {
 cerr << e.what() << '\n';
 }
 }
 }

Compiling the program and running it in two different scenarios yields the5.
following output. If the file to be opened does exist but parsing an integer from it
was not possible, we get an iostream_category error message:

 $./readable_error_msg
 Caught error: ios_base::clear: unspecified iostream_category error

Strings, Stream Classes, and Regular Expressions

[321]

If the file does not exist, we will be notified about this with a different message6.
from strerror(errno):

 $./readable_error_msg
 Caught error: No such file or directory

How it works...
We have seen that we can enable exceptions per stream object, s, with
s.exceptions(s.failbit | s.badbit). This means, that there is no way to use, for
example, the std::ifstream instance's constructor for opening a file if we want to get an
exception when opening that file is not possible:

ifstream f {"non_existant.txt"};
f.exceptions(...); // too late for an exception

This is a pity because exceptions actually promise that they make error handling less
clumsy compared to old-school C-style code, which is riddled with loads of if branches,
which handle errors after every step.

If we played around trying to provoke various reasons for streams to fail, we would realize
that there are no different exceptions being thrown. This way, we can only find out when we
get an error, but not what specific error (This is, of course, not true for exception handling in
general, but for the STL stream library). That is why we additionally consulted the value of
errno. This global variable is an ancient construct, which has already been used in the old
days when there were no C++ or exceptions in general.

If any system-related function has seen an error condition, it is able to set the errno
variable to something other than 0 (0 describes the absence of errors), and then the caller is
able to read that error number and look up what its value means. The only problem with
this is that when we have a multithreaded application, and all the threads use functions that
can set this error variable, whose error value is it? If we read it even though there is no error,
it could carry an error value because some other system function running in a different thread
may have experienced an error. Luckily, this flaw has been gone since C++11, where every
thread in a process sees its own errno variable.

Without elaborating the ups and downs of an ancient error indication method, it can give us
useful extra information when an exception is triggered on system-based things such as file
streams. Exceptions tell us when it happened, and errno can tell us what happened if it
happened at the system level.

8
Utility Classes

In this chapter, we will cover the following recipes:

Converting between different time units using std::ratio
Converting between absolute and relative times with std::chrono
Safely signalizing failure with std::optional
Applying functions on tuples
Quickly composing data structures with std::tuple
Replacing void* with std::any for more type safety
Storing different types with std::variant
Automatically handling resources with std::unique_ptr
Automatically handling shared heap memory with std::shared_ptr
Dealing with weak pointers to shared objects
Simplifying resource handling of legacy APIs with smart pointers
Sharing different member values of the same object
Generating random numbers and choosing the right random number engine
Generating random numbers and letting the STL shape specific distributions

Utility Classes

[323]

Introduction
This chapter is dedicated to utility classes that are very useful for solving very specific tasks.
Some of them are indeed so useful that we will most probably see them extremely often in
any C++ program snippet in the future or have at least already seen them sprinkled over all
other chapters in this book.

The first two recipes are about measuring and taking the time. We will also see how to
convert between different time units and how to jump between points in time.

Then, we will have a look at the optional, variant, and any types (which all came with
C++14 and C++17) as well as some tuple tricks in another five recipes.

Since C++11, we also got sophisticated smart pointer types, namely unique_ptr,
shared_ptr, and weak_ptr, which are an enormously effective help regarding memory
management, which is why we will have a dedicated look at them in five recipes.

Finally, we will have a panoramic view of the library parts of the STL that are about
generating random numbers. Apart from learning about the most important characteristics of
the STL's random engines, we will also learn how to apply shaping to random numbers in
order to get distributions that fit our actual needs.

Converting between different time units
using std::ratio
Since C++11, the STL contains some new types and functions for taking, measuring, and
displaying time. This part of the library exists in the std::chrono namespace and has
some sophisticated details.

In this recipe, we will concentrate on measuring time spans and how to convert the result of
the measurement between units, such as seconds, milliseconds, and microseconds. The STL
provides facilities, which enable us to define our own time units and convert between them
seamlessly.

Utility Classes

[324]

How to do it...
In this section, we will write a little game that prompts the user to enter a specific word. The
time that the user needs to type this word into the keyboard is measured and displayed in
multiple time units:

At first, we need to include all the necessary headers. For reasons of comfort, we1.
declare that we use the std namespace by default:

 #include <iostream>
 #include <chrono>
 #include <ratio>
 #include <cmath>
 #include <iomanip>
 #include <optional>

 using namespace std;

The chrono::duration as a type for time durations usually refers to multiples2.
or fractions of seconds. All the STL time duration units refer to integer typed
duration specializations. In this recipe, we are going to specialize on double. In
the recipe after this one, we will concentrate more on the existing time unit
definitions that are already built into the STL:

 using seconds = chrono::duration<double>;

One millisecond is a fraction of a second, so we define this unit by referring to3.
seconds. The ratio_multiply template parameter applies the STL-predefined
milli factor to seconds::period, which gives us the fraction we want. The
ratio_multiply template is basically a meta programming function for
multiplying ratios:

 using milliseconds = chrono::duration<
 double, ratio_multiply<seconds::period, milli>>;

It's the same thing with microseconds. While a millisecond is a milli-fraction of4.
a second, a microsecond is a micro-fraction of a second:

 using microseconds = chrono::duration<
 double, ratio_multiply<seconds::period, micro>>;

Utility Classes

[325]

Now we are going to implement a function, which reads a string from user input5.
and measures how long it took the user to type the input. It takes no arguments
and returns us the user input string as well as the elapsed time, bundled in a pair:

 static pair<string, seconds> get_input()
 {
 string s;

We need to take the time from the beginning of the period during which user6.
input occurs and after it. Taking a time snapshot looks like this:

 const auto tic (chrono::steady_clock::now());

The actual capturing of user input takes place now. If we are not successful, we7.
just return a default-initialized tuple. The caller will see that he got an empty
input string:

 if (!(cin >> s)) {
 return {{}, {}};
 }

In the case of success, we continue by taking another time snapshot. Then we8.
return the input string and the difference between both time points. Note that
both are absolute time points, but by calculating the difference, we get a duration:

 const auto toc (chrono::steady_clock::now());
 return {s, toc - tic};
 }

Let's implement the actual program now. We loop until the user enters the input9.
string correctly. In every loop step, we ask the user to please enter the string
"C++17" and, then, call our get_input function:

 int main()
 {
 while (true) {
 cout << "Please type the word \"C++17\" as"
 " fast as you can.\n> ";
 const auto [user_input, diff] = get_input();

Utility Classes

[326]

Then we check the input. If the input is empty, we interpret this as a request to10.
exit the whole program:

 if (user_input == "") { break; }

If the user correctly types "C++17", we express our congratulations and then11.
print the time the user needed to type the word correctly. The diff.count()
method returns the number of seconds as a floating point number. If we had used
the original STL seconds duration type, then we would have got a rounded
integer value, not a fraction. By feeding the milliseconds or microseconds
constructor with our diff variable before calling count(), we get the same
value transformed to a different unit:

 if (user_input == "C++17") {
 cout << "Bravo. You did it in:\n"
 << fixed << setprecision(2)
 << setw(12) << diff.count()
 << " seconds.\n"
 << setw(12) << milliseconds(diff).count()
 << " milliseconds.\n"
 << setw(12) << microseconds(diff).count()
 << " microseconds.\n";
 break;

If the user has a typo in the input, we let him try again:12.

 } else {
 cout << "Sorry, your input does not match."
 " You may try again.\n";
 }
 }
 }

Compiling and running the program leads to the following output. At first, with13.
a typo, the program repeatedly asks for the correct input word. After typing the
word correctly, it displays how long it took us to type it in three different time
units:

 $./ratio_conversion
 Please type the word "C++17" as fast as you can.
 > c+17
 Sorry, your input does not match. You may try again.
 Please type the word "C++17" as fast as you can.
 > C++17

Utility Classes

[327]

 Bravo. You did it in:
 1.48 seconds.
 1480.10 milliseconds.
 1480099.00 microseconds.

How it works...
While this section is all about converting between different time units, we first had to
choose one of the three available clock objects. There is generally the choice between
system_clock, steady_clock, and high_resolution_clock in the std::chrono
namespace. What are the differences between them? Let's have a closer look:

Clock Characteristics

system_clock This represents the system-wide real-time "wall" clock. It is the
right choice if we want to obtain the local time.

steady_clock This clock is promised to be monotonic. This means that it will
never be set back by any amount of time. This can happen to
other clocks when their time is corrected by minimal amounts, or
even when the time is switched between winter and summer
time.

high_resolution_clock This is the clock with the most fine-grained clock tick period the
STL implementation can provide.

Since we measured the time distance, or duration from one absolute point in time and the
other absolute point in time (which we captured in the variables tic and toc), we are not
interested if those points in time were globally skewed. Even if the clock was 112 years, 5
hours, 10 minutes, and 1 second (or whatever) late or ahead of time, then this does not
make a difference on the difference between them. The only important thing is that after we
save the time point tic and before we save the time point toc, the clock must not be micro-
adjusted (which happens on many systems from time to time) because that would distort
our measurement. For these requirements, steady_clock is the optimal choice. Its
implementation can be based on the processor's timestamp counter, which always counts
up monotonously since the system was started.

Utility Classes

[328]

Okay, now with the right time object choice, we are able to save points in time via
chrono::steady_clock::now(). The now function returns us a
chrono::time_point<chrono::steady_clock> typed value. The difference between
two such values (as in toc - tic) is a time span, or duration of type chrono::duration.
As this is the central type of this section, this gets a little complicated now. Let's have a
closer look at the template type interface of duration:

template<
 class Rep,
 class Period = std::ratio<1>
> class duration;

The parameters we can change are called Rep and Period. Rep is easy to explain: this is just
the numeric variable type that is used to save the time value. For the existing STL time
units, this is usually long long int. In this recipe, we chose double. Because of our
choice, we can save time values in seconds by default and then convert them to milli- or
microseconds. If we save the time duration of 1.2345 seconds in the chrono::seconds
type, then it would be rounded to one full second. This way, we would have to save the
time difference between tic and toc in chrono::microseconds and could then convert
to less-fine-grained units. With our double choice for Rep, we can convert up and down
and lose only a minimal amount of precision, which does not hurt in this example.

We used Rep = double for all our time units, so they differed only in our choice of the
Period parameter:

using seconds = chrono::duration<double>;
using milliseconds = chrono::duration<double,
 ratio_multiply<seconds::period, milli>>;
using microseconds = chrono::duration<double,
 ratio_multiply<seconds::period, micro>>;

While seconds is the simplest unit to describe, as it works with Period = ratio<1>, the
others have to be adjusted. As one millisecond is a thousandth of a second, we multiply the
seconds::period (which is just a getter function to the Period parameter) with milli,
which is a type alias for std::ratio<1, 1000> (std::ratio<a, b> represents the
fractional value a/b). The ratio_multiply type is basically a compile time function, which
represents the type that results from multiplying one ratio type with another.

Maybe this sounds too complicated, so let's have a look at an example:
ratio_multiply<ratio<2, 3>, ratio<4, 5>> results in ratio<8, 15> because
(2/3) * (4/5) = 8/15.

Utility Classes

[329]

Our resulting type definitions are equivalent to the following definitions:

using seconds = chrono::duration<double, ratio<1, 1>>;
using milliseconds = chrono::duration<double, ratio<1, 1000>>;
using microseconds = chrono::duration<double, ratio<1, 1000000>>;

Having these types lined up, it is easy to convert between them. If we have a time duration
d of type seconds, we can transform it to milliseconds just by feeding it through the
constructor of the other type, that is, milliseconds(d).

There's more...
In other tutorials or books, you might run across duration_cast whenever time durations
are transformed. If we have a duration value of type chrono::milliseconds and want to
transform it to chrono::hours, for example, we do indeed need to write
duration_cast<chrono::hours>(milliseconds_value) because these units depend
on integer types. Transforming from fine-grained units to less-fine-grained units leads to
precision loss in that case, which is why we need a duration_cast. For double- or float-
based duration units, this is not needed.

Converting between absolute and relative
times with std::chrono
Until C++11, it was quite a hassle to take the wall clock time and just print it, because C++
did not have its own time library. It was always necessary to call functions of the C library,
which looks very archaic, considering that such calls could be encapsulated nicely into their
own classes.

Since C++11, the STL provides the chrono library, which makes time-related tasks much
easier to implement.

In this recipe, we are going to take the local time, print it, and play around by adding
different time offsets, which is a really comfortable thing to do with std::chrono.

Utility Classes

[330]

How to do it...
We are going to save the current time and print it. Additionally, our program will add
different offsets to the saved time point and print the resulting time points too:

The typical include lines come first; then, we declare that we use the std1.
namespace by default:

 #include <iostream>
 #include <iomanip>
 #include <chrono>

 using namespace std;

We are going to print absolute time points. These will come along in the form of2.
the chrono::time_point type template, so we will just overload the output
stream operator for it. There are different ways to print the date and/or time part
of a time point. We will just use the %c standard formatting. We could, of course,
also print only the time, only the date, only the year, or whatever comes to our
mind. All the conversions between the different types before we can finally apply
put_time look a bit clunky, but we are only doing this once:

 ostream& operator<<(ostream &os,
 const chrono::time_point<chrono::system_clock> &t)
 {
 const auto tt (chrono::system_clock::to_time_t(t));
 const auto loct (std::localtime(&tt));
 return os << put_time(loct, "%c");
 }

There are already STL type definitions for seconds, minutes, hours, and so on.3.
We will add the days type now. This is easy; we just have to specialize the
chrono::duration template by referring to hours and multiply with 24,
because a full day has 24 hours:

 using days = chrono::duration<
 chrono::hours::rep,
 ratio_multiply<chrono::hours::period, ratio<24>>>;

Utility Classes

[331]

In order to be able to express a duration in multiples of days in the most elegant4.
way, we can define our own days literal operator. Now, we can write 3_days to
construct a value that represents three days:

 constexpr days operator ""_days(unsigned long long h)
 {
 return days{h};
 }

In the actual program, we will take a time snapshot, which we simply print5.
afterward. This is very easy and comfortable because we already implemented
the right operator overload for this:

 int main()
 {
 auto now (chrono::system_clock::now());
 cout << "The current date and time is " << now << '\n';

Having saved the current time in the now variable, we can add arbitrary6.
durations to it and print those too. Let's add 12 hours to the current time and
print what time we will have in 12 hours:

 chrono::hours chrono_12h {12};
 cout << "In 12 hours, it will be "
 << (now + chrono_12h)<< '\n';

By declaring that we use the chrono_literals namespace by default, we7.
unlock all the existing duration literals for hours, seconds, and so on. This way,
we can elegantly print what time it was 12 hours and 15 minutes ago, or 7 days
ago:

 using namespace chrono_literals;
 cout << "12 hours and 15 minutes ago, it was "
 << (now - 12h - 15min) << '\n'
 << "1 week ago, it was "
 << (now - 7_days) << '\n';
 }

Utility Classes

[332]

Compiling and running the program yields the following output. Because we8.
used %c as the format string for time formatting, we get a pretty complete
description in a specific format. By playing around with different format strings,
we can get it in any format we like. Note that the time format is not 12 hours
AM/PM but 24 hours because the app is run on a European system:

 $./relative_absolute_times
 The current date and time is Fri May 5 13:20:38 2017
 In 12 hours, it will be Sat May 6 01:20:38 2017
 12 hours and 15 minutes ago, it was Fri May 5 01:05:38 2017
 1 week ago, it was Fri Apr 28 13:20:38 2017

How it works...
We obtained the current time point from std::chrono::system_clock. This STL clock
class is the only one that can transform its time point values to a time structure that can be
displayed as a human-readable time description string.

In order to print such time points, we implemented operator<< for output streams:

ostream& operator<<(ostream &os,
 const chrono::time_point<chrono::system_clock> &t)
{
 const auto tt (chrono::system_clock::to_time_t(t));
 const auto loct (std::localtime(&tt));
 return os << put_time(loct, "%c");
}

What happens here first, is that we transform from
chrono::time_point<chrono::system_clock> to std::time_t. Values of this type
can be transformed to a local wall clock relevant time value, which we do with
std::localtime. This function returns us a pointer to a converted value (don't worry
about the maintenance of the memory behind this pointer; it is a static object not allocated
on the heap), which we can now finally print.

The std::put_time function accepts such an object together with a time format string.
"%c" displays a standard date-time string, such as Sun Mar 12 11:33:40 2017. We
could also have written "%m/%d/%y"; then the program would have printed the time in the
format, 03/12/17. The whole list of existing format string modifiers for time is very long,
but it is nicely documented to its full extent in the online C++ reference.

Utility Classes

[333]

Aside from printing, we also added time offsets to our time point. This is very easy because
we can express time durations, such as 12 hours and 15 minutes as 12h + 15min. The
chrono_literals namespace already provides handy type literals for hours (h), minutes
(min), seconds (s), milliseconds (ms), microseconds (us), and nanoseconds (ns).

Adding such a duration value to a time point value creates a new time point value because
these types have the right operator+ and operator- overloads, which is why it is so
simple to add and display offsets in time.

Safely signalizing failure with std::optional
When a program communicates with the outside world and relies on values it gets from
there, then all kinds of failures can happen.

This means that whenever we write a function that ought to return a value, but that can also
possibly fail, then this must be reflected in some change of the function interface. We have
several possibilities. Let's see how we can design the interface of a function that will return
a string, but that could also fail:

Use a success-indicating return value and output parameters: bool
get_string(string&);

Return a pointer (or a smart pointer) that can be set to nullptr if there is a
failure: string* get_string();
Throw an exception in the case of failure and leave the function signature very
simple: string get_string();

All these approaches have different advantages and disadvantages. Since C++17, there is a
new type that can be used to solve such a problem in a different way: std::optional. The
notion of an optional value comes from purely functional programming languages (where
they are sometimes called Maybe types) and can lead to very elegant code.

We can wrap optional around our own types in order to signal empty or erroneous values.
In this recipe, we will learn how to do that.

Utility Classes

[334]

How to do it...
In this section, we will implement a program that reads integers from the user and sums
them up. Because the user can always input random things instead of numbers, we will see
how optional can improve our error handling:

First, we include all the needed headers and declare that we use the std1.
namespace:

 #include <iostream>
 #include <optional>

 using namespace std;

Let's define an integer type, which, maybe, contains a value. The std::optional2.
type does exactly that. By wrapping any type into optional, we give it an
additional possible state, which reflects that it currently has no value:

 using oint = optional<int>;

By having defined an optional integer type, we can express that a function that3.
usually returns an integer can also possibly fail. If we take an integer from user
input, this can possibly fail because the user might not always enter an integer
even though we asked him to do so. Returning an optional integer is perfect in
this case. If reading an integer succeeds, we feed it into the optional<int>
constructor. Otherwise, we return a default constructed optional, which signals
failure or emptiness:

 oint read_int()
 {
 int i;
 if (cin >> i) { return {i}; }
 return {};
 }

Utility Classes

[335]

We can do more than returning integers from functions that can possibly fail.4.
What if we calculate the sum of two optional integers? This can only lead to a real
numeric sum if both the operands contain an actual value. In any other case, we
return an empty optional variable. This function needs a little more explanation:
by implicitly transforming the optional<int> variables, a and b, to boolean
expressions (by writing !a and !b), we get to know whether they contain actual
values. If they do, we can access them like pointers or iterators by simply
dereferencing them with *a and *b:

 oint operator+(oint a, oint b)
 {
 if (!a || !b) { return {}; }
 return {*a + *b};
 }

Adding a normal integer to an optional integer follows the same logic:5.

 oint operator+(oint a, int b)
 {
 if (!a) { return {}; }
 return {*a + b};
 }

Let's now write a program that does something with optional integers. We let the6.
user enter two numbers:

 int main()
 {
 cout << "Please enter 2 integers.\n> ";
 auto a {read_int()};
 auto b {read_int()};

Then we add those input numbers and additionally add the value 10 to their7.
sum. Since a and b are optional integers, sum will also be an optional integer type
variable:

 auto sum (a + b + 10);

Utility Classes

[336]

If a and/or b do not contain a value, then sum cannot possibly contain a value8.
either. The nice thing about our optional integers now is that we do not need to
explicitly check a and b. What happens when we sum up empty optionals is
perfectly sane and defined behavior because we defined operator+ in a safe
way for those types. This way, we can arbitrarily add many possibly empty
optional integers, and we'll only need to check the resulting optional value. If it
contains a value, then we can safely access and print it:

 if (sum) {
 cout << *a << " + " << *b << " + 10 = "
 << *sum << '\n';

If the user enters something non-numeric, we error out:9.

 } else {
 cout << "sorry, the input was "
 "something else than 2 numbers.\n";
 }
 }

That's it. When we compile and run the program, we get the following output:10.

 $./optional
 Please enter 2 integers.
 > 1 2
 1 + 2 + 10 = 13

Running the program again and entering something non-numeric yields the error11.
message we prepared for this case:

 $./optional
 Please enter 2 integers.
 > 2 z
 sorry, the input was something else than 2 numbers.

How it works...
Working with optional is generally very simple and convenient. If we want to attach the
notion of possible failure or optionality to any type T, we can just wrap it into
std::optional<T> and that's it.

Utility Classes

[337]

Whenever we get such a value from somewhere, we have to check whether it is in the
empty state or whether it contains a real value. The bool optional::has_value()
function does that for us. If it returns true, we may access the value. Accessing the value of
an optional can be done with T& optional::value().

Instead of always writing if (x.has_value()) {...} and x.value(), we can also write
if (x) {...} and *x. The std::optional type defines explicit conversion to bool and
operator* in such a way that dealing with an optional type is similar to dealing with a
pointer.

Another handy operator helper that is good to know is the operator-> overload of
optional. If we have a struct Foo { int a; string b; } type and want to access
one of its members through an optional<Foo> variable, x, then we can write x->a or
x->b. Of course, we should first check whether x actually has a value.

If we try to access an optional value even though it does not have a value, then it will throw
std::logic_error. This way, it is possible to mess around with a lot of optional values
without always checking them. Using a try-catch clause, we could write code in the
following form:

cout << "Please enter 3 numbers:\n";

try {
 cout << "Sum: "
 << (*read_int() + *read_int() + *read_int())
 << '\n';
} catch (const std::bad_optional_access &) {
 cout << "Unfortunately you did not enter 3 numbers\n";
}

Another gimmick of std::optional is optional::value_or. If we want to take an
optional's value and fall back to a default value if it is in the empty state, then this is of help.
x = optional_var.value_or(123) does this job in one concise line, where 123 is the
fallback default value.

Utility Classes

[338]

Applying functions on tuples
Since C++11, the STL provides std::tuple. This type allows us to sporadically bundle
multiple values into a single variable and reach them around. The notion of tuples has been
there for a long time in a lot of programming languages, and some recipes in this book are
already devoted to this type because it is extremely versatile to use.

However, we sometimes end up with values bundled up in a tuple and then need to call
functions with their individual members. Unpacking the members individually for every
function argument is very tedious (and error-prone if we introduce a typo somewhere). The
tedious form looks like this: func(get<0>(tup), get<1>(tup), get<2>(tup),
...);.

In this recipe, you will learn how to pack and unpack values to and from tuples in an
elegant way, in order to call some functions that don't know about tuples.

How to do it...
We are going to implement a program that packs and unpacks values to and from tuples.
Then, we will see how to call functions that know nothing about tuples with values from
tuples:

First, we include a lot of headers and declare that we use the std namespace:1.

 #include <iostream>
 #include <iomanip>
 #include <tuple>
 #include <functional>
 #include <string>
 #include <list>

 using namespace std;

Let's first define a function that takes multiple parameters describing a student2.
and prints them. A lot of legacy- or C-function interfaces look similar.:

 static void print_student(size_t id, const string &name, double gpa)
 {
 cout << "Student " << quoted(name)
 << ", ID: " << id
 << ", GPA: " << gpa << '\n';
 }

Utility Classes

[339]

In the actual program, we define a tuple type on the fly and fill it with3.
meaningful student data:

 int main()
 {
 using student = tuple<size_t, string, double>;
 student john {123, "John Doe"s, 3.7};

In order to print such an object, we can decompose it to its individual members4.
and call print_student with those individual variables:

 {
 const auto &[id, name, gpa] = john;
 print_student(id, name, gpa);
 }
 cout << "-----\n";

Let's create a whole set of students in the form of an initializer list of student5.
tuples:

 auto arguments_for_later = {
 make_tuple(234, "John Doe"s, 3.7),
 make_tuple(345, "Billy Foo"s, 4.0),
 make_tuple(456, "Cathy Bar"s, 3.5),
 };

We can still relatively comfortably print them all, but in order to decompose the6.
tuple, we need to care how many elements such tuples have. If we have to write
such code, then we will also have to restructure it in case the function call
interface changes:

 for (const auto &[id, name, gpa] : arguments_for_later) {
 print_student(id, name, gpa);
 }
 cout << "-----\n";

We can do better. Without even knowing the argument types of print_student7.
or the number of members in a student tuple, we can directly forward the tuple's
content to the function using std::apply. This function accepts a function
pointer or a function object and a tuple and then unpacks the tuple in order to call
the function with the tuple members as parameters:

 apply(print_student, john);
 cout << "-----\n";

Utility Classes

[340]

This also works nicely in a loop, of course:8.

 for (const auto &args : arguments_for_later) {
 apply(print_student, args);
 }
 cout << "-----\n";
 }

Compiling and running the program shows that both ways work, as we assumed:9.

 $./apply_functions_on_tuples
 Student "John Doe", ID: 123, GPA: 3.7

 Student "John Doe", ID: 234, GPA: 3.7
 Student "Billy Foo", ID: 345, GPA: 4
 Student "Cathy Bar", ID: 456, GPA: 3.5

 Student "John Doe", ID: 123, GPA: 3.7

 Student "John Doe", ID: 234, GPA: 3.7
 Student "Billy Foo", ID: 345, GPA: 4
 Student "Cathy Bar", ID: 456, GPA: 3.5

How it works...
The std::apply is a compile-time helper that helps us work more agnostic about the types
we handle in our code.

Imagine we have a tuple t with the values (123, "abc"s, 456.0). This tuple has the
type, tuple<int, string, double>. Additionally, assume that we have a function f
with the signature int f(int, string, double) (the types can also be references).

Then, we can write x = apply(f, t), which will result in a function call, x = f(123,
"abc"s, 456.0). The apply method does even return to us what f returns.

Utility Classes

[341]

Quickly composing data structures with
std::tuple
Let's have a look at a basic use case for tuples that we most probably already know. We can
define a structure as follows, in order to just bundle some variables:

struct Foo {
 int a;
 string b;
 float c;
};

Instead of defining a structure as in the preceding example, we can also define a tuple:

using Foo = tuple<int, string, float>;

We can access its items using the index number of the type from the type list. In order to
access the first member of a tuple, t, we can use std::get<0>(t) to access the second
member we write std::get<1>, and so on. If the index number is too large, then the
compiler will even safely error out.

Throughout the book, we have already used the decomposition capabilities of C++17 for
tuples. They allow us to decompose a tuple quickly by just writing auto [a, b, c] =
some_tuple in order to access its individual items.

Composing and decomposing single data structures are not the only things we can do with
tuples. We can also concatenate or split tuples, or do all kinds of magic. In this recipe, we
will play around with such capabilities in order to learn how to do it.

How to do it...
In this section, we will write a program that can print any tuple on the fly. In addition to
that, we will write a function that can zip tuples together:

We need to include a number of headers first and then we declare that we use the1.
std namespace by default:

 #include <iostream>
 #include <tuple>
 #include <list>
 #include <utility>
 #include <string>
 #include <iterator>

Utility Classes

[342]

 #include <numeric>
 #include <algorithm>

 using namespace std;

As we will be dealing with tuples, it will be interesting to display their content.2.
Therefore, we will now implement a very generic function that can print any
tuple that consists of printable types. The function accepts an output stream
reference os, which will be used to do the actual printing, and a variadic
argument list, which carries all the tuple members. We decompose all the
arguments into the first element and put it into the argument, v, and the rest,
which is stored in the argument pack vs...:

 template <typename T, typename ... Ts>
 void print_args(ostream &os, const T &v, const Ts &...vs)
 {
 os << v;

If there are arguments left in the parameter pack, vs, these are printed3.
interleaved with ", " using the initializer_list expansion trick. You
learned about this trick in the Chapter 4, Lambda Expressions:

 (void)initializer_list<int>{((os << ", " << vs), 0)...};
 }

We can now print arbitrary sets of arguments by writing print_args(cout, 1,4.
2, "foo", 3, "bar"), for example. But this has nothing to do with tuples yet.
In order to print tuples, we overload the stream output operator << for any case
of tuples by implementing a template function that matches on any tuple
specialization:

 template <typename ... Ts>
 ostream& operator<<(ostream &os, const tuple<Ts...> &t)
 {

Now it gets a little complicated. We first use a lambda expression that arbitrarily5.
accepts many parameters. Whenever it is called, it prepends the os argument to
those arguments and then calls print_args with the resulting new list of
arguments. This means that a call to capt_tup(...some parameters...)
leads to a print_args(os, ...some parameters...) call:

 auto print_to_os ([&os](const auto &...xs) {
 print_args(os, xs...);
 });

Utility Classes

[343]

Now we can do the actual tuple unpacking magic. We use std::apply to6.
unpack the tuple. All values will be taken out of the tuple then and lined up as
function arguments for the function that we provide as the first argument. This
just means that if we have a tuple, t = (1, 2, 3), and call apply(capt_tup,
t), then this will lead to a function call, capt_tup(1, 2, 3), which in turn
leads to the function call, print_args(os, 1, 2, 3). This is just what we
need. As a nice extra, we surround the printing with parentheses:

 os << "(";
 apply(print_to_os, t);
 return os << ")";
 }

Okay, now we wrote some complicated code that will make our life much easier7.
when we want to print a tuple. But we can do a lot more with tuples. Let's, for
example, write a function that accepts an iterable range, such as a vector or a list
of numbers, as an argument. This function will then iterate over that range and
then return us the sum of all the numbers in the range and bundle that with the
minimum of all values, the maximum of all values, and the numeric average of
them. By packing these four values into a tuple, we can return them as a single
object without defining an additional structure type:

 template <typename T>
 tuple<double, double, double, double>
 sum_min_max_avg(const T &range)
 {

The std::minmax_element function returns us a pair of iterators that8.
respectively point to the minimum and maximum values of the input range. The
std::accumulate method sums up all the values in its input range. This is all
we need to return the four values that fit in our tuple!

 auto min_max (minmax_element(begin(range), end(range)));
 auto sum (accumulate(begin(range), end(range), 0.0));
 return {sum, *min_max.first, *min_max.second,
 sum / range.size()};
 }

Utility Classes

[344]

Before implementing the main program, we will implement one last magic helper9.
function. I call it magic because it really looks complicated at first, but after
understanding how it works, it will turn out as a really slick and nice helper. It
will zip two tuples. This means that if we feed it a tuple, (1, 2, 3), and another
tuple, ('a', 'b', 'c'), it will return a tuple (1, 'a', 2, 'b', 3, 'c'):

 template <typename T1, typename T2>
 static auto zip(const T1 &a, const T2 &b)
 {

Now we arrived at the most complex lines of code of this recipe. We create a10.
function object, z, which accepts an arbitrary number of arguments. It then
returns another function object that captures all these arguments in a parameter
pack, xs, but also accepts another arbitrary number of arguments. Let's sink this
in for a moment. Within this inner function object, we can access both lists of
arguments in the form of the parameter packs, xs and ys. And now let's have a
look what we actually do with these parameter packs. The expression,
make_tuple(xs, ys)..., groups the parameter packs item wise. This means
that if we have xs = 1, 2, 3 and ys = 'a', 'b', 'c', this will result in a
new parameter pack, (1, 'a'), (2, 'b'), (3, 'c'). This is a comma-
separated list of three tuples. In order to get them all grouped in one tuple, we use
std::tuple_cat, which accepts an arbitrary number of tuples and repacks them
into one tuple. This way we get a nice (1, 'a', 2, 'b', 3, 'c') tuple:

 auto z ([](auto ...xs) {
 return [xs...](auto ...ys) {
 return tuple_cat(make_tuple(xs, ys) ...);
 };
 });

The last step is unwrapping all the values from the input tuples, a and b, and11.
pushing them into z. The expression, apply(z, a), puts all the values from a
into the parameter pack xs, and apply(..., b) puts all the values of b into the
parameter pack ys. The resulting tuple is the large zipped one, which we return
to the caller:

 return apply(apply(z, a), b);
 }

Utility Classes

[345]

We invested a considerable amount of lines into helper/library code. Let's now12.
finally put it to use. First, we construct some arbitrary tuples. The student
contains ID, name, and GPA score of a student. The student_desc contains
strings that describe what those fields mean in human-readable form. The
std::make_tuple is a really nice helper because it automatically deduces the
type of all the arguments and creates a suitable tuple type:

 int main()
 {
 auto student_desc (make_tuple("ID", "Name", "GPA"));
 auto student (make_tuple(123456, "John Doe", 3.7));

Let's just print what we have. This is really simple because we just implemented13.
the right operator<< overload for that:

 cout << student_desc << '\n'
 << student << '\n';

We can also group both the tuples on the fly with std::tuple_cat and print14.
them like this:

 cout << tuple_cat(student_desc, student) << '\n';

We can also create a new zipped tuple with our zip function and also print it:15.

 auto zipped (zip(student_desc, student));
 cout << zipped << '\n';

Let's not forget our sum_min_max_avg function. We create an initializer list that16.
contains some numbers and feed it into this function. To make it a little bit more
complicated, we create another tuple of the same size, which contains some
describing strings. By zipping these tuples, we get a nice, interleaved output, as
we will see when we run the program:

 auto numbers = {0.0, 1.0, 2.0, 3.0, 4.0};
 cout << zip(
 make_tuple("Sum", "Minimum", "Maximum", "Average"),
 sum_min_max_avg(numbers))
 << '\n';
 }

Utility Classes

[346]

Compiling and running the program yields the following output. The first two17.
lines are just the individual student and student_desc tuples. Line 3 is the
tuple composition we got by using tuple_cat. Line 4 contains the zipped
student tuple. In the last line, we see the sum, minimum, maximum, and average
value of the numeric list we last created. Because of the zipping, it is really easy
to see what each value means:

 $./tuple
 (ID, Name, GPA)
 (123456, John Doe, 3.7)
 (ID, Name, GPA, 123456, John Doe, 3.7)
 (ID, 123456, Name, John Doe, GPA, 3.7)
 (Sum, 10, Minimum, 0, Maximum, 4, Average, 2)

How it works...
Some of the code in this section is admittedly complicated. We wrote an operator<<
implementation for tuples, which looks very complex but supports all kinds of tuples that
themselves consist of printable types. Then we implemented the sum_min_max_avg
function, which just returns a tuple. Another very complicated thing to get our head around
was the function zip.

The easiest part was sum_min_max_avg. The point about it is that when we define a
function that returns an instance tuple<Foo, Bar, Baz> f(), we can just write return
{foo_instance, bar_instance, baz_instance}; in that function to construct such a
tuple. If you have trouble understanding the STL algorithms we used in the
sum_min_max_avg function, then you might want to have a look at the Chapter 5, STL
Algorithm Basics of this book, where we already had a closer look at them.

The other code was so complicated that we dedicate the specific helpers their own
subsections:

operator<< for tuples
Before we even touched operator<< for output streams, we implemented the print_args
function. Due to its variadic argument nature, it accepts any number and type of
arguments, as long as the first one is an ostream instance:

template <typename T, typename ... Ts>
void print_args(ostream &os, const T &v, const Ts &...vs)
{

Utility Classes

[347]

 os << v;

 (void)initializer_list<int>{((os << ", " << vs), 0)...};
}

This function prints the first item, v, and then prints all the other items from the parameter
pack, vs. We print the first item individually because we want to have all items interleaved
with ", " but we do not want this string leading or trailing the whole list (as in "1, 2, 3,
" or ", 1, 2, 3"). We learned about the initializer_list expansion trick in Chapter
4, Lambda Expressions, in the recipe Calling multiple functions with the same input.

Having that function lined up, we have everything we need in order to print tuples. Our
operator<< implementation looks as follows:

template <typename ... Ts>
ostream& operator<<(ostream &os, const tuple<Ts...> &t)
{
 auto capt_tup ([&os](const auto &...xs) {
 print_args(os, xs...);
 });

 os << "(";
 apply(capt_tup, t);
 return os << ")";
}

The first thing we do is defining the function object, capt_tup. When we call
capt_tup(foo, bar, whatever), this results in the call, print_args(os, foo, bar,
whatever). The only thing this function object does is prepend the output stream object os
to its variadic list of arguments.

Afterward, we use std::apply in order to unpack all the items from tuple t. If this step
looks too complicated, please have a look at the recipe before this one, which is dedicated to
demonstrating how std::apply works.

The zip function for tuples
The zip function accepts two tuples, but looks horribly complicated, although it has a very
crisp implementation:

template <typename T1, typename T2>
auto zip(const T1 &a, const T2 &b)
{
 auto z ([](auto ...xs) {
 return [xs...](auto ...ys) {

Utility Classes

[348]

 return tuple_cat(make_tuple(xs, ys) ...);
 };
 });
 return apply(apply(z, a), b);
}

In order to understand this code better, imagine for a moment that the tuple a carries the
values, 1, 2, 3, and tuple b carries the values, 'a', 'b', 'c'.

In such a case, calling apply(z, a) leads to a function call z(1, 2, 3), which returns
another function object that captures those values, 1, 2, 3, in the parameter pack xs.
When this function object is then called with apply(z(1, 2, 3), b), it gets the values,
'a', 'b', 'c', stuffed into the parameter pack, ys. This is basically the same as if we
called z(1, 2, 3)('a', 'b', 'c') directly.

Okay, now that we have xs = (1, 2, 3) and ys = ('a', 'b', 'c'), what happens
then? The expression tuple_cat(make_tuple(xs, ys) ...) does the following magic;
have a look at the diagram:

At first, the items from xs and ys are zipped together by interleaving them pairwise. This
"pairwise interleaving" happens in the make_tuple(xs, ys) ... expression. This
initially only leads to a variadic list of tuples with two items each. In order to get one large
tuple, we apply tuple_cat on them and then we finally get a large concatenated tuple that
contains all the members of the initial tuples in an interleaved manner.

Utility Classes

[349]

Replacing void* with std::any for more type
safety
It can happen that we want to store items of any type in a variable. For such a variable, we
then need to be able to check whether it contains anything, and if it does, we need to be able
to distinguish what it contains. All this needs to happen in a type-safe manner.

In the past, we were basically able to store pointers to various objects in a void* pointer. A
void typed pointer alone cannot tell us what kind of object it points to, so we would need
to handcraft some kind of additional mechanism that tells us what to expect. Such code
quickly leads to quirky looking and unsafe code.

Another addition of C++17 to the STL is the std::any type. It is designed to hold variables
of any kind and provides facilities that enable for type-safe inspection and access to it.

In this recipe, we will play around with this utility type in order to get a feeling of it.

How to do it...
We will implement a function that tries to be able to print everything. It uses std::any as
its argument type:

First, we include some necessary headers and declare that we use the std1.
namespace:

 #include <iostream>
 #include <iomanip>
 #include <list>
 #include <any>
 #include <iterator>

 using namespace std;

In order to reduce the number of angle bracket syntax in the following program,2.
we define an alias for list<int>, which we will use later:

 using int_list = list<int>;

Utility Classes

[350]

Let's implement a function that claims to be able to print anything. The promise is3.
that it prints anything provided as an argument in the form of an std::any
variable:

 void print_anything(const std::any &a)
 {

The first thing we need to check is if the argument contains anything or if it is just4.
an empty any instance. If it is empty, then there is no sense in trying to figure out
how to print it:

 if (!a.has_value()) {
 cout << "Nothing.\n";

If it is not empty, we can try to compare it with different types until we see a5.
match. The first type to try is string. If it is a string, we can cast a to a string
typed reference using std::any_cast and just print it. We put the string in
quotes for cosmetic reasons:

 } else if (a.type() == typeid(string)) {
 cout << "It's a string: "
 << quoted(any_cast<const string&>(a)) << '\n';

If it is not a string, it might be an int. In case this type matches, we can use6.
any_cast<int> to obtain the actual int value:

 } else if (a.type() == typeid(int)) {
 cout << "It's an integer: "
 << any_cast<int>(a) << '\n';

std::any does not only work with such simple types as string and int. We7.
can also put a whole map or list or whatever composed complex data structure
into an any variable. Let's see if the input is a list of integers, and if it is, we can
just print it like we would print a list:

 } else if (a.type() == typeid(int_list)) {
 const auto &l (any_cast<const int_list&>(a));
 cout << "It's a list: ";
 copy(begin(l), end(l),
 ostream_iterator<int>{cout, ", "});
 cout << '\n';

Utility Classes

[351]

If none of these types match, we run out of type guesses. Let's give up in that case8.
and tell the user that we have no idea how to print this:

 } else {
 cout << "Can't handle this item.\n";
 }
 }

In the main function, we can now call this function with arbitrary types. We can9.
call it with an empty any variable using {} or feed it with a string "abc" or an
integer. Because std::any can be constructed from such types implicitly, there is
no syntax overhead. We can even construct a whole list and throw it into this
function:

 int main()
 {
 print_anything({});
 print_anything("abc"s);
 print_anything(123);
 print_anything(int_list{1, 2, 3});

If we are going to put objects that are really expensive to copy into an any10.
variable, we can also perform an in-place construction. Let's try this with our list
type. The in_place_type_t<int_list>{} expression is an empty object that
gives the constructor of any enough information to know what we are going to
construct. The second parameter, {1, 2, 3}, is just an initializer list that will be
fed to the int_list embedded in the any variable for construction. This way, we
avoid unnecessary copies or moves:

 print_anything(any(in_place_type_t<int_list>{}, {1, 2, 3}));
 }

Compiling and running the program yields the following output, which is just11.
what we expected:

 $./any
 Nothing.
 It's a string: "abc"
 It's an integer: 123
 It's a list: 1, 2, 3,
 It's a list: 1, 2, 3,

Utility Classes

[352]

How it works...
The std::any type is similar in one regard to std::optional--it has a has_value()
method that tells if an instance carries a value or not. But apart from that, it can contain
literally anything, so it is more complex to handle compared with optional.

Before accessing the content of an any variable, we need to find out what type it carries and,
then, cast it to that type.

Finding out if an any instance holds a type T value can be done with a comparison:
x.type() == typeid(T). If this comparison results in true, then we can use any_cast
to get at the content.

Note that any_cast<T>(x) returns a copy of the internal T value in x. If we want a reference
in order to avoid copying of complex objects, we need to use any_cast<T&>(x). This is
what we did when we accessed the internal string or list<int> objects in this section's
code.

If we cast an instance of any to the wrong type, it will throw an
std::bad_any_cast exception.

Storing different types with std::variant
There are not only struct and class primitives in C++ that enable us to compose types. If
we want to express that some variable can hold either some type A or a type B (or C, or
whatever), we can use union. The problem with unions is that they cannot tell us they were
actually initialized to which of the types that they can hold.

Consider the following code:

union U {
 int a;
 char *b;
 float c;
};

void func(U u) { std::cout << u.b << '\n'; }

Utility Classes

[353]

If we call the func function with a union that was initialized to hold an integer via member
a, there is nothing that prevents us from accessing it, as if it was initialized to store a pointer
to a string via member b. All kinds of bugs can be spread from such code. Before we start to
pack our union with an auxiliary variable that tells us to what it was initialized in order to
gain some safety, we can directly use std::variant, which came with C++17.

The variant is kind of the new-school, type-safe, and efficient union type. It does not use
the heap, so it is as space-efficient and time-efficient as a union-based handcrafted solution
could be, so we do not have to implement it ourselves. It can store anything apart from
references, arrays, or the void type.

In this recipe, we will construct an example that profits from variant in order to get a
feeling of how to use this cool new addition to the STL.

How to do it...
Let's implement a program that knows the types, cat and dog, and that stores a mixed list
of cats and dogs without using any runtime polymorphy:

First, we include all the needed headers and define that we use the std1.
namespace:

 #include <iostream>
 #include <variant>
 #include <list>
 #include <string>
 #include <algorithm>

 using namespace std;

Next, we implement two classes that have similar functionality but are not2.
related to each other in any other way, in contrast to classes that, for example,
inherit from the same interface or a similar interface. The first class is cat. A cat
object has a name and can say meow:

 class cat {
 string name;

 public:
 cat(string n) : name{n} {}

Utility Classes

[354]

 void meow() const {
 cout << name << " says Meow!\n";
 }
 };

The other class is dog. A dog object does not say meow but woof, of course:3.

 class dog {
 string name;
 public:
 dog(string n) : name{n} {}
 void woof() const {
 cout << name << " says Woof!\n";
 }
 };

Now we can define an animal type, which is just a type alias to4.
std::variant<dog, cat>. This is basically the same as an old-school union but
has all the extra features that variant provides:

 using animal = variant<dog, cat>;

Before we write the main program, we implement two helpers first. One helper is5.
an animal predicate. By calling is_type<cat>(...) or is_type<dog>(...),
we can find out if an animal variant instance holds a cat or a dog. The
implementation just calls holds_alternative, which is a generic predicate
function for variant types:

 template <typename T>
 bool is_type(const animal &a) {
 return holds_alternative<T>(a);
 }

The second helper is a structure that acts as a function object. It is a twofold6.
function object because it implements operator() twice. One implementation is
an overload that accepts dogs and the other accepts cats. For these types, it just
calls the woof or the meow function:

 struct animal_voice
 {
 void operator()(const dog &d) const { d.woof(); }
 void operator()(const cat &c) const { c.meow(); }
 };

Utility Classes

[355]

Let's put these types and helpers to use. First, we define a list of animal variant7.
instances and fill it with cats and dogs:

 int main()
 {
 list<animal> l {cat{"Tuba"}, dog{"Balou"}, cat{"Bobby"}};

Now, we print the contents of the list three times, and each time in a different8.
way. One way is using variant::index(). Because animal is an alias of
variant<dog, cat>, a return value of 0 means that the variant holds a dog
instance. Index 1 means it is a cat. The order of the types in the variant
specialization is the key here. In the switch case block, we access the variant with
get<T> in order to get the actual cat or dog instance inside:

 for (const animal &a : l) {
 switch (a.index()) {
 case 0:
 get<dog>(a).woof();
 break;
 case 1:
 get<cat>(a).meow();
 break;
 }
 }
 cout << "-----\n";

Instead of using the numeric index of the type, we can also explicitly ask for9.
every type. The get_if<dog> returns a dog-typed pointer to the internal dog
instance. If there is no dog instance inside, then the pointer is null. This way, we
can try to get at different types until we finally succeed:

 for (const animal &a : l) {
 if (const auto d (get_if<dog>(&a)); d) {
 d->woof();
 } else if (const auto c (get_if<cat>(&a)); c) {
 c->meow();
 }
 }
 cout << "-----\n";

Utility Classes

[356]

The last and most elegant way is variant::visit. This function accepts a10.
function object and a variant instance. The function object must implement
different overloads for all the possible types the variant can hold. We
implemented a structure with the right operator() overloads before, so we can
use it here:

 for (const animal &a : l) {
 visit(animal_voice{}, a);
 }
 cout << "-----\n";

At last, we will count the number of cats and dogs in the variant list. The11.
is_type<T> predicate can be specialized on cat and dog and can then be used
in combination with std::count_if to return us the number of instances of this
type:

 cout << "There are "
 << count_if(begin(l), end(l), is_type<cat>)
 << " cats and "
 << count_if(begin(l), end(l), is_type<dog>)
 << " dogs in the list.\n";
 }

Compiling and running the program first yields the same list printed three times.12.
After that, we see that the is_type predicates combined with count_if work
just fine:

 $./variant
 Tuba says Meow!
 Balou says Woof!
 Bobby says Meow!

 Tuba says Meow!
 Balou says Woof!
 Bobby says Meow!

 Tuba says Meow!
 Balou says Woof!
 Bobby says Meow!

 There are 2 cats and 1 dogs in the list.

Utility Classes

[357]

How it works...
The std::variant type is kind of similar to std::any because both can hold objects of
different types, and we need to distinguish at runtime what exactly they hold before we try
to access their content.

On the other hand, std::variant is different from std::any in the regard that we must
declare what it shall be able to store in the form of a template type list. An instance of
std::variant<A, B, C> must hold one instance of type A, B, or C. There is no possibility
to hold none of them, which means that std::variant has no notion of optionality.

A variant of type, variant<A, B, C>, mimics a union type that could look like the
following:

union U {
 A a;
 B b;
 C c;
};

The problem with unions is that we need to build our own mechanisms to distinguish if it
was initialized with an A, B, or C variable. The std::variant type can do this for us
without much hassle.

In the code in this section, we used three different ways to handle the content of a variant
variable.

The first way was the index() function of variant. For a variant type variant<A, B,
C> it can return index 0 if it was initialized to hold an A type, or 1 for B, or 2 for C, and so on
for more complex variants.

The next way is the get_if<T> function. It accepts the address of a variant object and
returns a T-typed pointer to its content. If the T type is wrong, then this pointer will be a
null pointer. It is also possible to call get<T>(x) on a variant variable in order to get a
reference to its content, but if that does not succeed, this function throws an exception
(before doing such get-casts, checking for the right type can be done with the Boolean
predicate holds_alternative<T>(x)).

The last way to access the variant is the std::visit function. It accepts a function object
and a variant instance. The visit function then checks of which type the content of the
variant is and then calls the right operator() overload of the function object.

Utility Classes

[358]

For exactly this purpose, we implemented the animal_voice type because it can be used in
combination with visit and variant<dog, cat>:

struct animal_voice
{
 void operator()(const dog &d) const { d.woof(); }
 void operator()(const cat &c) const { c.meow(); }
};

The visit-way of accessing variants can be considered the most elegant one because the
code sections that actually access the variant do not need to be hardcoded to the types the
variant can hold. This makes our code easier to extend.

The claim that a variant type cannot hold no value was not completely
true. By adding the std::monostate type to its type list, it can indeed be
initialized to hold no value.

Automatically handling resources with
std::unique_ptr
Since C++11, the STL provides smart pointers that really help keep track of dynamic
memory and its disposal. Even before C++11, there was a class called auto_ptr that was
already able to do automatic memory disposal, but it was easy to use the wrong way.

However, with the C++11-generation smart pointers, we seldom need to write new and
delete ourselves, which is a really good thing. Smart pointers are a shiny example of
automatic memory management. If we maintain dynamically allocated objects with
unique_ptr, we are basically safe from memory leaks, because upon its destruction this
class automatically calls delete on the object it maintains.

A unique pointer expresses ownership of the object it points to and follows its responsibility
of freeing its memory again if it is no longer used. This class has the potential of relieving us
forever from memory leaks (at least together with its companions shared_ptr and
weak_ptr, but in this recipe, we solely concentrate on unique_ptr). And the best thing is
that it imposes no overhead on space and runtime performance, compared with code with
raw pointers and manual memory management. (Okay, it still sets its internal raw pointer
to nullptr internally after destruction of the object it points to, which cannot always be
optimized away. Most manually written code that manages dynamic memory does the
same, though.)

Utility Classes

[359]

In this recipe, we will a look at unique_ptr and how to use it.

How to do it...
We will write a program that shows us how unique_ptr handles memory by creating a
custom type that adds some debug messages upon its construction and destruction. Then,
we will play around with unique pointers, maintaining dynamically allocated instances of
it:

First, we include the necessary headers and declare that we use the std1.
namespace:

 #include <iostream>
 #include <memory>

 using namespace std;

We are going to implement a little class for the object we are going to manage2.
using unique_ptr. Its constructor and destructor print to the terminal, so we can
see later when it is actually automatically deleted:

 class Foo
 {
 public:
 string name;

 Foo(string n)
 : name{move(n)}
 { cout << "CTOR " << name << '\n'; }

 ~Foo() { cout << "DTOR " << name << '\n'; }
 };

Utility Classes

[360]

In order to see what limitations a function has that accepts unique pointers as3.
arguments, we just implement one. It processes a Foo item by printing its name.
Note that while unique pointers are smart, overhead-free, and comfortably safe,
they can still be null. This means that we still have to check them before we
dereference them:

 void process_item(unique_ptr<Foo> p)
 {
 if (!p) { return; }
 cout << "Processing " << p->name << '\n';
 }

In the main function, we will open another scope, create two Foo objects on the4.
heap, and manage both with unique pointers. We create the first one explicitly on
the heap using the new operator and then put it into the constructor of the
unique_ptr<Foo> variable, p1. We create the unique pointer, p2, by calling
make_unique<Foo> with the arguments we would otherwise directly give the
constructor of Foo. This is the more elegant way because we can use auto type
deduction and the first time we can access the object, it is already managed by
unique_ptr:

 int main()
 {
 {
 unique_ptr<Foo> p1 {new Foo{"foo"}};
 auto p2 (make_unique<Foo>("bar"));
 }

After we left the scope, both objects are destructed immediately and their5.
memory is released to the heap. Let's have a look at the process_item function
and how to use it with unique_ptr now. If we construct a new Foo instance,
managed by a unique_ptr in the function call, then its lifetime is reduced to the
scope of the function. When process_item returns, the object is destroyed:

 process_item(make_unique<Foo>("foo1"));

Utility Classes

[361]

If we want to call process_item with an object that already existed before the6.
call, then we need to transfer ownership because that function takes a unique_ptr
by value, which means that calling it would lead to a copy. But unique_ptr
cannot be copied, it can only be moved. Let's create two new Foo objects and move
one into process_item. By looking at the terminal output later, we will see that
foo2 is destroyed when process_item returns because we transferred
ownership to it. foo3 will continue living until the main function returns:

 auto p1 (make_unique<Foo>("foo2"));
 auto p2 (make_unique<Foo>("foo3"));
 process_item(move(p1));
 cout << "End of main()\n";
 }

Let's compile and run the program. At first, we see the constructor and destructor7.
calls of foo and bar. They are indeed destroyed just after the program leaves the
additional scope. Note that the objects are destroyed in the opposite order of their
creation. The next constructor line comes from foo1, which is the item we created
during the process_item call. It is indeed destroyed immediately after the
function call. Then we created foo2 and foo3. foo2 is destroyed immediately
after the process_item call where we transferred the ownership. The other item,
foo3, in comparison, is destroyed after the last code line in the main function:

 $./unique_ptr
 CTOR foo
 CTOR bar
 DTOR bar
 DTOR foo
 CTOR foo1
 Processing foo1
 DTOR foo1
 CTOR foo2
 CTOR foo3
 Processing foo2
 DTOR foo2
 End of main()
 DTOR foo3

Utility Classes

[362]

How it works...
Handling heap objects with std::unique_ptr is really simple. After we initialized a
unique pointer to hold a pointer to some object, there is no way we can accidentally forget
about deleting it on some code path.

If we assign some new pointer to a unique pointer, then it will always first delete the old
object it pointed to and then store the new pointer. On a unique pointer variable, x, we can
also call x.reset() to just delete the object it points to immediately without assigning a
new pointer. Another equivalent alternative to reassigning via x = new_pointer is
x.reset(new_pointer).

There is indeed one single way to release an object from the management
of unique_ptr without deleting it. The release function does that, but
using this function is not advisable in most situations.

Since pointers need to be checked before they are actually dereferenced, they overload the
right operators in a way that enables them to mimic raw pointers. Conditionals like if (p)
{...} and if (p != nullptr) {...} perform the same way as we would check a raw
pointer.

Dereferencing a unique pointer can be done via the get() function, which returns a raw
pointer to the object that can be dereferenced, or directly via operator*, which again
mimics raw pointers.

One important characteristic of unique_ptr is that its instances cannot be copied but can be
moved from one unique_ptr variable to the other. This is why we had to move an existing
unique pointer into the process_item function. If we were able to copy a unique pointer,
then this would mean that the object being pointed to is owned by two unique pointers,
although this contradicts the design of a unique pointer that is the only owner (and later the
"deleter") of the underlying object.

Since there are data structures, such as unique_ptr and shared_ptr,
there is rarely any reason to create heap objects directly with new and
delete them manually. Use such classes wherever you can! Especially
unique_ptr imposes no overhead at runtime.

Utility Classes

[363]

Automatically handling shared heap memory
with std::shared_ptr
In the last recipe, we learned how to use unique_ptr. This is an enormously useful and
important class because it helps us manage dynamically allocated objects. However, it can
only handle single ownership. It is not possible to let multiple objects own the same
dynamically allocated object because, then, it would be unclear who has to delete it later.

The pointer type, shared_ptr, was designed for specifically this case. Shared pointers can
be copied arbitrarily often. An internal reference counting mechanism tracks how many
objects are still maintaining a pointer to the payload object. Only the last shared pointer that
goes out of scope will call delete on the payload object. This way, we can be sure that we
do not get memory leaks because objects are deleted automatically after use. At the same
time, we can be sure that they are not deleted too early, or too often (every created object
must only be deleted once).

In this recipe, you will learn how to use shared_ptr to automatically manage dynamic
objects that are shared between multiple owners and see what's different when comparing
it with unique_ptr:

How to do it...
We are going to write a program that is similar to the program we wrote in the unique_ptr
recipe in order to get insights into the usage and principles of shared_ptr:

At first, we just include the necessary headers and declare that we use the std1.
namespace by default:

 #include <iostream>
 #include <memory>

 using namespace std;

Then we define a little helper class, which helps us see when instances of it are2.
actually created and destroyed. We will manage instances of it with shared_ptr:

 class Foo
 {
 public:
 string name;
 Foo(string n)

Utility Classes

[364]

 : name{move(n)}
 { cout << "CTOR " << name << '\n'; }
 ~Foo() { cout << "DTOR " << name << '\n'; }
 };

Next, we implement a function that takes a shared pointer to a Foo instance by3.
value. Accepting shared pointers as arguments by value is more interesting than
accepting them by reference because in this case, they need to be copied, which
changes their internal reference counter, as we will see:

 void f(shared_ptr<Foo> sp)
 {
 cout << "f: use counter at "
 << sp.use_count() << '\n';
 }

In the main function, we declare an empty shared pointer. By default4.
constructing it, it is effectively a null pointer:

 int main()
 {
 shared_ptr<Foo> fa;

Next, we open another scope and instantiate two Foo objects. We create the first5.
one using the new operator and then feed it into the constructor of a new
shared_ptr. Then we create the second instance using make_shared<Foo>,
which creates a Foo instance from the parameters we provide. This is the more
elegant method because we can use auto type deduction and the object is already
managed when we have the chance to access it for the first time. This is very
similar to the unique_ptr recipe at this point:

 {
 cout << "Inner scope begin\n";
 shared_ptr<Foo> f1 {new Foo{"foo"}};
 auto f2 (make_shared<Foo>("bar"));

Utility Classes

[365]

Since shared pointers can be shared, they need to track how many parties share6.
them. This is done with an internal reference counter or use counter. We can print
its value using use_count. The value is exactly 1 at this point because we did not
copy it yet. We can copy f1 to fa, which increases the use counter to 2.

 cout << "f1's use counter at " << f1.use_count() << '\n';
 fa = f1;
 cout << "f1's use counter at " << f1.use_count() << '\n';

While we're leaving the scope, the shared pointers f1 and f2 are destroyed. The7.
f1 variable's reference counter is decremented to 1 again, making fa the only
owner of the Foo instance. While f2 is destroyed, its reference counter is
decremented to 0. In this case, the shared_ptr pointer's destructor will call
delete on this object, which disposes of it:

 }
 cout << "Back to outer scope\n";

 cout << fa.use_count() << '\n';

Now, let's call the f function with our shared pointer in two different ways. At8.
first, we call it naively by copying fa. The f function will then print that the
reference counter has the value 2. In the second call to f, we move the pointer
into the function. This makes f the only owner of the object:

 cout << "first f() call\n";
 f(fa);
 cout << "second f() call\n";
 f(move(fa));

After f is returned, the Foo instance is destroyed immediately because we do not9.
have ownership of it any longer. Therefore, all the objects are already destroyed
when the main function returns:

 cout << "end of main()\n";
 }

Utility Classes

[366]

Compiling and running the program yields the following output. In the10.
beginning, we see "foo" and "bar" created. After we copied f1 (which points to
"foo"), its reference counter was incremented to 2. While leaving the scope,
"bar" is destroyed because the shared pointer to it being the subject of
destruction is the only owner. The single 1 in the output is the reference count of
fa, which is now the only owner of "foo". Afterward, we called function f
twice. On the first call, we copied fa into it, which gave it a reference counter of 2
again. On the second call, we moved it into f, which did not alter its reference
counter. Moreover, because f is the only owner of "foo" at this point, the object
is destroyed immediately after f leaves the scope. This way, no other heap objects
are destroyed after the last print line in main:

 $./shared_ptr
 Inner scope begin
 CTOR foo
 CTOR bar
 f1's use counter at 1
 f1's use counter at 2
 DTOR bar
 Back to outer scope
 1
 first f() call
 f: use counter at 2
 second f() call
 f: use counter at 1
 DTOR foo
 end of main()

How it works...
When constructing and deleting objects, shared_ptr works basically like unique_ptr.
Constructing shared pointers works similarly as creating unique pointers (although there is
a function make_shared that creates shared objects as a pendant to unique_ptr pointer's
make_unique function).

Utility Classes

[367]

The major difference from unique_ptr is that we can copy the shared_ptr instances
because shared pointers maintain a so-called control block together with the object they
manage. The control block contains a pointer to the payload object and a reference counter
or use counter. If there are N number of shared_ptr instances pointing to the object, then
the use counter also has the value N. Whenever a shared_ptr instance is destructed, then
its destructor decrements this internal use counter. The last shared pointer to such an object
will hit the condition that it decrements the use counter to 0 during its destruction. This is,
then, the shared pointer instance, which calls the delete operator on the payload object!
This way, we can't possibly suffer from memory leaks because the object's use count is
automatically tracked.

To illustrate this a bit more, let's have a look at the following diagram:

Utility Classes

[368]

In step 1, we have two shared_ptr instances managing an object of type Foo. The use
counter is at value 2. Then, shared_ptr2 is destroyed, which decrements the use counter
to 1. The Foo instance is not destroyed yet because there is still the other shared pointer. In
step 3, the last shared pointer is destroyed too. This leads to the use counter being
decremented to 0. Step 4 happens immediately after step 3. Both the control block and the
instance of Foo are destroyed and their memory is released to the heap.

Equipped with shared_ptr and unique_ptr, we can automatically deal with most
dynamically allocated objects without having to worry about memory leaks any longer.
There is, however, one important caveat to consider--imagine we have two objects on the
heap that contain shared pointers to each other, and some other shared pointer points to
one of them from somewhere else. If that external shared pointer goes out of scope, then
both objects still have the use counters with nonzero values because they reference each other.
This leads to a memory leak. Shared pointers should not be used in this case because such
cyclic reference chains prevent the use counter of such objects to ever reach 0.

There's more...
Look at the following code. What if you are told that it contains a potential memory leak?

void function(shared_ptr<A>, shared_ptr, int);
// "function" is defined somewhere else

// ...somewhere later in the code:
function(new A{}, new B{}, other_function());

"Where is the memory leak?", one might ask, since the newly allocated objects A and B are
immediately fed into shared_ptr types, and then we are safe from memory leaks.

Yes, it is true that we are safe from memory leaks as soon as the pointers are captured in the
shared_ptr instances. The problem is a bit fiddly to grasp.

When we call a function, f(x(), y(), z()), the compiler needs to assemble code that
calls x(), y(), and z() first so that it can forward their return values to f. What gets us
very bad in combination with the example from before is that the compiler can execute
these function calls to x, y, and z in any order.

Utility Classes

[369]

Looking back at the example, what happens if the compiler decides to structure the code in
a way where at first new A{} is called, then other_function(), and then new B{} is
called, before the results of these functions are finally fed into function? If
other_function() throws an exception, we get a memory leak because we still have an
unmanaged object, A, on the heap because we just allocated it but did not have a chance to
hand it to the management of shared_ptr. No matter how we catch the exception, the
handle to the object is gone and we cannot delete it!

There are two easy ways to circumvent this problem:

// 1.)
function(make_shared<A>(), make_shared(), other_function());

// 2.)
shared_ptr<A> ap {new A{}};
shared_ptr bp {new B{}};
function(ap, bp, other_function());

This way, the objects are already managed by shared_ptr, no matter who throws what
exception afterward.

Dealing with weak pointers to shared objects
In the recipe about shared_ptr, we learned how useful and easy to use shared pointers
are. Together with unique_ptr, they pose an invaluable improvement for code that needs
to manage dynamically allocated objects.

Whenever we copy shared_ptr, we increment its internal reference counter. As long as we
hold our shared pointer copy, the object being pointed to will not be deleted. But what if we
want some kind of weak pointer, which enables us to get at the object as long as it exists but
does not prevent its destruction? And how do we determine if the object still exists, then?

In such situations, weak_ptr is our companion. It is a little bit more complicated to use than
unique_ptr and shared_ptr, but after following this recipe, we will be ready to use it.

Utility Classes

[370]

How to do it...
We will implement a program that maintains objects with shared_ptr instances, and then,
we mix in weak_ptr to see how this changes the behavior of smart pointer memory
handling:

At first, we include the necessary headers and declare that we use the std1.
namespace by default:

 #include <iostream>
 #include <iomanip>
 #include <memory>

 using namespace std;

Next, we implement a class that prints a message in its destructor2.
implementation. This way, we can simply check when an item is actually
destroyed later in the program output:

 struct Foo {
 int value;
 Foo(int i) : value{i} {}
 ~Foo() { cout << "DTOR Foo " << value << '\n'; }
 };

Let's also implement a function that prints information about a weak pointer, so3.
we can print a weak pointer's state at different points of our program. The
expired function of weak_ptr tells us if the object it points to still really exists,
because holding a weak pointer to an object does not prolong its lifetime! The
use_count counter tells us how many shared_ptr instances are currently
pointing to the object in question:

 void weak_ptr_info(const weak_ptr<Foo> &p)
 {
 cout << "---------" << boolalpha
 << "\nexpired: " << p.expired()
 << "\nuse_count: " << p.use_count()
 << "\ncontent: ";

Utility Classes

[371]

If we want to access the actual object, we need to call the lock function. It returns4.
us a shared pointer to the object. In case the object does not exist any longer, the
shared pointer we got from it is effectively a null pointer. We need to check that,
and then we can access it:

 if (const auto sp (p.lock()); sp) {
 cout << sp->value << '\n';
 } else {
 cout << "<null>\n";
 }
 }

Let's instantiate an empty weak pointer in the main function and print its content5.
which is, of course, empty at first:

 int main()
 {
 weak_ptr<Foo> weak_foo;
 weak_ptr_info(weak_foo);

In a new scope, we instantiate a new shared pointer with a fresh instance of the6.
Foo class. Then we copy it to the weak pointer. Note that this will not increment
the reference count of the shared pointer. The reference counter is 1 because only
one shared pointer owns it:

 {
 auto shared_foo (make_shared<Foo>(1337));
 weak_foo = shared_foo;

Let's call the weak pointer function before we leave the scope and, again, after we7.
leave the scope. The Foo instance should be destroyed immediately, although a
weak pointer points to it:

 weak_ptr_info(weak_foo);
 }
 weak_ptr_info(weak_foo);
 }

Utility Classes

[372]

Compiling and running the program yields us three times the output of the8.
weak_ptr_info function. In the first call, the weak pointer is empty. In the
second call, it already points to the Foo instance we created and is able to
dereference it after locking it. Before the third call, we leave the inner scope, which
triggers the destructor of the Foo instance, as we expected. Afterward, it is not
possible to get at the content of the deleted Foo item via the weak pointer any
longer, and the weak pointer correctly recognizes that it has expired:

 $./weak_ptr

 expired: true
 use_count: 0
 content: <null>

 expired: false
 use_count: 1
 content: 1337
 DTOR Foo 1337

 expired: true
 use_count: 0
 content: <null>

How it works...
Weak pointers provide us a way to point at an object maintained by shared pointers
without incrementing its use counter. Okay, a raw pointer could do the same, but a raw
pointer cannot tell us if it is dangling or not. A weak pointer can!

Utility Classes

[373]

In order to understand how weak pointers as an addition to shared pointers work, let's
directly jump to an illustrating diagram:

Utility Classes

[374]

The flow is similar to the diagram in the recipe about shared pointers. In step 1, we have
two shared pointers and a weak pointer pointing to the object of type Foo. Although there
are three objects pointing to it, only the shared pointers manipulate its use counter, which is
why it has the value 2. The weak pointer only manipulates a weak counter of the control
block. In steps 2 and 3, the shared pointer instances are destroyed, which leads stepwise to a
use counter of 0. In step 4, this results in the Foo object being deleted, but the control block
stays there. The weak pointer still needs the control block in order to distinguish if it
dangles or not. Only when the last weak pointer that still points to a control block also goes
out of scope, the control block is deleted.

We can also say that a dangling weak pointer has expired. In order to check for this attribute,
we can ask weak_ptr pointer's expired method, which returns a boolean value. If it is
true, then we cannot dereference the weak pointer because there is no object to dereference
any longer.

In order to dereference a weak pointer, we need to call lock(). This is safe and convenient
because this function returns us a shared pointer. As long as we hold this shared pointer,
the object behind it cannot vanish because we incremented the use counter by locking it. If
the object is deleted, shortly before the lock() call, then the shared pointer it returns is
effectively a null pointer.

Simplifying resource handling of legacy
APIs with smart pointers
Smart pointers (unique_ptr, shared_ptr, and weak_ptr) are extremely useful, and it is,
in general, safe to say that a programmer should always use these instead of allocating and
freeing memory manually.

But what if objects cannot be allocated using the new operator and/or cannot be freed again
using delete? Many legacy libraries come with their own allocation/destruction functions.
It seems that this would be a problem because we learned that smart pointers rely on new
and delete. If the creation and/or destruction of specific types of objects relies on specific
factory functions' deleter interfaces, does this prevent us from getting the humongous
benefits of smart pointers?

Utility Classes

[375]

Not at all. In this recipe, we will see that we only need to perform very minimal
customizations on smart pointers in order to let them follow specific procedures for
allocation and destruction of specific objects.

How to do it...
In this section, we will define a type that cannot be allocated with new directly and, also,
cannot be released again using delete. As this prevents it from being used with smart
pointers directly, we perform the necessary little adaptions to instances of unique_ptr and
smart_ptr:

As always, we first include the necessary headers and declare that we use the std1.
namespace by default:

 #include <iostream>
 #include <memory>
 #include <string>

 using namespace std;

Next, we declare a class that has its constructor and destructor declared private.2.
This way, we simulate the problem that we have to access specific functions that
create and destroy instances of it:

 class Foo
 {
 string name;
 Foo(string n)
 : name{n}
 { cout << "CTOR " << name << '\n'; }
 ~Foo() { cout << "DTOR " << name << '\n';}

Utility Classes

[376]

The static methods, create_foo and destroy_foo, then create and destroy the3.
Foo instances. They work with raw pointers. This simulates the situation of a
legacy C API, which prevents us from using them with normal shared_ptr
pointers directly:

 public:
 static Foo* create_foo(string s) {
 return new Foo{move(s)};
 }

 static void destroy_foo(Foo *p) { delete p; }
 };

Now, let's make such objects manageable by shared_ptr. We can, of course, put4.
the pointer we get from create_foo into the constructor of a shared pointer.
Only the destruction is tricky because the default deleter of shared_ptr would
do it wrong. The trick is that we can give shared_ptr a custom deleter. The
function signature that a deleter function or callable object needs to have is
already the same as that of the destroy_foo function. If the function we need to
call for destroying the object is more complicated, we can simply wrap it into a
lambda expression:

 static shared_ptr<Foo> make_shared_foo(string s)
 {
 return {Foo::create_foo(move(s)), Foo::destroy_foo};
 }

Note that make_shared_foo returns a usual shared_ptr<Foo> instance5.
because giving it a custom deleter did not change its type. This is because
shared_ptr uses virtual function calls to hide such details. Unique pointers do
not impose any overhead, which makes the same trick unfeasible for them. Here,
we need to change the type of the unique_ptr. As a second template parameter,
we give it void (*)(Foo*), which is exactly the type of pointer to the function,
destroy_foo:

 static unique_ptr<Foo, void (*)(Foo*)> make_unique_foo(string s)
 {
 return {Foo::create_foo(move(s)), Foo::destroy_foo};
 }

Utility Classes

[377]

In the main function, we just instantiate both a shared pointer and a unique6.
pointer instance. In the program output, we will see if they are really, correctly,
and automatically destroyed:

 int main()
 {
 auto ps (make_shared_foo("shared Foo instance"));
 auto pu (make_unique_foo("unique Foo instance"));
 }

Compiling and running the program yields the following output, which is luckily7.
just what we expected:

 $./legacy_shared_ptr
 CTOR shared Foo instance
 CTOR unique Foo instance
 DTOR unique Foo instance
 DTOR shared Foo instance

How it works...
Usually, unique_ptr and shared_ptr just call delete on their internal pointers,
whenever they ought to destroy the object they maintain. In this section, we constructed a
class which can neither be allocated the C++ way using x = new Foo{123} nor can it be
destructed with delete x directly.

The Foo::create_foo function just returns a plain raw pointer to a newly constructed Foo
instance, so this causes no further problems because smart pointers work with raw pointers
anyway.

The problem we had to deal with is that we need to teach unique_ptr and shared_ptr
how to destruct an object if the default way is not the right one.

In that regard, both the smart pointer types differ a little bit. In order to define a custom
deleter for unique_ptr, we have to alter its type. Because the type signature of the Foo
deleter is void Foo::destroy_foo(Foo*);, the type of the unique_ptr maintaining a
Foo instance must be unique_ptr<Foo, void (*)(Foo*)>. Now, it can hold a function
pointer to destroy_foo, which we provide it as a second constructor parameter in our
make_unique_foo function.

Utility Classes

[378]

If giving unique_ptr a custom deleter function forces us to change its type, why were we
able to do the same with shared_ptr without changing its type? The only thing we had to
do there was giving shared_ptr a second constructor parameter, and that's it. Why can't it
be as easy for unique_ptr as it is for shared_ptr?

The reason why it is so simple to just provide shared_ptr some kind of callable deleter
object without altering the shared pointer's type lies in the nature of shared pointers, which
maintain a control block. The control block of shared pointers is an object with virtual
functions. This means that the control block of a standard shared pointer compared with the
type of a control block of a shared pointer with a custom deleter is different! When we want
a unique pointer to use a custom deleter, then this changes the type of the unique pointer.
When we want a shared pointer to use a custom deleter, then this changes the type of the
internal control block, which is invisible to us because this difference is hidden behind a
virtual function interface.

It would be possible to do the same trick with unique pointers, but then, this would imply a
certain runtime overhead on them. This is not what we want because unique pointers
promise to be completely overhead free at runtime.

Sharing different member values of the same
object
Let's imagine we are maintaining a shared pointer to some complex, composed, and
dynamically allocated object. Then, we want to start a new thread that does some time-
consuming work on a member of this complex object. If we want to release this shared
pointer now, the object will be deleted while the other thread is still accessing it. If we don't
want to give the thread object the pointer to the whole complex object because that would
mess with our nice interface, or for other reasons, does this mean that we have to do manual
memory management now?

No. It is possible to use shared pointers that on one hand, point to a member of a large
shared object, while on the other hand, perform automatic memory management for the
entire initial object.

In this example, we will create such a scenario (without threads to keep it simple) in order
to get a feeling for this handy feature of shared_ptr.

Utility Classes

[379]

How to do it...
We are going to define a structure that is composed of multiple members. Then, we allocate
an instance of this structure on the heap that is maintained by a shared pointer. From this
shared pointer, we obtain more shared pointers that do not point to the actual object but to
its members:

We include the necessary headers first and then declare that we use the std1.
namespace by default:

 #include <iostream>
 #include <memory>
 #include <string>

 using namespace std;

Then we define a class that has different members. We will let shared pointers2.
point to the individual members. In order to be able to see when the class is
created and destroyed, we let its constructor and destructor print messages:

 struct person {
 string name;
 size_t age;
 person(string n, size_t a)
 : name{move(n)}, age{a}
 { cout << "CTOR " << name << '\n'; }
 ~person() { cout << "DTOR " << name << '\n'; }
 };

Let's define shared pointers that have the right types to point to the name and age3.
member variables of a person class instance:

 int main()
 {
 shared_ptr<string> shared_name;
 shared_ptr<size_t> shared_age;

Next, we enter a new scope, create such a person object, and let a shared pointer4.
manage it:

 {
 auto sperson (make_shared<person>("John Doe", 30));

Utility Classes

[380]

Then, we let the first two shared pointers point to its name and age members. The5.
trick is that we use a specific constructor of shared_ptr, which accepts a shared
pointer and a pointer to a member of the shared object. This way, we can manage
the object while not pointing at the object itself!

 shared_name = shared_ptr<string>(sperson, &sperson->name);
 shared_age = shared_ptr<size_t>(sperson, &sperson->age);
 }

After leaving the scope, we print the person's name and age values. This is only6.
legal if the object is still allocated:

 cout << "name: " << *shared_name
 << "\nage: " << *shared_age << '\n';
 }

Compiling and running the program yields the following output. From the7.
destructor message, we see that the object is indeed still alive and allocated when
we access the person's name and age values via the member pointers!

 $./shared_members
 CTOR John Doe
 name: John Doe
 age: 30
 DTOR John Doe

How it works...
In this section, we first created a shared pointer that manages a dynamically allocated
person object. Then we made two other smart pointers point to the person object, but they
both did not directly point to the person object itself but instead to its members, name and
age.

Utility Classes

[381]

To summarize what kind of scenario we just created, let's have a look at the following
diagram:

Note that shared_ptr1 points to the person object directly, while shared_name and
shared_age point to the name and the age members of the same object. Apparently, they
still manage the object's entire lifetime. This is possible because the internal control block
pointers still point to the same control block, no matter what sub-object the individual
shared pointers point to.

In this scenario, the use count of the control block is 3. This way, the person object is not
destroyed when shared_ptr1 is destroyed because the other shared pointers still own the
object.

When creating such shared pointer instances that point to members of the shared object, the
syntax looks a bit strange. In order to obtain a shared_ptr<string> that points to the
name member of a shared person, we need to write the following:

auto sperson (make_shared<person>("John Doe", 30));
auto sname (shared_ptr<string>(sperson, &sperson->name));

In order to get a specific pointer to a member of a shared object, we instantiate a shared
pointer with a type specialization of the member we want to access. This is why we write
shared_ptr<string>. Then, in the constructor, we first provide the original shared
pointer that maintains the person object and, as a second argument, the address of the
object the new shared pointer will use when we dereference it.

Utility Classes

[382]

Generating random numbers and choosing
the right random number engine
In order to get random numbers for whatever purpose, C++ programmers usually basically
used the rand() function of the C library before C++11. Since C++11, there has been a whole
suite of random number generators that serve different purposes and have different
characteristics.

These generators are not completely self-explanatory, so we will have a look at all of them
in this recipe. In the end, we will see in what ways they differ, how to choose the right one,
and that we will most probably never use all of them.

How to do it...
We will implement a procedure that prints a nice illustrating histogram of the numbers a
random generator produces. Then, we will run all STL random number generator engines
through this procedure and learn from the results. This program contains many repetitive
lines, so it might be advantageous to just copy the source code from the code repository
accompanying this book on the Internet instead of typing all the repetitive code manually.

At first, we include all the necessary headers and then declare that we use the1.
std namespace by default:

 #include <iostream>
 #include <string>
 #include <vector>
 #include <random>
 #include <iomanip>
 #include <limits>
 #include <cstdlib>
 #include <algorithm>

 using namespace std;

Utility Classes

[383]

Then we implement a helper function, which helps us maintain and print some2.
statistics for each type of random number engine. It accepts two parameters: the
number of partitions and the number of samples. We will see immediately what
these are for. The type of random generator is defined via the template parameter
RD. The first thing we do in this function is define an alias type for the resulting
numeric type of the numbers the generator returns. We also make sure that we
have at least 10 partitions:

 template <typename RD>
 void histogram(size_t partitions, size_t samples)
 {
 using rand_t = typename RD::result_type;
 partitions = max<size_t>(partitions, 10);

Next, we instantiate an actual generator instance of type RD. Then, we define a3.
divisor variable called div. All random number engines emit random numbers
within the range from 0 to RD::max(). The function argument, partitions,
allows the caller to choose by how many partitions we divide every random
number range. By dividing the largest possible value by the number of partitions,
we know how large every partition is:

 RD rd;
 rand_t div ((double(RD::max()) + 1) / partitions);

Next, we instantiate a vector of counter variables. It is exactly as large as the4.
number of partitions we have. Then, we get as many random values out of the
random engine as the variable samples says. The expression, rd(), gets a
random number from the generator and shifts its internal state to prepare it for
returning the next random number. By dividing every random number by div,
we get the partition number it falls into and can increment the right counter in
the vector of counters:

 vector<size_t> v (partitions);
 for (size_t i {0}; i < samples; ++i) {
 ++v[rd() / div];
 }

Utility Classes

[384]

Now we have a nice coarse-grained histogram of sample values. In order to print5.
it, we need to know a little bit more about its actual counter values. Let's extract
its largest value using the max_element algorithm. We then divide this largest
counter value by 100. This way, we can divide all the counter values by max_div
and print a lot of stars on the terminal without exceeding the width of 100. If the
largest counter contains a number less than 100, because we did not use so many
samples, we use max in order to get a minimal divisor of 1:

 rand_t max_elm (*max_element(begin(v), end(v)));
 rand_t max_div (max(max_elm / 100, rand_t(1)));

Let's now print the histogram to the terminal. Every partition gets its own line on6.
the terminal. By dividing its counter value by max_div and print so many
asterisk symbols '*', we get histogram lines that fit into the terminal:

 for (size_t i {0}; i < partitions; ++i) {
 cout << setw(2) << i << ": "
 << string(v[i] / max_div, '*') << '\n';
 }
 }

Okay, that's it. Now to the main program. We let the user define how many7.
partitions and samples should be used:

 int main(int argc, char **argv)
 {
 if (argc != 3) {
 cout << "Usage: " << argv[0]
 << " <partitions> <samples>\n";
 return 1;
 }

We then read those variables from the command line. Of course, the command8.
line consists of strings, which we can convert to numbers using std::stoull
(stoull is an abbreviation for string to unsigned long long):

 size_t partitions {stoull(argv[1])};
 size_t samples {stoull(argv[2])};

Utility Classes

[385]

Now we call our histogram helper function on every random number engine the9.
STL provides. This makes this recipe very long and repetitive. Better copy the
example from the Internet. The output of this program is really interesting to look
at. We start with random_device. This device tries to distribute the randomness
equally over all the possible values:

 cout << "random_device" << '\n';
 histogram<random_device>(partitions, samples);

The next random engine we try is default_random_engine. What kind of10.
engine this type refers to is implementation-specific. It can be any of the following
random engines:

 cout << "ndefault_random_engine" << '\n';
 histogram<default_random_engine>(partitions, samples);

Then we try it on all the other engines:11.

 cout << "nminstd_rand0" << '\n';
 histogram<minstd_rand0>(partitions, samples);
 cout << "nminstd_rand" << '\n';
 histogram<minstd_rand>(partitions, samples);
 cout << "nmt19937" << '\n';
 histogram<mt19937>(partitions, samples);
 cout << "nmt19937_64" << '\n';
 histogram<mt19937_64>(partitions, samples);
 cout << "nranlux24_base" << '\n';
 histogram<ranlux24_base>(partitions, samples);
 cout << "nranlux48_base" << '\n';
 histogram<ranlux48_base>(partitions, samples);
 cout << "nranlux24" << '\n';
 histogram<ranlux24>(partitions, samples);
 cout << "nranlux48" << '\n';
 histogram<ranlux48>(partitions, samples);
 cout << "nknuth_b" << '\n';
 histogram<knuth_b>(partitions, samples);
 }

Utility Classes

[386]

Compiling and running the program yields interesting results. We will see a long12.
list of output, and we'll see that all the random engines have different
characteristics. Let's first run the program with 10 partitions and only 1000
samples:

Utility Classes

[387]

Then, we run the same program again. This time it is still 10 partitions but13.
1,000,000 samples. It becomes very obvious that the histograms look much
cleaner, when we take more samples from them. This is an important observation:

How it works...
In general, any random number generator needs to be instantiated as an object before use.
The resulting object can be called like a function without parameters because it overloads
operator(). Every call will then lead to a new random number. It is that simple.

Utility Classes

[388]

In this section, we wrote a program that is much more complex than that in order to get a
bit more information about random number generators. Please play around with the
resulting program by launching it with different command-line arguments and realize the
following facts:

The more samples we take, the more equal our partition counters appear.
The inequality of the partition counters wildly differs between individual
engines.
For a large number of samples, it becomes apparent that the performance of the
individual random engines differs.
Run the program with a low amount of samples multiple times. The distribution
patterns look the same all the time--the random engines produce the same random
number sequences repeatedly, which means they are not random at all. Such
engines are called deterministic because their random numbers can be predicted.
The only exception is std::random_device.

As we can see, there are a few characteristics to consider. For most standard applications,
std::default_random_engine will be completely sufficient. Experts of cryptography or
similarly security-sensitive topics will choose wisely between the engines they use, but for
us average programmers, this is not too important when we write apps with some
randomness.

We should carry home the following three facts from this recipe:

Usually, std::default_random_engine is a good default choice for the1.
average application.
If we really need non-deterministic random numbers, std::random_device2.
provides us such.
We can feed the constructor of any random engine with a real random number3.
from std::random_device (or maybe a timestamp from the system clock), in
order to make it produce different random numbers each time. This is called
seeding.

Note that std::random_device can possibly fall back to one of the
deterministic engines if the library has no support for nondeterministic
random engines.

Utility Classes

[389]

Generating random numbers and letting the
STL shape specific distributions
In the last recipe, we learned some bits about the STL random number engines. Generating
random numbers this or the other way is often only half of the work.

Another question is, what do we need those numbers for? Are we programmatically
"flipping a coin"? People used to do this using rand() % 2, which results in values of 0
and 1 that can then be mapped to head or tail. Fair enough; we do not need a library for that
(although randomness experts know that just using the lowest few bits of a random number
does not always lead to high-quality random numbers).

What if we want to model a die? Then, we could surely write (rand() % 6) + 1, in order
to represent the result after rolling the die. There is still no pressing library needed for such
simple tasks.

What if we want to model something that happens with an exact probability of 66%? Okay,
then we can come up with a formula like bool yesno = (rand() % 100 > 66). (Oh
wait, should it be >=, or is > correct?)

Apart from that, how do we model an unfair die whose sides do not all have the same
probability? Or how do we model more complex distributions? Such problems can quickly
evolve to scientific tasks. In order to concentrate on our primary problems, let's have a look
at what the STL already provides in order to help us.

The STL contains more than a dozen distribution algorithms that can shape random
numbers for specific needs. In this recipe, we are going to have a very brief look at all of
them, and a closer look at the most generally useful ones.

How to do it...
We are going to generate random numbers, shape them, and print their distribution
patterns to the terminal. This way, we can get to know all of them and understand the most
important ones, which is useful if we ever need to model something specific with
randomness in mind:

At first, we include all the needed headers and declare that we use the std1.
namespace:

 #include <iostream>
 #include <iomanip>

Utility Classes

[390]

 #include <random>
 #include <map>
 #include <string>
 #include <algorithm>

 using namespace std;

For every distribution the STL provides, we will print a histogram in order to see2.
its characteristics because every distribution looks very special. It accepts a
distribution as an argument and the number of samples that shall be taken from
it. Then, we instantiate the default random engine and a map. The map maps
from the values we obtained from the distribution to counters that count how
often which value occurred. The reason for why we always instantiate a random
engine is that all distributions are just used as a shaping function for random
numbers that still need to be generated by a random engine:

 template <typename T>
 void print_distro(T distro, size_t samples)
 {
 default_random_engine e;
 map<int, size_t> m;

We take as many samples as the samples variable says and feed the map3.
counters with them. This way, we get a nice histogram. While calling e() alone
would get us a raw random number from the random engine, distro(e) shapes
the random numbers through the distribution object.

 for (size_t i {0}; i < samples; ++i) {
 m[distro(e)] += 1;
 }

In order to get a terminal output that fits into the terminal window, we need to4.
know the largest counter value. The max_element function helps us in finding
the largest value by comparing all the associated counters in the map and
returning us an iterator to the largest counter node. Knowing this value, we can
determine by what value we need to divide all the counter values in order to fit
the output into the terminal window:

 size_t max_elm (max_element(begin(m), end(m),
 [](const auto &a, const auto &b) {
 return a.second < b.second;
 })->second);
 size_t max_div (max(max_elm / 100, size_t(1)));

Utility Classes

[391]

Now, we loop through the map and print a bar of asterisk symbols '*' for all5.
counters which have a significant size. We drop the others because some
distribution engines spread the numbers over such large domains that it would
completely flood our terminal windows:

 for (const auto [randval, count] : m) {
 if (count < max_elm / 200) { continue; }
 cout << setw(3) << randval << " : "
 << string(count / max_div, '*') << '\n';
 }
 }

In the main function, we check if the user provided us exactly one parameter,6.
which tells us how many samples to take from each distribution. If the user
provided none or multiple parameters, we error out.

 int main(int argc, char **argv)
 {
 if (argc != 2) {
 cout << "Usage: " << argv[0]
 << " <samples>\n";
 return 1;
 }

We convert the command-line argument string to a number using std::stoull:7.

 size_t samples {stoull(argv[1])};

At first, we try the uniform_int_distribution and normal_distribution.8.
These are the most typical distributions used where random numbers are needed.
Everyone who ever had stochastic as a topic in maths at school will most
probably have heard about these already. The uniform distribution accepts two
values, denoting the lower and the upper bound of the range they shall distribute
random values over. By choosing 0 and 9, we will get equally often occurring
values between (including) 0 and 9. The normal distribution accepts a mean value
and a standard derivation as arguments:

 cout << "uniform_int_distribution\n";
 print_distro(uniform_int_distribution<int>{0, 9}, samples);
 cout << "normal_distribution\n";
 print_distro(normal_distribution<double>{0.0, 2.0}, samples);

Utility Classes

[392]

Another really interesting distribution is piecewise_constant_distribution.9.
It accepts two input ranges as arguments. The first range contains numbers that
denote the limits of intervals. By defining it as 0, 5, 10, 30, we get one
interval that spans from 0 to 4, then, an interval that spans from 5 to 9, and the
last interval spanning from 10 to 29. The other input range defines the weights of
the input ranges. By setting those weights to 0.2, 0.3, 0.5, the intervals are
hit by random numbers with the chances of 20%, 30%, and 50%. Within every
interval, all the values are hit with equal probability:

 initializer_list<double> intervals {0, 5, 10, 30};
 initializer_list<double> weights {0.2, 0.3, 0.5};
 cout << "piecewise_constant_distribution\n";
 print_distro(
 piecewise_constant_distribution<double>{
 begin(intervals), end(intervals),
 begin(weights)},
 samples);

The piecewise_linear_distribution is constructed similarly, but its weight10.
characteristics work completely differently. For every interval boundary point,
there is one weight value. In the transition from one boundary to the other, the
probability is linearly interpolated. We use the same interval list but a different
list of weight values.

 cout << "piecewise_linear_distribution\n";
 initializer_list<double> weights2 {0, 1, 1, 0};
 print_distro(
 piecewise_linear_distribution<double>{
 begin(intervals), end(intervals), begin(weights2)},
 samples);

The Bernoulli distribution is another important distribution because it distributes11.
only yes/no, hit/miss, or head/tail values with a specific probability. Its output
values are only 0 or 1. Another interesting distribution, which is useful in many
cases, is discrete_distribution. In our case, we initialize it to the discrete
values 1, 2, 4, 8. These values are interpreted as weights for the possible
output values 0 to 3:

 cout << "bernoulli_distribution\n";
 print_distro(std::bernoulli_distribution{0.75}, samples);
 cout << "discrete_distribution\n";
 print_distro(discrete_distribution<int>{{1, 2, 4, 8}}, samples);

Utility Classes

[393]

There are a lot of different other distribution engines. They are very special and12.
useful in very specific situations. If you have never heard about them, they may
not be for you. However, since our program will produce nice distribution
histograms, we will print them all, for curiosity reasons:

 cout << "binomial_distribution\n";
 print_distro(binomial_distribution<int>{10, 0.3}, samples);
 cout << "negative_binomial_distribution\n";
 print_distro(
 negative_binomial_distribution<int>{10, 0.8},
 samples);
 cout << "geometric_distribution\n";
 print_distro(geometric_distribution<int>{0.4}, samples);
 cout << "exponential_distribution\n";
 print_distro(exponential_distribution<double>{0.4}, samples);
 cout << "gamma_distribution\n";
 print_distro(gamma_distribution<double>{1.5, 1.0}, samples);
 cout << "weibull_distribution\n";
 print_distro(weibull_distribution<double>{1.5, 1.0}, samples);
 cout << "extreme_value_distribution\n";
 print_distro(
 extreme_value_distribution<double>{0.0, 1.0},
 samples);
 cout << "lognormal_distribution\n";
 print_distro(lognormal_distribution<double>{0.5, 0.5}, samples);
 cout << "chi_squared_distribution\n";
 print_distro(chi_squared_distribution<double>{1.0}, samples);
 cout << "cauchy_distribution\n";
 print_distro(cauchy_distribution<double>{0.0, 0.1}, samples);
 cout << "fisher_f_distribution\n";
 print_distro(fisher_f_distribution<double>{1.0, 1.0}, samples);
 cout << "student_t_distribution\n";
 print_distro(student_t_distribution<double>{1.0}, samples);
 }

Utility Classes

[394]

Compiling and running the program yields the following output. Let's first run13.
the program with 1000 samples per distribution:

Utility Classes

[395]

Another run with 1,000,000 samples per distribution shows that the histograms14.
appear much cleaner and more typical for each distribution. But we also see
which ones are slow, and which ones are fast, while they are being generated:

Utility Classes

[396]

How it works...
While we usually do not care too much about the random number engine, as long it is fast
and produces numbers that are as random as possible, the distribution is something we
should choose wisely, depending on the problem we like to solve (or create).

In order to use any distribution, we first need to instantiate a distribution object from it. We
have seen that different distributions take different constructor arguments. In the recipe
description, we went a bit too briefly over some distribution engines because most of them
are too special and/or too complex to cover here. But don't worry, they are all documented
in detail in the C++ STL documentation.

However, as soon as we have a distribution instantiated, we can call it like a function that
accepts a random engine object as its only parameter. What happens then is that the
distribution engine takes a random value from the random engine, applies some magic
shaping (which completely depends on the choice of the distribution engine, of course), and
then returns us a shaped random value. This leads to completely different histograms, as we
saw after executing the program.

The most comprehensive way to get to know the different distributions is playing around
with the program we just wrote. In addition to that, let's summarize the most important
distributions. For all the distributions that occur in our program but not in the following
table, please consult the C++ STL documentation if you are interested:

Distribution Description

uniform_int_distribution This distribution accepts a lower and an upper bound value
as constructor arguments. It does, then, give us random
numbers that always fall into the interval between
(including) those bounds. The probability for each of the
values in this interval is the same, which gives us a
histogram with a flat shape. This distribution is
representative of rolling a die, for example, because each side
of the die has the same probability to occur.

normal_distribution The normal distribution, or Gauss distribution, occurs
practically everywhere in nature. Its STL version accepts a
mean value and a standard derivation value as constructor
parameters and forms a roof-like shape in the histogram. If
we compare the body size or IQ of humans or other animals,
or the grades of students, we will realize that these numbers
are also normal-distributed.

Utility Classes

[397]

bernoulli_distribution The Bernoulli distribution is perfect if we want to flip a coin
or get a yes/no answer. It emits only the values 0 or 1 and its
only constructor parameter is the probability for the value of
1.

discrete_distribution The discrete distribution is interesting if we only want a very
limited, discrete set of values for which we want to define
the probability for every individual value. Its constructor
takes a list of weights and will emit random numbers with
probabilities depending on their weight. If we want to model
randomly distributed blood groups, of which there are only
four different ones that have specific probabilities, then this
engine is a perfect match.

9
Parallelism and Concurrency

In this chapter, we will cover the following recipes:

Automatically parallelizing code that uses standard algorithms
Putting a program to sleep for specific amounts of time
Starting and stopping threads
Performing exception-safe shared locking with std::unique_lock and
std::shared_lock

Avoiding deadlocks with std::scoped_lock
Synchronizing concurrent std::cout use
Safely postponing initialization with std::call_once
Pushing the execution of tasks into the background using std::async
Implementing the producer/consumer idiom with std::condition_variable
Implementing the multiple producers/consumers idiom with
std::condition_variable

Parallelizing the ASCII Mandelbrot renderer using std::async
Implementing a tiny automatic parallelization library with std::future

Introduction
Before C++11, C++ didn't have much support for parallelization. This does not mean that
starting, controlling, stopping, and synchronizing threads was not possible, but it was
necessary to use operating system-specific libraries because threads are inherently
operating system-related.

Parallelism and Concurrency

[399]

With C++11, we got std::thread, which enables basic portable thread control across all
operating systems. For synchronizing threads, C++11 also introduced mutex classes and
comfortable RAII-style lock wrappers. In addition to that, std::condition_variable
allows for flexible event notification between threads.

Some other really interesting additions are std::async and std::future--we can now
wrap arbitrary normal functions into std::async calls in order to execute them
asynchronously in the background. Such wrapped functions return std::future objects
that promise to contain the result of the function later, so we can do something else before
we wait for its arrival.

Another actually enormous improvement to the STL are execution policies, which can be
added to 69 of the already existing algorithms. This addition means that we can just add a
single execution policy argument to the existing standard algorithm calls in our old
programs and get parallelization without complex rewrites.

In this chapter, we will go through all these additions in order to learn the most important
things about them. Afterward, we'll have enough oversight of the parallelization support in
the C++17 STL. We do not cover all the details, but the most important ones. The overview
gained from this book helps in quickly understanding the rest of the parallel programming
mechanisms, which you can always look up in the C++ 17 STL documentation online.

Finally, this chapter contains two bonus recipes. In one recipe, we will parallelize the
Mandelbrot ASCII renderer from Chapter 6, Advance Use of STL Algorithms, with only
minimal changes. In the last recipe, we will implement a tiny library that helps parallelizing
complex tasks implicitly and automatically.

Automatically parallelizing code that uses
standard algorithms
C++17 came with one really major extension for parallelism: execution policies for standard
algorithms. Sixty nine algorithms were extended to accept execution policies in order to run
parallel on multiple cores, and even with enabled vectorization.

For the user, this means that if we already use STL algorithms everywhere, we get a nice
parallelization bonus for free. We can easily give our applications subsequent parallelization
by simply adding a single execution policy argument to our existing STL algorithm calls.

Parallelism and Concurrency

[400]

In this recipe, we will implement a simple program (with a not too serious use case
scenario) that lines up multiple STL algorithm calls. While using these, we will see how
easy it is to use C++17 execution policies in order to let them run multithreaded. In the last
subsections of this section, we will have a closer look at the different execution policies.

How to do it...
In this section, we will write a program that uses some standard algorithms. The program
itself is more of an example of how real-life scenarios can look than doing actual real-life
work situation. While using these standard algorithms, we are embedding execution
policies in order to speed the code up:

First, we need to include some headers and declare that we use the std1.
namespace. The execution header is a new one; it came with C++17:

 #include <iostream>
 #include <vector>
 #include <random>
 #include <algorithm>
 #include <execution>

 using namespace std;

Just for the sake of the example, we'll declare a predicate function that tells2.
whether a number is odd. We will use it later:

 static bool odd(int n) { return n % 2; }

Let's first define a large vector in our main function. We will fill it with a lot of3.
data so that it takes some time to do calculations on it. The execution speed of this
code will vary a lot, depending on the computer this code is executed on.
Smaller/larger vector sizes might be better on different computers:

 int main()
 {
 vector<int> d (50000000);

Parallelism and Concurrency

[401]

In order to get a lot of random data for the vector, let's instantiate a random4.
number generator along with a distribution and pack them up in a callable object.
If this looks strange to you, please first have a look at the recipes that deal with
random number generators and distributions in Chapter 8, Utility Classes:

 mt19937 gen;
 uniform_int_distribution<int> dis(0, 100000);
 auto rand_num ([=] () mutable { return dis(gen); });

Now, let's use the std::generate algorithm to fill the vector with random data.5.
There is a new C++17 version of this algorithm, which can take a new kind of
argument: an execution policy. We put in std::par here, which allows for
automatic parallelization of this code. By doing this, we allow for multiple
threads to start filling the vector together, which reduces the execution time if the
computer has more than one CPU, which is usually the case with modern
computers:

 generate(execution::par, begin(d), end(d), rand_num);

The std::sort method should also already be familiar. The C++17 version does6.
also support an additional argument defining the execution policy:

 sort(execution::par, begin(d), end(d));

The same applies to std::reverse:7.

 reverse(execution::par, begin(d), end(d));

Then we use std::count_if to count all the odd numbers in the vector. And we8.
can even parallelize that by just adding an execution policy again!

 auto odds (count_if(execution::par, begin(d), end(d), odd));

This whole program did not do any real scientific work, as we were just going to9.
have a look on how to parallelize standard algorithms, but let's print something
in the end:

 cout << (100.0 * odds / d.size())
 << "% of the numbers are odd.\n";
 }

Parallelism and Concurrency

[402]

Compiling and running the program gives us the following output. At this point,10.
it is interesting to see how the execution speed differs when using the algorithms
without an execution policy compared with all the other execution policies.
Doing this is left as an exercise for the reader. Try it; the available execution
policies are seq, par, and par_vec. We should get different execution times for
each of them:

 $./auto_parallel
 50.4% of the numbers are odd.

How it works...
Especially since this recipe did not distract us with any complicated real-life problem
solution, we were able to fully concentrate on the standard library function calls. It is pretty
obvious that the their parallelized versions are hardly different from the classic sequential
ones. They only differ by one additional argument, which is the execution policy.

Let's have a look at the invocations and answer three central questions:

generate(execution::par, begin(d), end(d), rand_num);
sort(execution::par, begin(d), end(d));
reverse(execution::par, begin(d), end(d));

auto odds (count_if(execution::par, begin(d), end(d), odd));

Which STL algorithms can we parallelize this way?
Sixty nine of the existing STL algorithms were upgraded to support parallelism in the C++17
standard, and there are seven new ones that also support parallelism. While such an
upgrade might be pretty invasive for the implementation, not much has changed in terms of
their interface--they all got an additional ExecutionPolicy&& policy argument, and
that's it. This does not mean that we always have to provide an execution policy argument. It
is just that they additionally support accepting an execution policy as their first argument.

Parallelism and Concurrency

[403]

These are the 69 upgraded standard algorithms. There are also the seven new ones that
support execution policies from the beginning (highlighted in bold):

std::adjacent_difference
std::adjacent_find
std::all_of
std::any_of
std::copy
std::copy_if
std::copy_n
std::count
std::count_if
std::equal
std::exclusive_scan
std::fill
std::fill_n
std::find
std::find_end
std::find_first_of
std::find_if
std::find_if_not
std::for_each
std::for_each_n
std::generate
std::generate_n
std::includes
std::inclusive_scan
std::inner_product

std::inplace_merge
std::is_heap
std::is_heap_until
std::is_partitioned
std::is_sorted
std::is_sorted_until
std::lexicographical_compare
std::max_element
std::merge
std::min_element
std::minmax_element
std::mismatch
std::move
std::none_of
std::nth_element
std::partial_sort
std::partial_sort_copy
std::partition
std::partition_copy
std::remove
std::remove_copy
std::remove_copy_if
std::remove_if
std::replace
std::replace_copy
std::replace_copy_if

std::replace_if
std::reverse
std::reverse_copy
std::rotate
std::rotate_copy
std::search
std::search_n
std::set_difference
std::set_intersection
std::set_symmetric_difference
std::set_union
std::sort
std::stable_partition
std::stable_sort
std::swap_ranges
std::transform
std::transform_exclusive_scan
std::transform_inclusive_scan
std::transform_reduce
std::uninitialized_copy
std::uninitialized_copy_n
std::uninitialized_fill
std::uninitialized_fill_n
std::unique
std::unique_copy

Having these algorithms upgraded is great news! The more our old programs utilize STL
algorithms, the easier we can add parallelism to them retroactively. Note that this does not
mean that such changes make every program automatically N times faster because
multiprogramming is quite a bit more complex than that.

However, instead of designing our own complicated parallel algorithms using
std::thread, std::async, or by including external libraries, we can now parallelize
standard tasks in a very elegant, operating system-independent way.

How do those execution policies work?
The execution policy tells which strategy we allow for the automatic parallelization of our
standard algorithm calls.

Parallelism and Concurrency

[404]

The following three policy types exist in the std::execution namespace:

Policy Meaning

sequenced_policy The algorithm has to be executed in a sequential form
similar to the original algorithm without an execution
policy. The globally available instance has the name
std::execution::seq.

parallel_policy The algorithm may be executed with multiple threads
that share the work in a parallel fashion. The globally
available instance has the name
std::execution::par.

parallel_unsequenced_policy The algorithm may be executed with multiple threads
sharing the work. In addition to that, it is permissible
to vectorize the code. In this case, container access can
be interleaved between threads and also within the
same thread due to vectorization. The globally
available instance has the name
std::execution::par_unseq.

The execution policies imply specific constraints for us. The stricter the specific constraints,
the more parallelization strategy measures we can allow:

All element access functions used by the parallelized algorithm must not cause
deadlocks or data races
In the case of parallelism and vectorization, all the access functions must not use
any kind of blocking synchronization

As long as we comply with these rules, we should be free from bugs introduced by using
the parallel versions of the STL algorithms.

Note that just using parallel STL algorithms correctly does not always lead
to guaranteed speedup. Depending on the problem we try to solve, the
problem size, and the efficiency of our data structures and other access
methods, measurable speedup will vary very much or not occur at all.
Multiprogramming is still hard.

Parallelism and Concurrency

[405]

What does vectorization mean?
Vectorization is a feature that both the CPU and the compiler need to support. Let's have a
quick glance at a simple example to briefly understand what vectorization is and how it
works. Imagine we want to sum up numbers from a very large vector. A plain
implementation of this task can look like this:

std::vector<int> v {1, 2, 3, 4, 5, 6, 7 /*...*/};

int sum {std::accumulate(v.begin(), v.end(), 0)};

The compiler will eventually generate a loop from the accumulate call, which could look
like this:

int sum {0};
for (size_t i {0}; i < v.size(); ++i) {
 sum += v[i];
}

Proceeding from this point, with vectorization allowed and enabled, the compiler could
then produce the following code. The loop does four accumulation steps in one loop step
and also does four times fewer iterations. For the sake of simplicity, the example does not
deal with the remainder if the vector does not contain N * 4 elements:

int sum {0};
for (size_t i {0}; i < v.size() / 4; i += 4) {
 sum += v[i] + v[i+1] + v[i + 2] + v[i + 3];
}
// if v.size() / 4 has a remainder,
// real code has to deal with that also.

Why should it do this? Many CPUs provide instructions that can perform mathematical
operations such as sum += v[i] + v[i+1] + v[i + 2] + v[i + 3]; in just one step.
Pressing as many mathematical operations into as few instructions as possible is the target
because this speeds up the program.

Automatic vectorization is hard because the compiler needs to understand our program to
some degree in order to make our program faster but without tampering with its correctness.
At least, we can help the compiler by using standard algorithms as often as possible because
those are easier to grasp for the compiler than complicated handcrafted loops with complex
data flow dependencies.

Parallelism and Concurrency

[406]

Putting a program to sleep for specific
amounts of time
A nice and simple possibility to control threads came with C++11. It introduced the
this_thread namespace, which includes functions that affect only the caller thread. It
contains two different functions that allow putting a thread to sleep for a certain amount of
time, so we do not need to use any external or operating system-dependent libraries for
such tasks any longer.

In this recipe, we concentrate on how to suspend threads for a certain amount of time, or
how to put them to sleep.

How to do it...
We will write a short program that just puts the main thread to sleep for certain amounts of
time:

Let's first include all the needed headers and declare that we'll use the std and1.
chrono_literals namespaces. The chrono_literals namespace contains
handy abbreviations for creating time-span values:

 #include <iostream>
 #include <chrono>
 #include <thread>

 using namespace std;
 using namespace chrono_literals;

Let's immediately put the main thread to sleep for 5 seconds and 3002.
milliseconds. Thanks to chrono_literals, we can express this in a very
readable format:

 int main()
 {
 cout << "Going to sleep for 5 seconds"
 " and 300 milli seconds.\n";
 this_thread::sleep_for(5s + 300ms);

Parallelism and Concurrency

[407]

The last sleep statement was relative. We can also express absolute sleep3.
requests. Let's sleep until the point in time, which is now plus 3 seconds:

 cout << "Going to sleep for another 3 seconds.\n";
 this_thread::sleep_until(
 chrono::high_resolution_clock::now() + 3s);

Before quitting the program, let's print something else to signal the end of the4.
second sleep period:

 cout << "That's it.\n";
 }

Compiling and running the program yields the following results. Linux, Mac,5.
and other UNIX-like operating systems provide the time command, which
accepts another command in order to execute it and stop the time it takes.
Running our program with time shows that it ran 8.32 seconds, which is
roughly the 5.3 and 3 seconds we let our program sleep. When running the
program, it is possible to count the time between the arrival of the printed lines
on the terminal:

 $ time ./sleep
 Going to sleep for 5 seconds and 300 milli seconds.
 Going to sleep for another 3 seconds.
 That's it.
 real 0m8.320s
 user 0m0.005s
 sys 0m0.003s

How it works...
The sleep_for and sleep_until functions have been added to C++11 and reside in the
std::this_thread namespace. They block the current thread (not the whole process or
program) for a specific amount of time. A thread does not consume CPU time while it is
blocked. It is just put into an inactive state by the operating system. The operating system
does, of course, remind itself of waking the thread up again. The best thing about this is that
we do not need to care which operating system our program runs on because the STL
abstracts this detail away from us.

Parallelism and Concurrency

[408]

The this_thread::sleep_for function accepts a chrono::duration value. In the
simplest case, this is just 1s or 5s + 300ms, just like in our example code. In order to get
such nice literals for time spans, we need to declare using namespace
std::chrono_literals;.

The this_thread::sleep_until function accepts a chrono::time_point instead of a
time span. This is comfortable if we wish to put the thread to sleep until some specific wall
clock time.

The timing for waking up is only as accurate as the operating system allows. This will be
generally accurate enough with most operating systems, but it might become difficult if
some application needs nanosecond-granularity.

Another possibility to put a thread to sleep for a short time is this_thread::yield. It
accepts no arguments, which means that we cannot know for how long the execution of a
thread is placed back. The reason is that this function does not really implement the notion
of sleeping or parking a thread. It just tells the operating system in a cooperative way that it
can reschedule any other thread of any other process. If there are none, then the thread will
be executed again immediately. For this reason, yield is often less useful than just sleeping
for a minimal, but specified, amount of time.

Starting and stopping threads
Another addition that came with C++11 is the std::thread class. It provides a clean and
simple way to start and stop threads, without any need for external libraries or to know
how the operating system implements this. It's all just included in the STL.

In this recipe, we will implement a program that starts and stops threads. There are some
minor details to know what to do with threads once they are started, so we will go through
these too.

Parallelism and Concurrency

[409]

How to do it...
We will start multiple threads and see how our program behaves when we unleash
multiple processor cores to execute parts of its code at the same time:

At first, we need to include only two headers and then we declare that we use the1.
std and chrono_literals namespaces:

 #include <iostream>
 #include <thread>

 using namespace std;
 using namespace chrono_literals;

In order to start a thread, we need to be able to tell what code should be executed2.
by it. So, let's define a function that can be executed. Functions are natural
potential entry points for threads. The example function accepts an argument, i,
which acts as the thread ID. This way we can tell which print line came from
which thread later. Additionally, we use the thread ID to let all threads wait for
different amounts of time, so we can be sure that they do not try to use cout at
exactly the same time. If they did, that would garble the output. Another recipe in
this chapter deals specifically with this problem:

 static void thread_with_param(int i)
 {
 this_thread::sleep_for(1ms * i);
 cout << "Hello from thread " << i << '\n';
 this_thread::sleep_for(1s * i);
 cout << "Bye from thread " << i << '\n';
 }

Parallelism and Concurrency

[410]

In the main function, we can, just out of curiosity, print how many threads can be3.
run at the same time, using std::thread::hardware_concurrency. This
depends on how many cores the machine really has and how many cores are
supported by the STL implementation. This means that this might be a different
number on every other computer:

 int main()
 {
 cout << thread::hardware_concurrency()
 << " concurrent threads are supported.\n";

Let's now finally start threads. With different IDs for each one, we start three4.
threads. When instantiating a thread with an expression such as thread t {f,
x}, this leads to a call of f(x) by the new thread. This ,way we can give the
thread_with_param functions different arguments for each thread:

 thread t1 {thread_with_param, 1};
 thread t2 {thread_with_param, 2};
 thread t3 {thread_with_param, 3};

Since these threads are freely running, we need to stop them again when they are5.
done with their work. We do this using the join function. It will block the calling
thread until the thread we try to join returns:

 t1.join();
 t2.join();

An alternative to joining is detaching. If we do not call join or detach, the whole6.
application will be terminated with a lot of smoke and noise as soon as the
destructor of the thread object is executed. By calling detach, we tell thread
that we really want to let thread number 3 to continue running, even after its
thread instance is destructed:

 t3.detach();

Before quitting the main function and the whole program, we print another7.
message:

 cout << "Threads joined.\n";
 }

Parallelism and Concurrency

[411]

Compiling and running the code shows the following output. We can see that my8.
machine has eight CPU cores. Then, we see the hello messages from all the
threads, but the bye messages only from the two threads we actually joined.
Thread 3 is still in its waiting period of 3 seconds, but the whole program does
already terminate after the second thread has finished waiting for 2 seconds. This
way, we cannot see the bye message from thread 3 because it was simply killed
without any chance for completion (and without noise):

 $./threads
 8 concurrent threads are supported.
 Hello from thread 1
 Hello from thread 2
 Hello from thread 3
 Bye from thread 1
 Bye from thread 2
 Threads joined.

How it works...
Starting and stopping threads is a very simple thing to do. Multiprogramming starts to be
complicated where threads need to work together (sharing resources, waiting for each
other, and so on).

In order to start a thread, we first need some function that will be executed by it. The
function does not need to be special, as a thread could execute practically every function.
Let's pin down a minimal example program that starts a thread and waits for its
completion:

void f(int i) { cout << i << '\n'; }

int main()
{
 thread t {f, 123};
 t.join();
}

The constructor call of std::thread accepts a function pointer or a callable object,
followed by arguments that should be used with the function call. It is, of course, also
possible to start a thread on a function that doesn't accept any parameters.

Parallelism and Concurrency

[412]

If the system has multiple CPU cores, then the threads can run parallel and concurrently.
What is the difference between parallel and concurrent? If the computer has only one CPU
core, then there can be a lot of threads that run in parallel but never concurrently because
one CPU core can only run one thread at a time. The threads are then run in an interleaved
way where every thread is executed for some parts of a second, then paused, and then the
next thread gets a time slice (for human users, this looks like they run at the same time). If
they do not need to share a CPU core, then they can run concurrently, as in really at the same
time.

At this point, we have absolutely no control over the following details:

The order in which the threads are interleaved when sharing a CPU core.
The priority of a thread, or which one is more important than the other.
The fact that threads are really distributed among all the CPU cores or if the
operating system just pins them to the same core. It is indeed possible that all our
threads run on only a single core, although the machine has more than 100 cores.

Most operating systems provide possibilities to control also these facets of
multiprogramming, but such features are, at this point, not included in the STL.

However, we can start and stop threads and tell them when to work on what and when to
pause. That should be enough for a large class of applications. What we did in this section
was we started three additional threads. Afterward, we joined most of them and detached the
last one. Let's summarize in a simple diagram what happened:

Reading the diagram from top to the bottom, it shows one point in time where we split the
program workflow to four threads in total. We started three additional threads that did
something (namely waiting and printing), but after starting the threads, the main thread
executing the main function remained without work.

Parallelism and Concurrency

[413]

Whenever a thread has finished executing the function it was started with, it will return
from this function. The standard library then does some tidy up work that results in the
thread being removed from the operating system's schedule, and maybe in its destruction,
but we do not need to worry about it.

The only thing we need to worry about is joining. When a thread calls function x.join() on
another thread object, it is put to sleep until thread x returns. Note that we are out of luck
if the thread is trapped in an endless loop! If we want a thread to continue living until it
decides to terminate itself, we can call x.detach(). After doing so, we have no external
control over the thread any longer. No matter what we decide--we must always join or
detach threads. If we don't do one of the two, the destructor of the thread object will call
std::terminate(), which leads to an abrupt application shutdown.

The moment when our main function returns, the whole application is, of course,
terminated. However, at the same time, our detached thread, t3, was still sleeping before
printing its bye message to the terminal. The operating system didn't care--it just terminated
our whole program without waiting for that thread to finish. This is something we need to
consider. If that additional thread had to complete something important, we would have to
make the main function wait for it.

Performing exception safe shared locking
with std::unique_lock and std::shared_lock
Since the operation of threads is a heavily operating system support-related thing and the
STL provides good operating system-agnostic interfaces for that, it is also wise to provide
STL support for synchronization between threads. This way, we can not only start and stop
threads without external libraries but also synchronize them with abstractions from a single
unified library: the STL.

In this recipe, we will have a look at STL mutex classes and RAII lock abstractions. While
we play around with some of them in our concrete recipe implementation, we will also get
an overview of more synchronization helpers that the STL provides.

Parallelism and Concurrency

[414]

How to do it...
We are going to write a program that uses an std::shared_mutex instance in its exclusive
and shared modes and to see what that means. Additionally, we do not call the lock and
unlock functions ourselves but do the locking with automatic unlocking using RAII helpers:

First, we need to include all necessary headers. Because we use STL functions and1.
data structures all the time together with time literals, we declare that we use the
std and chrono_literal namespaces:

 #include <iostream>
 #include <shared_mutex>
 #include <thread>
 #include <vector>

 using namespace std;
 using namespace chrono_literals;

The whole program revolves around one shared mutex, so let's define a global2.
instance for the sake of simplicity:

 shared_mutex shared_mut;

We are going to use the std::shared_lock and std::unique_lock RAII3.
helpers. In order to make their names appear less clumsy, we define short type
aliases for them:

 using shrd_lck = shared_lock<shared_mutex>;
 using uniq_lck = unique_lock<shared_mutex>;

Before beginning with the main function, we define two helper functions that4.
both try to lock the mutex in exclusive mode. This function here will instantiate a
unique_lock instance on the shared mutex. The second constructor argument
defer_lock tells the object to keep the lock unlocked. Otherwise, its constructor
would try to lock the mutex and then block until it succeeds. Then we call
try_lock on the exclusive_lock object. This call will return immediately and
its boolean return value tells us if it got the lock or if the mutex was locked
already somewhere else:

 static void print_exclusive()
 {
 uniq_lck l {shared_mut, defer_lock};
 if (l.try_lock()) {
 cout << "Got exclusive lock.\n";
 } else {

Parallelism and Concurrency

[415]

 cout << "Unable to lock exclusively.\n";
 }
 }

The other helper function tries to lock the mutex in exclusive mode, too. It blocks5.
until it gets the lock. Then we simulate some error case by throwing an exception
(which carries just a plain integer number instead of a more complex exception
object). Although this leads to an immediate exit of the context in which we hold
a locked mutex, the mutex will cleanly be released again. That is because the
destructor of unique_lock will release the lock in any case by design:

 static void exclusive_throw()
 {
 uniq_lck l {shared_mut};
 throw 123;
 }

Now to the main function. First, we open up another scope and instantiate a6.
shared_lock instance. Its constructor immediately locks the mutex in shared
mode. We will see what this means in the next steps:

 int main()
 {
 {
 shrd_lck sl1 {shared_mut};
 cout << "shared lock once.\n";

Now we open yet another scope and instantiate a second shared_lock instance7.
on the same mutex. We have two shared_lock instances now, and they both
hold a shared lock on the mutex. In fact, we could instantiate arbitrarily many
shared_lock instances on the same mutex. Then we call print_exclusive,
which tries to lock the mutex in exclusive mode. This will not succeed because it is
locked in shared mode already:

 {
 shrd_lck sl2 {shared_mut};
 cout << "shared lock twice.\n";
 print_exclusive();
 }

Parallelism and Concurrency

[416]

After leaving the latest scope, the destructor of the shared_lock sl2 releases its8.
shared lock on the mutex. The print_exclusive function will again fail because
the mutex is still in shared lock mode:

 cout << "shared lock once again.\n";
 print_exclusive();

 }
 cout << "lock is free.\n";

After leaving also the other scope, all shared_lock objects are destroyed, and9.
the mutex is in unlocked state again. Now we can finally lock the mutex in
exclusive mode. Let's do this by calling exclusive_throw and then
print_exclusive. Remember that we throw an exception in
exclusive_throw. But because unique_lock is an RAII object that gives us
exception safety, the mutex will be unlocked again no matter how we return from
exclusive_throw. This way print_exclusive will not block on an
erroneously still locked mutex:

 try {
 exclusive_throw();
 } catch (int e) {
 cout << "Got exception " << e << '\n';
 }
 print_exclusive();
 }

Compiling and running the code yields the following output. The first two lines10.
show that we got the two shared lock instances. Then the print_exclusive
function fails to lock the mutex in exclusive mode. After leaving the inner scope
and unlocking the second shared lock, the print_exclusive function still fails.
After leaving the other scope too, which finally released the mutex again,
exclusive_throw and print_exclusive are finally able to lock the mutex:

 $./shared_lock
 shared lock once.
 shared lock twice.
 Unable to lock exclusively.
 shared lock once again.
 Unable to lock exclusively.
 lock is free.
 Got exception 123
 Got exclusive lock.

Parallelism and Concurrency

[417]

How it works...
When looking at the C++ documentation, it is at first a little confusing that there are
different mutex classes and RAII lock-helpers. Before looking at our concrete code sample,
let us summarize what the STL has available for us.

Mutex classes
The term mutex stands for mutual exclusion. In order to prevent that concurrently running
threads alter the same object in a non-orchestrated way that might lead to data corruption,
we can use mutex objects. The STL provides different mutex classes with different
specialties. They all have in common that they have a lock and an unlock method.

Whenever a thread is the first one to call lock() on a mutex that was not locked before, it
owns the mutex. At this point, other threads will block on their lock calls, until the first
thread calls unlock again. std::mutex can do exactly this.

There are many different mutex classes in the STL:

Type name Description

mutex Standard mutex with a lock and an unlock method.
Provides an additional nonblocking try_lock method.

timed_mutex Same as mutex, but provides additional try_lock_for and
try_lock_until methods that allow for timing out instead
of blocking forever.

recursive_mutex Same as mutex, but if a thread locked an instance of it
already, it can call lock multiple times on the same mutex
object without blocking. It is released after the owning thread
called unlock as often as it called lock.

recursive_timed_mutex Provides the features of both timed_mutex and
recursive_mutex.

Parallelism and Concurrency

[418]

Type name Description

shared_mutex This mutex is special in that regard, that it can be locked in
exclusive mode and in shared mode. In exclusive mode, it
shows the same behavior as the standard mutex class. If a
thread locks it in shared mode, it is possible for other threads
to lock it in shared mode, too. It will then be unlocked as soon
as the last shared mode lock owner releases it. While a lock is
locked in shared mode, it is not possible to obtain exclusive
ownership. This is very similar to the behavior of
shared_ptr, only that it does not manage memory, but lock
ownership.

shared_timed_mutex Combines the features of shared_mutex and timed_mutex
for both exclusive and shared mode.

Lock classes
Everything is nice and easy as long as threads do just lock a mutex, access some
concurrence protected object and unlock the mutex again. As soon as a forgetful
programmer misses to unlock a mutex somewhere after locking it, or an exception is
thrown while a mutex is still locked, things look ugly pretty quick. In the best case, the
program just hangs immediately and the missing unlock call is identified quickly. Such
bugs, however, are very similar to memory leaks, which also occur when there are missing
explicit delete calls.

When regarding memory management, we have unique_ptr, shared_ptr and weak_ptr.
Those helpers provide very convenient ways to avoid memory leaks. Such helpers exist for
mutexes, too. The simplest one is std::lock_guard. It can be used as follows:

void critical_function()
{
 lock_guard<mutex> l {some_mutex};

 // critical section
}

Parallelism and Concurrency

[419]

lock_guard element's constructor accepts a mutex, on which it calls lock immediately.
The whole constructor call will block until it obtains the lock on the mutex. Upon
destruction, it unlocks the mutex again. This way it is hard to get the lock/unlock cycle
wrong because it happens automatically.

The C++17 STL provides the following different RAII lock-helpers. They all accept a
template argument that shall be of the same type as the mutex (although, since C++17, the
compiler can deduce that type itself):

Name Description

lock_guard This class provides nothing else than a constructor and a destructor, which
lock and unlock a mutex.

scoped_lock Similar to lock_guard, but supports arbitrarily many mutexes in its
constructor. Will release them in opposite order in its destructor.

unique_lock Locks a mutex in exclusive mode. The constructor also accepts arguments
that instruct it to timeout instead of blocking forever on the lock call. It is
also possible to not lock the mutex at all, or to assume that it is locked
already, or to only try locking the mutex. Additional methods allow to lock
and unlock the mutex during the unique_lock lock's lifetime.

shared_lock Same as unique_lock, but all operations are applied on the mutex in
shared mode.

While lock_guard and scoped_lock have dead-simple interfaces that only consist of
constructor and destructor, unique_lock and shared_lock are more complicated, but
also more versatile. We will see in later recipes of this chapter, how else they can be used if
not for plain simple lock regions.

Let's get back to the recipe code now. Although we only ran the code in single thread
context, we have seen how it is meant to use the lock helpers. The shrd_lck type alias
stands for shared_lock<shared_mutex> and allows us to lock an instance multiple times
in shared mode. As long as sl1 and sl2 exist, no print_exclusive call is able to lock the
mutex in exclusive mode. This is still simple.

Parallelism and Concurrency

[420]

Now let's get to the exclusively locking functions that came later in the main function:

int main()
{
 {
 shrd_lck sl1 {shared_mut};
 {
 shrd_lck sl2 {shared_mut};

 print_exclusive();
 }
 print_exclusive();
 }
 try {
 exclusive_throw();
 } catch (int e) {
 cout << "Got exception " << e << '\n';
 }
 print_exclusive();
}

One important detail is that after returning from exclusive_throw, the
print_exclusive function is able to lock the mutex again, although exclusive_throw
did not exit cleanly due to the exception it throws.

Let's have another look at print_exclusive because it used a strange constructor call:

void print_exclusive()
{
 uniq_lck l {shared_mut, defer_lock};

 if (l.try_lock()) {
 // ...
 }
}

We did not only provide shared_mut but also defer_lock as constructor arguments for
unique_lock in this procedure. defer_lock is an empty global object that can be used to
select a different constructor of unique_lock that simply does not lock the mutex. By
doing so, we are able to call l.try_lock() later, which does not block. In case the mutex is
locked already, we can do something else. If it was indeed possible to get the lock, we still
have the destructor tidying up after us.

Parallelism and Concurrency

[421]

Avoiding deadlocks with std::scoped_lock
If deadlocks had occurred in road traffic, they would have looked like the following
situation:

In order to get the traffic flow going again, we either need a large crane that randomly picks
one car from the center of the street intersection and removes it. If that is not possible, then
we need enough drivers to be cooperative. The deadlock can be solved by all drivers in one
direction driving several meters backwards, making space for the other drivers to continue.

In multithreaded programs, such situations, of course, need to be avoided strictly by the
programmer. It is however too easy to fail in that regard when the program is really
complex.

In this recipe, we are going to write code which intentionally provokes a deadlock situation.
Then we will see how to write code that acquires the same resources that led the other code
into a deadlock, but use the new STL lock class std::scoped_lock that came with C++17,
in order to avoid this mistake.

Parallelism and Concurrency

[422]

How to do it...
The code of this section contains two pairs of functions that ought to be executed by
concurrent threads, and that acquire two resources in form of mutexes. One pair provokes a
deadlock and the other avoids it. In the main function, we are going to try them out:

Let's first include all needed headers and declare that we use namespace std and1.
chrono_literals:

 #include <iostream>
 #include <thread>
 #include <mutex>

 using namespace std;
 using namespace chrono_literals;

Then we instantiate two mutex objects which we need in order to run into a2.
deadlock:

 mutex mut_a;
 mutex mut_b;

In order to provoke a deadlock with two resources, we need two functions. One3.
function tries to lock mutex A and then mutex B, while the other function will do
that in the opposite order. By letting both functions sleep a bit between the locks,
we can make sure that this code blocks forever on a deadlock. (This is for
demonstration purposes. A program without some sleep lines might run
successfully without a deadlock sometimes if we start it repeatedly.)
Note that we do not use the '\n' character in order to print a line break, but we
use endl. endl does not only perform a line break but also flushes the stream
buffer of cout, so we can be sure that prints are not bunched up and postponed:

 static void deadlock_func_1()
 {
 cout << "bad f1 acquiring mutex A..." << endl;
 lock_guard<mutex> la {mut_a};
 this_thread::sleep_for(100ms);
 cout << "bad f1 acquiring mutex B..." << endl;
 lock_guard<mutex> lb {mut_b};
 cout << "bad f1 got both mutexes." << endl;
 }

Parallelism and Concurrency

[423]

As promised in the last step, deadlock_func_2 looks exactly same as4.
deadlock_func_1, but it locks mutex A and B in the opposite order:

 static void deadlock_func_2()
 {
 cout << "bad f2 acquiring mutex B..." << endl;
 lock_guard<mutex> lb {mut_b};
 this_thread::sleep_for(100ms);
 cout << "bad f2 acquiring mutex A..." << endl;
 lock_guard<mutex> la {mut_a};
 cout << "bad f2 got both mutexes." << endl;
 }

Now we write a deadlock-free variant of those two functions we just5.
implemented. They use the class scoped_lock, which locks all mutexes we
provide as constructor arguments. Its destructor unlocks them again. While
locking the mutexes, it internally applies a deadlock avoidance strategy for us.
Note that both functions still use mutex A and B in opposite order:

 static void sane_func_1()
 {
 scoped_lock l {mut_a, mut_b};
 cout << "sane f1 got both mutexes." << endl;
 }
 static void sane_func_2()
 {
 scoped_lock l {mut_b, mut_a};
 cout << "sane f2 got both mutexes." << endl;
 }

Parallelism and Concurrency

[424]

In the main function, we will go through two scenarios. First, we use the sane6.
functions in multithreaded context:

 int main()
 {
 {
 thread t1 {sane_func_1};
 thread t2 {sane_func_2};
 t1.join();
 t2.join();
 }

Then we use the deadlock-provoking functions that do not utilize any deadlock7.
avoidance strategy:

 {
 thread t1 {deadlock_func_1};
 thread t2 {deadlock_func_2};
 t1.join();
 t2.join();
 }
 }

Compiling and running the program yields the following output. The first two8.
lines show that the sane locking function scenario works and both functions
return without blocking forever. The other two functions run into a deadlock. We
can tell that this is a deadlock because we see the print lines that tell that the
individual threads try to lock mutexes A and B and then wait forever. Both do not
reach the point where they successfully locked both mutexes. We can let this
program run for hours, days, and years, and nothing will happen.
This application needs to be killed from outside, for example by pressing the keys
Ctrl + C:

 $./avoid_deadlock
 sane f1 got both mutexes
 sane f2 got both mutexes
 bad f2 acquiring mutex B...
 bad f1 acquiring mutex A...
 bad f1 acquiring mutex B...
 bad f2 acquiring mutex A...

Parallelism and Concurrency

[425]

How it works...
By implementing code that willfully causes a deadlock, we've seen how quick such an
unwanted scenario can happen. In a large project, where multiple programmers write code
that needs to share a common set of mutex-protected resources, all programmers need to
comply with the same order when locking and unlocking mutexes. While such strategies or
rules are really easy to follow, they are also easy to forget. Another term for this problem is
lock order inversion.

scoped_lock is a real help in such situations. It came with C++17 and works the same way
as lock_guard and unique_lock work: its constructor performs the locking, and its
destructor the unlocking of a mutex. scoped_lock's specialty is that it can do this with
multiple mutexes.

scoped_lock uses the std::lock function, which applies a special algorithm that
performs a series of try_lock calls on all the mutexes provided, in order to prevent
deadlocking. Therefore it is perfectly safe to use scoped_lock or call std::lock on the
same set of locks, but in different orders.

Synchronizing concurrent std::cout use
One inconvenience in multithreaded programs is that we must practically secure every data
structure they modify, with mutexes or other measures that protect from uncontrolled
concurrent modification.

One data structure that is typically used very often for printing is std::cout. If multiple
threads access cout concurrently, then the output will appear in interesting mixed patterns
on the terminal. In order to prevent this, we would need to write our own function that
prints in a concurrency-safe fashion.

We are going to learn how to provide a cout wrapper that consists of minimal code itself
and that is as comfortable to use as cout.

Parallelism and Concurrency

[426]

How to do it...
In this section, we are going to implement a program that prints to the terminal
concurrently from many threads. In order to prevent garbling of the messages due to
concurrency, we implement a little helper class that synchronizes printing between threads:

As always, the includes come first:1.

 #include <iostream>
 #include <thread>
 #include <mutex>
 #include <sstream>
 #include <vector>

 using namespace std;

Then we implement our helper class, which we call pcout. The p stands for2.
parallel because it works in a synchronized way for parallel contexts. The idea is
that pcout publicly inherits from stringstream. This way we can use
operator<< on instances of it. As soon as a pcout instance is destroyed, its
destructor locks a mutex and then prints the content of the stringstream buffer.
We will see how to use it in the next step:

 struct pcout : public stringstream {
 static inline mutex cout_mutex;
 ~pcout() {
 lock_guard<mutex> l {cout_mutex};
 cout << rdbuf();
 cout.flush();
 }
 };

Now let's write two functions that can be executed by additional threads. Both3.
accept a thread ID as arguments. Then, their only difference is that the first one
simply uses cout for printing. The other one looks nearly identical, but instead of
using cout directly, it instantiates pcout. This instance is a temporary object that
lives only exactly for this line of code. After all operator<< calls have been
executed, the internal string stream is filled with what we want to print. Then
pcout instance's destructor is called. We have seen what the destructor does: it
locks a specific mutex all pcout instances share along and prints:

 static void print_cout(int id)
 {
 cout << "cout hello from " << id << '\n';
 }

Parallelism and Concurrency

[427]

 static void print_pcout(int id)
 {
 pcout{} << "pcout hello from " << id << '\n';
 }

Let's try it out. First, we are going to use print_cout, which just uses cout for4.
printing. We start 10 threads which concurrently print their strings and wait until
they finish:

 int main()
 {
 vector<thread> v;
 for (size_t i {0}; i < 10; ++i) {
 v.emplace_back(print_cout, i);
 }
 for (auto &t : v) { t.join(); }

Then we do the same thing with the print_pcout function:5.

 cout << "=====================\n";
 v.clear();
 for (size_t i {0}; i < 10; ++i) {
 v.emplace_back(print_pcout, i);
 }
 for (auto &t : v) { t.join(); }
 }

Compiling and running the program yields the following result. As we see, the6.
first 10 prints are completely garbled. This is how it can look like when cout is
used concurrently without locking. The last 10 lines of the program are the
print_pcout lines which do not show any signs of garbling. We can see that
they are printed from different threads because their order appears randomized
every time when we run the program again:

Parallelism and Concurrency

[428]

How it works...
Ok, we've built this "cout wrapper" that automatically serializes concurrent printing
attempts. How does it work?

Let's do the same steps our pcout helper does in a manual manner without any magic.
First, it instantiates a string stream and accepts the input we feed into it:

stringstream ss;
ss << "This is some printed line " << 123 << '\n';

Then it locks a globally available mutex:

{
 lock_guard<mutex> l {cout_mutex};

In this locked scope, it accesses the content of string stream ss, prints it, and releases the
mutex again by leaving the scope. The cout.flush() line tells the stream object to print to
the terminal immediately. Without this line, a program might run faster because multiple
printed lines can be bunched up and printed in a single run later. In our recipes, we will like
to see all output lines immediately, so we use the flush method:

 cout << ss.rdbuf();
 cout.flush();
}

Parallelism and Concurrency

[429]

Ok, this is simple enough but tedious to write if we have to to the same thing again and
again. We can shorten down the stringstream instantiation as follows:

stringstream{} << "This is some printed line " << 123 << '\n';

This instantiates a string stream object, feeds everything we want to print into it and then
destructs it again. The lifetime of the string stream is reduced to just this line. Afterward, we
cannot print it any longer, because we cannot access it. Which code is the last that is able to
access the stream's content? It is the destructor of stringstream.

We cannot modify stringstream instance's member methods, but we can extend them by
wrapping our own type around it via inheritance:

struct pcout : public stringstream {
 ~pcout() {
 lock_guard<mutex> l {cout_mutex};
 cout << rdbuf();
 cout.flush();
 }
};

This class is still a string stream and we can use it like any other string stream. The only
difference is that it will lock a mutex and print its own buffer using cout.

We also moved the cout_mutex object into struct pcout as a static instance so we have
both bundled in one place.

Safely postponing initialization with
std::call_once
Sometimes we have specific code sections that can be run in parallel context by multiple
threads with the obligation that some setup code must be executed exactly once before
executing the actual functions. A simple solution is to just execute the existing setup
function before the program enters a state from which parallel code can be executed from
time to time.

Parallelism and Concurrency

[430]

The drawbacks of such an approach are the following ones:

If the parallel function comes from a library, the user must not forget to call the
setup function. That does not make the library easier to use.
If the setup function is expensive in some way, and it might not even need to be
executed in case the parallel functions that need this setup are not even always
used, then we need code that decides when/if to run it.

In this recipe, we will have a look at std::call_once, which is a helper function that
solves this problem for us in a simple to use and elegant implicit way.

How to do it...
We are going to write a program that starts multiple threads with exactly the same code.
Although they are programmed to execute exactly the same code, our example setup
function will only be called once:

First, we need to include all the necessary headers:1.

 #include <iostream>
 #include <thread>
 #include <mutex>
 #include <vector>

 using namespace std;

We are going to use std::call_once later. In order to use it, we need an2.
instance of once_flag somewhere. It is needed for the synchronization of all
threads that use call_once on a specific function:

 once_flag callflag;

The function which must be only executed once is the following one. It just prints3.
a single exclamation mark:

 static void once_print()
 {
 cout << '!';
 }

Parallelism and Concurrency

[431]

All threads will execute the print function. The first thing we do is calling the4.
function once_print through the function std::call_once. call_once needs
the variable callflag we defined before. It will use it to orchestrate the threads:

 static void print(size_t x)
 {
 std::call_once(callflag, once_print);
 cout << x;
 }

Ok, let's now start 10 threads which all use the print function:5.

 int main()
 {
 vector<thread> v;
 for (size_t i {0}; i < 10; ++i) {
 v.emplace_back(print, i);
 }
 for (auto &t : v) { t.join(); }
 cout << '\n';
 }

Compiling and running yields the following output. First, we see the exclamation6.
mark from the once_print function. Then we see all thread IDs. call_once did
not only make sure that once_print was only called once. Additionally, it
synchronized all threads, so that no ID is printed before once_print was
executed:

 $./call_once
 !1239406758

How it works...
std:call_once works like a barrier. It maintains access to a function (or a callable object).
The first thread to reach it gets to execute the function. Until it has finished, any other
thread that reaches the call_once line is blocked. After the first thread returns from the
function, all other threads are released, too.

Parallelism and Concurrency

[432]

In order to organize this little choreography, a variable is needed from which the other
threads can determine if they must wait and when they are released again. This is what our
variable once_flag callflag; is for. Every call_once line also needs a once_flag
instance as the argument prepending the function that shall be called only once.

Another nice detail is: If it happens, that the thread which is selected to execute the function
in call_once fails because some exception is thrown, then the next thread is allowed to
execute the function again. This happens in the hope that it will not throw an exception the
next time.

Pushing the execution of tasks into the
background using std::async
Whenever we want some code to be executed in the background, we can simply start a new
thread that executes this code. While this happens, we can do something else and then wait
for the result. It's simple:

std::thread t {my_function, arg1, arg2, ...};
// do something else
t.join(); // wait for thread to finish

But then the inconvenience starts: t.join() does not give us the return value of
my_function. In order to get at that, we need to write a function that calls my_function
and stores its return value in some variable that is also accessible for the first thread in
which we started the new thread. If such situations occur repeatedly, then this represents
quite a bunch of boilerplate code we have to write again and again.

Since C++11, we have std::async which can do exactly this job for us and not only that. In
this recipe, we are going to write a simple program that does multiple things at the same
time using asynchronous function calls. As std::async is a bit more powerful than that
alone, we will have a closer look at its different facets.

Parallelism and Concurrency

[433]

How to do it...
We are going to implement a program that does multiple different things concurrently but
instead of explicitly starting threads, we use std::async and std::future:

First, we include all necessary headers and declare that we use the std1.
namespace:

 #include <iostream>
 #include <iomanip>
 #include <map>
 #include <string>
 #include <algorithm>
 #include <iterator>
 #include <future>

 using namespace std;

We implement three functions which have nothing to do with parallelism but do2.
interesting tasks. The first function accepts a string and creates a histogram of all
characters occurring within that string:

 static map<char, size_t> histogram(const string &s)
 {
 map<char, size_t> m;
 for (char c : s) { m[c] += 1; }
 return m;
 }

The second function does also accept a string and returns a sorted copy of it:3.

 static string sorted(string s)
 {
 sort(begin(s), end(s));
 return s;
 }

Parallelism and Concurrency

[434]

The third one counts how many vowels exist within the string it accepts:4.

 static bool is_vowel(char c)
 {
 char vowels[] {"aeiou"};
 return end(vowels) !=
 find(begin(vowels), end(vowels), c);
 }
 static size_t vowels(const string &s)
 {
 return count_if(begin(s), end(s), is_vowel);
 }

In the main function, we read the whole standard input into a string. In order to5.
not segment the input into words, we deactivate ios::skipws. This way we get
one large string, no matter how much white space the input contains. We use
pop_back on the resulting string afterward because we got one string
terminating '\0' character too much this way:

 int main()
 {
 cin.unsetf(ios::skipws);
 string input {istream_iterator<char>{cin}, {}};
 input.pop_back();

Now let's get the return values from all the functions we implemented before. In6.
order to speed the execution up for very long input, we launch them
asynchronously. The std::async function accepts a policy, a function, and
arguments for that function. We call histogram, sorted, and vowels with
launch::async as a policy (we will see later what that means). All functions get
the same input string as arguments:

 auto hist (async(launch::async,
 histogram, input));
 auto sorted_str (async(launch::async,
 sorted, input));
 auto vowel_count (async(launch::async,
 vowels, input));

Parallelism and Concurrency

[435]

The async calls return immediately because they do not actually execute our7.
functions. Instead, they set up synchronization structures which will obtain the
results of the function calls later. The results are now being calculated
concurrently by additional threads. In the meantime, we are free to do whatever
we want, as we can pick up those values later. The return values hist,
sorted_str and vowel_count are of the types the functions histogram,
sorted, and vowels return, but they were wrapped in a future type by
std::async. Objects of this type express that they will contain their values at
some point in time. By using .get() on all of them, we can make the main
function block until the values arrive, and then use them for printing:

 for (const auto &[c, count] : hist.get()) {
 cout << c << ": " << count << '\n';
 }
 cout << "Sorted string: "
 << quoted(sorted_str.get()) << '\n'
 << "Total vowels: "
 << vowel_count.get() << '\n';
 }

Compiling and running the code looks like the following. We use a short example8.
string that does not really make it worth being parallelized, but for the sake of
this example, the code is nevertheless executed concurrently. Additionally, the
overall structure of the program did not change much compared to a naive
sequential version of it:

 $ echo "foo bar baz foobazinga" | ./async
 : 3
 a: 4
 b: 3
 f: 2
 g: 1
 i: 1
 n: 1
 o: 4
 r: 1
 z: 2
 Sorted string: " aaaabbbffginoooorzz"
 Total vowels: 9

Parallelism and Concurrency

[436]

How it works...
If we would not have used std::async the serial unparallelized code could have looked as
simple as that:

auto hist (histogram(input));
auto sorted_str (sorted(input));
auto vowel_count (vowels(input));

for (const auto &[c, count] : hist) {
 cout << c << ": " << count << '\n';
}
cout << "Sorted string: " << quoted(sorted_str) << '\n';
cout << "Total vowels: " << vowel_count << '\n';

The only thing we did in order to parallelize the code was the following. We wrapped the
three function calls into async(launch::async, ...) calls. This way these three
functions are not executed by the main thread we are currently running in. Instead, async
starts new threads and lets them execute the functions concurrently. This way we get to
execute only the overhead of starting another thread and can continue with the next line of
code, while all the work happens in the background:

auto hist (async(launch::async, histogram, input));
auto sorted_str (async(launch::async, sorted, input));
auto vowel_count (async(launch::async, vowels, input));

for (const auto &[c, count] : hist.get()) {
 cout << c << ": " << count << '\n';
}
cout << "Sorted string: "
 << quoted(sorted_str.get()) << '\n'
 << "Total vowels: "
 << vowel_count.get() << '\n';

While histogram for example, returns us a map instance, async(..., histogram, ...)
does return us a map that was wrapped in a future object before. This future object is
kind of an empty placeholder until the thread that executes the histogram function returns.
The resulting map is then placed into the future object so we can finally access it. The get
function then gives us access to the encapsulated result.

Let's have a look at another minimal example. Consider the following code snippet:

auto x (f(1, 2, 3));
cout << x;

Parallelism and Concurrency

[437]

Instead of writing the preceding code, we can also do the following:

auto x (async(launch::async, f, 1, 2, 3));
cout << x.get();

That's basically it. Executing tasks in the background might have never been easier in
standard C++. There is still one thing left to resolve: What does launch::async mean?
launch::async is a flag that defines the launch policy. There are two policy flags which
allow for three constellations:

Policy choice Meaning

launch::async The function is guaranteed to be executed by another
thread.

launch::deferred The function is executed by the same thread, but later (lazy
evaluation). Execution then happens when get or wait is
called on the future. If none of both happens, the function is
not called at all.

launch::async |
launch::deferred

Having both flags set, the STL's async implementation is
free to choose which policy shall be followed. This is the
default choice if no policy is provided.

By just calling async(f, 1, 2, 3) without a policy argument, we
automatically select both policies. The implementation of async is then
free to choose which policy to employ. This means that we cannot be sure
that another thread is started at all, or if the execution is just deferred in
the current thread.

There's more...
There is indeed one last thing we should know about. Suppose, we write code as follows:

async(launch::async, f);
async(launch::async, g);

This might have the motivation of executing functions f and g (we do not care about their
return values in this example) in concurrent threads and then doing different things at the
same time. While running such code, we will notice that the code blocks on this calls, which
is most probably not what we want.

Parallelism and Concurrency

[438]

So why does it block? Isn't async all about nonblocking asynchronous calls? Yes it is, but
there is one special peculiarity: if a future was obtained from an async call with the
launch::async policy, then its destructor performs a blocking wait.

This means that both the async calls from this short example are blocking because the
lifetime of the futures they return ends in the same line! We can fix this by capturing their
return values in variables with a longer lifetime.

Implementing the producer/consumer idiom
with std::condition_variable
In this recipe, we are going to implement a typical producer/consumer program with
multiple threads. The general idea is that there is one thread that produces items and puts
them into a queue. Then there is another thread that consumes such items. If there is
nothing to produce, the producer thread sleeps. If there is no item in the queue to consume,
the consumer sleeps.

Since the queue that both threads have access to is also modified by both whenever an item
is produced or consumed, it needs to be protected by a mutex.

Another thing to consider is: What does the consumer do if there is no item in the queue?
Does it poll the queue every second until it sees new items? That is not necessary because
we can let the consumer wait for wakeup events that are triggered by the producer,
whenever there are new items.

C++11 provides a nice data structure called std::condition_variable for this kind of
events. In this recipe, we are going to implement a simple producer/consumer app that
takes advantage of this.

How to do it...
We are going to implement a simple producer/consumer program which runs a single
producer of values in its own thread, as well as a single consumer thread in another thread:

First, we need to perform all the needed includes:1.

 #include <iostream>
 #include <queue>
 #include <tuple>
 #include <condition_variable>

Parallelism and Concurrency

[439]

 #include <thread>

 using namespace std;
 using namespace chrono_literals;

We instantiate a queue of simple numeric values and call it q. The producer will2.
push values into it, and the consumer will take values out of it. In order to
synchronize both, we need a mutex. In addition to that, we instantiate a
condition_variable cv. The variable finished will be the producer's way to
tell the consumer that no more values will follow:

 queue<size_t> q;
 mutex mut;
 condition_variable cv;
 bool finished {false};

Let's first implement the producer function. It accepts an argument items which3.
limits the maximum number of items for production. In a simple loop, it will
sleep 100 milliseconds for every item, which simulates some computational
complexity. Then we lock the mutex that synchronizes access to the queue. After
successful production and insertion to the queue, we call cv.notify_all().
This function wakes the consumer up. We will see later at the consumer side how
this works:

 static void producer(size_t items) {
 for (size_t i {0}; i < items; ++i) {
 this_thread::sleep_for(100ms);
 {
 lock_guard<mutex> lk {mut};
 q.push(i);
 }
 cv.notify_all();
 }

After having produced all items, we lock the mutex again because we are going4.
to change to set the finished bit. Then we call cv.notify_all() again:

 {
 lock_guard<mutex> lk {mut};
 finished = true;
 }
 cv.notify_all();
 }

Parallelism and Concurrency

[440]

Now we can implement the consumer function. It takes no arguments because it5.
will blindly consume until the queue runs empty. In a loop that is executed as
long as finished is not set, it will first lock the mutex that protects both the
queue and the finished flag. As soon as it has the lock, it calls cv.wait with the
lock and a lambda expression as arguments. The lambda expression is a predicate
that tells if the producer thread is still alive and if there is anything to consume in
the queue:

 static void consumer() {
 while (!finished) {
 unique_lock<mutex> l {mut};
 cv.wait(l, [] { return !q.empty() || finished; });

The cv.wait call unlocks the lock and waits until the condition described by the6.
predicate function holds. Then, it locks the mutex again and consumes everything
from the queue until it appears empty. If the producer is still alive, it will iterate
through the loop again. Otherwise, it will terminate because finished is set,
which is the producer's way to signal that there are no further items being
produced:

 while (!q.empty()) {
 cout << "Got " << q.front()
 << " from queue.\n";
 q.pop();
 }
 }
 }

In the main function, we start a producer thread which produces 10 items, and a7.
consumer thread. Then we wait until their completion and terminate the
program:

 int main() {
 thread t1 {producer, 10};
 thread t2 {consumer};
 t1.join();
 t2.join();
 cout << "finished!\n";
 }

Parallelism and Concurrency

[441]

Compiling and running the program yields the following output. When the8.
program is executed, we can see that there is some time (100 milliseconds)
between each line, because the production of items takes some time:

 $./producer_consumer
 Got 0 from queue.
 Got 1 from queue.
 Got 2 from queue.
 Got 3 from queue.
 Got 4 from queue.
 Got 5 from queue.
 Got 6 from queue.
 Got 7 from queue.
 Got 8 from queue.
 Got 9 from queue.
 finished!

How it works...
In this recipe, we simply started two threads. The first thread produces items and puts them
into a queue. The other takes items out of the queue. Whenever one of those threads touches
the queue in any way, it locks the common mutex mut which is accessible for both. This
way we made sure that it cannot happen that both threads manipulate the queue's state at
the same time.

Apart from the queue and the mutex, we declared generally four variables that were
involved in the producer-consumer thing:

queue<size_t> q;
mutex mut;
condition_variable cv;
bool finished {false};

The variable finished is easy to explain. It was set to true when the producer finished
producing its fixed amount of items. When the consumer sees that this variable is true, it
consumes the last items in the queue and stops consuming. But what is the
condition_variable cv for? We used cv in two different contexts. One of the contexts
was waiting for a specific condition, and the other was signaling that condition.

Parallelism and Concurrency

[442]

The consumer side that waits for a specific condition looks like this. The consumer thread
loops over a block that first locks mutex mut in a unique_lock. Then it calls cv.wait:

while (!finished) {
 unique_lock<mutex> l {mut};

 cv.wait(l, [] { return !q.empty() || finished; });

 while (!q.empty()) {
 // consume
 }
}

This code is somewhat equivalent to the following alternative code. We will elaborate soon
why it is not really the same:

while (!finished) {
 unique_lock<mutex> l {mut};

 while (q.empty() && !finished) {
 l.unlock();
 l.lock();
 }

 while (!q.empty()) {
 // consume
 }
}

This means that we generally first acquire the lock and then check what scenario we have:

Are there items to consume? Then keep the lock, consume, release the lock, and1.
start over.
Else, if there are no consumable items but the producer is still alive, release the2.
mutex to give the producer a chance of adding items to the queue. Then, try to
lock it again in hope that the situation changes and we get to see situation 1.

The real reason why the cv.wait line is not equivalent to the while (q.empty() && ...
) construct is, that we cannot simply loop over a l.unlock(); l.lock(); cycle. If the
producer thread is inactive for some time, then this would lead to continuous locking and
unlocking of the mutex, which makes no sense because it needlessly burns CPU cycles.

Parallelism and Concurrency

[443]

An expression like cv.wait(lock, predicate) will wait until predicate() returns
true. But it does not do this by continuously unlocking and locking lock. In order to wake
a thread up that blocks on the wait call of a condition_variable object, another thread
has to call the notify_one() or notify_all() method on the same object. Only then the
waiting thread(s) is/are kicked out of their sleep in order to check if predicate() holds.

The nice thing about the wait call checking the predicate is that if there is a spurious
wakeup call, the thread will go to sleep immediately again. This means that it does not
really harm the program flow (but maybe the performance) if we have too many notify
calls.

On the producer side, we just called cv.notify_all() after the producer inserted an item
to the queue and after it produced its last item and set the finished flag to true. This was
enough to direct the consumer.

Implementing the multiple
producers/consumers idiom with
std::condition_variable
Let's pick up the producer/consumer problem from the last recipe and make it a bit more
complicated: We make multiple producers produce items and multiple consumers consume
them. In addition to that, we define that the queue shall not exceed a maximum size.

This way not only the consumers have to sleep from time to time if there are no items in the
queue, but also the producers have to sleep from time to time when there are enough items
in the queue.

We are going to see how to solve this problem with multiple std::condition_variable
objects and will also use them in slightly different ways than in the last recipe.

Parallelism and Concurrency

[444]

How to do it...
In this section, we are going to implement a program just like in the recipe before, but this
time with multiple producers and multiple consumers:

First, we need to include all needed headers and we declare that we use1.
namespace std and chrono_literals:

 #include <iostream>
 #include <iomanip>
 #include <sstream>
 #include <vector>
 #include <queue>
 #include <thread>
 #include <mutex>
 #include <condition_variable>
 #include <chrono>

 using namespace std;
 using namespace chrono_literals;

Then we implement the synchronized printing helper from the other recipe in2.
this chapter because we are going to do a lot of concurrent printing:

 struct pcout : public stringstream {
 static inline mutex cout_mutex;
 ~pcout() {
 lock_guard<mutex> l {cout_mutex};
 cout << rdbuf();
 }
 };

All producers write values into the same queue and all consumers will also take3.
values out of this queue. In addition to that queue, we need a mutex that protects
both the queue and a flag that can tell if the production was stopped at some
point:

 queue<size_t> q;
 mutex q_mutex;
 bool production_stopped {false};

Parallelism and Concurrency

[445]

We are going to employ two different condition_variables in this program.4.
In the single producer/consumer recipe, we had a condition_variable telling
that there are new items in the queue. In this case, we make it a bit more
complicated. We want the producers to produce until the queue contains a
certain stock amount of items. If that stock amount is reached, they shall sleep. This
way the go_consume variable can be used to wake up consumers which then, in
turn, can wake up the producers with the go_produce variable again:

 condition_variable go_produce;
 condition_variable go_consume;

The producer function accepts a producer ID number, a total number of items to5.
produce and a stock limit as arguments. It then enters its own production loop.
There, it first locks the queue's mutex and unlocks it again in the
go_produce.wait call. It waits for the condition that the queue size is below the
stock threshold:

 static void producer(size_t id, size_t items, size_t stock)
 {
 for (size_t i = 0; i < items; ++i) {
 unique_lock<mutex> lock(q_mutex);
 go_produce.wait(lock,
 [&] { return q.size() < stock; });

After the producer was woken up, it produces an item and pushes it into the6.
queue. The queue value is calculated from the expression id * 100 + i. This
way we can later see which producer produced it because the hundreds in the
number are the producer ID. We also print the production event to the terminal.
The format of the printing may look strange, but it will align nicely with the
consumer output in the terminal later:

 q.push(id * 100 + i);
 pcout{} << " Producer " << id << " --> item "
 << setw(3) << q.back() << '\n';

Parallelism and Concurrency

[446]

After production, we can wake up sleeping consumers. A sleeping period of 907.
milliseconds simulates that producing items takes some time:

 go_consume.notify_all();
 this_thread::sleep_for(90ms);
 }
 pcout{} << "EXIT: Producer " << id << '\n';
 }

Now to the consumer function that only accepts a consumer ID as an argument. It8.
shall continue waiting for items if the production has not stopped, or the queue is
not empty. If the queue is empty, but the production has not stopped, then it is
possible that there might be new items soon:

 static void consumer(size_t id)
 {
 while (!production_stopped || !q.empty()) {
 unique_lock<mutex> lock(q_mutex);

After locking the queue mutex, we unlock it again in order to wait on the9.
go_consume event variable. The lambda expression argument describes that we
want to return from the wait call when the queue contains items. The second
argument 1s tells that we do not want to wait forever. If it takes longer than 1
second, we want to drop out of the wait function. We can distinguish if the
wait_for function returned because the predicate condition holds, or if we
dropped out of it because of a timeout because it will return false in case of the
timeout. If there are new items in the queue, we consume them and print this
event to the terminal:

 if (go_consume.wait_for(lock, 1s,
 [] { return !q.empty(); })) {
 pcout{} << " item "
 << setw(3) << q.front()
 << " --> Consumer "
 << id << '\n';
 q.pop();

Parallelism and Concurrency

[447]

After item consumption, we notify the producers and sleep for 130 milliseconds10.
to simulate that consuming items is also time-consuming:

 go_produce.notify_all();
 this_thread::sleep_for(130ms);
 }
 }
 pcout{} << "EXIT: Producer " << id << '\n';
 }

In the main function, we instantiate a vector for worker threads and another for11.
consumer threads:

 int main()
 {
 vector<thread> workers;
 vector<thread> consumers;

Then we spawn three producer threads and five consumer threads:12.

 for (size_t i = 0; i < 3; ++i) {
 workers.emplace_back(producer, i, 15, 5);
 }
 for (size_t i = 0; i < 5; ++i) {
 consumers.emplace_back(consumer, i);
 }

We first let the producer threads finish. As soon as all of them have returned, we13.
set the production_stopped flag, which will lead the consumers to finish, too.
We need to collect those and then we can quit the program:

 for (auto &t : workers) { t.join(); }
 production_stopped = true;
 for (auto &t : consumers) { t.join(); }
 }

Parallelism and Concurrency

[448]

Compiling and running the program leads to the following output. The output is14.
very long, which is why it is truncated here. We can see that the producers go to
sleep from time to time, and let the consumers eat up some items until they
finally produce again. It is interesting to alter the wait times for
producers/consumers, as well as manipulating the number of
producers/consumers and stock items because this completely changes the
output patterns:

 $./multi_producer_consumer
 Producer 0 --> item 0
 Producer 1 --> item 100
 item 0 --> Consumer 0
 Producer 2 --> item 200
 item 100 --> Consumer 1
 item 200 --> Consumer 2
 Producer 0 --> item 1
 Producer 1 --> item 101
 item 1 --> Consumer 0
 ...
 Producer 0 --> item 14
 EXIT: Producer 0
 Producer 1 --> item 114
 EXIT: Producer 1
 item 14 --> Consumer 0
 Producer 2 --> item 214
 EXIT: Producer 2
 item 114 --> Consumer 1
 item 214 --> Consumer 2
 EXIT: Consumer 2
 EXIT: Consumer 3
 EXIT: Consumer 4
 EXIT: Consumer 0
 EXIT: Consumer 1

How it works...
This recipe is an extension of the preceding recipe. Instead of synchronizing only one
producer with one consumer, we implemented a program that synchronizes M producers
with N consumers. On top of that, not only the consumers go to sleep if there are no items
for them left, but also the producers go to sleep as soon as the item queue becomes too long.

Parallelism and Concurrency

[449]

When multiple consumers wait for the same queue to fill up, then this would generally also
work with the consumer code from the one producer/one consumer scenario. As long as
only one thread locks the mutex that protects the queue and then takes items out of it, the
code is safe. It does not matter how many threads are waiting for the lock at the same time.
The same applies to the producers, as in both scenarios the only important thing is that the
queue is never accessed by more than one thread at a time.

So what makes this program really more complex than just running the one producer/one
consumer example with more threads is the fact that we make the producer threads stop as
soon as the item queue length reached a certain threshold. In order to meet that
requirement, we implemented two different signals with their own condition_variable:

The go_produce signals the event that the queue is not completely filled to the1.
maximum and the producers may fill it up again.
The go_consume signals the event that the queue reached its maximum length2.
and consumers are free to consume items again.

This way producers fill items into the queue and signal the go_consume event to the
consuming threads, which wait on the following line:

if (go_consume.wait_for(lock, 1s, [] { return !q.empty(); })) {
 // got the event without timeout
}

The producers, on the other hand, wait on the following line until they are allowed to
produce again:

go_produce.wait(lock, [&] { return q.size() < stock; });

One interesting detail is that we do not let consumers wait forever. In the
go_consume.wait_for call, we additionally added a timeout argument of 1 second. This
is the exit mechanism for consumers: if the queue is empty for longer than a second, maybe
there are no active producers any longer.

For the sake of simplicity, the code tries to keep the queue length always at the maximum. A
more sophisticated program could let the consumer threads push a wake-up notification,
only if the queue has only half the size of its maximum length. This way producers would be
woken up before the queue runs empty again, but not unnecessarily earlier when there are
still enough items in the queue.

Parallelism and Concurrency

[450]

One situation that condition_variable solves elegantly for us is the following: If a
consumer fires the go_produce notification, there might be a horde of producers racing to
produce the next item. If only one item is missing, then there will only be one producer
producing it. If all producers would always produce an item as soon as the go_produce
event is fired, we would often see the case that the queue is filled above its allowed
maximum.

Let's imagine the situation that we have (max - 1) items in the queue and want one new
item produced so that the queue is filled up again. No matter if a consumer thread calls
go_produce.notify_one() (which would wake up only one waiting thread) or
go_produce.notify_all() (which wakes up all waiting threads), we have the guarantee
that only one producer thread will exit the go_produce.wait call, because, for all other
producer threads, the q.size() < stock wait condition doesn't hold any longer as soon
as they get the mutex after being woken up.

Parallelizing the ASCII Mandelbrot renderer
using std::async
Remember the ASCII Mandelbrot renderer from Chapter 6, Advanced Use of STL algorithms? In
this recipe, we will make it use threads in order to speed its calculation time a bit up.

First, we will modify the line in the original program that limits the number of iterations for
every selected coordinate. This will make the program slower and its results more accurate
than we can actually display on the terminal, but then we have a nice example target for
parallelization.

Then, we will apply minor modifications to the program and see how the whole program
runs faster. After those modifications, the program runs with std::async and
std::future. In order to fully understand this recipe, it is crucial to understand the
original program.

Parallelism and Concurrency

[451]

How to do it...
In this section, we take the ASCII Mandelbrot fractal renderer that we implemented in
Chapter 6, Advanced Use of STL Algorithms. First, we are going to make the calculation take
much more time by incrementing the calculation limit. Then we get some speedup by doing
only four little changes to the program in order to parallelize it:

In order to follow the steps, it is best to just copy the whole program from the1.
other recipe. Then follow the instructions in the following steps in order to do all
needed adjustments. All differences from the original program are highlighted in
bold.
The first change is an additional header, <future>:

 #include <iostream>
 #include <algorithm>
 #include <iterator>
 #include <complex>
 #include <numeric>
 #include <vector>
 #include <future>

 using namespace std;

The scaler and scaled_cmplx functions don't need any change:2.

 using cmplx = complex<double>;
 static auto scaler(int min_from, int max_from,
 double min_to, double max_to)
 {
 const int w_from {max_from - min_from};
 const double w_to {max_to - min_to};
 const int mid_from {(max_from - min_from) / 2 + min_from};
 const double mid_to {(max_to - min_to) / 2.0 + min_to};
 return [=] (int from) {
 return double(from - mid_from) / w_from * w_to + mid_to;
 };
 }
 template <typename A, typename B>

Parallelism and Concurrency

[452]

 static auto scaled_cmplx(A scaler_x, B scaler_y)
 {
 return [=](int x, int y) {
 return cmplx{scaler_x(x), scaler_y(y)};
 };
 }

In the function mandelbrot_iterations, we are just going to increment the3.
number of iterations in order to make the program a bit more computation-
heavy:

 static auto mandelbrot_iterations(cmplx c)
 {
 cmplx z {};
 size_t iterations {0};
 const size_t max_iterations {100000};
 while (abs(z) < 2 && iterations < max_iterations) {
 ++iterations;
 z = pow(z, 2) + c;
 }
 return iterations;
 }

Then we have a part of the main function that does not need any change again:4.

 int main()
 {
 const size_t w {100};
 const size_t h {40};
 auto scale (scaled_cmplx(
 scaler(0, w, -2.0, 1.0),
 scaler(0, h, -1.0, 1.0)
));
 auto i_to_xy ([=](int x) {
 return scale(x % w, x / w);
 });

In the to_iteration_count function, we do not call5.
mandelbrot_iterations(x_to_xy(x)) directly any longer, but make the call
asynchronous using std::async:

 auto to_iteration_count ([=](int x) {
 return async(launch::async,
 mandelbrot_iterations, i_to_xy(x));
 });

Parallelism and Concurrency

[453]

Before the last change, the function to_iteration_count returned us the6.
number of iterations a specific coordinate needs for the Mandelbrot algorithm to
converge. Now it returns a future variable that will contain the same value later
because it is computed asynchronously. Because of this, we need a vector that
holds all the future values, so let's just add one. The output iterator we provide
transform as the third argument must be the begin iterator of the new output
vector r:

 vector<int> v (w * h);
 vector<future<size_t>> r (w * h);
 iota(begin(v), end(v), 0);
 transform(begin(v), end(v), begin(r),
 to_iteration_count);

The accumulate call which did all the printing for us doesn't get size_t values7.
as its second argument any longer, but future<size_t> values. We need to
adapt it to this type (if we had used auto& as its type from the beginning then
this would not even be necessary), and then we need to call x.get() where we
just accessed x before, in order to wait for the value to arrive:

 auto binfunc ([w, n{0}] (auto output_it, future<size_t> &x)
 mutable {
 ++output_it = (x.get() > 50 ? '' : ' ');
 if (++n % w == 0) { ++output_it = '\n'; }
 return output_it;
 });
 accumulate(begin(r), end(r),
 ostream_iterator<char>{cout}, binfunc);
 }

Compiling and running gives us the same output as before. The only interesting8.
difference is the execution speed. If we increase the number of iterations for the
original version of the program, too, then the parallelized version should
compute faster. On my computer with four CPU cores with hyperthreading
(which results in 8 virtual cores), I get different results with GCC and clang. The
best speedup is 5.3, and the worst is 3.8. The results will also vary across
machines, of course.

Parallelism and Concurrency

[454]

How it works...
It is crucial to understand the whole program first because then it is clear that all the CPU-
intense work happens in one line of code in the main function:

transform(begin(v), end(v), begin(r), to_iteration_count);

The vector v contains all the indices that are mapped to complex coordinates, which are
then in turn iterated over with the Mandelbrot algorithm. The result of each iteration is
saved in vector r.

In the original program, this is the single line which consumes all the processing time for
calculating the fractal image. All code that precedes it is just set up work and all code that
follows it is just for printing. This means that parallelizing this line is key to more
performance.

One possible approach to parallelizing this is to break up the whole linear range from
begin(v) to end(v) into chunks of the same size and distribute them evenly across all
cores. This way all cores would share the amount of work. If we used the parallel version of
std::transform with a parallel execution policy, this would exactly be the case.
Unfortunately, this is not the right strategy for this problem, because every single point in
the Mandelbrot set shows a very individual number of iterations.

Our approach here is to make every single vector item which represents an individually
printed character cell on the terminal later an asynchronously calculated future value. As
source and target vector are w * h items large, which means 100 * 40 in our case, we
have a vector of 4000 future values that are calculated asynchronously. If our system had
4000 CPU cores, then this would mean that we start 4000 threads that do the Mandelbrot
iteration really concurrently. On a normal system with fewer cores, the CPUs will just
process one asynchronous item after the other per core.

While the transform call with the asynchronized version of to_iteration_count itself
does no calculation but setting up of threads and future objects, it returns practically
immediately. The original version of the program blocked at this point because the
iterations took so long.

The parallelized version of the program does of course block somewhere, too. The function
that prints all our values on the terminal must access the results from within the futures. In
order to do that, it calls x.get() on all the values. And this is the trick: while it waits for
the first value to be printed, a lot of other values are calculated at the same time. So if the
get() call of the first future returns, the next future might be ready for printing already
too!

Parallelism and Concurrency

[455]

In case w * h results in much larger numbers, there will be some measurable overhead in
creating and synchronizing all these futures. In this case, the overhead is not too significant.
On my laptop with an Intel i7 processor with 4 hyperthreading capable cores (which results
in eight virtual cores), the parallel version of this program ran more than 3-5 times faster
compared to the original program. The ideal parallelization would make it indeed 8 times
faster. Of course, this speedup will vary between different computers, because it depends
on a lot of factors.

Implementing a tiny automatic parallelization
library with std::future
Most complex tasks can be broken down into subtasks. From all subtasks, we can draw an
directed acyclic graph (DAG) that describes which subtask depends on what other
subtasks in order to finish the higher level task. Let us, for example, imagine that we want
to produce the string "foo bar foo bar this that ", and we can only do this by
creating single words and concatenate those with other words, or with themselves. Let's say
this functionality is provided by three primitive functions create, concat, and twice.

Taking this into account, we can draw the following DAG that visualizes the dependencies
between them in order to get the final result:

Parallelism and Concurrency

[456]

When implementing this in code, it is clear that everything can be implemented in a serial
manner on one CPU core. Alternatively, all subtasks that depend on no other subtasks or
other subtasks that already have been finished, can be executed concurrently on multiple
CPU cores.

It might perhaps seem tedious to write such code, even with std::async because the
dependencies between the subtasks need to be modeled. In this recipe, we will implement
two little library helper functions that help to transform the normal functions create,
concat, and twice to functions that work asynchronously. With those, we will find a really
elegant way to set up the dependency graph. During execution, the graph will parallelize
itself in a seemingly intelligent way in order to calculate the result as fast as possible.

How to do it...
In this section, we are going to implement some functions that simulate computation-
intensive tasks that depend on each other, and let them run as parallel as possible:

Let's first include all the necessary headers:1.

 #include <iostream>
 #include <iomanip>
 #include <thread>
 #include <string>
 #include <sstream>
 #include <future>

 using namespace std;
 using namespace chrono_literals;

We need to synchronize concurrent access to cout, so let's use the2.
synchronization helper from the other recipe in this chapter:

 struct pcout : public stringstream {
 static inline mutex cout_mutex;
 ~pcout() {
 lock_guard<mutex> l {cout_mutex};
 cout << rdbuf();
 cout.flush();
 }
 };

Parallelism and Concurrency

[457]

Now let's implement three functions which transform strings. The first function3.
shall create an std::string object from a C-string. We let it sleep for 3 seconds
to simulate that string creation is computation-heavy:

 static string create(const char *s)
 {
 pcout{} << "3s CREATE " << quoted(s) << '\n';
 this_thread::sleep_for(3s);
 return {s};
 }

The next function accepts two string objects as arguments and returns their4.
concatenation. We give it 5-second wait time to simulate that this is a time-
consuming task:

 static string concat(const string &a, const string &b)
 {
 pcout{} << "5s CONCAT "
 << quoted(a) << " "
 << quoted(b) << '\n';
 this_thread::sleep_for(5s);
 return a + b;
 }

The last computation-heavy function accepts a string and concatenates it with5.
itself. It shall take 3 seconds to do this:

 static string twice(const string &s)
 {
 pcout{} << "3s TWICE " << quoted(s) << '\n';
 this_thread::sleep_for(3s);
 return s + s;
 }

We could now already use those functions in a serial program, but we want to get6.
some elegant automatic parallelization. So let's implement some helpers for this.
Attention please, the following three functions look really complicated.
asynchronize accepts a function f and returns a callable object that captures it.
We can call this callable object with any number of arguments, and then it will
capture those together with f in another callable object which it returns to us.
This last callable object can be called without arguments. It does then call f
asynchronously with all the arguments it captures:

 template <typename F>
 static auto asynchronize(F f)

Parallelism and Concurrency

[458]

 {
 return [f](auto ... xs) {
 return [=] () {
 return async(launch::async, f, xs...);
 };
 };
 }

The next function will be used by the function we declare in the next step7.
afterward. It accepts a function f, and captures it in a callable object that it
returns. That object can be called with a number of future objects. It will then call
.get() on all the futures, apply f to them and return its result:

 template <typename F>
 static auto fut_unwrap(F f)
 {
 return [f](auto ... xs) {
 return f(xs.get()...);
 };
 }

The last helper function does also accept a function f. It returns a callable object8.
that captures f. That callable object can be called with any number of callable
objects as arguments, which it returns captured together with f in another
callable object. That final callable object can then be called without arguments. It
does then call all the callable objects that are captured in the xs... pack. These
return futures which need to be unwrapped with fut_unwrap. The future-
unwrapping and actual application of the real function f on the real values from
the futures does again happen asynchronously using std::async:

 template <typename F>
 static auto async_adapter(F f)
 {
 return [f](auto ... xs) {
 return [=] () {
 return async(launch::async,
 fut_unwrap(f), xs()...);
 };
 };
 }

Parallelism and Concurrency

[459]

Ok, that was maybe kind of a crazy ride that was slightly reminiscent of the9.
movie "Inception" because of the lambda expressions that return lambda
expressions. We will have a very detailed look at this voodoo-code later. Now
let's take the functions create, concat, and twice and make them
asynchronous. The function async_adapter makes a completely normal
function wait for future arguments and return a future result. It is kind of a
translating wrapper from the synchronous to the asynchronous world. We apply
it to concat and twice. We must use asynchronize on create because it shall
return a future, but we will feed it with real values instead of futures. The task
dependency chain must begin with create calls:

 int main()
 {
 auto pcreate (asynchronize(create));
 auto pconcat (async_adapter(concat));
 auto ptwice (async_adapter(twice));

Now we have automatically parallelizing functions that have the same names as10.
the original synchronous ones, but with a p-prefix. Let us now set up a complex
example dependency tree. First, we create the strings "foo " and "bar ", which
we immediately concatenate to "foo bar ". This string is then concatenated
with itself using twice. Then we create the strings "this " and "that ", which
we concatenate to "this that ". Finally, we concatenate the results to "foo
bar foo bar this that ". The result shall be saved in the variable callable.
Then finally call callable().get() in order to start the computation and wait
for its return value, in order to also print that. No computation is done before we
call callable(), and after this call, all the magic starts:

 auto result (
 pconcat(
 ptwice(
 pconcat(
 pcreate("foo "),
 pcreate("bar "))),
 pconcat(
 pcreate("this "),
 pcreate("that "))));
 cout << "Setup done. Nothing executed yet.\n";
 cout << result().get() << '\n';
 }

Parallelism and Concurrency

[460]

Compiling and running the program shows that all the create calls are11.
performed at the same time, and then the other calls are performed. It looks as if
they were scheduled intelligently. The whole program runs for 16 seconds. If the
steps were not performed in parallel, it would take 30 seconds to complete. Note
that we need a system with at least four CPU cores to be able to perform all
create calls at the same time. If the system had fewer CPU cores, then some calls
would have to share CPUs which would of course then consume more time:

 $./chains
 Setup done. Nothing executed yet.
 3s CREATE "foo "
 3s CREATE "bar "
 3s CREATE "this "
 3s CREATE "that "
 5s CONCAT "this " "that "
 5s CONCAT "foo " "bar "
 3s TWICE "foo bar "
 5s CONCAT "foo bar foo bar " "this that "
 foo bar foo bar this that

How it works...
A plain serial version of this program without any async and future magic would look
like the following:

int main()
{
 string result {
 concat(
 twice(
 concat(
 create("foo "),
 create("bar "))),
 concat(
 create("this "),
 create("that "))) };

 cout << result << '\n';
}

In this recipe, we wrote the helper functions async_adapter and asynchronize that
helped us create new functions from create, concat, and twice. We called those new
asynchronous functions pcreate, pconcat, and ptwice.

Parallelism and Concurrency

[461]

Let us first ignore the complexity of the implementation of async_adapter and
asynchronize, in order to first have a look what this got us.

The serial version looks similar to this code:

string result {concat(...)};
cout << result << '\n';

The parallelized version looks similar to the following:

auto result (pconcat(...));
cout << result().get() << '\n';

Okay, now we get at the complicated part. The type of the parallelized result is not string,
but a callable object that returns a future<string> on which we can call get(). This
might indeed look crazy at first.

So, how and why did we exactly end up with callable objects that return futures? The
problem with our create, concat, and twice methods is, that they are slow. (okay, we
made them artificially slow, because we tried to model real life tasks that consume a lot of
CPU time). But we identified that the dependency tree which describes the data flow has
independent parts that could be executed in parallel. Let's have a look at two example
schedules:

Parallelism and Concurrency

[462]

On the left side, we see a single core schedule. All the function calls have to be done one after
each other because we have only a single CPU. That means, that when create costs 3
seconds, concat costs 5 seconds and twice costs 3 seconds, it will take 30 seconds to get
the end result.

On the right side, we see a parallel schedule where as much is done in parallel as the
dependencies between the function calls allow. In an ideal world with four cores, we can
create all substrings at the same time, then concatenate them and so on. The minimal time to
get the result with an optimal parallel schedule is 16 seconds. We cannot go faster if we
cannot make the function calls themselves faster. With just four CPU cores we can achieve
this execution time. We measurably achieved the optimal schedule. How did it work?

We could naively write the following code:

auto a (async(launch::async, create, "foo "));
auto b (async(launch::async, create, "bar "));
auto c (async(launch::async, create, "this "));
auto d (async(launch::async, create, "that "));
auto e (async(launch::async, concat, a.get(), b.get()));
auto f (async(launch::async, concat, c.get(), d.get()));
auto g (async(launch::async, twice, e.get()));
auto h (async(launch::async, concat, g.get(), f.get()));

This is a good start for a, b, c, and d, which represent the four substrings to begin with.
These are created asynchronously in the background. Unfortunately, this code blocks on the
line where we initialize e. In order to concatenate a and b, we need to call get() on both of
them, which blocks until these values are ready. Obviously, this is not a good idea, because
the parallelization stops being parallel on the first get() call. We need a better strategy.

Okay, so let us roll out the complicated helper functions we wrote. The first one is
asynchronize:

template <typename F>
static auto asynchronize(F f)
{
 return [f](auto ... xs) {
 return [=] () {
 return async(launch::async, f, xs...);
 };
 };
}

Parallelism and Concurrency

[463]

When we have a function int f(int, int) then we can do the following:

auto f2 (asynchronize(f));
auto f3 (f2(1, 2));
auto f4 (f3());
int result { f4.get() };

f2 is our asynchronous version of f. It can be called with the same arguments like f,
because it mimics f. Then it returns a callable object, which we save in f3. f3 now captures
f and the arguments 1, 2, but it did not call anything yet. This is just about the capturing.

When we call f3() now, then we finally get a future, because f3() does the
async(launch::async, f, 1, 2); call! In that sense, the semantic meaning of f3 is
"Take the captured function and the arguments, and throw them together into std::async.".

The inner lambda expression that does not accept any arguments gives us an indirection.
With it, we can set up work for parallel dispatch but do not have to call anything that
blocks, yet. We follow the same principle in the much more complicated function
async_adapter:

template <typename F>
static auto async_adapter(F f)
{
 return [f](auto ... xs) {
 return [=] () {
 return async(launch::async, fut_unwrap(f), xs()...);
 };
 };
}

This function does also first return a function that mimics f because it accepts the same
arguments. Then that function returns a callable object that again accepts no arguments.
And then that callable object finally differs from the other helper function.

Parallelism and Concurrency

[464]

What does the async(launch::async, fut_unwrap(f), xs()...); line mean? The
xs()... part means, that all arguments that are saved in pack xs are assumed to be
callable objects (like the ones we are creating all the time!), and so they are all called without
arguments. Those callable objects that we are producing all the time themselves produce
future values, on which we can call get(). This is where fut_unwrap comes into play:

template <typename F>
static auto fut_unwrap(F f)
{
 return [f](auto ... xs) {
 return f(xs.get()...);
 };
}

fut_unwrap just transforms a function f into a function object that accepts a range of
arguments. This function object does then call .get() on all of them and then finally
forwards them to f.

Take your time to digest all of this. When we used this in our main function, then the auto
result (pconcat(...)); call chain did just construct a large callable object that contains
all functions and all arguments. No async call was done at this point yet. Then, when we
called result(), we unleashed a little avalanche of async and .get() calls that come just in
the right order to not block each other. In fact, no get() call happens before not all async
calls have been dispatched.

In the end, we can finally call .get() on the future value that result() returned, and
there we have our final string.

10
Filesystem

In this chapter, we will cover the following recipes:

Implementing a path normalizer
Getting canonical file paths from relative paths
Listing all files in directories
Implementing a grep-like text search tool
Implementing an automatic file renamer
Implementing a disk usage counter
Calculating statistics about file types
Implementing a tool that reduces folder size by substituting duplicates with
symlinks

Introduction
Working with filesystem paths is always tedious if we don't have a library that helps us
because there are many conditions that we need to handle.

Some paths are absolute, some are relative, and maybe they are not even straightforward
because they also contain . (current directory) and .. (parent directory) indirections. Then,
at the same time, different operating systems use the slash / to separate directories (Linux,
MacOS, and different UNIX derivatives), or the backslash \ (Windows). And of course there
are different types of files.

Filesystem

[466]

Since every other program that handles filesystem-related things needs such functionality,
it is great to have the new filesystem library in the C++17 STL. The best thing about it is that
it works the same way for different operating systems, so we don't have to write different
code for versions of our programs that support different operating systems.

In this chapter, we will first see how the path class works, because it is most central to
anything else in this library. Then, we will see how powerful but yet simple to use
directory_iterator and recursive_directory_iterator classes are, while we do
useful things with files. In the end, we will use some small and simple example tools that do
some real-life tasks related to the filesystem. From this point, it will be easy to build more
complex tools.

Implementing a path normalizer
We start this chapter with a very simple example around the std::filesystem::path
class and a helper function that intelligently normalizes filesystem paths.

The result of this recipe is a little application that takes any filesystem path and returns us
the same path in normalized form. Normalized means that we get an absolute path that
contains no . or .. path indirections.

While implementing that, we will also see what details we need to pay attention to when
working with this basic part of the filesystem library.

How to do it...
In this section, we will implement a program that just accepts a filesystem path as a
command-line argument and then prints it in normalized form.

Includes come first, and then we declare that we use namespace std and1.
filesystem.

 #include <iostream>
 #include <filesystem>

 using namespace std;
 using namespace filesystem;

Filesystem

[467]

In the main function, we check whether the user provided a command-line2.
argument. If that is not the case, we error out and print how to use the program.
If a path was provided, we instantiate a filesystem::path object from it.

 int main(int argc, char *argv[])
 {
 if (argc != 2) {
 cout << "Usage: " << argv[0] << " <path>\n";
 return 1;
 }
 const path dir {argv[1]};

Since we can instantiate path objects from any string, we cannot be sure if the3.
path really exists on the filesystem of the computer. In order to do that, we can
use the filesystem::exists function. If it doesn't, we simply error out again.

 if (!exists(dir)) {
 cout << "Path " << dir << " does not exist.\n";
 return 1;
 }

Okay, at this point, we are pretty sure that the user provided some existing path4.
knowing that we can ask for a normalized version of it, which we then print.
filesystem::canonical returns us another path object. We could print it
directly, but the path type overload of the << operator surrounds paths with
quotation marks. In order to avoid that, we can print a path through its
.c_str() or .string() method.

 cout << canonical(dir).c_str() << '\n';
 }

Let's compile the program and play with it. When we execute it in my home5.
directory on the relative path "src", it will print the full absolute path.

 $./normalizer src
 /Users/tfc/src

Filesystem

[468]

When we run the program in my home directory again, but give it a quirky6.
relative path description that first enters my Desktop folder, then steps out of it
again using .., then enters the Documents folder and steps out again in order to
finally enter the src directory, the program prints the same path as before!

 $./normalizer Desktop/../Documents/../src
 /Users/tfc/src

How it works...
As a starter on std::filesystem, this recipe is still fairly short and straightforward. We
initialized a path object from a string that contains a filesystem path description. The
std::filesystem::path class plays a very central role whenever we use the filesystem
library because most of the functions and classes relate to it.

Using the filesystem::exists function, we were able to check if the path really exists.
Up to that point, we could not be sure about that, because it is indeed possible to create
path objects that do not relate to an existing filesystem object. exists just accepts a path
instance and returns true if it really exists. The function is already able to determine itself if
we gave it an absolute or a relative path, which makes it very comfortable to use.

Finally, we used filesystem::canonical on the directory in order to print it in
normalized form.

path canonical(const path& p, const path& base = current_path());

canonical accepts a path and as an optional second argument, it accepts another path. The
second path base is prepended to path p if p is a relative path. After doing that, canonical
tries to remove any . and .. path indirections.

While printing, we used the .c_str() method on the canonicalized path. The reason for
this is that the overload of operator<< for output streams surrounds paths with quotation
marks, which we may not always want.

There's more...
canonical throws a filesystem_error type exception if the path we want to
canonicalize does not exist. In order to prevent that, we checked our filesystem path with
exists. But was that check really sufficient to avoid getting unhandled exceptions? No.

Filesystem

[469]

Both exists and canonical can throw bad_alloc exceptions. If those hit us, one could
argue that the program is doomed anyway. A far more critical, and also much more
probable problem would occur if, between us checking if the file exists and canonicalizing
it, someone else renames or deletes the underlying file! In that case, canonical would
throw a filesystem_error, although we checked for the file's existence before.

Most filesystem functions have an additional overload that takes the same arguments, but
also an std::error_code reference.

path canonical(const path& p, const path& base = current_path());
path canonical(const path& p, error_code& ec);
path canonical(const std::filesystem::path& p,
 const std::filesystem::path& base,
 std::error_code& ec);

This way we can choose if we surround our filesystem function calls with try-catch
constructs or check the errors manually. Note that this only changes the behavior of
filesystem-related errors! With and without the ec parameter, more fundamental exceptions,
for example, bad_alloc, can still be thrown if the system runs out of memory.

Getting canonical file paths from relative
paths
In the last recipe, we already canonicalized/normalized paths. The filesystem::path
class is, of course, capable of more things than just holding and checking paths. It also helps
us in composing paths from strings easily, and also to decompose them again.

At this point, path does already abstract operating system details away from us, but there
are also certain instances where we still need to keep such details in mind.

We will see how to deal with paths and their composition/decomposition by playing
around with absolute and relative paths.

Filesystem

[470]

How to do it...
In this section, we will play around with absolute and relative paths in order to see the
strengths of the path class and the helper functions around it.

First, we include all the necessary headers and declare that we use namespace1.
std and sfilesystem.

 #include <iostream>
 #include <filesystem>

 using namespace std;
 using namespace filesystem;

Then, we declare an example path. At this point, it is not important that the text2.
file it refers to really exists. There are some functions, however, that throw
exceptions if the underlying file does not exist.

 int main()
 {
 path p {"testdir/foobar.txt"};

We will have a look at four different filesystem library functions now.3.
current_path returns us the path the program is currently executed in, the
working directory. absolute accepts a relative path like our path p and returns the
absolute, nonambiguous path in the whole filesystem. system_complete does
practically the same as absolute on Linux, MacOS, or UNIX-like operating
systems. On Windows, we would get the absolute path additionally prepended
by the disk volume letter (for example, "C:"). canonical does again the same as
absolute does, but then additionally removes any "." (short for "this directory")
or ".." (short for "one directory up") indirections. We will play with such
indirections in the following steps:

 cout << "current_path : " << current_path()
 << "\nabsolute_path : " << absolute(p)
 << "\nsystem_complete : " << system_complete(p)
 << "\ncanonical(p) : " << canonical(p)
 << '\n';

Another nice thing about the path class is that it overloads the / operator. This4.
way we can concatenate folder names and filenames using / and compose paths
from that. Let's try it out and print a composed path.

 cout << path{"testdir"} / "foobar.txt" << '\n';

Filesystem

[471]

Let's play with canonical and composed paths. By giving canonical a relative5.
path such as "foobar.txt" and a composed absolute path current_path() /
"testdir", it should return us the existing absolute path. In another call, we
give it our path p (which is "testdir/foobar.txt") and provide it an absolute
path that is current_path(), which directs us into "testdir" and up again.
This should be the same as current_path(), because of the indirection. In both
calls, canonical should return us the same absolute path.

 cout << "canonical testdir : "
 << canonical("foobar.txt",
 current_path() / "testdir")
 << "\ncanonical testdir 2 : "
 << canonical(p, current_path() / "testdir/..")
 << '\n';

We can also test for the equivalence of two paths that are not canonical.6.
equivalence canonicalizes the paths, which it accepts as arguments and returns
true if they describe the same path after all. For this test, the path must really
exist, otherwise, it throws an exception.

 cout << "equivalence: "
 << equivalent("testdir/foobar.txt",
 "testdir/../testdir/foobar.txt")
 << '\n';
 }

Compiling and running the program yields the following output.7.
current_path() returns the home folder on my laptop because I executed the
application from there. Our relative path p has been prepended with this
directory by absolute_path, system_complete, and canonical. We see that
absolute_path and system_complete yield exactly the same path on my
system because it is a Mac (it would be the same on Linux). On a Windows
machine, system_complete would have prepended "C:", or whatever drive the
working directory is located in.

 $./canonical_filepath
 current_path : "/Users/tfc"
 absolute_path : "/Users/tfc/testdir/foobar.txt"
 system_complete : "/Users/tfc/testdir/foobar.txt"
 canonical(p) : "/Users/tfc/testdir/foobar.txt"
 "testdir/foobar.txt"
 canonical testdir : "/Users/tfc/testdir/foobar.txt"
 canonical testdir 2 : "/Users/tfc/testdir/foobar.txt"
 equivalence: 1

Filesystem

[472]

We do not handle any exceptions in our short program. If we remove the8.
foobar.txt file in the testdir directory, then the program aborts its execution
due to an exception. The canonical function requires the path to exist. There is
also a weakly_canonical function that does not come with this requirement.

 $./canonial_filepath
 current_path : "/Users/tfc"
 absolute_path : "/Users/tfc/testdir/foobar.txt"
 system_complete : "/Users/tfc/testdir/foobar.txt"
 terminate called after throwing an instance of
 'std::filesystem::v1::__cxx11::filesystem_error'
 what(): filesystem error: cannot canonicalize:
 No such file or directory [testdir/foobar.txt] [/Users/tfc]

How it works...
The goal of this recipe is to see how easy it is to compose new paths on the fly. This is
mainly because the path class has a handy overload for the / operator. In addition to that,
the filesystem functions get along well with relative and absolute paths, as well as with
paths that contain . and .. indirections.

There is quite a jungle of functions that return parts of a path instance, with or without
transformations. We are not going to list all functions there are here because a short glance
into the C++ reference is the best way to get an oversight.

The member functions of the path class, however, might be worth a closer look. Let's see
which part of a path is returned by what member function of path. The following diagram
also shows how Windows paths are slightly different from UNIX/Linux paths.

Filesystem

[473]

You can see that the diagram shows what the member functions of path return for an
absolute path. For relative paths, root_path, root_name, and root_directory are empty.
relative_path then just returns the path if it is relative already.

Listing all files in directories
Of course, every operating system that offers filesystem support also comes with some kind
of utility that does just list all files within a directory in the filesystem. The simplest
examples are the ls command on Linux, MacOS, and other UNIX-related operating
systems. In DOS and Windows, there is the dir command. Both list all files in a directory
and provide supplemental information such as file size, permissions, and so on.

Reimplementing such a tool is, however, also a nice standard task to get going with
directory and file traversal. So, let's just do that!

Our own ls/dir utility will be able to list all items in a directory by name, indicate what
kind of items there are, list their access permission flags, and display the number of bytes
they occupy on the filesystem.

How to do it...
In this section, we will implement a little tool that lists all files in any user provided
directory. It will not only list the filenames, but also their type, size, and access permissions.

First, we need to include some headers and declare that we use the namespaces1.
std and filesystem by default.

 #include <iostream>
 #include <sstream>
 #include <iomanip>
 #include <numeric>
 #include <algorithm>
 #include <vector>
 #include <filesystem>

 using namespace std;
 using namespace filesystem;

Filesystem

[474]

One helper function that we are going to need is file_info. It accepts a2.
directory_entry object reference and extracts the path from it, as well as a
file_status object (using the status function), which contains file type and
permission information. Finally, it also extracts the size of the entry if it is a
regular file. For directories or other special files, we plainly return a size of 0. All
this information is bundled into a tuple.

 static tuple<path, file_status, size_t>
 file_info(const directory_entry &entry)
 {
 const auto fs (status(entry));
 return {entry.path(),
 fs,
 is_regular_file(fs) ? file_size(entry.path()) : 0u};
 }

Another helper function that we will need is type_char. A path cannot only3.
represent directories and simple text/binary files. Operating systems provide a
variety of other types that abstract something else, such as hardware device
interfaces in the form of so-called character/block files. The STL filesystem library
provides a lot of predicate functions for them. This way we can return the letter
'd' for directories, the letter 'f' for regular files, and so on.

 static char type_char(file_status fs)
 {
 if (is_directory(fs)) { return 'd'; }
 else if (is_symlink(fs)) { return 'l'; }
 else if (is_character_file(fs)) { return 'c'; }
 else if (is_block_file(fs)) { return 'b'; }
 else if (is_fifo(fs)) { return 'p'; }
 else if (is_socket(fs)) { return 's'; }
 else if (is_other(fs)) { return 'o'; }
 else if (is_regular_file(fs)) { return 'f'; }
 return '?';
 }

Filesystem

[475]

Yet another helper we will need is the rwx function. It accepts a perms variable4.
(which is just an enum class type from the filesystem library) and returns a string
such as "rwxrwxrwx" that describes the file's permission settings. The first group
of "rwx" characters describes the read, write, and execution permissions for the
owner of the file. The next group describes the same rights for all users that are
part of the user group the file belongs to. The last character group describes which
rights everyone else has for accessing the file. A string such as "rwxrwxrwx"
means that everyone can access the object in any way. "rw-r--r--" means that
only the owner can read and modify the file, while anyone else can only read it.
We just compose a string from such read/write/execute character values,
permission bit by permission bit. A lambda expression helps us with the
repetitive work of checking if the perms variable p contains a specific owner bit
and then returns '-' or the right character.

 static string rwx(perms p)
 {
 auto check ([p](perms bit, char c) {
 return (p & bit) == perms::none ? '-' : c;
 });
 return {check(perms::owner_read, 'r'),
 check(perms::owner_write, 'w'),
 check(perms::owner_exec, 'x'),
 check(perms::group_read, 'r'),
 check(perms::group_write, 'w'),
 check(perms::group_exec, 'x'),
 check(perms::others_read, 'r'),
 check(perms::others_write, 'w'),
 check(perms::others_exec, 'x')};
 }

Filesystem

[476]

Finally, the last helper function accepts an integral file size and converts it to a5.
better to read form. We just ignore the period while dividing numbers down and
floor them to the nearest kilo, mega, or giga boundary.

 static string size_string(size_t size)
 {
 stringstream ss;
 if (size >= 1000000000) {
 ss << (size / 1000000000) << 'G';
 } else if (size >= 1000000) {
 ss << (size / 1000000) << 'M';
 } else if (size >= 1000) {
 ss << (size / 1000) << 'K';
 } else { ss << size << 'B'; }
 return ss.str();
 }

Now we can finally implement the main function. We begin with checking if the6.
user provided a path in the command line. If he didn't, we just take the current
directory ".". Then, we check if the directory exists. If it doesn't, we can't possibly
list any files.

 int main(int argc, char *argv[])
 {
 path dir {argc > 1 ? argv[1] : "."};
 if (!exists(dir)) {
 cout << "Path " << dir << " does not exist.\n";
 return 1;
 }

Now, we will fill a vector with file information tuples just like our first helper7.
function file_info returns from directory_entry objects. We instantiate a
directory_iterator and give its constructor the path object, which we
created in the last step. While iterating with the directory iterator, we transform
the directory_entry objects to file information tuples and insert them into the
vector.

 vector<tuple<path, file_status, size_t>> items;
 transform(directory_iterator{dir}, {},
 back_inserter(items), file_info);

Filesystem

[477]

Now we have all information saved in the vector items and can simply print it8.
using all the helper functions we wrote.

 for (const auto &[path, status, size] : items) {
 cout << type_char(status)
 << rwx(status.permissions()) << " "
 << setw(4) << right << size_string(size)
 << " " << path.filename().c_str()
 << '\n';
 }
 }

Compiling and running the project with a file path in the offline version of the9.
C++ documentation yields the following output. We see that the folder only
contains directories and plain files because there are only 'd' and 'f' entries as
first characters of all output lines. These files have different access permissions,
and of course different sizes. Note that the files appear in alphabetical order of
their names, but we cannot really rely on that because alphabetic ordering is not
required by the C++17 standard.

 $./list ~/Documents/cpp_reference/en/cpp
 drwxrwxr-x 0B algorithm
 frw-r--r-- 88K algorithm.html
 drwxrwxr-x 0B atomic
 frw-r--r-- 35K atomic.html
 drwxrwxr-x 0B chrono
 frw-r--r-- 34K chrono.html
 frw-r--r-- 21K comment.html
 frw-r--r-- 21K comments.html
 frw-r--r-- 220K compiler_support.html
 drwxrwxr-x 0B concept
 frw-r--r-- 67K concept.html
 drwxr-xr-x 0B container
 frw-r--r-- 285K container.html
 drwxrwxr-x 0B error
 frw-r--r-- 52K error.html

How it works...
In this recipe, we iterated over files, and for every file, we checked its status and size. While
all our per-file operations are fairly straightforward and simple, our actual directory
traversal looked a bit magic.

Filesystem

[478]

In order to traverse our directory, we just instantiated a directory_iterator and then
iterated over it. Traversing a directory is fantastically simple with the filesystem library.

for (const directory_entry &e : directory_iterator{dir}) {
 // do something
}

There is not much more to say about this class apart from the following things:

It visits every element of the directory once
The order in which the directory elements are iterated is unspecified
Directory elements . and .. are already filtered out

However, it might be noticeable that directory_iterator seems to be an iterator, and an
iterable range at the same time. Why? In the minimal for loop example we just had a look at,
it was used as an iterable range. In the actual recipe code, we used it like an iterator:

transform(directory_iterator{dir}, {},
 back_inserter(items), file_info);

The truth is, it is just an iterator class type, but the std::begin and std::end functions
provide overloads for this type. This way we can call the begin and end function on this
kind of iterator and they return us iterators again. That might look strange at first sight, but
it makes this class more useful.

Implementing a grep-like text search tool
Most operating systems come equipped with some kind of local search engine. Users can
fire it up with some keyboard shortcut and then just enter what local file they are looking
for.

Before such features came up, command-line users already searched through files with
tools such as grep or awk. The user can simply type "grep -r foobar ." and the tool will
crawl recursively through the current directory and find any file that contains the
"foobar" string.

In this recipe, we will implement exactly such an application. Our little grep clone will just
accept a pattern from the command line, and then recursively search through the directory
we are in at the time of the application start. It will then print the name of every file that
matches our pattern. The pattern matching will be applied linewise, so we can also print on
which exact line numbers a file is matching the pattern.

Filesystem

[479]

How to do it...
We will implement a little tool that searches for user-provided text patterns in files. The tool
works similar to the UNIX tool grep, but will not be as mature and powerful, for the sake of
simplicity.

First, we need to include all the necessary headers and declare that we use1.
namespace std and filesystem.

 #include <iostream>
 #include <fstream>
 #include <regex>
 #include <vector>
 #include <string>
 #include <filesystem>

 using namespace std;
 using namespace filesystem;

We implement a helper function first. It accepts a file path and a regular2.
expression object that describes the pattern we are looking for. Then, we
instantiate a vector that shall contain pairs of matching line numbers and their
content. And we instantiate an input file stream object from which we will read
and pattern-match the content, line by line.

 static vector<pair<size_t, string>>
 matches(const path &p, const regex &re)
 {
 vector<pair<size_t, string>> d;
 ifstream is {p.c_str()};

We traverse the file line by line using the getline function. regex_search3.
returns true if the string contains our pattern. If this is the case, then we put the
line number and the string into the vector. Finally, we return all collected
matches.

 string s;
 for (size_t line {1}; getline(is, s); ++line) {
 if (regex_search(begin(s), end(s), re)) {
 d.emplace_back(line, move(s));
 }
 }
 return d;
 }

Filesystem

[480]

In the main function, we first check whether the user provided a command-line4.
argument that we can use as the pattern. If not, we error out.

 int main(int argc, char *argv[])
 {
 if (argc != 2) {
 cout << "Usage: " << argv[0] << " <pattern>\n";
 return 1;
 }

Next, we construct a regular expression object from the input pattern. If the5.
pattern is not a valid regular expression, this would lead to an exception. If such
an exception occurs, we catch it and error out.

 regex pattern;
 try { pattern = regex{argv[1]}; }
 catch (const regex_error &e) {
 cout << "Invalid regular expression provided.n";
 return 1;
 }

Now, we can finally iterate over the filesystem and look for pattern matches. We6.
use recursive_directory_iterator to iterate over all the files in the working
directory. It works exactly like directory_iterator in the previous recipe, but
it also descends down into subdirectories. This way we don't have to manage
recursion. On every entry, we call our helper function matches.

 for (const auto &entry :
 recursive_directory_iterator{current_path()}) {
 auto ms (matches(entry.path(), pattern));

For every match (if any) we print the file path, its line number, and the matching7.
line's complete content.

 for (const auto &[number, content] : ms) {
 cout << entry.path().c_str() << ":" << number
 << " - " << content << '\n';
 }
 }
 }

Filesystem

[481]

Let's prepare a file called "foobar.txt", which contains some test lines we can8.
search for.

 foo
 bar
 baz

Compiling and running yields the following output. I launched the app in the9.
/Users/tfc/testdir folder on my laptop, first with the pattern "bar". Within
that directory, it found the second line of our foobar.txt file and another file
"text1.txt" that is located in testdir/dir1.

 $./grepper bar
 /Users/tfc/testdir/dir1/text1.txt:1 - foo bar bla blubb
 /Users/tfc/testdir/foobar.txt:2 - bar

Launching the app again, but this time with the pattern "baz", it finds the third10.
line of our example text file.

 $./grepper baz
 /Users/tfc/testdir/foobar.txt:3 - baz

How it works...
Setting up and using a regular expression in order to filter the content of files is certainly
the main task of this recipe. However, let's concentrate on
recursive_directory_iterator because filtering recursively iterated files was just our
motivation to use this special iterator class in this recipe.

Just like directory_iterator, recursive_directory_iterator iterates over elements
of a directory. Its specialty is to do this recursively, as its name tells. Whenever it hits a
filesystem element that is a directory, it will yield a directory_entry instance to this path,
but then also descend down into it in order to iterate its children, too.

recursive_directory_iterator has some interesting member functions:

depth(): This tells us how many levels the iterator has currently descended
down into subdirectories.
recursion_pending(): This tells us if the iterator is going to descend down
after the element it currently points to.

Filesystem

[482]

disable_recursion_pending(): This can be called to keep the iterator from
descending into the next subdirectory if it is currently pointing to a directory into
which it would descend. This means that calling this method has no effect if we
call it too early.
pop(): This aborts the current recursion level and goes one level up in the
directory hierarchy to continue from there.

There's more...
Another thing to know about is the directory_options enum class. The constructor of
recursive_directory_iterator does indeed accept a value of this type as a second
argument. The default value which we have been implicitly using is
directory_options::none. The other values are:

follow_directory_symlink: This allows the recursive iterator to follow
symbolic links to directories
skip_permission_denied: This tells the iterator to skip directories that would
otherwise result in errors because permission to access is denied by the filesystem

These options can be combined with the | operator.

Implementing an automatic file renamer
This recipe is motivated by a situation I find myself in pretty often. When collecting picture
files from holidays, for example, from different friends and also different photo devices in
one folder, the file endings often look different. Some JPEG files have a .jpg extension,
some have .jpeg, and some others even have .JPEG.

Some people might prefer to homogenize all extensions. It would be useful to rename all
files with a single command. At the same time, we could remove spaces ' ' and substitute
them by underscores '_', for example.

In this recipe, we will implement such a tool and call it renamer. It will accept a range of
input patterns and their substitutes like this:

$ renamer jpeg jpg JPEG jpg

Filesystem

[483]

In that case, renamer will iterate recursively through the current directory and search for
the patterns jpeg and JPEG in all filenames. It will substitute both with jpg.

How to do it...
We will implement a tool that recursively scans all files within a directory and matches their
filenames with patterns. All matches are replaced with user provided tokens and the
affected files are renamed accordingly.

First, we need to include a few headers and declare that we use namespaces std1.
and filesystem.

 #include <iostream>
 #include <regex>
 #include <vector>
 #include <filesystem>

 using namespace std;
 using namespace filesystem;

We implement a short helper function that accepts an input file path in the form2.
of a string and a range of replacement pairs. Each replacement pair consists of a
pattern and its replacement. While looping through the replacement range, we
use regex_replace to feed it with the input string and let it return the
transformed string. Afterward, we return the resulting string.

 template <typename T>
 static string replace(string s, const T &replacements)
 {
 for (const auto &[pattern, repl] : replacements) {
 s = regex_replace(s, pattern, repl);
 }
 return s;
 }

Filesystem

[484]

In the main function, we first validate the command line. We accept command-3.
line arguments in pairs because we want patterns together with their
replacements. The first element of argv is always the executable name. This
means that if the user provides at least one pair or more, then argc must be odd
and not smaller than 3.

 int main(int argc, char *argv[])
 {
 if (argc < 3 || argc % 2 != 1) {
 cout << "Usage: " << argv[0]
 << " <pattern> <replacement> ...\n";
 return 1;
 }

Once we checked that there are pairs of input, we will fill a vector with these.4.

 vector<pair<regex, string>> patterns;
 for (int i {1}; i < argc; i += 2) {
 patterns.emplace_back(argv[i], argv[i + 1]);
 }

Now we can iterate over the filesystem. For the sake of simplicity, we just define5.
the application's current path as the directory to iterate over.
For every directory entry, we extract its original path to the opath variable. Then,
we take only the filename without the rest of this path and transform it according
to the list of patterns and replacements we collected before. We take a copy of
opath, call it rpath, and replace its filename part with the new filename.

 for (const auto &entry :
 recursive_directory_iterator{current_path()}) {
 path opath {entry.path()};
 string rname {replace(opath.filename().string(),
 patterns)};
 path rpath {opath};
 rpath.replace_filename(rname);

Filesystem

[485]

For all files that are affected by our patterns, we print that we rename them. In6.
case the resulting filename from replacing the patterns does already exist, we
can't proceed. Let's just skip such files. We could of course alternatively just
append some number to the path or something else to resolve the name clash.

 if (opath != rpath) {
 cout << opath.c_str() << " --> "
 << rpath.filename().c_str() << '\n';
 if (exists(rpath)) {
 cout << "Error: Can't rename."
 " Destination file exists.\n";
 } else {
 rename(opath, rpath);
 }
 }
 }
 }

Compiling and running the program in an example directory yields the following7.
output. I have put some JPEG pictures into the directory but have given them
different name endings jpg, jpeg, and JPEG. Then, I executed the program with
the patterns jpeg and JPEG and chose jpg as the replacement for both. The result
is a folder with homogenous filename extensions.

 $ ls
 birthday_party.jpeg holiday_in_dubai.jpg holiday_in_spain.jpg
 trip_to_new_york.JPEG
 $../renamer jpeg jpg JPEG jpg
 /Users/tfc/pictures/birthday_party.jpeg --> birthday_party.jpg
 /Users/tfc/pictures/trip_to_new_york.JPEG --> trip_to_new_york.jpg
 $ ls
 birthday_party.jpg holiday_in_dubai.jpg holiday_in_spain.jpg
 trip_to_new_york.jpg

Implementing a disk usage counter
We already implemented a tool that works like ls on Linux/MacOS, or dir on Windows,
but just as these tools, it doesn't print the file size for directories.

In order to get the size equivalent of a directory, we would have to descend down into it
and sum up the size of all files that it contains.

Filesystem

[486]

In this recipe, we will implement a tool that does just that. The tool can be run on any folder
and will summarize the accumulated size of all directory entries.

How to do it...
In this section, we will implement an app that iterates over a directory and lists the file size
of each entry. This is simple for regular files, but if we are looking at a directory entry that
itself is a directory, then we have to look into it and summarize the size of all the files it
holds.

First, we need to include all the necessary headers and declare that we use1.
namespace std and filesystem.

 #include <iostream>
 #include <sstream>
 #include <iomanip>
 #include <numeric>
 #include <filesystem>

 using namespace std;
 using namespace filesystem;

Then we implement a helper function that accepts a directory_entry as an2.
argument and returns its size in the filesystem. If it is not a directory, we simply
return the file size calculated by file_size.

 static size_t entry_size(const directory_entry &entry)
 {
 if (!is_directory(entry)) { return file_size(entry); }

If it is a directory, we need to iterate over all its entries and calculate their size.3.
We end up calling our own entry_size helper function recursively if we
stumble upon subdirectories again.

 return accumulate(directory_iterator{entry}, {}, 0u,
 [](size_t accum, const directory_entry &e) {
 return accum + entry_size(e);
 });
 }

Filesystem

[487]

For better readability, we use the same size_string function as in other recipes4.
in this chapter. It just divides large file sizes in to shorter and nicer ones to read
strings with kilo, mega, or giga suffix.

 static string size_string(size_t size)
 {
 stringstream ss;
 if (size >= 1000000000) {
 ss << (size / 1000000000) << 'G';
 } else if (size >= 1000000) {
 ss << (size / 1000000) << 'M';
 } else if (size >= 1000) {
 ss << (size / 1000) << 'K';
 } else { ss << size << 'B'; }
 return ss.str();
 }

The first thing we need to do in the main function is to check whether the user5.
provided a filesystem path on the command line. If that is not the case, we just
take the current folder. Before proceeding, we check whether it exists.

 int main(int argc, char *argv[])
 {
 path dir {argc > 1 ? argv[1] : "."};
 if (!exists(dir)) {
 cout << "Path " << dir << " does not exist.\n";
 return 1;
 }

Now, we can iterate over all directory entries and print their sizes and names.6.

 for (const auto &entry : directory_iterator{dir}) {
 cout << setw(5) << right
 << size_string(entry_size(entry))
 << " " << entry.path().filename().c_str()
 << '\n';
 }
 }

Filesystem

[488]

Compiling and running the program yields the following results. I launched it in7.
a folder in the C++ offline reference. As it contains subfolders too, our recursive
file size summary helper is immediately helpful.

 $./file_size ~/Documents/cpp_reference/en/
 19M c
 12K c.html
 147M cpp
 17K cpp.html
 22K index.html
 22K Main_Page.html

How it works...
The whole program revolves around using file_size on regular files. If the program sees
a directory, it recursively descends down into it and calls file_size on all its entries.

The only thing we did to distinguish if we call file_size directly or if we need the
recursion strategy was asking the is_directory predicate. This works well for directories
that only contain regular files and directories.

As simple as our example program is, it would crash under the following conditions,
because of unhandled exceptions:

file_size only works on regular files and symbolic links. It throws an
exception in any other case.
Although file_size works on symbolic links, it still throws an exception if we
call it on a broken symbolic link.

In order to make this example recipe program more mature, we need more defensive
programming against the wrong type of files and handling of exceptions.

Calculating statistics about file types
In the last recipe, we implemented a tool that lists the size of all members of any directory.

In this recipe, we will be counting sizes recursively, too, but this time we will accumulate
the size of each file to their filename extension. This way we can print the user a table that
lists how many files of each file type we have, and what the average size of such file types
is.

Filesystem

[489]

How to do it...
In this section, we will implement a little tool that recursively iterates over a given
directory. While doing that, it counts the number and size of all files, grouped by their
extensions. Finally, it prints which filename extensions exist within that directory, how
many there are per extension, and their average file size.

We need to include necessary headers and we declare that we use namespace std1.
and filesystem.

 #include <iostream>
 #include <sstream>
 #include <iomanip>
 #include <map>
 #include <filesystem>

 using namespace std;
 using namespace filesystem;

The size_string function was already helpful in other recipes. It transforms file2.
sizes to human-readable strings.

 static string size_string(size_t size)
 {
 stringstream ss;
 if (size >= 1000000000) {
 ss << (size / 1000000000) << 'G';
 } else if (size >= 1000000) {
 ss << (size / 1000000) << 'M';
 } else if (size >= 1000) {
 ss << (size / 1000) << 'K';
 } else { ss << size << 'B'; }
 return ss.str();
 }

Filesystem

[490]

Then, we implement a helper function that accepts a path object as its argument3.
and iterates over all files within that path. On its way, it collects all information in
a map that maps from filename extensions to pairs that contain the total number
and accumulated size of all files that have the same extension.

 static map<string, pair<size_t, size_t>> ext_stats(const path &dir)
 {
 map<string, pair<size_t, size_t>> m;
 for (const auto &entry :
 recursive_directory_iterator{dir}) {

If a directory entry is a directory itself, we skip it. Skipping it at this point does4.
not mean that we are not recursively descending into it.
recursive_directory_iterator still does that, but we do not want to look at
the directory entries themselves.

 const path p {entry.path()};
 const file_status fs {status(p)};
 if (is_directory(fs)) { continue; }

Next, we extract the extension part of the directory entry string. If it has no5.
extension, we simply skip it.

 const string ext {p.extension().string()};
 if (ext.length() == 0) { continue; }

Next, we calculate the size of the file we are looking at. Then, we look up the6.
aggregate object in the map for this extension. If there are yet none at this point, it
is created implicitly. We simply increment the file count and add the file size to
the size accumulator.

 const size_t size {file_size(p)};

 auto &[size_accum, count] = m[ext];
 size_accum += size;
 count += 1;
 }

Filesystem

[491]

Afterward, we return the map.7.

 return m;
 }

In the main function, we take either a user-provided path from the command line8.
or the current directory. Of course, we need to check whether it exists because it
would not make sense to continue otherwise.

 int main(int argc, char *argv[])
 {
 path dir {argc > 1 ? argv[1] : "."};
 if (!exists(dir)) {
 cout << "Path " << dir << " does not exist.\n";
 return 1;
 }

We can immediately iterate over the map that ext_stats gives us. Because the9.
accum_size items in the map contain the sum of all files with the same
extension, we divide this sum by the total number of such files before printing it.

 for (const auto &[ext, stats] : ext_stats(dir)) {
 const auto &[accum_size, count] = stats;
 cout << setw(15) << left << ext << ": "
 << setw(4) << right << count
 << " items, avg size "
 << setw(4) << size_string(accum_size / count)
 << '\n';
 }
 }

Compiling and running the program yields the following output. I gave it a10.
folder from the offline C++ reference as a command-line argument.

 $./file_type ~/Documents/cpp_reference/
 .css : 2 items, avg size 41K
 .gif : 7 items, avg size 902B
 .html : 4355 items, avg size 38K
 .js : 3 items, avg size 4K
 .php : 1 items, avg size 739B
 .png : 34 items, avg size 2K
 .svg : 53 items, avg size 6K
 .ttf : 2 items, avg size 421K

Filesystem

[492]

Implementing a tool that reduces folder size
by substituting duplicates with symlinks
There are a lot of tools that compress data in various ways. The most famous examples for
file packing algorithms/formats are ZIP and RAR. Such tools try to reduce the size of files
by reducing internal redundancy.

Before compressing files in archives, a very simple way to reduce disk usage is just deleting
duplicate files. In this recipe, we will implement a little tool that crawls a directory
recursively. While crawling, it will look for files that have the same content. If it finds such
files, it will remove all duplicates but one. All removed files will be substituted with
symbolic links that point to the now unique file. This saves spaces without any
compression, while at the same time preserving all data.

How to do it...
In this section, we will implement a little tool that finds out which files in a directory are
duplicates of each other. With that knowledge, it will remove all but one of all duplicated
files, and substitute them with symbolic links, which reduces the folder size.

Make sure to have a backup of your system's data. We will be playing with
STL functions that remove files. A simply misspelled path in such a
program can lead to a program that greedily removes too many files in
unwanted ways.

First, we need to include the necessary headers and then we declare that we use1.
namespace std and filesystem by default.

 #include <iostream>
 #include <fstream>
 #include <unordered_map>
 #include <filesystem>

 using namespace std;
 using namespace filesystem;

Filesystem

[493]

In order to find out which files are duplicates of each other, we will construct a2.
hash map that maps from hashes of file content to the path of the first file from
which that hash was generated. It would be a better idea to use a production hash
algorithm for files such as MD5 or an SHA variant. In order to keep the recipe
clean and simple, we just read the whole file into a string and then use the same
hash function object that unordered_map already uses for strings to calculate
hashes.

 static size_t hash_from_path(const path &p)
 {
 ifstream is {p.c_str(),
 ios::in | ios::binary};
 if (!is) { throw errno; }
 string s;
 is.seekg(0, ios::end);
 s.reserve(is.tellg());
 is.seekg(0, ios::beg);
 s.assign(istreambuf_iterator<char>{is}, {});
 return hash<string>{}(s);
 }

Then we implement the function that constructs such a hash map and deletes3.
duplicates. It iterates recursively through a directory and its subdirectories.

 static size_t reduce_dupes(const path &dir)
 {
 unordered_map<size_t, path> m;
 size_t count {0};
 for (const auto &entry :
 recursive_directory_iterator{dir}) {

Filesystem

[494]

For every directory entry, it checks whether it is a directory itself. All directory4.
items are skipped. For every file, we generate its hash value and try to insert it
into the hash map. If the hash map already contains the same hash, then this
means that we already inserted a file with the same hash. This means that we just
found a duplicate! In case of a clash during insertion, the second value in the pair
that try_emplace returns is false.

 const path p {entry.path()};
 if (is_directory(p)) { continue; }
 const auto &[it, success] =
 m.try_emplace(hash_from_path(p), p);

Using the return values from try_emplace, we can tell the user that we just5.
inserted a file because we have seen its hash for the first time. In case we found a
duplicate, we tell the user what other file it is a duplicate of and delete it. After
deletion, we create a symbolic link that replaces the duplicate.

 if (!success) {
 cout << "Removed " << p.c_str()
 << " because it is a duplicate of "
 << it->second.c_str() << '\n';
 remove(p);
 create_symlink(absolute(it->second), p);
 ++count;
 }

After the filesystem iteration, we return the number of files we deleted and6.
replaced with symlinks.

 }
 return count;
 }

In the main function, we make sure that the user provided a directory on the7.
command line, and that this directory exists.

 int main(int argc, char *argv[])
 {
 if (argc != 2) {
 cout << "Usage: " << argv[0] << " <path>\n";
 return 1;
 }
 path dir {argv[1]};

Filesystem

[495]

 if (!exists(dir)) {
 cout << "Path " << dir << " does not exist.\n";
 return 1;
 }

The only thing we need to do now is to call reduce_dupes on this directory and8.
print how many files it deleted.

 const size_t dupes {reduce_dupes(dir)};
 cout << "Removed " << dupes << " duplicates.\n";
 }

Compiling and running the program on an example directory that contains some9.
duplicate files looks like the following. I used the du tool to check the folder size
before and after launching our program to demonstrate that the approach works.

 $ du -sh dupe_dir
 1.1M dupe_dir
 $./dupe_compress dupe_dir
 Removed dupe_dir/dir2/bar.jpg because it is a duplicate of
 dupe_dir/dir1/bar.jpg
 Removed dupe_dir/dir2/base10.png because it is a duplicate of
 dupe_dir/dir1/base10.png
 Removed dupe_dir/dir2/baz.jpeg because it is a duplicate of
 dupe_dir/dir1/baz.jpeg
 Removed dupe_dir/dir2/feed_fish.jpg because it is a duplicate of
 dupe_dir/dir1/feed_fish.jpg
 Removed dupe_dir/dir2/foo.jpg because it is a duplicate of
 dupe_dir/dir1/foo.jpg
 Removed dupe_dir/dir2/fox.jpg because it is a duplicate of
 dupe_dir/dir1/fox.jpg
 Removed 6 duplicates.
 $ du -sh dupe_dir
 584K dupe_dir

Filesystem

[496]

How it works...
We used the create_symlink function in order to make a filesystem entry point to another
file in the filesystem. This way we can avoid having duplicate files. We could also have set a
hard link using create_hard_link. Semantically, this is similar, but hard links have other
technical implications than soft links. Different filesystem formats might not support hard
links at all, or only a certain number of hard links that refer to the same file. Another
problem is that hard links cannot link from one filesystem to the other.

However, apart from implementation details, there is one blatant error source when using
create_symlink or create_hard_link. The following lines contain a bug. Can you spot
it immediately?

path a {"some_dir/some_file.txt"};
path b {"other_dir/other_file.txt"};
remove(b);
create_symlink(a, b);

Nothing bad happens when executing this program, but the symlink will be broken. The
symlink points to "some_dir/some_file.txt", which is wrong. The problem is that it
should really either point to "/absolute/path/some_dir/some_file.txt", or
"../some_dir/some_file.txt". The create_symlink call uses a correct absolute path
if we write it as follows:

create_symlink(absolute(a), b);

create_symlink does not check whether the path we are linking to is
correct.

There's more...
We already noticed that our hash function is a too simple one. For the sake of keeping this
recipe simple and without external dependencies, we chose this way.

What is the problem with our hash function? There are actually two problems:

We read the whole file into a string. This is disastrous for files that are larger than
our system memory.
The C++ hash function trait hash<string> is most probably not designed for
such hashes.

Filesystem

[497]

If we are looking for a better hash function, we should take one that is fast, memory-
friendly, and that makes sure that no two really large but different files get the same hash.
The latter requirement is maybe the most important one. If we decide that one file is a
duplicate of the other although they do not contain the same data, we surely have some data
loss after deleting it.

Better hash algorithms are, for example, MD5 or one of the SHA variants. In order to get
access to such functions in our program, we could use the OpenSSL cryptography API, for
example.

Index

A
absolute time
 and relative time, converting with std chrono 329
acyclic directed graph (DAG) 455
algorithms
 composing, from standard gather algorithm 246
 implementing, in terms of iterators 109
aliasing 199
amortized complexity 62
ASCII Mandelbrot renderer
 implementing 236
 parallelizing, with std async 450
automatic file renamer
 implementing 482

B
bidirectional iterator 97
binary folds 33
Boyer-Moore algorithm 198
Boyer-Moore-Horspool algorithm 199
bracket initializer rules
 profiting from 19
bundled return values
 unpacking, structured bindings used 11

C
c++ 10
C++ reference
 reference link 167
C++ standard library 40
canonical file paths
 obtaining, from relative paths 469
cartesian product
 about 159
 pairs, generating of input at compile time 159
checked iterators

 iterator code, verifying 119
clock objects
 characteristics 327
code
 parallelizing, that uses standard algorithms 399
compile time decisions
 simplifying, with constexpr if 24
compile time
 cartesian product pairs, generating of input 159
complex objects
 initializing, from file input 286
complex predicates
 creating, with logical conjunction 146
concatenation
 functions, composing 142
constexpr if
 compile time decisions, simplifying 24
constructor calls
 deducing, template class type result 21
container adapters 42
containers
 contents, transforming 181
 filling, from std istream iterators 289
 items, copying to other containers 167
 items, removing 176
 sorting 172
contents
 transforming, of containers 181
contiguous iterator 98
contiguous storage 40
custom string classes
 creation, by inheriting from std 304
custom types
 std unordered map, using 67

[499]

D
data structures
 composing, with std tuple 341
deadlocks
 avoiding, with std scoped lock 421
dictionary merging tool
 implementing 206
different member values
 sharing, of same object 378
directories
 files, listing 473
disk usage counter
 implementing 485
distribution
 Bernoulli distribution 397
 discrete distribution 397
 normal distribution 396
 uniform int distributions 396

E
erase-remove idiom
 using, on std vector 42
exception safe shared locking
 lock classes 418
 mutex classes 417
 std shared lock 413
 with std unique lock 413

F
failure
 signalizing, with std optional 333
Fibonacci iterator 113
file input
 complex objects, initializing 286
file types
 statistics, calculating 488
files
 listing, in directories 473
 output, redirecting to 299
filtering
 algorithms, used 180
first in, first out (FIFO) 90
fold expressions
 about 32

 handy helper functions, implementing 31
folder size
 reducing, with symlinks and tool implementing

492

folding 32
format guard 316
format types
 implementing 315
formatting modifiers 284
forward iterator 97
Fourier transform formula
 about 223
 implementing, with STL numeric algorithms 223
fractal 236
functional objects
 reference link 148
functions
 applying, on tuples 338
 capture list 137
 composing, by concatenation 142
 constexpr 138
 defining, on run with lambda expressions 133
 exception attr 138
 mutable 138
 return type 138

G
generic data structures
 filling, iterator adapters used 106
grep-like text search tool
 implementing 478

H
handy helper functions
 implementing, with fold expressions 31
 multiple insertions, verifying 36
 multiple items, pushing into vector 38
 parameters, verifying within range 37
 ranges, matching against individual items 35
hash tables 42
header-only libraries
 enabling, with inline variables 28

[500]

I
I/O manipulators 279
I/O stream manipulators
 used, for output formatting 279
if statement
 variable scopes, limiting 15
initialization
 postponing, with std call once 429
inline variables
 header-only libraries, enabling 28
input iterator 97
input sequences
 permutations, generating 204
input
 tokenizing, with regular expression library 310
insertion hint semantics
 of std map insert 60
insertion hints 62
items
 copying, from containers to other containers 167
 finding, in ordered vector 183
 finding, in unordered vectors 183
 inserting, into std map conditionally 56
 inserting, into std map efficiently 56
 removing, from containers 176
iterable range
 building 98
iterations
 terminating, over ranges with iterator sentinels

116

iterator adapters
 about 106
 std back insert iterator 108
 std front insert iterator 108
 std insert iterator 109
 std istream iterator 109
 std ostream iterator 109
 using, to fill generic data structures 106
iterator categories
 about 96
 bidirectional iterator 97
 contiguous iterator 98
 forward iterator 97
 input iterator 97
 mutable iterator 98

 output iterator 98
 random access iterator 98
iterator code
 verifying, with checked iterators 119
iterator sentinels
 iterations, terminating over ranges 116
iterators
 about 94
 algorithms, implementing 109
 compatibility, with STL iterator categories 102

K
keys
 modifying, of std map items 63

L
lambda expressions
 about 131
 used, for defining functions on run 133
lambdas
 used, for implementing transform if 153
 wrapping, into std function for polymorphy adding

138

launch policy 437
legacy APIs
 resource handling, simplified with smart pointers

374

list storage 41
lock classes 418
logical conjunction
 complex predicates, creating 146

M
merge 206
multiple functions
 calling, with same input 149
mutex classes 417

O
object
 different member values, sharing 378
One Definition Rule (ODR) 29
optimal implementation
 selecting 194
ordered vetors

[501]

 items, finding 183
output iterator 98
output
 formatting, with I/O stream manipulators 279
 redirecting, to files 299

P
parallelization
 about 398
 code, that uses standard algorithms 399
 execution policies, working 403
 library, implementing with std future 455
 STL algorithms, supporting 402
 vectorization 405
path normalizer
 implementing 466
permutations
 generating, of input sequences 204
personal to do list
 implementing, std priority queue used 90
policy flags 437
polymorphy
 adding, by wrapping lambdas into std function

138

predicates 146
producer/consumer idiom
 implementing, with std condition variable 438
producers/consumers idiom
 implementing, with std condition variable 443
program
 suspending, for specific time with thread 406

R
random access iterator 98
random number engine
 selecting 382
random numbers
 generating 382, 389
ranges library
 about 130
 reference link 130
readable exceptions
 catching from std iostream errors 318
regular expression library
 input, tokenizing 310

regular expressions 261
relative paths
 canonical file paths, obtaining from 469
Resource Acquisition Is Initialization (RAII) 303
resource handling
 simplifying, of legacy APIs with smart pointers

374

resources
 handling, with std unique ptr 358
resulting template class type
 deducing, with constructor 21
return value optimization (RVO) 15
reverse iterator adapters
 about 114
 using, for iterating other way round 114
RPN calculator
 implementing, with std stack 74

S
sanitizer
 detecting, bugs example 123
sanitizers
 about 123
 references 123
search input suggestion generator
 implementing, with trie 217
search trees 41
shared heap memory
 handling, with std shared ptr 363
shared objects
 weak pointers, dealing with 369
smart pointers
 resource handling, simplified of legacy APIs 374
sorting
 algorithms, used 176
split algorithm
 building 242
standard algorithms
 code, parallelizing 399
standard gather algorithm
 algorithms, composing 246
std accumulate
 used, for implementing transform if 153
std any
 void , replacing with 349

[502]

std async
 used, for pushing the execution task to

background 432
 using, for parallelizing ASCII Mandelbrot

renderer 450
std back insert iterator 108
std binary search algorithm 188
std call once
 initialization, postponing 429
 using 430
std char traits
 inheriting, custom string classes creation 304
std chrono
 absolute and relative times, converting between

329

std clamp
 vector, values limiting to numeric range 190
std condition variable
 about 438
 producer/consumer idiom, implementing 438
 producers/consumers idiom, implementing 443
std count use
 synchronizing, concurrently 425
std equal range 189
std find algorithm 188
std find if algorithm 188
std front insert iterator 108
std function
 polymorphy, added by wrapping lambdas 138
std future
 parallelization library, implementing 455
std insert iterator 109
std iostream errors
 readable exceptions, catching 318
std istream iterator 109
std istream iterators
 containers, filling 289
std lower bound 188
std map insert
 insertion hint semantics 60
std map items
 keys, modifying 63
std map
 items, inserting conditionally 56
 items, inserting efficiently 56

 word frequency counter, implementing 81
std multimap
 writing style helper tool, implementing to find long

sentences in texts 85
std optional
 failure, signalizing 333
std ostream iterator 109
std ostream iterators
 generic printing 294
std priority queue
 used, for implementing personal to do list 90
std ratio
 used, for converting time units 323
std scoped lock
 deadlock, avoiding 421
std shared lock
 exception safe shared locking 413
std shared ptr
 shared heap memory, handling 363
std stack
 handling 78
 mathematical operation, applying 80
 mathematical operation, selecting 80
 operands, distinguishing from operations 79
 operands, distinguishing from user input 79
 RPN calculator, implementing 74
std string
 benefits 269
std tuple
 data structures, composing with 341
std unique lock
 exception safe shared locking 413
std unique ptr
 resources, handling with 358
std unordered map
 using, with custom types 67
std upper bound 188
std variant
 different types, storing 352
std vector
 erase-remove idiom, using 42
 instances, accessing 51
 instances, sorting 53
STL algorithms
 about 102, 166, 211

[503]

 benefits 166
 for distribution 389
 used, for implementing trie class 211
STL iterator categories
 iterators, compatibility 102
STL numeric algorithms
 Fourier transform formula, implementing 223
stream classes 261
stream state manipulators 285
strings
 about 261
 compressing 254
 concatenating 262
 creating 262
 decompressing 254
 patterns, locating with std search 194
 transforming 262
 whitespace, trimming from beginning 266
 whitespace, trimming from end 266
structured bindings
 about 11
 using, to unpack bundled return values 11
switch statement
 variable scopes, limiting 15
symlinks
 used, reducing folder size and tool implementing

492

T
tasks
 execution, pushing to background std async

used 432
text file
 words, counting 276
threads
 starting 408
 stopping 408
time units
 converting, std ratio used 323
tool
 implementing, for reducing folder size with

symlinks 492
transform if
 implementing, lambdas used 153
 implementing, std accumulate used 153

trie class
 implementing, STL algorithms used 211
trie
 about 211
 search input suggestion generator, implementing

217

tripwire feature 122
tuples
 functions, applying 338
 operator 346
 zip function 347

U
unary fold 33
unordered vectors
 items, finding 183
unpacking 11
unsorted std vector
 items, deleting in O (1) time 47
user input
 values, reading from 273

V
values
 reading, from user input 273
variable scopes
 limiting, to if statement 15
 limiting, to switch statement 15
vectorization 405
vectors
 error sum, calculating 232
 sampling 199
 values, limiting to numeric range with std clamp

190

void
 replacing, with std any 349

W
weak pointers
 dealing with, to shared objects 369
word frequency counter
 implementing, with std map 81
words
 consecutive whitespace, removing 251
writing style helper tool

 implementing, to find long sentences in text with
std multimap 85

Z

zip iterator adapter
 building 124
 ranges library 130

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: The New C++17 Features
	Introduction
	Using structured bindings to unpack bundled return values
	How to do it...
	How it works...
	There's more...

	Limiting variable scopes to if and switch statements
	How to do it...
	How it works...
	There's more...

	Profiting from the new bracket initializer rules
	How to do it...
	How it works...

	Letting the constructor automatically deduce the resulting template class type
	How to do it...
	How it works...
	There's more...

	Simplifying compile time decisions with constexpr-if
	How to do it...
	How it works...
	There's more...

	Enabling header-only libraries with inline variables
	How it's done...
	How it works...
	There's more...

	Implementing handy helper functions with fold expressions
	How to do it...
	How it works...
	There's more...
	Match ranges against individual items
	Check if multiple insertions into a set are successful
	Check if all the parameters are within a certain range
	Pushing multiple items into a vector

	Chapter 2: STL Containers
	Introduction
	Contiguous storage
	List storage
	Search trees
	Hash tables
	Container adapters

	Using the erase-remove idiom on std::vector
	How to do it...
	How it works...
	There's more...

	Deleting items from an unsorted std::vector in O(1) time
	How to do it...
	How it works...

	Accessing std::vector instances the fast or the safe way
	How to do it...
	How it works...
	There's more...

	Keeping std::vector instances sorted
	How to do it...
	How it works...
	There's more...

	Inserting items efficiently and conditionally into std::map
	How to do it...
	How it works...
	There's more...

	Knowing the new insertion hint semantics of std::map::insert
	How to do it...
	How it works...
	There's more...

	Efficiently modifying the keys of std::map items
	How to do it...
	How it works...
	There's more...

	Using std::unordered_map with custom types
	How to do it...
	How it works...

	Filtering duplicates from user input and printing them in alphabetical order with std::set
	How to do it...
	How it works...
	std::istream_iterator
	std::inserter
	Putting it together

	Implementing a simple RPN calculator with std::stack
	How to do it...
	How it works...
	Stack handling
	Distinguishing operands from operations from user input
	Selecting and applying the right mathematical operation

	There's more...

	Implementing a word frequency counter with std::map
	How to do it...
	How it works...

	Implement a writing style helper tool for finding very long sentences in text with std::multimap
	How to do it...
	How it works...
	There's more...

	Implementing a personal to-do list using std::priority_queue
	How to do it...
	How it works...

	Chapter 3: Iterators
	Introduction
	Iterator categories
	Input iterator
	Forward iterator
	Bidirectional iterator
	Random access iterator
	Contiguous iterator
	Output iterator
	Mutable iterator

	Building your own iterable range
	How to do it...
	How it works...

	Making your own iterators compatible with STL iterator categories
	How to do it...
	How it works...
	There's more...

	Using iterator adapters to fill generic data structures
	How to do it...
	How it works...
	std::back_insert_iterator
	std::front_insert_iterator
	std::insert_iterator
	std::istream_iterator
	std::ostream_iterator

	Implementing algorithms in terms of iterators
	How to do it...
	There's more...

	Iterating the other way around using reverse iterator adapters
	How to do it...
	How it works...

	Terminating iterations over ranges with iterator sentinels
	How to do it...

	Automatically checking iterator code with checked iterators
	How to do it...
	How it works...
	There's more...

	Building your own zip iterator adapter
	How to do it...
	There's more...
	Ranges library

	Chapter 4: Lambda Expressions
	Introduction
	Defining functions on the run using lambda expressions
	How to do it...
	How it works...
	Capture list
	mutable (optional)
	constexpr (optional)
	exception attr (optional)
	return type (optional)

	Adding polymorphy by wrapping lambdas into std::function
	How to do it...
	How it works...

	Composing functions by concatenation
	How to do it...
	How it works...

	Creating complex predicates with logical conjunction
	How to do it...
	There's more...

	Calling multiple functions with the same input
	How to do it...
	How it works...

	Implementing transform_if using std::accumulate and lambdas
	How to do it...
	How it works...

	Generating cartesian product pairs of any input at compile time
	How to do it...
	How it works...

	Chapter 5: STL Algorithm Basics
	Introduction
	Copying items from containers to other containers
	How to do it...
	How it works...

	Sorting containers
	How to do it...
	How it works...

	Removing specific items from containers
	How to do it...
	How it works...

	Transforming the contents of containers
	How to do it...
	How it works...

	Finding items in ordered and unordered vectors
	How to do it...
	How it works...

	Limiting the values of a vector to a specific numeric range with std::clamp
	How to do it...
	How it works...

	Locating patterns in strings with std::search and choosing the optimal implementation
	How to do it...
	How it works...

	Sampling large vectors
	How to do it...
	How it works...

	Generating permutations of input sequences
	How to do it...
	How it works...

	Implementing a dictionary merging tool
	How to do it...
	How it works...

	Chapter 6: Advanced Use of STL Algorithms
	Introduction
	Implementing a trie class using STL algorithms
	How to do it...
	How it works...

	Implementing a search input suggestion generator with tries
	How to do it...
	How it works...
	There's more...

	Implementing the Fourier transform formula with STL numeric algorithms
	How to do it...
	How it works...

	Calculating the error sum of two vectors
	How to do it...
	How it works...

	Implementing an ASCII Mandelbrot renderer
	How to do it...
	How it works...

	Building our own algorithm - split
	How to do it...
	How it works...
	There's more...

	Composing useful algorithms from standard algorithms - gather
	How to do it...
	How it works...

	Removing consecutive whitespace between words
	How to do it...
	How it works...

	Compressing and decompressing strings
	How to do it...
	How it works...
	There's more...

	Chapter 7: Strings, Stream Classes, and Regular Expressions
	Introduction
	Creating, concatenating, and transforming strings
	How to do it...
	How it works...

	Trimming whitespace from the beginning and end of strings
	How to do it...
	How it works...

	Getting the comfort of std::string without the cost of constructing std::string objects
	How to do it...
	How it works...

	Reading values from user input
	How to do it...
	How it works...

	Counting all words in a file
	How to do it...
	How it works...

	Formatting your output with I/O stream manipulators
	How to do it...
	How it works...

	Initializing complex objects from file input
	How to do it...
	How it works...

	Filling containers from std::istream iterators
	How to do it...
	How it works...

	Generic printing with std::ostream iterators
	How to do it...
	How it works...

	Redirecting output to files for specific code sections
	How to do it...
	How it works...

	Creating custom string classes by inheriting from std::char_traits
	How to do it...
	How it works...

	Tokenizing input with the regular expression library
	How to do it...
	How it works...

	Comfortably pretty printing numbers differently per context on the fly
	How to do it...

	Catching readable exceptions from std::iostream errors
	How to do it...
	How it works...

	Chapter 8: Utility Classes
	Introduction
	Converting between different time units using std::ratio
	How to do it...
	How it works...
	There's more...

	Converting between absolute and relative times with std::chrono
	How to do it...
	How it works...

	Safely signalizing failure with std::optional
	How to do it...
	How it works...

	Applying functions on tuples
	How to do it...
	How it works...

	Quickly composing data structures with std::tuple
	How to do it...
	How it works...
	operator<< for tuples
	The zip function for tuples

	Replacing void* with std::any for more type safety
	How to do it...
	How it works...

	Storing different types with std::variant
	How to do it...
	How it works...

	Automatically handling resources with std::unique_ptr
	How to do it...
	How it works...

	Automatically handling shared heap memory with std::shared_ptr
	How to do it...
	How it works...
	There's more...

	Dealing with weak pointers to shared objects
	How to do it...
	How it works...

	Simplifying resource handling of legacy APIs with smart pointers
	How to do it...
	How it works...

	Sharing different member values of the same object
	How to do it...
	How it works...

	Generating random numbers and choosing the right random number engine
	How to do it...
	How it works...

	Generating random numbers and letting the STL shape specific distributions
	How to do it...
	How it works...

	Chapter 9: Parallelism and Concurrency
	Introduction
	Automatically parallelizing code that uses standard algorithms
	How to do it...
	How it works...
	Which STL algorithms can we parallelize this way?
	How do those execution policies work?
	What does vectorization mean?

	Putting a program to sleep for specific amounts of time
	How to do it...
	How it works...

	Starting and stopping threads
	How to do it...
	How it works...

	Performing exception safe shared locking with std::unique_lock and std::shared_lock
	How to do it...
	How it works...
	Mutex classes
	Lock classes

	Avoiding deadlocks with std::scoped_lock
	How to do it...
	How it works...

	Synchronizing concurrent std::cout use
	How to do it...
	How it works...

	Safely postponing initialization with std::call_once
	How to do it...
	How it works...

	Pushing the execution of tasks into the background using std::async
	How to do it...
	How it works...
	There's more...

	Implementing the producer/consumer idiom with std::condition_variable
	How to do it...
	How it works...

	Implementing the multiple producers/consumers idiom with std::condition_variable
	How to do it...
	How it works...

	Parallelizing the ASCII Mandelbrot renderer using std::async
	How to do it...
	How it works...

	Implementing a tiny automatic parallelization library with std::future
	How to do it...
	How it works...

	Chapter 10: Filesystem
	Introduction
	Implementing a path normalizer
	How to do it...
	How it works...
	There's more...

	Getting canonical file paths from relative paths
	How to do it...
	How it works...

	Listing all files in directories
	How to do it...
	How it works...

	Implementing a grep-like text search tool
	How to do it...
	How it works...
	There's more...

	Implementing an automatic file renamer
	How to do it...

	Implementing a disk usage counter
	How to do it...
	How it works...

	Calculating statistics about file types
	How to do it...

	Implementing a tool that reduces folder size by substituting duplicates with symlinks
	How to do it...
	How it works...
	There's more...

	Index

