

C++	High	Performance

	

	

	

	

	

	

Boost	and	optimize	the	performance	of	your	C++17	code

	

	

	

	

	

	

	

	

	

	

	

Viktor	Sehr

Björn	Andrist

	

	

	

	

	

	

	

	

	

	

	

	

BIRMINGHAM	-	MUMBAI

C++	High	Performance
Copyright	©	2018	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,	or	transmitted	in
any	form	or	by	any	means,	without	the	prior	written	permission	of	the	publisher,	except	in	the	case	of	brief
quotations	embedded	in	critical	articles	or	reviews.

Every	 effort	 has	 been	 made	 in	 the	 preparation	 of	 this	 book	 to	 ensure	 the	 accuracy	 of	 the	 information
presented.	 However,	 the	 information	 contained	 in	 this	 book	 is	 sold	 without	 warranty,	 either	 express	 or
implied.	Neither	 the	author(s),	nor	Packt	Publishing	or	 its	dealers	and	distributors,	will	be	held	 liable	 for
any	damages	caused	or	alleged	to	have	been	caused	directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the	companies	and	products
mentioned	in	this	book	by	the	appropriate	use	of	capitals.	However,	Packt	Publishing	cannot	guarantee	the
accuracy	of	this	information.

Commissioning	Editors:	Aaron	Lazar
Acquisition	Editor:	Denim	Pinto
Content	Development	Editors:	Nikhil	Borkar
Technical	Editor:	Jijo	Maliyekal
Copy	Editor:	Safis	Editing
Project	Coordinator:	Vaidehi	Sawant
Proofreader:	Safis	Editing
Indexers:	Rekha	Nair
Graphics:	Tania	Dutta
Production	Coordinator:	Arvindkumar	Gupta

First	published:	January	2018

Production	reference:	1300118

Published	by	Packt	Publishing	Ltd.
Livery	Place
35	Livery	Street
Birmingham
B3	2PB,	UK.

ISBN	978-1-78712-095-2

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt	is	an	online	digital	 library	that	gives	you	full	access	 to	over	5,000	books
and	 videos,	 as	 well	 as	 industry	 leading	 tools	 to	 help	 you	 plan	 your	 personal
development	 and	 advance	 your	 career.	 For	 more	 information,	 please	 visit	 our
website.

https://mapt.io/

Why	subscribe?
Spend	less	 time	learning	and	more	time	coding	with	practical	eBooks	and
Videos	from	over	4,000	industry	professionals

Improve	your	learning	with	Skill	Plans	built	especially	for	you

Get	a	free	eBook	or	video	every	month

Mapt	is	fully	searchable

Copy	and	paste,	print,	and	bookmark	content

PacktPub.com
Did	you	know	 that	Packt	offers	eBook	versions	of	every	book	published,	with
PDF	and	ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktP
ub.com	and	as	a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook
copy.	Get	in	touch	with	us	at	service@packtpub.com	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	 technical	articles,	sign
up	for	a	range	of	free	newsletters,	and	receive	exclusive	discounts	and	offers	on
Packt	books	and	eBooks.

http://www.PacktPub.com
http://www.packtpub.com

Foreword
C++	stepped	onto	 the	stage	 in	1983	and	hasn’t	 stopped	 reinventing	 itself	 for	a
single	year	since.	It	has	gone	from	a	single	frontend	language	on	top	of	C	to	a
first-class	 citizen	 of	 the	 compiler	 world.	 Each	 new	 C++	 standard	 has	 added
substantial	 functionality,	 sometimes	 to	 excess.	 In	 the	 words	 of	 Stroustrup,
“Within	 C++,	 there	 is	 a	 much	 smaller	 and	 cleaner	 language	 struggling	 to	 get
out.”

The	problem,	of	course,	 is	 that	 the	“smaller	and	cleaner	 language”	to	be	found
within	 C++	 changes	 with	 situation.	 Mastering	 C++	 is	 akin	 to	 mastering	 a
multitude	 of	 domain-specific	 languages,	 each	 tailored	 to	 a	 specific	 use.	 The
dialect	that	makes	sense	for	embedded	system	is	nonsensical	for	large	enterprise
applications,	 and	 the	 phrasing	 that	 powers	 a	 game	 engine	 is	 unbearable	when
applied	to	a	word	processor.

C++	High	Performance	teaches	you	a	C++	dialect	for	rapidly	developing	high-
performance	code.	From	C++11	onward,	there	have	been	a	vast	array	of	features
in	both	the	C++	language	and	the	C++	STL	that	let	you	spend	more	time	writing
your	application	and	less	time	handling	implementation	details.	This	is	the	focus
of	the	book	and	where	it	shines.

Each	 topic	 is	 framed	 in	 the	 larger	 context	 of	 application	 development	 and
computer	science.	For	 the	 reader	who	needs	 to	 get	 up	 to	 speed	with	 the	 latest
C++	 techniques	 on	 a	 short	 notice,	 this	 information	 provides	 the	 necessary
landmarks	to	stay	oriented.	Specific	examples,	recipes,	and	logical	progressions
take	you	from	a	basic	use	of	auto	and	<algorithm>	all	the	way	up	to	using	Boost
to	 transparently	 run	 your	 algorithms	 on	 the	 GPU	 via	 OpenCL.	 Fundamental
issues	around	modern	C++	(memory	management	and	ownership,	considerations
of	 time	 and	 space,	 advance	 template	 usage,	 and	 others)	 are	 explained	 step	 by
step	 so	 that,	 by	 the	 later	 chapters,	 the	 readers	 proceed	 into	 advanced	 territory
with	confidence.

I	 have	 worked	 on	 a	 wide	 variety	 of	 projects—large	 and	 small,	 low	 level	 and
managed,	and	 some	 even	 in	 custom	 languages	 I	 designed	 and	 built—but	C++

holds	a	special	place	in	my	heart.	My	first	 full-time	job	was	writing	C++	code
for	 a	game	 technology	company	 in	 the	 early	 2000s.	 I	 loved	 it,	 not	 least	 of	 all
because	a	big	part	of	the	technology	revolved	around	the	reflection	of	the	C++
code	base	into	the	editor	and	scripting	language.	Someone	once	described	C++
as	an	octopus	made	by	nailing	extra	 legs	onto	a	dog,	and	 I	 spent	a	 lot	of	 time
with	a	hammer	making	our	code	base	do	things	that	C++	was	never	intended	to
do.	Yet,	 the	octopus	we	ended	up	with	was,	 in	its	own	way,	beautiful	and	very
effective.

C++	has	evolved	tremendously	since	those	days,	and	it	is	my	privilege	to	open
the	door	for	you	as	you	walk	into	an	exciting	new	world	of	possibilities.	Viktor
and	Björn	are	brilliant	and	experienced	developers	with	a	remarkable	pedigree,
and	they	have	a	lot	of	great	things	in	store	for	you.

Ben	Garney
CEO,	The	Engine	Company

Contributors

About	the	authors
Viktor	 Sehr	 is	 the	 main	 developer	 at	 Toppluva,	 working	 with	 a	 highly-
optimized	graphics	engine	aimed	for	mobile	hardware.
He	has	10	years	of	professional	experience	using	C++,	with	real-time	graphics,
audio,	 and	 architectural	 design	 as	 his	 focus	 areas.	 Through	 his	 career,	 he	 has
developed	medical	visualization	software	at	Mentice	and	Raysearch	Laboratories
as	well	as	 real-time	audio	applications	at	Propellerhead	Software.	Viktor	holds
an	M.S.	in	media	science	from	Linköping	University.

I	would	like	to	acknowledge	the	colleagues	who	have	broadened	my	knowledge
in	 programming	 during	 my	 carrier	 (in	 alphabetical	 order);	 Andreas	 Brinck,
Peter	 Forsberg,	 Rickard	 Holmberg,	 Sigfred	 Håvardssen,	 Tobias	 Kruseborn,
Philippe	 Peirano,	 Johan	 Riddersporre,	Marcus	 Sonestedt,	 and	Mattias	 Unger.
Additionally,	I	would	like	to	thank	our	technical	reviewers	Louis	E.	Mauget,	and
especially,	Sergey	Gomon.	Lastly,	my	Hanna,	for	your	love	and	support.

Björn	Andrist	 is	 a	 freelance	 software	 consultant	 currently	 focusing	 on	 audio
applications.	For	more	 than	10	years,	he	has	been	working	professionally	with
C++	 in	 projects	 ranging	 from	 Unix	 server	 applications	 to	 real-time	 audio
applications	 on	 desktop	 and	mobile.	 In	 the	 past,	 he	 has	 also	 taught	 courses	 in
algorithms	 and	 data	 structures,	 concurrent	 programming,	 and	 programming
methodologies.	 Björn	 holds	 a	 BS	 in	 computer	 engineering	 and	 an	 MS	 in
computer	science	from	KTH	Royal	Institute	of	Technology.

First	 I	 would	 like	 to	 thank	 the	 team	 at	 Packt	 Publishing	 who	 helped	 and
contributed	 to	 make	 this	 book	 possible.	 Thank	 you	 Louis	 E.	 Mauget	 for
reviewing	 the	 book	 and	 providing	 me	 with	 insights,	 knowledge,	 and
encouragement.	 A	 special	 thanks	 goes	 to	 Sergey	 Gomon,	 who	 has	 done	 an
outstanding	 job	reviewing	 the	book	and	working	with	 the	code	examples.	Last,
and	most	of	all,	I	must	thank	my	family	for	their	support	and	for	understanding
my	many	hours	at	the	computer	-	thank	you	Aleida,	Agnes,	and	Clarence.

About	the	reviewers
Sergey	Gomon	started	his	journey	in	IT	10	years	ago	in	Belarus	State	University
of
Informatics	and	Radioelectronics	in	the	artificial	intelligence	department.	He	has
about	8	years	of	industrial	programming	experience	using	C++	in	several	fields,
such	as	 network	 programming,	 information	 security,	 and	 image	 processing.	 In
his	free	time,	he	likes	reading,	traveling,	and	studying	something	new.

He	 currently	 works	 at	 Regula	 and	 SolarWinds	MSP,	 and	 is	 an	 activist	 of	 the
CoreHard
C++	community.

I	want	to	say	thanks	to	my	friend	Artem	Lapitsky	who	is	always	ready	to	share
his	wisdom	with	me.

	

Louis	E.	Mauget	never	 saw	 the	ENIAC	but	coded	 in	 those	 languages,	adding
several	modern	 languages	and	 frameworks.	C++	 continues	 to	 evolve,	 and	Lou
evolves	with	 it.	 Interested	 in	 reactive	 functional	 programming,	 containers,	 and
deep	learning,	he	blogs	about	software	technology	for	Keyhole	Software,	where
he	works	as	a	senior	software	engineer.	A	coauthor	of	three	computer	books,	he
also	 wrote	 IBM	 developerWorks	 tutorials	 and	 a	 WebSphere	 Journal	 two-part
LDAP	tutorial.	He	cowrote	several	J2EE	certification	tests	for	IBM	and	has	been
a	reviewer	for	Packt	Publishing	and	others.

	

	

	

Packt	 is	 searching	 for	 authors
like	you
If	you're	interested	in	becoming	an	author	for	Packt,	please	visit	authors.packtpub.c
om	 and	 apply	 today.	 We	 have	 worked	 with	 thousands	 of	 developers	 and	 tech
professionals,	just	like	you,	to	help	them	share	their	insight	with	the	global	tech
community.	You	can	make	a	general	application,	apply	 for	a	specific	hot	 topic
that	we	are	recruiting	an	author	for,	or	submit	your	own	idea.

http://authors.packtpub.com

Table	of	Contents
Preface

Who	this	book	is	for

What	this	book	covers

To	get	the	most	out	of	this	book

Download	the	example	code	files

Conventions	used

Get	in	touch

Reviews

1.	 A	Brief	Introduction	to	C++
Why	C++?

Zero-cost	abstractions

Programming	languages	and	machine	code	abstractions

Abstractions	in	other	languages

Portability

Robustness

C++	of	today

The	aim	of	this	book

Expected	knowledge	of	the	reader

C++	compared	with	other	languages

Competing	languages	and	performance

Non-performance-related	C++	language	features

Value	semantics

Const	correctness

Object	ownership	and	garbage	collection	in	C++

Avoiding	null	objects	using	C++	references

Drawbacks	of	C++

Class	interfaces	and	exceptions

Strict	class	interfaces

Error	handling	and	resource	acquisition

Preserving	the	valid	state

Resource	acquisition

Exceptions	versus	error	codes

Libraries	used	in	this	book

Summary

2.	 Modern	C++	Concepts
Automatic	type	deduction	with	the	auto	keyword	

Using	auto	in	function	signatures

Using	auto	for	variables

Const	reference

Mutable	reference

Forwarding	reference

Conclusion

The	lambda	function

Basic	syntax	of	a	C++	lambda	function

The	capture	block

Capture	by	reference	versus	capture	by	value

Similarities	between	a	Lambda	and	a	class

Initializing	variables	in	capture

Mutating	lambda	member	variables

Mutating	member	variables	from	the	compiler's	perspective

Capture	all

Assigning	C	function	pointers	to	lambdas

Lambdas	and	std::function

Assigning	lambdas	to	std::functions

Implementing	a	simple	Button	class	with	std::function

Performance	consideration	of	std::function

An	std::function	cannot	be	inlined

An	std::function	heap	allocates	and	captures	variables

Invoking	an	std::function	requires	a	few	more	operations	than	

a	lambda

The	polymorphic	lambda

Creating	reusable	polymorphic	lambdas

Const	propagation	for	pointers

Move	semantics	explained

Copy-construction,	swap,	and	move

Copy-constructing	an	object

Swapping	two	objects

Move-constructing	an	object

Resource	acquisition	and	the	rule	of	three

Implementing	the	rule	of	three

Constructor

Limitations	of	the	rule	of	three

Avoiding	copies	without	move	semantics

Introducing	move	semantics

Named	variables	and	r-values

Accept	arguments	by	move	when	applicable

Default	move	semantics	and	the	rule	of	zero

Rule	of	zero	in	a	real	code	base

A	note	on	empty	destructors

A	common	pitfall	-	moving	non-resources

Applying	the	&&	modifier	to	class	member	functions

Representing	optional	values	with	std::optional

Optional	return	values

Optional	member	variables

Sorting	and	comparing	std::optional

Representing	dynamic	values	with	std::any

Performance	of	std::any

Summary

3.	 Measuring	Performance
Asymptotic	complexity	and	big	O	notation

Growth	rates

Amortized	time	complexity

What	to	measure?

Performance	properties

Performance	testing	–	best	practices

Knowing	your	code	and	hot	spots

Profilers

Instrumentation	profilers

Sampling	profilers

Summary

4.	 Data	Structures
Properties	of	computer	memory

STL	containers

Sequence	containers

Vector	and	array

Deque

List	and	forward_list

The	basic_string

Associative	containers

Ordered	sets	and	maps

Unordered	sets	and	maps

Hash	and	equals

Hash	policy

Container	adaptors

Priority	queues

Parallel	arrays

Summary

5.	 A	Deeper	Look	at	Iterators
The	iterator	concept

Iterator	categories

Pointer-mimicking	syntax

Iterators	as	generators

Iterator	traits

Implementing	a	function	using	iterator	categories

Extending	the	IntIterator	to	bidirectional

Practical	example	–	iterating	floating	point	values	within	a	range

Illustrated	usage	examples

Utility	functions

How	to	construct	a	linear	range	iterator

Iterator	usage	example

Generalizing	the	iterator	pair	to	a	range

The	make_linear_range	convenience	function

Linear	range	usage	examples

Summary

6.	 STL	Algorithms	and	Beyond
Using	STL	algorithms	as	building	blocks

STL	algorithm	concepts

Algorithms	operate	on	iterators

Implementing	a	generic	algorithm	that	can	be	used	with	any	container

Iterators	for	a	range	point	to	the	first	element	and	the	element	aft

er	the	last

Algorithms	do	not	change	the	size	of	the	container

Algorithms	with	output	require	allocated	data

Algorithms	use	operator==	and	operator<	by	default

Custom	comparator	function

General-purpose	predicates

Algorithms	require	move	operators	not	to	throw

Algorithms	have	complexity	guarantees

Algorithms	perform	just	as	well	as	C	library	function	equivalents

STL	algorithms	versus	handcrafted	for-loops

Readability	and	future-proofing

Real-world	code	base	example

Usage	examples	of	STL	algorithms	versus	handcrafted	for-loops

Example	1	–	Unfortunate	exceptions	and	performance	problems

Example	2	–	STL	has	subtle	optimizations	even	in	simple	algori

thms

Sorting	only	for	the	data	you	need	to	retrieve

Use	cases

Performance	evaluation

The	future	of	STL	and	the	ranges	library

Limitations	of	the	iterators	in	STL

Introduction	to	the	ranges	library

Composability	and	pipeability

Actions,	views,	and	algorithms

Actions

Views

Algorithms

Summary

7.	 Memory	Management
Computer	memory

The	virtual	address	space

Memory	pages

Thrashing

Process	memory

Stack	memory

Heap	memory

Objects	in	memory

Creating	and	deleting	objects

Placement	new

The	new	and	delete	operators

Memory	alignment

Padding

Memory	ownership

Handling	resources	implicitly

Containers

Smart	pointers

Unique	pointer

Shared	pointer

Weak	pointer

Small	size	optimization

Custom	memory	management

Building	an	arena

A	custom	memory	allocator

Summary

8.	 Metaprogramming	and	Compile-Time	Evaluation
Introduction	to	template	metaprogramming

Using	integers	as	template	parameters

How	the	compiler	handles	a	template	function

Using	static_assert	to	trigger	errors	at	compile	time

Type	traits

Type	trait	categories

Using	type	traits

Receiving	the	type	of	a	variable	with	decltype

Conditionally	enable	functions	based	on	types	with	std::enable_if_t

Introspecting	class	members	with	std::is_detected

Usage	example	of	is_detected	and	enable_if_t	combined

The	constexpr	keyword

Constexpr	functions	in	a	runtime	context

Verify	compile-time	computation	using	std::integral_constant

The	if	constexpr	statement

Comparison	with	runtime	polymorphism

Example	of	generic	modulus	function	using	if	constexpr

Heterogeneous	containers

Static-sized	heterogenous	containers

The	std::tuple	container

Accessing	the	members	of	a	tuple

Iterating	std::tuple

Unrolling	the	tuple

Implementing	other	algorithms	for	tuples

Accessing	tuple	elements

Structured	bindings

The	variadic	template	parameter	pack

An	example	of	a	function	with	variadic	number	of	arguments

How	to	construct	a	variadic	parameter	pack

Dynamic-sized	heterogenous	containers

Using	std::any	as	the	base	for	a	dynamic-size	heterogenous	container

The	std::variant

Visiting	variants

Heterogenous	container	of	variants

Accessing	the	values	in	our	variant	container

Global	function	std::get

Real	world	examples	of	metaprogramming

Example	1	–	Reflection

Making	a	class	reflect	its	members

C++	libraries	which	simplifies	reflection

Using	the	reflection

Evaluating	the	assembler	output	of	the	reflection

Conditionally	overloading	global	functions

Testing	reflection	capabilities

Example	2	–	Creating	a	generic	safe	cast	function

Example	3	–	Hash	strings	at	compile	time

The	advantages	of	compile-time	hash	sum	calculation

Implement	and	verify	a	compile-time	hash	function

Constructing	a	PrehashedString	class

Forcing	PrehashedString	to	only	accept	compile	time	string	literals

Evaluating	PrehashedString

Evaluating	get_bitmap_resource()	with	PrehashedString

Summary

9.	 Proxy	Objects	and	Lazy	Evaluation
An	introduction	to	lazy	evaluation	and	proxy	objects

Lazy	versus	eager	evaluation

Proxy	objects

Comparing	concatenated	strings	using	a	proxy

Implementing	the	proxy

Performance	evaluation

The	r-value	modifier

Assigning	a	concatenated	proxy

Postponing	an	sqrt	computation	when	comparing	distances

A	simple	two-dimensional	point	class

The	underlying	mathematics

Implementing	the	DistProxy	object

Expanding	DistProxy	to	something	more	useful

Comparing	distances	with	DistProxy

Calculating	distances	with	DistProxy

Preventing	the	misuse	of	DistProxy

Performance	evaluation

Creative	operator	overloading	and	proxy	objects

The	pipe	operator	as	an	extension	method

The	pipe	operator

The	infix	operator

Further	reading

Summary

10.	 Concurrency
Understanding	the	basics	of	concurrency

What	makes	concurrent	programming	hard?

Concurrency	and	parallelism

Time	slicing

Shared	memory

Data	races

Mutex

Deadlock

Synchronous	and	asynchronous	tasks

Concurrent	programming	in	C++

The	thread	support	library

Threads

Thread	states

Protecting	critical	sections

Avoiding	deadlocks

Condition	variables

Returning	data	and	handling	errors

Tasks

Atomic	support	in	C++

Using	shared_ptr	in	a	multithreaded	environment

C++	memory	model

Instruction	reordering

Atomics	and	memory	orders

Lock-free	programming

Lock-free	queue	example

Performance	guidelines

Avoid	contention

Avoid	blocking	operations

Number	of	threads/CPU	cores

Thread	priorities

Thread	affinity

False	sharing

Summary

11.	 Parallel	STL
Importance	of	parallelism

Parallel	algorithms

Implementing	parallel	std::transform()

Naive	implementation

Performance	evaluation

Shortcomings	of	the	naive	implementation

Divide	and	conquer

Implementation

Performance	evaluation

Implementing	parallel	std::count_if

Implementing	parallel	std::copy_if

Approach	one	–	Use	a	synchronized	write	position

Inner	function

Outer	function

Approach	two	–	Split	algorithm	into	two	parts

Part	one	–	Copy	elements	in	parallel	into	the	destination	rang

e

Part	two	–	Move	the	sparse	range	sequentially	into	a	continuou

s	range

Performance	evaluation

Parallel	STL

Execution	policies

Sequenced	policy

Parallel	policy

Parallel	unsequenced	policy

Parallel	modifications	of	algorithm

std::accumulate	and	std::reduce

std::transform_reduce

std::for_each

Parallelizing	an	index-based	for-loop

Combining	std::for_each	with	linear	range

Simplifying	construction	via	a	wrapper

Executing	STL	algorithms	on	the	GPU

GPU	APIs	and	parallel	operations

Programmable	GPUs

Shader	programs

STL	algorithms	and	the	GPU

Boost	Compute

Basic	concepts	of	Boost	Compute

OpenCL

Initializing	Boost	Compute

Transfer	a	simple	transform-reduce	algorithm	to	Boost	Compute

The	algorithm	in	standard	C++

Transforming	the	algorithm	to	Boost	Compute

Adapting	the	circle	struct	for	use	with	Boost	Compute

Converting	circle_area_cpu	to	Boost	Compute

The	BOOST_COMPUTE_FUNCTION	macro

Implementing	the	transform-reduction	algorithm	on	the	GPU

Using	predicates	with	Boost	Compute

Using	a	custom	kernel	in	Boost	Compute

Box	filter

Implementing	the	kernel

Parallelizing	for	two	dimensions

Verify	GPU	computation	on	the	CPU

Summary

Other	Books	You	May	Enjoy

Leave	a	review	-	let	other	readers	know	what	you	think

Preface
C++	of	 today	provides	programmers	 the	 ability	 to	write	 expressive	 and	 robust
code	while	still	having	the	ability	to	target	almost	any	hardware	platform	or	real-
time	requirements.	This	makes	C++	a	unique	language.	Over	the	last	few	years,
C++	has	turned	into	a	modern	language	that	is	more	fun	to	use	and	with	better
defaults.

This	 book	 aims	 to	 give	 the	 reader	 a	 solid	 foundation	 to	 write	 efficient
applications	 as	 well	 as	 an	 insight	 into	 strategies	 for	 implementing	 libraries	 in
modern	C++.	We	have	 tried	 to	 take	 a	 practical	 approach	 to	 explain	 how	C++
works	 today,	where	C++14/C++17	 features	 are	 a	 natural	 part	 of	 the	 language,
rather	than	looking	at	C++	historically.

This	book	has	been	written	by	us,	Viktor	and	Björn,	collaboratively.	However,
the	 drafts	 of	 each	 chapter	 were	 written	 individually,	 and	 after	 that,	 we	 have
worked	 together	 to	 improve	 the	 chapters	 and	 assemble	 them	 into	 a	 complete
book.	Viktor	is	the	main	author	of	chapter	1,	2,	5,	8,	9,	and	11.	Björn	is	the	main
author	of	 chapter	 3,	 4,	 7,	 and	 10.	We	 have	worked	 hard	 to	 attain	 a	 consistent
style	throughout	the	book,	and	we	think	that	it	has	been	a	big	advantage	to	write
this	 book	 together.	 Many	 subjects	 have	 been	 debated	 and	 processed	 for	 the
better.

Who	this	book	is	for
This	 book	 expects	 you	 to	 have	 a	 basic	 knowledge	 of	 C++	 and	 computer
architecture	and	a	genuine	interest	in	evolving	your	skills.	Hopefully,	by	the	time
you	 finish	 this	 book,	 you	 will	 have	 gained	 a	 few	 insights	 into	 how	 you	 can
improve	your	C++	applications,	both	performance-wise	and	syntactically.	On	top
of	that,	we	also	hope	that	you	will	have	a	few	aha	moments.

What	this	book	covers
Chapter	1,	A	Brief	Introduction	to	C++,	 introduces	some	important	properties	of
C++	such	as	zero-cost	abstractions,	value	semantics,	const	correctness,	explicit
ownership,	and	error	handling.	It	also	discusses	the	drawbacks	of	C++.

Chapter	2,	Modern	C++	Concepts,	outlines	automatic	 type	deduction	using	auto,
lambda	functions,	move	semantics,	std::optional,	and	std::any.

Chapter	3,	Measuring	Performance,	 discusses	 asymptotic	 complexity	 and	 big	O
notation,	 practical	 performance	 testing,	 and	 how	 to	 profile	 your	 code	 to	 find
hotspots.

Chapter	4,	Data	Structures,	 takes	 you	 through	 the	 importance	 of	 structuring	 the
data	 so	 that	 it	 can	 be	 accessed	 quickly.	 STL	 containers	 such	 as	 std::vector,
std::list,	 std::unordered_map,	 and	 std::priority_queue	 are	 introduced.	 Finally,	 we
describe	how	to	iterate	over	parallel	arrays.

Chapter	 5,	A	Deeper	 Look	 at	 Iterators,	 dives	 into	 the	 concept	 of	 iterators,	 and
shows	how	iterators	can	go	beyond	just	referring	to	objects	in	containers.

Chapter	 6,	 STL	 Algorithms	 and	 Beyond,	 shows	 the	 obvious,	 and	 the	 not	 so
obvious,	advantages	of	STL	algorithms	over	hand	rolled	for	loops.	It	also	takes	a
look	 at	 the	 limitations	 of	 STL	 algorithms	 and	 how	 the	 new	 Ranges	 library
overcomes	these	limits.

Chapter	 7,	 Memory	 Management,	 focuses	 on	 safe	 and	 efficient	 memory
management.	 This	 includes	 memory	 ownership,	 RAII,	 smart	 pointers,	 stack
memory,	dynamic	memory,	and	custom	memory	allocators.

Chapter	 8,	 Metaprogramming	 and	 Compile-Time	 Evaluation,	 explains
metaprogramming	 concepts	 such	 as	 constexpr,	 heterogeneous
containers,	 type_traits,	 std::enable_if,	 and	 std::is_detected.	 It	 also	 gives	 practical
examples	of	metaprogramming	use	cases,	such	as	reflection.

Chapter	9,	Proxy	Objects	and	Lazy	Evaluation,	explores	how	proxy	objects	can	be

used	 to	 perform	 under-the-hood	 optimizations	 while	 preserving	 clean	 syntax.
Additionally,	some	creative	uses	of	operator-overloading	are	demonstrated.

Chapter	 10,	Concurrency,	 covers	 the	 fundamentals	 of	 concurrent	 programming,
including	parallel	execution,	shared	memory,	data	 races,	and	deadlocks.	 It	 also
includes	 an	 introduction	 to	 the	C++	 thread	 support	 library,	 the	 atomic	 library,
and	the	C++	memory	model.

Chapter	 11,	Parallel	 STL,	 starts	 by	 showing	 the	 complexity	 of	 writing	 parallel
algorithms.	 It	 then	 demonstrates	 how	 to	 utilize	 STL	 algorithms	 in	 a	 parallel
context	using	the	parallel	extensions	for	STL	and	Boost	Compute.

To	get	the	most	out	of	this	book
To	get	the	most	out	of	this	book,	you	need	to	have	a	basic	knowledge	of	C++.	It's
preferable	if	you	have	already	been	facing	problems	related	to	performance	and
are	 now	 looking	 for	 new	 tools	 and	 practices	 to	 have	 ready	 the	 next	 time	 you
need	to	work	with	performance	and	C++.

There	 are	 a	 lot	 of	 code	 examples	 in	 this	 book.	 Some	 are	 taken	 from	 the	 real
world,	but	most	of	 them	are	artificial	or	vastly	 simplified	examples	 to	prove	a
concept	rather	than	providing	you	with	production-ready	code.	We	have	put	all
the	code	examples	in	source	files	divided	by	chapter	so	 that	 it	 is	 fairly	easy	 to
find	the	examples	you	want	to	experiment	with.	If	you	open	up	the	source	code
files,	you	will	note	that	we	have	replaced	most	of	 the	main()	functions	from	the
examples	with	test	cases	written	with	Google	Test	framework.	We	hope	that	this
will	help	you	rather	than	confuse	you.	It	allowed	us	to	write	helpful	descriptions
for	each	example,	and	 it	also	makes	 it	easier	 to	 run	all	 the	examples	 from	one
chapter	at	once.

In	order	to	compile	and	run	the	examples,	you	will	need	the	following:

A	computer
An	 operation	 system	 (we	 have	 verified	 the	 examples	 on	 Windows	 and
macOS)
A	compiler	(we	have	been	using	Clang,	GCC,	and	Microsoft	Visual	C++)
CMake

The	 CMake	 script	 provided	 with	 the	 example	 code	 will	 download	 and	 install
further	dependencies	such	as	Boost,	OpenCL,	and	Google	Test.

During	the	writing	of	this	book,	it	has	been	of	great	help	for	us	to	use	Compiler
Explorer,	which	is	available	at	https://godbolt.org/.	Compiler	Explorer	is	an	online
compiler	 service	 that	 lets	you	 try	various	 compilers	 and	 versions.	Try	 it	 out	 if
you	haven't	already!

https://godbolt.org/

Download	the	example	code	files
You	can	download	the	example	code	files	for	this	book	from	your	account	at	www.
packtpub.com.	If	you	purchased	this	book	elsewhere,	you	can	visit	www.packtpub.com/su
pport	and	register	to	have	the	files	emailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	at	www.packtpub.com.
2.	 Select	the	SUPPORT	tab.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	 the	 name	 of	 the	 book	 in	 the	 Search	 box	 and	 follow	 the	 onscreen

instructions.

Once	 the	 file	 is	 downloaded,	 please	 make	 sure	 that	 you	 unzip	 or	 extract	 the
folder	using	the	latest	version	of:

WinRAR/7-Zip	for	Windows
Zipeg/iZip/UnRarX	for	Mac
7-Zip/PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at	https://github.com/PacktPu
blishing/Cpp-High-Performance.	 We	 also	 have	 other	 code	 bundles	 from	 our	 rich
catalog	of	books	and	videos	available	at	https://github.com/PacktPublishing/.	Check
them	out!

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Cpp-High-Performance
https://github.com/PacktPublishing/

Conventions	used
There	are	a	number	of	text	conventions	used	throughout	this	book.

CodeInText:	Indicates	code	words	in	text,	folder	names,	filenames,	file	extensions,
dummy	URLs,	and	user	input.	Here	is	an	example:	"The	keyword	constexpr	was
introduced	in	C++11."

A	block	of	code	is	set	as	follows:

#include	<iostream>

auto	main()	->	int	{

		std::cout	<<	"High	Performance	C++\n";

}

When	we	wish	 to	draw	your	attention	 to	a	particular	part	of	 a	code	block,	 the
relevant	lines	or	items	are	set	in	bold:

#include	<iostream>

auto	main()	->	int	{

		std::cout	<<	"High	Performance	C++\n";

}

Any	command-line	input	or	output	is	written	as	follows:

$	clang++	-std=c++17	high_performance.cpp

$./a.out

$	High	Performance	C++

Bold:	Indicates	a	new	term,	an	important	word,	or	words	that	you	see	onscreen.
For	example,	words	in	menus	or	dialog	boxes	appear	in	the	text	like	this.	Here	is
an	example:	"Select	System	info	from	the	Administration	panel."

Warnings	or	important	notes	appear	like	this.

Tips	and	tricks	appear	like	this.

Get	in	touch
Feedback	from	our	readers	is	always	welcome.

General	 feedback:	Email	feedback@packtpub.com	and	mention	 the	book	 title	 in	 the
subject	of	your	message.	 If	 you	have	questions	 about	 any	aspect	of	 this	book,
please	email	us	at	questions@packtpub.com.

Errata:	 Although	 we	 have	 taken	 every	 care	 to	 ensure	 the	 accuracy	 of	 our
content,	mistakes	do	happen.	If	you	have	found	a	mistake	in	this	book,	we	would
be	grateful	if	you	would	report	this	to	us.	Please	visit	www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering
the	details.

Piracy:	 If	you	come	across	any	illegal	copies	of	our	works	in	any	form	on	the
Internet,	we	would	be	grateful	if	you	would	provide	us	with	the	location	address
or	 website	 name.	 Please	 contact	 us	 at	 copyright@packtpub.com	 with	 a	 link	 to	 the
material.

If	you	are	interested	in	becoming	an	author:	If	there	is	a	topic	that	you	have
expertise	 in	 and	you	 are	 interested	 in	 either	writing	 or	 contributing	 to	 a	 book,
please	visit	authors.packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Reviews
Please	leave	a	review.	Once	you	have	read	and	used	this	book,	why	not	leave	a
review	on	the	site	that	you	purchased	it	from?	Potential	readers	can	then	see	and
use	 your	 unbiased	 opinion	 to	 make	 purchase	 decisions,	 we	 at	 Packt	 can
understand	 what	 you	 think	 about	 our	 products,	 and	 our	 authors	 can	 see	 your
feedback	on	their	book.	Thank	you!

For	more	information	about	Packt,	please	visit	packtpub.com.

https://www.packtpub.com/

A	Brief	Introduction	to	C++
This	 chapter	 will	 introduce	 some	 of	 the	 features	 of	 C++	 that	 we	 think	 are
important	 for	 writing	 robust	 and	 high	 performance	 applications.	We	 will	 also
discuss	 advantages	 and	 disadvantages	 of	 C++	 over	 languages	 based	 upon	 a
garbage	 collector.	 Last,	 we	 will	 look	 at	 some	 examples	 of	 how	 to	 handle
exceptions	and	resources.

Why	C++?
We	begin	 this	book	by	exploring	 some	of	 the	 reasons	 for	using	C++	 today.	 In
short,	 C++	 is	 a	 highly	 portable	 language	 which	 offers	 zero-cost	 abstractions.
Furthermore,	we	believe	that	C++	provides	programmers	with	the	ability	to	write
and	manage	large,	expressive,	and	robust	code	bases.	Let's	explore	the	meaning
of	each	of	these	properties.

Zero-cost	abstractions
Active	code	bases	grow.	The	more	developers	working	on	a	code	base,	the	larger
the	 code	 base	 becomes.	We	 need	 abstractions	 such	 as	 functions,	 classes,	 data
structures,	 layers	and	so	on	 in	order	 to	manage	 the	complexity	of	a	 large-scale
code	 base.	 But	 constantly	 adding	 abstractions	 and	 new	 levels	 of	 indirection
comes	at	a	price	—	efficiency.	This	is	where	zero-cost	abstractions	plays	its	role.
A	 lot	 of	 the	 abstractions	 offered	 by	 C++	 comes	 at	 a	 very	 low	 price.	 At	 a
minimum,	C++	offers	efficient	alternatives	at	hot	spots	where	performance	really
is	a	concern.

With	 C++	 you	 are	 free	 to	 talk	 about	 memory	 addresses	 and	 other	 computer
related	low-level	terms	when	needed.	However,	in	a	large-scale	software	project
it	is	desirable	to	express	code	in	terms	that	deals	with	whatever	the	application	is
doing,	and	let	the	libraries	handle	the	computer	related	terminology.	The	source
code	of	a	graphics	application	may	deal	with	pencils,	colors,	and	filters,	whereas
a	game	may	deal	with	mascots,	 castles,	 and	mushrooms.	Low-level	 computer-
related	 terms	 such	 as	memory	 addresses	 can	 stay	 hidden	 in	 C++	 library	 code
where	performance	is	critical.

By	library	code,	we	refer	 to	code	whose	concepts	are	not	strictly	related	to	the
application.	The	 line	 between	 library	 code	 and	 application	 code	 can	 be	 blurry
though,	and	 libraries	are	often	built	upon	other	 libraries.	An	example	could	be
the	container	algorithms	provided	in	the	Standard	Template	Library	(STL)	of
C++	or	a	general-purpose	math	library.

Programming	 languages	 and
machine	code	abstractions
In	 order	 to	 relieve	 programmers	 from	 dealing	 with	 computer-related	 terms,
modern	 programming	 languages	 use	 abstractions	 so	 that	 a	 list	 of	 strings,	 for
example,	can	be	handled	and	thought	of	as	a	 list	of	strings	rather	 than	a	 list	of
addresses	 that	we	may	 easily	 lose	 track	 of	 if	we	make	 the	 slightest	 typo.	Not
only	do	the	abstractions	relieve	the	programmers	from	bugs,	they	also	make	the
code	more	expressive	by	using	concepts	from	the	domain	of	the	application.	In
other	words,	the	code	is	expressed	in	terms	that	are	closer	to	a	spoken	language
than	if	expressed	with	abstract	programming	keywords.

C++	 and	 C	 are	 nowadays	 two	 completely	 different	 languages.	 Still,	 C++	 is
highly	compatible	with	C	and	has	inherited	a	lot	of	its	syntax	and	idioms	from	C.
To	 give	 you	 some	 examples	 of	 C++	 abstractions	 we	 will	 here	 show	 how	 a
problem	can	be	solved	in	both	C	and	C++.

Take	 a	 look	 at	 the	 following	 C/C++	 code	 snippets,	 which	 correspond	 to	 the
question:	"How	many	copies	of	Hamlet	is	in	the	list	of	books?".	We	begin	with
the	C	version:

//	C	version

struct	string_elem_t	{	const	char*	str_;	string_elem_t*	next_;	};

int	num_hamlet(string_elem_t*	books)	{

		const	char*	hamlet	=	"Hamlet";

		int	n	=	0;

		string_elem_t*	b;	

		for	(b	=	books;	b	!=	0;	b	=	b->next_)

				if	(strcmp(b->str_,	hamlet)	==	0)

						++n;

		return	n;

}

The	equivalent	version	using	C++	would	look	something	like	this:

//	C++	version

int	num_hamlet(const	std::list<std::string>&	books)	{

		return	std::count(books.begin(),	books.end(),	"Hamlet");

}

Although	 the	 C++	 version	 is	 still	 more	 of	 a	 robot	 language	 than	 a	 human

language,	a	 lot	of	programming	 lingo	 is	gone.	Here	are	some	of	 the	noticeable
differences	between	the	preceding	two	code	snippets:

The	pointers	to	raw	memory	addresses	are	not	visible	at	all
The	std::list<std::string>		container	is	an	abstraction	of	string_elem_t
The	 std::count()	 method	 is	 an	 abstraction	 of	 both	 the	 for	 loop	 and
the	if	condition
The	 std::string	 class	 is	 (among	 other	 things)	 an	 abstraction
of	char*	and	strcmp

Basically,	 both	 versions	 of	 num_hamlet()	 translate	 to	 roughly	 the	 same	 machine
code,	but	the	language	features	of	C++	makes	it	possible	to	let	the	libraries	hide
computer	 related	 terminology	 such	 as	 pointers.	 Many	 of	 the	 modern	 C++
language	features	can	be	seen	as	abstractions	of	basic	C	functionality	and,	on	top
of	that,	basic	C++	functionality:

C++	classes	are	abstractions	of	C-structs	and	regular	functions
C++	polymorphism	is	the	abstraction	of	function	pointers

On	 top	 of	 that,	 some	 recent	 C++	 features	 are	 abstractions	 of	 former	 C++
features:

C++	lambda	functions	are	abstractions	of	C++	classes
Templates	are	abstractions	of	generating	C++	code

Abstractions	in	other	languages
Most	programming	languages	are	based	on	abstractions,	which	are	transformed
into	machine	code	 to	be	executed	by	 the	CPU.	C++	has	 evolved	 into	a	highly
expressive	language	just	like	many	of	the	other	popular	programming	languages
of	 today.	What	distinguishes	C++	from	most	other	 languages	 is	 that,	while	 the
other	 languages	 have	 implemented	 these	 abstractions	 at	 the	 cost	 of	 runtime
performance,	C++	has	always	strived	to	implement	its	abstractions	at	zero	cost	at
runtime.	This	doesn't	mean	that	an	application	written	in	C++	is	by	default	faster
than	the	equivalent	in,	say,	C#.	Rather,	it	means	that	by	using	C++,	you'll	have
explicit	control	of	the	emitted	machine	code	instructions	and	memory	footprint	if
needed.

To	be	fair,	optimal	performance	is	very	rarely	required	today	and	compromising
performance	for	lower	compilation	times,	garbage	collection,	or	safety,	like	other
languages	do,	is	in	many	cases	more	reasonable.

Portability
C++	has	been	a	popular	and	comprehensive	language	for	a	long	time.	It's	highly
compatible	with	C	and	very	little	has	been	deprecated	in	the	language,	for	better
or	 worse.	 The	 history	 and	 design	 of	 C++	 has	 made	 it	 to	 a	 highly	 portable
language,	and	the	evolution	of	modern	C++	has	ensured	that	it	will	stay	that	way
for	 a	 long	 time	 to	 come.	 C++	 is	 a	 living	 language	 and	 compiler	 vendors	 are
currently	doing	a	remarkable	job	to	implement	new	language	features	rapidly.

Robustness
In	addition	 to	performance,	expressiveness,	and	portability,	C++	offers	a	set	of
language	features	that	gives	the	programmer	the	ability	to	write	robust	code.

In	 our	 experience,	 robustness	 does	 not	 refer	 to	 strength	 in	 the	 programming
language	 itself	 –	 it's	 possible	 to	write	 robust	 code	 in	 any	 language.	However,
strict	ownership	of	resources,	const	correctness,	value	semantics,	type	safety,	and
deterministic	destruction	of	objects	are	some	of	the	features	offered	by	C++	that
makes	 it	 easier	 to	 write	 robust	 code.	 That	 is,	 the	 ability	 to	 write	 functions,
classes,	and	libraries	that	are	easy	to	use	and	hard	to	misuse.

C++	of	today
To	 sum	 it	 up,	 C++	 of	 today	 provides	 programmers	 the	 ability	 to	 write	 an
expressive	and	robust	code	base	while	still	having	the	ability	to	target	almost	any
hardware	 platform	 or	 real-time	 requirements.	 Of	 the	 most	 commonly	 used
languages	today,	C++	is	the	only	one	that	gives	all	of	these	properties.

The	aim	of	this	book
This	 book	 aims	 to	 give	 the	 reader	 a	 solid	 foundation	 to	 write	 efficient
applications	as	well	as	an	insight	into	strategies	for	implementing	the	libraries	in
modern	C++.	We	 have	 tried	 to	 take	 a	 practical	 approach	 to	 explain	 how	C++
works	 today	where	C++14/C++17	 features	 are	 a	 natural	 part	 of	 the	 language,
rather	than	looking	at	C++	historically.

Expected	knowledge	of	the	reader
This	 book	 expects	 you	 to	 have	 a	 basic	 knowledge	 of	 C++	 and	 computer
architecture,	 and	 a	 genuine	 interest	 in	 evolving	 your	 skills.	 Hopefully,	 by	 the
time	you	finish	this	book,	you	will	have	gained	a	few	insights	into	how	you	can
improve	your	C++	applications,	both	performance-wise	and	syntactically.	On	top
of	that,	we	also	hope	that	you	will	have	a	few	aha	moments.

C++	 compared	 with	 other
languages
A	multitude	 of	 application	 types,	 platforms,	 and	 programming	 languages	 have
emerged	since	C++	was	first	released.	Still,	C++	is	a	widely	used	language,	and
its	compilers	are	available	for	most	platforms.	The	major	exception,	as	of	today,
is	 the	 web	 platform,	 where	 JavaScript	 and	 its	 related	 technologies	 are	 the
foundation.	However,	 the	web	 platform	 is	 evolving	 into	 being	 able	 to	 execute
what	was	previously	only	possible	 in	desktop	applications,	 and	 in	 that	 context
C++	 has	 found	 its	 way	 into	 web	 applications	 using	 technologies	 such	 as
Emscripten/asm.js	and	web	assembly.

Competing	 languages	 and
performance
In	 order	 to	 understand	 how	 C++	 achieves	 its	 performance	 compared	 to	 other
programming	 languages,	 we'd	 like	 to	 discuss	 some	 fundamental	 differences
between	C++	and	most	other	modern	programming	languages.

For	 simplicity,	 this	 section	will	 focus	on	comparing	C++	 to	 Java,	although	 the
comparisons	 for	 most	 parts	 also	 apply	 to	 other	 programming	 language	 based
upon	a	garbage	collector,	such	as	C#	and	JavaScript.

Firstly,	Java	compile	to	bytecode,	which	is	then	compiled	to	machine	code	while
the	application	 is	executing,	whereas	C++	directly	compiles	 the	source	code	 to
machine	code.	Although	bytecode	and	 just-in-time	compilers	may	 theoretically
be	 able	 to	 achieve	 the	 same	 (or	 theoretically,	 even	 better)	 performance	 than
precompiled	machine	code,	as	of	 today,	 they	simply	do	not.	To	be	fair	 though,
they	perform	well	enough	for	most	cases.

Secondly,	Java	handle	dynamic	memory	in	a	completely	different	manner	from
C++.	 In	 Java,	 memory	 is	 automatically	 deallocated	 by	 a	 garbage	 collector,
whereas	 a	C++	 program	handles	memory	 deallocations	 by	 itself.	 The	 garbage
collector	 does	 prevent	 memory	 leaks,	 but	 at	 the	 cost	 of	 performance	 and
predictability.

Thirdly,	 Java	 places	 all	 its	 objects	 in	 separate	 heap	 allocations,	 whereas	 C++
allows	 the	 programmer	 to	 place	 objects	 both	 on	 the	 stack	 and	 on	 the	 heap.	 In
C++	 it's	 also	 possible	 to	 create	multiple	 objects	 in	 one	 single	 heap	 allocation.
This	 can	 be	 a	 huge	 performance	 gain	 for	 two	 reasons:	 objects	 can	 be	 created
without	always	allocating	dynamic	memory,	and	multiple	related	objects	can	be
placed	adjacent	to	one	another	in	memory.

Take	 a	 look	 at	 how	memory	 is	 allocated	 in	 the	 following	 example.	 The	C++
function	uses	the	stack	for	both	objects	and	integers;	Java	places	the	objects	on
the	heap:

C++ Java

class	Car	{

public:

		Car(int	doors)

		:	doors_(doors)	{}

private:

		int	doors_{};	

};

auto	func()	{

		auto	num_doors	=	2;

		auto	car1	=	Car{num_doors};

		auto	car2	=	Car{num_doors};

}

class	Car	{

		public	Car(int	doors)	{	

				doors_	=	doors;

		}

		private	int	doors_;

		static	void	func()	{

				int	numDoors	=	2;

				Car	car1	=	new	Car(numDoors);

				Car	car2	=	new	Car(numDoors);

		}

}

C++	places	everything	on	the	stack:

	

													

Java	places	the	Car	objects	on	the	heap:

						

Now	 take	 a	 look	 at	 the	 next	 example	 and	 see	 how	 an	 array	 of	 Car	 objects	 are
placed	in	memory	when	using	C++	and	Java	respectively:

C++ Java

auto	car_list()	{

		auto	n	=	7;

		auto	cars	=	

				std::vector<Car>{};

		cars.reserve(n);

		for(auto	i=0;	i<n;	++i){

				cars.push_back(Car{});

		}

}

void	carList()	{

		int	n	=	7;

		ArrayList<Car>	cars	=	

				new	ArrayList<Car>();

		for(int	i=0;	i<n;	i++)	{

				cars.addElement(new	Car());

		}

}

The	 following	 image	 shows	how	 the	 car
objects	are	laid	out	in	memory	in	C++:

											

The	 following	 image	 shows	 how	 the	 car
objects	are	laid	out	in	memory	in	Java:

	 	 	 	 	 	 	 	

	

The	C++	vector	contains	the	actual	Car	objects	placed	in	one	contiguous	memory
block,	 whereas	 the	 equivalent	 in	 Java	 is	 a	 contiguous	 memory	 block	 of
references	 to	 Car	 objects.	 In	 Java,	 the	 objects	 has	 been	 allocated	 separately,
which	means	that	they	can	be	located	anywhere	in	the	heap.

This	affects	the	performance	as	Java	has	to	execute	seven	allocations	instead	of
one.	 It	 also	 means	 that	 whenever	 the	 application	 iterates	 the	 list,	 there	 is	 a
performance	win	 for	 C++,	 since	 accessing	 nearby	 memory	 locations	 is	 faster
than	accessing	several	random	spots	in	memory.

Non-performance-related	 C++
language	features
In	some	discussions	about	C++	versus	other	languages,	it's	concluded	that	C++
should	only	be	used	 if	 performance	 is	 a	major	 concern.	Otherwise,	 it's	 said	 to
just	increase	the	complexity	of	 the	code	base	due	 to	manual	memory	handling,
which	may	result	in	memory	leaks	and	hard-to-track	bugs.

This	 may	 have	 been	 true	 several	 C++	 versions	 ago,	 but	 a	 modern	 C++
programmer	relies	on	the	provided	containers	and	smart	pointer	types,	which	are
part	of	the	STL.

We	 would	 here	 like	 to	 highlight	 two	 	 powerful	 features	 of	 C++	 related	 to
robustness	 rather	 than	performance,	 that	we	 think	 are	 easily	overlooked:	 value
semantics	and	const	correctness.

Value	semantics
C++	 supports	 both	 value	 semantics	 and	 reference	 semantics.	 Value	 semantics
lets	us	pass	objects	by	value	instead	of	just	passing	references	to	objects.	In	C++,
value	semantics	is	the	default,	which	means	that	when	you	pass	an	instance	of	a
class	or	struct,	it	behaves	in	the	same	way	as	passing	an	int,	float,	or	any	other
fundamental	 type.	 To	 use	 reference	 semantics,	 we	 need	 to	 explicitly	 use
references	or	pointers.

The	C++	type	system	gives	us	the	ability	to	explicitly	state	the	ownership	of	an
object.	 Compare	 the	 following	 implementations	 of	 a	 simple	 class	 in	 C++	 and
Java.	We	start	with	the	C++	version:

//	C++

class	Bagel	{

public:

		Bagel(const	std::set<std::string>&	ts)	:	toppings_(ts)	{}

private:

		std::set<std::string>	toppings_;

};

The	corresponding	implementation	in	Java	could	look	like	this:

//	Java

class	Bagel	{

		public	Bagel(ArrayList<String>	ts)	{	toppings_	=	ts;	}

		private	ArrayList<String>	toppings_;

}

In	 the	 C++	 version,	 the	 programmer	 states	 that	 the	 toppings	 are	 completely
encapsulated	by	the	Bagel	class.	Had	the	programmer	intended	the	topping	list	to
be	 shared	 among	 several	 bagels,	 it	 would	 have	 been	 declared	 as	 a	 pointer	 of
some	kind:	std::shared_ptr,	if	the	ownership	is	shared	among	several	bagels,	or	a
std::weak_ptr,	if	someone	else	owns	the	topping	list	and	is	supposed	to	modify	it
as	the	program	executes.

In	Java,	objects	references	each	other	with	shared	ownership.	Therefore,	it's	not
possible	 to	distinguish	whether	 the	 topping	list	 is	 intended	to	be	shared	among
several	bagels	or	not,	or	whether	 it	 is	handled	somewhere	else	or	 if	 it	 is,	as	 in
most	cases,	completely	owned	by	the	Bagel	class.

Compare	 the	 following	 functions;	 as	 every	 object	 is	 shared	 by	 default	 in	 Java
(and	most	 other	 languages),	 programmers	 have	 to	 take	 precautions	 for	 subtle
bugs	such	as	this:

C++ Java

Note	 how	 the	 bagels	 do	 not	 share
toppings:

auto	t	=	std::set<std::string>{};

t.insert("salt");

auto	a	=	Bagel{t};

//	'a'	is	not	affected

//	when	adding	pepper

t.insert("pepper");

//	'a'	will	have	salt

//	'b'	will	have	salt	&	pepper	

auto	b	=	Bagel{t};

//	No	bagel	is	affected

t.insert("oregano");

	

Note	 how	 both	 the	 bagels	 subtly	 share
toppings:

TreeSet<String>	t	=	new	

		TreeSet<String>();

t.add("salt");

Bagel	a	=	new	Bagel(t);

//	Now	'a'	will	subtly	

//	also	have	pepper

t.add("pepper");

//	'a'	and	'b'	share	the

//	toppings	in	't'

Bagel	b	=	new	Bagel(t);

//	Both	bagels	subtly	

//	also	have	"oregano"

toppings.add("oregano");

Const	correctness
Another	powerful	 feature	of	C++,	 that	 Java	 and	many	other	 languages	 lack,	 is
the	 ability	 to	 write	 const	 correct	 code.	 Const	 correctness	 means	 that	 each
member	function	signature	of	a	class	explicitly	tells	the	caller	whether	the	object
will	be	modified	or	not;	and	it	will	not	compile	 if	 the	caller	 tries	 to	modify	an
object	declared	const.

Here	follows	an	example	of	how	we	can	use	const	member	functions	to	prevent
unintentional	modifications	of	objects.	In	the	following	Person	class,	the	member
function	age()	 is	declared	const	and	 is	 therefore	not	allowed	 to	mutate	 the	Person
object;	whereas	set_age()	mutates	the	object	and	cannot	be	declared	const:

class	Person	{

public:

		auto	age()	const	{	return	age_;	}

		auto	set_age(int	age)	{	age_	=	age;	}

private:

		int	age_{};

};

It's	 also	 possible	 to	 distinguish	 between	 returning	 mutable	 and	 immutable
references	to	members.	In	the	following	Team	class,	the	member	function	leader()
const	returns	an	immutable	Person;	whereas	leader()	returns	a	Person	object	that	may
be	mutated:

class	Team	{

public:

		auto&	leader()	const	{	return	leader_;	}

		auto&	leader()	{	return	leader_;	}

private:

		Person	leader_{};

};

Now	let's	 see	how	the	compiler	can	help	us	 find	errors	when	we	 try	 to	mutate
immutable	 objects.	 In	 the	 following	 example,	 the	 function	 argument	 teams	 is
declared	 const,	 explicitly	 showing	 that	 this	 function	 is	 not	 allowed	 to	 modify
them:

auto	nonmutating_func(const	std::vector<Team>&	teams)	{

		auto	tot_age	=	int{0};

		

		//	Compiles,	both	leader()	and	age()	are	declared	const

		for	(const	auto&	team:	teams)	

				tot_age	+=	team.leader().age();

		//	Will	not	compile,	set_age()	requires	a	mutable	object

		for	(auto&	team:	teams)	

				team.leader().set_age(20);

}

If	 we	 want	 to	 write	 a	 function	 which	 can	 mutate	 the	 teams	 object	 we	 simply
remove	const.	This	signals	to	the	caller	that	this	function	may	mutate	the	teams:

auto	mutating_func(std::vector<Team>&	teams)	{

		auto	tot_age	=	int{0};

		

		//	Compiles,	const	functions	can	be	called	on	mutable	objects

		for	(const	auto&	team:	teams)	

				tot_age	+=	team.leader().age();

		//	Compiles,	teams	is	a	mutable	variable

		for	(auto&	team:	teams)	

				team.leader().set_age(20);

}

Object	 ownership	 and	 garbage
collection	in	C++
Except	 in	 very	 rare	 situations,	 a	 C++	 programmer	 should	 leave	 the	 memory
handling	 to	 containers	 and	 smart	 pointers	 and	 never	 have	 to	 rely	 on	 manual
memory	handling.

To	put	it	clearly,	the	garbage	collection	model	in	Java	could	almost	be	emulated
in	C++	 by	 using	 std::shared_ptr	 for	 every	 object.	 Note	 that	 garbage-collecting
languages	don't	use	the	same	algorithm	for	allocation	tracking	as	std::shared_ptr.
The	 std::shared_ptr	 is	 a	 smart	 pointer	 based	 on	 a	 reference-counting	 algorithm
that	will	 leak	memory	 if	 objects	 have	 cyclic	 dependencies.	Garbage-collecting
languages	 have	 more	 sophisticated	 methods	 that	 can	 handle	 and	 free	 cyclic
dependent	objects.

However,	 rather	 than	 relying	on	a	garbage	collector,	 forcing	a	strict	ownership
delicately	avoids	subtle	bugs	that	may	result	from	sharing	objects	by	default,	as
in	the	case	of	Java.

If	a	programmer	minimize	shared	ownership	in	C++,	the	resulting	code	is	easier
to	use	and	harder	to	abuse,	as	it	can	force	the	user	of	the	class	to	use	it	as	it	 is
intended.

Avoiding	 null	 objects	 using	 C++
references
In	addition	to	strict	ownership,	C++	also	has	the	concept	of	references,	which	is
different	from	references	in	Java.	Internally,	a	reference	is	a	pointer	which	is	not
allowed	to	be	null	or	repointed;	therefore	no	copying	is	involved	when	passing	it
to	a	function.

As	a	 result,	 a	 function	 signature	 in	C++	can	explicitly	 restrict	 the	programmer
from	 passing	 a	 null	 object	 as	 a	 parameter.	 In	 Java	 the	 programmer	 must	 use
documentation	or	annotations	to	indicate	non-null	parameters.

Take	a	look	at	 these	two	Java	functions	for	computing	the	volume	of	a	sphere.
The	first	one	throws	a	runtime	exception	if	a	null	object	is	passed	to	it;	whereas
the	second	one	silently	ignores	null	objects.	

This	 first	 implementation	 in	 Java	 throws	 a	 runtime	 exception	 if	 passed	 a	 null
object:

//	Java

float	getVolume1(Sphere	s)	{

		float	cube	=	Math.pow(s.radius(),	3);

		return	(Math.PI	*	4	/	3)	*	cube;	

}

This	second	implementation	in	Java	silently	handles	null	objects:

//	Java

float	getVolume2(Sphere	s)	{	

		float	rad	=	a	==	null	?	0.0f	:	s.radius();

		float	cube	=	Math.pow(rad,	3);

		return	(Math.PI	*	4	/	3)	*	cube;

}

In	both	function	implemented	in	Java,	the	caller	of	the	function	has	to	inspect	the
implementation	 of	 the	 function	 in	 order	 to	 determine	whether	 null	 objects	 are
allowed	or	not.

In	C++,	the	first	function	signature	explicitly	accepts	only	initialized	objects	by
using	 references	 which	 cannot	 be	 null.	 The	 second	 version	 using	 pointers	 as

arguments,	explicitly	shows	that	null	objects	are	handled.

C++	arguments	passed	as	references	indicates	that	null	values	are	not	allowed:

auto	get_volume1(const	Sphere&	s)	{			

		auto	cube	=	std::pow(s.radius(),	3);

		auto	pi	=	3.14f;

		return	(pi	*	4	/	3)	*	cube;

}

C++	arguments	passed	as	pointers	indicates	that	null	values	are	being	handled:

auto	get_volume2(const	Sphere*	s)	{

		auto	rad	=	s	?	s->radius()	:	0.0f;

		auto	cube	=	std::pow(rad,	3);

		auto	pi	=	3.14f;

		return	(pi	*	4	/	3)	*	cube;

}

Being	able	to	use	references	or	values	as	arguments	in	C++	instantly	informs	the
C++	programmer	how	the	function	is	intended	to	be	used.	Conversely,	 in	Java,
the	user	must	inspect	the	implementation	of	the	function,	as	objects	are	always
passed	as	pointers,	and	there's	a	possibility	that	they	could	be	null.

Drawbacks	of	C++
Comparing	 C++	 with	 other	 programming	 languages	 wouldn't	 be	 fair	 without
mentioning	some	of	its	drawbacks.	As	mentioned	earlier,	C++	has	more	concepts
to	 learn,	 and	 is	 therefore	 harder	 to	 use	 correctly	 and	 to	 its	 full	 potential.
However,	if	a	programmer	can	master	C++,	the	higher	complexity	turns	into	an
advantage	and	the	code	base	becomes	more	robust	and	performs	better.

There	 are,	 nonetheless,	 some	 shortcomings	 of	 C++,	 which	 are	 simply	 just
shortcomings.	 The	 most	 severe	 of	 those	 shortcomings	 are	 long	 compilation
times,	 the	 reliance	 on	 the	 manual	 handling	 of	 forward	 declarations,
header/source	files,	and	the	complexity	of	importing	libraries.

This	 is	 mainly	 a	 result	 of	 C++	 relying	 on	 an	 outdated	 import	 system	 where
imported	headers	are	simply	pasted	into	whatever	includes	them.	At	the	time	of
writing	 this	 book,	 a	 modern	 module-based	 import	 system	 is	 up	 for
standardization,	 but	 until	 the	 standardized	 C++	 version	 becomes	 available,
project	management	remains	very	tedious.

Another	apparent	drawback	of	C++	is	the	lack	of	provided	libraries.	While	other
languages	usually	come	with	all	the	libraries	needed	for	most	applications,	such
as	graphics,	user	interfaces,	networking,	threading,	resource	handling,	and	so	on,
C++	provides,	more	or	less,	nothing	more	than	the	bare	minimum	of	algorithms,
threads,	 and,	 as	 of	 C++17,	 file	 system	 handling.	 For	 everything	 else,
programmers	have	to	rely	on	external	libraries.

To	 summarize,	 although	 C++	 has	 a	 steeper	 learning	 curve	 than	 most	 other
languages,	if	used	correctly,	the	robustness	of	C++	is	an	advantage	compared	to
many	 other	 languages.	 So,	 despite	 the	 outdated	 import/library	 system	 of	C++,
	we	believe	that	C++	is	a	well	suited	language	for	large-scale	projects,	even	for
projects	where	performance	is	not	the	highest	priority.

Class	interfaces	and	exceptions
Before	diving	deeper	into	the	concepts	of	C++	high	performance,	we	would	like
to	emphasize	 some	concepts	 that	you	should	not	compromise	on	when	writing
C++	code.

Strict	class	interfaces
A	fundamental	guideline	when	writing	classes,	is	to	relieve	the	user	of	the	class
from	dealing	with	 the	 internal	 state	by	 exposing	a	 strict	 interface.	 In	C++,	 the
copy-semantics	of	a	class	is	part	of	 the	interface,	and	shall	 therefore	also	be	as
strict	as	necessary.

Classes	 should	 either	 behave	 as	 deep-copied	 or	 should	 fail	 to	 compile	 when
copied.	Copying	a	class	should	not	have	side	effects	where	the	resulting	copied
class	can	modify	the	original	class.	This	may	sound	obvious,	but	there	are	many
circumstances	 when,	 for	 example,	 a	 class	 requires	 a	 heap-allocated	 object
accessed	by	a	pointer	member	variable	of	some	sort,	for	example	std::shared_ptr,
as	follows:

class	Engine	{	

public:

		auto	set_oil_amount(float	v)	{	oil_	=	v;	}	

		auto	get_oil_amount()	const	{	return	oil_;	}	

private:	

		float	oil_{};

};

class	YamahaEngine	:	public	Engine	{	

		//...

};

The	programmer	of	 the	 Boat	class	 has	 left	 a	 rather	 loose	 interface	without	 any
precautions	regarding	copy	semantics:

class	Boat	{

public:

		Boat(std::shared_ptr<Engine>	e,	float	l)		

		:	engine_{e}	

		,	length_{l}		

		{}

		auto	set_length(float	l)	{	length_	=	l;	}

		auto&	get_engine()	{	return	engine_;	}

private:	

		//	Being	a	derivable	class,	engine_	has	to	be	heap	allocated	

		std::shared_ptr<Engine>	engine_;				

		float	length_{};

};

Later,	another	programmer	uses	the	Boat	class	and	expects	correct	copy	behavior:

auto	boat0	=	Boat{std::make_shared<YamahaEngine>(),	6.7f};

auto	boat1	=	boat0;

//	...	and	does	not	realize	that	the	oil	amount	applies	to	both	boats

boat1.set_length(8.56f);

boat1.get_engine()->set_oil_amount(3.4f);

This	could	have	been	prevented	if	the	Boat	class	interface	were	made	stricter	by
preventing	copying.	Now,	the	second	programmer	will	have	to	rethink	the	design
of	the	algorithm	handling	boats,	but	she	won't	accidentally	introduce	any	subtle
bugs:

class	Boat	{	

private:

		Boat(const	Boat&	b)	=	delete;	//	Noncopyable

		auto	operator=(const	Boat&	b)	->	Boat&	=	delete;	//	Noncopyable

public:

		Boat(std::shared_ptr<Engine>	e,	float	l)	:	engine_{e},	length_{l}	{}

		auto	set_length(float	l)	{	length_	=	l;	}

		auto&	get_engine()	{	return	engine_;	}

private:

		float	length_{};

		std::shared_ptr<Engine>	engine_;

};

//	When	the	other	programmer	tries	to	copy	a	Boat	object...

auto	boat0	=	Boat{std::make_shared<YamahaEngine>(),	6.7f};

//	...won't	compile,	the	second	programmer	will	have	to	find	

//	another	solution	compliant	with	the	limitations	of	the	Boat

auto	boat1	=	boat0;

Error	 handling	 and	 resource
acquisition
In	our	experience,	exceptions	are	being	used	in	many	different	ways	in	different
C++	code	bases.	(To	be	fair,	this	also	applies	to	other	languages	which	supports
exceptions.)	One	 reason	 is	 that	 distinct	 applications	 can	 have	 vastly	 different
requirements	when	dealing	with	runtime	errors.	With	some	applications,	such	as
a	pacemaker	or	a	power	plant	control	system,	which	may	have	a	severe	impact	if
they	crash,	we	may	have	to	deal	with	every	possible	exceptional	circumstance,
such	 as	 running	 out	 of	 memory,	 and	 keep	 the	 application	 in	 a	 running	 state.
Some	applications	even	completely	 stay	away	 from	using	 the	heap	memory	as
the	heap	introduces	an	uncontrollable	uncertainty	as	mechanics	of	allocating	new
memory	is	out	of	the	applications	control.

In	 most	 applications,	 though,	 these	 circumstances	 could	 be	 considered	 so
exceptional	that	 it's	perfectly	okay	to	save	 the	current	state	and	quit	gracefully.
By	 exceptional,	 we	 mean	 that	 they	 are	 thrown	 due	 to	 environmental
circumstances,	such	as	running	out	of	memory	or	disk	space.	Exceptions	should
not	be	used	as	an	escape	route	for	buggy	code	or	as	some	sort	of	signal	system.

Preserving	the	valid	state
Take	 a	 look	 at	 the	 following	 example.	 If	 the	 branches_	 =	 ot.branches_	 operation
throws	an	exception	due	to	being	out	of	memory	(branches_	might	be	a	very	big
member	variable),	 the	tree0	method	will	be	 left	 in	an	 invalid	state	containing	a
copy	of	leafs_	from	tree1	and	branches_	that	it	had	before:

struct	Leaf	{	/*	...	*/	};

struct	Branch	{	/*	...	*/	};

class	OakTree	{

public:

		auto&	operator=(const	OakTree&	other)	{

				leafs_	=	other.leafs_;

				//	If	copying	the	branches	throws,	only	the	leafs	has	been

				//	copied	and	the	OakTree	is	left	in	an	invalid	state

				branches_	=	other.branches_;	

				*this;

		}

		std::vector<Leaf>	leafs_;

		std::vector<Branch>	branches_;

};

auto	save_to_disk(const	std::vector<OakTree>&	trees)	{	

		//	Persist	all	trees	...

}

auto	oaktree_func()	{

		auto	tree0	=	OakTree{std::vector<Leaf>{1000},	std::vector<Branch>{100}};

		auto	tree1	=	OakTree{std::vector<Leaf>{50},	std::vector<Branch>{5}}	

		try	{

				tree0	=	tree1;

		}	

		catch(const	std::exception&	e)	{

				//	tree0	might	be	broken

				save_to_disk({tree0,	tree1});

		}

}

We	want	the	operation	to	preserve	the	valid	state	of	tree0	 that	 it	had	before	the
assignment	 operation	 so	 that	 we	 can	 save	 all	 our	 oak	 trees	 (pretend	 we	 are
creating	an	oak	tree	generator	application)	and	quit.

This	can	be	fixed	by	using	an	idiom	called	copy-and-swap,	which	means	that	we
perform	 the	 operations	 that	 might	 throw	 exceptions	 before	 we	 let	 the
application's	state	be	modified	by	non-throwing	swap	functions:

class	OakTree	{

public:

		auto&	operator=(const	OakTree&	other)	{

				//	First	create	local	copies	without	modifying	the	OakTree	objects.

				//	Copying	may	throw,	but	this	OakTree	will	still	be	in	a	valid	state

				auto	leafs	=	other.leafs_;							

				auto	branches	=	other.branches_;

				//	No	exceptions	thrown,	we	can	now	safely	modify

				//	the	state	of	this	object	by	non-throwing	swap

				std::swap(leads_,	leafs);

				std::swap(branches_,	branches);

				return	*this;

		}

		std::vector<Leaf>	leafs_;

		std::vector<Branch>	branches_;

};

Resource	acquisition
Note	that	the	destructors	of	all	the	local	variables	are	still	executed,	meaning	that
any	 resources	 (in	 this	 case,	 memory)	 allocated	 by	 leafs	 and	 branches	 will	 be
released.	The	destruction	of	C++	objects	 is	 predictable,	meaning	 that	we	have
full	control	over	when,	and	in	what	order,		resources	that	we	have	acquired	are
being	 released.	 This	 is	 further	 illustrated	 in	 the	 following	 example,	where	 the
mutex	variable	m	is	always	unlocked	when	exiting	the	function	as	the	lock	guard
releases	it	when	we	exit	the	scope,	regardless	of	how	and	where	we	exit:	

auto	func(std::mutex&	m,	int	val,	bool	b)	{

		auto	guard	=	std::lock_guard<std::mutex>{m};	//	The	mutex	is	locked

		if	(b)	{	

				//	The	guard	automatically	releases	the	mutex	at	early	exit

				return;	

		}

		if	(val	==	313)	{

				//	The	guard	automatically	releases	if	an	exception	is	thrown

				throw	std::exception{};

		}

		//	The	guard	automatically	releases	the	mutex	at	function	exit

}

Ownership,	 lifetime	 of	 objects,	 and	 resource	 acquisition	 are	 fundamental
concepts	in	C++	which	we	will	cover	later	on	in	this	book.	

Exceptions	versus	error	codes
In	the	mid	2000s,	using	exceptions	in	C++	affected	performance	negatively,	even
if	 they	weren't	 thrown.	Performance-critical	code	was	often	written	using	error
code	return	values	to	indicate	exceptions.	Bloating	the	code	base	with	returning
error	 codes	 and	 error	 code	 handling	 was	 simply	 the	 only	 way	 of	 writing
performance-critical	and	exception-safe	code.

In	modern	C++	compilers,	exceptions	only	affect	the	performance	when	thrown.
Considering	 all	 the	 thrown	 exceptions	 are	 rare	 enough	 to	 quit	 the	 current
process,	we	can	safely	use	exceptions	even	in	performance-critical	systems	and
benefit	from	all	the	advantages	of	using	exceptions	instead	of	error	codes.

Libraries	used	in	this	book
As	mentioned	 earlier,	C++	 does	 not	 provide	more	 than	 the	 bare	 necessities	 in
terms	 of	 libraries.	 In	 this	 book,	 we	 will,	 therefore,	 have	 to	 rely	 on	 external
libraries	where	necessary.	The	most	commonly	used	library	in	the	world	of	C++
is	probably	the	Boost	library	(http://www.boost.org).	In	order	to	keep	the	number	of
used	 libraries	 low,	 we	 will	 use	 the	 Boost	 library	 for	 hardware-dependent
optimizations	such	as	SIMD	and	GPU.

Throughout	 this	 book,	 we	will	 use	 the	 Boost	 library	 where	 the	 standard	 C++
library	 is	not	 enough.	Many	upcoming	parts	of	 the	C++	standard	are	available
today	 in	Boost	 (filesystem,	any,	optional,	 and	 variant),	 and	we	will	 not	 avoid	 any
libraries	planned	for	inclusion	in	the	C++	standard.	We	will	only	use	the	header-
only	parts	of	 the	Boost	 library,	which	means	 that	using	 them	yourself	does	not
require	 any	 specific	 build	 setup;	 rather,	 you	 just	 have	 to	 include	 the	 specified
header	file.

http://www.boost.org

Summary
In	 this	 chapter	we	 have	 highlighted	 some	 features	 and	 drawbacks	 of	C++	 and
how	it	evolved	to	the	state	it	is	in	today.	

Further,	we	discussed	the	advantages	and	disadvantages	of	C++	compared	with
other	 languages,	 both	 from	 the	 perspective	 of	 performance	 and
robustness.	Hopefully,	some	myths	about	C++	and	exceptions	were	dispelled.

You	 also	 learned	 the	 importance	 of	 strict	 interfaces,	 resource	 acquisition,	 and
correct	exception	handling.

Modern	C++	Concepts
In	this	chapter,	we	will	take	an	in-depth	look	at	some	modern	C++	concepts	such
as	 move-semantics,	 forwarding	 references,	 std::optional,	 std::any,	 and	 lambda
functions.	 Some	 of	 these	 concepts	 still	 confuse	 even	 experienced	 C++
programmers	and	therefore	we	will	look	into	both	their	use	cases	and	how	they
work	under	the	hood.

Automatic	 type	 deduction	 with
the	auto	keyword	
Since	 the	 introduction	 of	 the	 auto	 keyword	 in	 C++11,	 there	 has	 been	 a	 lot	 of
confusion	in	the	C++	community	about	how	to	use	the	different	flavors	of	auto,
such	as	const	auto&,	auto&,	and	auto&&.

Using	auto	in	function	signatures
Although	discouraged	by	some	C++	programmers,	in	our	experience	the	use	of
auto	 in	 function	 signatures	 vastly	 increases	 readability	 when	 browsing	 and
viewing	header	files.

Here	is	how	the	new		auto	syntax	looks	compared	to	the	old	syntax	with	explicit
types:

Old	syntax	with	explicit	type: New	syntax	with	auto:

struct	Foo	{

		int	val()	const	{

				return	m_;	

		}

		const	int&	cref()	const	{

				return	m_;	

		}

		int&	mref()	{

				return	m_;	

		}

		int	m_{};

};

struct	Foo	{

		auto	val()	const	{

				return	m_;	

		}

		auto&	cref()	const	{

				return	m_;	

		}

		auto&	mref()	{

				return	m_;	

		}

		int	m_{};

};

	

The	 auto	 syntax	 can	 be	 used	 both	 with	 and	 without	 trailing	 return	 type.	 The
trailing	 return	 is	 necessary	 if	 you	 put	 the	 function	 definition	 in	 the	 .cpp	 file
instead	of	in	the	header	declaration.

Note	that	the	auto	syntax	can	also	be	used	with	free	functions:

Return	type Syntactic	variants	(all	of	a,	b,	and	c	corresponds	to	the
same	result):

Value
auto	val()	const																//	a)	auto,	deduced	type

auto	val()	const	->	int									//	b)	auto	with	type

int	val()	const																	//	c)	explicite	type

Const
reference

auto&	cref()	const														//	a)	auto,	deduced	type

auto	cref()	const	->	const	int&	//	b)	auto,	trailing	type

const	int&	cref()	const									//	c)	explicite	type

Mutable auto&	mref()																				//	a)	auto,	deduced	type

reference auto	mref()	->	int&													//	b)	auto,	trailing	type

int&	mref()																					//	c)	explicite	type

Using	auto	for	variables
The	 introduction	 of	 the	 auto	 keyword	 in	 C++11	 has	 initiated	 quite	 a	 debate
among	C++	programmers.	Many	people	think	it	reduces	readability,	or	even	that
it	makes	C++	similar	 to	a	dynamically	 typed	 language.	Even	 if	we	 tend	 to	not
participate	 in	 those	 debates,	 our	 personal	 opinion	 is	 that	 you	 should	 (almost)
always	use	 auto	 as,	 in	 our	 experience,	 it	makes	 the	 code	 safer	 and	 less	 littered
with	clutter.

We	prefer	to	use	auto	for	local	variables	using	the	left-to-right	initialization	style.
This	means	that	we	keep	the	variable	on	the	left,	followed	by	an	equal	sign,	and
then	the	type	on	the	right	side,	like	this:

auto	i	=	0;

auto	x	=	Foo{};

auto	y	=	create_object();

auto	z	=	std::mutex{};

With	copy	elision	guarantees	introduced	in	C++17,	the	statement	auto	x	=	Foo{}	is
identical	 to	Foo	x{}.	That	 is,	 the	 language	guarantees	 that	 there	 is	no	 temporary
object	that	needs	to	be	moved	or	copied	in	this	case.	This	means	that	we	can	now
use	the	left-to-right	initialization	style	without	worrying	about	performance	and
we	can	also	use	it	for	non-moveable/non-copyable	types.

Using	auto	help	us	using	the	correct	type	for	our	variables.		What	we	still	need	to
do	though,	is	to	express	how	we	intent	to	use	a	variable	by	specifying	if	we	need
a	reference	or	a	copy,	and	if	we	want	to	modify	the	variable	or	just	read	from	it.	

Const	reference
A	const	 reference,	 denoted	 const	auto&,	 has	 the	 ability	 to	 bind	 to	 anything.	The
created	variable	is	always	immutable.	We	believe	that	the	const	reference	should
be	the	default	choice	for	variables	you	don't	want	to	modify.

If	 the	 const	 reference	 is	 bound	 to	 a	 temporary	 object,	 the	 lifetime	 of	 the
temporary	will	be	extended	to	the	lifetime	of	the	reference.	This	is	demonstrated
in	the	following	example:

auto	func(const	std::string&	a,	const	std::string&	b)	{

			const	auto&	str	=	a	+	b;		//	a	+	b	returns	a	temporary

			...

}	//	str	goes	out	of	scope,	temporary	will	be	destroyed

It's	also	possible	to	end	up	with	a	const	reference	by	using	auto&.	This	can	be	seen
in	the	following	example:

auto	func()	{

			auto	foo	=	Foo{};

			auto&	cref	=	foo.cref();	//	cref	is	a	const	reference

			auto&	mref	=	foo.mref();	//	mref	is	a	mutable	reference

}

Even	 though	 this	 is	perfectly	valid,	we	prefer	 to	always	explicitly	express	 that
we	are	dealing	with	a	const	references	by	using	const	auto&	,	and	more	important,
we	leave	auto&	to	only	denote	mutable	references.

Mutable	reference
In	contrast	to	a	const	reference,	a	mutable	reference	cannot	bind	to	a	temporary.
We	use	 auto&	 to	 denote	mutable	 references.	Use	mutable	 references	 only	when
you	intent	to	change	the	object	it	references.

Forwarding	reference
auto&&	is	called	a	forwarding	reference	(also	referred	to	as	a	universal	reference).
It	 can	 bind	 to	 anything	 which	 makes	 it	 useful	 for	 certain	 cases.	 Forwarding
references	will,	just	like	const	references,	extend	the	lifetime	of	a	temporary.	But
in	 contrast	 to	 the	 const	 reference,	 auto&&	 allows	 you	 to	 mutate	 objects	 it
references,	temporaries	included.

Use	 auto&&	 for	 variables	 that	 you	 only	 forward	 to	 some	 other	 code.	 In	 those
forwarding	 cases	 you	 rarely	 care	 about	 whether	 the	 variable	 is	 a	 const	 or	 a
mutable,	 you	 just	want	 to	 pass	 it	 to	 some	 code	 that	 actually	 going	 to	 	 use	 the
variable.

It's	important	to	note	that	only	auto&&	and	T&&	in	a	template	method
are	forwarding	references.	Using	the	&&	syntax	with	an	explicit	type,
for	 example	 std::string&&	 is	 an	 r-value	 and	 does	 not	 have	 the
properties	of	a	forwarding	reference	(r-values	and	move-semantics
will	be	discussed	later	in	this	chapter).

Conclusion
Although	 this	 is	 our	 own	personal	 opinion,	we	 strongly	 recommend	 to	 always
use	const	auto&	when	 possible,	 this	 communicates	 that	 you	 simply	 just	want	 to
fetch	a	value	and	that	nothing	fishy	is	going	on.	This	should	be	the	case	to	the
majority	of	the	variable	declaration	in	a	C++	code	base.

auto&	and	auto	 should	only	be	used	when	you	require	 the	behavior	of	a	mutable
reference	or	an	explicit	copy;	 this	communicates	 to	 the	 reader	of	 the	code	 that
those	 variables	 are	 important	 as	 they	 either	 mutate	 another	 variable,	 or	 they
might	mutate	 another	 variable	 if	 not	 copied.	 Finally,	 use	 auto&&	 for	 forwarding
code	only.

Following	 these	 rules	makes	your	 code	base	 easier	 to	 read,	 debug,	 and	 reason
about.

It	might	 seem	odd	 that	while	we	 recommend	 using	 const	 auto&	 for
most	variable	declarations,	we	tend	to	use	a	simple	auto	throughout
the	book.	The	only	reason	we	use	plain	auto	is	the	limited	space	the
format	of	a	book	provides.	

The	lambda	function
The	 lambda	 function,	 introduced	 in	 C++11	 and	 further	 enhanced	 with
polymorphic	capabilities	in	C++14,	is	one	of	the	most	useful	features	in	modern
C++.	Its	versatility	comes	not	only	from	easily	passing	functions	 to	algorithms
but		it	can	also	be	used	in	a	lot	of	circumstances	where	you	need	to	pass	the	code
around,	especially	as	you	can	store	a	lambda	function	in	std::function.

Although	 the	 lambda	 function	 made	 these	 programming	 techniques	 vastly
simpler	 to	work	with,	 everything	 here	 is	 possible	 to	 perform	without	 them	by
making	classes	with	operator()	overloaded.

We	will	explore	the	lambda	function's	similarities	to	these	kind	of	classes	later,
but	first	let's	introduce	the	lambda	function	in	a	simple	use	case.

Basic	 syntax	 of	 a	 C++	 lambda
function
In	 a	 nutshell,	 the	 lambda	 function	 capability	 enables	 programmers	 to	 pass
functions	to	regular	functions,	just	as	easily	as	a	variable	is	passed.

Let's	compare	passing	a	lambda	function	to	an	algorithm	with	passing	a	variable:

//	Prerequisite	

auto	vals	=	std::vector<int>{1,	3,	2,	5,	4};	

	

//	Look	for	number	three	

auto	three	=	3;	

auto	num_threes	=	std::count(vals.begin(),	vals.end(),	three);	

//	num_threes	is	1	

	

//	Look	for	a	numbers	which	is	larger	than	three	

auto	is_above_3	=	[](int	v){	return	v	>	3;	};	

auto	num_above_3	=	std::count_if(vals.begin(),	vals.end(),	is_above_3);

//	num_above_3	is	2	

Notice	how	we	pass	a	variable	to	search	for	with	std::count()	in	the	first	case,	and
a	function	to	search	for	with	std::count_if()	in	the	latter	case.	This	is	a	typical	use
case	 for	 lambda	 functions:	 we	 pass	 a	 function	 to	 be	 evaluated	many	 times	 to
another	function	(in	this	case,	std::count_if).

Also,	 the	 lambda	 does	 not	 need	 to	 be	 tied	 to	 a	 variable;	 just	 as	we	 can	 put	 a
variable	right	into	an	expression,	we	can	do	the	same	with	a	lambda	function:

auto	num_3	=	std::count(vals.begin(),	vals.end(),	3);	

auto	num_above_3	=	std::count_if(vals.begin(),	vals.end(),	[](int	v){	

		return	v	>	3;	

});	

The	capture	block
Let's	make	this	a	little	more	advanced.	In	the	previous	example,	we	hard	coded
the	value	we	wanted	to	count	numbers	above.	What	if	we	want	to	use	an	external
variable	inside	the	lambda	instead?	What	we	do	is	capture	the	external	variables
by	putting	them	in	the	capture	block,	that	is,	the	[]	part	of	the	lambda:

auto	count_value_above(const	std::vector<int>&	vals,	int	th)	{	

		auto	is_above	=	[th](int	v)	{	return	v	>	th;	};	

		return	std::count_if(vals.begin(),	vals.end(),	is_above);	

}	

In	 this	 example,	 we	 captured	 the	 th	 variable	 by	 copying	 it	 into	 the	 lambda
function,	if	we	want	to	declare	the	th	as	a	reference,	we	put	a	&	at	the	beginning
like	this:

auto	is_above	=	[&th](int	v)	{	return	v	>	th;	};

The	variable	is	now	merely	a	reference	to	the	outer	th	variable,	just	like	a	regular
reference	variable	in	C++.

Capture	 by	 reference	 versus
capture	by	value
Using	 the	 capture	 block	 for	 referencing	 and	 copying	 variables	works	 just	 like
regular	variables.	To	see	 the	difference,	 take	a	 look	at	 these	 two	examples	and
see	if	you	can	spot	the	difference:

Capture	by	value Capture	by	reference

auto	func()	{

		auto	vals	=	{1,2,3,4,5,6};

		auto	th	=	3;

		auto	is_above=[th](int	v){

				return	v	>	th;

		};

		th	=	4;

		auto	count_b=std::count_if(

				vals.begin(),

				vals.end(),

				is_above	

);

		//	count_b	equals	3

}

auto	func()	{

		auto	vals	=	{1,2,3,4,5,6};		

		auto	th	=	3;

		auto	is_above=[&th](int	v){

				return	v	>	th;

		};

		th	=	4;

		auto	count_b=std::count_if(

				vals.begin(),

				vals.end(),

				is_above

);

		//	count_b	equals	2

}

In	 the	first	example,	 the	 threshold	was	copied	into	 the	lambda	functions	and	is
therefore	not	affected	when	th	was		mutated,	therefore	std::count_if()	counts	 the
number	of	values	above	3.

In	the	second	example,	th	 is	captured	by	reference,	and	therefore	std::count_if()
counts	the	number	of	values	above	4	instead.

Similarities	 between	 a	 Lambda
and	a	class
To	understand	what	the	lambda	function	consists	of,	one	can	view	it	as	a	regular
class	with	restrictions:

The	class	only	consists	of	one	member	function.
The	capture	block	is	a	combination	of	the	class's	member	variables	and	its
constructor.
Each	 lambda	 function	 has	 its	 own	 unique	 type.	 Even	 if	 two	 lambda
functions	 are	 plain	 clones	 of	 each	 other,	 they	 still	 have	 their	 own	 unique
type.

The	following	table	shows	a	simple	lambda	function,	is_above,	and	a	class	which
corresponds	to	the	lambda	function.	The	left	column	uses	capture	by	value	and
the	right	column	shows	capture	by	reference.	

Lambda	with	capture	by	value... Lambda	with	capture	by	reference...

auto	th	=	3;

auto	is_above	=	[th](int	v)	{

	return	v	>	th;

};

auto	test	=	is_above(5);

//	test	equals	true

auto	th	=	3;

auto	is_above	=	[&th](int	v)	{

	return	v	>	th;

};

auto	test	=	is_above(5);

//	test	equals	true

...corresponds	to	this	class: ...corresponds	to	this	class:

auto	th	=	3;

class	IsAbove	{

public:

	IsAbove(int	th)	:	th{th}	{}

	//	The	only	member	function

	auto	operator()(int	v)const{

			return	v	>	th;

	}

private:

	int	th{};	//	Members

};

auto	is_above	=	IsAbove{th};

auto	test	=	is_above(5);

//	test	equals	true

auto	th	=	3;

class	IsAbove{

public:

	IsAbove(int&	th)	:	th{th}	{}

	//	The	only	member	function

	auto	operator()(int	v)const{

			return	v	>	th;

	}

private:

	int&	th;	//	Members

};

auto	is_above	=	IsAbove{th};

auto	test	=	is_above(5);

//	test	equals	true

Initializing	variables	in	capture
As	seen	in	the	previous	example,	the	capture	scope	initializes	member	variables
in	 the	 corresponding	 class.	 This	 means	 that	 we	 can	 also	 initialize	 member
variables	inside	a	lambda,	which	are	only	visible	from	inside	the	lambda:

Lambda	function... ...corresponding	class:

auto	func	=	[c=std::list<int>{4,2}](){

		for(auto	v	:	c)

				std::cout	<<	v;

};

func();

//	Output:	42

	

class	Func	{

public:

	Func()	:	c{4,	2}	{}

	auto	operator()()const->void{

		for(auto	v	:	c)

				std::cout	<<	v;

	}

private:

	std::list<int>	c;

};

auto	func	=	Func{};

func();

//	Output:	42

	

Mutating	 lambda	 member
variables
As	the	lambda	function	works	just	like	a	class	with	member	variables,	it	can	also
mutate	 them.	 In	 the	 following	 example,	 the	 lambda	 mutates	 the	 threshold
variable	every	time	it	is	invoked.

In	 order	 to	 allow	 the	 lambda	 to	 mutate	 its	 members,	 we	 need	 to	 specify
mutable	 when	 declaring	 the	 lambda.	 The	 mutable	 modifier	 on	 a	 lambda	 function
works	like	the	inverse	for	a	const	modifier	for	a	regular	class	member	function;	in
contrast	 to	a	class	member	 function,	a	 lambda	function	 is	const	 by	default,	 and
therefore	a	mutating	lambda	must	be	explicitly	specified:

Capture	by	value Capture	by	reference

auto	func()	{

		auto	v	=	7;

		auto	lambda	=	[v]()	mutable	{

				std::cout	<<	v	<<	"	";

				++v;

		};

		assert(v	==	7);

		lambda();

		lambda();

		assert(v	==	7);

		std::cout	<<	v;

}

auto	func()	{

		auto	v	=	7;

		auto	lambda	=	[&v]()	{

				std::cout	<<	v	<<	"	";

				++v;

		};

		assert(v	==	7);

		lambda();

		lambda();

		assert(v	==	9);

		std::cout	<<	v;

}

Output:	7	8	7 Output:	7	8	9	

	

If	we	want	to	capture	the	v	by	reference	instead,	we	do	not	have	to	specify	the
mutable	keyword	as	the	lambda	itself	doesn't	mutate.	Instead,	the	original	v	in	func
will	mutate,	meaning	that	we	have	a	different	output.

Mutating	 member	 variables	 from
the	compiler's	perspective
To	 understand	 what's	 going	 in	 the	 above	 example,	 take	 a	 look	 at	 how	 the
compiler	sees	the	previous	lambda	objects:

Capture	by	value	case Capture	by	reference	case

class	MutatingLambda	{

public:

	MutatingLambda(int	m)

	:	v{m}	{}

	auto	operator()()	{

			std::cout<<	v	<<"	";

			++v;

	}

private:

		int	v{};

};

class	MutatingLambda	{

public:

	MutatingLambda(int&	m)

	:	v{m}	{}

	auto	operator()()const{

			std::cout<<	v	<<"	";

			++v;

	}

private:

	int&	v;

};

	

As	 you	 can	 see,	 the	 first	 case	 corresponds	 to	 a	 class	 with	 a	 regular	 member,
whereas	 the	capture	by	reference	case	simply	corresponds	 to	a	class	where	 the

member	variable	is	a	reference.

You	 might	 have	 noticed	 that	 we	 add	 the	 modifier	 const	 on	 the
operator()	member	function	of	the	capture	by	reference	class,	and	we
also	 do	 not	 specify	 mutable	 on	 the	 corresponding	 lambda.	 The
reason	 this	class	 is	 still	 considered	 const	 is	 that	we	do	not	mutate
anything	 inside	 the	 actual	 class/lambda;	 the	 actual	 mutation
applies	 to	 the	 referenced	 value,	 and	 therefore	 the	 function	 is	 still
considered	const.

Capture	all
In	addition	 to	capturing	variables	one	by	one,	all	variables	 in	 the	scope	can	be
captured	by	simply	writing	[=]	or	[&].

Using	 [=]	 means	 that	 every	 variable	 will	 be	 captured	 by	 value,	 whereas	 [&]
captures	all	variables	by	reference.

If	 inside	 a	 class,	 it	 is	 also	 possible	 to	 capture	 the	 class	 member	 variables	 by
reference	using	[this]	and	by	copy	by	writing	[*this]:

class	Foo	{	

public:	

	auto	member_function()	{	

			auto	a	=	0;	

			auto	b	=	1.0f;

			//	Capture	all	variables	by	copy	

			auto	lambda_0	=	[=]()	{	std::cout	<<	a	<<	b	<<	m_;	};	

			//	Capture	all	variables	by	reference	

			auto	lambda_1	=	[&]()	{	std::cout	<<	a	<<	b	<<	m_;	};	

			//	Capture	member	variables	by	reference	

			auto	lambda_2	=	[this]()	{	std::cout	<<	m_;	};	

			//	Capture	member	variables	by	copy	

			auto	lambda_3	=	[*this]()	{	std::cout	<<	m_;	};	

	}	

private:	

	int	m_{};	

};	

Note	that	using	[=]	does	not	mean	that	all	variables	in	the	scope	are	copied	into
the	lambda,	only	the	variables	actually	utilized	are	copied.

Although	it	is	convenient	to	capture	all	variables	with	[&]	or	[=],	we
recommend	 capturing	 variables	 one	 by	 one,	 as	 it	 improves	 the
readability	 of	 the	 code	 by	 clarifying	 exactly	 which	 variables	 are
used	inside	the	lambda	scope.	

When	capturing	all	variables	by	value,	you	can	specify	variables	to	be	captured
by	reference	(and	vice	versa).	The	following	table	shows	the	result	of	different
combination	in	the	capture	block:

Capture	block Resulting	capture	types

int	a,	b,	c;

auto	func	=	[=](){}; Capture	a,	b,	c	by	value.

int	a,	b,	c;

auto	func	=	[&](){}; Capture	a,	b,	c	by	reference.

int	a,	b,	c;

auto	func	=	[=,	&c](){};

Capture	a,	b	by	value.

Capture	c	by	reference.

int	a,	b,	c;

auto	func	=	[&,	c](){};

Capture	a,	b	by	reference.

Capture	c	by	value.

Assigning	 C	 function	 pointers	 to
lambdas
Let's	say	you	are	using	a	C	library,	or	an	older	C++	library,	which	uses	a	callback
function	 as	 a	 parameter.	 For	 convenience,	 you	 would	 like	 to	 use	 a	 lambda
function	like	this:

external	void	download_webpage(

		const	char*	url,	void	(*callback)(int,	const	char*));

The	 callback	 here	 is	 a	 return	 code	 and	 the	 web	 page	 HTML.	 If	 you	 want	 to
invoke	this	with	a	lambda,	you	have	to	use	a	plus	in	front	of	the	lambda	in	order
to	convert	it	into	a	regular	function	pointer:

auto	func()	{

		auto	lambda	=	+[](int	result,	const	char*	str)	{};

		download_webpage("http://www.packt.com",	lambda);

}

This	way,	the	lambda	is	converted	into	a	regular	function	pointer.	Note	that	the
lambda	cannot	have	any	captures	at	all	in	order	to	use	this	functionality.

Lambdas	and	std::function
As	mentioned	before,	every	lambda	function	has	its	own	type,	even	if	they	have
the	same	signature	(and	even	if	they	are	identical).

The	signature	of	a	std::function	is	defined	as	follows:

std::function<	return_type	(parameter0,	parameter1...)	>	

So,	 a	 std::function	 returning	 nothing	 and	 having	 no	 parameters	 is	 defined	 like
this...

auto	func	=	std::function<void(void)>{};	

A	std::function	returning	a	bool	and	having	an	int	and	a	std::string	as	parameters	is
defined	like	this:

auto	func	=	std::function<bool(int,	std::string)>{};	

Assigning	 lambdas	 to
std::functions
As	 mentioned	 earlier,	 every	 lambda	 function	 has	 its	 own	 type,	 and
therefore	cannot	be	assigned	to	other	lambda	functions,	even	if	they	look	exactly
the	same.	However,	a	std::function	can	hold	any	 lambda	function	which	has	 the
same	signature,	that	is,	it	has	the	same	parameters	and	the	same	return	value.	A
std::function	can	also	be	reassigned	at	run	time.	This	makes	std::function	the	type
to	use	if	you	want	a	variable	to	hold	a	lambda	function.

What	is	important	here	is	that	what	is	captured	by	the	lambda	does	not	affect	its
signature,	and	therefore	both	lambdas	with	and	without	captures	can	be	assigned
to	the	same	std::function.

The	 following	code	block	 shows	how	different	 lambdas	are	assigned	 the	 same
std::function	object:

//	Create	an	unassigned	std::function	object	

auto	func	=	std::function<void(int)>{};	

		

//	Assign	a	lambda	without	capture	to	the	std::function	object	

func	=	[](int	v)	{	std::cout	<<	v;	};	

func(12);	//	Prints	12	

	

//	Assign	a	lambda	with	capture	to	the	same	std::function	object	

auto	forty_two	=	42;	

func	=	[forty_two](int	v)	{	std::cout	<<	(v	+	forty_two);	};	

func(12);	//	Prints	54	

Implementing	 a	 simple	 Button
class	with	std::function
Let's	 put	 the	 std::function	 to	 use	 in	 something	 that	 resembles	 a	 real-world
example.	 If	 we	 create	 a	 Button	 class,	 we	 can	 use	 the	 std::function	 to	 store	 the
action	corresponding	to	clicking	the	buttons,	so	that	when	we	call	the	on_click()
member	function,	the	corresponding	code	is	executed.

We	can	declare	the	Button	class	like	this:

class	Button	{	

public:	

		Button(std::function<void(void)>	click)	:	on_click_{click}	{}	

		auto	on_click()	const	{	on_click_();	}	

private:	

		std::function<void(void)>	on_click_{};

};	

We	can	then	use	it	to	create	a	multitude	of	buttons	with	different	actions.	As	each
button	still	has	the	same	type,	they	can	also	be	stored	in	a	container:

auto	make_buttons()	{	

		auto	beep_button	=	Button([beep_count	=	0]()	mutable	{		

				std::cout	<<	"Beep:"	<<	beep_count	<<	"!	";	

				++beep_count;	

		});	

		auto	bop_button	=	Button([]{	std::cout	<<	"Bop.	";	});	

		auto	silent_button	=	Button([]{});	

		auto	buttons	=	std::vector<Button>{	

				beep_button,	

				bop_button,	

				silent_button	

		};	

		return	buttons;	

}	

Iterating	 the	 list	 by	 executing	 the	 on_click()	 on	 each	 button	 will	 execute	 the
corresponding	function:

auto	buttons	=	make_buttons();	

for(const	auto&	b:	buttons)	{

		b.on_click();

}

buttons.front().on_click();	

//	Output:	"Beep:	0!	Bop.	Beep:	1!"

As	 you	 can	 see,	 the	 on_click()	 member	 function	 is	 a	 const	 function,	 yet	 it	 is
mutating	the	member	variable	on_click_	by	increasing	the	beep_count_.	This	might
seem	like	it	breaks	const	correctness	rules,	as	a	const	member	function	of	Button
is	allowed	to	call	a	mutating	function	on	one	of	its	class	members.	The	reason	it
is	allowed	is	 the	same	reason	that	member	pointers	are	allowed	to	mutate	their
pointed-to	value	in	a	const	context.	Later	on	in	this	chapter	we	will	discuss	how
to	propagate	constness	for	pointer	data	members.

Performance	 consideration	 of
std::function
A	 std::function	 has	 a	 few	 performance	 losses	 compared	 to	 a	 lambda	 function,
which	we'll	discuss	in	the	subsequent	sections.

An	std::function	cannot	be	inlined
When	 it	 comes	 to	 lambda	 functions,	 the	 compiler	 has	 the	 ability	 to	 inline	 the
function	call,	that	is,	the	overhead	of	the	function	call	is	eliminated.	The	flexible
design	 of	 	 std::function	 make	 it	 nearly	 impossible	 for	 the	 compiler	 to	 inline	 a
function	 wrapped	 in	 a	 std::function.	 This	 overhead	 can	 have	 an	 impact	 on	 the
performance	 if	 small	 functions	 wrapped	 in	 std::function	 are	 being	 called	 very
frequently.

An	 std::function	 heap	 allocates
and	captures	variables
If	 a	 lambda	 function	 with	 captured	 variables/references	 is	 assigned	 to	 a
std::function,	 the	std::function	will,	 in	most	 cases,	 allocate	 space	 on	 the	 heap	 to
store	the	captured	variables	(note	that	some	 implementations	of	std::function	do
not	 heap-allocate	 if	 the	 size	 of	 the	 captured	 variable	 is	 less	 than	 a	 specific
threshold).

This	 means	 that	 not	 only	 is	 there	 a	 slight	 performance	 penalty	 due	 to	 heap
allocation	 and	 the	 execution	 of	 std::function	 but	 also	 that	 it	 is	 slower,	 as	 heap
allocation	 implies	 cache	 misses	 (more	 about	 cache	 misses	 in	 Chapter	 4,	 Data
Structures).

Invoking	an	std::function	requires
a	 few	 more	 operations	 than	 a
lambda
Calling	a	std::function	is	generally	a	bit	slower	than	executing	a	lambda	as	a	little
more	 code	 is	 involved,	 for	 example,	 executing	 1	 million	 function	 calls	 for	 a
std::vector	 of	 the	 explicit	 lambda	 type	 versus	 a	 std::vector	 of	 a	 corresponding
std::function	as	follows.

Benchmark	invocation	without	capture	of	lambda	vs	std::function:

Lambda std::function

auto	test_direct_lambda()	{

		auto	lbd	=	[](int	v)	{

				return	v	*	3;

		};

		using	L	=	decltype(lbd);

		auto	fs	=	std::vector<L>{};

		fs.resize(1’000’000,	lbd);	

		auto	res	=	int{0};

		for	(const	auto&	f:	fs)	{

				res	=	f(res);

		}	

		return	res;

}

auto	test_std_function()	{

		auto	lbd	=	[](int	v)	{

				return	v	*	3;	

		};

		using	F	=	std::function<int(int)>;	

		auto	fs	=	std::vector<F>{};

		fs.resize(1’000’000,	lbd);

		auto	res	=	int{0};

		for	(const	auto&	f:	fs)	{

				res	=	f(res);

		}	

		return	res;

}

	

The	first	version,	using	the	lambda	directly,	executes	at	roughly	one-fourth	of	the
time	 compared	 to	 the	 second	 version,	 where	 we	 instead	 use	 a	 vector	 of
std::function.

The	polymorphic	lambda
Although	having	a	complex-sounding	name,	a	polymorphic	lambda	is	simply	a
lambda	accepting	auto	 as	 a	parameter,	making	 it	possible	 to	 invoke	 it	with	any
type.	It	works	just	like	a	regular	lambda,	but	the	operator()	has	been	defined	as	a
member	function	template.

Only	 the	 parameters	 are	 template	 variables,	 not	 the	 captured	 values.	 In	 other
words,	the	captured	value	v	in	the	following	example	will	stay	as	an	integer.

So,	if	you	define	a	polymorphic	lambda	like	this:

auto	v	=	3;

auto	lambda	=	[v](auto	v0,	auto	v1){	return	v	+	v0*v1;	};

If	we	 translate	 the	 above	 lambda	 to	 a	 class,	 it	would	 correspond	 to	 something
like	this:

class	Lambda	{

public:

		Lambda(int	v)	:	v_{v}	{}

		template	<typename	T0,	typename	T1>

		auto	operator()(T0	v0,	T1	v1)	const	{	return	v_	+	v0*v1;	}

private:

		int	v_{};

};

auto	v	=	3;

auto	lambda	=	Lambda{v};

This	means	that,	just	like	the	templated	version,	the	compiler	won't	generate	the
actual	function	until	the	lambda	is	invoked.

So,	we	can	invoke	the	previous	lambda	like	this:

auto	res_int	=	lambda(1,	2);

auto	res_float	=	lambda(1.0f,	2.0f);

The	compiler	will	generate	something	similar	to	the	following	lambdas:

auto	lambda_int	=	[v](int	v0,	const	int	v1)	{	return	v	+	v0*v1;	};

auto	lambda_float	=	[v](float	v0,	float	v1)	{	return	v	+	v0*v1;	};

auto	res_int	=	lambda_int(1,	2);

auto	res_float	=	lambda_float(1.0f,	2.0f);

As	you	might	have	 figured,	 these	versions	are	 further	handled	 just	 like	 regular
lambdas.

Creating	 reusable	 polymorphic
lambdas
Here	are	two	vectors,	one	resembling	a	farm	with	the	number	of	animals,	and	the
other	one	mapping	countries	to	their	corresponding	continent:

auto	farm	=	std::vector<std::pair<std::string,	int>>{	

		{"Bear",	5},	

		{"Deer",	0},	

		{"Pig",	4}	

};	

	

enum	class	Continent	{	Europe,	Asia,	America	};	

auto	countries	=	std::vector<std::pair<std::string,	Continent>>{	

		{"Sweden",	Continent::Europe},	

		{"India",	Continent::Asia},	

		{"Belarus",	Continent::Europe},	

		{"Mexico",	Continent::America}	

};	

Let's	say	we	want	 to	sort	 the	animals	 in	order	of	how	many	the	farm	contains,
and	the	countries	in	order	of	the	continent	they	belong	to.	Speaking	in	code,	we
want	to	sort	the	vectors	according	to	the	std::pair::second	member.	As	the	vectors
contain	different	value	 types,	we	use	a	polymorphic	 lambda.	 In	order	 to	 avoid
code	duplication,	we	tie	the	lambda	to	a	variable,	and	the	lambda	can	be	used	for
sorting	both	vectors:

auto	less_by_second	=	[](const	auto&	a,	const	auto&	b)	{		

		return	a.second	<	b.second;		

};	

//	Both	vectors	can	be	sorted	with	the	same	lambda	

std::sort(farm.begin(),	farm.end(),	less_by_second);	

std::sort(countries.begin(),	countries.end(),	less_by_second);	

Creating	 a	 reusable	 lambda	 for	 sorting	 like	 this	 is	 straightforward	 as	we	 don't
require	any	 captures.	However,	what	 do	we	do	 if	we	want	 to	make	 a	 reusable
lambda	which	requires	a	capture?

For	example,	let's	say	we	want	to	count	the	number	of	animals	we	have	five	of,
or	the	number	of	countries	in	Europe.	What	we	have	to	do	is	to	wrap	the	capture
into	a	function	like	this:

template	<typename	T>	

auto	is_second_equal(const	T&	x)	{	

		//	A	lambda	capturing	x	is	returned

		return	[&x](const	auto&	p)	{	return	p.second	==	x;	};	

}	

	

auto	missing_animals	=	std::count_if(farm.begin(),	farm.end(),	is_second_equal(0));	

//	missing_animals	equals	1	as	there	are	no	deers	in	the	farm	

	

auto	num_european_countries	=	std::count_if(

		countries.begin(),		

		countries.end(),		

		is_second_equal(Continent::Europe)	

);	

//	num_european_countries	is	two	as	Sweden	and	Belarus	are	in	Europe	

As	you	see,	the	template	function	is_second_equal	is	utilized	as	a	proxy	to	make	the
capture	type	a	template.	Then,	the	returned	polymorphic	lambda	does	not	need	to
know	about	the	full	type	of	the	pair.	The	actual	lambda	function	isn't	generated
until	the	std::count_if	is	invoked.

So,	the	compiler	stumbles	upon	the	following	line:

auto	lambda	=	is_second_equal(5);	

It	 then	 starts	 by	 generating	 a	 function	 which	 returns	 a	 polymorphic	 lambda
where	x	is	an	int	like	this:

auto	is_second_equal_int(const	int&	x)	{	

		return	[&x](const	auto&	p)	{	return	p.second	==	x;	};	

}	

When	 that	 function	 is	 generated,	 the	 compiler	 goes	 on	 and	 generates	 a	 class
similar	to	this:

class	Lambda	{	

public:	

		Lambda(const	int&	x)	:	x_{x}	{}	

		template	<typename	T>	

		auto	operator()(const	T&	p)	const	{	return	p.second	==	x_;	}	

		int	x_{};

};	

Then,	an	object	of	this	Lambda	class	is	constructed	and	passed	to	the	algorithm	like
this:

auto	missing_animals	=	std::count_if(farm.begin(),	farm.end(),	Lambda{0});	

The	template	operator()	member	function	of	the	Lambda	class	is	further	converted	to
the	following	function:

auto	operator()(const	std::pair<std::string,	int>&	p)	const	{	

		return	p.second	==	x_;	

}

Const	propagation	for	pointers
A	 common	 mistake	 when	 writing	 const-correct	 code	 in	 C++	 is	 that	 a	 const
initialized	object	can	still	manipulate	the	values	that	member	pointers	points	at.
The	following	example	illustrates	the	problem:

class	Foo	{

public:

		Foo(int*	ptr)	:	ptr_{ptr}	{}	

		auto	set_ptr_val(int	v)	const	{	

				*ptr_	=	v;	//	Compiles	despite	function	being	declared	const!

		}

private:

		int*	ptr_{};

};

auto	main()	->	int	{

		const	auto	foo	=	Foo{};

		foo.set_ptr_val(42);

}

Although	the	function	set_ptr_val()	is	mutating	the	int	value,	it's	valid	to		declared
it	const	 	 since	 the	pointer	 ptr_	 itself	 is	 not	mutated,	 only	 the	 int	 object	 that	 the
pointer	is	pointing	at.

In	 order	 to	 prevent	 this	 in	 a	 readable	 way,	 a	 wrapper
called	std::experimental::propagate_const	has	been	added	to	the	std	library	extensions
(included	 in,	 as	 of	 the	 time	 of	 writing	 this,	 the	 latest	 versions	 of	 Clang	 and
GCC).	 Using	 propagate_const,	 the	 function	 set_ptr_val()	 will	 not	 compile.	 Note
that	 propagate_const	 only	 applies	 to	 pointers,	 and	 pointer-like	 classes	 such
as	std::shared_ptr	and	std::unique_ptr,	not	std::function.

Here	is	a	usage	example:

namespace	exp	=	std::experimental;

class	Foo	{	

public:

		auto	set_ptr(int*	p)	const	{	

				ptr_	=	p;		//	Will	not	compile,	as	expected

		}

		auto	set_val(int	v)	const	{	

				val_	=	v;		//	Will	not	compile,	as	expected

		}

		auto	set_ptr_val(int	v)	const	{	

				*ptr_	=	v;	//	Will	not	compile,	const	is	propagated

		}

private:

		exp::propagate_const<int*>	ptr_	=	nullptr;	

		int	val_{};	

};	

Move	semantics	explained
Move	semantics	 is	a	concept	 introduced	in	C++11	which,	 in	our	experience,	 is
quite	hard	to	grasp	even	by	experienced	programmers.	Therefore,	we	will	try	to
give	you	an	in-depth	explanation	of	how	it	works,	when	the	compiler	utilizes	it,
and,	most	importantly,	why	it	is	needed.

Essentially,	 the	 reason	C++	 even	 has	 the	 concept	 of	move	 semantics,	whereas
most	 other	 languages	 don't,	 is	 a	 result	 of	 being	 a	 value-based	 language	 as
discussed	 in	Chapter	1,	A	Brief	 Introduction	 to	C++.	 If	C++	did	not	have	move
semantics	 built	 in,	 the	 advantages	 of	 value-based	 semantics	 would	 get	 lost	 in
many	cases	and	programmers	would	have	to	perform	one	of	the	following	trade-
offs:

Performing	redundant	deep-cloning	operations	with	high	performance	costs
Using	 pointers	 for	 objects	 like	 Java	 do,	 losing	 the	 robustness	 of	 value
semantics
Performing	error-prone	swapping	operations	at	the	cost	of	readability

We	do	not	want	either	of	these,	so	let's	have	a	look	at	how	move	semantics	helps
us.

Copy-construction,	 swap,	 and
move
Before	 we	 go	 into	 the	 details	 of	 move,	 we	 first	 explain	 and	 illustrate	 the
differences	 between	 copy-constructing	 and	 object,	 swapping	 two	 objects,	 and
move-constructing	an	object.

Copy-constructing	an	object
When	 copying	 an	 object	 handling	 a	 resource,	 a	 new	 resource	 needs	 to	 be
allocated,	and	the	resource	from	the	source	object	needs	to	be	copied	so	that	the
two	 objects	 are	 completely	 separated.	 The	 resource	 allocations	 of	 copy
construction	in	the	following	code	block	is	illustrated	as	follows:

auto	a	=	Object{};	

auto	b	=	a;	//	Copy-construction	

The	following	image	illustrates	the	process:

Copying	an	object	with	resources

The	allocation	 and	copying	 is	 slow	and,	 in	many	cases,	 the	 source	object	 isn't
needed	 anymore.	With	 move	 semantics,	 the	 compiler	 detects	 cases	 like	 these
where	 the	 old	 object	 is	 not	 tied	 to	 a	 variable,	 and	 instead	 performs	 a	 move
operation.	This	will	be	explained	in	the	following	detail.

Swapping	two	objects
Before	 move	 semantics	 were	 added	 in	 C++11,	 swapping	 the	 content	 of	 two
objects	was	a	common	way	to	transfer	data	without	allocating	and	copying.	The
objects	simply	swaps	the	content	with	each	other:

auto	a	=	Object{};	

auto	b	=	Object{};	

std::swap(a,	b);	

The	following	image	illustrates	the	process:

Swapping	resources	between	two	objects

Move-constructing	an	object
When	moving	an	object,	the	destination	object	steals	the	resource	straight	from
the	source	object,	 and	 the	 source	object	 is	 reset,	 as	 illustrated	 in	 the	 following
image.	As	you	can	see,	it	is	very	similar	to	swapping,	except	that	the	moved-from
object	does	not	have	to	receive	the	resources	from	the	moved-to	object:

auto	a	=	Object{};	

auto	b	=	std::move(a);	//	Tell	the	compiler	to	move	the	resource	into	b	

The	following	image	illustrates	the	process:

Moving	resources	from	one	object	to	another

Moving	objects	only	makes	sense	if	the	object	type	owns	a	resource
of	 some	 sort	 (the	 most	 common	 case	 being	 heap-allocated
memory).	 If	 all	 data	 is	 contained	 within	 the	 object,	 the	 most
efficient	way	to	move	an	object	is	to	just	copy.

Resource	acquisition	and	the	rule
of	three
Now	that	you	have	a	handle	on	what	is	going	on,	let's	go	into	detail.

To	fully	understand	move	semantics,	we	need	to	go	back	to	the	basics	of	classes
and	 resource	 acquisition	 in	 C++.	 One	 of	 the	 basic	 concepts	 of	 classes	 and
resource	 acquisition	 in	 C++	 is	 that	 a	 class	 should	 completely	 handle	 its
resources.

This	means	that	when	a	class	is	copied,	assigned,	or	destructed,	the	class	should
make	sure	its	resources	are	also	copied,	assigned	and	destructed.	The	necessity
of	 implementing	 these	 three	 functions	 is	 commonly	 referred	 to	 as	 the	 rule	 of
three.

The	rule	of	three	is	such	an	obvious	part	of	C++	and	STL	that	there	is	a	chance
that	you	are	using	it	without	thinking	about	it.	But	if	we	take	a	look	at	a	simple
function	which	copies	a	std::vector<int>,	there	are	quite	a	few	things	that	actually
go	on	under	the	hood:

0.	auto	func()	{	

1.			//	Prerequisite	

2.			const	auto	a0	=	std::vector<int>{1,2,3,4,5,6};	

3.			const	auto	a1	=	std::vector<int>{7,8,9};	

4.			//	Copy-construct	

5.			auto	b	=	a0;	

6.			//	Copy-assign	

7.			b	=	a1;	

8.	}	

The	allocated	data	in	a0	is	copy-constructed	into	b	 to	a	new	allocation	in	vector
b	at	line	5	and	the	data	of	a1	is	copy-assigned	into	b1	at	line	7.	When	the	function
exits,	 the	 allocations	 held	 by	 a0,	 a1,	 and	 b	 are	 automatically	 freed	 up	 by	 their
destructors.

Implementing	the	rule	of	three
Prior	to	C++11,	automatic	resource	acquisition	in	C++	was	implemented	using	a
guideline	called	 the	rule	of	 three,	where	 the	 three	 refers	 to	 the	special	member
functions:	copy-constructor,	copy-assignment	and	destructor.	The	rule	says	that
if	 you	 are	 handling	 resources	 in	 any	 of	 these	 three	 functions,	 you	most	 likely
need	to	do	it	in	all	three	of	them.

Let's	have	a	look	at	how	the	rule	of	three	can	be	implemented	in	a	class	handling
an	allocated	resource.	 In	 the	Buffer	 class	defined	 in	 the	 following	code	snippet,
the	 allocated	 resource	 is	 an	 array	of	 floats	pointed	 at	 by	 the	 raw	pointer	 ptr_	 .
Note	how	 the	 rule	of	 three	handles	 the	 resource	by	allocating	and	deallocating
the	float	array:

class	Buffer	{	

public:	

		//	Constructor	

		Buffer(const	std::initializer_list<float>&	values)		

		:	size_{values.size()}	{	

				ptr_	=	new	float[values.size()];	

				std::copy(values.begin(),	values.end(),	ptr_);	

		}	

		//	1.	Copy	constructor	

		Buffer(const	Buffer&	other)	:	size_{other.size_}	{	

				ptr_	=	new	float[size_];	

				std::copy(other.ptr_,	other.ptr_	+	size_,	ptr_);	

		}	

		//	2.	Copy	assignment	

		auto&	operator=(const	Buffer&	other)	{

				delete	[]	ptr_;

				ptr_	=	new	float[other.size_];

				size_	=	other.size_;

				std::copy(other.ptr_,	other.ptr_	+	size_,	ptr_);

				return	*this;

		}	

		//	3.	Destructor	

		~Buffer()	{	

				delete	[]	ptr_;	//	Note,	it	is	valid	to	delete	a	nullptr	

				ptr_	=	nullptr;

		}	

		//	Iterators	for	accessing	the	data	

		auto	begin()	const	{	return	ptr_;	}	

		auto	end()	const	{	return	ptr_	+	size_;	}	

private:	

		size_t	size_{0};	

		float*	ptr_{nullptr};

};

In	 this	 case,	 the	 handled	 resource	 is	 a	 block	 of	 allocated	 memory.	 Allocated

memory	 is	 probably	 the	 most	 common	 resource	 for	 classes	 to	 handle,	 but
remember	that	a	resource	can	be	so	much	more:	a	mutex,	a	handle	for	a	texture
on	the	graphics	card,	a	thread	handle,	and	so	on.	

Constructor
We	can	construct	a	Buffer	object	like	this:

auto	float_array	=	Buffer({0.0f,	0.5f,	1.0f,	1.5f});	

The	actual	object	will	then	look	like	this	in	computer	memory:

The	 copy-constructor,	 copy-assignment,	 and	 destructor	 are	 invoked	 in	 the
following	cases:

auto	func()	{	

		//	Construct	

		auto	b0	=	Buffer({0.0f,	0.5f,	1.0f,	1.5f});	

		//	1.	Copy-construct	

		auto	b1	=	b0;	

		//	2.	Copy-assignment	as	b0	is	already	initialized	

		b0	=	b1;	

		//	3.	When	the	function	exits,	the	destructors	are	automatically	invoked	

}	

Limitations	of	the	rule	of	three
Although	a	correct	implementation	of	the	rule	of	three	is	all	that	is	required	for	a
class	to	handle	its	internal	resources,	two	problems	arise:

Resources	 which	 cannot	 be	 copied:	 In	 the	 Buffer	 class	 example,	 our
resource	can	be	copied,	but	there	are	other	types	of	resources	where	a	copy
wouldn't	make	sense.	For	example,	the	resource	contained	in	a	class	might
be	 a	 std::thread,	 a	 network	 connection,	 or	 something	 else	 which	 it	 is	 not
possible	to	copy.	In	these	cases,	it	is	simply	not	possible	to	pass	around	the
object.
Unnecessary	copies:	If	we	return	our	Buffer	class	from	a	function,	the	entire
array	needs	to	be	copied.

The	following	example	shows	how	a	Buffer	object	created	inside	make_buffer()	 is
fully	copied	from	local_buffer	to	buffer	when	returned	from	a	function:

auto	make_buffer()	{	

		auto	local_buffer	=	Buffer({2.0f,	4.0f,	6.0f,	8.0f});	

		return	local_buffer;	

}	

auto	buffer	=	make_buffer();	

If	we	would	add	move-semantics	to	our	Buffer	class,	this	copy	will	be	omitted	as
the	compiler	sees	that	local_buffer	is	not	used	any	more.	

Avoiding	 copies	 without	 move
semantics
Without	move	semantics,	these	problems	were	usually	avoided	by	allocating	via
a	pointer,	and	passing	around	the	pointer	instead	of	the	actual	class.	In	this	case,
we	utilize	an	old-fashioned	raw	pointer	for	clarity,	although	some	sort	of	smart
pointer	is	probably	the	most	used	case	(such	as	shared_ptr,	unique_ptr,	or	 the	old,
deprecated	auto_ptr):

auto	make_buffer()	->	Buffer*	{	

		auto	buffer	=	new	Buffer({2.0,	4.0,	6.0,	8.0});	

		return	buffer;	

}	

	

//	The	actual	Buffer	object	isn't	copied,	just	the	pointer	

auto	buffer	=	make_buffer();	//	buffer	is	Buffer*

This	has	several	disadvantages:

The	 advantage	 of	 value	 semantics	 in	 C++	 is	 lost:	 the	 programmer	 is	 not
relieved	from	handling	pointers	manually
The	code	gets	bloated	with	pointers	which	are	simply	only	used	for	the	sake
of	optimization
More	heap	allocations	are	required,	leading	to	potentially	slower	code	due
to	cache	misses	and	an	increase	in	allocations

Introducing	move	semantics
In	order	to	get	rid	of	these	problems,	the	rule	of	three	was	expanded	to	the	rule
of	five.

To	be	specific,	in	addition	to	the	copy-constructor	and	copy-assignment,	we	now
also	have	move-constructor	and	move-assignment.

Instead	of	 taking	a	const	 reference	as	 a	parameter,	 the	move	versions	accept	 a
Buffer&&	object.

The	 &&	 modifier	 indicates	 that	 the	 parameter	 is	 an	 object	 which	 we	 intend	 to
move	from	instead	of	copying	it.	Speaking	in	C++	terms,	this	is	called	an	r-value
and	we	will	talk	a	little	bit	more	about	those	later.

Whereas	the	copy	functions	copy	an	object,	the	move	equivalents	are	intended	to
move	resources	from	one	object	to	another,	freeing	the	moved-from	object	from
the	resource.

It's	 important	 to	 notice	 that	 the	 moved-from	 object	 still	 has	 to
remain	in	a	valid	state;	the	moved-from	object	must	still	be	able	to
execute	it's	destructor	or	reassigned	a	new	value.

This	is	how	we	would	extend	our	Buffer	class	with	move-constructor	and	move-
assignment.	As	you	can	see,	these	functions	will	not	throw	an	exception	and	can
therefore	 be	 marked	 as	 noexcept.	 This	 is	 because,	 as	 opposed	 to	 the	 copy-
constructor/copy-assignment,	they	do	not	allocate	or	do	something	which	might
throw	exceptions:

class	Buffer	{	

		...	

		Buffer(Buffer&&	other)	noexcept	

		:	ptr_{other.ptr_}

		,	size_{other.size_}	{	

				other.ptr_	=	nullptr;

				other.size_	=	0;

		}

		auto&	operator=(Buffer&&	other)	noexcept	{

				ptr_	=	other.ptr_;

				size_	=	other.size_;

				other.ptr_	=	nullptr;

				other.size_	=	0;

				return	*this;

		}

		...

};

Now,	when	the	compiler	detects	that	we	perform	what	seems	to	be	a	copy,	such
as	 returning	 a	 Buffer	 from	 a	 function,	 but	 the	 copied-from	 value	 isn't	 used
anymore,	it	will	utilize	the	no-throw	move-constructor/move-assignment	instead
of	copying.

This	 is	pretty	sweet:	 the	 interface	remains	as	clear	as	when	copying	but,	under
the	 hood,	 the	 compiler	 has	 performed	 a	 simple	 move.	 Thus,	 the	 programmer
does	not	need	to	use	any	esoteric	pointers	or	out-parameters	in	order	to	avoid	a
copy;	as	 the	class	has	move-semantics	 implemented,	 the	 compiler	 handles	 this
automatically.

Do	 not	 forget	 to	 mark	 your	 move-constructors	 and	 move-
assignment	 operators	 as	 noexcept	 (unless	 they	 might	 throw	 an
exception,	 of	 course).	 Not	 marking	 them	 noexcept	 prevents
STL	containers	and	algorithms	from	utilizing	them	and	resorts	to	a
regular	copy/assignment	under	certain	conditions.

Named	variables	and	r-values
So,	when	is	the	compiler	allowed	to	move	objects	instead	of	copying?	As	a	short
answer,	the	compiler	moves	an	object	when	the	object	can	be	categorized	as	an
r-value.	The	 term	r-value	might	sound	complicated,	but	 in	essence	 it	 is	 just	an
object	which	is	not	tied	to	a	named	variable,	for	either	of	the	following	reasons:

It's	coming	straight	out	of	a	function
We	make	a	variable	an	r-value	by	using	std::move(...)

The	following	example	demonstrates	both	of	these	scenarios:

//	Below,	the	object	coming	out	of	make_buffer	is	not	tied	to	a	variable

//	Therefore	moved	to	x	

auto	x	=	make_buffer();		

	

//	Below,	"x"	is	passed	into	std::move(...)

//	Therefore	move-assigned	to	y	

auto	y	=	std::move(x);		

Let's	make	this	a	little	bit	more	advanced	by	setting	a	member	variable	of	type
std::string	in	a	class.	

Let's	look	at	a	few	cases	of	copying	in	detail,	given	the	following	prerequisite:

class	Bird	{	

public:	

		Bird()	{}	

		auto	set_song(const	std::string&	s)	{	song_	=	s;	}	

		auto	set_song(std::string&&	s)	{	song_	=	std::move(s);	}	

		std::string	song_;	

};	

auto	bird	=	Bird{};

Case	1:	Bird::song_	is	copy-assigned	as	the	song	is	tied	to	the	variable	cuckoo_a.

auto	cuckoo_a	=	std::string{"I'm	a	Cuckoo"};

bird.set_song(cuckoo_a);

Case	 2:	 Bird::song_	 is	 move-assigned	 as	 the	 cuckoo_b	 variable	 is	 passed
through	std::move().

auto	cuckoo_b	=	std::string{"I'm	a	Cuckoo"};

bird.set_song(std::move(cuckoo_b));		

Case	3:	 Bird::song_	 is	move-assigned	 	 as	 the	 song	 string	 is	 coming	 straight	 out	 of	 a
function.

auto	make_roast_song()	{	return	std::string{"I'm	a	Roast"};	}	

bird.set_song(make_roast_song());		

Case	 4:	 Bird::song_	 is	 copy-assigned	 	 as	 the	 song	 string	 is	 held	 by
theroast_song_a	variable.

auto	roast_song_a	=	make_roast_song();	

bird.set_song(roast_song_a);		

Case	5:	 Bird::song_	 is	 copy-assigned	 as	 	 roast_song_b	 is	 declared	 const,	 and	 thus	 not
allowed	to	mutate.	

const	auto	roast_song_b	=	make_roast_song();

bird.set_song(std::move(roast_song_b));

	

As	 you	 can	 see,	 determining	 whether	 an	 object	 is	 moved	 or	 copied	 is	 quite
simple.	If	it	has	a	variable	name,	it	is	copied;	otherwise,	it	is	moved.

Accept	arguments	by	move	when
applicable
Consider	a	function	which	converts	a	std::string	to	lower	case.	In	order	to	use	the
move-constructor	where	applicable,	and	 the	copy-constructor	otherwise,	 it	may
seem	like	two	functions	are	required:

//	Argument,	s,	is	a	const	reference

auto	str_to_lower(const	std::string&	s)	->	std::string	{

		auto	clone	=	s;

		for(auto&	c:	clone)	c	=	std::tolower(c);

		return	clone;

}

//	Argument,	s,	is	an	r-value

auto	str_to_lower(std::string&&	s)	->	std::string	{

		for(auto&	c:	s)	c	=	std::tolower(c);

		return	s;

}

However,	by	 taking	 the	std::string	by	value	 instead,	we	can	write	one	 function
which	covers	both	cases:

auto	str_to_lower(std::string	s)	->	std::string	{

		for(auto&	c:	s)	

				c	=	std::tolower(c);

		return	s;

}

Let's	 see	why	 this	 implementation	of	 str_to_lower()	 avoids	unnecessary	copying
where	possible.

When	passed	 a	 regular	 variable,	 shown	 as	 follows,	 the	 content	 of	 str	 is	 copy-
constructed	 into	 s	 prior	 to	 the	 function	 call,	 and	 then	move-assigned	 back	 to
str	when	the	functions	returns.	

auto	str	=	std::string{"ABC"};

str	=	str_to_lower(str);

When	 passed	 an	 r-value,	 shown	 as	 follows,	 the	 content	 of	 str	 is	 move-
constructed	 into	 s	 prior	 to	 the	 function	 call,	 and	 then	 move-assigned	 back
to	 str	 when	 the	 function	 returns.	 Therefore,	 no	 copy	 was	 made	 through	 the
function	call.

auto	str	=	std::string{"ABC"};

str	=	str_to_lower(std::move(str));

Default	 move	 semantics	 and	 the
rule	of	zero

This	 section	 discusses	 automatically	 generated	 copy-assignment
operators,	it's	important	to	know	that	 the	generated	 function	does
not	have	strong	exception	guarantees.	Therefore,	if	an	exception	is
thrown	during	 the	 copy-assignment,	 the	 object	might	 end	 up	 in	 a
state	where	it	is	only	partially	copied.	

As	 with	 the	 copy-constructor	 and	 copy-assignment,	 the	 move-constructor	 and
move-assignment	can	 be	 generated	 by	 the	 compiler.	Although	 some	 compilers
allow	 themselves	 to	 automatically	 generate	 these	 functions	 under	 certain
conditions	(more	about	this	later),	we	can	simply	force	the	compiler	to	generate
them	by	using	the	default	keyword.

In	the	case	of	the	Bird	class,	we	simply	extend	it	like	this:

class	Bird	{	

...	

		//	Copy-constructor/copy-assignment	

		Bird(const	Bird&)	=	default;	

		auto	operator=(const	Bird&)	->	Bird&	=	default;	

		//	Move-constructor/move-assignment	

		Bird(Bird&&)	noexcept	=	default;	

		auto	operator=(Bird&&)	noexcept	->	Bird&	=	default;	

		//	Destructor

		~Bird()	=	default;	

		...	

};

To	 make	 it	 even	 simpler,	 if	 you	 do	 not	 declare	 any	 custom	 copy-
constructor/copy-assignment	 or	 destructor,	 the	 move-constructors/move-
assignments	 are	 implicitly	 declared,	 meaning	 that	 the	 first	 Bird	 class	 actually
handles	everything:

class	Bird	{	

...	

//	Nothing	here,	the	compiler	generates	everything	automatically!	

...	

};

In	other	words,	adding	just	a	custom	destructor,	shown	as	follows:

class	Bird	{

public:	

		Bird()	{}	

		~Bird()	{	std::cout	<<	"Bird	is	dead."	<<	'\n';	}	

		auto	set_song(const	std::string&	song)	{	song_	=	song;	}	

		auto	set_song(std::string&&	song)	{	song_	=	std::move(song);	}

private:	

		std::string	song_;	

};

If	we	do	this,	the	move	operators	are	not	generated,	and	the	class	will	always	be
copied.

Rule	of	zero	in	a	real	code	base
In	practice,	the	cases	where	you	have	to	write	your	own	copy/move-constructors
and	 copy/move-assignments	 should	 be	 very	 few.	 If	 you	 create	 a	 class	 in	 your
application	 code	 base	 which	 requires	 these	 to	 be	 custom	 written,	 these	 parts
should	probably	be	moved	to	some	library	in	your	code	base.

Writing	 your	 classes	 so	 that	 they	 do	 not	 require	 any	 explicitly	 written	 copy-
constructor,	 copy-assignment,	 move-constructor,	 move-assignment,	 or
destructor	is	often	referred	to	as	the	rule	of	zero.	This	means	that	if	a	class	in	the
application	code	base	is	required	to	have	any	of	these	function	written	explicitly,
that	piece	of	code	would	probably	be	better	off	in	the	library	part	of	your	code
base.

Later	on	 in	 this	chapter	we	will	discuss	 std::optional	 	 ,	which	 is	a
handy	 utility	 class	 for	 dealing	 with	 optional	 members	 when
applying	the	rule	of	zero.	

A	note	on	empty	destructors
Note	that	writing	an	empty	destructor	prevents	the	compiler	from	implementing
certain	optimizations.	As	you	can	see	in	the	following	table,	copying	an	array	of
a	 trivial	 class	 with	 an	 empty	 destructor	 yields	 the	 same,	 non-optimized,
assembler	code	as	copying	with	a	handcrafted	for	loop:

Empty	destructor	and	std::copy Copy	by	handwritten	for-loop

struct	Point	{

	int	x,	y;

	~Point(){}

};

auto	copy(Point*	src,	Point*	dst)	{

	std::copy(src,	src+64,	dst);

}

struct	Point	{

		int	x,	y;

};

auto	copy(Point*	src,	Point*	dst)	{

		const	auto	end	=	src	+	64;

		for(;	src	!=	end;	++src,	++dst)	{

				*dst	=	*src;

		}

}

	

This	generates	the	following	x86	assembler:

	xor	eax,	eax

.L2:

	mov	rdx,	QWORD	PTR	[rdi+rax]

	mov	QWORD	PTR	[rsi+rax],	rdx

	add	rax,	8

	cmp	rax,	512

	jne	.L2

	rep	ret

However,	if	we	remove	or	declare	the	destructor	default,	the	compiler	optimize
std::copy	 to	 utilize	 memmove	 instead	 of	 a	 loop.	 The	 assembler	 is	 generated	 using
GCC	7.1	in	Compiler	Explorer	available	at	https://godbolt.org/.

https://godbolt.org/

No	destructor	and	std::copy Explicit	default	destructor	and	std::copy

struct	Point	{

		int	x,	y;

};

auto	copy(Point*	src,	Point*	dst)	{

		std::copy(src,	src+64,	dst);

}

struct	Point	{

		int	x,	y;

		~Point()	=	default;

};

auto	copy(Point*	src,	Point*	dst)	{

		std::copy(src,	src+64,	dst);

}

	

This	generated	the	following	x86	assembler,	with	memmove	optimization!

	mov	rax,	rdi

	mov	edx,	512

	mov	rdi,	rsi

	mov	rsi,	rax

	jmp	memmove

To	summarize,	use	default	destructors	in	favor	of	empty	destructors	to	squeeze	a
little	bit	more	performance	of	your	application.

A	 common	 pitfall	 -	 moving	 non-
resources
There	 is	 one	 common	 pitfall	 when	 using	 default	 created	 move-assignments:
classes	which	mix	simple	types	with	more	advanced	types.	As	opposed	to	more
advanced	 types,	 simple	 types	 such	 as	 integers,	 Booleans,	 and	 such	 are	 simply
copied	when	moved	as	they	don't	handle	any	resources.

When	a	simple	type	is	mixed	with	a	resource-owning	type,	the	move-assignment
becomes	a	mixture	of	move	and	copy.

Here	is	an	example	of	a	class	which	will	fail:

class	TowerList	{	

public:	

		TowerList()	:	max_height_idx_{1},	tower_heights_{25.0f,	44.0f,	12.0f}	{}

		auto	get_max_tower_height()	const	{	

				return	max_height_idx_	>=	0	?	

						tower_heights_[max_height_idx_]	:	0.0f;	

		}	

		std::vector<float>	tower_heights_{};	

		int	max_height_idx_{-1};	

};

The	TowerList	class	will	have	undefined	behavior	if	it	is	handled	like	this:

auto	a	=	TowerList{};	

auto	b	=	std::move(a);	

auto	max_height	=	a.get_max_tower_height();

The	 undefined	 behavior	 happens	 as	 the	 tower_heights_	 vector	 is	 moved	 and	 is
therefore	empty.	The	max_height_idx_,	on	 the	other	hand,	 is	copied,	and	 therefore
still	has	the	value	2	in	the	moved-from	object	a.	When	the	get_max_tower_height()	is
called,	 the	 function	will	 try	 to	 access	 tower_heights_	 at	 index	 2	 and	 the	 program
will	crash.

In	these	cases,	the	move-constructor/assignment	is	better	implemented	by	simply
swapping	the	members	like	this:

TowerList(TowerList&&	tl)	noexcept	{	

		std::swap(tower_heights_,	tl.tower_heights_);	

		std::swap(max_height_idx_,	tl.max_height_idx_);	

}	

auto&	operator=(TowerList&&	tl)	noexcept	{	

		std::swap(tower_heights_,	tl.tower_heights_);	

		std::swap(max_height_idx_,	tl.max_height_idx_);	

		return	*this;	

}

This	way,	 the	 TowerList	 class	 can	be	 safely	moved	while	 still	 preserving	 the	no
exception	 guaranteed.	 Later	 in	 this	 book,	 in	 Chapter	 8,	Metaprogramming	 and
Compile-Time	 Evaluation,	 you	 will	 learn	 how	 to	 take	 advantage	 of	 reflection
techniques	 in	 C++	 in	 order	 	 to	 automate	 the	 process	 of	 creating	 move-
constructor/assignment	functions	which	swap	the	elements.

Applying	the	&&	modifier	to	class
member	functions
In	 addition	 to	 being	 applied	 to	 objects,	 you	 can	 also	 add	 the	 &&	modifier	 to	 a
member	function	of	a	class,	just	as	you	can	apply	a	const	modifier	to	a	member
function.	As	in	the	case	with	the	const	modifier,	a	member	function	which	has	the
&&	modifier	is	only	permitted	to	be	executed	on	an	r-value.

struct	Foo	{	

		auto	func()	&&	{}	

};	

auto	a	=	Foo{};	

a.func();	//	Does	not	compile,	'a'	is	not	an	r-value	

std::move(a).func();	//	Compiles	

Foo{}.func();	//	Compiles

It	might	seem	odd	that	one	would	ever	want	 this	behavior,	but	 there	are	cases.
We	 will	 investigate	 one	 of	 those	 cases	 in	 Chapter	 9,	 Proxy	 Objects	 and
Lazy	Evaluation.

Representing	optional	values	with
std::optional
Although	quite	a	minor	 feature	 in	C++17,	std::optional	 is	a	neat	addition	 to	 the
STL	 library	which	simplifies	a	common	case	which	couldn't	be	expressed	 in	 a
clean	 straightforward	 syntax	 prior	 to	 std::optional.	 In	 a	 nutshell,	 it	 is	 a	 small
wrapper	 for	 any	 type	 where	 the	 wrapped	 type	 can	 be	 both	 initialized	 and
uninitialized.

To	put	it	in	C++	lingo,	std::optional	is	a	stack-allocated	container	with	a	max	size
of	one.

Note	 that	 the	 Boost	 Libraries	 has	 had	 an	 equivalent
of	std::optional,named	boost::optional	for	many	years.

Optional	return	values
Before	 the	 introduction	 of	 std::optional,	 there	 was	 no	 clear	 way	 to	 define
functions	which	may	not	return	a	defined	value,	such	as	the	intersection	point	of
two	 line	 segments.	With	 the	 introduction	 of	 std::optional,	 such	 optional	 return
values	 can	be	 clearly	 expressed.	Following	 is	 an	 implementation	of	 a	 function
which	returns	an	optional	intersection	between	two	lines:

//	Prerequisite

class	Point	{...};	class	Line	{...};		

external	auto	is_intersecting(Line	a,	Line	b)	->	bool	{...}

external	auto	get_intersection(Line	a,	Line	b)	->	Point	{...}

auto	get_intersection_point(const	Line&	a,	const	Line&	b)	

->	std::optional<Point>	{

		return	is_intersection(a,	b)	?

				std::make_optional(get_intersection(a,	b)):

				std::optional<Point>{};

}

The	syntax	of	std::optional	 resembles	 that	of	a	pointer,	 the	value	 is	accessed	by
operator*	 or	 operator->.	 If	 trying	 to	 access	 the	 value	 of	 an	 empty	 optional,	 the
std::optional	 throws	 an	 exception.	 Following	 is	 a	 simple	 usage	 example	 of	 a
returned	std::optional:

//	Prerequisite

auto	line0	=	Line{...};	

auto	line1	=	Line{...};

external	auto	set_magic_point(Point	p);

//	Get	optional	intersection

auto	intersection	=	get_intersection_point(line0,	line1);

if(intersection.has_value())	{

		//	std::optional	throws	an	exception	if	intersection	is	empty

		set_magic_point(*intersection);

}

The	object	held	by	a		std::optional	is	always	stack	allocated,	and	the
memory	overhead	of	a	std::optional<T>	compared	to	T	 is		the	size	of
one	bool	(usually	one	byte),	plus	possible	padding.

Optional	member	variables
Let's	say	we	have	a	class	which	represents	a	human	head.	The	head	can	have	a
hat	 of	 some	 sort,	 or	 no	 hat	 at	 all.	 By	 using	 std::optional	 to	 represent	 the	 hat
member	variable	the	implementation	is	as	expressive	as	can	be.	

struct	Hat	{...}

class	Head	{

public:

		Head()	{	assert(!hat_);	}	//	hat_	is	empty	by	default

		auto	set_hat(const	Hat&	h){	hat_	=	h;	}

		auto	has_hat()	const	{	return	hat_.has_value();	}

		auto&	get_hat()	const	{	assert(hat_.has_value());	return	*hat_;	}

		auto	remove_hat()	{	hat_	=	{};	}	//	Hat	is	cleared	by	assigning	to	{}

private:

		std::optional<Hat>	hat_;

};

Without	std::optional,	 representing	 an	optional	member	variable	would	 rely	on,
for	 example,	 a	 pointer	 or	 an	 extra	 bool	 member	 variable.	 Both	 having
disadvantages	 such	 as	 allocating	 on	 the	 heap,	 or	 accidentally	 accessing	 an
optional	considered	empty	without	a	warning.

Sorting	 and	 comparing
std::optional
The	 std::optional	 is	 both	 equally	 comparable	 and	 sortable,	 using	 the	 following
rules	as	shown	in	the	following	table:

Two	empty	optional's	are	considered
equal.

auto	a	=	std::optional<int>{};

auto	b	=	std::optional<int>{};

auto	c	=	std::optional<int>{4};

assert(a	==	b);

assert(b	!=	c);

An	 empty	 optional	 is	 considered	 less	 than	 a
non-empty.

auto	a	=	std::optional<int>{};

auto	b	=	std::optional<int>{4};

auto	c	=	std::optional<int>{5};

assert(a	<	b);

assert(b	<	c);

	

Therefore,	if	you	sort	a	container	of	std::optional<T>,	the	empty	optional's	would
end	up	at	 the	beginning	of	 the	container,	whereas	 the	non-empty	optional's	are
sorted	as	usual,	shown	as	follows:

auto	c	=	std::vector<std::optional<int>>{{3},	{},	{1},	{},	{2}};

std::sort(c.begin(),	c.end());

//	c	is	{},	{},	{1},	{2},	{3}

Representing	 dynamic	 values
with	std::any
Just	 like	 std::optional,	 std::any	 can	 store	 an	 optional	 single	 value,	 but	 with	 the
difference	 that	 it	 can	 store	 any	 type	 at	 runtime,	 just	 like	 a	 dynamically
typed}language.	As	 the	 std::any	 can	withhold	 any	 type,	 you	 need	 to	 explicitly
specify	 the	 type	 using	 the	 global	 function	 std::any_cast	 when	 reading	 the	 held
object.

If	 the	 std::any	 is	 empty	 or	 withholds	 another	 type	 than	 the	 specified	 type,	 an
exception	is	thrown.

Here	is	an	example	of	how	it	works:

//	Initialize	an	empty	std::any	

auto	a	=	std::any{};	

//	Put	a	string	in	it	

a	=	std::string{"something"};	

//	Return	a	reference	to	the	withheld	string	

auto&	str_ref	=	std::any_cast<std::string&>(a);	

//	Copy	the	withheld	string	

auto	str_copy	=	std::any_cast<std::string>(a);	

//	Put	a	float	in	the	'any'	and	read	it	back	

a	=	135.246f;	

auto	flt	=	std::any_cast<float>(a);	

//	Copy	the	any	object	

auto	b	=	a;	

auto	is_same	=	

		(a.type()	==	b.type())	&&	

		(std::any_cast<float>(a)	==	std::any_cast<float>(b));	

//	a	equals	b	as	they	contain	the	same	type	and	value

Asking	 the	 std::any	 instance	 if	 it	 contains	 a	 type	 via	 the	 typeid	 is	 quite
verbose,	 but	 you	 can	 easily	 create	 a	 convenience	 function	which	 checks	 if	 the
std::any	contains	a	specified	type	like	this:

template	<typename	T>	

auto	is_withheld_type(const	std::any&	a)	->	bool	{	

		return	typeid(T)	==	a.type();	

}	

auto	a	=	std::any{32.0};

auto	is_int	=	is_withheld_type<int>(a);	

//	is_int	is	false,	'a'	contains	a	double

auto	is_double	=	is_withheld_type<double>(a);

//	is_double	is	true,	'a'	contains	a	double

Performance	of	std::any
In	contrast	 to	 std::optional	 and	 std::variant	 (std::variant	 is	 discussed	 in	 Chapter	8,
Meta	 programming	 and	 Compile-Time	 evaluation),	 std::any	 heap-allocates	 its
withheld	 value	 (although	 implementers	 are	 encouraged	 to	 store	 small	 objects
inside	of	the	any).	Also,	invoking	a	std::any_cast	to	retrieve	the	value	is	quite	slow
compared	to	std::variant.

The	Boost	equivalent	of	std::any,	boost::any,	provides	a	 fast	version
of	std::any_cast	 called	 boost::any_cast_unsafe	 which	 can	 be	 utilized	 if
you	know	which	type	is	contained.	In	contrast	to	std::any_cast,	using
a	boost::any_cast_unsafe	with	 the	wrong	 type	will	result	 in	undefined
behavior	instead	of	a	thrown	exception.

Summary
In	 this	 chapter	 you	 have	 learned	 how	 to	 use	 modern	 C++	 features	 such	 as
forwarding	 references,	 move-semantics,	 lambda	 functions,	 std::any,	 and
std::optional.	In	the	next	chapter	we	will	look	into	strategies	for	how	to	measure
performance	in	C++.

Measuring	Performance
Since	 this	 is	 a	 book	 about	writing	C++	 code	 that	 runs	 efficiently,	we	 need	 to
cover	some	basics	regarding	how	to	measure	software	performance	and	estimate
algorithmic	efficiency.	Most	of	the	topics	in	this	chapter	are	not	specific	to	C++,
and	can	be	used	whenever	 you	 are	 facing	 a	 problem	where	 performance	 is	 an
issue.

We	 are	 going	 to	 learn	 how	 to	 estimate	 algorithmic	 efficiency	 using	 big	 O
notation.	 This	 is	 essential	 knowledge	 when	 choosing	 algorithms	 and	 data
structures	from	STL.	If	you	are	new	to	big	O	notation,	this	part	might	take	some
time	to	grasp.	But	don't	give	up!	This	is	a	very	important	topic	to	grasp	in	order
to	 understand	 the	 rest	 of	 the	 book,	 	 and,	 more	 importantly	 to	 become	 a
performance-aware	 programmer.	 If	 you	want	 a	more	 formal	 or	more	 practical
introduction	 to	 these	 concepts,	 there	 are	 plenty	 of	 books	 and	 online	 resources
dedicated	 to	 this	 topic.	On	 the	other	hand,	 if	you	have	already	mastered	big	O
notation	and	know	what	amortized	time	complexity	is,	you	could	probably	skim
the	next	section	and	go	to	the	later	parts	of	this	chapter.

Altogether,	this	chapter	includes:

Estimating	algorithmic	efficiency	using		big	O	notation
A	suggested	workflow	when	optimizing	code	 so	 that	we	don't	 spend	 time
fine-tuning	code	without	good	reasons
CPU	profilers—what	they	are	and	why	you	should	use	them

Asymptotic	complexity	and	big	O
notation
There	 is	 usually	more	 than	 one	way	 to	 solve	 a	 problem	 and	 if	 efficiency	 is	 a
concern,	you	should	first	and	foremost	focus	on	the	high-level	optimizations	by
choosing	the	right	algorithms	and	data	structures.	A	useful	way	of	evaluating	and
comparing	 algorithms	 is	 by	 analyzing	 their	 asymptotic	 computational
complexity—that	 is,	 analyzing	 how	 the	 running	 time	 or	memory	 consumption
grows	 when	 the	 size	 of	 the	 input	 increases.	 In	 addition,	 the	 C++	 Standard
Template	Library	(STL)	specifies	the	asymptotic	complexity	for	all	containers
and	algorithms,	which	means	that	a	basic	understanding	of	this	topic	is	a	must	if
you	 are	 using	 STL.	 If	 you	 already	 have	 a	 good	 understanding	 of	 algorithm
complexity	and	the	big	O	notation,	you	can	safely	skip	this	section.

Let's	 start	 off	 with	 an	 example.	 Suppose	 we	 want	 to	 write	 an	 algorithm	 that
returns	true	 if	 it	 finds	a	specific	key	 in	an	array,	or	false	otherwise.	 In	order	 to
find	out	how	our	algorithm	behaves	when	passed	different	sizes	of	the	array,	we
would	like	to	analyze	the	running	time	of	this	algorithm	as	a	function	of	its	input
size:

auto	linear_search(const	std::vector<int>&	vals,	int	key)	{	

		for	(const	auto&	v	:	vals)	{	

				if	(v	==	key)	{	

						return	true;	

				}	

		}	

		return	false;	

}	

The	algorithm	 is	 straightforward:	 It	 iterates	over	 the	elements	 in	 the	array	and
compares	 each	 element	 with	 the	 key.	 If	 we	 are	 lucky,	 we	 find	 the	 key	 in	 the
beginning	of	the	array	and	it	returns	immediately,	but	we	might	loop	through	the
entire	array	without	finding	the	key	at	all.	This	would	be	the	worst	case	for	the
algorithm,	and	in	general,	that	is	the	case	we	want	to	analyze.	But	what	happens
with	the	running	time	when	we	increase	the	input	size?	Say	we	double	the	size
of	the	array.	Well,	in	the	worst	case,	we	need	to	compare	all	elements	in	the	array
that	 would	 double	 the	 running	 time.	 There	 seems	 to	 be	 a	 linear	 relationship
between	the	input	size	and	the	running	time.	We	call	this	a	linear	growth	rate:

Linear	growth	rate

How	about	the	following	algorithm:

struct	Point	{	

		int	x{};	

		int	y{};	

};	

	

auto	linear_search(const	std::vector<Point>&	a,	const	Point&	key)	{	

		for	(size_t	i	=	0;	i	<	a.size();	++i)	{	

				if	(a[i].x	==	key.x	&&	a[i].y	==	key.y)	{	

						return	true;	

				}	

		}	

		return	false;	

}	

We	are	comparing	points	instead	of	integers	and	we	are	using	an	index	with	the
subscript	operator	 to	access	each	element.	How	is	 the	running	time	affected	by
these	 changes?	The	 absolute	 running	 time	 is	 probably	 higher	 compared	 to	 the
first	algorithm	since	we	are	doing	more	work—for	example,	 the	comparison	of
points	 involves	 two	 integers	 instead	 of	 just	 one	 for	 each	 element	 in	 the	 array.
However,	at	this	stage	we	are	interested	in	the	growth	rate	the	algorithm	exhibits,
and	if	we	plot	the	running	time	against	the	input	size,	we	would	still	end	up	with
a	straight	line,	as	shown	in	the	preceding	image.

As	 the	 last	 example	 of	 searching	 for	 integers,	 let's	 see	whether	we	 can	 find	 a
better	algorithm	if	we	assume	that	the	elements	in	the	array	are	sorted.	Our	first
algorithm	would	work	 regardless	of	 the	order	of	 the	elements,	but	 if	we	know
that	 they	 are	 sorted,	 we	 can	 use	 a	 binary	 search.	 It	 works	 by	 looking	 at	 the
element	in	the	middle	and	determines	whether	it	should	continue	searching	in	the
first	or	second	half	of	the	array:

auto	binary_search(const	std::vector<int>&	a,	int	key)	{	

		if	(a.empty())	{	

				return	false;	

		}	

		auto	low	=	size_t{0};

		auto	high	=	a.size()	-	1;		

		while	(low	<=	high)	{		

				const	auto	mid	=	low	+	((high	-	low)	/	2);		

				if	(a[mid]	<	key)	{		

						low	=	mid	+	1;		

				}		

				else	if	(a[mid]	>	key)	{	

						high	=	mid	-	1;	

				}		

				else	{		

						return	true;		

				}		

		}		

		return	false;		

}	

As	 you	 can	 see,	 this	 algorithm	 is	 harder	 to	 get	 correct	 than	 the	 simple	 linear
scan.	It	looks	for	the	specified	key	by	guessing	that	it's	in	the	middle	of	the	array.
If	 it's	not,	 it	compares	 the	key	with	 the	element	 in	 the	middle	 to	decide	which
half	of	the	array	should	keep	looking	for	the	key.	So	in	each	iteration	it	cuts	the
array	 in	 half.	 Assume	 we	 called	 binary_search()	 with	 an	 array	 containing	 64
elements.	 In	 the	 first	 iteration	we	 reject	 32	 elements,	 in	 the	 next	 iteration	 we
reject	 16	 elements,	 the	next	 iteration	8	 elements,	 and	 so	on,	 until	 there	 are	 no
more	elements	to	compare	or	until	we	find	the	key.	For	an	input	size	of	64,	there
will	be	at	most	7	loop	iterations.	What	if	we	double	the	input	size	to	128?	Since
we	halve	 the	 size	 in	each	 iteration,	 it	means	 that	we	only	need	one	more	 loop
iteration.	Clearly,	the	growth	rate	is	no	longer	linear—it's	actually	logarithmic.	If
we	measure	the	running	time	of	binary_search(),	we	will	see	that	the	growth	rate
would	look	something	like	the	one	in	the	following	image:

Logarithmic	growth	rate

On	my	machine,	a	quick	timing	of	the	three	algorithms	repeatedly	called	10,000
times	 with	 various	 input	 sizes	 (n)	 produced	 the	 results	 shown	 in	 the
following	table:

Algorithm n	=	10 n	=	1,000 n	=	1,00,000

1.	 Linear	search	with	int 0.04	ms 				4.7	ms 							458	ms

2.	 Linear	search	with	Point 0.07	ms 				6.7	ms 							725	ms

3.	 Binary	search	with	int 0.03	ms 		0.08	ms 							0.16	ms

	

Comparing	 algorithms	 1	 and	 2,	 we	 can	 see	 that	 comparing	 points	 instead	 of
integers	takes	more	time,	but	they	are	still	in	the	same	order	of	magnitude	even
when	the	input	size	increases.	However,	if	we	compare	all	three	algorithms	when
the	 input	 size	 increases,	 what	 really	 matters	 is	 the	 growth	 rate	 the	 algorithm
exhibits.	By	exploiting	 the	 fact	 that	 the	array	was	 sorted,	we	 could	 implement
the	search	function	with	very	few	loop	iterations.	For	large	arrays,	binary	search
is	practically	free	compared	to	linearly	scanning	the	array.

Never	spend	time	tuning	your	code	before	you	are	certain	that	you
have	 chosen	 the	 correct	 algorithms	 and	 data	 structures	 for	 your
problem.

Wouldn't	 it	be	nice	 if	we	could	express	 the	growth	rate	of	algorithms	in	a	way
that	would	 help	 us	 decide	 which	 algorithm	 to	 use?	 Here	 is	 where	 the	 big	 O
notation	 comes	 in	 handy.	 Here	 follows	 an	 informal	 definition:	 If	 f(n)	 is	 a
function	that	specifies	the	running	time	of	an	algorithm	with	input	size	n,	we	say
that	f(n)	is	O(g(n))	if	there	is	a	constant	k	such	that	f(n)	≤	k	*	g(n).	This	means
that	 we	 could	 say	 that	 the	 time	 complexity	 of	 linear_search()	 is	O(n),	 for	 both

versions	 with	 integers	 and	 points,	 whereas	 the	 time	 complexity	 of
binary_search()	is	O(log	n)	or	big	O	of	log	n.

In	 practice,	when	we	want	 to	 find	 the	 big	O	of	 a	 function,	we	 can	 do	 that	 by
eliminating	all	terms	except	the	one	with	the	largest	growth	rate	and	then	remove
any	 constant	 factors.	 For	 example,	 if	 we	 have	 an	 algorithm	 with	 a	 time
complexity	described	by	 f(n)	=	4n2	+	30n	+	100,	we	would	pick	out	 the	 term
with	the	highest	growth	rate,	4n2.	Next,	we	remove	the	constant	factor	of	4	and
end	up	with	n2,	which	means	that	we	can	say	that	our	algorithm	runs	in	O(n2).
Finding	the	time	complexity	of	an	algorithm	can	be	hard,	but	the	more	you	start
thinking	 of	 it	while	writing	 code,	 the	 easier	 it	will	 get.	 For	 the	most	 part,	 it's
enough	to	keep	track	of	loops	and	recursive	functions.

Here	is	another	example:

auto	insertion_sort(std::vector<int>&	a)	{		

		for	(size_t	i	=	1;	i	<	a.size();	++i)	{	

				auto	j	=	i;	

				while	(j	>	0	&&	a[j-1]	>	a[j])	{				

						std::swap(a[j],	a[j-1]);	

						--j;				

				}	

		}	

}	

The	 input	 size	 is	 the	 size	 of	 the	 array.	 The	 running	 time	 could	 be	 estimated
approximately	by	looking	at	the	loops	that	iterate	over	all	elements.	First,	there
is	an	outer	loop	iterating	over	n	-	1	elements.	The	inner	loop	is	different:	the	first
time	we	reach	the	while-loop,	j	 is	1	and	the	 loop	only	run	one	 iteration.	On	the
next	iteration,	j	starts	at	2	and	decreases	to	0.	For	each	iteration	in	the	outer	for
loop,	the	inner	loop	needs	to	do	more	and	more	work.	Finally,	j	starts	at	n	-	1,
which	means	that	we	have,	in	the	worst	case,	executed	swap	1	+	2	+	3	+	...	+	(n
-	1)	times.	We	can	express	this	in	terms	of	n	by	noting	that	this	is	an	arithmetic
series.	The	sum	of	the	series	is	1	+	2	+	...	+	k	=	(1/2)(k	*	(k+1)).	So	if	we	set	k
=	(n	-	1),	we	have	the	complexity	as	(1/2)((n-1)	*	(n-1	+	1))	=	(1/2)((n-1)	*	n)	=
(1/2)(n2-n)	=	(1/2)	n2	 -	 (1/2)n.	We	can	now	 find	 the	big	O	of	 this	 function	by
first	 eliminating	 all	 terms	 except	 the	 one	 with	 the	 largest	 growth	 rate,	 which
gives	us	 (1/2)n2	 left.	After	 that,	we	 remove	 the	constant	1/2	 and	conclude	 that
the	running	time	of	the	sorting	algorithm	is	O(n2).

Growth	rates
As	stated	previously,	the	first	step	in	finding	the	big	O	of	a	complexity	function
is	to	remove	all	terms	except	the	one	with	the	highest	growth	rate.	To	be	able	to
do	 that,	 we	 must	 know	 the	 growth	 rate	 of	 some	 common	 functions.	 In	 the
following	figure,	we	have	plotted	some	of	the	most	common	functions:

Comparison	of	growth	rate	functions

The	growth	 rates	are	 independent	of	machine	or	coding	style	and	so	on,	when
the	growth	rates	differ	between	two	algorithms,	the	one	with	the	slowest	growth
rate	will	always	win	when	 the	 input	 size	gets	 sufficiently	 large.	Let's	 see	what
happens	with	 the	 running	 time	 for	 different	 growth	 rates	 if	 we	 assume	 that	 it
takes	 1	 ms	 to	 perform	 1	 unit	 of	 work.	 The	 following	 table	 lists	 the	 growth
function,	its	common	name,	and	different	input	sizes,	n:

f(n) Name n	=	10 n	=	50 n	=	1000

O(1) Constant 0.001	sec 0.001	sec 0.001	sec

O(log	n) Logarithmic 0.003	sec 0.006	sec 0.01	sec

O(n) Linear 0.01	sec 0.05	sec 1	sec

O(n	log	n) Linearithmic	or	n	log	n 0.03	sec 0.3	sec 10	sec

O(n2) Quadratic 0.1	sec 2.5	sec 16.7	minutes

O(2n) Exponential 1	sec 357	centuries

Amortized	time	complexity
Usually,	 an	 algorithm	behaves	 differently	with	 different	 inputs.	Going	 back	 to
our	algorithm	that	 linearly	searched	an	element	 in	an	array,	we	were	analyzing
the	case	where	the	key	was	not	in	the	array	at	all.	For	that	algorithm,	that	was	the
worst	case—that	is,	it	used	the	most	resources	the	algorithm	will	need.	The	best
case	refers	to	the	least	amount	of	resources	the	algorithm	will	need,	whereas	the
average	case	states	how	many	resources	the	algorithm	will	use	on	average	with
different	input.

The	STL	usually	refers	 to	 the	amortized	running	 time	of	functions	 that	operate
on	containers.	 If	an	algorithm	runs	 in	constant	amortized	 time,	 it	means	 that	 it
will	 run	 in	O(1)	 in	 almost	 all	 cases,	 except	 a	 very	 few	where	 it	 will	 perform
worse.	At	first	sight,	amortized	running	time	can	be	confused	with	average	time,
but	as	we	will	see,	they	are	not	the	same.

To	 understand	 amortized	 time	 complexity,	 we	 will	 spend	 some	 time	 thinking
about	std::vector::push_back().	Let's	 assume	 that	 the	vector	 internally	has	 a	 fixed
size	array	to	store	all	 its	elements	 in.	If	 there	is	room	for	more	elements	 in	the
fixed-size	array	when	calling	push_back(),	the	operation	will	run	in	constant	time,
O(1)—that	is,	it's	not	dependent	on	how	many	elements	are	already	in	the	vector
as	long	as	the	internal	array	has	room	for	one	more:

if	(internal_array.size()	>	size)	{		

		internal_array[size]	=	new_element;	

		++size;	

}	

But	what	happens	when	the	internal	array	is	full?	One	way	to	handle	the	growing
of	the	vector	is	to	create	a	new	empty	internal	array	with	a	bigger	size,	and	then
move	all	the	elements	from	the	old	array	to	the	new	one.	This	is	obviously	not
constant	time	anymore	since	we	need	one	move	per	element	 in	 the	array—that
is,	O(n).	 If	we	considered	 this	 the	worst	 case,	 it	would	mean	 that	 push_back()	 is
O(n).	However,	 if	we	 call	 push_back()	many	 times,	we	know	 that	 the	 expensive
push_back()	can't	happen	very	often,	and	so	it	would	be	pessimistic,	and	not	very
useful,	 to	say	 that	push_back()	 is	O(n)	 if	we	know	that	push_back()	 is	 called	many
times	 in	 a	 row.	 Amortized	 running	 time	 is	 used	 for	 analyzing	 a	 sequence	 of

operations	rather	than	a	single	one.	We	are	still	analyzing	the	worst	case,	but	for
a	sequence	of	operations.	The	amortized	running	time	can	be	computed	by	first
analyzing	the	running	time	of	the	entire	sequence	and	then	dividing	that	by	the
length	of	the	sequence.	Suppose	we	are	performing	a	sequence	of	m	operations
with	the	total	running	time	T(m):

Where	 t0	=	 1,	 t1	 =	 n,	 t2	 =	 1,	 t3	=	 n,	 and	 so	 on.	 In	 other	 words,	 half	 of	 the
operations	run	in	constant	time	and	the	other	half	run	in	linear	time:

The	 amortized	 complexity	 for	 each	 operation	 is	 the	 total	 time	 divided	 by	 the
number	of	operations,	which	turns	out	to	be	O(n):

However,	if	we	can	guarantee	that	the	expensive	operations	due	to	occur	orders
of	magnitude	less	frequently,	we	will	achieve	lower	amortized	running	costs.	For
example,	if	we	can	guarantee	that	an	expensive	operation	only	occurs	once	in	a
sequence	T(n)	+	T(1)	+	T(1)	+	...,	 then	the	amortized	running	time	is	O(1).	So
depending	on	the	frequency	of	the	expensive	operations,	the	amortized	running
time	changes.

Now,	 back	 to	 std::vector.	 The	 standard	 states	 that	 push_back()	 needs	 to	 run	 in
amortized	 constant	 time,	O(1).	 How	 do	 the	 STL	 vendors	 achieve	 this?	 If	 the
capacity	 is	 increased	 by	 a	 fixed	 number	 of	 elements	 each	 time	 the	 vector
becomes	full,	we	will	have	a	case	similar	to	the	preceding	one	where	we	had	a
running	 time	 of	O(n).	 Even	 if	 we	 use	 a	 large	 constant,	 the	 capacity	 changes
would	still	occur	at	 fixed	 intervals.	The	key	 insight	 is	 that	 the	vector	needs	 to
grow	 exponentially	 in	 order	 to	 get	 the	 expensive	 operations	 to	 occur	 rarely
enough.	Internally,	the	vector	uses	a	growth	factor	such	that	the	capacity	of	the
new	array	is	the	current	size	times	the	growth	factor.

A	big	growth	factor	would	potentially	waste	more	memory	but	would	make	the
expensive	operation	occur	less	frequently.	To	simplify	the	math,	let's	assume	we
double	 the	capacity	 each	 time	 the	 vector	 needs	 to	 grow.	We	 can	now	estimate

how	often	 the	expensive	calls	occur.	For	a	vector	of	 size	n,	we	would	need	 to
grow	the	internal	array	log2(n)	times	since	we	are	doubling	the	size	all	the	time.
Each	time	we	grow	the	array,	we	need	to	move	all	the	elements	that	are	currently
in	the	array.	The	i:th	time	we	grow	the	array	there	will	be	2i	elements	to	move.
So	 if	we	 perform	m	 number	 of	 push_back()	 operations,	 the	 running	 time	 of	 the
entire	sequence	will	be:

This	is	a	geometric	series	and	can	also	be	expressed	as:

Dividing	this	by	the	length	of	the	sequence,	i.e.	m,	we	end	up	with	the	amortized
running	time	O(1).	

As	we	have	already	said,	amortized	time	complexity	is	used	a	lot	in	the	STL,	so
it's	good	to	have	an	understanding	of	it.	Thinking	about	how	push_back()	could	be
implemented	in	amortized	constant	time	has	helped	me	remember	the	simplified
version	of	amortized	constant	time:	It	will	run	in	O(1)	in	almost	all	cases,	except
a	very	few	where	it	will	perform	worse.

That	is	all	we	are	going	to	cover	regarding	asymptotic	complexity.	Now	we	will
move	on	to	how	you	can	go	ahead	and	tackle	a	performance	problem	and	work
effectively	with	optimizing	your	code.

What	to	measure?
Optimizations	 almost	 always	 add	 complexity	 to	 your	 code.	 High-level
optimizations,	 such	 as	 choice	 of	 algorithm	 and	 data	 structures,	 can	 make	 the
intention	of	the	code	clearer,	but	for	the	most	part,	optimizations	will	make	the
code	harder	 to	read	and	maintain.	We	therefore	want	 to	be	absolutely	sure	 that
the	optimizations	we	add	have	an	actual	impact	on	what	we	are	trying	to	achieve
in	 terms	of	 performance.	Do	we	 really	 need	 to	make	 the	 code	 faster?	 In	what
way?	 Does	 the	 code	 really	 use	 too	 much	 memory?	 To	 understand	 what
optimizations	 are	 possible,	 we	 need	 to	 have	 a	 good	 understanding	 of	 the
requirements,	such	as	latency,	throughput,	and	memory	usage.	Optimizing	code
is	 fun,	but	 it's	also	very	easy	 to	get	 lost	without	any	measurable	winnings.	We
start	this	section	by	suggesting	a	workflow	to	follow	when	tuning	your	code:

1.	 Define	 a	 goal:	 It's	 easier	 to	 know	 how	 to	 optimize	 and	 when	 to	 stop
optimizing	 if	 you	 have	 a	 well-defined,	 quantitative	 goal.	 For	 some
applications,	it's	clear	from	the	start	what	the	requirements	are,	but	in	many
cases	it	tends	to	be	fuzzier.	Even	though	it	might	be	obvious	that	the	code	is
running	too	slow,	it's	important	to	know	what	would	be	good	enough.	Each
domain	has	 its	own	limits,	so	make	sure	you	understand	 the	ones	 that	are
relevant	 to	 your	 application.	 Here	 are	 some	 examples	 to	 make	 it	 more
concrete:

Response	time	for	user	interactive	applications	100	ms;	refer	to	https://
www.nngroup.com/articles/response-times-3-important-limits

Graphics	 with	 60	 FPS	 (Frames	 Per	 Second)	 gives	 you	 16	 ms	 per
frame
Real-time	 audio	 with	 a	 128	 sample	 buffer	 at	 44.1	 kHz	 sample	 rate
means	slightly	less	than	3	ms

2.	 Measure:	 Once	 we	 know	 what	 to	 measure	 and	 what	 the	 limits	 are,	 we
proceed	by	measuring	how	 the	application	 is	performing	 right	now.	From
step	1,	 it	 should	 be	 obvious	 if	we	 are	 interested	 in	 average	 times,	 peaks,
load,	and	so	on.	In	this	step,	we	are	only	concerned	with	measuring	the	goal
we	have	set	up.	Depending	on	the	application,	measuring	can	be	anything
from	using	a	stopwatch	to	using	highly	sophisticated	performance	analysis
tools.

https://www.nngroup.com/articles/response-times-3-important-limits

3.	 Find	the	bottlenecks:	Next,	we	need	to	find	the	application's	bottlenecks,
the	parts	that	are	too	slow	and	make	the	application	useless.	Don't	trust	your
gut	feeling	at	this	point!	Maybe	you	gained	some	insights	by	measuring	the
code	at	various	points	in	step	2—that's	fine,	but	you	usually	need	to	profile
your	code	further	in	order	to	find	the	hot	spots	that	matters	most.

4.	 Make	an	educated	guess:	Come	up	with	a	hypothesis	for	how	to	improve
the	performance.	Can	a	lookup	table	be	used?	Can	we	cache	data	to	gain	the
overall	 throughput?	 Can	 we	 change	 the	 code	 so	 that	 the	 compiler	 can
vectorize	 it?	 Can	 we	 decrease	 the	 number	 of	 allocations	 in	 the	 critical
sections	by	reusing	memory?	Coming	up	with	ideas	is	usually	not	that	hard
if	you	know	that	they	are	just	educated	guesses.	It's	okay	to	be	wrong;	we
will	find	out	later	whether	they	had	an	impact	or	not.

5.	 Optimize:	 Let's	 implement	 the	 hypothesis	 we	 sketched	 in	 step	 4.	 Don't
spend	too	much	time	on	this	step	making	it	perfect	before	you	know	that	it
actually	has	an	effect.	Be	prepared	to	reject	this	optimization.	It	might	not
have	the	desired	effect.

6.	 Evaluate:	Measure	again.	Do	the	exact	same	test	as	in	step	2	and	compare
the	 results.	What	did	we	gain?	 If	we	didn't	gain	anything,	 reject	 the	code
and	go	back	to	step	4.	If	the	optimization	actually	had	a	positive	effect,	you
need	to	ask	yourself	whether	it's	good	enough	to	spend	more	time	on.	How
complicated	 is	 the	 optimization?	 Is	 it	 worth	 the	 effort?	 Is	 this	 a	 general
performance	 gain	 or	 is	 it	 highly	 specific	 to	 a	 certain	 case/platform?	 Is	 it
maintainable?	Can	we	encapsulate	it	or	does	it	spread	out	all	over	the	code
base?	 If	you	can't	motivate	 the	optimization,	go	back	 to	step	4,	otherwise
continue	to	the	final	step.

7.	 Refactor:	 If	 you	 followed	 the	 instructions	 in	 step	5	 and	 didn't	 spend	 too
much	 time	writing	 perfect	 code	 in	 the	 first	 place,	 it's	 time	 to	 refactor	 the
optimization	 to	 make	 it	 cleaner.	 Optimizations	 almost	 always	 need	 some
comments	to	explain	why	we	are	doing	things	in	an	unusual	way.

Performance	properties
Before	 you	 start	 measuring,	 you	 must	 know	 what	 performance	 properties	 are
important	 for	 the	 application	 you	 are	 writing.	 In	 this	 section,	 we	will	 explain
some	of	the	frequently-used	terms	when	measuring	performance.	Depending	on
the	 application	 you	 are	writing,	 some	 of	 the	 properties	 are	more	 relevant	 than
others.	 For	 example,	 throughput	 might	 be	 a	 more	 important	 property	 than
latency	if	you	are	writing	an	online	image	converter	service,	whereas	latency	is
key	when	writing	interactive	applications	with	real-time	requirements:

Latency/response	 time:	 Depending	 on	 the	 domain,	 latency	 and	 response
time	 might	 have	 very	 precise	 and	 different	 meanings.	 However,	 in	 this
book,	 we	 mean	 the	 time	 between	 the	 request	 and	 the	 response	 of	 an
operation—for	example,	the	time	it	takes	for	an	image	conversion	service	to
process	one	image.
Throughput:	 This	 refers	 to	 the	 number	 of	 transactions	 (operations,
requests,	and	so	on)	processed	per	 time	unit—for	example,	 the	number	of
images	that	an	image	conversion	service	can	process	per	second.
I/O	bound	or	CPU	bound:	A	task	usually	spends	the	majority	of	its	time
computing	things	on	the	CPU	or	waiting	for	I/O	(hard	drives,	networks,	and
so	on).	A	 task	 is	 said	 to	be	CPU	bound	 if	 it	would	 run	 faster	 if	 the	CPU
were	faster.	it's	said	to	be	I/O	bound	if	it	would	run	faster	by	making	the	I/O
faster.	 Sometimes	 you	 can	 hear	 about	 memory-bound	 tasks	 too,	 which
means	 that	 the	 amount	 or	 speed	 of	 the	 main	 memory	 is	 the	 current
bottleneck.
Power	consumption:	This	 is	a	very	 important	consideration	for	code	 that
executes	on	mobile	devices	with	batteries.	 In	order	 to	decrease	 the	power
usage,	the	application	needs	to	use	the	hardware	more	efficiently,	just	as	if
we	are	optimizing	for	CPU	usage,	network	efficiency,	and	so	on.	Other	than
that,	 high	 frequency	polling	 should	 be	 avoided	 since	 it	 prevents	 the	CPU
from	going	to	sleep.
Aggregating	 data:	 This	 is	 usually	 necessary	 when	 collecting	 a	 lot	 of
samples	while	measuring	performance.	Sometimes	mean	values	are	a	good
enough	indicator	of	how	the	program	performs,	but	more	often	the	median
tells	you	more	about	 the	actual	performance	since	 it's	more	robust	against

outliers.	If	you	are	interested	in	outliers,	you	can	always	measure	min	and
max	values	(or	the	10th	percentile,	for	example).

Performance	 testing	 –	 best
practices
For	 some	 reason,	 it's	more	 common	 to	 see	 regression	 tests	 to	 cover	 functional
requirements	 than	 it's	 to	 see	 	performance	 requirements	or	other	nonfunctional
requirements.	Performance	testing	is	usually	more	sporadic	and,	more	often	than
not,	way	too	late	in	the	development	process.	Our	recommendation	is	to	measure
early	and	detect	 regression	as	 soon	as	possible	by	 adding	performance	 tests	 to
your	nightly	builds,	and	so	on.

Choose	 the	 algorithms	 and	 data	 structures	 wisely	 if	 they	 are	 to	 handle	 large
inputs,	but	don't	 fine-tune	code	without	good	 reason.	 It's	 also	 important	 to	 test
your	application	with	realistic	test	data	early	on.	Ask	questions	about	data	sizes
early	in	the	project.	How	many	table	rows	is	the	application	supposed	to	handle
and	still	be	able	to	scroll	smoothly?	Don't	just	try	it	with	100	elements	and	hope
that	your	code	will	scale,	test	it!

Plotting	 your	 data	 is	 a	 very	 effective	way	 of	 understanding	 the	 data	 you	 have
collected.	There	are	so	many	good	and	easy-to-use	plotting	tools	available	today,
so	there	is	really	no	excuse	for	not	plotting.	The	plot	does	not	have	to	look	pretty
in	order	to	be	useful.	Once	you	plot	your	data,	you	are	going	to	see	the	outliers
and	patterns	that	are	usually	hard	to	find	in	a	table	full	of	numbers.

Knowing	your	code	and	hot	spots
The	Pareto	principle,	or	the	80/20	rule,	has	been	applied	in	various	fields	since	it
was	first	observed	by	the	Italian	economist	Vilfredo	Pareto	more	than	100	years
ago.	He	was	able	to	show	that	20%	of	the	Italian	population	owned	80%	of	the
land.	In	computer	science,	it	has	been	widely	used	(and	maybe	even	overused).
In	software	optimization,	it	suggests	that	20%	of	the	code	is	responsible	for	80%
of	the	resources	that	a	program	uses.	This	is,	of	course,	only	a	rule	of	thumb	and
shouldn't	 be	 taken	 too	 literally.	 Nevertheless,	 for	 code	 that	 has	 not	 been
optimized,	 it's	 common	 to	 find	 some	 relatively	 small	 hot	 spots	 that	 spend	 the
vast	majority	of	the	total	resources.	As	a	programmer,	this	is	actually	good	news
because	 it	means	 that	 we	 can	write	most	 of	 our	 code	without	 tweaking	 it	 for
performance	reasons	and	instead	focus	on	keeping	the	code	clean.	It	also	means
that	 when	 doing	 optimizations,	 we	 have	 a	 better	 idea	 of	 where	 to	 do	 them;
otherwise,	 there	 is	 a	good	chance	we	will	 optimize	code	 that	will	 not	 have	 an
impact	on	the	overall	performance.	In	this	section,	we	will	look	at	methods	and
tools	for	finding	the	20%	of	your	code	that	might	be	worth	optimizing.

Profilers
Using	 a	 profiler	 is	 usually	 the	 most	 efficient	 way	 of	 finding	 hot	 spots	 in	 a
program.	Profilers	 analyze	 the	 execution	 of	 a	 program	 and	 output	 a	 statistical
summary,	a	profile,	of	how	often	the	functions	or	instructions	in	the	program	are
being	called.	In	addition,	profilers	usually	also	output	a	call	graph	that	shows	the
relationship	 between	 function	 calls,	 that	 is,	 the	 callers	 and	 callees	 for	 each
function	that	was	called	during	the	profiling.	In	the	following	figure,	we	can	see
that	the	sort()	function	was	called	from	main()	(the	caller)	and	that	sort()	did	call
the	function	swap()	(the	callee):

Example	of	a	call	graph

There	 are	 two	 main	 categories	 of	 profilers:	 sampling	 profilers	 and
instrumentation	profilers.	There	is	also	a	third	category	mixing	both	approaches,
that	is,	a	hybrid	of	sampling	and	instrumentation.		gprof,	the	UNIX	performance
analysis	tool,	is	an	example	of	this	third	approach.

Instrumentation	profilers
By	instrumentation,	we	mean	inserting	code	into	the	program	to	be	analyzed	in
order	 to	 gather	 information	 about	 how	 frequently	 each	 function	 is	 being
executed.	 Typically,	 the	 inserted	 instrumentation	 code	 records	 each	 entry	 and
exit	 point.	 You	 can	 write	 your	 own	 primitive	 instrumentation	 profiler	 by
inserting	 the	 code	manually	 yourself,	 or	 you	 can	 use	 a	 tool	 that	 automatically
inserts	the	necessary	code	as	a	step	in	the	build	process.	A	naive	implementation
might	 be	 good	 enough	 for	 your	 purposes,	 but	 be	 aware	 of	 the	 impact	 that	 the
added	 code	 can	 have	 on	 the	 performance,	 which	 can	 make	 the	 profile
misleading.	 Another	 problem	 with	 naive	 implementations	 is	 that	 they	 might
prevent	compiler	optimizations	or	run	the	risk	of	being	optimized	away.

Just	 to	give	you	an	example	of	an	instrumentation	profiler,	here	 is	a	simplified
version	of	a	timer	class	we	have	used	in	previous	projects:

class	ScopedTimer	{	

public:	

		using	ClockType	=	std::chrono::steady_clock;	

		ScopedTimer(const	char*	func)	:	

				function_{func},		

				start_{ClockType::now()}	{	}

	

		ScopedTimer(const	ScopedTimer&)	=	delete;	

		ScopedTimer(ScopedTimer&&)	=	delete;	

		auto&	operator=(const	ScopedTimer&)	->	ScopedTimer&	=	delete;	

		auto&	operator=(ScopedTimer&&)	->	ScopedTimer&	=	delete;	

		~ScopedTimer()	{

				using	namespace	std::chrono;

				auto	stop	=	ClockType::now();	

				auto	duration	=	(stop	-	start_);	

				auto	ms	=	duration_cast<milliseconds>(duration).count();		

				std::cout	<<	ms	<<	"	ms	"	<<	function_	<<		'\n';	

		}	

	

private:	

		const	char*	function_{};	

		const	ClockType::time_point	start_{};	

};	

	

The	ScopedTimer	class	will	measure	the	time	from	when	it	was	created	to	the	time
it	 went	 out	 of	 scope,	 that	 is,	 destructed.	 We	 are	 using	 the
only	 std::chrono::steady_clock	 available	 since	 C++11,	 which	 was	 designed	 for

measuring	time	intervals.	The	steady_clock	is	monotonic,	which	means	that	it	will
never	decrease	between	two	consecutive	calls	to	clock_type::now().	This	is	not	the
case	for	the	system	clock,	for	example,	which	can	be	adjusted	at	any	time.

We	 can	 now	 use	 our	 time	 class	 by	measuring	 each	 function	 in	 a	 program	 by
creating	a	ScopedTimer	instance	at	the	beginning	of	each	function:

auto	some_function()	{	

		ScopedTimer	timer{"some_function"};	

		...	

}	

Even	though	we	don't	recommend	the	use	of	preprocessor	macros	in	general,	this
might	be	a	case	for	using	one:

#if	USE_TIMER	

		#define	MEASURE_FUNCTION()	ScopedTimer	timer{__func__}	

#else	

		#define	MEASURE_FUNCTION()	

#endif	

We	are	using	the	only	predefined	function-local	__func__	variable	available	since
C++11	to	get	the	name	of	the	function.	There	are	other	nonstandard	predefined
macros	 that	 are	 supported	 by	 most	 compilers	 and	 can	 be	 really	 useful	 for
debugging	purposes,	for	example,	__FUNCTION__,	__FILE__,	and	__LINE__.

Now,	our	ScopedTimer	class	can	be	used	like	this:

auto	some_function()	{	

		MEASURE_FUNCTION();	

		...	

}	

Assuming	 that	 we	 have	 defined	 USE_TIMER	 when	 compiling	 our	 timer,	 it	 will
produce	the	following	output	each	time	some_function()	returns:

2.3	ms	some_function	

Sampling	profilers
Sampling	profilers	create	a	profile	by	 looking	at	 the	running	program's	state	at
even	 intervals—typically,	 every	 10	 ms.	 Sampling	 profilers	 usually	 have	 a
minimum	impact	on	the	program's	actual	performance,	and	it's	also	possible	 to
build	the	program	in	release	mode	with	all	optimizations	turned	on.	A	drawback
of	 sampling	 profilers	 is	 their	 inaccuracy	 and	 statistical	 approach,	 which	 is
usually	not	a	problem	as	long	as	you	are	aware	of	it.	The	following	figure	shows
a	 sampling	 session	 of	 a	 running	 program	with	 five	 functions:	 main(),	 f1(),	 f2(),
f3(),	and	f4().	The	t1-t10	labels	indicate	when	each	sample	was	taken.	The	boxes
indicate	the	entry	and	exit	point	of	each	executing	function:

Example	of	a	sampling	profiler	session

The	profile	is	summarized	in	the	following	table:

Function Total Self

main() 100% 10%

f1() 80% 10%

f2() 70% 30%

f3() 50% 50%

The	Total	 column	 in	 the	 preceding	 table	 shows	 the	 amount	 of	 call	 stacks	 that
contained	a	certain	function.	In	our	example,	the	main	function	was	present	in	all
10	out	of	10	call	stacks	(100%),	whereas	the	f2()	function	was	only	detected	in	7
call	stacks,	which	corresponds	to	70%	of	all	call	stacks.

The	Self	column	shows,	for	each	function,	how	many	times	it	occurred	on	top	of
the	call	stack.	The	main()	 function	was	detected	once	on	 top	of	 the	call	stack	at
the	 fifth	 sample,	 t5,	 whereas	 the	 f2()	 function	 was	 on	 top	 of	 the	 call	 stack	 at
samples	t6,	t8,	and	t9,	which	corresponds	to	3/10	=	30%.	The	f3()	 function	had
the	highest	 self	value	 (5/10)	 and	was	on	 top	of	 the	 call	 stack	whenever	 it	was
detected.

Conceptually,	 a	 sampling	 profiler	 stores	 samples	 of	 call	 stacks	 at	 even	 time
intervals.	 It	 detects	 what	 is	 currently	 running	 on	 the	 CPU.	 Pure	 sampling
profilers	 usually	 only	 detect	 functions	 that	 are	 currently	 being	 executed	 in	 a
thread	that	is	in	a	running	state,	since	sleeping	threads	do	not	get	scheduled	on
the	CPU.	This	means	that	if	a	function	is	waiting	for	a	lock	that	causes	the	thread
to	sleep,	that	time	will	not	show	up	in	the	time	profile.	This	is	important,	because
your	 bottlenecks	 might	 be	 caused	 by	 thread	 synchronization	 that	 might	 be
invisible	for	the	sampling	profiler.

What	 happened	 to	 the	 f4()	 function?	According	 to	 the	 graph,	 it	was	 called	 by
the	f2()	function	between	samples	two	and	three,	but	it	never	showed	up	in	our
statistical	profile	since	 it	was	never	 registered	 in	any	of	 the	call	stacks.	This	 is
also	 an	 important	 property	 of	 sampling	 profilers	 to	 be	 aware	 of:	 If	 the	 time
between	each	sample	is	too	big	or	 the	total	sampling	session	is	 too	short,	short
and	infrequently-called	functions	will	not	show	up	in	the	profile.	This	is	usually
not	 a	 problem	 since	 these	 functions	 are	 rarely	 the	 functions	 you	 need	 to	 tune
anyway.	One	can	note	that	the	f3()	function	was	also	missed	between	t5	and	t6,

but	 since	 f3()	 was	 called	 very	 frequently,	 it	 had	 a	 big	 impact	 on	 the	 profile
anyway.

Make	 sure	 you	 understand	 what	 your	 time	 profiler	 actually
registers.	Be	aware	of	its	limitations	and	strengths	in	order	to	use	it
as	effectively	as	possible.

Summary
In	 this	 chapter,	 you	 learned	 how	 to	 compare	 the	 efficiency	 of	 algorithms	 by
using	 big	 O	 notation.	 We	 now	 know	 that	 the	 C++	 STL	 has	 complexity
guarantees.	 All	 STL	 algorithms	 specify	 their	 worst-case	 or	 average-case
performance	 guarantees,	 whereas	 containers	 and	 iterators	 specify	 amortized
complexity.

You	 also	 learned	 how	 to	 quantify	 software	 performance	 by	measuring	 latency
and	throughput.

Lastly,	you	learned	how	to	detect	hotspots	in	your	code	by	using	CPU	profilers.

Data	Structures
In	the	last	chapter,	we	discussed	how	to	analyze	time	and	memory	complexity,
and	how	to	measure	performance.	In	this	chapter,	we	are	going	to	talk	about	how
to	 choose	 and	 use	 data	 structures	 from	 the	 Standard	 Template	 Library.	 To
understand	 why	 certain	 data	 structures	 work	 very	 well	 on	 the	 computers	 of
today,	 we	 first	 need	 to	 cover	 some	 basics	 about	 computer	 memory.	 In	 this
chapter,	you	will	learn	about:

The	properties	of	computer	memory
The	 STL	 containers:	 sequence	 containers,	 associative	 containers,	 and
container	adapters
Parallel	arrays

Properties	of	computer	memory
Before	we	start	walking	through	the	STL	containers	and	some	other	useful	data
structures,	we	will	briefly	discuss	some	properties	of	computer	memory.

C++	treats	memory	as	a	sequence	of	cells.	The	size	of	each	cell	is	one	byte,	and
each	cell	has	an	address.	Accessing	a	byte	in	memory	by	its	address	is	a	constant
time	operation,	O(1),	 that	 is	 independent	of	 the	 total	number	of	memory	cells.
On	a	32-bit	machine,	one	can	 theoretically	address	232	bytes,	 that	 is,	 around	4
GB,	which	restricts	the	amount	of	memory	a	process	is	allowed	to	use	at	once.
On	a	64-bit	machine,	one	can	theoretically	address	264	bytes,	which	is	so	big	that
there	is	hardly	any	risk	of	running	out	of	addresses.

The	 following	 image	 shows	 a	 sequence	 of	memory	 cells	 laid	 out	 in	memory.
Each	cell	contains	eight	bits.	The	hexadecimal	numbers	are	the	addresses	of	the
memory	cells:

	A	sequence	of	memory	cells	laid	out	in	memory.	

Since	accessing	a	byte	by	its	address	is	an	O(1)	operation,	from	a	programmer's
perspective,	 it's	 tempting	 to	 believe	 that	 each	memory	 cell	 is	 equally	 quick	 to
access.	This	 is	 a	 good	 and	useful	 approach	 in	many	cases,	 but	when	choosing
data	 structures	 for	 efficient	 use,	 one	 needs	 to	 take	 into	 account	 the	 memory
hierarchy	 that	 exists	 in	 modern	 computers.	 The	 importance	 of	 the	 memory
hierarchy	has	increased,	since	the	time	it	takes	to	read	and	write	from	the	main
memory	 has	 become	 more	 expensive	 compared	 to	 the	 speed	 of	 today's
processors.	The	following	figure	shows	 the	architecture	of	a	machine	with	one
CPU	with	four	cores:

An	example	of	a	processor	with	4	cores.	The	boxes	labeled	L1i,	L1d,	L2,	and	L3	are	memory	caches.

I'm	 currently	 writing	 this	 chapter	 on	 a	 MacBook	 Pro	 from	 2013,	 which	 is
equipped	with	an	Intel	Quad-Core	i7	CPU.	On	this	processor,	each	core	has	its
own	L1	and	L2	caches,	whereas	 the	L3	 cache	 is	 shared	 among	 all	 four	 cores.
Running	the	sysctl	-a	hw	command	from	a	terminal	gives	me,	among	other	things,
the	following	information:

hw.memsize:	17179869184	

hw.cachelinesize:	64	

hw.l1icachesize:	32768	

hw.l1dcachesize:	32768	

hw.l2cachesize:	262144	

hw.l3cachesize:	6291456	

The	reported	hw.memsize	 is	 the	total	amount	of	main	memory,	which	is	16	GB	in
this	case.

The	 hw.cachelinesize,	 which	 is	 reported	 to	 be	 64	 bytes,	 is	 the	 size	 of	 the	 cache
lines,	also	known	as	blocks.	When	accessing	a	byte	in	memory,	the	machine	is
not	only	fetching	 the	byte	we	asked	 for;	 instead,	 the	machine	always	 fetches	a
cache	line,	which	in	this	case	is	64	bytes.	The	various	caches	between	the	CPU
and	main	memory	keep	track	of	64	byte	blocks	instead	of	individual	bytes.

The	hw.l1icachesize	is	the	size	of	the	L1	instruction	cache.	This	is	a	32	KB	cache
dedicated	 to	 store	 instructions	 that	 have	 been	 recently	 used	 by	 the	 CPU.	 The
hw.l1dcachesize	is	also	32	KB	and	is	dedicated	for	data	as	opposed	to	instructions.

Lastly,	we	can	read	the	size	of	 the	L2	cache	and	the	L3	cache,	which	is	2	MB

and	 6	MB	 respectively.	 An	 important	 observation	 is	 that	 the	 caches	 are	 tiny
compared	to	the	amount	of	main	memory	available.

Without	presenting	any	detailed	facts	about	the	actual	number	of	cycles	required
to	access	data	from	each	layer	in	the	cache	hierarchy,	a	very	rough	guideline	is
that	 there	 are	 order	 of	magnitude	 differences	 of	 latency	 between	 two	 adjacent
layers	(for	example,	L1	and	L2).	The	following	table	shows	an	extract	from	the
latency	 numbers	 presented	 in	 an	 article	 by	 Peter	 Norvig,	 Teach	 yourself
programming	 in	 ten	 years,	 2001	 (http://norvig.com/21-days.html).	The	 full	 table	 is
usually	 referred	 to	 as	Latency	 numbers	 every	 programmer	 should	 know	 and	 is
credited	to	Jeff	Dean:	

L1	cache	reference								0.5	ns	

L2	cache	reference								7			ns	

Main	memory	reference			100			ns	

Structuring	the	data	in	such	a	way	that	the	caches	can	be	fully	utilized	can	have	a
dramatic	effect	on	the	performance.	Accessing	data	that	has	recently	been	used
and,	therefore,	potentially	already	resides	in	 the	cache	will	make	your	program
faster.	This	is	known	as	temporal	locality.

Also,	 accessing	 data	 that	 is	 located	 near	 some	 other	 data	 you	 are	 using	 will
increase	the	likelihood	that	the	data	you	need	is	already	in	a	cache	line	fetched
from	main	memory	earlier.	This	is	known	as	spatial	locality.

Constantly	wiping	 out	 the	 cache	 lines	 in	 inner	 loops	might	 result	 in	 very	 bad
performance.	This	is	sometimes	called	cache	thrashing.	Let's	look	at	an	example:

constexpr	auto	kL1CacheCapacity	=	32768;	//	The	L1	Data	cache	size	

constexpr	auto	kSize	=	kL1CacheCapacity	/	sizeof(int);	

using	MatrixType	=	std::array<std::array<int,	kSize>,	kSize>;	

auto	cache_thrashing(MatrixType&	matrix)	{	

		auto	counter	=	0;

		for	(auto	i	=	0;	i	<	kSize;	++i)	{

				for	(auto	j	=	0;	j	<	kSize;	++j)	{

						matrix[i][j]	=	counter++;

				}

		}

}		

This	 version	 takes	 about	 40	 ms	 to	 run	 on	 my	 computer.	 However,	 by	 only
changing	the	line	in	the	inner	loop	to	the	following,	the	time	it	takes	to	complete
the	function	increases	from	40	ms	to	over	800	ms:

http://norvig.com/21-days.html

matrix[j][i]	=	counter++;	

In	 the	 first	 example	 when	 using	 matrix[i][j],	 we	 will	 most	 of	 the	 time	 access
memory	that	 is	already	in	the	L1	cache,	whereas	in	the	modified	version	using
matrix[j][i],	 every	 access	will	 generate	 an	L1	 cache	miss.	 So,	 even	 if	memory
accesses	are	constant	time	operations,	caching	can	have	dramatic	effects	on	the
actual	time	it	takes	to	access	the	memory.	

STL	containers
STL	 offers	 a	 set	 of	 extremely	 useful	 container	 types.	 A	 container	 is	 a	 data
structure	 that	 contains	 a	 collection	 of	 elements.	 The	 container	 manages	 the
memory	 of	 the	 elements	 it	 holds.	 This	means	 that	we	 don't	 have	 to	 explicitly
create	 and	 delete	 our	 objects	 that	 we	 put	 in	 a	 container.	We	 can	 pass	 objects
created	on	the	stack	to	a	container	and	the	container	will	copy	and	store	them	on
the	free	store.

Iterators	 are	 used	 for	 accessing	 elements	 in	 containers,	 and	 are	 therefore	 a
fundamental	concept	for	understanding	STL.	The	iterator	concept	is	covered	in	C
hapter	5,	A	Deeper	Look	at	Iterators.	For	this	chapter,	it's	enough	to	know	that	an
iterator	can	be	thought	of	as	a	pointer	to	an	element	and	that	the	iterators	have
different	 operators	 defined	 depending	 on	 the	 container	 they	 belong	 to.	 For
example,	 array-like	 data	 structures	 provide	 random	 access	 iterators	 to	 their
elements.	These	iterators	support	arithmetic	expressions	using	+	and	-,	whereas
an	iterator	to	a	linked	list,	for	example,	only	supports	++	and	--	operators.

The	containers	are	divided	into	three	categories:	sequence	containers,	associative
containers,	and	container	adaptors.	This	section	will	contain	a	brief	introduction
to	 the	 containers	 in	 each	 of	 the	 three	 categories	 and	 also	 address	 the	 most
important	things	to	consider	when	performance	is	an	issue.

Sequence	containers
The	sequence	containers	keep	the	elements	in	the	order	you	specify	when	adding
the	elements	to	the	container.	The	sequence	containers	are	std::array,	std::vector,
std::deque,	 std::basic_string,	 std::list,	 and	 std::forward_list.	 Things	 you	 need	 to
know	before	choosing	a	sequence	container	are	as	follows:

1.	 Number	of	elements	(order	of	magnitude).
2.	 Usage	patterns:	How	often	are	you	going	to	add	data?	Read/traverse	data?

Delete	data?	Rearrange	data?
3.	 Do	you	need	to	sort	the	elements?

When	adding	elements	to	a	sequence	container,	you	always	specify	where	in	the
sequence	 the	 should	 be	 located.	 For	 example,	 when	 adding	 an	 element	 to	 a
vector	 you	 can	 call	 push_back,	 which	 will	 add	 the	 new	 element	 last	 in	 the
container.

Vector	and	array
std::vector	 is	 probably	 the	 most	 commonly	 used	 container	 type,	 and	 for	 good
reason.	A	vector	is	an	array	that	grows	dynamically	when	needed.	The	elements
added	to	a	vector	are	guaranteed	to	be	laid	out	contiguously	in	memory,	which
means	that	you	can	access	any	element	in	the	array	by	its	index	in	constant	time.
It	 also	 means	 that	 it	 provides	 excellent	 performance	 when	 traversing	 the
elements	in	the	order	they	are	laid	out,	 thanks	to	the	spatial	 locality	mentioned
earlier.

The	vector	has	a	size	and	a	capacity.	The	size	is	the	number	of	elements	that	are
currently	held	in	the	container,	and	the	capacity	is	 the	number	of	elements	that
the	vector	can	hold	until	it	needs	to	allocate	more	space:

Adding	elements	 to	the	end	of	 the	vector	using	the	push_back	 function	 is	 fast,	as
long	as	the	size	is	less	than	the	capacity.	When	adding	an	element	when	there	is
no	room	for	more,	the	vector	will	allocate	a	new	internal	buffer	and	then	move
all	the	elements	to	the	new	space.	The	capacity	grows	in	a	way	that	resizing	the
buffer	 happens	 seldom	 enough	 to	 make	 push_back	 an	 amortized	 constant	 time
operation,	as	we	discussed	in	Chapter	3,	Measuring	Performance.

A	vector	template	instance	of	type	std::vector<Person>	will	 store	Person	objects	by
value.	When	the	vector	needs	 to	rearrange	the	Person	objects	 (for	example,	as	a
result	of	an	insert),	the	values	are	copy	constructed	or	moved.	Objects	are	moved
if	 they	 have	 a	 nothrow	 move	 constructor.	 Otherwise,	 the	 objects	 will	 be	 copy
constructed	in	order	to	guarantee	strong	exception	safety:

Person(Person&&	other)	{	//	Will	be	copied	

			...		

}	

Person(Person&&	other)	noexcept	{	//	Will	be	moved	

			...		

}	

Internally,	std::vector	uses	std::move_if_noexcept	 in	order	 to	determine	whether	 the
object	should	be	copied	or	moved.	The	type	support	library	can	help	you	verify
at	compile	time	that	your	classes	are	guaranteed	to	not	throw	when	being	moved:

static_assert(std::is_nothrow_move_constructible<Person>::value,	"")	

If	you	are	adding	newly	created	objects	to	the	vector,	you	can	take	advantage	of
the	emplace_back	function,	which	will	create	the	object	in	place	for	you,	instead	of
creating	 an	 object	 and	 then	 copy/moving	 it	 to	 the	 vector	 using	 the	 push_back
function:

persons.emplace_back("John",	65);

The	capacity	of	the	vector	can	change	in	the	following	ways:

By	adding	an	element	to	the	vector	when	the	capacity	==	size
By	calling	reserve()
By	calling	shrink_to_fit()

Other	 than	that,	 the	vector	will	not	change	the	capacity,	and	hence	not	allocate
any	new	memory	on	the	free	store,	which	makes	the	vector	usable	even	in	real-
time	contexts.

As	an	alternative	to	the	dynamically	sized	vector,	STL	also	provides	a	fixed	size
version	named	std::array	that	manages	its	elements	by	using	the	stack	as	opposed
to	 the	 free	 store.	 The	 size	 of	 the	 array	 is	 a	 template	 argument	 specified	 at
compile	time,	which	means	that	the	size	and	type	elements	become	a	part	of	the
concrete	type:

auto	a	=	std::array<int,	16>{};	

auto	b	=	std::array<int,	1024>{};	

In	 this	 example,	 a	 and	 b	 are	 not	 the	 same	 type,	which	means	 that	 you	have	 to
specify	the	size	when	using	the	type	as	a	function	parameter:

auto	f(const	std::array<int,	1024>&	input)	{	

		...	

}	

	

f(a);		//	Does	not	compile,	f	requires	an	int	array	of	size	1024	

This	might	seem	a	bit	 tedious	at	first,	but	this	is	in	fact	the	big	advantage	over
the	built-in	array	type	(c	arrays)	that	lose	the	size	information	when	passed	to	a
function	 since	 it	 automatically	converts	 to	 a	 pointer	 to	 the	 first	 element	 of	 the
array:

//	input	looks	like	an	array,	but	is	in	fact	a	pointer	

auto	f(const	int	input[])	{		

		...	

}	

	

int	a[16];	

int	b[1024];	

f(a);	//	Compiles,	but	unsafe	

Deque
Sometimes	you	need	to	add	elements	to	the	end	and	the	beginning	of	a	sequence.
If	you	are	using	a	vector	and	need	to	speed	up	the	inserts	at	 the	front,	you	can
instead	 use	 std::deque,	 short	 for	 double-ended	 queue.	 std::deque	 is	 usually
implemented	 as	 a	 collection	 of	 fixed-size	 arrays,	 which	 makes	 it	 possible	 to
access	elements	by	their	index	in	constant	time.	However,	as	can	be	seen	in	the
following	 image,	all	elements	are	not	stored	contiguously	 in	memory,	which	 is
the	case	with	vector	and	array:

List	and	forward_list
The	std::list	 is	a	doubly	 linked	 list,	meaning	 that	each	element	has	one	 link	 to
the	next	element	and	one	link	to	its	previous	element.	This	makes	it	possible	to
iterate	over	the	list	both	backwards	and	forwards.	There	 is	also	a	singly	 linked
list	 named	 std::forward_list	 .	 The	 reason	 why	 you	 wouldn't	 always	 choose	 the
doubly	 linked	 list	 over	 std::forward_list	 is	 because	 of	 the	 excessive	 memory
occupied	by	the	back	pointers	in	the	double	linked	list.	So,	if	you	don't	need	to
traverse	 the	 list	 backwards,	 use	 std::forward_list.	 Another	 interesting	 feature	 of
the	forward	list	is	that	it's	optimized	for	very	short	lists.	When	the	list	is	empty,	it
only	occupies	one	word,	which	makes	it	a	good	data	structure	for	sparse	data.

Note	 that	even	 if	 the	elements	are	ordered	 in	a	 sequence,	 they	are	not	 laid	out
contiguously	in	memory	as	the	vector	and	array	are,	which	means	that	iterating	a
linked	 list	will	most	 likely	 generate	 a	 lot	more	 cache	misses	 compared	 to	 the
vector.

The	 std::list	 is	 a	 doubly	 linked	 list	 with	 pointers	 to	 the	 next	 and	 previous
elements:

The	std::forward_list	is	a	single	linked	list	with	pointers	to	the	next	element:

The	std::forward_list	is	more	memory	efficient	since	it	only	has	one	pointer	to	the
next	element.

The	basic_string
The	 last	 sequence	 container	 that	 we	 will	 cover	 is	 the	 std::basic_string.	 The
std::string	 is	a	typedef	for	std::basic_string<char>.	Historically,	std::basic_string	was
not	 guaranteed	 to	 be	 laid	 out	 contiguously	 in	memory.	 This	 has	 now	 changed
since	C++17,	which	makes	it	possible	to	pass	the	string	to	APIs	that	require	an
array	of	characters.	For	example,	 the	 following	code	 reads	an	entire	 file	 into	a
string:

auto	in	=	std::ifstream{"file.txt",	std::ios::binary	|	std::ios::ate};	

if	(in.is_open())	{	

		auto	size	=	in.tellg();	

		auto	content	=	std::string(size,	'\0');	

		in.seekg(0);	

		in.read(&content[0],	size);	

		//	"content"	now	contains	the	entire	file	

}	

Most	 implementations	 of	 std::basic_string	 utilize	 something	 called	 small-size
optimization,	which	means	that	they	do	not	allocate	any	dynamic	memory	if	the
size	of	the	string	is	small.	We	will	talk	more	about	small-size	optimization	later
in	the	book.

Associative	containers
The	associative	containers	place	their	elements	based	on	the	element	itself.	For
example,	it's	not	possible	to	add	an	element	at	the	back	or	front	in	an	associative
container.	Instead,	the	elements	are	added	in	a	way	that	makes	it	possible	to	find
the	 element	 without	 the	 need	 to	 scan	 the	 entire	 container.	 Therefore,	 the
associative	containers	have	some	requirements	for	 the	objects	we	want	to	store
in	a	container.	We	will	look	at	these	requirements	later.

There	are	two	main	categories	of	associative	containers:

Ordered	 associative	 containers:	 These	 containers	 are	 based	 on	 trees.
These	containers	use	a	tree	for	storing	their	elements.	They	require	that	the
elements	are	ordered	by	the	less	than	operator	(<).	The	functions	for	adding,
deleting,	and	finding	elements	are	all	O(log	n)	in	the	tree-based	containers.
The	containers	are	named	std::set,	std::map,	std::multiset,	and	std::multimap.
Unordered	 associative	 containers:	 These	 containers	 are	 based	 on	 hash
tables.	These	containers	uses	a	hash	 table	 for	storing	 their	elements.	They
require	that	the	elements	are	compared	with	the	equality	operator	(==)	and
that	there	is	a	way	to	compute	a	hash	value	based	on	the	element.	More	on
that	 later.	The	 functions	 for	 adding,	deleting,	 and	 finding	elements	 are	all
O(1)	 in	 the	 hash	 table-based	 containers.	 The	 containers	 are
named	 std::unordered_set,	 std::unordered_map,	 std::unordered_multiset,	 and
std::unordered_multimap.

Ordered	sets	and	maps
The	ordered	associative	containers	guarantee	 that	 insert,	delete,	and	search	can
be	 done	 in	 logarithmic	 time,	 O(log	 n).	 How	 that	 is	 achieved	 is	 up	 to	 the
implementation	of	the	Standard	Library.	However,	the	implementations	we	know
about	use	some	kind	of	self-balancing	binary	search	tree.	The	fact	 that	 the	tree
stays	approximately	balanced	is	necessary	for	controlling	the	height	of	the	tree,
and	hence	also	the	worst	case	running	time	of	accessing	the	elements.	There	 is
no	 need	 for	 the	 tree	 to	 pre-allocate	 memory,	 so	 typically	 a	 tree	 will	 allocate
memory	 on	 the	 free	 store	 each	 time	 an	 element	 is	 inserted	 and	 also	 free	 up
memory	whenever	elements	are	erased.	Check	out	the	following	diagram,	which
shows	that	the	height	of	a	balanced	tree	is	O(log	n):

The	height	of	the	tree	is	O(log	n)	if	it's	balanced.

Unordered	sets	and	maps
The	 unordered	 versions	 of	 sets	 and	maps	 offer	 a	 hash-based	 alternative	 to	 the
tree-based	versions.	This	data	structure	is	in	general	referred	to	as	hash	tables.	In
theory,	hash	tables	offer	constant-time	insert,	add,	and	delete	operations,	which
are,	 of	 course,	 better	 than	 the	 tree-based	 versions	 that	 operate	 in	 O(log	 n).
However,	 in	practice	 the	difference	might	not	be	 so	obvious,	 especially	 if	 you
are	not	storing	a	very	large	amount	of	elements	in	your	container.

Let's	 see	 how	 a	 hash	 table	 can	 offer	O(1)	 operations.	 A	 hash	 table	 keeps	 its
elements	 in	 some	 sort	 of	 array.	When	 adding	 an	 element	 to	 the	 hash	 table,	 an
integer	is	computed	for	the	element	using	a	hash	function.	The	integer	is	usually
called	the	hash	of	the	element.	The	hash	value	is	then	limited	to	the	size	of	the
array	(by	using	the	modulo	operation,	for	example)	so	that	the	new	limited	value
can	be	used	as	an	index	in	the	array.	Once	the	index	is	computed,	the	hash	table
can	store	the	element	in	the	array	at	that	index.	The	lookup	of	an	element	works
in	 a	 similar	 manner	 by	 first	 computing	 a	 hash	 value	 for	 the	 element	 we	 are
looking	for	and	then	accessing	the	array.

Apart	 from	 computing	 the	 hash	 value,	 this	 technique	 seems	 easy	 and
straightforward.	 This	 is	 just	 half	 of	 the	 story,	 though.	 What	 if	 two	 different
elements	generate	the	same	 index,	either	because	 they	produced	 the	same	hash
value,	or	because	two	different	hash	values	are	being	limited	to	the	same	index?
When	 two	 non-equal	 elements	 end	 up	 at	 the	 same	 index,	 we	 call	 that	 a	 hash
collision.	This	is	not	just	an	edge	case,	this	will	happen	a	lot	even	if	we	are	using
a	good	hash	function,	especially	if	the	array	is	small	compared	to	the	number	of
elements	we	are	adding.	There	are	various	ways	of	dealing	with	hash	collisions.
Here,	we	will	focus	on	the	one	this	is	being	used	in	the	Standard	Library,	which
is	called	separate	chaining.

Separate	chaining	solves	the	problem	of	two	unequal	elements	ending	up	at	the
same	index.	Instead	of	just	storing	the	elements	directly	in	the	array,	the	array	is
a	sequence	 of	 buckets.	 Each	 bucket	 can	 contain	multiple	 elements,	 that	 is,	 all
elements	that	are	hashed	to	the	same	index.	So,	each	bucket	is	also	some	sort	of
container.	The	exact	data	structure	used	 for	 the	buckets	 is	not	defined,	but	can

vary	for	different	implementations.	However,	we	can	think	of	it	as	a	linked	list
and	assume	that	finding	an	element	in	a	specific	bucket	is	slow	since	it	needs	to
scan	the	elements	in	the	buckets	linearly.

The	following	image	shows	a	hash	table	with	eight	buckets.	The	elements	have
landed	 in	 three	 separate	 buckets.	 The	 bucket	 with	 index	 2	 contains	 four
elements,	 the	 bucket	with	 index	4	 contains	 two	 elements,	 and	 the	 bucket	with
index	5	contains	only	one	element.	The	other	buckets	are	empty:

Each	bucket	contains	0	or	more	elements.

Hash	and	equals
The	hash	value,	which	can	be	computed	in	constant	time	with	respect	to	the	size
of	the	container,	determines	in	which	bucket	an	element	will	be	placed.	Since	it's
possible	 that	 more	 than	 one	 object	 will	 generate	 the	 same	 hash	 value	 and
therefore	end	up	 in	 the	same	bucket,	each	key	also	needs	 to	provide	an	equals
function,	which	is	used	to	compare	the	key	we	are	looking	for	with	all	the	keys
in	the	bucket.

If	 two	 keys	 are	 equal,	 they	 are	 required	 to	 generate	 the	 same	 hash	 value.
However,	it's	perfectly	legal	for	two	objects	to	return	the	same	hash	value	while
not	being	equal	to	each	other.

A	 good	 hash	 function	 is	 quick	 to	 compute	 and	 will	 also	 distribute	 the	 keys
evenly	among	the	buckets	in	order	to	minimize	the	number	of	elements	in	each
bucket.

The	following	is	an	example	of	a	very	bad	but	perfectly	valid	hash	function:

auto	my_hash	=	[](const	Person&	person)	{

		return	47;	//	Bad,	don't	do	this!

};

It	 is	 valid	 because	 it	 will	 return	 the	 same	 hash	 value	 for	 two	 objects	 that	 are
equal.	 The	 hash	 function	 is	 also	 very	 quick.	However,	 since	 all	 elements	will
produce	 the	 same	 hash	 value,	 all	 keys	will	 end	 up	 in	 the	 same	 bucket,	which
means	finding	an	element	is	O(n)	instead	of	O(1),	which	we	aimed	at.

A	 good	 hash	 function,	 on	 the	 other	 hand,	 ensures	 that	 the	 elements	 are
distributed	evenly	among	the	buckets	 to	minimize	hash	collisions.	STL	already
provides	 us	with	 good	 hash	 functions	 for	 basic	 types.	 In	many	 cases,	 we	 can
reuse	 these	 functions	 when	 writing	 our	 own	 hash	 functions	 for	 user-defined
types.

Suppose	we	want	 to	use	a	 Person	 class	 as	 a	key	 in	 an	 unorordered_set.	The	 Person
class	has	two	data	members:	age,	which	is	an	int,	and	name,	which	is	a	std::string.
We	start	by	writing	the	equal	predicate:

auto	person_eq	=	[](const	Person&	lhs,	const	Person&	rhs)	{

		return	lhs.name()	==	rhs.name()	&&	lhs.age()	==	rhs.age();

};

For	two	Person	objects	to	be	equal,	they	need	to	have	the	same	name	and	the	same
age.	We	can	now	define	the	hash	predicate	by	combining	the	hash	values	of	all
the	data	members	that	are	included	in	the	equals	predicate.	Unfortunately,	there
is	 no	 function	 in	 the	C++	 standard	 yet	 to	 combine	 hash	 values,	 but	 there	 is	 a
good	one	available	in	Boost,	which	we	use	here:

auto	person_hash	=	[](const	Person&	person)	{	

		auto	seed	=	size_t{0};

		boost::hash_combine(seed,	person.name());	

		boost::hash_combine(seed,	person.age());	

		return	seed;

};

If	 for	 some	 reason	 you	 cannot	 use	Boost,	 the	 boost::hash_combine	 is
really	 just	a	one-liner	 that	can	be	copied	 from	 the	documentation
found	at	http://www.boost.org/doc/libs/1_55_0/doc/html/hash/reference.html
#boost.hash_combine.

With	 the	 equality	 and	 hash	 predicates	 defined,	 we	 can	 finally	 create	 our
unordered_set:

using	Set	=	std::unordered_set<Person,	decltype(person_hash),	decltype(person_eq)>;	

auto	persons	=	Set{100,	person_hash,	person_eq};	

A	good	rule	of	 thumb	is	 to	always	use	all	data	members	that	are	being	used	in
the	equal	function	when	producing	the	hash	value.	In	that	way,	we	adhere	to	the
contract	 between	 equals	 and	 hash,	 and	 at	 the	 same	 time,	 this	 enables	 us	 to
provide	an	effective	hash	value.	For	example,	it	would	be	correct	but	inefficient
to	only	use	the	name	when	computing	the	hash	value,	since	that	would	mean	that
all	Person	 objects	with	 the	 same	name	would	 end	 up	 in	 the	 same	bucket.	Even
worse,	though,	would	be	 to	 include	data	members	 in	 the	hash	function	 that	are
not	being	used	in	the	equals	function.	This	would	most	likely	result	in	a	disaster
where	you	cannot	find	objects	in	your	unordered_set	that	in	fact	compare	equal.

http://www.boost.org/doc/libs/1_55_0/doc/html/hash/reference.html#boost.hash_combine

Hash	policy
Apart	 from	 creating	 hash	 values	 that	 distribute	 the	 keys	 evenly	 among	 the
buckets,	one	can	reduce	the	number	of	collisions	by	having	many	buckets.	The
average	number	of	elements	per	bucket	is	called	the	load_factor.	In	the	preceding
example,	we	created	an	unordered_set	with	100	buckets.	 If	we	add	50	persons	 to
the	set,	 the	load_factor	would	be	0.5.	The	 max_load_factor	 is	an	upper	 limit	of	 the
load	 factor,	 and	 when	 that	 value	 is	 reached,	 the	 set	 will	 need	 to	 increase	 the
number	of	buckets,	 and	as	 a	 consequence	also	 rehash	all	 the	elements	 that	are
currently	in	the	set.	It's	also	possible	to	trigger	a	rehash	manually	with	the	rehash
and	reserve	member	functions.

Container	adaptors
The	 last	 category	 of	 STL	 containers	 is	 container	 adaptors.	 There	 are	 three
container	adaptors	in	STL:	stack,	queue,	and	priority_queue.	Container	adaptors	are
quite	different	from	the	sequence	containers	and	the	associative	containers	since
they	 represent	 abstract	 data	 structures	 that	 can	 be	 implemented	 by	 the
underlying	sequence	container.		For	example,	the	stack,	which	is	a	last	in,	first
out	(LIFO)	data	structure	supporting	push	and	pop	on	the	top	of	the	stack,	can
be	 implemented	 by	 using	 a	 vector,	 list,	 deque,	 or	 any	 other	 custom	 sequence
container	that	supports	back(),	push_back(),	and	pop_back().	The	same	goes	for	queue,
which	is	a	first	in,	first	out	(FIFO)	data	structure,	and	priortiy_queue.

In	this	section,	we	will	focus	on	the	priority_queue,	which	is	a	pretty	useful	data
structure	that	is	easy	to	forget.

Priority	queues
A	 priority	 queue	 offers	 constant	 time	 lookup	 of	 the	 element	 with	 the	 highest
priority.	 The	 priority	 is	 defined	 using	 the	 less	 than	 operator	 of	 the	 elements.
Insert	 and	 delete	 both	 run	 in	 logarithmic	 time.	 A	 priority	 queue	 is	 a	 partially
ordered	data	structure,	and	 it	might	not	be	obvious	when	 to	use	 it	 instead	of	a
completely	 sorted	data	 structure,	 for	 example,	 a	 tree	or	 a	 sorted	vector.	But	 in
some	cases,	a	priority	queue	can	offer	you	the	functionality	you	need,	and	for	a
lower	cost	than	a	completely	sorted	container.

The	Standard	Library	already	provides	a	partial	sort	algorithm,	so	we	don't	need
to	write	our	own.	But	 let's	 see	how	we	can	 implement	a	partial	 sort	 algorithm
using	 a	 priority	 queue.	 Suppose	 we	 are	 writing	 a	 program	 for	 searching
documents	 given	 a	 query.	 The	 matching	 document	 (search	 hits)	 should	 be
ordered	by	a	rank,	and	we	are	only	interested	in	finding	the	first	10	search	hits
with	the	highest	rank.

Each	document	is	represented	by	a	class:

class	Document	{	

public:		

		Document(const	std::string&	title)		

		:	title_{title}		

		{}

private:		

		std::string	title_;	

		...	

};

When	searching,	an	algorithm	 is	 selecting	 the	documents	 that	match	 the	query
and	computes	a	rank	of	the	search	hits.	Each	matching	document	is	represented
by	a	Hit:

struct	Hit	{	

		float	rank_{};	

		std::shared_ptr<Document>	document_;	

};	

Finally,	we	need	 to	sort	 the	hits	and	return	 the	 top	m	documents.	What	are	 the
options	for	sorting	the	hits?	If	the	hits	are	contained	in	a	container	that	provides
random	 access	 iterators,	 we	 could	 use	 std::sort	 and	 only	 return	 the	 m	 first

elements.	Or,	if	the	total	number	of	hits	is	much	larger	than	the	m	documents	we
are	to	return,	we	could	use	std::partial_sort,	which	would	be	more	efficient	than
std::sort.	std::partial_sort,	and	also	requires	random	access	iterators.

But	 what	 if	 we	 don't	 have	 random	 access	 iterators?	 Maybe	 the	 matching
algorithm	 only	 provides	 forward	 iterators	 to	 the	 hits.	 We	 could	 then	 use	 a
priority	 queue	 and	 still	 come	 up	 with	 an	 efficient	 solution.	 Our	 sort	 interface
would	look	like	this:

template<typename	It>	

auto	sort_hits(It	begin,	It	end,	size_t	m)	->	std::vector<Hit>	{	

We	 could	 call	 this	 function	 with	 any	 iterator	 that	 has	 the	 increment	 operator
defined.	Next,	 we	 create	 a	 std::priority_queue	 backed	 by	 a	 std::vector	 using	 	 a
custom	compare	 function	 for	 keeping	 the	 lowest	 ranking	 hits	 at	 the	 top	 of	 the
queue:

		auto	cmp	=	[](const	Hit&	a,	const	Hit&	b)	{	

				return	a.rank_	>	b.rank_;	//	Note,	we	are	using	greater	than	

		};	

		auto	queue	=	std::priority_queue<

				Hit,	std::vector<Hit>,	decltype(cmp)>{cmp};	

We	will	only	insert	at	most	m	elements	in	the	priority	queue.	The	priority	queue
will	 contain	 the	highest	 ranking	hits	 seen	 so	 far.	Among	 the	 elements	 that	 are
currently	in	the	priority	queue,	the	hit	with	the	lowest	rank	will	be	the	topmost
element:

		for	(auto	it	=	begin;	it	!=	end;	++it)	{	

				if	(queue.size()	<	m)	{	

						queue.push(*it);	

				}	

				else	if	(it->rank_	>	queue.top().rank_)	{	

						queue.pop();	

						queue.push(*it);	

				}	

		}

Now,	we	have	collected	the	highest	ranking	hits	in	the	priority	queue,	so	the	only
thing	left	is	to	put	them	in	a	vector	in	reverse	order	and	return	the	m	sorted	hits:

		auto	result	=	std::vector<Hit>{};	

		while	(!queue.empty())	{	

				result.push_back(queue.top());	

				queue.pop();	

		}	

		std::reverse(result.begin(),	result.end());	

		return	result;	

}	//	end	of	sort_hits	

What	is	the	complexity	of	this	algorithm?	If	we	denote	the	number	of	hits	with	n
and	 the	 number	 of	 returned	 hits	 with	 m,	 we	 can	 see	 that	 the	 memory
consumption	is	O(m),	whereas	the	time	complexity	is	O(n	*	log	m)	since	we	are
iterating	 over	 n	 elements,	 and	 in	 each	 iteration	 we	 might	 have	 to	 do	 a	 push
and/or	pop,	which	both	run	in	O(log	m)	time.

Parallel	arrays
We	 are	 finishing	 this	 chapter	 by	 talking	 about	 iterating	 over	 elements	 and
looking	at	some	ways	to	improve	the	performance	when	iterating	over	array-like
data	 structures.	We	 already	 mentioned	 two	 important	 factors	 for	 performance
when	accessing	data:	spatial	locality	and	temporal	locality.	When	iterating	over
elements	stored	in	contiguous	memory,	we	will	see	that	by	keeping	our	objects
small,	we	will	 increase	 the	probability	 that	 the	data	we	need	 is	already	cached
thanks	 to	 spatial	 locality.	 Obviously,	 this	 will	 have	 a	 great	 impact	 on	 the
performance.

Recall	the	cache	thrashing	example	shown	in	the	beginning	of	this	chapter	where
we	iterated	over	a	matrix.	It	demonstrated	that	we	sometimes	need	to	think	about
in	what	way	we	access	data,	even	if	we	have	a	fairly	compact	representation	of
the	 data.	 Next,	 we	 will	 compare	 how	 long	 it	 takes	 to	 iterate	 over	 objects	 of
different	sizes.	We	start	out	by	defining	two	structs,	SmallObject	and	BigObject:

struct	SmallObject	{	

		SmallObject()	:	score_{std::rand()}	{}	

		std::array<char,	4>	data_{};	

		int	score_{};	

};

	

struct	BigObject	{	

	BigObject()	:	score_{std::rand()}	{}	

	std::array<char,	256>	data_{};	

	int	score_{};	

};

SmallObject	and	BigObject	are	identical	except,	for	the	size	of	the	initial	data	array.
Both	 structs	 contain	 an	 int	 named	 score,	 which	 we	 initialize	 to	 some	 random
value	 just	 for	 testing	 purposes.	We	 can	 let	 the	 compiler	 tell	 us	 the	 size	 of	 the
objects	by	using	the	sizeof	operator:

std::cout	<<	sizeof(SmallObject);	//	Possible	output	is	8	

std::cout	<<	sizeof(BigObject);			//	Possible	output	is	260		

We	 need	 plenty	 of	 objects	 in	 order	 to	 evaluate	 the	 performance.	 Create	 one
million	objects	of	each	kind:

auto	small_objects	=	std::vector<SmallObject>(1'000'000);	

auto	big_objects	=	std::vector<BigObject>(1'000'000);	

Now	for	the	iteration.	Let's	say	we	want	to	sum	the	scores	of	all	the	objects.	We
could	preferably	use	std::accumulate(),	which	we	will	cover	later	in	the	book,	but
for	now	a	simple	for-loop	will	do.	We	write	this	function	as	a	template	so	that	we
don't	have	 to	manually	write	one	version	for	each	 type	of	object.	The	function
iterates	over	the	objects	and	sums	all	the	scores:

template	<class	T>	

auto	sum_scores(const	std::vector<T>&	objects)	{		

		ScopedTimer	t{"sum_scores"};	

	

		auto	sum	=	0;	

		for	(const	auto&	obj	:	objects)	{	

				sum	+=	obj.score_;	

		}	

		return	sum;	

}	

Now,	we	are	ready	to	see	how	long	it	takes	to	sum	the	scores	in	the	small	objects
compared	to	the	big	objects:

auto	sum	=	0;	

sum	+=	sum_scores(small_objects);	

sum	+=	sum_scores(big_objects);	

To	achieve	reliable	results,	we	need	to	repeat	the	test	a	couple	of	times.	On	my
computer,	it	takes	about	1	ms	to	compute	the	sum	of	the	small	objects	and	10	ms
to	 compute	 the	 sum	 of	 the	 big	 objects.	 This	 example	 is	 similar	 to	 the	 cache
thrashing	example	we	looked	at	the	beginning	of	the	chapter,	and	one	reason	for
the	 big	 difference	 is	 again	 because	 of	 the	 way	 the	 computer	 uses	 the	 cache
hierarchy	to	fetch	data	from	the	main	memory.

How	can	we	utilize	the	fact	 that	 it's	faster	 to	iterate	over	collections	of	smaller
objects	than	bigger	objects	when	working	with	more	realistic	scenarios	than	the
preceding	example?

Obviously,	we	can	do	our	best	to	keep	the	size	of	our	classes	small,	but	it's	often
easier	 said	 than	done.	Also,	 if	you	are	working	with	an	old	code	base	 that	has
been	growing	for	some	time,	the	chances	are	high	that	you	will	stumble	across
some	 really	 large	 classes	 with	 too	 many	 data	 members	 and	 too	 many
responsibilities.	We	will	now	look	at	a	class	 that	 represents	a	user	 in	an	online
game	system	and	 see	how	we	can	 split	 it	 into	 smaller	parts.	The	class	has	 the
following	data	members:

struct	User	{	

		std::string	name_;	

		std::string	username_;	

		std::string	password_;	

		std::string	security_question_;	

		std::string	security_answer_;	

		short	level_{};	

		bool	is_playing_{};	

};	

A	user	has	a	name	that	 is	frequently	used,	and	a	password	and	some	username
information	for	authentication	that	are	rarely	used.	The	class	also	keeps	track	of
which	level	the	player	is	currently	playing	at.	Finally,	the	User	struct	also	knows
whether	the	user	is	currently	playing	by	storing	the	is_playing	boolean.

The	sizeof	operator	reports	that	the	user	class	is	128	bytes	when	compiling	for	a
64-bit	architecture.	An	approximate	 layout	of	 the	data	members	can	be	seen	 in
the	following	figure:

All	 users	 are	 kept	 in	 a	 std::vector,	 and	 there	 are	 two	 global	 functions	 that	 are
being	 called	 very	 often	 and	 need	 to	 run	 fast:	 num_users_at_level()	 and
num_playing_users().	Both	functions	iterate	over	all	users,	and	therefore	we	need	to
make	iterations	over	the	user	vector	fast.	The	first	function	returns	the	number	of
users	that	have	reached	a	certain	level:

auto	num_users_at_level(short	level,	const	std::vector<User>&	users)	{	

		ScopedTimer	t{"num_users_at_level	(using	128	bytes	User)"};	

	

		auto	num_users	=	0;	

		for	(const	auto&	user	:	users)

				if	(user.level_	==	level)

						++num_users;	

		return	num_users;	

}

The	second	function	computes	how	many	users	are	currently	playing:

auto	num_playing_users(const	std::vector<User>&	users)	{	

		ScopedTimer	t{"num_playing_users	(using	128	bytes	User)"};	

			

		return	std::count_if(

				users.begin(),		

				users.end(),	

				[](const	auto&	user)	{	

						return	user.is_playing_;	

				});	

}	

Here,	we	use	the	STL	algorithm	std::count_if()	instead	of	a	handwritten	loop,	as
we	did	in	num_users_at_level().	std::count_if()	will	call	the	predicate	we	provide	for
each	user	in	the	users	vector	and	return	the	number	of	times	the	predicate	returns
true.	This	is	basically	what	we	are	doing	in	the	first	function	as	well,	so	we	could
also	have	used	std::count_if()	in	the	first	case.	Both	functions	run	in	linear	time.

Calling	 the	 two	 functions	 with	 a	 vector	 of	 one	 million	 users	 results	 in	 the
following	output:

11	ms	num_users_at_level	(using	128	bytes	User)	

10	ms	num_playing_users	(using	128	bytes	User)	

Our	 hypothesis	 is	 that	 by	making	 the	 user	 class	 smaller,	 it	would	 be	 faster	 to
iterate	 over	 the	 vector.	 As	 mentioned	 before,	 the	 password	 and	 security	 data
fields	are	rarely	used	and	could	be	grouped	in	a	separate	struct.	That	would	give
us	the	following	classes:

struct	AuthInfo	{	

		std::string	username_;	

		std::string	password_;	

		std::string	security_question_;	

		std::string	security_answer_;	

};	

	

struct	User	{	

		std::string	name_;	

		std::unique_ptr<AuthInfo>	auth_info_;	

		short	level_{};	

		bool	is_playing_{};	

};	

This	 change	 decreases	 the	 size	 of	 the	 User	 class	 from	 128	 bytes	 to	 40	 bytes.
Instead	of	storing	four	strings	in	the	user	class,	we	use	a	pointer	to	refer	to	the
new	AuthInfo	 object.	The	 following	 figure	 shows	how	we	have	 split	 up	 the	 User
class	into	two	smaller	classes:

This	 change	 makes	 sense	 from	 a	 design	 perspective	 too.	 Keeping	 the
authentication	data	 in	a	 separate	class	 increases	 the	cohesion	of	 the	user	 class.
The	 User	 class	 contains	 a	 pointer	 to	 the	 authentication	 information.	 The	 total
amount	of	memory	that	the	user	data	occupies	has	not	decreased,	of	course,	but
the	important	thing	right	now	is	to	shrink	the	User	class	in	order	to	speed	up	the
functions	that	iterate	over	all	users.

From	an	optimization	point	of	view,	we	have	to	measure	again	to	verify	that	our
hypothesis	 regarding	 smaller	 data	 is	 valid.	 It	 turns	 out	 that	 both	 functions	 run
more	than	twice	as	fast	with	the	smaller	User	class.	The	output	when	running	the
modified	version	is:

4	ms	num_users_at_level	with	User	

3	ms	num_playing_users	with	User	

Next,	we	are	going	to	try	a	more	aggressive	way	of	shrinking	the	amount	of	data
we	need	to	iterate	through	by	using	parallel	arrays.	First,	a	warning:	This	is	an
optimization	 that,	 in	 many	 cases,	 has	 too	 many	 drawbacks	 to	 be	 a	 viable
alternative.	 So	 don't	 take	 this	 as	 a	 general	 technique	 and	 apply	 it	 without
thinking	twice.	We	will	come	back	to	the	pros	and	cons	of	parallel	arrays	after
we	have	seen	a	few	examples.

By	using	parallel	arrays,	we	simply	split	the	large	structures	into	smaller	types,
similar	to	what	we	did	with	the	authentication	information	for	our	user	class.	But
instead	 of	 using	 pointers	 to	 relate	 objects,	 we	 store	 the	 smaller	 structures	 in
separate	 arrays	 of	 equal	 size.	 The	 smaller	 objects	 in	 the	 different	 arrays	 that
share	the	same	index	form	the	complete	original	object.

An	 example	 will	 clarify	 the	 technique.	 The	 user	 class	 we	 have	 worked	 with
consists	 of	 40	 bytes.	 It	 now	 only	 contains	 a	 username	 string,	 a	 pointer	 to	 the
authentication	 information,	 an	 integer	 for	 the	 current	 level,	 and	 the	 is_playing
boolean.	 By	 making	 the	 user	 objects	 smaller,	 we	 saw	 the	 performance	 was

improved	when	iterating	over	the	objects.	The	memory	layout	of	an	array	of	user
objects	would	 look	 something	 like	 the	 one	 shown	 in	 the	 following	 figure.	We
will	 ignore	memory	 alignment	 and	 padding	 for	 now,	 but	will	 get	 back	 to	 that
later:

User	objects	stored	contiguously	in	a	vector

Instead	of	having	one	vector	with	user	objects,	we	can	store	all	the	integer	levels
and	is_playing	flags	in	separate	vectors.	The	current	level	for	the	user	at	index	0
in	the	user	array	is	also	stored	at	index	0	in	the	level	array.	In	that	way,	we	can
avoid	having	pointers	to	the	levels,	and	instead	just	use	the	index	for	connecting
the	data	fields.	We	could	do	the	same	thing	with	 the	boolean	is_playing	 field	and
end	up	with	three	parallel	arrays	instead	of	just	one.	The	memory	layout	of	 the
three	vectors	would	look	something	like	this:

We	are	using	three	parallel	arrays	to	make	iteration	over	one	particular	field	fast.

The	 num_users_at_level()	 function	 can	 now	 compute	 the	 number	 of	 users	 at	 a
specific	level	by	only	using	the	level	array.	The	implementation	is	now	simply	a
wrapper	around	std::count():

auto	num_users_at_level(int	level,	const	std::vector<int>&	users)	{	

		ScopedTimer	t{"num_users_at_level	using	int	vector"};	

		return	std::count(users.begin(),	users.end(),	level);	

}	

Likewise,	the	num_playing_users()	function	only	needs	to	iterate	over	the	vector	of
booleans	to	determine	the	number	of	playing	users.	Again,	we	use	std::count():

auto	num_playing_users(const	std::vector<bool>&	users)	{	

		ScopedTimer	t{"num_playing_users	using	vector<bool>"};	

		return	std::count(users.begin(),	users.end(),	true);	

}	

With	the	parallel	arrays,	we	don't	have	to	use	the	user	array	at	all.	The	amount	of
memory	that	is	occupied	by	the	extracted	arrays	is	substantially	smaller	than	the
user	 array,	 so	 let's	 see	 if	 we	 have	 gained	 any	 performance	 when	 running	 the
functions	on	one	million	users	again:

auto	users	=	std::vector<User>{1000000};	

auto	levels	=	std::vector<int>{1000000};	

auto	playing_users	=	std::vector<bool>{1000000};	

	

//	Initialize	data	

...	

	

auto	num_users_at_level_5	=	num_users_at_level(levels,	5);	

auto	num_playing_users	=	num_playing_users(playing_users);	

Counting	 the	number	of	users	 at	 a	 certain	 level	only	 takes	 about	0.7	ms	when
using	the	array	of	integers.	To	recap,	the	initial	version	using	the	User	class	with	a
size	of	128	bytes	took	around	11	ms.	The	smaller	User	class	executed	in	4	ms,	and
now,	by	only	using	the	user_level	array,	we	are	down	to	0.7	ms.	Quite	a	dramatic
change.

For	 the	 second	 function,	 num_playing_users(),	 the	 change	 is	 even	 bigger	 -	 it	 only
takes	around	0.03	ms	to	count	how	many	users	are	currently	playing.	The	reason
why	it	can	be	so	fast	 is	 thanks	 to	a	data	structure	called	bit	arrays.	It	 turns	out
that	std::vector<bool>	 is	not	at	all	a	 standard	vector	of	C++	bool	objects.	 Instead,
internally,	 it's	 a	 bit	 array.	Operations	 such	 as	 count	 and	 find	 can	be	optimized
very	efficiently	in	a	bit	array	since	it	can	process	64	bits	at	a	time	(on	a	64-bit
machine).	The	 future	 of	 std::vector<bool>	 is	 unclear,	 and	 it	might	 be	 deprecated
soon	 in	 favor	 of	 the	 fixed	 size	 std::bitset	 and	 a	 new	 dynamically	 sized	 bitset.
There	is	already	a	version	in	Boost	named	boost::dynamic_bitset.

This	 is	 all	 fantastic,	 but	 we	 warned	 you	 about	 some	 drawbacks.	 First	 of	 all,
extracting	the	fields	from	the	classes	where	they	actually	belong	will	have	a	big
impact	on	the	structure	of	the	code.	In	some	cases,	it	makes	perfect	sense	to	split
large	classes	into	smaller	parts,	but	in	other	cases	it	totally	breaks	encapsulation
and	 exposes	 data	 that	 could	 have	 been	 hidden	 behind	 interfaces	 with	 higher
abstraction.

It's	also	cumbersome	to	ensure	that	the	arrays	are	in	sync,	such	that	we	always
need	to	ensure	that	fields	that	comprise	one	object	are	stored	at	the	same	index	in
all	arrays.	 Implicit	 relationships	 like	 this	can	be	hard	 to	maintain	and	are	error
prone.

The	last	drawback	is	actually	related	to	performance.	In	the	preceding	example,
we	saw	that	for	algorithms	that	iterate	over	one	field	at	a	time,	there	was	a	big
performance	gain.	However,	if	we	have	an	algorithm	that	would	need	to	access
multiple	 fields	 that	 have	 been	 extracted	 to	 different	 arrays,	 it	 would	 be
substantially	slower	than	iterating	over	one	array	with	bigger	objects.

So,	as	is	always	the	case	when	working	with	performance,	there	is	nothing	that
comes	without	a	cost,	and	the	cost	for	exposing	data	and	split	one	simple	array
into	multiple	arrays	may	or	may	not	be	too	high.	It	all	depends	on	the	scenario
you	are	facing	and	what	performance	gain	you	encounter	after	measuring.	Don't
consider	 parallel	 arrays	 before	 you	 actually	 face	 a	 real	 performance	 issue.
Always	 opt	 for	 sound	 design	 principles	 at	 first	 and	 prefer	 explicit	 ways	 of
expressing	relationships	between	objects	rather	than	implicit	ones.

Summary
In	this	chapter,	we	have	introduced	the	container	types	from	STL.	We	have	seen
that	 the	 way	 we	 structure	 data	 has	 a	 big	 impact	 on	 how	 efficiently	 we	 can
perform	certain	operations	on	a	collection	of	objects.	The	asymptotic	complexity
specifications	 of	 STL	 containers	 are	 key	 factors	 to	 consider	 when	 choosing
among	the	different	data	structures.

In	addition,	we	have	seen	how	the	cache	hierarchy	in	modern	processors	impacts
the	way	we	need	to	organize	data	for	efficient	access	to	memory.	The	importance
of	utilizing	the	cache	levels	efficiently	cannot	be	stressed	enough.	This	is	one	of
the	reasons	why	the	containers	that	keep	their	elements	contiguously	in	memory
have	become	the	most	used	containers,	such	as	std::vector	and	std::string.

A	Deeper	Look	at	Iterators
In	this	chapter,	you	will	learn	about	the	C++	iterator	concept	and	how	versatile	it
can	be,	even	though	its	syntax	mimics	a	plain	old	C-pointer.	By	looking	at	some
examples,	you	will	also	learn	how	to	create	a	custom	iterator	that	iterates	a	linear
range.	

The	iterator	concept
Before	going	further	into	STL	algorithms,	we	are	going	to	take	a	deeper	look	at
iterators	in	C++,	as	they	form	the	basis	of	STL	algorithms.	Note	that	the	iterator
concept	 is	 not	 at	 all	 a	 C++	 exclusive	 concept,	 rather	 it	 exists	 in	 most
programming	 languages.	 What	 differentiates	 the	 C++	 implementation	 of	 the
iterator	 concept	 from	 other	 programming	 languages	 is	 that	 C++	 mimics	 the
syntax	of	raw	memory	pointers.

A	 simplified	 basic	 iterator	 is	 an	 object	 which	 represent	 a	 position	 in	 a
sequence	and	therefore	basically	incorporate	the	following	functionality:

Are	we	out	of	the	sequence?	(denoted	as	is_end()	->	bool)
Retrieve	the	value	at	the	current	position	(denoted	read()	->	T)
Step	to	the	next	position	(denoted	step_fwd()	->	void)

Note	 that	 the	named	 functions	 is_end(),	read()	 and	 so	 on,	 does	 not
exist	in	C++,	they	are	only	here	for	readability.	In	practice	they	are
implemented	 in	 terms	 of	 C-pointer	 semantics,	 which	 will	 be
discussed	further	below.	

The	functions	listed	above	are	sufficient	for	reading	all	elements	in	any	standard
C++	 container,	 but	 many	 algorithms	 requires	 iterators	 to	 be	 able	 to	 step
backwards,	as	well	 as	write	 a	 value	 to	 a	 specific	 position.	 In	 other	words,	 the
following	three	functions	are	also	sometimes	needed:

Write	to	the	current	position	(denoted	write(T	val)	->	void)
Step	to	the	previous	position(denoted	step_bwd()	->	void)
Step	an	auxiliary	number	of	elements	(denoted	step(int	n)	->	void)

In	 addition	 to	 algorithmic	 requirements,	 iterators	 might	 operate	 data	 sources
where	 a	 write	 or	 read	 implies	 a	 step	 forward.	 Examples	 of	 such	 data	 sources
could	be	user	input,	a	network	connection	or	a	file.	These	data	sources	requires
the	following	functions:

Write	and	step	forward	(denoted	write_step_fwd(T	val)	->	void)

Read	and	step	forward	(denoted	read_step_fwd(T	val)	->	void)

	

The	 function	 step(int	 n)	 might	 seems	 superfluous	 as	 it	 can	 be
implemented	 as	 a	 number	 of	 step_fwd()	 or	 step_bwd().	 However,
algorithms	such	as	binary	search,	requires	iterators	which	can	step
several	positions	in	constant	time	to	perform	effectively.	Therefore
STL	differentiates	between	 iterators	which	can	be	 stepped	several
position	 in	constant	 time.	Binary	 search	algorithms	are	explained
in	Chapter	3,	Measuring	Performance.

Iterator	categories
If	 we	 think	 about	 a	 few	 basic	 algorithms,	 it	 becomes	 obvious	 that	 the
requirements	on	the	iterators	vary	between	different	algorithms:

If	 an	 algorithm	 count	 the	 number	 of	 occurrences	 of	 a	 value,	 it	 requires
is_end(),	read()	and	step_fwd()
If	 an	 algorithm	 fill	 a	 container	 with	 a	 value,	 it	 requires	 is_end(),	 write(),
step_fwd()

A	binary	search	algorithm	on	a	sorted	range	requires	step()	and	read()
An	algorithm	which	rearrange	the	elements	requires	read(),	write(),	step_fwd()
and	step_bwd()	

These	requirements		are	categorized	into	four	basic	iterator	categories	in	STL:

forward_iterator:	The	iterator	can	step	forward
bidirectional_iterator:	The	iterator	can	step	forward	and	backward
random_access_iterator:	 The	 iterator	 can	 be	 stepped	 any	 number	 of	 steps	 in
constant	time
contiguous_iterator:	 Special	 case	where	 the	 underlying	 data	 is	 a	 contiguous
block	of	memory,	such	as	std::string,	std::vector,	std::array	 ,	and	 the	(rarely
used)		std::valarray.

Additionally,	iterators	compliant	with	the	functions	we	denoted	read_step_fwd()and
write_step_fwd()also	have	named	categories:

input_iterator:	The	iterator	supports	read_step_fwd()	->	T
output_iterator:	The	iterator	supports	write_step_fwd(T)	->	void

Pointer-mimicking	syntax
Now	 that	we	 covered	 the	 basics	 of	 iterators,	 let's	 see	 how	C++	 implements	 it
syntactically.	As	mentioned	above,	the	syntax	of	C++	iterators	are	implemented
in	terms	of	standard	C	pointer	notation.	This	means	that	any	algorithm	built	upon
iterators	will	also	work	with	regular	C	pointers.

The	 step	 functions	 are	 implemented	 using	 pointer	 arithmetic.	 The	 following
table	 shows	which	 operator	 is	 overloaded	 for	 each	 step	 function,	 and	 how	 to
invoke	the	function	on	an	imagined	iterator	object	called	it:

Denoted	function Overloaded	operator Usage	example
step_fwd()	->	void; operator++() ++it;

step_bwd()	->	void; operator--() --it;

step(int	n)	->	void; operator+=(int	n) it	+=	5;

The	 read()	 and	 write()	 functions	 are	 implemented	 by	 operator*,	 just	 like
dereferencing	a	pointer.	The	following	table	shows	how	they	are	used:

Denoted	function Usage	example
read()	->	T; auto	value	=	*it;

write(T	val)	->	void; *it	=	T{};

	

The	is_end()	->	bool	 function	 is	 implemented	by	comparing	with	a	value	which
indicates	 the	 iterator	 is	 pointing	 out	 of	 the	 range	 bounds.	 The	 following	 table
shows	 how	we	would	 implement	 is_end()	 in	 regular	C-array	 pointer	 arithmetic
iterating	a	standard	C-array	and	a	linked	list:

C-style	array C-style	linked	list

//	Construct	an	array

int	array[3]	=	{22,	44,	66};

//	Iterate

int*	begin	=	&array[0];

//	Construct	a	simple	Linked	List

struct	Element	{	Element*	next_;};

Element	a,	b,	c;

int*	end	=	&array[3];

for(

		int*	ptr	=	begin;	

		ptr	!=	end;	

		++ptr

)	{

}

a.next_	=	&b;	

b.next_	=	&c;	

c.next_	=	nullptr;

//	Iterate

Element*	begin	=	&a;

Element*	end	=	nullptr;

for(

		auto	ptr	=	begin;	

		ptr	!=	nullptr;	

		ptr	=	ptr->next_

)	{

}

	

When	implementing	an	iterator	in	C++,	whatever	the	iterator	iterates,	 the	same
methodology	 has	 to	 be	 used.	 The	 equivalent	 of	 implementing	 the	 function
denoted	is_end()	is	to	compare	the	iterator	to	a	value	which	indicates	the	end	of
the	sequence.

The	functions	utilized	by	input/output	iterators,	read_step_fwd()	and	write_step_fwd()
are	 only	 possible	 to	 express	 with	 two	 succeeding	 expressions.	 The	 first
expression	has	the	post-condition	that	the	second	expression	must	be	valid.

Denoted	function: Usage	example:
read_step_fwd()	->	T; auto	val	=	*it;	++it;

write_step_fwd(T	val)	->	void; *it	=	val;	++it;

When	implementing	an	advanced	iterator,	it's	advantageous	to	use
the	Boost	library	iterator	 facade,	 in	which	you	can	 implement	 the
functionality	 in	named	 functions,	 similar	 to	 the	example	 functions
above.	 The	 iterator	 facade	 then	 handles	 the	 conversion	 to
operators.	More	information	is	available	at	http://www.boost.org.

http://www.boost.org

Iterators	as	generators
Looking	 deeper	 into	 the	 iterator	 concept,	 one	 can	 see	 that	 it	 does	 not	 actually
need	to	point	to	actual	data;	we	could	simply	generate	values	on	the	fly.	Here	is	a
simple	implementation	of	a	forward	iterator	that	generates	integers	on	the	fly.	It
only	fulfills	two	iterator	categories;	forward_iterator	and	input_iterator:

class	IntIterator	{

public:

		IntIterator(int	v)	:	v_{v}	{}

		auto	operator==(const	IntIterator&	it)const{	return	v_	==	it.v_;	}

		auto	operator!=(const	IntIterator&	it)const{	return	!(*this==it);	}

		auto&	operator*()	const	{	return	v_;	}

		auto&	operator++()	{	++v_;	return	*this;	}

private:

		int	v_{};

};

The	IntIterator	can	then	be	used	to	iterate	an	increasing	range	of	integers	just	like
if	it	was	a	container	of	values:

auto	first	=	IntIterator{12};	//	Start	at	12

auto	last	=	IntIterator{16};		//	Stop	when	equal	to	16

for(auto	it	=	first;	it	!=	last;	++it)	{

		std::cout	<<	(*it)	<<	"	";

}

//	Prints	12	13	14	15

Iterator	traits
As	mentioned,	STL	differentiates	iterators	by	which	categories	they	fulfill.	This
is	achieved	by	defining	the	following	five	specific	types	in	the	iterator	class:

iterator_category,	the	category	the	iterator	fulfills
difference_type,	the	type	used	to	store	the	distance	between	two	iterators
value_type,	the	value	the	iterator	returns	when	dereferenced
reference,	the	type	used	for	referencing	the	value_type
pointer,	the	type	of	pointer	used	for	pointing	to	the	value_type

For	the	IntIterator,	the	following	types	would	be	defined:

class	IntIterator	{

public:

		...

		using	difference_type	=	int;

		using	value_type	=	int;

		using	reference	=	int&;

		using	pointer	=	int*;

		using	iterator_category	=	std::forward_iterator_tag;

		...

}

It	might	 seem	 superfluous	 to	 define	 both	 reference	 and	 pointer,	 but	 for	many
iterators	these	types	are	either	not	applicable	(they	are	then	defined	as	void)	,	or
they	use	other	mechanism	 to	point	 to,	or	 reference,	 the	 value_type.	Examples	of
such	iterators	will	be	discussed	later	in	this	chapter.

Now	 we	 can	 use	 IntIterators	 to	 create	 a	 vector	 of	 numbers	 from	 5	 to	 12	 by
copying	from	IntIterator	 to	std::vector.	Note	how	we	use	 the	copy	 function	 even
though	the	copied	values	are	generated	on	the	fly:

auto	numbers	=	std::vector<int>{};

std::copy(IntIterator(5),	IntIterator(12),	std::back_inserter(numbers));

//	numbers	is	{5,	6,	7,	8,	9,	10,	11}

Note	 that	 this	 example	 uses	 the	 C++17	 way	 of	 defining	 iterator
traits	for	a	custom	iterator.	Prior	to	C++17,	defining	iterator	traits
was	 more	 complex,	 as	 it	 required	 overloading
the	std::iterator_traits	class	or	inheriting	std::iterator	(which	is	now
deprecated).

Implementing	 a	 function	 using
iterator	categories

In	 order	 to	 read	 properties	 of	 an	 iterator,	 the	 STL	 class
std::iterator_traits	shall	be	utilized,	not	the	raw	iterator	type.
Correct:	 using	 Category	 =

std::iterator_traits<Iterator>::iterator_category

Incorrect:	using	Category	=	Iterator::iterator_category;

Let's	 say	 we	 want	 to	 implement	 a	 template	 function	 called	 iterator_distance(),
equivalent	 of	 std::distance(),	 which	 returns	 the	 number	 of	 steps	 between	 two
iterators:

If	 the	iterator	category	is	random	access	we	simply	subtract	 the	difference
between	the	iterator	a	and	b.
Otherwise,	 we	 have	 to	 calculate	 the	 number	 of	 steps	 from	 iterator	 a	 to
iterator	b.

Using	 iterator_category	 tag	 and	 difference_type,	 the	 distance	 function	 is
implemented	as	follows:

template	<typename	Iterator>

auto	iterator_distance(Iterator	a,	Iterator	b)	{	

		using	Traits	=	typename	std::iterator_traits<Iterator>;

		using	Category	=	typename	Traits::iterator_category;

		using	Difference	=	typename	Traits::difference_type;

		constexpr	auto	is_random_access	=	

				std::is_same_v<Category,	std::random_access_iterator_tag>;

		if	constexpr(is_random_access)	{

				return	b	-	a;

		}

		else	{

				auto	steps	=	Difference{};

				while(a	!=	b)	{	++steps;	++a;	}

				return	steps;

		}

}

The	iterator_distance()	 function	can	now	be	used	with	any	compliant	 iterator,	as
well	 as	 regular	C-pointers	and	chooses	a	correct	 implementation	depending	on
the	iterator	category.

Extending	 the	 IntIterator	 to
bidirectional
In	order	to	make	it	possible	to	iterate	a	range	of	numbers	in	reverse,	we	add	the	
	 operator--()	 method	 to	 IntIterator	 and	 upgradeiterator_category	 to
std::bidirectional_iterator_tag:

class	IntIterator	{

		...

		using	iterator_category	=	std::bidirectional_iterator_tag;

		...

		auto&	operator--()	{	--value_;	return	*this;	}

		...

};

This	is	an	example	of	iterating	in	reverse	order:

for(auto	it	=	IntIterator{12};	it	!=	IntIterator{-1};	--it)	{

		std::cout	<<	*it	<<	"	";

}

//	Prints:	12	11	10	9	8	7	6	5	4	3	2	1	0

Practical	 example	 –	 iterating
floating	 point	 values	 within	 a
range
Let's	 address	 a	 fundamental	 problem	with	 floating	 point	 values;	 they	 are	 very
often	not	exact	representations	of	the	values	assigned	to	them,	rather	they	often
represent	something	very	near	the	assigned	value.	

For	example,	often	when	I	would	like	to	iterate	from	0.0	to	1.0	with	a	step	length
of	0.1,	I	conveniently	start	with	something	like	this:

for(float	t	=	0.0f;	t	<=	1.0f;	t	+=	0.1f)	{

		std::cout	<<	t	<<	",	";

}

//	Prints	0.0,	0.1,	0.2,	0.3,	0.4,	0.5,	0.6,	0.7,	0.8,	0.9,

The	 subtle	 problem	 here	 is	 that	 0.1	 cannot	 be	 represented	 by	 a	 floating	 point
value;	 instead,	 it	 is	 represented	 by	 something	 slightly	 larger	 than	 0.1,	 and
therefore	the	loop	will	not	reach	1.0f.

To	 solve	 this,	we	can	 represent	 this	 range	of	 floating	points	 as	 a	 start	value,	 a
stop	 value,	 and	 a	 number	 of	 steps	 instead.	 Basically,	 we	 are	 required	 to	 do
something	like	this:

for(size_t	i	=	0;	i	<=	10;	++i)	{

		float	t	=	float(i)	/	10.0f;

		std::cout	<<	t	<<	",	";

}

//	Prints	0.0,	0.1,	0.2,	0.3,	0.4,	0.5,	0.6,	0.7,	0.8,	0.9,	1.0,

As	 this	 code	 is	 quite	obscure	 for	 such	a	 simple	 case,	we'd	 like	 to	wrap	 it	 in	 a
range	so	that	we	can	simply	type	this:

for(auto	t:	make_linear_range(0.0f,	1.0f,	11))	{

		std::cout	<<	t	<<	",	";

}

//	Prints	0.0,	0.1,	0.2,	0.3,	0.4,	0.5,	0.6,	0.7,	0.8,	0.9,	1.0,

We	 use	 the	 number	 of	 values	 when	 iterating,	 not	 the	 number	 of
steps,	so	the	last	parameter	is	11.

Illustrated	usage	examples
Iterating	from	0.0	to	1.0	at	a	step	length	of	0.1	will	result	in	ten	steps,	and	eleven
values	evaluated:

Values	when	iterating	from	0.0	to	1.0	with	eleven	values

Iterating	from	0.0	to	1.0	at	a	step	length	of	0.33	will	result	in	three	steps	and	four
values:

Values	when	iterating	from	0.0	to	1.0	with	four	values

Utility	functions
The	iterators	we	are	about	to	create	will	be	built	upon	two	utility	functions:	one
for	calculating	 the	step	size,	and	one	 for	 retrieving	 the	value	of	a	specific	step
index	 using	 the	 start	 value	 and	 the	 step	 index.	 For	 simplicity,	we	 prevented	 a
range	from	having	fewer	than	two	values.

To	calculate	the	step	size,	we	will	need	the	start,	stop	value,	and	the	number	of
values	parameters:

template	<typename	T>

auto	get_step_size(T	start,	T	stop,	size_t	n)	{

		assert(n	>=	2);

		return	(stop-start)	/	(n-1);

}

To	calculate	a	linear	value	at	a	specific	index,	we	will	need	the	start,	step	size,
and	value	index	parameters:

template	<typename	T>

auto	get_linear_value(T	start,	T	step_size,	size_t	idx)	{

		return	start	+	step_size	*	idx;

}

Using	these	utility	functions,	we	can	iterate	a	range	of	floating	point	numbers	by
referring	 to	 their	 index	 in	 a	 range,	 rather	 than	 the	 actual	 number,	 as	 shown
below:

auto	start	=	0.0f;

auto	stop	=	1.0f;

auto	num_values	=	size_t{11};

auto	step_size	=	get_step_size(start,	stop,	num_values);

for(size_t	i	=	0;	i	<	num_values;	++i)	{

		auto	t	=	get_linear_value(start,	step_size,	i);

		std::cout	<<	t	<<	",	";

}

//	Prints	0.0,	0.1,	0.2,	0.3,	0.4,	0.5,	0.6,	0.7,	0.8,	0.9,	1.0,

Using	the	index	is	advantageous	as	it	relieves	us	from	making	mistakes	related
to	floating	point	inaccuracy.

How	 to	 construct	 a	 linear	 range
iterator
Now,	 let's	generalize	 this	 functionality	 into	something	usable	with	for-loops	by
wrapping	it	into	iterators	and	a	range.	This	way,	we	can	utilize	it	as	a	first	class
citizen	of	C++	in	both	STL	algorithms	and	range-based	for-loop.	The	following
table	demonstrate	this	property:

Linear	Range	and	an	STL
algorithm

Linear	Range	and	a	range	based	for-
loop

auto	r	=LinearRange<float>{0,1,4};

auto	vec	=std::vector<float>{};

std::copy(

		r.begin(),	

		r.end(),	

		std::back_inserter(vec)

);

//	vec	is	{0.0,	0.33,	0.66,	1.0}

auto	r	=LinearRange<float>{0,1,4};

auto	vec	=std::vector<float>{};

for(auto	t:	r)	{

		vec.push_back(t);

}

//	vec	is	{0.0,	0.33,	0.66,	1.0}

	

First,	we	need	an	iterator	that	is	aware	of	the	start	value,	the	step	length,	and	the
current	step	it	is	currently	at.	As	the	iterator	merely	represents	a	position	in	 the
linear	 range,	 we	 do	 not	 need	 to	 store	 the	 stop	 value.	 Note	 how	 similar	 the
LinearRangeIterator	 is	 to	 the	 IntIterator.	 The	 main	 difference	 is	 that	 it	 returns	 a
calculated	value	instead	of	just	a	value	when	operator*	is	invoked:

template	<typename	T>

class	LinearRangeIterator	{

public:

		using	difference_type	=	size_t;

		using	value_type	=	T;

		using	reference	=	T;

		using	pointer	=	void;

		using	iterator_category	=	std::bidirectional_iterator_tag;

		LinearRangeIterator(T	start,	T	step_size,	size_t	idx)

		:	start_{start}

		,	step_size_{step_size}

		,	idx_{idx}

		{}

		auto	operator==(const	LinearRangeIterator&	lri)	const{	

				return	idx_==lri.idx_;	

		}

		auto	operator!=(const	LinearRangeIterator&	lri)	const{	

				return	!(*this==lri);	

		}

		auto&	operator++()	{	++idx_;	return	*this;	}

		auto&	operator--()	{	--idx_;	return	*this;	}

		auto	operator*()	const	{	return	start_	+	(idx_*step_size_);	}

private:

		size_t	idx_{};

		T	start_{};

		T	step_size_{};

};

Note	that,	in	contrast	to	the	simple	IntIterator,	value_type	 is	generated	on	the	fly,
and	 therefore	 neither	 pointer	 nor	 reference	 can	 be	 defined	 like	 a	 regular
reference	or	pointer.	As	we	are	 required	 to	define	all	 five	 types,	we	define	 the
reference	as	being	a	regular	value_type	and	pointer	is	simply	set	to	void.	

Iterator	usage	example
Now	 this	 linear	 range	 iterator	 can	 be	 used	 without	 having	 it	 wrapped	 into	 a
range.	 In	 the	 following	 code	 two	 standalone	 iterators	 representing	 a	 range	 are
created:

auto	start	=	0.0f;

auto	stop	=	1.0f;

auto	num_values	=	size_t{6};

auto	step_size	=	get_step_size(start,	stop,	num_values);

auto	first	=	LinearRangeIterator<float>{start,	step_size,	0};

auto	last	=	LinearRangeIterator<float>{start,	step_size,	num_values};

These	 two	 iterators	 can	 now	 be	 utilized	 in	 a	 regular	 for-loop,	 or	 an	 STL
algorithm	as	shown	in	the	following	table:

Copy	into	std::set	using	a	for-loop Copy	into	std::set	using	std::copy

auto	s	=	std::set<float>{};

for(auto	it=first;	it!=last;	++it){

		s.insert(*it);

}

auto	s	=	std::set<float>{};

auto	dst	=	std::inserter(s,	s.end());

std::copy(first,	last,	dst);

			

	

As	you	see,	in	practice	our	linear	range	iterator	looks-	and	behaves	just	like	any
iterator	which	would	iterate	a	container	of	numbers.

Generalizing	 the	 iterator	pair	 to	a
range
Even	 though	 the	 previous	 example	 works,	 it	 is	 quite	 bloated	 as	 we	 need	 to
duplicate	the	start	and	step	 length	values.	A	more	generalized	solution	 is	 to	 let
the	range	mimic	a	container,	where	begin()	and	end()	correspond	 to	 the	start	and
stop	iterators:

template	<typename	T>

class	LinearRange	{

		using	iterator	=	LinearRangeIterator<T>;

public:

		LinearRange(T	start,	T	stop,	size_t	num_values)

		:	start_{start}

		,	step_size_{get_step_size(start,	stop,	num_values)}

		,	num_values_{num_values}

		{}

		auto	begin()const{	return	iterator{start_,	step_size_,	0};	}

		auto	end()const{	return	iterator{start_,	step_size_,	num_values_};	}

private:

		T	start_{};

		T	step_size_{};

		size_t	num_values_{};

};

The	 make_linear_range
convenience	function
In	 order	 to	 avoid	 explicitly	 specifying	 the	 floating	 point	 type	 when	 using	 the
LinearRange	 template,	 we	 do	 as	 the	 STL	 does	 with	 make_pair():	 we	 create	 a
convenience	function	called	make_linear_range()	which	 returns	 a	 LinearRange	 object
where	its	type	has	been	deduced	from	the	arguments.

Here	is	how	we	implement	the	make_linear_range()	function:

template	<typename	T>

auto	make_linear_range(T	start,	T	stop,	size_t	n)	{

		return	LinearRange<T>{	start,	stop,	n	};

}

Without	 the	 make_linear_range()	 function,	 we	 need	 to	 explicitly	 specify	 the
contained	value	type	to	create	a	range:

auto	r	=	LinearRange<double>{0.0,	1.0,	4};

//	r	evaluates	to	{0.0,	0.33,	0.66,	1.0}

Using	the	make_range_function	we	the	<double>	is	deduced	automatically:

auto	r	=	make_linear_range(0.0,	1.0,	4);

//	r	evaluates	to	{0.0,	0.33,	0.66,	1.0}

As	you	see,	 the	double	 does	not	have	 to	be	 specified	as	 types	are	automatically
deduced	in	template	functions.

In	C++17,	even	template	class	types	get	deduced	from	constructor
parameters,	 and	 therefore	 the	 make_linear_range	 function	 is
superfluous.	 In	 other	 words,	 the	 following	 code	 is	 also	 valid	 in
C++17:	auto	r	=	LinearRange{0.0f,	1.0f,	4};

Linear	range	usage	examples
Now	 that	 we	 have	 the	 foundation	 functions,	 the	 iterator	 and	 its
corresponding	 type_traits,	 the	 range	 class,	 and	 the
make_linear_range	 convenience	 function,	 we	 can	 use	 them	 to	 iterate	 a	 range	 of
numbers	as	simple	as	this:

for(auto	t:	make_linear_range(0.0,	1.0,	4))	{	std::cout	<<	t	<<	",	";	}

//	Output:	0,	0.33,	0.66,	1.0,

What	happens	here	is	that	the	make_linear_range	function	returns	a	LinearRange	class.
When	a	range-based	for-loop	is	invoked,	the	compiler	internally	generates	code
that	looks	similar	to	this:

auto	r	=	make_linear_range(0.0,	1.0,	4);	//	r	is	a	LinearRange<double>

auto	first	=	r.begin();	//	first	is	a	LinearRangeIterator<double>

auto	last	=	r.end();	//	last	is	a	LinearRangeIterator<double>

for(auto	it	=	first;	it	!=	last;	++it)	{	

		std::cout	<<	(*it)	<<	",	";	

}

Therefore,	 the	 values	 of	 LinearRange	 get	 iterated	 just	 as	 if	 it	 was	 a	 container
explicitly	holding	the	values,	like	this:

for(auto	t:	{0.0,	0.33,	0.66,	1.0})	{	std::cout	<<	t	<<	",	";	}

The	linear	range	can	also	be	used	for	iterating	numbers	in	reverse	order:

for(auto	t:	make_linear_range(1.0,	0.0,	4))	{	std::cout	<<	t	<<	",	";	}

//	Output:	1.0,	0.66,	0.33,	0.0,

Summary
In	 this	 chapter,	 you	 learned	 how	 to	 create	 a	 custom	 iterator	 and	 how	 to	 use
iterator_traits	 to	 inform	 the	 STL	 library	 of	 how	 your	 custom	 iterator	 can	 be
used.	

In	the	next	chapter,	we	will	look	into	the	algorithm	library	of	STL,	and	also	learn
how	to	use	the	new	ranges	library	for	a	more	expressive	C++	syntax.

STL	Algorithms	and	Beyond
In	this	chapter,	we	will	 take	a	look	at	how	we	can	write	efficient	algorithms	in
C++.	You	will	learn	the	benefits	of	using	the	STL	algorithms	as	building	blocks
in	your	application,	both	performance-wise	and	readability-wise.	In	the	end,	we
will	take	a	look	at	the	limitations	of	the	STL	algorithms	and	take	a	look	at	how
the	ranges	library	can	compose	algorithms	for	a	more	expressive	code	base.

Using	STL	algorithms	as	building
blocks
The	Standard	Template	Library	 (STL)	 is	a	set	of	data	 types,	containers,	and
algorithms	 included	 in	 the	C++	standard.	Even	 though	we	use	 containers	 on	 a
daily	basis,	we	tend	to	underuse	the	STL	algorithms.

It's	 easy	 to	 forget	 that	 complex	 algorithms	 can	 be	 implemented	 by	 combining
algorithms	 from	 the	 STL,	 so	 consider	 STL	 as	 the	 first	 choice	 before	 writing
algorithms	manually.

STL	algorithm	concepts
To	 get	 a	 better	 understanding	 of	 the	 STL	 algorithms,	 it's	 good	 to	 know	 a	 bit
about	the	concepts	and	common	patterns	used	by	all	STL	algorithms.	

Algorithms	operate	on	iterators
The	algorithms	in	the	STL	library	operate	only	on	iterators,	not	containers	(that
is,	std::vector,	std::map,	and	so	on).	Basically,	an	 iterator	could	be	considered	an
object	with	the	same	properties	as	a	 regular	C-pointer;	 it	can	be	stepped	 to	 the
next	 element	 and	dereferenced	 (if	 pointing	 to	 a	 valid	 address).	The	 algorithms
only	 use	 a	 few	 of	 the	 operations	 that	 a	 pointer	 allows,	 although	 the	 iterator
may	internally	be	a	heavy	object	traversing	a	tree-like	std::map.

Implementing	a	generic	algorithm
that	 can	 be	 used	 with	 any
container
Implementing	a	generic	algorithm	allows	programmers	to	easily	implement	their
own	algorithms,	 compatible	with	 any	 container.	 In	 the	 following	 example,	 the
contains()	function	can	be	used	with	any	container:

template	<typename	Iterator,	typename	T>

auto	contains(Iterator	begin,	Iterator	end,	const	T&	v)	{

		for	(auto	it	=	begin;	it	!=	end;	++it)	{

				if	(*it	==	v)	{

						return	true;

				}

		}

		return	false;

}

Vice	 versa,	 a	 new	 container	 can	 also	 use	 all	 the	 algorithms	 if	 it	 exposes	 the
iterators.	As	a	simple	example,	if	we	implement	a	two-dimensional	Grid	structure
as	shown	below,	where	rows	are	exposed	as	pair	of	iterators:

Implementation	of	Grid
structure: Illustration	of	corresponding	Grid:

struct	Grid	{

	Grid(size_t	w,	size_t	h)

	:	w_{w},	h_{h}

	{	data_.resize(w*h);	}

	auto	get_row(size_t	y)	{

		auto	l=data_.begin()	+	w_*y;

		auto	r=l	+	w_;

		return	std::make_pair(l,	r);

	}

	std::vector<int>	data_{};

	size_t	w_{};

	size_t	h_{};

};

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Two	 dimensional	 grid	 built	 upon	 a	 one
dimensional	vector

	

The	iterator-pair	representing	a	row	can	then	be	utilized	by	any	STL	algorithm:

auto	grid	=	Grid{10,	10};

auto	y	=	3;

auto	r	=	grid.get_row(y);

std::generate(r.first,	r.second,	std::rand);

auto	num_fives	=	std::count(r.first,	r.second,	5);

Iterators	 for	 a	 range	 point	 to	 the
first	 element	 and	 the	 element
after	the	last
All	 algorithms	 take	 a	 pair	 of	 iterators,	 where	 the	 first	 one	 points	 to	 the	 first
element	in	 the	range	and	 the	second	one	points	 to	one	element	beyond	 the	 last
element	in	the	range.	Take	a	look	at	the	following	code	snippet:

auto	vec=std::vector<std::string>{

		"a","b","c","d","e","f"};

auto	first	=	vec.begin();

auto	last	=	vec.end();	

	

As	seen	in	the	image,	the	last	 iterator	now	points	 to	an	 imagined	element	after
"f":

Algorithms	 do	 not	 change	 the
size	of	the	container
The	 STL	 algorithms	 can	 only	 modify	 the	 elements	 in	 a	 specified	 range;	 the
elements	are	never	added	or	removed	from	the	container.

For	example,	std::remove()	or	std::unique()	does	not	actually	remove	elements	from
a	container.	Rather,	it	rearranges	the	elements	so	that	the	removed	elements	are
placed	at	the	back.	It	then	returns	an	iterator	to	the	first	element	of	the	removed
elements.

Code	example Resulting	vector

//	Example	with	std::remove

auto	vec	=	std::vector<int>{1,1,2,2,3,3};

auto	new_end	=	std::remove(

		vec.begin(),	vec.end(),	2

);

vec.erase(new_end,	vec.end());

				

//	Example	with	std::unique

auto	vec	=	std::vector<int>{1,1,2,2,3,3};

auto	new_end	=	std::unique(

		vec.begin(),	vec.end());

vec.erase(new_end,	vec.end();

									

Algorithms	 with	 output	 require
allocated	data
Algorithms	 that	 write	 data	 to	 an	 output	 iterator,	 such	 as	 std::copy()	 or
std::transform(),	 requires	 already	 allocated	 data	 reserved	 for	 the	 output.	 As	 the
algorithms	 only	 use	 iterators	 as	 arguments,	 they	 cannot	 allocate	 data	 by
themselves.	To	enlarge	the	container	the	algorithms	operate	on,	they	rely	on	the
iterator	to	be	capable	of	enlarging	the	container	it	iterates.

If	 an	 iterator	 to	 an	 empty	 container	 is	 passed	 to	 the	 algorithms	 for	 output,	 the
program	will	 crash.	 The	 following	 example,	where	 squared	 is	 empty,	 illustrates
the	problem:

auto	vals=std::vector<int>{

		1,	2,	3,	4};

auto	squared=std::vector<int>{};

std::transform(

		vals.begin(),	

		vals.end(),

		squared.begin(),	

		[](int	v)	{	return	v	*	v;	}

);

																																						

	

Instead,	you	have	to	do	either	of	the	following:

Preallocate	the	required	size	for	the	resulting	container
Use	an	insert-iterator,	which	inserts	elements	into	a	container	while	iterating

The	following	snippet	shows	how	to	use	preallocated	space:

auto	square_func	=	[](int	v)	{	return	v	*	v;	};

auto	vals	=	std::vector<int>{1,2,3};

auto	squared	=	std::vector<int>{};

squared.resize(vals.size());

auto	dst	=	squared.begin();

std::transform(vals.begin(),	vals.end(),	dst,	square_func);

The	 following	 snippet	 shows	 how	 to	 use	 std::back_inserter	 and	 std::inserter	 to
insert	values	into	a	container	which	is	not	preallocated:

auto	square_func	=	[](int	v)	{	return	v	*	v;	};

auto	c	=	std::vector<int>{1,2,3};

//	Insert	into	back	of	vector	using	std::back_inserter

auto	squared_vec	=	std::vector<int>{};

auto	dst_vec	=	std::back_inserter(squared_vec);

std::transform(c.begin(),	c.end(),	dst_vec,	square_func);

//	Insert	into	a	std::set	using	std::inserter

auto	squared_set	=	std::set<int>{};

auto	dst_set	=	std::inserter(squared_set,	squared_set.end());

std::transform(c.begin(),	c.end(),	dst_set,	square_func);

If	you	are	operating	on	std::vector	and	know	the	expected	size	of	the
resulting	 container,	 you	 can	 use	 the	 reserve()	 member	 function
before	 executing	 the	 algorithm	 in	 order	 to	 avoid	 unnecessary
allocations.	Otherwise,	 the	 vector	 will	 reallocate	 a	 new	 chunk	 of
memory	several	times	during	the	algorithm.

Algorithms	 use	 operator==	 and
operator<	by	default
For	comparison,	an	algorithm	relies	on	the	fundamental	==	and	<	operators,	as	in
the	 case	 of	 an	 integer.	 To	 be	 able	 to	 use	 your	 own	 classes	 with	 algorithms,
operator==		and	operator<	must	either	be	provided	by	the	class	or	as	an	argument	to
the	algorithm.

The	 following	 example	 shows	 these	 operators	 implemented	 in	 a	 simple	 Flower
class,	 where	 operator==	 is	 utilized	 by	 std::find,	 and	 operator<	 is	 utilized	 by
std::max_element.

struct	Flower	{

		//	Is	equal	operation,	used	when	finding

		auto	operator==(const	Flower&	f)	const	{

				return	height_	==	f.height_;	}

		//	Is	less	than	operation,	used	when	sorting

		auto	operator<(const	Flower&	f)	const	{

				return	height_	<	f.height_;	}

		int	height_{};

};

auto	garden	=	std::vector<Flower>{Flower{12},	Flower{13},	Flower{4}};

//	std::max_element	uses	operator<

auto	tallest_flower	=	std::max_element(garden.begin(),	garden.end());

//	std::find	uses	operator==

auto	magic_flower	=	*std::find(garden.begin(),	garden.end(),	Flower{13});

Custom	comparator	function
If,	 however,	 you	would	 like	 to	 use	 another	 comparison	 function,	 for	 example,
sorting	or	 finding	a	 string	by	 length,	 a	 custom	 function	can	 be	 provided	 as	 an
additional	 argument.	 While	 the	 original	 algorithm	 uses	 a	 value	 (for
example,	 std::find()),	 the	 version	 with	 a	 specific	 operator	 has	 the	 same	 name
with	_if	attached	at	the	end	(std::find_if(...),	std::count_if(...),	and	so	on):

auto	names	=	std::vector<std::string>	{

		"Ralph",	"Lisa",	"Homer",	"Maggie",	"Apu",	"Bart"

};

std::sort(names.begin(),	names.end(),	

		[](const	std::string&	a,const	std::string&	b){

				return	a.size()	<	b.size();

		});

//	names	is	now	"Apu",	"Lisa",	"Bart",	"Ralph",	"Homer",	"Maggie"

	

auto	target_sz	=	size_t{3};

auto	x	=	std::find_if(names.begin(),	names.end(),	

		[target_sz](const	auto&	v){	return	v.size()	==	target_sz;}

);

//	x	points	to	"Apu"

General-purpose	predicates
When	you	are	building	a	code	base,	we'd	suggest	building	a	namespace	(named
preds	or	something	similar)	of	general-purpose	predicates	to	make	the	code	more
readable.	 For	 example,	 in	 the	 previous	 example,	 the	 predicates	 could	 be
generalized	to	this:

auto	less_by_size	=	[](const	auto&	a,	const	auto&	b){

		return	a.size()	<	b.size();

};

auto	equal_by_size	=	[](auto	size){

		return	[size](const	auto&	v){	return	size	==	v.size();	};

};

With	these	named	predicates,	the	user	code	becomes	more	readable:

std::sort(names.begin(),	names.end(),	preds::less_by_size);

auto	x	=	std::find_if(names.begin(),	names.end(),	equal_by_size(3));

//	x	points	to	"Apu"

Candidates	 for	 this	 namespace	 could	 be	 equal_case_insensitive,	 which	 compares
std::string	case	insensitively:

auto	equal_case_insensitive=[](const	std::string&	needle){

		//	Note	that	a	lambda	is	returned

		return	[&needle](const	std::string&	s){

				if(needle.size()	!=	s.size())

						return	false;

				auto	eq_lower	=	[](char	a,	char	b){

						return	std::tolower(a)==std::to_lower(b);

				};

				return	std::equal(s.begin(),	s.end(),	needle.begin(),	eq_lower);

		};

};

Now,	we	can	find	a	string	using	a	case	insensitive	target:

auto	num_maggies	=	std::count_if(names.begin(),	names.end(),	

		equal_case_insensitive(std::string{"maggie"}));

assert(num_maggies	==	1);

Algorithms	 require	 move
operators	not	to	throw
All	algorithms	use	std::swap	and	std::move	when	moving	elements	around,	but	only
if	the	move-constructor	and	move-assignment	are	marked	noexcept.	Therefore,	 it
is	 important	 to	 have	 these	 implemented	 for	 heavy	 objects	 when
using	algorithms.	If	they	are	not	available	and	exception	free,	the	elements	will
be	copied	instead.

Note	 that	 if	 you	 implement	 the	 move	 construction	 and	 move

assignment	in	your	class,	std::swap	will	utilize	them	and,	therefore,	a
specified	std::swap	overload	is	not	needed.

Algorithms	 have	 complexity
guarantees
The	complexity	of	 each	STL	algorithm	 is	 specified	using	big	O	notation.	STL
algorithms	 are	 created	 with	 performance	 in	 mind.	 	 Therefore,	 they	 do	 not
allocate	memory	nor	have	a	time	complexity	higher	than	O(n	log	n).	Algorithms
that	 do	 not	 fit	 these	 criteria	 are	 not	 included	 even	 if	 they	 are	 fairly	 common
operations.

Note	 the	 exception	 of	 std::stable_sort()	 ,	 std::inplace_merge(),	 and
std::stable_partition()	 .	 Many	 STL	 implementations	 tend	 to
temporarily	allocate	memory	during	these	operation.

For	 example,	 an	 algorithm	 which	 tests	 whether	 a	 non-sorted	 range	 contains
duplicates.	One	 option	 is	 to	 implement	 it	 by	 iterating	 through	 the	 range	 and
search	the	rest	of	the	range	for	a	duplicate.	This	will	result	in	an	algorithm	with
O(n2)	complexity:

template	<typename	Iterator>

auto	contains_duplicates(Iterator	first,	Iterator	last)	{

		for(auto	it	=	first;	it	!=	last;	++it)

				if(std::find(std::next(it),	last,	*it)	!=	last)

						return	true;

		return	false;

}

Another	option	is	to	make	a	copy	of	the	full	range,	sort	it,	and	look	for	adjacent
equal	elements.	This	will	result	in	a	time	complexity	of	O(n	log	n),	the	average
complexity	of	std::sort(),	which	satisfies	the	performance	requirement.	However,
since	 it	 needs	 to	 make	 a	 copy	 of	 the	 full	 range,	 it	 still	 doesn't	 qualify	 as	 a
building	block	algorithm.	Allocating	means	that	we	cannot	trust	it	not	to	throw:

template	<typename	Iterator>

auto	contains_duplicates(Iterator	first,	Iterator	last)	{

		//	As	(*first)	returns	a	reference,	we	have	to	get	

		//	the	base	type	using	std::decay_t

		using	ValueType	=	std::decay_t<decltype(*first)>;

		auto	c	=	std::vector<ValueType>(first,	last);

		std::sort(c.begin(),	c.end());

		return	std::adjacent_find(c.begin(),c.end())	!=	c.end();

}

Algorithms	 perform	 just	 as	 well
as	C	library	function	equivalents
The	 standard	 C	 library	 comes	 with	 a	 couple	 of	 low-level	 algorithms	 such	 as
memcpy(),	memmove(),	memcmp(),	and	memset().	In	our	experience,	sometimes	people	tend
to	use	these	functions	instead	of	their	equivalents	 in	the	STL	algorithm	library.
The	reason	 is	 that	people	 tend	 to	believe	 that	 the	C	 library	functions	are	 faster
and,	therefore,	accept	the	trade	off	in	type	safety.

This	 is	 not	 true	 for	 modern	 STL	 implementation;	 the	 equivalent	 STL
algorithms,	std::copy(),	std::equal()	 ,	 and	 std::fill(),	 resort	 to	 these	 low-level	C
functions	where	plausible;	hence,	they	provide	both	performance	and	type	safety.

Note	that	there	might	be	exceptions	where	the	C++	compiler	is	not	able	to	detect
that	it	 is	safe	to	resort	 to	the	low-level	C-functions.	These	cases	should	be	rare
though.

STL	 algorithms	 versus
handcrafted	for-loops
We	promote	 the	use	of	algorithms	over	hand-written	for-loops	for	a	number	of
reasons.	First,	 they	are	more	 readable,	 less	error-prone,	and	 future-proof	 in	 the
sense	that	it	is	easier	to	revisit	the	code	and	modify	or	optimize	it.	We	will	try	to
illustrate	this	with	a	few	examples.

Let's	look	at	the	advantages	of	STL	algorithms	over	handcrafted	for-loops:

STL	algorithms	deliver	performance.	Even	though	some	of	 the	algorithms
in	STL	may	 sometimes	 seem	 trivial,	 they	 are	 often	optimally	 designed	 in
ways	that	are	not	obvious	at	first	glance.
STL	algorithms	provide	 safety;	 even	 simpler	 algorithms	may	have	 corner
cases	which	is	easy	to	overlook.
STL	 algorithms	 are	 future-proof;	 algorithms	 can	 be	 replaced	 by	 a	 more
suitable	 algorithm	 if	 one	 wants	 to	 take	 advantage	 of	 SIMD	 extensions,
parallelism,	or	even	the	GPU	at	a	later	stage	(Chapter	11,	Parallel	STL,	will
cover	the	basics	of	parallel	algorithms).
STL	algorithms	are	very	well	documented.

Readability	and	future-proofing
By	 using	 algorithms	 instead	 of	 for-loops,	 the	 intention	 of	 each	 operation	 is
clearly	 indicated	by	the	name	and,	more	importantly,	algorithms	are	very	well-
documented.	The	reader	of	a	function	does	not	need	to	inspect	every	for-loop	in
order	 to	 determine	 exactly	what	 it	 does.	 It	might	 not	 be	 obvious	 looking	 at	 a
single	algorithm,	but	when	several	algorithms	are	followed	upon,	as	in	the	next
example,	 the	 advantages	 are	 obvious.	 Note	 that	 when	 reading	 for-loops,	 you
have	to	inspect	every	detail,	whereas	STL	algorithms	immediately	show	how	the
data	is	being	used.

Also,	from	an	optimization	point	of	view,	the	algorithms	in	the	example	can	be
easily	replaced	by	parallelized	equivalents	(this	will	be	further	explained	in	Chapte
r	11,	Parallel	STL).

Once	you	get	 into	 the	habit	of	 thinking	 in	 terms	of	 algorithms	 rather	 than	 for-
loops,	you'll	realize	that	most	for-loops	are	most	often	a	variation	of	a	few	simple
algorithms	such	as	std::transform(),	std::remove_if(),	std::copy_if(),	and	std::find().

Due	 to	 the	 importance	 of	 utilizing	 the	 STL	 algorithms	 instead	 of	 for-loops	 in
high-performance	 C++,	 we'd	 like	 to	 show	 a	 few	 examples.	 Resorting	 to
handwritten	for-loops	might	be	convenient,	as	one	might	have	developed	a	habit
of	 thinking	 in	 terms	 of	 for-loops;	 	 however,	 using	 algorithms	 has	 many
advantages,	which	we	will	try	to	demonstrate	with	examples.

Part	of	the	syntax	verbosity	was	solved	in	C++11,	when	lambda	functions	were
introduced	 in	 the	 language.	As	 explained	 in	 Chapter	2,	Modern	C++	Concepts,
prior	to	the	introduction	of	lambda	functions	in	C++11,	programmers	had	to	use
complicated	functor	objects	when	incorporating	algorithms.

Real-world	code	base	example
This	example	is	from	a	real-world	code	base,	although	variable	names	has	been
disguised.	As	it	 is	only	a	cut-out,	you	don't	have	to	understand	the	logic	of	 the
code.	The	example	is	here	just	to	show	you	how	the	complexity	is	lowered	when
using	algorithms	compared	with	nested	for-loops.

Using	algorithms	will	also	make	the	code	cleaner.	You	can	often	write	functions
without	 nesting.	 In	 the	 for-loop	 version,	 it's	 hard	 to	 grasp	 when	 conflicting
textures	are	 set	 to	 true,	whereas	 in	 the	algorithm	version,	you	can	 instinctively
see	that	it	happens	if	info	fulfills	a	predicate.

Note	that	kvp	is	short	for	key-value-pair.

The	for-loop	version The	STL	algorithm	version

auto	varies()	->	bool	{...}

auto	conflicting	=	false;

for	(auto&&	kvp	:	infos)	{

	auto	usage	=	kvp.second;

	auto	par	=	usage.params();

	if	(par==output.params()){

		if(varies(usage.flags())){

			conflicting	=	true;

			break;

		}

	}

	else	{

		conflicting	=	true;

		break;

	}

}

												

auto	varies()	->	bool	{...}

auto	conflicting=std::any_of(

	infos.begin(),

	infos.end(),

	[&](const	auto&	kvp)	{

		auto	usage	=	kvp.second;

		auto	par	=	usage.params();

		return

			par!=output.params()	||

			varies(usage.flags());

	}

);

	

Although	 it	 may	 overstate	 the	 point,	 imagine	 if	 one	 were	 to	 track	 a	 bug	 or
parallelizing	 it,	 the	 right	version	would	 be	 far	 easier	 to	 understand	 and	 reason
about.

Usage	 examples	 of	 STL
algorithms	 versus	 handcrafted
for-loops
To	 state	 the	 importance	 of	 using	 algorithms	 rather	 than	 for-loops,	we'd	 like	 to
show	a	few	examples	of	not-so-obvious	problems	that	one	may	bump	into	when
using	handcrafted	for-loops	rather	than	STL	algorithms.

Example	 1	 –	 Unfortunate
exceptions	 and	 performance
problems
Let's	say	we	need	a	function	that	moves	the	first	n	elements	from	the	front	of	a
container	to	the	back,	like	this:

Moving	the	first	three	elements	to	back	of	a	range

Approach	1	–	Use	a	traditional	for-loop:

A	very	naive	approach	would	be	to	copy	the	first	n	elements	 to	 the	back	while
iterating	over	them	and	then	erasing	the	first	n	elements:

Allocating	and	deallocating	in	order	to	move	elements	to	back	of	range

Here's	the	corresponding	implementation:

template	<typename	Container>

auto	move_n_elements_to_back(Container&	c,	size_t	n)	{

		//	Copy	the	first	n	elements	to	the	end	of	the	container

		for(auto	it	=	c.begin();	it	!=	std::next(c.begin(),	n);	++it)	{

				c.emplace_back(std::move(*it));

		}

		//	Erase	the	copied	elements	from	front	of	container

		c.erase(c.begin(),	std::next(c.begin(),	n));

}

At	first	glance,	it	might	look	plausible,	but	inspecting	it	reveals	a	severe	problem
—if	the	container	reallocates	during	the	iteration	due	to	push_back(),	the	iterator	it
will	no	 longer	be	valid.	As	 the	algorithm	tries	 to	access	an	 invalid	 iterator,	 the
algorithm	will	throw	an	exception.

Approach	2	–	Safe	for-loop	safe	at	the	expense	of	performance:

As	 a	 thrown	 exception	 is	 quite	 an	 obvious	 problem,	we'll	 have	 to	 rewrite	 the
algorithm.	We	are	 still	 using	a	handcrafted	 for-loop,	 but	we'll	 utilize	 the	 index
instead	of	the	iterator:

template	<typename	Container>

auto	move_n_elements_to_back(Container&	c,	size_t	n)	{

		for(size_t	i	=	0;	i	<	n;	++i)	{

				auto	value	=	*std::next(c.begin(),	i);

				c.emplace_back(std::move(value));

		}

		c.erase(c.begin(),	std::next(c.begin(),	n));

}

The	 solution	 works;	 it	 doesn't	 crash	 anymore.	 But	 now,	 it	 has	 a	 subtle
performance	 problem.	 The	 algorithm	 is	 significantly	 slower	 on	 std::list	 than
on	std::vector	 .	The	reason	is	that	 	std::next(it,	n)	used	with	std::list::iterator	 is
O(n),	and	O(1)	on	a	std::vector::iterator.	As	std::next(it,	n)	 is	 invoked	 in	every
step	 of	 the	 	 for-loop,	 this	 algorithm	will	 have	 a	 time	 complexity	 of	O(n2)	 on
containers	 such	 as	 std::list.	 Apart	 from	 this	 performance	 limitation,	 the
preceding	code	also	has	the	following	limitations:

It	 doesn't	 work	with	 containers	 of	 a	 static	 size,	 such	 as	 std::array,	 due	 to
emplate_back()

It	might	 throw	an	exception,	since	emplace_back()	may	allocate	memory	and
fail	(okay,	probably	rare)

Approach		3	–	Find,	and	use,	a	suitable	STL	algorithm:

When	we	have	reached	this	stage,	we	should	browse	through	STL	and	see	if	they
contain	a	suitable	algorithm	to	be	used	as	a	building	block.	Conveniently,	STL
provides	 an	 algorithm	 called	 std::rotate(),	 which	 does	 exactly	 what	 we	 are
looking	for	while	avoiding	all	the	disadvantages	mentioned	before.	Let's	use	the

std::rotate()	algorithm:

template	<typename	Container>

auto	move_n_elements_to_back(Container&	c,	size_t	n)	{

		auto	new_begin	=	std::next(c.begin(),	n);

		std::rotate(c.begin(),	new_begin,	c.end());

}

Let's	have	a	look	at	the	advantages	of	using	std::rotate():

The	 algorithm	 does	 not	 throw	 exceptions,	 as	 it	 does	 not	 allocate
memory	(the	contained	object	might	throw	exceptions	though)
It	works	with	containers	whose	size	cannot	be	changed,	such	as	std::array
Performance	is	O(n)	regardless	of	the	container	it	operates	on
STL	implementations	are	often	optimized	with	specific	hardware	in	mind

Maybe	you	 find	 this	 comparison	between	 for-loops	 and	STL	algorithms	unfair
because	 there	 are	 other	 solutions	 to	 this	 problem	 that	 are	 both	 elegant	 and
efficient	without	 using	STL.	Still,	 in	 the	 real	world,	 it's	 not	 uncommon	 to	 see
implementations	like	the	ones	we	just	saw,	when	there	are	algorithms	in	STL	just
waiting	to	solve	your	problems.

Example	 2	 –	 STL	 has	 subtle
optimizations	 even	 in	 simple
algorithms
Even	 algorithms	 that	 may	 seem	 very	 simple	 might	 contain	 optimizations	 you
wouldn't	consider.	Let's	 have	 a	 look	 at	 std::find(),	 for	 example.	At	 a	 glance,	 it
seems	that	 the	obvious	 implementation	couldn't	be	optimized	further.	Here	 is	a
possible	implementation	of	the	std::find()	algorithm:

template	<typename	It,	typename	Value>

auto	find_slow(It	first,	It	last,	const	Value&	value)	{

		for(auto	it	=	first;	it	!=	last;	++it)

				if(*it	==	value)

						return	it;

		return	last;

}

However,	 looking	 through	 the	 libstdc++	 implementation,	 when	 being	 used
with	 RandomAccessIterator	 (in	 other	 words,	 std::vector,	 std::string,	 std::deque,	 and
std::array),	 the	 libc++	 implementers	have	unrolled	 the	for-loop	 in	parts	of	 four,
resulting	in	the	comparison	(it	!=	last)	being	executed	one-fourth	as	many	times.

Here	is	the	optimized	version	of	std::find()	taken	from	the	libstdc++	library:

template	<typename	It,	typename	Value>

auto	find_fast(It	first,	It	last,	const	Value&	value)	{

		//	Main	loop	unrolled	into	chunks	of	four

		auto	num_trips	=	(last	-	first)	/	4;

		for	(auto	trip_count	=	num_trips;	trip_count	>	0;	--trip_count)	{

				if	(*first	==	value)	{return	first;}	++first;

				if	(*first	==	value)	{return	first;}	++first;

				if	(*first	==	value)	{return	first;}	++first;

				if	(*first	==	value)	{return	first;}	++first;

		}

		//	Handle	the	remaining	elements

		switch	(last	-	first)	{

				case	3:	if	(*first	==	value)	{return	first;}	++first;

				case	2:	if	(*first	==	value)	{return	first;}	++first;

				case	1:	if	(*first	==	value)	{return	first;}	++first;

				case	0:

				default:	return	last;

		}

}

Note	 that	 it	 is	actually	 the	 std::find_if(),	not	std::find()	which	utilizes	 this	 loop
unrolling	optimization.	But	the	std::find()	is	implemented	using	std::find_if().
In	addition	to	std::find(),	a	multitude	of	algorithms	in	libstdc++	is	implemented
using	 std::find_if(),	 for	 example	 std::any_of(),	 std::all_of(),	 std::none_of(),
std::find_if_not(),	 std::search(),	 std::is_partitioned(),	 std::remove_if(),
std::is_permutation(),	 which	 means	 that	 all	 of	 these	 are	 slightly	 faster	 than	 a
handcrafted	for-loop.

And	by	slightly,	I	really	mean	slightly;	the	performance	benefit	is	roughly	half	a
percent,	as	shown	in	the	following	table:

Find	an	integer	in	a	std::vector	of	10'000'000	elements

Algorithm Microseconds Speed	up
find_slow 																								3420 												1.000	x
find_fast 																								3402 												1.005	x

	

However,	 even	 though	 the	 benefit	 is	 almost	 negligible,	 using	 STL	 algorithms,
you	get	it	for	free.

"Compare	with	zero"	optimization

In	addition	 to	 the	 loop	unrolling,	a	very	subtle	optimization	 is	 that	trip_count	 is
iterated	backwards	 in	order	 to	 compare	with	zero	 instead	of	 a	value.	On	some
CPUs	 comparing	 with	 zero	 is	 slightly	 faster	 than	 any	 other	 value,	 as	 it	 uses
another	 assembler	 instruction	 (on	 the	 x86	 platform	 it	 uses	 test	 instead	 of	 cmp).
However,	 do	 not	 rearrange	 your	 handmade	 loops	 in	 order	 to	 benefit	 from	 this
optimization,	 unless	 it's	 a	 (very)	 hot	 spot.	 Doing	 so	 will	 heavily	 reduce	 the
readability	of	your	code;	let	 the	algorithms	handle	these	kinds	of	optimizations
instead.

The	following	table	show	the	difference	in	assembly	output

Action C++ Assembler	x86

auto	is_above_zero(size_t	v)	{ test	edi,	edi

Compare	with	zero 		return	v	>	0;

}

setne	al

ret

Compare	with	other	value
auto	is_above_123(size_t	v)	{

		return	v	>	123;

}

cmp	edi,	123

seta	al

ret

Sorting	only	for	the	data	you	need
to	retrieve
STL	 contains	 three	 basic	 sorting	 algorithms:	 std::sort(),	 std::partial_sort(),	 and
std::nth_element().	 In	 addition,	 it	 also	 contains	 a	 few	abbreviations	of	 those,	 but
we	will	 focus	on	 these	 three	 as,	 in	 our	 experience,	 it	 is	 easy	 to	 forget	 that,	 in
many	 cases,	 a	 complete	 sort	 can	 be	 avoided	 by	 using	 nth_element()	 or
partial_sort()	instead.

While	 std::sort()	 sorts	 the	 whole	 range,	 std::partial_sort()	 and
std::nth_element()	 could	 be	 thought	 of	 as	 algorithms	 for	 inspecting	 parts	 of	 that
sorted	range.	In	many	cases,	you	are	only	interested	in	a	certain	part	of	the	sorted
range.

For	example;

If	you	want	to	calculate	the	median	of	a	range,	you	require	the	value	in	the
middle	of	the	sorted	range.
If	you	want	to	create	a	body	scanner	which	can	be	used	by	the	mean	80%
by	length	of	a	population,	you	 require	 two	values	 in	 the	 sorted	 range;	 the
value	 located	 10%	 from	 the	 tallest	 person,	 and	 10%	 from	 the	 shortest
person.

The	 following	 image	 illustrates	 how	 std::nth_element	 and	 std::partial_sort

processes	a	range,	compared	to	a	fully	sorted	range:

Sorted	and	non-sorted	elements	of	a	range	using	different	algorithms

The	following	table	shows	their	algorithmic	complexity;	note	that	m	denotes	the
sub	range,	which	is	being	fully	sorted:

Algorithm Complexity Example	at	n	=	10000,	m	=	3333
std::sort() O(n	log	n) 																																																40'000
std::partial_sort() O(n	log	m) 																																																35'229
std::nth_element() O(n) 																																																10'000

Use	cases
Now	 that	we	 have	 insights	 into	 std:nth_element()	 and	 std::partial_sort(),	 let's	 see
how	we	can	combine	them	to	inspect	parts	of	a	range	as	if	the	entire	range	were
sorted:

Combining	algorithms	and	corresponding	partially	ordered	result

Performance	evaluation
Let's	 see	 how	 	 std::nth_element()	 and	 std::partial_sort()measure	 up	 against
std::sort().	We've	measured	with	10,000,000	elements	in	total	and	a	partial	range
of	1,000,000	elements:

Operation Code,	where	r	is	the	range	operated	on Speed	up:

Sort sort(r.begin(),	r.end()); 								1.00x

Find	median auto	middle	=	r.begin()	+	r.size()	/	2;

nth_element(r.begin(),	middle,	r.end()); 							12.41x

Find	the	values	as	if	fully	ordered

From	left_idx	to	right_idx

List	unordered

auto	left_it	=	r.begin()	+	left_idx;

auto	right_it	=	r.begin()	+	right_idx;

nth_element(r.begin(),	left_it,r.end());

nth_element(left_it,	right_it,	r.end());

									8.70x

Find	the	values	as	if	fully	ordered

From	left_idx	to	right_idx	
auto	left_it	=	r.begin()	+	left_idx;

auto	right_it	=	r.begin()	+	right_idx;

nth_element(r.begin(),	left_it,	r.end());

partial_sort(left_it,	right_it,	r.end());

									4.58x

List	ordered

The	future	of	STL	and	the	ranges
library
This	section	deals	with	a	library	that	is	proposed	for	the	upcoming	C++	standard,
C++20.	 As	 of	 now,	 it	 is	 available	 at	 https://github.com/ericniebler/range-v3.
Compiling	these	examples	will	require	an	updated	compiler.

https://github.com/ericniebler/range-v3

Limitations	of	the	iterators	in	STL
Although	 the	 iterator	 and	 algorithm	 concepts	 in	 STL	 have	 quite	 a	 few	 good
properties,	they	lack	composability.

Let's	 say,	 we	 have	 some	 sort	 of	 a	 Warrior	 class	 with	 an	 ability	 and	 a	 level	 of
ability,	as	implemented	below:

enum	class	EAbility	{	Fencing,	Archery	};

class	Warrior	{

public:

		EAbility	ability_{};

		int	level_{};

		std::string	name_{};

};

Now,	let's	say	we	want	to	find	the	Warrior	with	the	highest	level	of	Archery	in	the
list	of	warriors.

If	we	were	to	use	STL,	the	algorithm	we'd	use	is	std::max_element(),	operating	on
level_,	 but	 as	we	 only	want	 to	 take	 the	 warriors	 with	 the	 ability	 of	 Archery	 into
account,	it	gets	tricky.	Essentially,	we	want	to	compose	a	new	algorithm	out	of	a
combination	of	std::copy_if()	and	std::max_element(),	but	 composing	algorithms	 is
not	possible	with	STL.

Instead,	we	would	have	to	make	a	copy	of	all	the	warriors	with	Archery	 to	a	new
container	 and	 then	 iterate	 the	new	container	 to	 the	maximum	 level,	 leaving	us
with	code	that	is	both	verbose	and	quite	ineffective	due	to	the	copy.

The	code	would	look	something	like	this;	as	you	can	see,	it	is	quite	verbose	for	a
simple	task:

auto	is_archer	=	[](Warrior	w){return	w.ability_==EAbility::Archery;};

auto	compare_level	=	[](Warrior	a,Warrior	b){return	a.level_<b.level_;};

	

auto	get_max_archor_level(const	std::vector<Warrior>&	warriors)	{

		auto	archery	=	std::vector<Warrior>{};

		//	The	warrior	list	needs	to	be	copied	in	order	

		//	to	filter	to	archery	only

		std::copy_if(

				warriors.begin(),

				warriors.end(),

				std::back_inserter(archery),

				is_archer

);

		auto	max_level_it	=	std::max_element(

				archery.begin(),

				archery.end(),

				compare_level

);

		return	*max_level_it;

}

Here's	a	usage	example:

auto	warriors	=	std::vector<Warrior>	{

		Warrior{EAbility::Fencing,	12,	"Zorro"},

		Warrior{EAbility::Archery,	10,	"Legolas"},

		Warrior{EAbility::Archery,	7,	"Link"}

};

auto	max_archor_level	=	get_max_archor_level(warriors);

//	max_archor_level	equals	10

Of	course,	you	may	now	be	thinking	that	get_max_archor_level()	could	be	written	as
a	simple	for-loop,	which	relieves	us	of	the	extra	allocation	due	to	copy_if():

auto	get_max_archor_level(const	std::vector<Warrior>&	warriors){

		auto	max_level	=	int{0};

		for(const	auto&	w:	warriors)	{

				if(w.ability_	==	EAbility::Archer)	{

						max_level	=	std::max(max_level,	w.level_);

				}

		}

		return	max_level;

}

Although	easily	achievable,	we	would	then	miss	the	readability	of	an	algorithm;
as	mentioned	earlier,	a	code	base	full	of		for-loops	simply	isn't	readable,	as	every
algorithm	looks	the	same,	more	or	less.

What	we	would	 like	 is	 a	 syntax	 as	 readable	 as	 using	 algorithms,	 but	with	 the
ability	to	avoid	constructing	new	containers	for	every	step	in	the	algorithm.	This
is	where	the	future	ranges	library	takes	off	.	Although	the	ranges	library	is	huge,
the	 essential	 difference	 from	 the	 STL	 library	 is	 its	 ability	 to	 compose	what	 is
essentially	a	different	kind	of	iterators	into	a	lazily	evaluated	range.

This	 is	what	 the	previous	example	would	 look	 like	 if	 it	were	written	using	 the
ranges	library:

namespace	rv	=	ranges::view;

auto	get_max_archor_level(const	std::vector<Warrior>&warriors){

		auto	archer_levels	=	warriors

				|	rv::filter(is_archer)

				|	rv::transform([](const	auto&	w)	{	return	w.level_;	});

		auto	max_level_it	=	ranges::max_element(archer_levels);

		return	*max_level_it;

}

All	 we	 do	 is	 simply	 compose	 a	 range	 view	 which,	 when	 iterated	 by
ranges::max_element(),	 simply	 exposes	 the	 level	 of	 all	 archers.	 The
range,	 archer_levels,	 is	 simply	 all	 warriors,	 filtered	 by	 is_archer	 and	 transformed
into	exposing	the	level.

Although	not	part	of	the	standard	yet,	the	ranges	library	is	available	at	https://git
hub.com/ericniebler/range-v3.	We	think	it's	a	far	too	important	enhancement	of	C++
to	ignore	in	this	book,	so	let's	give	you	a	brief	introduction	to	the	ranges	library.

https://github.com/ericniebler/range-v3

Introduction	to	the	ranges	library
As	 mentioned	 earlier,	 the	 STL	 algorithm	 library	 has	 quite	 a	 verbose	 syntax,
where	 every	 algorithm	 requires	 a	 pair	 of	 iterators	 as	 parameters.	 The	 ranges
library	 has	 overloaded	 these	 functions	 but	 by	 taking	 a	 range	 as	 a	 parameter
instead	of	a	pair	of	iterators:

STL	algorithms	operates	on
iterators

Ranges	library	operates	on
containers

std::sort(a.begin(),	a.end());

std::count(a.begin(),	a.end(),	12);

ranges::sort(a);

ranges::count(a,	12);

	

This	makes	the	syntax	of	algorithms	neater,	but	the	main	feature	with	the	ranges
library	is	the	introduction	of		views.	

Views	 in	 the	 range	 library	 are	 lazily	 evaluated	 iterations	 over	 a	 range.
Technically	 they	 are	 only	 iterators	 with	 built	 in	 logic,	 but	 syntactically,	 they
provide	 a	 very	 pleasant	 syntax	 for	many	 common	 operations.	 Following	 is	 an
example	of	how	a	view	is	used	to	iterate	a	vector	of	numbers	like	if	it	contained
the	squares	of	the	original	numbers:

namespace	rv	=	ranges::view;

auto	numbers	=	std::vector<int>{1,2,3,4,5,6,7};

auto	squared_view	=	rv::transform(numbers,	[](auto	v){	

		return	v	*	v;

});

for(auto	s:	squared_view)	{

		std::cout	<<	s	<<	"	";

}

//	Output:	1	4	9	16	25	36	49

The	 variable,	 squared_view,	 is	 not	 a	 copy	 of	 the	 numbers	 vector	 with	 the	 values
squared;	 it	 is	 a	proxy	object	 for	 numbers	with	 one	 slight	 difference—every	 time
you	access	an	element,	the	transform	function	is	invoked.

From	the	outside,	you	can	still	 iterate	over	squared_view	as	any	regular	container
and,	 therefore,	 perform	 regular	 algorithms	 such	 as	 find	 or	 count,	 but	 internally,
you	haven't	created	another	container.

If	you	want	to	store	the	range,	the	view	can	be	simply	assigned	to	the	container
of	 your	 choice.	 Once	 copied	 back	 to	 a	 container,	 there	 is	 no	 longer	 any
dependency	between	the	original,	and	the	transformed	container.

std::vector<int>	v	=	squared_view;

std::list<int>	l	=	squared_view;

With	ranges,	it	is	also	possible	to	create	a	filtered	view	where	only	a	part	of	the
range	 is	 visible.	 In	 this	 case,	 only	 the	 elements	 that	 satisfy	 the	 condition	 are
visible	when	iterating	the	view:

View	odd	values View	fives

namespace	rv	=	ranges::view;

auto	vals	=	std::vector<int>{

		4,5,6,7,6,5,4

};

auto	odd_view	=	rv::filter(

		vals,

		[](auto	v){return(v%2)==1;}

);

for(auto	v:	odd_view)	{

		std::cout	<<	v	<<	"	";

}

//	Output:	5	7	5

namespace	rv	=ranges::view;

auto	vals=std::vector<int>{

		4,5,6,7,6,5,4

};

auto	five_view=rv::filter(

		vals,

		[](auto	v){return	v==5;}

);

for(auto	v:	five_view)	{

		std::cout	<<	v	<<	"	";

}

//	Output:	5	5

	

Another	example	of	the	versatility	of	the	ranges	library	is	the	possibility	it	offers
of	creating	a	view	that	can	iterate	over	several	containers	as	if	they	were	a	single
list:

auto	list_of_lists	=	std::vector<std::vector<int>>	{

		{1,	2},

		{3,	4,	5},

		{5},

		{4,	3,	2,	1}

};

auto	flattened_view	=	rv::join(list_of_lists);

for(auto	v:	flattened_view)	

		std::cout	<<	v	<<	",	";

//	Output:	1,	2,	3,	4,	5,	5,	4,	3,	2,	1,

	

auto	max_value	=	*ranges::max_element(flattened_view);

//	max_value	is	5

Composability	and	pipeability
The	full	power	of	views	comes	from	the	ability	to	combine	them.	As	they	don't
copy	 the	 actual	 data,	 you	 can	 express	multiple	 operations	 on	 a	 dataset	 while,
internally,	only	iterating	over	it	once.

namespace	rv	=	ranges::view;

auto	numbers	=	std::vector<int>{1,2,3,4,5,6,7};

	

//	Create	a	squared	view

auto	squared_view	=	rv::transform(numbers,	[](auto	v){

		return	v	*	v;	

});

//	squared_view	evaluates	to	"1,	4,	9,	16,	25,	36,	49"

	

//	Add	a	filter	onto	the	squared	view

auto	odd_squared_view	=	rv::filter(squared_view,	[](auto	v){

		return	(v	%	2)	==	1;	

});

//	odd_squared_view	evaluates	to	"1,	9,	25,	49"

Now	this	might	not	look	syntactically	elegant,	but	the	ranges	library	also	allows
us	 to	 compose	 the	 views	 using	 a	 the	 pipe	 operator	 for	 a	 much	 more	 elegant
syntax	(you	will	learn	more	about	using	the	pipe	operator	in	your	own	code	in	Ch
apter	9,	Proxy	Objects	and	Lazy	Evaluation):

namespace	rv	=	ranges::view;

auto	numbers	=	std::vector<int>{1,2,3,4,5,6,7};

auto	odd_squares_view	=	numbers

		|	rv::transform([](auto	v){	return	v	*	v;	})

		|	rv::filter([](auto	v){	return	(v	%	2)	==	1;	});

	

//	odd_squared_view	evaluates	to	"1,	9,	25,	49"

The	ability	to	read	a	statement	from	left	to	the	right,	rather	than	inside-out	as	is
the	case	with	a	regular	syntax	using	parenthesis,	makes	the	code	much	easier	to
read.	

Actions,	views,	and	algorithms
The	ranges	library	consists	of	three	types	of	operations:	algorithms,	actions,	and
views.	 It's	 important	 to	 know	 the	 difference	 between	 views	 and	 actions,	 the
following	 code	 snippet	 shows	 what	 a	 simple	 procedure	 corresponds	 to	 when
using	 actions	 versus	 using	 views.	 Note	 how	 the	 actions	 mutate	 the	 vector,
whereas	the	view	simply	iterates	it:

//	Prerequisite

auto	is_odd	=	[](int	v){	return	(v	%	2)	==	1;	}

auto	square	=	[](int	v){	return	v*v;	}

auto	get()	{	return	std::vector<int>{1,2,3,4};	}

using	ra	=	ranges::action;

using	rv	=	ranges::view;

//	Print	odd	squares	using	actions...

for(auto	v:	get()	|	ra::remove_if(is_odd)	|	ra::transform(square))	{

	std::cout	<<	v	<<	"	";	

}

//	...	corresponds	to	the	following	code	where	c	is	mutated:

auto	c	=	get();

auto	new_end	=	std::remove_if(c.begin(),	c.end(),	is_odd);

c.erase(new_end,	c.end());

std::transform(c.begin(),	c.end(),	c.begin(),	square);

for(auto	v:	c)	{	std::cout	<<	v	<<	"	";	}

//	Print	odd	squares	using	a	view...

for(auto	v:	get()	|	rv::remove_if(is_odd)	|	rv::transform(square))	{	

		std::cout	<<	v	<<	"	";	

}

//	...	corresponds	to	the	following	code	where	get()	is	only	iterated

for(auto	v:	get())	{

		if(is_odd(v))	{

				auto	s	=	square(v)

				std::cout	<<	s	<<	"	";

		}

}

Actions
Actions	 work	 like	 standard	 STL	 algorithms,	 but	 instead	 of	 using	 iterators	 as
input/output,	they	take	containers	and	return	new	modified	containers.

Unlike	STL	algorithms,	the	actions	of	ranges	modify	the	size	of	the	container,
that	 is,	 ranges::action::remove_if()	 returns	 a	 container	 where	 the	 elements	 have
been	 erased	 from	 the	 container,	 whereas	 std::remove_if(...)	 simply	 returns	 an
iterator	 to	 the	 last	 unique	 element	 and	 leaves	 it	 to	 the	 programmer	 to	 actually
erase	the	elements.	Same	goes	with	std::unique;	a	new	range	containing	only	the
unique	values	are	returned:

Erasing	duplicates	using	STL
algorithms

Erasing	duplicates	using	the	ranges
library

auto	a	=	std::vector<int>{

		1,	2,	1,	3,	2,	4

};

std::sort(a.begin(),a.end());

//	ints	is	"1,	1,	2,	2,	3,	4"

auto	it	=	std::unique(

		a.begin(),

		a.end()

);

//	a	is	"1,	2,	3,	4,	3,	4"

//	it	points	to	the	fifth	element

a.erase(it,	a.end());

//	a	is	"1,	2,	3,	4"

namespace	ra	=	ranges::action;

auto	a	=	

		std::vector<int>{1,2,1,3,2,4}

		|	ra::sort

		|	ra::unique;

//	a	is	1,	2,	3,	4

	

	

	

	

	

	

	

As	actions	mutate	data,	 they	 cannot	 operate	 on	 views.	Hence,	 the	 following
example	does	not	compile:

auto	numbers	=	std::vector<int>{	1,	2,	1,	3,	2,	4	};

numbers	=	std::move(numbers)

		|	ranges::view::unique

		|	ranges::action::sort;	//	Does	not	compile,	cannot	sort	a	view

In	 order	 to	 mutate	 a	 container	 using	 actions	 you	 must	 choose	 one	 of	 the

following:

Provide	 the	 container	 as	 an	 r-value,	 that	 is,	 the	 range	 is	 returned	 from	 a
function	or	via	std::move()
Initiate	the	action	with	|=	instead	of	|,	which	mutates	the	container	in	place.

The	following	are	examples	of	how	the	approaches	look	syntactically:

Initialization	code
namespace	ra	=	ranges::action;

auto	get(){return	std::vector<int>{1,3,5,7};}

auto	above_5	=	[](auto	v){	return	v	>=	5;	};

Useget()	straight	away auto	vals	=	get()	|	ra::remove_if(above_5);

//	vals	is	"1,	3"

Constructed	r-value,

usingstd::move()

auto	vals	=	get();

vals	=	std::move(vals)	|	ra::remove_if(above_5);

//	vals	is	"1,	3"

Mutate	container,

using	|=	operator	

auto	vals	=	get();

vals	|=	ra::remove_if(above_5);

//	vals	is	"1,	3"

Views
Views	 might	 seem	 similar	 to	 actions,	 but	 on	 the	 inside,	 they	 are	 completely
different.	While	an	action	operates	on	the	input	container	and	returns	a	mutated
version,	 views	 simply	 return	 a	 proxy	 view,	which,	when	 iterated,	 looks	 like	 a
mutated	container.

However,	 the	container	is	not	mutated	at	all;	all	 the	processing	is	performed	in
the	iterators.

Comparing	 ranges::view::transform()	 with	 ranges::action::transform()clarifies	 the
difference.	As	actions	transforms	the	container,	they	cannot	transform	the	 type,
whereas	views	can	transform	to	a	view	of	any	type.

The	 following	 transformation,	where	 an	 int	 is	 transformed	 to	 a	 std::string,	 can
only	be	performed	using	ranges::view.	Note	that	str_view	is	just	a	proxy;	the	actual
returned	string	is	not	constructed	until	the	view	is	accessed.

namespace	ra	=	ranges::action;

namespace	rv	=	ranges::view;

auto	get_numbers()	{	return	std::vector<int>{1,3,5,7};	}

//	An	action	cannot	transform	the	type

auto	strings	=	get_numbers()	|	ra::transform([](auto	v){	

		return	std::to_string(v);	//	Does	not	compile

});

//	A	view	can	transform	the	type	

auto	ints	=	get_numbers();

auto	str_view	=	ints	|	rv::transform([](auto	v){	

		return	std::to_string(v);

});

To	mimic	the	behavior	of	std::transform()	which	can	transform	data	to	a	container
with	a	different	value	type,	the	view	can	be	converted	to	a	container.	This	can	be
performed	either	by	using	the	functions	ranges::to_vector,	ranges::to_list	etc,	or	by
simply	assigning	the	view	to	the	range	of	choice.

Assign	using	explicit	container	type Assign	using	auto	and	to_list

namespace	rv	=	ranges::view;

auto	a	=	std::list<int>{2,4};

std::list<std::string>	b	=	a

	|	rv::transform([](auto	v){

			return	std::to_string(v);

	});

namespace	rv	=	ranges::view;

auto	a	=	std::list<int>{2,4};

auto	b	=	a

		|	rv::transform([](auto	v){

				return	std::to_string(v);

																															

		})

		|	ranges::to_list;

Algorithms
The	 algorithms	 in	 the	 ranges	 library	 that	 do	 not	 return	 a	 view	 or
a	 mutated	 container	 are	 simply	 referred	 to	 as	 algorithms.	 Examples	 of	 such
algorithms	are	ranges::count,	ranges::any_of,	and	so	on.	They	work	exactly	as	non-
mutating	 algorithms	 in	STL,	with	 the	 exception	 that	 they	use	 a	 range	 as	 input
instead	of	a	pair	of	iterators.

Unlike	actions	and	views,	algorithms	cannot	be	chained	with	the	|	operator:

auto	cars	=	std::vector<std::string>{"volvo","saab","trabant"};

//	Using	the	STL	library

auto	num_volvos_a	=	std::count(cars.begin(),	cars.end(),	"volvo");

//	Using	the	ranges	library

auto	num_volvos_b	=	ranges::count(cars,	"volvo");

Summary
In	this	chapter,	you	learned	how	to	use	the	basic	concepts	in	the	STL	algorithm
library,	the	advantages	of	using	 them	as	building	blocks	 instead	of	handwritten
for-loops,	and	why	using	the	STL	algorithm	library	is	beneficial	for	optimizing
your	code	at	a	later	stage.	We	also	discussed	the	guarantees	and	trade-offs	of	the
STL	algorithms,	meaning	that	you	can,	from	now	on,	use	them	with	confidence.

In	the	end,	we	had	a	brief	look	at	the	upcoming	ranges	library,	which	simplifies
range	handling	a	lot	more.

By	using	the	advantages	of	the	algorithms	instead	of	manual	for-loops,	your	code
base	is	well	prepared	for	the	parallelization	techniques	that	will	be	discussed	in
the	coming	chapters	of	this	book.

Memory	Management
After	reading	the	previous	chapters,	it	should	no	longer	come	as	a	surprise	that
the	way	we	 handle	memory	 can	 have	 a	 huge	 impact	 on	 the	 performance.	The
CPU	spends	a	lot	of	time	shuffling	data	between	the	CPU	registers	and	the	main
memory	(loading	and	storing	data	to	and	from	the	main	memory).	As	shown	in	C
hapter	4,	Data	Structures,	the	CPU	uses	memory	caches	to	speed	up	the	access	of
memory,	 and	 the	 programs	 need	 to	 be	 cache-friendly	 in	 order	 to	 run	 quickly.
This	chapter	will	reveal	more	aspects	of	how	computers	work	with	memory	so
that	we	know	which	things	must	be	considered	when	tuning	memory	usage.	We
will	 discuss	 automatic	memory	 allocation	 and	 dynamic	memory	management,
and	 look	 at	 the	 life	 cycle	 of	 a	C++	object.	 Sometimes	 there	 are	 hard	memory
limits	that	force	us	to	keep	our	data	representation	compact,	and	sometimes	we
have	plenty	of	memory	available	but	need	 the	program	to	go	faster	by	making
the	memory	management	more	 efficient.	 Allocating	 and	 deallocating	 dynamic
memory	 is	 relatively	 expensive	 and,	 at	 times,	 we	 need	 to	 avoid	 unnecessary
allocations	to	make	the	program	run	faster.

We	 will	 start	 this	 chapter	 by	 explaining	 some	 concepts	 that	 we	 need	 to
understand	 before	 we	 dig	 deeper	 into	 C++	 memory	 management.	 This
introduction	 will	 explain	 virtual	 memory	 and	 virtual	 address	 space,	 stack
memory	versus	heap	memory,	paging,	and	swap	space.

Computer	memory
The	physical	memory	of	a	computer	is	shared	among	all	 the	processes	running
on	a	system.	If	one	process	uses	a	lot	of	memory,	the	other	processes	will	most
likely	be	affected.	But	from	a	programmer's	perspective,	we	usually	don't	have	to
bother	about	the	memory	that	is	being	used	by	other	processes.	This	isolation	of
memory	is	due	to	the	fact	that	most	operating	systems	today	are	virtual	memory
operating	systems,	which	provide	the	illusion	that	a	process	has	all	the	memory
for	itself.	Each	process	has	its	own	virtual	address	space.

The	virtual	address	space
Addresses	 in	 the	 virtual	 address	 space	 that	 programmers	 see	 are	 mapped	 to
physical	addresses	by	the	operating	system	and	the	memory	management	unit
(MMU),	which	 is	a	part	of	 the	processor.	This	mapping	or	 translation	happens
each	time	we	access	a	memory	address.

This	extra	layer	of	indirection	makes	it	possible	for	the	operating	system	to	use
physical	memory	for	the	parts	of	a	process	that	are	currently	being	used	and	back
up	the	rest	of	the	virtual	memory	on-disk.	In	this	sense,	we	can	see	the	physical
main	 memory	 as	 a	 cache	 for	 the	 virtual	 memory	 space,	 which	 resides	 on
secondary	storage.	The	areas	of	the	secondary	storage	that	are	used	for	backing
up	memory	pages	are	usually	called	swap	space,	swap	file,	or,	simply,	pagefile
depending	on	the	operating	system.

Virtual	memory	makes	it	possible	for	processes	to	have	a	virtual	address	space
bigger	 than	 the	physical	address	 space,	 since	virtual	memory	 that	 is	not	 in	use
does	not	have	to	occupy	physical	memory.

Memory	pages
The	 most	 common	 way	 to	 implement	 virtual	 memory	 today	 is	 to	 divide	 the
address	 space	 in	 fixed	 sized	 blocks	 called	 memory	 pages.	 When	 a	 process
accesses	memory	at	a	virtual	address,	 the	operating	system	checks	whether	 the
memory	page	is	backed	by	physical	memory	(a	page	frame).	If	the	memory	page
is	not	mapped	in	the	main	memory,	a	hardware	exception	occurs	and	the	page	is
loaded	from	disk	into	memory.	This	type	of	hardware	exception	is	called	a	page
fault.	This	is	not	an	error	but	a	necessary	interrupt	in	order	to	load	data	from	disk
to	memory.	 As	 you	may	 have	 guessed	 though,	 this	 is	 very	 slow	 compared	 to
reading	data	that	is	already	resident	in	memory.

When	 there	 are	 no	 more	 available	 page	 frames	 in	 the	 main	 memory,	 a	 page
frame	has	 to	 be	 evicted.	 If	 the	 page	 to	 be	 evicted	 is	 dirty,	 that	 is,	 it	 has	 been
modified	since	it	was	last	loaded	from	disk,	it	needs	to	be	written	to	disk	before
it	can	be	replaced.	This	mechanism	is	called	paging.	If	the	memory	page	has	not
been	modified,	the	memory	page	is	simply	evicted.

Not	all	operating	systems	that	support	virtual	memory	support	paging.	iOS,	for
example,	does	have	virtual	memory	but	dirty	pages	are	never	stored	to	disk;	only
clean	pages	can	be	evicted	from	memory.	 If	 the	main	memory	is	 full,	 iOS	will
start	terminating	processes	until	there	is	enough	free	memory	again.

The	following	diagram	shows	two	running	processes.	They	both	have	their	own
virtual	memory	 space.	Some	of	 the	pages	 are	mapped	 to	 the	physical	memory
and	some	are	not.	 If	 process	 1	 needs	 to	 use	memory	 in	 the	memory	page	 that
starts	at	address	0x1000,	a	page	fault	will	occur.	The	memory	page	will	then	be
mapped	to	a	vacant	memory	frame.	Also,	note	that	the	virtual	memory	addresses
are	not	the	same	as	the	physical	addresses.	The	first	memory	page	of	process	1,
which	 starts	 at	 the	virtual	 address	 0x0000,	 is	mapped	 to	 a	memory	 frame	 that
starts	at	the	physical	address	0x4000:

Virtual	memory	pages	mapped	to	memory	frames	in	physical	memory.	Virtual	memory	pages	that	are	not	in
use	do	not	have	to	occupy	physical	memory.

Thrashing
Thrashing	 can	 happen	 when	 a	 system	 runs	 low	 on	 physical	 memory	 and	 is,
therefore,	 constantly	 paging.	 Whenever	 a	 process	 gets	 time	 scheduled	 on	 the
CPU,	it	 tries	to	access	memory	that	has	been	paged	out.	Loading	new	memory
pages	means	 that	 the	other	pages	 first	 have	 to	 be	 stored	on-disk.	Moving	data
back	and	forth	between	disk	and	memory	is	usually	very	slow,	so	in	some	cases,
this	more	or	less	stalls	the	computer,	since	the	system	spends	all	its	time	paging.
Looking	at	the	system's	page	fault	frequency	is	a	good	way	to	determine	whether
the	program	has	started	thrashing.

Process	memory
The	stack	and	the	heap	are	the	two	most	important	memory	segments	in	a	C++
program.	There	is	also	static	storage	and	thread	local	storage,	but	more	on	that
later.	Actually,	 to	 be	 formally	 correct,	 C++	 doesn't	 talk	 about	 stack	 and	 heap;
instead,	 it	 talks	 about	 storage	 classes	 and	 the	 storage	 duration	 of	 objects.
However,	 since	 the	 concepts	 of	 stack	 and	 heap	 are	 widely	 used	 in	 the	 C++
community,	and	all	the	implementations	of	C++	that	we	are	aware	of	use	a	stack
to	implement	function	calls	and	manage	automatic	storage	of	local	variables,	we
think	it	is	important	to	understand	what	stack	and	heap	are.	In	this	book,	we	are
also	using	the	terms	stack	and	heap	rather	than	the	storage	duration	of	objects.

Both	 the	 stack	 and	 the	 heap	 reside	 in	 the	 process'	 virtual	memory	 space.	 The
stack	is	a	place	where	all	the	local	variables	reside;	this	also	includes	arguments
to	functions.	The	stack	grows	each	time	a	function	is	being	called	and	contracts
when	a	function	returns.	Each	thread	has	its	own	stack	and,	hence,	stack	memory
can	be	considered	 thread-safe.	The	heap	on	 the	other	 side	 is	 a	 global	memory
area	 that	 is	being	shared	among	all	 the	 threads	 in	a	 running	process.	The	heap
grows	when	we	allocate	memory	with	new	(or	the	C-library	function,	malloc())	and
contracts	 when	 we	 free	 the	 memory	 with	 delete	 (or	 free()).	 Usually,	 the	 heap
starts	at	a	low	address	and	grows	in	an	upward	direction,	whereas	the	stack	starts
at	 a	 high	 address	 and	 grows	 in	 the	 downward	 direction.	 The	 following	 image
shows	how	 the	stack	and	heap	grow	 in	opposite	directions	 in	a	virtual	address
space:

An	address	space	of	a	process.	The	stack	and	the	heap	grows	in	opposite	directions.

Stack	memory
The	 stack	 differs	 in	many	ways	 compared	 to	 the	 heap.	 Here	 are	 some	 of	 the
unique	properties	of	the	stack:

The	stack	is	a	contiguous	memory	block.
It	has	a	fixed	maximum	size.	If	a	program	exceeds	the	maximum	stack	size,
the	program	will	crash.
The	stack	memory	never	becomes	fragmented.
Allocating	memory	from	the	stack	is	always	fast.
Each	thread	in	a	program	has	its	own	stack.	

The	 code	 examples	 that	 follow	 in	 this	 section	 will	 examine	 some	 of	 these
properties.	Let's	start	with	allocations	and	deallocations	to	get	a	feel	for	how	the
stack	is	used	in	a	program.

We	 can	 easily	 find	 out	 in	 which	 direction	 the	 stack	 grows	 by	 inspecting	 the
address	of	stack-allocated	data.	The	following	example	code	demonstrates	how
the	stack	grows	and	contracts	when	entering	and	leaving	functions:

auto	func2()	{	

		auto	i	=	0;	

		std::cout	<<	"func2():	"	<<	std::addressof(i)	<<	'\n';	

}	

	

auto	func1()	{	

		auto	i	=	0;	

		std::cout	<<	"func1():	"	<<	std::addressof(i)	<<	'\n';	

		func2();		

}	

	

auto	main()	->	int	{	

		auto	i	=	0;	

		std::cout	<<	"main():	"	<<	std::addressof(i)	<<	'\n';	

		fun1();	

		fun2();	

}	

A	possible	output	when	running	the	program	could	look	like	this:

main():	0x7ea075ac	

func1():	0x7ea07594	

func2():	0x7ea0757c	

func2():	0x7ea07594	

By	 printing	 the	 address	 of	 the	 stack	 allocated	 integer,	 we	 can	 determine	 how
much	and	in	which	direction	the	stack	grows	on	my	platform.	The	stack	grows
by	24	bytes	each	time	we	enter	either	func1()	or	func2().	The	integer	i,	which	will
be	allocated	on	the	stack,	 is	4	bytes	long.	The	remaining	20	bytes	contain	data
needed	 when	 the	 function	 ends,	 such	 as	 the	 return	 address.	 The	 following
diagram	illustrates	how	the	stack	grows	and	contracts	during	the	execution	of	the
program.	The	first	box	illustrates	how	the	memory	looks	when	the	program	has
just	 entered	 the	 main()	 function.	 The	 second	 box	 shows	 how	 the	 stack	 has
increased	when	we	execute	func1()	and	so	on:

The	stack	grows	and	contracts	when	functions	are	entered	and	returns.

The	 total	 memory	 allocated	 for	 the	 stack	 is	 a	 fixed	 size	 contiguous	 memory
block	created	at	thread	startup.	So,	how	big	is	the	stack	and	what	happens	when
we	reach	the	limit	of	the	stack?	As	mentioned	earlier,	the	stack	grows	each	time
the	program	enters	a	function	and	contracts	when	the	function	returns.	The	most
common	 reason	 for	 the	 stack	 to	 overflow	 is	 by	 deep	 recursive	 calls	 and/or	 by
using	 large	 automatic	 variables	 on	 the	 stack.	 The	 maximum	 size	 of	 the	 stack
differs	among	platforms	and	can	also	be	configured	for	individual	processes.

Let's	see	if	we	can	write	a	program	to	see	how	big	the	stack	is	by	default	on	my
system.	We	begin	by	writing	a	function	func(),	which	will	 recurse	 infinitely.	At
the	beginning	of	each	function,	we'll	allocate	a	one-kilobyte	variable,	which	will
be	placed	onto	the	stack	every	time	we	enter	func().	Every	time	func()	is	executed,
we	print	the	current	size	of	the	stack:

auto	func(char*	stack_bottom_addr)	->	void	{	

		char	data[1024];					

		std::cout	<<	stack_bottom_addr	-	data	<<	'\n';	

		func(stack_bottom_addr);	

}	

	

auto	main()	->	int	{	

		char	c;	

		func(&c);	

}	

The	 size	 of	 the	 stack	 is	 only	 an	 estimate.	 We	 compute	 it	 by	 subtracting	 the
address	of	the	first	local	variable	in	main()	with	the	first	local	variable	defined	in
func().

When	 I	 compiled	 the	 code	with	Clang,	 I	 got	 a	warning	 that	 	 func()	will	 never
return.	Normally,	this	is	a	warning	that	we	should	not	ignore,	but	this	time,	this
is	just	what	we	want,	so	we	ignore	the	warning	and	run	the	program	anyway.	The
program	crashes	after	a	short	while	when	the	stack	has	reached	its	limit.	Before
the	program	crashes,	it	manages	to	print	out	thousands	of	lines	with	the	current
size	of	the	stack.	The	last	lines	of	the	output	look	like	this:

...	

8378667	

8379755	

8380843	

Since	we	 are	 subtracting	 char	 pointers,	 the	 size	 is	 in	bytes,	 so	 it	 looks	 like	 the
maximum	size	of	the	stack	is	around	8	MB	on	my	system.	On	Unix-like	systems,
it	 is	 possible	 to	 set	 and	 get	 the	 stack	 size	 for	 processes	 by	 using	 the	 ulimit
command	with	the	option,	-s:

		$	ulimit	-s	

		$	8192	

Ulimit	 (short	 for	 user	 limit)	 returns	 the	 current	 setting	 for	 the	maximum	stack
size	in	kilobytes.	The	output	of	ulimit	confirms	the	results	from	our	experiment:
the	stack	is	about	8	MB	on	my	Mac	if	I	don't	configure	it	explicitly.

With	this	example,	we	can	also	conclude	that	we	don't	want	to	run	out	of	stack
memory	since	 the	program	will	crash	when	 that	happens.	Later	 in	 this	chapter,
we	will	see	how	to	implement	a	rudimentary	memory	allocator	to	handle	fixed-
size	 allocations.	We	will	 then	 understand	 that	 the	 stack	 is	 just	 another	 type	 of
memory	 allocator	 that	 can	 be	 implemented	 very	 efficiently	 because	 the	 usage
pattern	is	always	sequential.	We	always	request	and	release	memory	at	the	top	of
the	 stack	 (the	 end	 of	 the	 contiguous	 memory).	 This	 ensures	 that	 the	 stack
memory	will	never	become	fragmented	and	that	we	can	allocate	and	deallocate

memory	by	only	moving	a	stack	pointer.

Heap	memory
The	heap	or	 the	free	store,	which	is	a	more	correct	 term	in	C++,	 is	where	data
with	 dynamic	 storage	 lives.	 As	 mentioned	 earlier,	 the	 heap	 is	 shared	 among
multiple	threads,	which	means	 that	memory	management	for	 the	heap	needs	 to
take	concurrency	into	account.

This	 makes	 memory	 allocations	 in	 the	 heap	 more	 complicated	 than	 stack
allocations,	which	are	local	per	thread.

The	 allocation	 and	 deallocation	 pattern	 for	 stack	memory	 is	 sequential	 in	 the
sense	that	memory	is	always	deallocated	in	the	reverse	order	to	that	in	which	it
was	 allocated.	 On	 the	 other	 hand,	 for	 dynamic	 memory,	 the	 allocations	 and
deallocations	 can	 happen	 arbitrarily.	 The	 dynamic	 lifetime	 of	 objects	 and	 the
variable	sizes	of	memory	allocations	increase	the	risk	for	fragmented	memory.

An	 easy	 way	 to	 understand	 the	 issue	 with	 memory	 fragmentation	 is	 to	 go
through	 an	 example	 of	 how	 fragmented	 memory	 can	 occur.	 Suppose	 that	 we
have	a	small	contiguous	memory	block	of	16	KB	that	we	are	allocating	memory
from.	We	are	allocating	objects	of	two	types:	type	A,	which	is	1	KB,	and	type	B,
which	 is	2	KB.	We	 first	allocate	an	object	of	 type	A	 followed	by	an	object	of
type	B.	This	repeats	until	the	memory	looks	like	the	following	image:

Next,	all	objects	of	type	A	are	no	longer	needed,	so	they	can	be	deallocated.	The
memory	now	looks	like	this:

There	is	now	10	KB	of	memory	in	use	and	6	KB	is	available.	Now,	suppose	we

want	to	allocate	a	new	object	of	type	B,	which	is	2	KB.	Although	there	is	6	KB
of	free	memory,	there	is	nowhere	we	can	find	a	2	KB	memory	block	because	the
memory	has	become	fragmented.

Objects	in	memory
All	 the	 objects	 we	 use	 in	 a	 C++	 program	 reside	 in	 memory.	 Here,	 we	 will
explore	how	objects	are	created	and	deleted	from	memory	and	also	describe	how
objects	are	laid	out	in	memory.

Creating	and	deleting	objects
In	 this	 section,	we	will	 dig	 into	 the	 details	 of	 using	 new	 and	 delete.	We	 are	 all
familiar	with	 the	 standard	way	of	using	new	for	creating	an	object	on	 the	free
store	and	then	deleting	it	using	delete:

auto	user	=	new	User{"John"};		//	allocate	and	construct	

user->print_name();												//	use	object	

delete	user;																			//	destruct	and	deallocate	

As	the	comments	suggest,	new	actually	does	two	things:

1.	 Allocates	memory	to	hold	a	new	object	of	the	User	type
2.	 Constructs	a	new	User	object	 in	 the	allocated	memory	space	by	calling	the

constructor	of	the	User	class

The	same	thing	goes	with	delete:

1.	 Destructs	the	User	object	by	calling	its	destructor
2.	 Deallocates/frees	the	memory	that	the	User	object	was	placed	in

Placement	new
C++	 allows	 us	 to	 separate	 memory	 allocation	 from	 object	 construction.	 We
could,	 for	example,	allocate	a	byte	array	with	malloc()	and	construct	a	new	User
object	in	that	region	of	memory.	Have	a	look	at	the	following	code	snippet:

auto	memory	=	std::malloc(sizeof(User));	

auto	user	=	new	(memory)	User("john");	

The	perhaps	unfamiliar	syntax	using	new	(memory)	is	called	placement	new.	It	is	a
non-allocating	 form	of	 new,	which	only	 constructs	 an	 object.	 In	 the	 preceding
example,	placement	new	constructs	the	User	object	and	places	it	at	the	specified
memory	 location.	 Since	we	 are	 allocating	 the	memory	with	 std::malloc()	 for	 a
single	object,	it	is	guaranteed	to	be	correctly	aligned.	Later	on,	we	will	explore
cases	where	we	have	to	take	alignment	into	account	when	using	placement	new.

There	 is	 no	 placement	 delete,	 so	 in	 order	 to	 destruct	 the	 object	 and	 free	 the
memory,	we	need	to	call	the	destructor	explicitly	and	then	free	the	memory:

user->~User();

std::free(memory);	

Note:	 this	 is	 the	only	 time	you	 should	 call	 a	destructor	 explicitly.
Never	 ever	 call	 a	 destructor	 like	 this	 unless	 you	 have	 created	 an
object	with	placement	new.

C++17	 introduces	 a	 set	 of	 utility	 functions	 in	 <memory>	 for	 constructing	 and
destroying	 objects	 without	 allocating	 or	 deallocating	 memory.	 So,	 instead	 of
calling	 placement	 new,	 it	 is	 now	 possible	 to	 use	 some	 of	 the	 functions	 from
<memory>	whose	names	begin	with	std::uninitialized_	for	constructing,	copying,	and
moving	 objects	 to	 an	 uninitialized	 memory	 area.	 And	 instead	 of	 calling	 the
destructor	explicitly,	we	can	now	use	 std::destroy_at()	 to	destruct	an	object	at	a
specific	memory	address	without	deallocating	the	memory.

The	previous	example	could	be	rewritten	using	these	new	functions.	Here	is	how
it	would	look:

auto	memory	=	std::malloc(sizeof(User));

auto	user_ptr	=	reinterpret_cast<User*>(memory);

std::uninitialized_fill_n(user_ptr,	1,	User{"john"});

std::destroy_at(user_ptr);

std::free(memory);

The	new	and	delete	operators
The	 function	 operator	 new	 is	 responsible	 for	 allocating	 memory	 when	 a	 new
expression	is	invoked.	The	new	operator	can	either	be	a	globally	defined	function
or	 a	 static	 member	 function	 of	 a	 class.	 It	 is	 possible	 to	 overload	 the	 global
operators,	new	 and	 delete.	 Later	 on	 in	 this	 chapter,	we	will	 see	 that	 this	 can	 be
useful	when	analyzing	memory	usage.	Here	is	how	to	do	it:

auto	operator	new(size_t	size)	->	void*	{	

		void*	p	=	std::malloc(size);	

		std::cout	<<	"allocated	"	<<	size	<<	"	byte(s)"	<<	'\n';	

		return	p;	

}	

	

auto	operator	delete(void*	p)	noexcept	->	void	{	

		std::cout	<<	"deleted	memory\n";	

		return	std::free(p);	

}		

We	 can	 verify	 that	 our	 overloaded	 operators	 are	 actually	 being	 used	 when
creating	and	deleting	a	char	object:

auto*	p	=	new	char{'a'};	//	Outputs	"allocated	1	byte(s)"	

delete	p;																//	Outputs	"deleted	memory"	

When	 creating	 and	 deleting	 an	 array	 of	 objects	 using	 the	 new[]	 and	 delete[]
expressions,	 there	 is	 another	 pair	 of	 operators	 that	 are	 being	 used,	 namely
operator	new[]	and	operator	delete[].	We	can	overload	 these	operators	 in	 the	same
way:

auto	operator	new[](size_t	size)	->	void*	{	

		void*	p	=	std::malloc(size);	

		std::cout	<<	"allocated	"	<<	size	<<	"	byte(s)	with	new[]"	<<	'\n';	

		return	p;	

}	

	

auto	operator	delete[](void*	p)	noexcept	->	void	{	

		std::cout	<<	"deleted	memory	with	delete[]\n";	

		return	std::free(p);	

}	

Keep	in	mind	that	if	you	overload	operator	new,	you	should	also	overload	operator
delete.	Functions	for	allocating	and	deallocating	memory	come	in	pairs.	Memory
should	 be	 deallocated	 by	 the	 allocator	 that	 the	memory	was	 allocated	 by.	 For
example,	 memory	 allocated	 with	 std::malloc()	 should	 always	 be	 freed	 using

std::free().	 Memory	 allocated	 with	 operator	 new[]	 should	 be	 deallocated	 using
operator	delete[].

It	is	also	possible	to	override	a	class-specific	operator	new	and	operator	delete.	This
is	probably	more	useful	 than	overloading	 the	global	operators,	 since	 it	 is	more
likely	 that	 we	 need	 a	 custom	 dynamic	 memory	 allocator	 for	 a	 specific	 class.
Here,	we	are	overloading	operator	new	and	operator	delete	for	the	Document	class:

class	Document	{	

//	...	

public:		

		auto	operator	new(size_t	size)	->	void*	{	

				return	::operator	new(size);	

		}	

		auto	operator	delete(void*	p)	->	void	{	

				::operator	delete(p);	

		}	

};	

The	class-specific	version	of	new	will	be	used	when	we	create	new	dynamically
allocated	Document	objects:

auto*	p	=	new	Document{};	//	Uses	class-specific	operator	new	

delete	p;	

If	we	 instead	want	 to	use	global	 new	and	delete,	 it	 is	 still	 possible	 by	 using	 the
global	scope	(::):

auto*	p	=	::new	Document{};	//	Uses	global	operator	new	

::delete	p;	

We	will	discuss	memory	allocators	later	in	this	chapter	and	we	will	then	see	the
overloaded	new	and	delete	operators	in	use.	To	summarize	what	we	have	seen	so
far,	a	new	expression	involves	two	things:	allocation	and	construction.	operator	new
allocates	 memory	 and	 you	 can	 overload	 it	 globally	 or	 per	 class	 to	 customize
dynamic	 memory	 management.	 Placement	 new	 can	 be	 used	 to	 construct	 an
object	in	an	already	allocated	memory	area.

Memory	alignment
The	CPU	reads	memory	into	its	registers	one	word	at	a	time.	The	word	size	is	64
bits	on	a	64-bit	architecture,	32	bits	on	a	32-bit	architecture,	and	so	forth.	For	the
CPU	 to	 work	 efficiently	 when	 working	 with	 different	 data	 types,	 it	 has
restrictions	on	the	addresses	where	objects	of	different	types	are	located.	Every
type	in	C++	has	an	alignment	requirement	that	defines	the	addresses	at	which	an
object	of	a	certain	type	should	be	located	in	memory.	If	the	alignment	of	a	type	is
1,	it	means	that	the	objects	of	that	type	can	be	located	at	any	byte	address.	If	the
alignment	of	a	type	is	2,	it	means	that	the	object	of	that	type	can	only	be	located
at	addresses	that	are	multiples	of	2	and	so	on.	We	can	use	alignof	to	find	out	the
alignment	of	a	type:

//	Possible	output	is	4		

std::cout	<<	alignof(int)	<<	'\n';	

When	I	run	this	code	it	outputs	4,	which	means	that	the	alignment	requirement
of	 type	 int	 is	 4	 bytes	 on	 my	 platform,	 that	 is,	 objects	 of	 type	 int	 need	 to	 be
located	at	an	address	that	is	a	multiple	of	4.

The	following	diagram	shows	two	examples	of	memory	from	a	system	with	64-
bit	words.	The	upper	 row	contains	 three	4-byte	 integers,	which	 are	 located	on
addresses	that	are	4	bytes	aligned.	The	CPU	can	load	these	integers	into	registers
in	an	efficient	way	and	never	need	to	read	multiple	words	when	accessing	one	of
the	 int	 members.	 Compare	 this	 with	 the	 second	 row,	 which	 contains	 two	 int
members,	which	are	located	at	unaligned	addresses.	The	second	int	even	spans
over	 two-word	boundaries.	 In	 the	best	case	 this	 is	 just	 inefficient,	but	on	some
platforms	the	program	will	crash:

Two	examples	of	memory	which	contains	ints	at	aligned	and	unaligned	memory	addresses.

When	 allocating	 memory	 with	 new	 or	 std::malloc(),	 the	 memory	 we	 get	 back
should	be	correctly	aligned	for	 the	 type	we	specify.	The	following	code	shows
that	the	memory	allocated	for	int	is	at	least	4-bytes	aligned:

auto	p	=	new	int();	

auto	address	=	reinterpret_cast<std::uintptr_t>(p);	

std::cout	<<	(address	%	4ul)	<<	'\n';	//	Outputs	0	

In	fact,	new	and	malloc()	are	guaranteed	to	always	return	memory	suitably	aligned
for	any	scalar	type	(if	it	manages	to	return	memory	at	all).	The	<cstddef>	header
provides	us	with	a	type	called	std::max_align_t,	whose	alignment	requirement	is	at
least	as	strict	as	all	the	scalar	types.	Later	on,	we	will	see	that	this	type	is	useful
when	writing	 custom	memory	 allocators.	So,	 even	 if	we	only	 request	memory
for	 char	 on	 the	 free	 store,	 it	 will	 be	 aligned	 suitable	 for	 std::max_align_t.	 The
following	code	shows	that	the	memory	returned	from	new	is	correctly	aligned	for
std::max_align_t	and	also	for	any	scalar	type:

auto*	p	=	new	char{};	

auto	address	=	reinterpret_cast<std::uintptr_t>(p);	

auto	max_alignment	=	alignof(std::max_align_t);	

std::cout	<<	(address	%	max_alignment)	<<	'\n';	//	Outputs	0	

Let's	allocate	char	two	times	in	a	row	with	new:

auto*	p1	=	new	char{'a'};	

auto*	p2	=	new	char{'b'};	

Then,	the	memory	may	look	something	like	this:

The	 space	 between	 p1	 and	 p2	 depends	 on	 the	 alignment	 requirements	 of
std::max_align_t.	On	my	system,	it	was	16	bytes	and,	therefore,	there	are	15	bytes
between	each	char	instance,	even	though	the	alignment	of	a	char	is	only	1.

Padding
The	compiler	sometimes	needs	to	add	extra	bytes,	padding,	 in	our	user-defined
types.	When	we	define	data	members	in	a	class	or	struct,	the	compiler	is	forced
to	 place	 the	 members	 in	 the	 same	 order	 as	 we	 define	 them.	 However,	 the
compiler	also	has	to	ensure	that	data	members	inside	the	class	have	the	correct
alignment;	hence,	 it	needs	 to	add	padding	between	data	members	 if	necessary.
For	example,	assume	we	have	a	class	defined	as	follows:

class	Document	{	

		bool	is_cached_{};	

		double	rank_{};	

		int	id_{};	

};

std::cout	<<	sizeof(Document)	<<	'\n';	//	Possible	output	is	24	

The	reason	for	the	possible	output	being	24	is	that	the	compiler	inserts	padding
after	 bool	 and	 int	 to	 fulfill	 the	 alignment	 requirements	 of	 the	 individual	 data
members	 and	 the	 entire	 class.	 The	 compiler	 converts	 the	 Document	 class	 to
something	like	this:

class	Document	{	

		bool	is_cached_{};	

		char	padding1[7];	//	Invisible	padding	inserted	by	compiler	

		double	rank_{};	

		int	id_{};	

		char	padding2[4];	//	Invisible	padding	inserted	by	compiler	

};	

The	first	padding	between	bool	and	double	is	7	bytes,	since	the	rank_	data	member
of	the		double	type	has	an	alignment	of	8	bytes.	The	second	padding	that	is	added
after	int	is	4	bytes.	This	is	needed	in	order	to	fulfill	the	alignment	requirements
of	 the	Document	 class	 itself.	The	member	with	 the	 largest	 alignment	 requirement
also	 determines	 the	 alignment	 requirement	 for	 the	 entire	 data	 structure.	 In	 our
example,	this	means	that	the	total	size	of	the	Document	class	must	be	a	multiple	of
8,	since	it	contains	a	double	value	that	is	8-byte	aligned.

We	 now	 realize	 that	 we	 can	 rearrange	 the	 order	 of	 the	 data	 members	 in	 the
Document	class	 in	a	way	that	minimizes	 the	padding	 inserted	by	 the	compiler,	by
starting	with	 types	with	 the	biggest	alignment	 requirements.	Let's	create	a	new
version	of	the	Document	class:

//	Version	2	of	Document	class	

class	Document	{	

		double	rank_{};	

		int	id_{};

		bool	is_cached_{};	

};	

With	 the	 rearrangement	 of	 the	members,	 the	 compiler	 now	 only	 needs	 to	 pad
after	 the	 is_cached_	 data	member	 to	 adjust	 for	 the	 alignment	 of	 Document.	 This	 is
how	the	class	will	look	after	padding:

//	Version	2	of	Document	class	after	padding		

class	Document	{	

		double	rank_{};	

		int	id_{};	

		bool	is_cached_{};	

		char	padding[3];	//	Invisible	padding	inserted	by	compiler	

};	

The	 size	 of	 the	 new	 Document	 class	 is	 now	only	 16	 bytes,	 compared	 to	 the	 first
version,	 which	 was	 24	 bytes.	We	 can	 verify	 this	 by	 using	 the	 sizeof	 operator
again	on	our	updated	version	of	Document:

std::cout	<<	sizeof(Document)	<<	'\n';	//	Possible	output	is	16

As	a	general	rule,	you	can	place	the	biggest	data	members	in	the	beginning	and
the	 smallest	 members	 at	 the	 end.	 In	 this	 way,	 you	 can	minimize	 the	memory
overhead	caused	by	padding.	Later	on,	we	will	see	that	we	need	to	think	about
alignment	 when	 placing	 objects	 in	 memory	 regions	 that	 we	 have	 allocated,
before	we	know	the	alignment	of	the	objects	that	we	are	creating.

From	a	performance	perspective,	there	can	also	be	cases	where	you	want	to	align
objects	 to	 cache	 lines	 to	minimize	 the	 number	 of	 cache	 lines	 an	 object	 spans
over.	 While	 we	 are	 on	 the	 subject	 of	 cache	 friendliness,	 it	 should	 also	 be
mentioned	 that	 it	 can	 be	 beneficial	 to	 place	 multiple	 data	 members	 that	 are
frequently	used	together	next	to	each	other.

Memory	ownership
Ownership	of	resources	is	a	fundamental	aspect	to	consider	when	programming.
An	 owner	 of	 a	 resource	 is	 responsible	 for	 freeing	 the	 resource	 when	 it	 is	 no
longer	 needed.	A	 resource	 is	 typically	 a	 block	 of	memory	but	 could	 also	 be	 a
database	connection,	a	file	handle,	and	so	on.	Ownership	is	important	regardless
of	which	programming	language	you	are	using.	However,	it	is	more	apparent	in
languages	such	as	C	and	C++,	since	dynamic	memory	is	not	garbage	collected
by	default.	Whenever	we	 allocate	 dynamic	memory	 in	C++,	we	 have	 to	 think
about	the	ownership	of	that	memory.	Fortunately,	there	is	now	very	good	support
in	 the	 language	 for	 expressing	 various	 types	 of	 ownership	 by	 using	 smart
pointers,	which	we	will	cover	later	in	this	section.

The	 smart	 pointers	 from	 the	 standard	 library	 help	 us	 specify	 the	 ownership	 of
dynamic	variables.	Other	 types	of	variables	 already	have	a	defined	ownership.
For	 example,	 local	 variables	 are	 owned	by	 the	 current	 scope.	When	 the	 scope
ends,	 the	objects	 that	have	been	created	 inside	 the	 scope	will	be	automatically
destroyed:

{	

		auto	user	=	User{};	

}	//	user	will	automatically	be	destroyed	when	it	goes	out	of	scope	

Static	 and	 global	 variables	 are	 owned	 by	 the	 program	 and	 will	 be	 destroyed
when	the	program	terminates:

static	auto	user	=	User{};	

Data	members	are	owned	by	the	instances	of	the	class	that	they	belong	to:

class	Game	{	

		User	user;	//	A	Game	object	owns	the	User	object	

		//	...	

};	

It	is	only	dynamic	variables	that	do	not	have	a	default	owner,	and	it	is	up	to	the
programmer	 to	make	 sure	 that	 all	 the	 dynamically	 allocated	 variables	 have	 an
owner	to	control	the	lifetime	of	the	variables:

auto	user	=	new	User{};	//	Who	owns	user	now?	

With	modern	C++,	we	can	write	most	of	our	code	without	 explicit	 calls	 to	 new
and	 delete,	 which	 is	 a	 great	 thing.	Manually	 keeping	 track	 of	 calls	 to	 new	 and
delete	spread	out	over	a	large	code	base	can	easily	become	an	issue.	Raw	pointers
do	not	express	any	ownership,	which	makes	ownership	hard	 to	 track	 if	we	are
only	using	raw	pointers	to	refer	to	dynamic	memory.

We	 recommend	 that	 you	 make	 ownership	 clear	 and	 explicit,	 but	 do	 strive	 to
minimize	explicit	memory	management.	By	following	a	few	fairly	simple	rules
for	dealing	with	 the	ownership	of	memory,	you	will	 increase	 the	 likelihood	of
getting	 your	 code	 clean	 and	 correct	 without	 leaking	 resources.	 The	 coming
sections	will	guide	you	through	some	best	practices	for	that	purpose.

Handling	resources	implicitly
First,	make	your	objects	implicitly	handle	the	allocation/deallocation	of	dynamic
memory:

auto	func()	{	

		auto	v	=	std::vector<int>{1,	2,	3,	4,	5};	

}	

In	the	preceding	example,	we	are	using	both	stack	and	dynamic	memory,	but	we
don't	have	to	explicitly	call	new	and	delete.	The	std::vector	object	(of	the	std::vector
class)	 we	 create	 is	 an	 automatic	 object	 that	 will	 live	 on	 the	 stack.	 Since	 it	 is
owned	 by	 the	 scope,	 it	 will	 be	 automatically	 destroyed	 when	 the	 function
returns.	The	std::vector	 object	 itself	 uses	 dynamic	memory	 to	 store	 the	 integer
elements.	When	the	std::vector	object	goes	out	of	scope,	its	destructor	can	safely
free	 the	 dynamic	 memory.	 This	 pattern	 of	 letting	 destructors	 free	 dynamic
memory	makes	it	fairly	easy	to	avoid	memory	leaks.

While	 we	 are	 on	 the	 subject	 of	 freeing	 resources,	 I	 think	 it	 makes	 sense	 to
mention	 RAII.	 RAII	 is	 a	 well-known	 C++	 technique,	 short	 for	 Resource
Acquisition	Is	Initialization,	where	 the	 lifetime	of	a	 resource	 is	controlled	by
the	lifetime	of	an	object.	The	pattern	is	simple	but	extremely	useful	for	handling
resources	 (memory	 included).	But	 let's	 say,	 for	 a	 change,	 that	 the	 resource	we
need	 is	 some	 sort	 of	 connection	 for	 sending	 requests.	Whenever	 we	 are	 done
using	 the	 connection,	 we	 (the	 owners)	must	 remember	 to	 close	 it.	 Here	 is	 an
example	 of	 how	 it	 looks	when	we	open	 and	 close	 the	 connection	 explicitly	 to
send	a	request:

auto	send_request(const	std::string&	request)	{	

		auto	connection	=	open_connection("http://www.example.com/");	

		send_request(connection,	request);	

		close(connection);	

}	

As	you	can	see,	we	have	to	remember	to	close	the	connection	after	we	have	used
it	 or	 the	 connection	 will	 stay	 open	 (leak).	 In	 this	 example,	 it	 seems	 hard	 to
forget,	 but	 once	 the	 code	 gets	 more	 complicated	 after	 inserting	 proper	 error
handling	and	multiple	exit	paths,	it	will	be	hard	to	guarantee	that	the	connection
will	always	be	closed.	RAII	solves	this	by	relying	on	the	fact	that	the	lifetime	of

automatic	variables	is	handled	for	us	in	a	predictable	way.	What	we	need	is	an
object	 that	 will	 have	 the	 same	 lifetime	 as	 the	 connection	 we	 get	 from	 the
open_connection()	call.	We	create	a	class	for	this,	called	RAIIConnection:

class	RAIIConnection	{	

public:	

		RAIIConnection(const	std::string&	url)	

		:	connection_{open_connection(url)}	{}	

		~RAIIConnection()	{	

				try	{	

						close(connection_);							

				}	

				catch	(const	std::exception&)	{	

						//	Handle	error,	but	never	throw	from	a	destructor	

				}	

		}

		auto&	get()	{	return	connection_;	}	

	

private:		

		Connection	connection_;	

};

The	Connection	object	 is	now	wrapped	in	a	class	 that	controls	 the	 lifetime	of	 the
connection	 (the	 resource).	 Instead	 of	 explicitly	 closing	 the	 connection,	we	 can
now	let	RAIIConnection	handle	this	for	us:

auto	send_request(const	std::string&	request)	{	

		auto	connection	=	RAIIConnection("http://www.example.com/");	

		send_request(connection.get(),	request);	

		//	No	need	to	close	the	connection,	it	is	implicitly	handled	

		//	by	the	RAIIConnection	destructor	

}	

Containers
Use	standard	containers	to	handle	a	collection	of	objects.	The	container	you	use
will	own	the	dynamic	memory	it	needs	to	store	the	objects	you	add	to	it.	This	is
a	 very	 effective	way	 of	minimizing	 explicit	 new	 and	 delete	 expressions	 in	 your
code.	We	won't	talk	more	about	the	containers	here	since	they	have	already	been
covered	in	Chapter	4,	Data	Structures.

Smart	pointers
The	smart	pointers	 from	 the	standard	 library	wrap	a	 raw	pointer	and	make	 the
ownership	of	 the	 object	 it	 points	 to	 explicit.	When	 used	 correctly,	 there	 is	 no
doubt	about	who	 is	 responsible	 for	deleting	a	dynamic	object.	The	 three	 smart
pointer	 types	are	std::unique_ptr,	std::shared_ptr,	and	std::weak_ptr.	As	 their	names
suggest,	they	represent	three	types	of	ownership	of	an	object:

Unique	ownership	expresses	 that	 I,	 and	only	 I,	own	 the	object.	When	 I'm
done	using	it,	I	will	delete	it.
Shared	ownership	expresses	that	I	own	the	object	along	with	others.	When
no	one	needs	the	object	anymore,	it	will	be	deleted.
Weak	ownership	expresses	that	I'll	use	the	object	if	it	exists,	but	don't	keep
it	alive	just	for	me.

Unique	pointer
The	safest	and	least	complicated	ownership	is	unique	ownership	and	should	be
the	 first	 thing	 that	 pops	 into	 your	 mind	 when	 thinking	 about	 smart	 pointers.
Unique	 pointers	 represent	 unique	 ownership,	 that	 is,	 a	 resource	 is	 owned	 by
exactly	one	entity.	A	unique	ownership	can	be	transferred	to	someone	else,	but	it
cannot	 be	 copied,	 since	 that	would	 break	 the	 uniqueness.	Unique	 pointers	 are
also	very	efficient	since	they	do	not	add	any	performance	overhead	compared	to
ordinary	raw	pointers.	Here	is	how	to	use	a	sed::unique_ptr:

auto	owner	=	std::make_unique<User>("John");

auto	new_owner	=	std::move(owner);	//	Transfer	ownership	

Shared	pointer
Shared	ownership	means	that	an	object	can	have	multiple	owners.	When	the	last
owner	ceases	 to	 exist,	 the	 object	will	 be	 deleted.	This	 is	 a	 very	useful	 pointer
type,	but	is	also	more	complicated	than	unique	pointer.

The	std::shared_ptr	object	uses	reference	counting	to	keep	track	of	the	number	of
owners	 an	object	 has.	When	 the	 counter	 reaches	 0,	 the	 object	will	 be	 deleted.
The	 counter	 needs	 to	 be	 stored	 somewhere,	 so	 it	 does	 have	 some	 memory
overhead	compared	with	 the	unique	pointer.	Also,	std::shared_ptr	 is	 thread-safe,
so	the	counter	needs	to	be	updated	atomically	to	prevent	race	conditions.

The	 recommended	way	of	 creating	objects	owned	by	 shared	pointers	 is	 to	use
std::make_shared().	 It	 is	 both	 safer	 (from	 an	 exception-safety	 point	 of	 view)	 and
more	efficient	than	creating	the	object	manually	with	new	and	then	passing	it	to	a
std::shared_ptr	constructor.	By	overloading	operator	new	and	operator	delete	again	to
track	 allocations,	 we	 can	 conduct	 an	 experiment	 to	 find	 out	 why
using	std::make_shared()	is	more	efficient:

auto	operator	new(size_t	size)	->	void*	{	

		void*	p	=	std::malloc(size);	

		std::cout	<<	"allocated	"	<<	size	<<	"	byte(s)"	<<	'\n';	

		return	p;	

}	

	

auto	operator	delete(void*	p)	noexcept	->	void	{	

		std::cout	<<	"deleted	memory\n";	

		return	std::free(p);	

}	

Now	let's	try	the	recommended	way	first,	using	std::make_shared():

auto	main()	->	int	{	

	auto	i	=	std::make_shared<double>(42.0);	

	return	0;	

}	

The	output	when	running	the	program	is	as	follows:

allocated	32	bytes	

deleted	memory	

Now,	 let's	 allocate	 the	 int	 value	 explicitly	 by	 using	 new	 and	 then	 pass	 it	 to	 the

std::shared_ptr	constructor:

auto	main()	->	int	{	

		auto	i	=	std::shared_ptr<double>(new	double{42.0});	

		return	0;	

}	

The	program	will	generate	the	following	output:

allocated	4	bytes	

allocated	32	bytes	

deleted	memory	

deleted	memory	

We	can	conclude	that	the	second	version	needs	two	allocations,	one	for	the	double
and	 one	 for	 the	 std::shared_ptr,	 whereas	 the	 first	 version	 only	 needed	 one
allocation.	 This	 also	 means	 that,	 by	 using	 std::make_shared(),	 our	 code	 will	 be
more	cache-friendly,	thanks	to	spatial	locality.

Weak	pointer
Weak	ownership	doesn't	keep	any	objects	alive;	it	only	allows	us	to	use	an	object
if	someone	else	owns	it.	Why	would	you	want	such	a	fuzzy	ownership	as	weak
ownership?	One	common	reason	for	using	a	weak	pointer	is	to	break	a	reference
cycle.	A	 reference	 cycle	 occurs	when	 two	 or	more	 objects	 refer	 to	 each	 other
using	 shared	pointers.	Even	 if	 all	 external	 std::shared_ptr	 constructors	 are	gone,
the	objects	are	kept	alive	by	referring	to	themselves.

Why	not	just	use	a	raw	pointer?	Isn't	the	weak	pointer	exactly	what	a	raw	pointer
already	is?	Not	at	all.	A	weak	pointer	is	safe	to	use	since	we	cannot	reference	the
object	unless	it	actually	exists,	which	is	not	the	case	with	a	dangling	raw	pointer.
An	example	will	clarify	this:

auto	i	=	std::make_shared<int>(10);	

auto	weak_i	=	std::weak_ptr<int>{i};	

//	Maybe	i.reset()	happens	here	so	that	the	int	is	deleted...	

if	(auto	shared_i	=	weak_i.lock())	{	

		//	We	managed	to	convert	our	weak	pointer	to	a	shared	pointer	

		std::cout	<<	*shared_i	<<	'\n';	

}	

else	{	

		std::cout	<<	"weak_i	has	expired,	shared_ptr	was	nullptr\n";	

}	

Whenever	 we	 try	 to	 use	 the	 weak	 pointer,	 we	 need	 to	 convert	 it	 to	 a	 shared
pointer	 first	 using	 the	member	 function	 lock().	 If	 the	 object	 hasn't	 expired,	 the
shared	pointer	will	 be	 a	valid	pointer	 to	 that	 object;	 otherwise,	we	will	 get	 an
empty	std::shared_ptr	back.	This	way,	we	can	avoid	dangling	pointers	when	using
std::weak_ptr	instead	of	raw	pointers.

Small	size	optimization
One	 of	 the	 great	 things	 about	 containers	 such	 as	 std::vector	 is	 that	 they
automatically	 allocate	dynamic	memory	when	needed.	Sometimes,	 though,	 the
use	 of	 dynamic	 memory	 for	 container	 objects	 that	 only	 contain	 a	 few	 small
elements	 can	 hurt	 the	 performance.	 It	 would	 be	 more	 efficient	 to	 keep	 the
elements	in	the	container	itself	and	only	use	stack	memory	instead	of	allocating
small	 regions	 of	 memory	 on	 the	 heap.	 Most	 modern	 implementations	 of
std::string	will	take	advantage	of	the	fact	that	a	lot	of	strings	in	a	normal	program
are	short	and	 that	 short	 strings	 are	more	 efficient	 to	 handle	without	 the	use	of
heap	memory.

One	alternative	is	to	keep	a	small	separate	buffer	in	the	string	class	itself,	which
can	be	used	when	the	string	content	is	short.	This	would	increase	the	size	of	the
string	class	even	when	the	short	buffer	is	not	used.	So,	a	more	memory-efficient
solution	 is	 to	use	 a	union,	which	can	hold	 a	 short	 buffer	when	 the	 string	 is	 in
short	 mode	 and,	 otherwise,	 hold	 the	 data	 members	 it	 needs	 to	 handle	 a
dynamically	 allocated	 buffer.	 The	 technique	 for	 optimizing	 a	 container	 for
handling	small	data	is	usually	referred	to	as	small	string	optimization	for	strings,
or	small	size	optimization	and	small	buffer	optimization	for	other	types.	We	have
many	names	for	the	things	we	love.

A	short	code	example	will	demonstrate	how	std::string	from	libc++	from	LLVM
behaves	on	my	64-bit	system:

auto	allocated	=	size_t{0};	

//	Overload	operator	new	and	delete	to	track	allocations	

auto	operator	new(size_t	size)	->	void*	{		

		void*	p	=	std::malloc(size);	

		allocated	+=	size;	

		return	p;	

}	

	

auto	operator	delete(void*	p)	noexcept	->	void	{	

		return	std::free(p);	

}	

	

auto	main()	->	int	{	

		allocated	=	0;	

		auto	s	=	std::string{""};	//	Elaborate	with	different	string	sizes	

			

		std::cout	<<	"stack	space	=	"	<<	sizeof(s)	

				<<	",	heap	space	=	"	<<	allocated	

				<<	",	capacity	=	"	<<	s.capacity()	<<	'\n';	

}	

The	 code	 starts	 by	 overloading	 global	 operator	 new	 and	 operator	 delete	 for	 the
purpose	 of	 tracking	 dynamic	 memory	 allocations.	 We	 can	 now	 start	 testing
different	sizes	of	the	string	s	to	see	how	std::string		behaves.	When	building	and
running	 the	preceding	example	 in	 the	release	mode	on	my	system,	 it	generates
the	following	output:

stack	space	=	24,	heap	space	=	0,	capacity	=	22	

This	output	tells	us	that	std::string	occupies	24	bytes	on	the	stack	and	that	it	has	a
capacity	 of	 22	 chars	without	 using	 any	 heap	memory.	 Let's	 verify	 that	 this	 is
actually	true	by	replacing	the	empty	string	with	a	string	of	22	chars:

auto	s	=	std::string{"1234567890123456789012"};	

The	 program	 still	 produces	 the	 same	 output	 and	 verifies	 that	 no	 dynamic
memory	has	 been	 allocated.	But	what	 happens	when	we	 increase	 the	 string	 to
hold	23	characters	instead?

auto	s	=	std::string{"12345678901234567890123"};	

Running	the	program	now	produces	the	following	output:

stack	space	=	24,	heap	space	=	32,	capacity	=	31	

The	std::string	class	has	now	been	forced	to	use	the	heap	for	storing	the	string.	It
allocates	 32	 bytes	 and	 reports	 that	 the	 capacity	 is	 31.	 This	 is	 because	 libc++
always	 stores	 a	 null-terminated	 string	 internally	 and,	 therefore,	 needs	 an	 extra
byte	at	 the	end	for	 the	null	character.	 It	 is	 still	quite	 remarkable	 that	 the	string
class	can	be	only	24	bytes	and	can	hold	strings	of	22	characters	in	length	without
allocating	any	memory.	How	does	it	do	it?	As	mentioned	earlier,	it	is	common	to
save	memory	by	using	a	union	with	two	different	layouts:	one	for	the	short	mode
and	 one	 for	 the	 long	 mode.	 There	 is	 a	 lot	 of	 cleverness	 in	 the	 real	 libc++
implementation	to	make	the	maximum	use	of	the	24	bytes	that	are	available.	The
code	here	is	simplified	for	the	purpose	of	demonstrating	the	concept.	The	layout
for	the	long	mode	looks	like	this:

struct	Long	{	

		size_t	capacity_{};	

		size_t	size_{};	

		char*	data_{};	

};	

Each	member	in	the	long	layout	is	8	bytes	so	the	total	size	is	24	bytes.	The	char
pointer	data_	is	a	pointer	to	the	dynamically	allocated	memory	that	will	hold	long
strings.	The	layout	of	the	short	mode	looks	something	like	this:

struct	Short	{	

		unsigned	char	size_{};

		char	data_[23]{};	

};	

In	the	short	mode,	there	is	no	need	to	use	a	variable	for	the	capacity,	since	it	is	a
compile-time	constant.	It	is	also	possible	to	use	a	smaller	type	for	the	size_	data
member	in	this	layout,	since	we	know	that	the	length	of	the	string	can	only	range
from	0	to	22	if	it	is	a	short	string.

Both	the	layouts	are	combined	using	a	union:

union	u_	{	

		Short	short_layout_;	

		Long	long_layout_;	

};	

There	is	one	piece	missing,	though:	how	can	the	string	class	know	whether	it	is
currently	storing	a	short	string	or	a	long	string?	A	flag	is	needed	to	indicate	this,
but	where	is	it	stored?	It	turns	out	that	libc++	uses	the	least	significant	bit	on	the
capactiy_	data	member	in	the	long	mode	and	the	least	significant	bit	on	the	size_
data	member	in	the	short	mode.	For	the	long	mode,	this	bit	is	redundant	anyway
since	 the	 string	 always	 allocates	memory	 sizes	 that	 are	multiples	 of	 2.	 In	 the
short	mode,	it	is	possible	to	use	only	7	bits	for	storing	the	size	so	that	one	bit	can
be	used	for	the	flag.	It	becomes	even	more	complicated	when	writing	this	code
to	handle	big	endian	byte	order,	since	the	bit	needs	to	be	placed	in	memory	at	the
same	 location	 regardless	 of	whether	we	 are	 using	 the	 short	 struct	 or	 the	 long
struct	of	the	union.	You	can	look	up	the	details	in	the	libc++	implementation	at	h
ttps://github.com/llvm-mirror/libcxx.

Clever	 tricks	 like	 this	are	 the	 reason	 that	you	should	 strive	 to	use	 the	efficient
and	well-tested	classes	provided	by	the	standard	library	before	you	try	to	roll	out
your	own.	Nevertheless,	knowing	about	those	optimizations	and	how	they	work
is	important	and	useful,	even	if	you	never	need	to	write	one	yourself.

The	following	diagram	summarizes	our	simplified	(but	still,	rather,	complicated)

https://github.com/llvm-mirror/libcxx

memory	 layout	 of	 the	 union	 used	 by	 an	 efficient	 implementation	 of	 the	 small
string	optimization:

The	union	of	the	two	different	layouts	used	for	handling	short	strings	and	long	strings,	respectively.

Custom	memory	management
We	have	come	a	 long	way	 in	 this	chapter	now.	We	have	covered	 the	basics	of
virtual	memory,	 the	stack	and	 the	heap,	 the	new	and	delete	expressions,	memory
ownership,	and	alignment	and	padding.	But	before	we	close	this	chapter,	we	are
going	to	show	how	to	customize	the	memory	management	in	C++.	We	will	see
how	 the	parts	 that	we	went	 through	earlier	 in	 this	 chapter	will	 come	 in	handy
when	writing	a	custom	memory	allocator.

But	first,	what	is	a	custom	memory	manager	and	why	do	we	need	one?

When	 using	 new	 or	 malloc()	 to	 allocate	 memory,	 we	 use	 the	 built-in	 memory
management	 system	 in	C++.	Most	 implementations	of	operator	new	 use	 malloc(),
which	 is	 a	 general-purpose	 memory	 allocator.	 In	 other	 words,	 designing	 and
building	a	general-purpose	memory	manager	is	a	complicated	task	and	there	are
many	people	who	have	already	spent	a	 lot	of	 time	researching	 this	 topic.	Still,
there	 are	 several	 reasons	 why	 you	 might	 want	 to	 write	 a	 custom	 memory
manager.	Here	are	some	examples:

Debugging	and	diagnostics:	We	have	already	done	this	a	couple	of	times
in	this	chapter	by	overloading	operator	new	and	operator	delete	just	to	print	out
some	debugging	information.
Sandboxing:	A	custom	memory	manager	can	provide	a	sandbox	for	code
that	 isn't	 allowed	 to	 allocate	 unrestricted	 memory.	 The	 sandbox	 can	 also
track	memory	 allocations	 and	 release	memory	when	 the	 sandboxed	 code
finishes	executing.
Performance:	If	we	need	dynamic	memory	and	can't	avoid	allocations,	we
may	have	to	write	a	custom	memory	manager	 that	performs	better	for	our
specific	needs.	Later	on,	we	will	cover	some	of	 the	circumstances	that	we
could	utilize	to	outperform	malloc().

With	that	said,	many	experienced	C++	programmers	have	never	faced	a	problem
that	 actually	 required	 them	 to	 customize	 the	 standard	 memory	 manager	 that
comes	 with	 the	 system.	 This	 is	 a	 good	 indication	 of	 how	 well	 the	 general-
purpose	memory	managers	actually	are	today,	despite	all	the	requirements	they

have	to	fulfill	without	any	knowledge	about	our	specific	use	cases.	The	more	we
know	about	the	memory	usage	patterns	in	our	application,	the	better	the	chances
are	that	we	can	actually	write	something	more	efficient	than	malloc().	Remember
the	 stack,	 for	 example?	Allocating	 and	 deallocating	memory	 from	 the	 stack	 is
very	fast	compared	to	the	heap,	thanks	to	the	fact	that	it	doesn't	need	to	handle
multiple	threads	and	that	allocations	and	deallocations	are	guaranteed	to	always
happen	in	the	reverse	order.

Building	 a	 custom	 memory	 manager	 usually	 starts	 with	 analyzing	 the	 exact
memory	usage	patterns	and	then	implementing	an	arena.

Building	an	arena
Two	frequently	used	terms	when	working	with	memory	allocators	are	arena	and
memory	 pool.	 We	 will	 not	 distinguish	 between	 these	 terms	 in	 this	 book.	 By
arena,	we	mean	a	block	of	contiguous	memory	including	a	strategy	for	handing
out	parts	of	that	memory	and	reclaiming	it	 later	on.	This	could	technically	also
be	called	an	allocator,	but	we	will	use	that	term	to	refer	to	allocators	used	by	the
standard	library.	The	custom	allocator	we	will	develop	later	will	be	implemented
using	the	arena	we	create	here.

There	are	some	general	strategies	that	can	be	used	when	designing	an	arena	that
will	make	allocations	and	deallocations	likely	to	perform	better	than	malloc()	and
free():

Single-threaded:	 If	 we	 know	 that	 an	 arena	 will	 only	 be	 used	 from	 one
thread,	 there	 is	 no	 need	 to	 protect	 data	 with	 synchronization	 primitives,
such	as	locks	or	atomics.	There	is	no	risk	that	the	client	using	the	arena	may
be	blocked	by	some	other	thread,	which	is	important	in	real-time	contexts.
Fixed-size	allocations:	If	the	arena	only	hands	out	memory	blocks	of	fixed
size,	 it	 is	 relatively	 easy	 to	 reclaim	memory	 efficiently	 without	 memory
fragmentation	by	using	a	free	list.
Limited	 lifetime:	 If	 you	 know	 that	 objects	 allocated	 from	 an	 arena	 only
need	 to	 live	 during	 a	 limited	 and	 well-defined	 lifetime,	 the	 arena	 can
postpone	 the	 reclamation	 and	 free	 the	 memory	 all	 at	 once.	 An	 example
could	 be	 objects	 created	while	 handling	 a	 request	 in	 a	 server	 application.
When	the	request	has	finished,	all	the	memory	that	was	handed	out	during
the	request	can	be	reclaimed	in	one	step.	Of	course,	 the	arena	needs	to	be
big	 enough	 to	 handle	 all	 the	 allocations	 during	 the	 request	 without
reclaiming	memory	continually;	otherwise,	this	strategy	will	not	work.

We	will	 not	 go	 into	 further	 details	 about	 these	 strategies,	 but	 it	 is	 good	 to	 be
aware	 of	 the	 possibilities	 when	 looking	 for	 ways	 to	 improve	 memory
management	in	your	program.	As	is	often	the	case	with	optimizing	software,	the
key	is	to	understand	the	circumstances	under	which	your	program	will	run	and	to
analyze	the	specific	memory	usage	patterns	 in	order	 to	find	ways	to	 improve	a

custom	memory	manager	compared	to	a	general-purpose	one.

Next,	we	will	have	a	look	at	a	simple	arena	class	template,	which	can	be	used	for
small	or	few	objects	that	need	dynamic	storage	duration,	but	where	the	memory
it	needs	usually	is	so	small	that	it	can	be	placed	on	the	stack.	This	code	is	based
on	Howard	Hinnant's	short_alloc	published	in	the	page,	https://howardhinnant.github.
io/stack_alloc.html.	 This	 is	 a	 great	 place	 to	 start	 if	 you	want	 to	 dig	 deeper	 into
custom	memory	management.	We	think	it	is	a	good	example	for	demonstration
purposes	 because	 it	 can	 handle	 multiple	 sized	 objects,	 which	 require	 proper
handling	of	alignment.	But	again,	keep	in	mind	that	this	is	a	simplified	version
for	demonstrating	 the	concept	 rather	 than	providing	you	with	production-ready
code:

template	<size_t	N>	

class	Arena	{	

		static	constexpr	size_t	alignment	=	alignof(std::max_align_t);	

public:	

		Arena()	noexcept	:	ptr_(buffer_)	{}	

		Arena(const	Arena&)	=	delete;	

		Arena&	operator=(const	Arena&)	=	delete;	

	

		auto	reset()	noexcept	{	ptr_	=	buffer_;	}	

		static	constexpr	auto	size()	noexcept	{	return	N;	}	

		auto	used()	const	noexcept	{		

				return	static_cast<size_t>(ptr_	-	buffer_);	

		}	

		auto	allocate(size_t	n)	->	char*;	

		auto	deallocate(char*	p,	size_t	n)	noexcept	->	void;	

			

private:	

		static	auto	align_up(size_t	n)	noexcept	->	size_t	{	

				return	(n	+	(alignment-1))	&	~(alignment-1);	

		}	

		auto	pointer_in_buffer(const	char*	p)	const	noexcept	->	bool	{	

				return	buffer_	<=	p	&&	p	<=	buffer_	+	N;	

		}	

		alignas(alignment)	char	buffer_[N];	

		char*	ptr_{};	

};

The	arena	contains	a	char	buffer,	whose	size	is	determined	at	compile	time.	This
makes	 it	 possible	 to	 create	 an	 arena	 object	 on	 the	 stack	 or	 as	 a	 variable	with
static	 or	 thread	 local	 storage	 duration.	 The	 alignment	 of	 the	memory	 that	 this
version	will	hand	out	will	be	 the	same	as	when	using	malloc()—it's	suitable	 for
any	type.	This	is	a	bit	wasteful	if	we	use	the	arena	for	small	types	with	smaller
alignment	requirements,	but	we	ignore	 this	here.	The	buffer	 is	a	char	array	 that
might	 be	 allocated	 on	 the	 stack;	 hence,	 there	 is	 no	 guarantee	 that	 it	 will	 be
aligned	 for	 	 types	 other	 than	 char	 unless	we	 apply	 the	 alignas	 specifier	 to	 the

https://howardhinnant.github.io/stack_alloc.html

array.	The	helper	align_up()	function	may	look	complicated	if	you	are	not	used	to
bitwise	 operations.	 However,	 it	 basically	 just	 rounds	 up	 to	 the	 alignment
requirement	that	we	use.

When	reclaiming	memory,	we	need	to	know	whether	the	pointer	we	are	asked	to
reclaim	actually	belongs	to	our	arena.	The	pointer_in_buffer()	function	checks	this
by	comparing	a	pointer	address	with	the	arena's	address	range.

Next,	we	need	the	implementation	of	allocate	and	deallocate:

template<size_t	N>	

auto	Arena<N>::allocate(size_t	n)	->	char*	{	

		const	auto	aligned_n	=	align_up(n);	

		const	auto	available_bytes	=		

		static_cast<decltype(aligned_n)>(buffer_	+	N	-	ptr_);	

		if	(available_bytes	>=	aligned_n)	{	

				char*	r	=	ptr_;	

				ptr_	+=	aligned_n;	

				return	r;	

		}	

		return	static_cast<char*>(::operator	new(n));	

}	

Allocate	returns	a	pointer	to	a	correctly	aligned	memory	with	the	specified	size,
n.	 If	 there	 is	no	available	space	 in	 the	buffer	 for	 the	 requested	size,	 it	will	 fall
back	to	using	operator	new	instead.

The	 following	 deallocate()	 function	 first	 checks	 whether	 the	 pointer	 to	 the
memory	 to	 be	 deallocated	 is	 from	 the	 buffer	 or	whether	 it	 has	 been	 allocated
with	operator	 new.	 If	 it	 is	 not	 from	 the	 buffer,	we	 simply	 delete	 it	 with	 operator
delete.	 Otherwise,	 we	 check	whether	 the	memory	 to	 be	 deallocated	 is	 the	 last
memory	 we	 handed	 out	 from	 the	 buffer	 and,	 then,	 reclaim	 it	 by	 moving	 the
current	ptr_,	just	as	a	stack	would	do.	We	simply	ignore	other	attempts	to	reclaim
the	memory:

template<size_t	N>	

auto	Arena<N>::deallocate(char*	p,	size_t	n)	noexcept	->	void	{	

		if	(pointer_in_buffer(p))	{	

				n	=	align_up(n);	

				if	(p	+	n	==	ptr_)	{	

						ptr_	=	p;	

				}	

		}	

		else	{	

				::operator	delete(p);

		}

}	

That's	about	 it;	our	arena	 is	now	ready	to	be	used.	Let's	use	 it	when	allocating
User	objects:

auto	user_arena	=	Arena<1024>{};	

	

class	User	{	

public:	

		auto	operator	new(size_t	size)	->	void*	{	

				return	user_arena.allocate(size);	

		}	

		auto	operator	delete(void*	p)	->	void	{	

				user_arena.deallocate(static_cast<char*>(p),	sizeof(User));	

		}	

		auto	operator	new[](size_t	size)	->	void*	{	

				return	user_arena.allocate(size);	

		}	

		auto	operator	delete[](void*	p,	size_t	size)	->	void	{	

				user_arena.deallocate(static_cast<char*>(p),	size);	

		}	

private:

		int	id_{};

};	

	

auto	main()	->	int	{	

		//	No	dynamic	memory	is	allocated	when	we	create	the	users	

		auto	user1	=	new	User{};	

		delete	user1;	

	

		auto	users	=	new	User[10];	

		delete	[]	users;	

	

		auto	user2	=	std::make_unique<User>();	

		return	0;	

}

A	custom	memory	allocator
When	trying	our	custom	memory	manager	with	a	specific	type,	it	worked	great!
There	is	a	problem,	though.	It	turns	out	that	the	class-specific	operator	new	 is	not
called	 on	 all	 the	 occasions	 that	 we	 first	 might	 have	 expected.	 Consider	 the
following	code:

auto	user	=	std::make_shared<User>("John");	

What	happens	when	we	want	to	have	std::vector	of	10	users?

auto	users	=	std::vector<User>{};	

users.reserve(10);	

In	neither	 of	 the	 two	cases	 is	 our	 custom	memory	manager	being	used.	Why?
Starting	with	the	shared	pointer,	we	have	to	go	back	to	the	example	earlier	where
we	 saw	 that	 std::make_shared()	 actually	 allocates	 memory	 for	 both	 reference
counting	 data	 and	 the	 object	 it	 should	 point	 to.	 There	 is	 no	 way	 that
std::make_shared()	can	use	an	expression	such	as	new	User()	to	create	the	user	object
and	 the	 counter	 with	 only	 one	 allocation.	 Instead,	 it	 allocates	 memory	 and
constructs	the	user	object	using	placement	new.

The	std::vector	object	 is	similar.	 It	doesn't	construct	10	objects	by	default	 in	an
array	when	we	call	reserve().	This	would	have	required	a	default	constructor	for
all	the	classes	to	be	used	with	the	vector.	Instead,	it	allocates	memory	that	can	be
used	for	holding	10	user	objects	when	 they	are	being	added.	Again,	placement
new	is	the	tool	for	making	this	possible.

Fortunately,	we	can	provide	a	custom	memory	allocator	 to	both	 std::vector	and
std::shared_ptr	 in	 order	 to	 have	 them	use	 our	 custom	memory	manager.	This	 is
true	 for	 the	 rest	 of	 the	 containers	 in	 the	 standard	 library	 as	 well.	 If	 we	 don't
supply	 a	 custom	 allocator,	 the	 containers	 will	 use	 the	 default
std::allocator<T>	class.	So,	what	we	need	in	order	to	use	our	arena	is	to	write	an
allocator	that	can	be	used	by	the	containers.

Custom	allocators	have	been	a	hot	and	well-debated	topic	for	a	long	time	in	the
C++	 community.	 Many	 custom	 containers	 have	 been	 implemented	 to	 control

how	memory	is		managed	instead	of	using	the	standard	containers	with	custom
allocators,	 probably	 for	 good	 reasons.	However,	 the	 support	 and	 requirements
for	writing	a	custom	allocator	has	been	improved	in	C++11,	and	it	is	now	a	lot
better	than	it	used	to	be.	Here,	we	will	only	focus	on	allocators	from	C++11	and
beyond.

A	minimal	allocator	in	C++11	now	looks	like	this:

template<typename	T>	

struct	Alloc	{		

		using	value_type	=	T;	

		Alloc();	

		template<typename	U>	Alloc(const	Alloc<U>&);	

		T*	allocate(size_t	n);	

		auto	deallocate(T*,	size_t)	const	noexcept	->	void;	

};	

template<typename	T>	

auto	operator==(const	Alloc<T>&,	const	Alloc<T>&)	->	bool;			

template<typename	T>	

auto	operator!=(const	Alloc<T>&,	const	Alloc<T>&)	->	bool;	

It's	 really	not	 that	much	code	anymore,	 thanks	 to	 the	 improvements	 in	C++11.
The	 container	 that	 uses	 the	 allocator	 actually	 uses	 std::allocator_traits,	 which
provides	reasonable	defaults	if	the	allocator	omits	them.	I	recommend	you	have
a	look	at	the	std::allocator_traits	to	see	what	traits	can	be	configured	and	what	the
defaults	are.

By	using	malloc()	and	free(),	we	could	quite	easily	implement	a	minimal	custom
allocator.	Here,	we	will	show	the	old	and	famous	Mallocator,	first	published	in	a
blog	post	by	Stephan	T.	Lavavej,	to	demonstrate	how	to	write	a	minimal	custom
allocator	using	malloc()	and	free().	Since	then,	it	has	been	updated	for	C++11	to
make	it	even	slimmer.	Here	is	how	it	looks:

template	<class	T>		

struct	Mallocator	{	

	

		using	value_type	=	T;	

		Mallocator()	noexcept	{}	//	default	ctor	not	required	

	

		template	<class	U>		

		Mallocator(const	Mallocator<U>&)	noexcept	{}	

	

		template	<class	U>		

		auto	operator==(const	Mallocator<U>&)	const	noexcept	{		

				return	true;		

		}	

	

		template	<class	U>		

		auto	operator!=(const	Mallocator<U>&)	const	noexcept	{		

				return	false;		

		}	

		

		auto	allocate(const	size_t	n)	const	->	T*	{	

				if	(n	==	0)	{		

						return	nullptr;		

				}	

				if	(n	>	std::numeric_limits<size_t>::max()	/	sizeof(T))	{	

						throw	std::bad_array_new_length{};	

				}	

				void*	const	pv	=	malloc(n	*	sizeof(T));	

				if	(pv	==	nullptr)	{		

						throw	std::bad_alloc{};		

				}	

				return	static_cast<T*>(pv);	

		}	

		auto	deallocate(T*	const	p,	size_t)	const	noexcept	->	void	{	

				free(p);	

		}	

};	

Mallocator	 is	 a	 stateless	 allocator,	which	means	 that	 the	 allocator	 instance	 itself
doesn't	have	 any	mutable	 state;	 instead,	 it	 uses	 global	 functions	 for	 allocation
and	deallocation,	namely	malloc()	and	free().	A	stateless	allocator	should	always
compare	 equal	 to	 the	 allocators	 of	 the	 same	 type.	 It	 indicates	 that	 memory
allocated	with	Mallocator	should	also	be	deallocated	with	Mallocator,	regardless	of
the	Mallocator	 instance.	A	stateless	allocator	 is	 the	 least	complicated	allocator	 to
write	but	it	is	also	limited,	since	it	depends	on	the	global	state.

To	use	our	arena	as	a	stack-allocated	object,	we	will	need	a	stateful	allocator	that
can	 reference	 the	 arena	 instance.	 Here,	 the	 arena	 class	 that	 we	 implemented
really	 starts	 to	make	 sense.	 Say,	 for	 example,	 that	we	want	 to	 use	 one	 of	 the
standard	containers	in	a	function	to	do	some	processing.	We	know	that,	most	of
the	 time,	 we	 are	 dealing	with	 very	 small	 amounts	 of	 data	 that	 will	 fit	 on	 the
stack.	But	once	we	use	the	containers	from	the	standard	library,	they	will	allocate
memory	from	the	heap,	which,	in	this	case,	will	hurt	the	performance.	

What	 are	 the	 alternatives	 for	 using	 the	 stack	 to	 manage	 the	 data	 and	 avoid
unnecessary	heap	allocations?	One	alternative	is	to	build	a	custom	container	that
uses	a	variation	of	the	small	size	optimization	we	looked	at	for	std::string.	 It	 is
also	 possible	 to	 use	 a	 container	 from	 Boost,	 for	 example,
boost::container::small_vector,	which	is	based	on	LLVM's	small	vector.	We	advise
you	to	check	it	out	if	you	haven't	already:
http://www.boost.org/doc/libs/1_64_0/doc/html/container/non_standard_containers.html.

Yet	 another	 alternative,	 though,	 is	 to	 use	 a	 custom	 allocator,	 which	 we	 will
explore	 next.	 Since	 we	 already	 have	 an	 arena	 template	 class	 ready,	 we	 could

http://www.boost.org/doc/libs/1_64_0/doc/html/container/non_standard_containers.html

simply	create	the	instance	of	an	arena	on	the	stack	and	have	a	custom	allocator
use	 it	 for	 the	 allocations.	What	we	 then	 need	 to	 do	 is	 to	 implement	 a	 stateful
allocator,	which	could	hold	a	reference	to	the	stack-allocated	arena	object.

Again,	 this	 custom	allocator	 that	we	will	 implement	 is	 a	 simplified	version	of
Howard	Hinnant's	short_alloc:

template	<class	T,	size_t	N>	

struct	ShortAlloc	{	

	

		using	value_type	=	T;	

		using	arena_type	=	Arena<N>;	

	

		ShortAlloc(const	ShortAlloc&)	=	default;	

		ShortAlloc&	operator=(const	ShortAlloc&)	=	delete;	

	

		ShortAlloc(arena_type&	arena)	noexcept	:	arena_{arena}	{	}	

	

		template	<class	U>	

		ShortAlloc(const	ShortAlloc<U,	N>&	other)	noexcept		

		:	arena_{other.arena_}	{}	

	

		template	<class	U>	struct	rebind	{		

				using	other	=	ShortAlloc<U,	N>;		

		};	

	

		auto	allocate(size_t	n)	->	T*	{	

				return	reinterpret_cast<T*>(arena_.allocate(n*sizeof(T)));	

		}	

		auto	deallocate(T*	p,	size_t	n)	noexcept	->	void	{	

				arena_.deallocate(reinterpret_cast<char*>(p),	n*sizeof(T));	

		}	

	

		template	<class	U,	size_t	M>	

		auto	operator==(const	ShortAlloc<U,	M>&	other)	const	noexcept	{	

				return		

						N	==	M	&&		

						std::addressof(arena_)	==	std::addressof(other.arena_);	

		}	

		template	<class	U,	size_t	M>	

		auto	operator!=(const	ShortAlloc<U,	M>&	other)	const	noexcept	{	

				return	!(*this	==	other);	

		}	

		template	<class	U,	size_t	M>	friend	struct	ShortAlloc;	

	

private:		

		arena_type&	arena_;	

};	

The	allocator	holds	a	reference	to	the	arena.	This	is	the	only	state	the	allocator
has.	 Allocate	 and	 deallocate	 simply	 forward	 their	 requests	 to	 the	 arena.	 The
compare	operators	ensure	 that	 two	instances	of	 the	ShortAlloc	 type	are	using	the
same	arena.

Now,	 the	 allocator	 and	 arena	 we	 implemented	 can	 be	 used	 with	 a	 standard

container	to	avoid	dynamic	memory	allocations.	When	we	are	using	small	data,
we	can	handle	all	allocations	using	the	stack	instead.	Let's	see	an	example	using
std::set:

auto	main()	->	int	{	

	

		using	SmallSet	=		

				std::set<int,	std::less<int>,	ShortAlloc<int,	512>>;	

	

		auto	stack_arena	=	SmallSet::allocator_type::arena_type{};	

		auto	unique_numbers	=	SmallSet{stack_arena};	

					

		//	Read	numbers	from	stdin	

		auto	n	=	int{};	

		while	(std::cin	>>	n)

				unique_numbers.insert(n);	

			

		//	Print	unique	numbers		

		for	(const	auto&	number	:	unique_numbers)

				std::cout	<<	number	<<	'\n';	

}	

The	program	reads	 integers	from	standard	input	until	 the	end-of-file	 is	 reached
(Ctrl	 +	D	 on	Unix-like	 systems	 and	Ctrl	 +	Z	 on	Windows).	 It	 then	 prints	 the
unique	 numbers	 in	 an	 ascending	 order.	Depending	 on	 how	many	 numbers	 are
read	 from	 stdin,	 the	 program	 will	 use	 stack	 memory	 or	 dynamic	 memory	 by
using	our	ShortAlloc	allocator.

Summary
This	 chapter	 has	 covered	 a	 lot	 of	 ground,	 starting	 with	 the	 basics	 of	 virtual
memory	 and	 finally	 implementing	 a	 custom	 allocator	 that	 can	 be	 used	 by
containers	from	the	standard	library.	A	good	understanding	of	how	your	program
uses	memory	 is	 important.	Overuse	of	dynamic	memory	can	be	a	performance
bottleneck	that	you	might	need	to	optimize	away.	Before	you	start	implementing
your	 own	 containers	 or	 custom	 memory	 allocators,	 bear	 in	 mind	 that	 many
people	before	you	have	probably	had	very	similar	memory	issues	to	the	ones	you
may	 face.	So,	 there	 is	 a	good	chance	 that	 the	 right	 tool	 for	you	 is	 already	 out
there	 in	 a	 library.	 Building	 custom	memory	 managers	 that	 are	 fast,	 safe,	 and
robust	is	a	challenge.

Metaprogramming	 and	 Compile-
Time	Evaluation
C++	has	the	ability	to	evaluate	expressions	at	compile	time,	meaning	that	values
are	 already	 calculated	 when	 the	 program	 executes.	 Even	 though
metaprogramming	 has	 been	 possible	 since	 C++98;	 however,	 it	 was	 very
complicated	due	to	its	complex	template-based	syntax.	With	the	introduction	of
constexpr	 and,	 recently,	 if	 constexpr,	 metaprogramming	 has	 become	much	more
similar	to	writing	regular	code.

This	 chapter	 will	 give	 you	 a	 brief	 introduction	 of	 compile-time	 expression
evaluations	in	C++	and	how	they	can	be	used	for	optimization.

Introduction	 to	 template
metaprogramming
When	writing	 regular	C++	code,	 it	 is	eventually	 transformed	 to	machine	code.
Metaprogramming,	on	the	other	hand,	is	code	that	transforms	itself	 into	regular
C++	code.	When	using	metaprogramming,	 it	 is	 important	 to	 remember	 that	 its
main	 use	 case	 is	 to	 make	 great	 libraries	 and,	 thereby,	 hide	 complex
constructs/optimizations	 from	 the	 user	 code.	 So,	 remember	 that	 howsoever
complex	the	interior	of	 the	metacode	may	be,	 it's	 important	 to	hide	 it	behind	a
good	interface	so	that	the	user	code	base	is	easy	to	read	and	use.

In	 its	 simplest	 and	most	 common	 form,	 template	metaprogramming	 in	C++	 is
used	to	generate	functions,	values,	and	classes	that	accept	different	types.	

Let's	 take	 a	 look	 at	 a	 simple	 pow()	 function	 and	 a	 Rectangle	 class.	 By	 using	 a
template	parameter,	the	rectangle	can	be	used	with	any	integer	or	floating	point
type.	 Without	 templates,	 the	 programmer	 would	 have	 to	 create	 a	 separate
function/class	for	every	base	type.

The	compiler	then	compiles/generates	the	metacode	to	regular	C++	code,	which
is	 further	 compiled	 to	 machine	 code.	 We	 will	 hereforth	 refer	 to	 C++	 code
generated	from	metaprogramming	as	regular	C++	code.

Writing	 metaprogramming	 code	 can	 be	 very	 complex;	 something
that	 can	 make	 it	 easier,	 is	 to	 imagine	 how	 the	 expected	 regular
C++	code	is	intended	to	be.

Here	is	an	example	of	a	simple	templated	function:

//	pow_n	accepts	any	number	type

template	<typename	T>	

auto	pow_n(const	T&	v,	int	n)	{	

		auto	product	=	T{1};	

		for(int	i	=	0;	i	<	n;	++i)	{	

				product	*=	v;	

		}

		return	product;	

}

Using	this	function	will	generate	a	function	whose	return	 type	 is	dependent	on
the	template	parameter	type:

auto	x	=	pow_n<float>(2.0f,	3);	//	x	is	a	float	

auto	y	=	pow_n<int>(3,	3);						//	y	is	an	int	

Correspondingly,	a	simple	template-based	class	is	constructed	like	this:

//	Rectangle	can	be	of	any	type	

template	<typename	T>	

class	Rectangle	{	

public:	

		Rectangle(T	x,	T	y,	T	w,	T	h)	:	x_{x},	y_{y},	w_{w},	h_{h}	{}	

		auto	area()	const	{	return	w_	*	h_;	}	

		auto	width()	const	{	return	w_;	}	

		auto	height()	const	{	return	h_;	}	

private:

		T	x_{},	y_{},	w_{},	h_{};	

};	

When	a	template	class	is	utilized,	the	programmer	specifies	the	types	for	which
the	template	should	generate	the	code:

//	rectf	is	a	rectangle	of	floats

auto	rectf	=	Rectangle<float>{2.0f,	2.0f,	4.0f,	4.0f};	

//	recti	is	a	rectangle	of	integers

auto	recti	=	Rectangle<int>{-2,	-2,	4,	4};

A	 standalone	 function	 can	 then	 use	 a	 template	 to	 accept	 a	 rectangle	 with
dimensions	of	any	data	type	but	no	other	class	type	than	Rectangle,	as	follows:

template	<typename	T>	

auto	is_square(const	Rectangle<T>&	r)	->	bool	{	

		return	r.width()	==	r.height();	

}	

Using	 integers	 as	 template
parameters
Beyond	general	types,	a	template	can	also	be	of	any	integral	type,	which	means
that	 the	 compiler	 generates	 a	 new	 function	 for	 every	 integer	 passed	 as	 the
template	argument:

template	<int	N,	typename	T>	

auto	const_pow_n(const	T&	v)	{	

		auto	product	=	T{1};	

		for(int	i	=	0;	i	<	N;	++i)	{	

				product	*=	v;	

		}

		return	product;	

}

//	The	compiler	generates	a	function	which	squares	the	value

auto	x2	=	const_pow_n<float,	2>(4.0f);	

//	The	compiler	generates	a	function	which	cubes	the	value

auto	x3	=	const_pow_n<float,	3>(4.0f);

Note	the	difference	between	the	template	parameter	N	and	the	function	parameter
v.	For	every	value	of	N,	the	compiler	generates	a	new	function.	However,	v	 is
passed	as	a	regular	parameter	and,	as	such,	does	not	result	in	a	new	function.

How	 the	 compiler	 handles	 a
template	function
When	 the	 compiler	 deals	 with	 a	 template	 function,	 it	 constructs	 a	 regular
function/class	with	 the	 template	parameters	expanded.	The	following	code	will
make	the	compiler	generate	regular	functions,	as	it	utilizes	templates:

auto	valuei	=	int{42};	

auto	valuei_cubed	=	pow_n(valuei,	3);	

auto	valuef	=	float{42.42f};	

auto	valuef_squared	=	pow_n(valuef,	2);	

auto	valuef_const_squared	=	const_pow_n<2,	float>(valuef);	

auto	valuef_const_cubed	=	const_pow_n<3,	float>(valuef);

Thus,	when	compiled,	as	distinguished	from	regular	functions,	the	compiler	will
generate	new	 functions	 for	 every	 template	parameter.	This	means	 that	 it	 is	 the
equivalent	of	manually	creating	four	different	functions	looking	something	like
this:

auto	pow_n__float(float	v,	int	n)	{...}	

auto	pow_n__int(int	v,	int	n)	{...}	

auto	const_pow_n__float_2(float	v)	{...}	

auto	const_pow_n__float_3(float	v)	{...}	

This	is	important	for	understanding	how	metaprogramming	works.	The	template
code	generates	non-templated	C++	code,	which	is	then	executed	as	regular	code.
If	the	generated	C++	code	does	not	compile,	the	error	will	be	caught	at	compile
time.

Review	the	templated	version	of	pow_n(),	and	let's	say,	we	want	to	prevent	it	from
being	called	with	negative	exponents	(the	n	value).

To	prevent	this	in	the	runtime	version,	where	n	is	a	regular	argument,	we	add	a
regular	 runtime	 assertion.	Now,	 if	 the	 function	 is	 called	with	 a	 negative	 value
for	n,	the	program	will	break:

template	<typename	T>	

auto	pow_n(const	T&	v,	int	n)	{	

		assert(n	>=	0);	//	Only	works	for	positive	numbers	

		auto	product	=	T{1};	

		for(int	i	=	0;	i	<	n;	++i)	{

				product	*=	v;	

		}

		return	product;	

}	

Using	 static_assert	 to	 trigger
errors	at	compile	time
If	 we	 do	 the	 same	 to	 the	 template	 version,	 we	 can	 utilize	 static_assert().	 The
static_assert()	 declaration,	 unlike	 a	 regular	 assert,	will	 refuse	 to	 compile	 if	 the
condition	isn't	fulfilled.	So,	it's	better	to	break	the	build	than	to	break	at	runtime.
In	 the	 following	 example,	 if	 the	 template	 parameter	 N	 is	 a	 negative	 number,
static_assert()	will	prevent	the	function	from	compiling:

template	<typename	T,	int	N>	

auto	const_pow_n(const	T&	v)	{	

		static_assert(N	>=	0,	"N	must	be	positive");	

		auto	product	=	T{1};	

		for(int	i	=	0;	i	<	N;	++i)	{	

				product	*=	v;	

		}	

		return	product;	

}	

auto	x	=	const_pow_n<5>(2);	//	Compiles,	N	is	positive

auto	y	=	const_pow_n<-1>(2);	//	Does	not	compile,	N	is	negative

In	other	words,	with	regular	variables,	the	compiler	is	only	aware	of	the	type	and
has	no	idea	what	it	contains.	With	compile-time	values,	the	compiler	knows	both
the	type	and	the	value.	This	allows	the	compiler	to	calculate	other	compile-time
values.

Type	traits
When	 doing	 template	 metaprogramming,	 you	 may	 often	 find	 yourself	 in
situations	where	you	need	 information	about	 the	 types	you	are	dealing	with	 at
compile	time.	Since	the	result	of	metaprogramming	is	the	generated	C++	code,
the	generated	C++	code	needs	to	be	correct.	This	is,	of	course,	never	the	case	for
traditional	functions,	as	they	only	deal	with	specified	types.

Type	trait	categories
There	are	two	categories	of	type	traits:

Type	 traits	 that	 return	 information	about	a	 type	as	a	boolean	or	an	 integer
value
Type	traits	that	return	a	new	type

The	first	category	returns	true	or	false	depending	on	 the	 input	and	ends	with	_v
(short	for	value).

The	 _v	 postfix	 has	 been	 added	 in	 C++17.	 If	 your	 STL
implementation	 does	 not	 provide	 _v	 postfixes	 for	 type	 traits,	 then
you	can	use	the	older	version,	std::is_floating_point<float>::value.	 In
other	words,	remove	the	_v	extension	and	add	::value	at	the	end.

Here	are	some	examples	of	compile-time	type	checking	using	type	traits:	

auto	same_type	=	std::is_same_v<uint8_t,	unsigned	char>;	

auto	flt	=	0.3f;	

auto	is_float_or_double	=	std::is_floating_point_v<decltype(flt)>;	

class	Parent	{};	

class	Child	:	public	Parent	{};	

class	Infant	{};	

static_assert(std::is_base_of_v<Child,	Parent>,	"");	

static_assert(!std::is_base_of_v<Infant,	Parent>,	"");	

The	second	category	returns	a	new	type	and	ends	with	_t	(short	for	type):

//	Examples	of	type	traits	which	transforms	types

using	value_type	=	std::remove_pointer_t<int*>;	//	value_type	is	an	"int"	

using	ptr_type	=	std::add_pointer_t<float>;	//	ptr_type	is	a"float*"	

Using	type	traits
In	 order	 to	 extract	 information	 about	 template	 types,	 the	 STL	 provides	 a	 type
traits	library,	available	in	the	<type_traits>	header.	All	type	traits	are	evaluated	at
compile	time.	For	example,	this	function,	which	returns	1	if	the	value	is	zero	or
above	 and	 -1,	 otherwise,	 can	 immediately	 return	 1	 for	 unsigned	 integers	 as
follows:

template	<typename	T>	

auto	sign_func(const	T&	v)	->	int	{	

		if	(std::is_unsigned_v<T>)	{	

				return	1;	

		}	

		return	v	<	0	?	-1	:	1;	

}	

As	 they	 are	 evaluated	 at	 compile	 time,	 the	 compiler	 will	 generate	 codes	 as
shown	in	the	following	table	when	invoked	with	an	unsigned	and	signed	integer,
respectively:

Used	with	an	unsigned	integer... ...generated	function:

auto	unsigned_v	=	uint32_t{32};	

auto	sign=sign_func(unsigned_v);	 int	sign_func(const	uint32_t&	v){	

		if	(true)	{	

				return	1;	

		}	

		return	v	<	0	?	-1	:	1;	

}	

Used	with	a	signed	integer... ...generated	function:

auto	unsigned_v=int32_t{32};	

auto	sign=sign_func(unsigned_v); int	sign_func(const	int32_t&	v){

		if	(false)	{	

				return	1;	

		}	

		return	v	<	0	?	-1	:	1;	

}	

Receiving	 the	 type	 of	 a	 variable
with	decltype
The	decltype	keyword	is	used	to	retrieve	the	type	of	a	variable	and	is	used	when
an	explicit	type	name	is	not	available.

Sometimes,	 an	 explicit	 type	 name	 is	 not	 available,	 only	 the	 variable	 name	 is
available.	For	 example,	polymorphic	 lambda	 functions	 (lambdas	with	 auto	 as	 a
parameter)	do	not	name	the	type	(as	opposed	to	templated	functions,	where	the
type	name	has	its	own	parameter):

Regular	template	function Lambda	function

Here,	the	type	of	v	is	visible	as	T:

template	<typename	T>		

auto	square_func(const	T&	v){

		return	v	*	v;	

}	

																																									

Here,	 the	 type	 of	 v	 is	 not	 visible,	 as	 it	 is
only	denoted	as	auto:

auto	square_func_lbd=[](auto	v){

		return	v	*	v;	

};	

Take	 the	 previous	 sign	 function;	 if	 we	 would	 like	 to	 rewrite	 it	 as	 a	 lambda
function,	we	would	have	to	extract	the	type	of	the	variable	via	decltype.

Be	aware,	though,	that	there	is	a	glitch	here.	The	variable	v	is	actually	a	reference
and,	therefore,	we	have	to	get	the	referenced-to	type.	This	is	achieved	by	using
the	 type	 trait,	 std::remove_reference_t,	 which	 returns	 a	 type	 with	 the	 reference
attribute	removed,	as	follows:

auto	sign_func	=	[](const	auto&	v)	->	int	{	

		using	ReferenceType	=	decltype(v);	

		using	ValueType	=	std::remove_reference_t<ReferenceType>;	

		if	(std::is_unsigned_v<ValueType>)	{	

				return	1;	

		}	

		return	v	<	0	?	-1	:	1;	

};	

The	decltype	 keyword	 not	 only	 retrieves	 the	 type	 of	 a	 variable	 but	 can	 also	 be
used	on	an	expression	in	order	to	retrieve	the	type	the	expression	returns.

This	 example	 takes	 any	 range	 or	 container	 and	 converts	 it	 to	 a	 vector.	 To
determine	 the	 type	of	 the	values	 in	 the	vector,	 the	 type	 returned	by	 the	 begin()
function	of	the	container	is	utilized:

template	<typename	Range>	

auto	to_vector(const	Range&	r)	{	

		using	IteratorType	=	decltype(r.begin());	

		using	ReferenceType	=	decltype(*IteratorType());	

		using	ValueType	=	std::decay_t<ReferenceType>;	

		return	std::vector<ValueType>(r.begin(),	r.end());	

}	

Conditionally	 enable	 functions
based	 on	 types	 with
std::enable_if_t
The	std::enable_if_t	type	trait	is	used	for	function	overloading	when	dealing	with
a	template	function.	While	regular	function	overloading	requires	you	to	overload
a	 function	 for	 every	 type	 you	 intend	 to	 use	 it	 with,	 std::enable_if_t	 uses	 a
compile-time	predicate	for	overloading.

Let's	 say	 we'd	 like	 to	 create	 an	 interpolate	 function,	 which	 mixes	 two	 values
weighted	by	a	power	parameter	from	zero	to	one:

Illustration	of	interpolation	function

As	the	power	must	be	a	decimal	number,	the	function	only	works	with	floats	and
doubles.
Using	 regular	 function	 overloading,	 we	 have	 to	 create	 two	 functions,	 one	 for
floats	and	one	for	doubles:

auto	interpolate(float	left,	float	right,	float	power)	{	

		return	left	*	(1	-	power)	+	right	*	power;	

}	

auto	interpolate(double	left,	double	right,	double	power)	{	

		return	left	*	(1	-	power)	+	right	*	power;	

}	

If	we	template	this	function,	we	need	to	disallow	its	use	for	integers,	as	integers
cannot	 hold	 decimal	 numbers.	 In	 order	 to	 prevent	 the	 user	 from	 accidentally
calling	 the	 function	 with	 an	 integer	 type,	 std::enable_if_t	 is	 used	 to	 make	 the
function	 visible	 only	 when	 a	 certain	 condition	 is	 fulfilled.	 In	 this	 case,	 the
condition	is	that	it	is	used	with	a	floating	point	type.

The	syntax	for	std::enable_if_t	may	seem	a	bit	odd,	but	its	syntax	is	as	follows:

It	is	used	as	a	return	type
The	first	templated	parameter	is	the	condition
The	second	parameter	is	the	returned	value	if	the	condition	is	fulfilled

As	seen	in	the	following	code	snippet,	std::enable_if_t	is	used	as	the	return	value
of	the	function	that	it	is	intended	to	enable:

template	<typename	T>	

auto	interpolate(T	left,	T	right,	T	power)	

->	std::enable_if_t<std::is_floating_point_v<T>,	T>	{	

		return	left	*	(1	-	power)	+	right	*	power;	

}	

If	 this	 function	 is	 called	 with	 a	 non-floating	 point	 type,	 the	 code	 will	 not
compile,	as	the	function	only	exists	for	floating	points.

The	 preceding	 interpolation	 code	 can	 be	 implemented	 with	 only
one	multiplication,	thereby	achieving	a	slightly	better	performance,
as	follows:
auto	interpolated	=	left	+(right-left)	*	power;

The	one	used	in	the	examples	is	just	for	better	readability.

Introspecting	class	members	with
std::is_detected

At	the	time	of	writing	this	book,	std::is_detected	is	currently	located
in	 the	 standard	 library	 extensions,	 but	 we	 think	 it	 is	 far	 too
important	to	ignore	in	this	chapter.	If	you	are	using	GCC	or	Clang,
it's	 currently	 located	 in	 <experimental/type_traits>	 and	 exists	 in	 the
std::experimental	namespace.	

The	is_detected	type	trait	is	used	to	detect	if	a	class	contains	a	particular	member.
Let's	 take	 a	 look	 at	 how	 it	 is	 used	 to	 detect	 whether	 a	 class	 has	 a	 particular
member	 function	 by	 name.	 If	 the	 member	 function	 exists,	 the	 value	 of	 the
returned	type	is	true;	otherwise,	it's	false.

Here	are	two	completely	different	classes:

struct	Octopus	{	

		auto	mess_with_arms()	{}	

};	

struct	Whale	{	

		auto	blow_a_fountain()	{}	

};	

Using	std::is_detected,	we	can	ask	the	compiler	what	operations	are	achievable	on
the	class,	as	follows:

#include	<experimental/type_traits>	

template	<typename	T>	

using	can_mess_with_arms	=	decltype(&T::mess_with_arms);	

template	<typename	T>	

using	can_blow_a_fountain	=	decltype(&T::blow_a_fountain);	

	

auto	fish_tester()	{	

		namespace	exp	=	std::experimental;	

		//	Octopus	

		static_assert(exp::is_detected<can_mess_with_arms,	Octopus>::value,	"");	

		static_assert(!exp::is_detected<can_blow_a_fountain,	Octopus>::value,"");	

	

		//	Whale	

		static_assert(!exp::is_detected<can_mess_with_arms,	Whale>::value,	"");	

		static_assert(exp::is_detected<can_blow_a_fountain,	Whale>::value,	"");	

}

As	you	can	see	in	the	example,	we	have	to	declare	typedef	to	the	member	function

we	 are	 detecting.	 The	 reason	 for	 this	 is	 that	 is_detected	 technically	 looks	 for	 a
compile-time	error,	but	instead	of	failing	when	the	function	being	searched	for	is
missing,	it	simply	returns	false.	This	means	that	is_detected	can	not	only	check	for
member	functions	but	can	also	check	for	member	typedefs	or	member	variables.
Here	is	how	we	would	perform	these	checks:

struct	Shark	{	using	fin_type	=	float;	};	

struct	Eel	{	int	electricity_{};	};	

	

template	<typename	T>	using	has_fin_type	=	typename	T::fin_type;

template	<typename	T>	using	has_electricity	=	decltype(T::electricity_);	

	

auto	shark_and_shrimp_tester()	{	

		namespace	exp	=	std::experimental;	

		//	The	shark	has	a	fin	type	but	no	electricity	

		static_assert(exp::is_detected<has_fin_type,	Shark>::value,	"");	

		static_assert(!exp::is_detected<has_electricity	,	Shark>::value,	"");	

		//	The	eel	has	electricity	but	no	fins	

		static_assert(exp::is_detected<has_electricity	,	Eel>::value,	"");

		static_assert(!exp::is_detected<has_fin_type,	Eel>::value,	"");	

}

Usage	 example	 of	 is_detected
and	enable_if_t	combined
As	is_detected::value	is	a	compile-time	Boolean,	is_detected	can	be	combined	with
enable_if_t	 to	 enable	 a	 certain	 function	 for	 classes	 that	 contain	 a	 particular
member	function.

For	example,	we	can	implement	a	generic	print	function	that	can	print	both	the
to_string()	method	and	the	name_	member	variable,	depending	on	what	the	printed
class	has	implemented:

namespace	exp	=	std::experimental;

template<typename	T>	using	has_to_string	=	decltype(&T::to_string);

template<typename	T>	using	has_name_member	=	decltype(T::name_);

//	Print	the	to_string()	function	if	it	exists	in	class

template	<

	typename	T,

	bool	HasToString	=	exp::is_detected<has_to_string,T>::value,

	bool	HasNameMember	=	exp::is_detected<has_name_member,T>::value

>

auto	print(const	T&	v)	

->	std::enable_if_t<HasToString	&&	!HasNameMember>	{

		std::cout	<<	v.to_string()	<<	'\n';

}

//	Print	the	name_	member	variable	if	it	exists	in	class

template	<

	typename	T,

	bool	HasToString	=	exp::is_detected<has_to_string,	T>::value,

	bool	HasNameMember	=	exp::is_detected<has_name_member,	T>::value

>

auto	print(const	T&	v)	

->	std::enable_if_t<HasNameMember	&&	!HasToString>	{

		std::cout	<<	v.name_	<<	'\n';

}

Test	the	methods	with	two	classes,	where	one	contains	a	to_string()	method	and
the	other	one	contains	a	name_	member	variable:

struct	Squid	{		

		auto	to_string()	const	{	return	std::string{"Steve	the	Squid"};	}		

};	

struct	Salmon	{		

		Salmon()	:	name_{"Jeff	the	Salmon"}	{}	

		std::string	name_{};	

};	

	

auto	fish_printer()	{	

		print(Squid{});	//	Prints	"Steve	the	Squid"	

		print(Salmon{});	//	Prints	"Jeff	the	Salmon"	

}	

The	constexpr	keyword
The	constexpr	keyword	tells	the	compiler	that	a	certain	function	is	intended	to	be
evaluated	 at	 compile	 time	 if	 all	 the	 conditions	 allowing	 for	 compile-time
evaluation	 are	 fulfilled.	 Otherwise,	 it	 will	 execute	 at	 runtime,	 like	 a	 regular
function.

A	constexpr	function	has	a	few	restrictions;	it	is	not	allowed	to	do	the	following:

Allocate	memory	on	the	heap
Throw	exceptions
Handle	local	static	variables
Handle	thread_local	variables
Call	any	function,	which,	in	itself,	is	not	a	constexpr.

Back	in	C++11,	constexpr	functions	were	only	allowed	to	contain	a
single	 return	 statement,	 requiring	 the	 programmer	 to	 resort	 to
recursion	 for	 more	 advanced	 constexpr	 functions;	 however,	 in
C++14	 this	 restriction	 has	 been	 removed.	 The	 constexpr	 functions
may	 now	 contain	 several	 statements,	 declare	 variables,	 and	 even
mutate	variables.

With	 the	 constexpr	 keyword,	 writing	 a	 compile-time	 evaluated	 function	 is	 as
easy	 as	 writing	 a	 regular	 function,	 as	 its	 parameters	 are	 regular	 parameters
instead	of	template	parameters.

Consider	the	following	constexpr	function:

constexpr	auto	sum(int	x,	int	y,	int	z)	{	return	x	+	y	+	z;	}	

Let's	call	the	function	like	this:

const	auto	value	=	sum(3,	4,	5);	

In	this	case,	the	compiler	will	generate	the	following	regular	C++	code:

const	auto	value	=	12;	

This	 is	 then	 compiled	 to	machine	 code	 as	 usual.	 In	 other	words,	 the	 compiler
evaluates	a	constexpr	function	and	generates	regular	C++	code	where	the	result	is
calculated.

Constexpr	 functions	 in	 a	 runtime
context
In	 the	 previous	 example,	 the	 summed	 values,	 (3,	 4,	 5),	 were	 known	 to	 the
compiler	at	compile	time,	but	how	do	constexpr	functions	handle	variables	whose
values	 are	 not	 known	 until	 runtime?	 As	 mentioned	 in	 the	 previous	 section,
constexpr	 is	 an	 indicator	 to	 the	 compiler	 that	 a	 function,	 under	 certain
conditions,	can	be	evaluated	at	compile	time.	If	variables	with	values	unknown
till	runtime	are	invoked,	they	will	be	evaluated	just	like	regular	functions.

In	the	following	example,	the	values	of	x,	y,	and	z	are	provided	from	the	user	at
runtime,	and	therefore,	it	would	be	impossible	for	the	compiler	to	calculate	the
sum	at	compile	time:

int	x,	y,	z;	

std::cin	>>	x	>>	y	>>	z;	//	Get	user	input

auto	value	=	sum(x,	y,	z);

Verify	 compile-time	 computation
using	std::integral_constant
To	 verify	 that	 constexpr	 is	 evaluated	 at	 compile	 time,	 you	 can
use	std::integral_constant.	The	 integral	 constant	 is	 a	 template	 class	 that	 takes	 an
integer	 type	 and	 an	 integer	 value	 as	 template	 parameters.	 From	 these,	 it
generates	a	new	class	representing	a	number.	If	the	compiler	cannot	evaluate	the
integer	value	 at	 compile	 time,	 it	won't	 compile.	The	 value	 of	 the	 class	 is	 then
accessed	via	the	static	field	value	of	std::integral_constant.

Here	 is	 an	 example	 of	 compile-time	 integral	 values	 versus	 runtime	 integral
values:

const	auto	ksum	=	std::integral_constant<int,	sum(1,2,3)>;	

	

auto	func()	->	void	{	

		//	This	compiles	as	the	value	of	sum	is	evaluated	at	compile	time	

		const	auto	sum_compile_time	=	std::integral_constant<int,sum(1,2,3)>;	

		int	x,	y,	z;	

		std::cin	>>	x	>>	y	>>	z;	

		//	Line	below	will	not	compile,	the	compiler	cannot	determine	which	value	

		//	the	integral	constant	has	at	compile	time	

		const	auto	sum_runtime	=	std::integral_constant<int,	sum(x,	y,	z)>;	

}	

The	if	constexpr	statement
The	if	constexpr	statement	allows	template	functions	to	evaluate	different	scopes
in	the	same	function	at	compile	time	(also	called	compile-time	polymorphism).
Take	 a	 look	 at	 the	 following	 example,	 where	 a	 template	 function
called	speak()	tries	to	differentiate	member	functions	depending	on	the	type:

struct	Bear	{	auto	roar()	const	{	std::cout	<<	"roar";	}	};	

struct	Duck	{	auto	quack()	const	{	std::cout	<<	"quack";	}	};	

	

template	<typename	Animal>	

auto	speak(const	Animal&	a)	{	

		if	(std::is_same_v<Animal,	Bear>)	{	a.roar();	}	

		else	if	(std::is_same_v<Animal,	Duck>)	{	a.quack();	}	

}	

Let's	say,	we	compile	the	following	lines:

auto	bear	=	Bear{};

speak(bear);

The	compiler	will	then	generate	a	speak()	function	similar	to	this:

auto	speak(const	Bear&	a)	{

		if	(true)	{	a.roar();	}

		else	if	(false)	{	a.quack();	}	//	This	line	will	not	compile

}

As	you	can	see,	the	compiler	will	keep	the	call	to	the	member	function,	quack(),
which	 will	 then	 fail	 to	 compile,	 as	 Bear	 does	 not	 contain	 a	 quack()	 member
function.	This	 happens	 even	 though	 the	 quack()	member	 function	will	 never	be
executed	due	to	the	else	if	(false)	statement.

In	order	to	make	the	speak()	function	compile	regardless	of	the	type,	we	need	to
inform	it	that	we'd	like	to	completely	ignore	the	scope	for	which	the	if	statement
is	false.	Conveniently,	this	is	exactly	what	if	constexpr	does.

Here	is	how	we	can	write	the	speak()	function	with	the	ability	to	handle	both	Bear
and	Duck,	even	though	they	do	not	have	share	a	common	interface:

template	<typename	Animal>	

auto	speak(const	Animal&	a)	{	

		if	constexpr	(std::is_same_v<Animal,	Bear>)	{	a.roar();	}	

		else	if	constexpr	(std::is_same_v<Animal,	Duck>)	{	a.quack();	}	

}

When	speak()	is	invoked	with	Animal	==	Bear...

auto	bear	=	Bear{};

speak(bear);

...the	compiler	generates	the	following	function:

auto	speak(const	Bear&	animal)	{	animal.roar();	}

When	speak()	is	invoked	with	Animal	==	Duck...

auto	duck	=	Duck{};

speak(duck);

...the	compiler	generates	the	following	function:

auto	speak(const	Duck&	animal)	{	animal.quack();	}

If	speak()	is	invoked	with	any	other	primitive	type,	such	as	Animal	==	int...

speak(42);

...the	compiler	generates	an	empty	function:

auto	speak(const	int&	animal)	{}

Unlike	 a	 regular	 if	 statement,	 the	 compiler	 will	 now	 be	 able	 to	 generate	 two
different	functions	when	invoked;	one	where	if	constexpr	is	true	and	another	one
where	it	is	false.	Actually,	it	may	be	able	to	generate	a	third	function;	if	the	Animal
type	is	neither	Bear	nor	Duck,	it	will	just	be	an	empty	function.

Comparison	 with	 runtime
polymorphism
As	a	side	note,	 if	we	were	 to	 implement	 the	previous	example	with	 traditional
runtime	 polymorphism,	 using	 inheritance	 and	 virtual	 functions	 to	 achieve	 the
same	functionality,	the	implementation	would	look	like	the	code	example	below:

struct	AnimalBase	{		

		virtual	~AnimalBase()	{}	

		virtual	auto	speak()	const	->	void	{}

};	

struct	Bear	:	public	AnimalBase	{		

		auto	roar()	const	{	std::cout	<<	"roar";	}	

		auto	speak()	const	override	->	void	{	roar();	}

};	

struct	Duck	:	public	AnimalBase	{	

		auto	quack()	const	{	std::cout	<<	"quack";	}	

		auto	speak()	const	override	->	void	{	quack();	}

};	

auto	speak(const	AnimalBase*	a)	{	

		a->speak();

}	

The	 objects	 have	 to	 be	 accessed	 using	 pointers	 or	 references,	 and	 the	 type	 is
inferred	 at	 runtime,	 which	 results	 in	 a	 performance	 loss	 compared	 with	 the
compile-time	 version,	 where	 everything	 is	 available	 when	 the	 application
executes.

Example	 of	 generic	 modulus
function	using	if	constexpr
This	example	is	similar	to	the	previous	example,	but	this	time	we	will	see	how	to
distinguish	 between	 operators	 and	 global	 functions.	 In	 C++,	 the	 %	 operator	 is
used	 to	 get	 the	modulus	 of	 integers	while	 std::fmod()	 is	 used	 for	 floating	 point
types.	 We'd	 like	 to	 generalize	 our	 code	 base	 and	 create	 a	 generic	 modulus
function	called	generic_mod().

If	we	would	implement	generic_mod()	with	a	regular	if	statement...

template	<typename	T>	

auto	generic_mod(const	T&	v,	const	T&	n)	->	T	{

		assert(n	!=	0);

		if	(std::is_floating_point_v<T>)	{	return	std::fmod(v,	n);	}

		else	{	return	v	%	n;	}

}	

...	 it	 would	 fail	 if	 invoked	 with	 T	 ==	 float	 as	 the	 compiler	 will	 generate	 the
following	function,	which	will	fail	to	compile:

auto	generic_mod(const	float&	v,	const	float&	n)	->	float	{

		assert(n	!=	0);

		if(true)	{	return	std::fmod(v,	n);	}

		else	{	return	v	%	n;	}	//	Will	not	compile

}	

Even	 though	 the	 application	 cannot	 reach	 it,	 the	 compiler	 will	 generate	 the
line	return	v	%	n;	,	which	isn't	compliant	with	float.	The	compiler	doesn't	care	that
the	application	cannot	 reach	 it,	as	 it	cannot	generate	an	assembly	 for	 it,	 it	will
fail	to	compile.

As	 in	 the	 previous	 example,	 we	 change	 the	 if	 statement	 to	 a	 if	 constexpr

statement:

template	<typename	T>	

auto	generic_mod(const	T&	v,	const	T&	n)	->	T	{	

		assert(n	!=	0);

		if	constexpr	(std::is_floating_point_v<T>)	return	std::fmod(v,	n);

		else	return	v	%	n;	//	If	T	is	a	floating	point,	this	line	is	eradicated

}

Now,	when	the	function	is	invoked	with	a	floating	point	type,	it	will	generate	the
following	function	where	the	v	%	n	operation	is	eradicated:

auto	generic_mod(const	float&	v,	const	float&	n)	->	float	{	

		assert(n	!=	0);

		return	std::fmod(v,	n);	

}

Heterogeneous	containers
Heterogenous	 containers,	 as	 opposed	 to	 regular	 homogenous	 containers,	 are
containers	containing	different	types;	that	is,	in	homogenous	containers,	such	as
std::vector,	 std::list,	 std::set,	 and	 so	 on,	 every	 element	 is	 of	 the	 same	 type.	 A
heterogeneous	container	is	a	container	where	elements	may	have	different	types.

Static-sized	 heterogenous
containers
C++	 comes	 with	 two	 heterogeneous	 containers,	 std::pair	 and	 std::tuple.	 As
std::pair	 is	 a	 subset	 of	 std::tuple	 with	 only	 two	 elements,	 we	 will	 only	 focus
on	std::tuple.

The	std::tuple	container
The	std::tuple	is	a	statically	sized	heterogeneous	container	that	can	be	declared	to
be	of	any	size.	 In	contrast	 to	std::vector,	 for	example,	 its	 size	cannot	change	at
runtime;	you	cannot	add	or	remove	elements.

A	tuple	is	constructed	with	its	member	types	explicitly	declared	like	this:

auto	tuple0	=	std::tuple<int,	std::string,	bool>{};	

This	will	make	the	compiler	generate	a	class	which	can	roughly	be	viewed	like
this:

class	Tuple	{	

public:	

		int	data0_{};

		std::string	data1_{};	

		bool	data2_{};

};	

As	 with	 many	 other	 classes	 in	 C++,	 std::tuple	 also	 has	 a	 corresponding
std::make_tuple	 function,	 which	 deduces	 the	 types	 automatically	 from	 the
parameters:

auto	tuple	=	std::make_tuple(42,	std::string{"hi"},	true);

As	you	can	see,	using	std::make_tuple,	we	can	make	the	code	a	bit	more	readable
(as	stated	earlier,	from	C++17	and	onward,	many	of	these	std::make_	functions	are
superfluous,	since	C++17	classes	can	deduce	these	types	from	the	constructor).

Accessing	the	members	of	a	tuple
The	 individual	 elements	 of	 std::tuple	 can	 be	 accessed	 using	 the	 global
function,	 std::get<Index>(tuple).	 You	 may	 wonder	 why	 the	 members	 can't	 be
accessed	like	a	regular	container	with	the	at(size_t	index)	member	function.	The
reason	is	that	a	member	function	such	as	at()	is	only	allowed	to	return	one	type,
whereas	 a	 tuple	 consists	 of	 different	 types	 at	 different	 indices.	 Instead,	 the
templated	global	function	std::get	is	used	with	the	index	as	a	template	parameter:

auto	number	=	std::get<0>(tuple);	

auto	str	=	std::get<1>(tuple);	

auto	boolean	=	std::get<2>(tuple);	

We	can	imagine	the	std::get()	function	being	implemented	roughly	like	this:

template	<size_t	Index,	typename	Tuple>	

auto&	get(const	Tuple&	tpl)	{	

		if	constexpr(Index	==	0)	{	return	tpl.data0_;	}

		else	if	constexpr(Index	==	1)	{	return	tpl.data1_;	}	

}	

This	means	that	when	we	create	and	access	a	tuple	like	this:

auto	tuple	=	std::make_tuple(42,	true);	

auto	value	=	std::get<0>(tuple);	

The	compiler	roughly	generates	the	following	code:

//	"make_tuple"	and	the	Tuple	class	is	generated	first...

class	Tuple	{	

		int	data0_{};	

		bool	data1_{};	

};	

auto	make_tuple(int	v0,	bool	v1)	{	return	Tuple{v0,	v1};	}	

	

//	get<0>(Tuple)	is	then	generated	to	something	like	this...

auto&	get(const	Tuple&	tpl)	{	return	idata_0;	}

		

//	The	generated	function	is	then	utilized

auto	tuple	=	make_tuple(42,	true);	

auto	value	=	get(tuple);	

Note	that	this	example	can	merely	be	thought	of	as	a	simplistic	way	to	imagine
what	 the	 compiler	 generates	 when	 constructing	 std::tuple;	 the	 interior	 of
std::tuple	 is	 very	 complex.	Still,	 it	 is	 important	 to	 understand	 that	 an	 std::tuple
class	is	basically	a	simple	struct	whose	members	can	be	accessed	by	a	compile-

time	index.

The	std::get	function	can	also	use	the	typename	as	parameter.	It	is
then	used	like	this:
auto	number	=	std::get<int>(tuple);

auto	str	=	std::get<std::string>(tuple);

This	 is	only	possible	 if	 the	specified	 type	 is	contained	once	 in	 the
tuple.

Iterating	std::tuple
From	a	programmer's	perspective	it	may	seem	that	std::tuple	can	be	iterated	with
a	regular	range-based	for	loop,	just	like	any	other	container,	as	follows:

auto	tpl	=	std::make_tuple(1,	true,	std::string{"Jedi"});	

for(const	auto&	v:	tpl)	{	std::cout	<<	v	<<	"	";	}	

To	be	honest,	I	also	think	that	most	C++	programmers	(including	myself)	have
tried	something	 like	 this	at	some	point	only	 to	notice	 that	 it	 isn't	possible.	The
reason	it	 is	not	possible	 is	 that	 the	 type	of	const	auto&	v	 is	only	evaluated	once,
and	since	std::tuple	 contains	 elements	of	different	 types,	 this	 code	 simply	does
not	compile.

The	same	goes	for	regular	algorithms,	as	iterators	don't	mutate	the	type	pointed
to;	therefore,	std::tuple	does	not	provide	a	begin()	or	end()	member	function.

Unrolling	the	tuple
As	 tuples	 cannot	 be	 iterated	 as	 usual,	 what	 we	 need	 to	 do	 is	 to
use	metaprogramming	to	unroll	 the	 loop.	From	the	previous	example,	we	want
the	compiler	to	generate	something	like	this:

auto	tpl	=	std::make_tuple(1,	true,	std::string{"Jedi"});	

std::cout	<<	std::get<0>(tpl)	<<	"	";	

std::cout	<<	std::get<1>(tpl)	<<	"	";	

std::cout	<<	std::get<2>(tpl)	<<	"	";	

//	Prints	"1	true	Jedi"	

As	you	can	see,	we	iterate	every	index	of	the	tuple,	and	therefore,	we	need	the
number	 of	 types/values	 contained	 in	 the	 tuple.	 Then,	 as	 the	 tuple	 contains
different	 types,	we	need	 to	write	 a	metafunction	 that	 generates	 a	new	 function
for	every	type	in	the	tuple.

If	we	start	with	a	function	that	generates	the	call	for	a	specific	index,	it	will	look
like	this:

template	<size_t	Index,	typename	Tuple,	typename	Functor>	

auto	tuple_at(const	Tuple&	tpl,	const	Functor&	func)	->	void	{

		const	auto&	v	=	std::get<Index>(tpl);

		func(v);

}

We	can	then	combine	it	with	a	polymorphic	lambda,	as	you	learned	in	Chapter	2,
Modern	C++	Concepts:

auto	tpl	=	std::make_tuple(1,	true,	std:.string{"Jedi"});	

auto	func	=	[](const	auto&	v){	std::cout	<<	v	<<	"	";	};	

tuple_at<0>(tpl,	func);

tuple_at<1>(tpl,	func);

tuple_at<2>(tpl,	func);

//	Prints	"1	true	Jedi"	

With	the	function	tuple_at()	in	place,	we	can	then	move	on	to	the	actual	iteration.
The	first	 thing	we	need	 is	 the	number	of	values	 in	 the	 tuple	as	a	compile-time
constant.	 Fortunately,	 this	 value	 can	 be	 obtained	 by	 the	 type
trait,	std::tuple_size_v<Tuple>.	Using	if	constexpr,	we	can	 then	unfold	 the	 iteration
by	creating	a	similar	function,	but	which	takes	different	actions	depending	on	the
index:

1.	 If	the	index	is	equal	to	the	tuple	size,	it	generates	an	empty	function
2.	 Otherwise,	it	executes	the	lambda	at	the	passed	index	and	generates	a	new

function	with	1	added	to	the	index.

This	is	how	the	code	will	look:

template	<typename	Tuple,	typename	Functor,	size_t	Index	=	0>

auto	tuple_for_each(const	Tuple&	tpl,	const	Functor&	f)	->	void	{

		constexpr	auto	tuple_size	=	std::tuple_size_v<Tuple>;

		if	constexpr(Index	<	tuple_size)	{

				tuple_at<Index>(tpl,	f);

				tuple_for_each<Tuple,	Functor,	Index+1>(tpl,	f);

		}

}

As	you	can	see,	the	default	index	is	set	to	zero	so	that	we	don't	have	to	specify	it
when	iterating.	This	tuple_for_each()	function	can	then	be	called	like	this,	with	the
lambda	directly	in	place:

auto	tpl	=	std::make_tuple(1,	true,	std:.string{"Jedi"});	

tuple_for_each(tpl,	[](const	auto&	v){	std::cout	<<	v	<<	"	";	});	

//	Prints	"1	true	Jedi"	

Quite	nice;	syntactically,	it	looks	pretty	similar	to	the	std::for_each()	algorithm.

Implementing	 other	 algorithms
for	tuples
Expanding	 upon	 tuple_for_each(),	 different	 algorithms	 iterating	 a	 tuple	 can	 be
implemented	in	a	similar	manner.	Here	is	an	example	of	how	any_of()	for	tuples	is
implemented:

template	<typename	Tuple,	typename	Functor,	size_t	Index	=	0>	

auto	tuple_any_of(const	Tuple&	tpl,	const	Functor&	f)	->	bool	{	

		constexpr	auto	tuple_size	=	std::tuple_size_v<Tuple>;	

		if	constexpr(Index	<	tuple_size)	{	

				bool	success	=	f(std::get<Index>(tpl));	

				return	success	?	

						true:	

						tuple_any_of<Tuple,	Functor,	Index+1>(tpl,	f);	

		}	else	{	

				return	false;	

		}	

}	

It	can	then	be	used	like	this:

auto	tuple	=	std::make_tuple(42,	43.0f,	44.0);	

auto	has_44	=	tuple_any_of(tuple,	[](auto	v){	return	v	==	44;	});	

The	 tuple_any_of	 tuple	 iterates	 through	 every	 type	 in	 the	 tuple	 and	 generates	 a
lambda	 function	 for	 the	 element	 at	 the	 current	 index,	 which	 it	 then	 compares
with	44.	In	this	case,	has_44	will	evaluate	to	true,	as	the	last	element,	a	double	value,
is	 44.	 If	 we	 add	 an	 element	 of	 a	 type	 that	 is	 not	 comparable	 with	 44,	 such
as	std::string,	we	will	get	a	compilation	error.

Accessing	tuple	elements
Prior	 to	 C++17,	 there	 were	 two	 standard	 ways	 of	 accessing	 elements	 of	 a
std::tuple:

For	 accessing	 single	 elements,	 	 the	 static	 function	 std::get<N>(tuple)	 was
used.
For	accessing	multiple	elements,	the	static	function	std::tie()	was	used.

Although	 they	both	worked,	 the	 syntax	was	 for	performing	such	a	 simple	 task
was	very	verbose,	as	shown	in	the	following	example:

//	Prerequisite

auto	make_bond()	{	return	std::make_tuple(std::string{"James"},	7,	true)	}	

	

//	Using	std::get<N>	

auto	tpl	=	make_bond();	

auto	name	=	std::get<0>(tpl);	

auto	id	=	std::get<1>(tpl);	

auto	kill_license	=	std::get<2>(tpl);	

std::cout	<<	name	<<	",	"	<<	id	<<	",	"	<<	kill_license	<<	'\n';	

//	Output:	James,	7,	true	

	

//	Using	std::tie	

auto	name	=	std::string{};	

auto	id	=	int{};	

auto	kill_license	=	bool{};	

std::tie(name,	agent_id,	kill_license)	=	make_bond();	

std::cout	<<	name	<<	",	"	<<	id	<<	",	"	<<	kill_license	<<	'\n';	

//	Output:	James,	7,	true	

Structured	bindings
In	order	to	being	able	to	perform	this	common	task	elegantly,	structured	bindings
were	introduced	in	C++17.	Using	structured	bindings,	multiple	variables	can	be
initialized	 at	 once	 using	 auto	 and	 a	 bracket	 initializer	 list.	 As	 with	 the	 auto
keyword	in	general,	you	can	apply	control	over	whether	the	variables	should	be
mutable	references,	forward	references,	const	references,	or	values	by	using	the
corresponding	modifier.	In	the	following	example	a	structured	binding	of	const
references	is	constructed:

const	auto&	[name,	id,	kill_license]	=	make_bond();	

std::cout	<<	name	<<	",	"	<<	id	<<	",	"	<<	kill_license	<<	'\n';	

//	Output:	James,	7,	true	

Structured	bindings	can	also	be	used	to	extract	the	individual	members	of	a	tuple
in	a	for	loop,	as	follows:

auto	agents	=	{	

		std::make_tuple("James",	7,	true),	

		std::make_tuple("Nikita",	108,	false)	

};

for(auto&&	[name,	id,	kill_license]:	agents)	{	

			std::cout	<<	name	<<	",	"	<<	id	<<	",	"	<<	kill_license	<<	'\n';	

}	

	

//	Output	

James,	7,	true	

Nikita,	108,	false	

Here's	 a	 quick	 hint.	 If	 you	 want	 to	 return	 multiple	 arguments	 with	 named
variables	instead	of	tuple	indices,	it	is	possible	to	return	a	struct	defined	inside	a
function	and	use	automatic	return	type	deduction:

auto	make_bond()	{

		struct	Agent{std::string	name_;	int	id_;	bool	kill_license_;}

		return	Agent{"James",	7,	true};	

}	

auto	b	=	make_bond();	

std::cout		

		<<	b.name_	<<	",	"		

		<<	b.id_	<<	",	"		

		<<	b.kill_license_	<<	'\n';	

The	 variadic	 template	 parameter
pack
The	variadic	template	parameter	packs	enables	programmers	to	create	template
functions	that	can	accept	any	number	of	arguments.

An	 example	 of	 a	 function	 with
variadic	number	of	arguments
If	 we	 were	 to	 create	 a	 function	 that	 makes	 a	 string	 out	 of	 any	 number	 of
arguments	without	variadic	template	parameter	packs,	we	would	have	to	create	a
separate	function	for	every	number	of	arguments:

//	Makes	a	string	of	by	one	argument

template	<typename	T0>	

auto	make_string(const	T0&	v0)	->	std::string	{	

		auto	sstr	=	std::ostringstream{};	

		sstr	<<	v0;	

		return	sstr.str();	

}	

//	Makes	a	string	of	by	two	arguments	

template	<typename	T0,	typename	T1>	

auto	make_string(const	T0&	v0,	const	T1&	v1)	->	std::string	{	

			return	make_string(v0)	+	"	"	+	make_string(v1);	

}	

//	Makes	a	string	of	by	three	arguments	

template	<typename	T0,	typename	T1,	typename	T2>	

auto	make_string(const	T0&	v0,	const	T1&	v1,	const	T2&	v2)	->	std::string	{	

		return	make_string(v0,	v1)	+	"	"	+	make_string(v2);	

}	

//	...	and	so	on	for	as	many	parameters	we	might	need	

This	is	the	intended	use	of	our	function:

auto	str0	=	make_string(42);	

auto	str1	=	make_string(42,	"hi");	

auto	str2	=	make_string(42,	"hi",	true);	

If	 we	 require	 a	 large	 number	 of	 arguments,	 this	 becomes	 tedious,	 but	 with	 a
parameter	pack,	we	 can	 implement	 this	 as	 a	 function	 that	 accepts	 an	 arbitrary
number	of	arguments.

How	 to	 construct	 a	 variadic
parameter	pack
The	parameter	pack	is	identified	by	putting	three	dots	in	front	of	the	type	name,
and	 three	dots	 after	 the	variadic	 argument	expands	 the	pack,	with	a	 comma	 in
between:

Here's	the	syntactic	explanation:

Ts	is	a	list	of	types
The	<typename	...Ts&>	function	indicates	that	the	function	deals	with	a	list
The	 values...	 function	 expands	 the	 pack	 such	 that	 a	 comma	 is	 added
between	every	type

To	put	it	into	code,	consider	this	expand_pack	function:

template	<typename	...Ts>	

auto	expand_pack(const	Ts&	...values)	{	

			auto	tuple	=	std::tie(values...);	

}	

Let's	call	the	preceding	function	like	this:

expand_pack(42,	std::string{"hi"});	

In	that	case,	the	compiler	will	generate	a	function	similar	to	this:

auto	expand_pack(const	int&	v0,	const	std::string&	v1)	{	

		auto	tuple	=	std::tie(v0,	v1);	

}	

This	is	what	the	individual	parameter	pack	parts	expand	to:

Expression: Expands	to:

template	<typename...	Ts> template	<typename	T0,	typename	T1>

expand_pack(const	Ts&	...values) expand_pack(const	T0&	v0,	const	T1&	v1)

std::tie(values...) std::tie(v0,	v1)

	

Now,	let's	see	how	we	can	create	a	make_string	function	with	a	variadic	parameter
pack.

Going	further	with	the	initial	make_string	function,	in	order	to	create	a	string	out	of
every	parameter,	we	need	to	iterate	the	pack.	There	is	no	way	to	directly	iterate	a
parameter	pack,	but	a	simple	workaround	would	be	to	make	a	tuple	out	of	it	and,
then,	iterate	it	with	the	tuple_for_each	function,	as	follows:

template	<typename	...Ts>	

auto	make_string(const	Ts&	...values)	{	

		auto	sstr	=	std::ostringstream{};	

		//	Create	a	tuple	of	the	variadic	parameter	pack	

		auto	tuple	=	std::tie(values...);	

		//	Iterate	the	tuple	

		tuple_for_each(tuple,	[&sstr](const	auto&	v){	sstr	<<	v;	});	

		return	sstr.str();	

}	

We	converted	the	parameter	pack	to	a	tuple	with	std::tie()	and,	then,	iterated	it
with	tuple_for_each.

Dynamic-sized	 heterogenous
containers
As	 seen	 in	 the	 preceding	 section,	 std::tuple	 is	 a	 heterogenous	 container	with	 a
fixed	 size	 and	 fixed	 element	 positions,	 more	 or	 less,	 like	 a	 regular	 struct	 but
without	named	member	variables.

How	can	we	expand	upon	 this	 to	 create	 a	 container	with	 a	variable	 size	 (such
as	std::vector,	std::list,	and	so	on)	but	with	the	ability	to	store	different	types?
As	 the	 size	 of	 the	 container	 changes	 at	 runtime,	 we	 cannot	 use	 compile-time
programming	to	generate	code.

Using	 std::any	 as	 the	 base	 for	 a
dynamic-size	 heterogenous
container

Note	that	std::any	was	added	in	C++17;	if	your	compiler	does	not
include	 std::any,	 you	 can	 use	 boost::any	 from	 the	 Boost	 Library
instead.

The	simplest	solution	is	to	use	std::any	as	the	base	type.	The	std::any	object	can
store	any	type	of	value	in	it:

auto	container	=	std::vector<std::any>{42,	"hi",	true};	

It	 has	 some	 drawbacks,	 though;	 every	 time	 a	 value	 in	 it	 is	 accessed,	 the	 type
must	 be	 tested	 for	 at	 runtime.	 In	 other	 words,	 we	 completely	 lose	 the	 type
information	 of	 the	 stored	 value	 at	 compile	 time.	 Rather,	 we	 have	 to	 rely	 on
runtime	type	checks	for	the	information.

If	 we	 would	 like	 to	 iterate	 our	 container,	 we	 need	 to	 explicitly	 ask	 every
std::any	object	if	you	are	an	int,	do	this,	if	you	are	a	char	pointer,	do	that.	This	is
not	desirable,	as	it	requires	repeated	source	code,	and	it	is	also	less	efficient	than
using	other	alternatives,	which	we	will	describe	later	in	the	chapter.

The	 following	 example	 compiles;	 the	 type	 is	 explicitly	 tested	 for	 and	 casted
upon:

for(const	auto&	a:	container)	{	

		if(a.type()	==	typeid(int))	{		

				const	auto&	value	=	std::any_cast<int>(a);	

				std::cout	<<	value;	

		}	

		else	if(a.type()	==	typeid(const	char*))	{		

				const	auto&	value	=	std::any_cast<const	char*>(a);	

				std::cout	<<	value;	

		}	

		else	if(a.type()	==	typeid(bool))	{		

				const	auto&	value	=	std::any_cast<bool>(a);	

				std::cout	<<	value;	

		}	

}	

We	simply	cannot	print	it	with	a	regular	stream	operator,	since	the	std::any	object
has	no	idea	of	how	to	access	its	stored	value.	Therefore,	the	following	code	does
not	compile;	the	compiler	does	not	know	what	is	in	std::any:

for(const	auto&	a:	container)	{	

		std::cout	<<	a;	//	Will	not	compile

}	

The	std::variant
If	 we	 can	 trade	 off	 the	 ability	 to	 store	 any	 type	 in	 the	 container	 and,	 rather,
concentrate	on	a	 fixed	set	of	 types	declared	at	 the	container	 initialization,	 then
std::variant	is	a	better	choice.

The	std::variant	has	two	main	advantages	over	std::any:

It	does	not	store	its	contained	type	on	the	heap	(unlike	std::any)
It	can	be	invoked	with	a	polymorphic	lambda,	meaning	you	don't	explicitly
have	 to	 know	 its	 currently	 contained	 type	 (more	 about	 this	 in	 the	 later
sections	of	this	chapter)

The	std::variant	 	works	 in	a	 somewhat	 similar	manner	 to	a	 tuple,	except	 that	 it
only	 stores	one	object	 at	 a	 time.	The	contained	 type	and	value	 is	 the	 type	and
value	you	assigned	it	last.	Look	at	the	following	image:

Tuple	of	types	versus	variant	of	types

Here's	an	example	of	std::variant	usage:

using	VariantType	=	std::variant<int,	std::string,	bool>;	

auto	v	=	VariantType{};	//	The	variant	is	empty	

v	=	7;	//	v	holds	an	int	

v	=	std::string{"Bjarne"};	//	v	holds	a	std::string,	the	integer	is	overwritten	

v	=	false;	//	v	holds	a	bool,	the	std::string	is	overwritten	

Visiting	variants
When	 accessing	 variables	 in	 the	 std::variant,	 we	 use	 the	 global	 function
std::visit().	As	 you	might	 have	 guessed,	we	 have	 to	 use	 our	main	 companion
when	dealing	with	heterogeneous	types;	the	polymorphic	lambda:

std::visit(

		[](const	auto&	v){	std::cout	<<	v;	},		

		my_variant	

);	

The	 compiler	 then	 generates	 a	 regular	 C++	 of	 the	 lambda,	 for	 every	 type
contained	 in	 the	variant.	Thus,	when	 invoking	std::visit()	with	 the	 lambda	and
variant	type	in	the	example,	the	compiler	would	generate	code	roughly	similar	to
the	 following	 snippet	where	 the	polymorphic	 lambda	 is	 converted	 to	 a	 regular
class	with	operator()	overloads	for	every	type	in	the	variant

Note	 that	as	very	complex	code	are	 involved	 in	expanding	both	a
polymorphic	 lambda	 and	 the	 std::visit(),	 this	 piece	 of	 code	 is
heavily	simplified.	Still	it	gives	a	clear	view	of	what	happens	when
you	invoke	std::visit().

struct	FunctorImpl	{	

		auto	operator()(const	int&	v)	{	std::cout	<<	v;	}	

		auto	operator()(const	std::string&	v)	{	std::cout	<<	v;	}	

		auto	operator()(const	bool&	v)	{	std::cout	<<	v;	}	

};	

The	 std::visit	 function	 is	 expanded	 to	 an	 if...else	 chain	 corresponding	 to	 the
types	in	the	lambda:

auto	visit_impl(FunctorImpl	f,	const	VariantType&	v)	{	

		if(std::holds_alternative<int>(v))	{	

				return	f(std::get<int>(v));	

		}		

		else	if(std::holds_alternative<std::string>(v))	{	

				return	f(std::get<std::string>(v));	

		}	

		else	if(std::holds_alternative<bool>(v))	{	

				return	f(std::get<bool>(v));	

		}	

}	

//	The	actual	function	call	

visit_impl(FunctorImpl(),	my_variant);	

The	size	of	 the	variant	is	equal	to	the	largest	object	 type	declared

as	 its	 member,	 in	 the	 preceding	 example	 it	 would	 be	 the
sizeof(std::string).

Heterogenous	 container	 of
variants
Now	that	we	have	a	variant	which	can	store	any	type	of	a	provided	list,	we	can
expand	upon	this	to	a	heterogeneous	container.	We	do	this	by	simply	creating	a
std::vector	of	our	variant.

using	VariantType	=	std::variant<int,	std::string,	bool>;	

auto	container	=	std::vector<VariantType>{};	

We	can	now	push	elements	of	different	types	to	our	vector:

container.push_back(false);	

container.push_back(std::string{"I	am	a	string"});	

container.push_back(std::string{"I	am	also	a	string"});	

container.push_back(13);

The	vector	will	now	look	like	this	in	memory,	where	every	element	in	the	vector
has	the	size	of	the	variant,	in	this	case	sizeof(std::string):

Vector	of	variants

Of	course,	we	can	also	pop_back(),	or	modify	 the	container	 in	any	other	way	the
container	allows.

container.pop_back();

std::reverse(container.begin(),	container.end());

//	etc...

Accessing	 the	 values	 in	 our
variant	container
Now	that	we	have	the	boilerplate	for	a	heterogeneous	container	of	dynamic	size,
let's	see	how	we	can	use	it	like	a	regular	std::vector:

1.	 Construct	 a	 heterogeneous	 container	 of	 variants:	 Here	 we	 construct	 a
std::vector	with	different	types,	note	that	the	initializer	list	contains	different
types:

				using	VariantType	=	std::variant<int,	std::string,	bool>;	

				auto	c	=	std::vector<VariantType>	{	42,	std::string{"needle"},	true	};	

2.	 Print	 the	 content	 by	 iterating	 with	 a	 regular	 for	 loop:	 To	 iterate	 the
container	with	a	 regular	for-loop	we	utilize	std::visit()	and	 a	 polymorphic
lambda.	The	global	function	std::visit()	 takes	care	of	 the	 type	conversion.
The	example	prints	each	value	to	std::cout,	independent	of	the	type:

				for	(const	auto&	val:	c)	{	

						std::visit([](const	auto&	v){	std::cout	<<	v	<<	'\n';},	val);	

				}	

3.	 Inspect	what	types	are	in	the	container:	Here	we	inspect	each	element	of
the	 container	 by	 type.	 This	 is	 achieved	 by	 using	 the	 global	 function
std::holds_alternative<type>,	which	 returns	 true	 if	 the	 variant	 currently	 holds
the	 type	 asked	 for.	The	 example	 counts	 the	number	of	 booleans	 currently
contained	in	the	container:

				auto	num_bools	=	std::count_if(c.begin(),	c.end(),		

						[](const	auto&	v){	

								return	std::holds_alternative<bool>(v);	

						}	

);	

4.	 Find	 content	 by	 both	 contained	 type	 and	 value:	 In	 this	 example	 we
inspect	 the	 container	 both	 for	 type	 and	 the	 value	 by	 combining
std::holds_alternative	and	std::get:

The	example	inspects	if	the	container	contains	a	std::string	with	the	value

"needle".

				auto	contains_needle_string	=	std::any_of(

						c.begin(),		

						c.end(),		

						[](const	auto&	v){	

								return		

										std::holds_alternative<std::string>(v)	&&	

										std::get<std::string>(v)	==	"needle";

						}	

);	

Global	function	std::get
The	global	function	std::get	can	be	used	for	all	of	std::tuple,	std::pair,	std::variant
and	std::array.

	std::get<Index>

When	std::get	is	used	with	an	index,	as	in	std::get<1>(v)	it	returns	the	value	at	the
corresponding	index	in	a	std::tuple,	std::pair,	or	std::array.

std::get<Type>

When	std::get	is	used	with	a	type,	as	in	std::get<int>(v)	,	the	corresponding	value
in	a	std::tuple,	std::pair	or	std::variant	is	returned.
In	the	case	of	std::variant,	an	exception	is	thrown	if	the	variant	doesn't	currently
hold	that	type.	Note	that	if	v	is	a	std::tuple	and	Type	is	contained	more	than	once,
you	have	to	use	the	index	to	access	the	type.

Real	 world	 examples	 of
metaprogramming
Advanced	 metaprogramming	 can	 appear	 to	 be	 very	 academic,	 so	 in	 order	 to
demonstrate	 its	usefulness	we'd	 like	 to	provide	some	examples	which	not	only
demonstrate	the	syntax	of	metaprogramming,	but	how	it	can	be	used	in	practice.

Example	1	–	Reflection
The	 term	 reflection	 is	 the	 ability	 to	 inspect	 a	 class	without	 knowing	 anything
about	its	content.	

In	 this	 case	 we	 are	 going	 to	 limit	 the	 reflection	 to	 give	 classes	 the	 ability	 to
iterate	their	members	 just	 like	we	can	iterate	 the	members	of	a	 tuple.	By	using
reflection	 we	 can	 create	 generic	 functions	 for	 serialization	 or	 logging	 which
automatically	works	with	any	class.	This	 reduces	 large	amounts	of	boiler	plate
code	traditionally	required	for	classes	in	C++.

Making	 a	 class	 reflect	 its
members
In	contrast	 to	many	other	programming	 languages,	C++	does	not	have	built	 in
reflection,	which	means	we	have	to	write	 the	reflection	functionality	ourselves.
In	 this	 case	 we	 simply	 expose	 the	 member	 variables	 via	 a	 member	 function
called	 reflect()	 which	 simply	 returns	 a	 tuple	 of	 references	 to	 the	 member
variables	by	invoking	std::tie.

class	Town	{	

public:	

		Town(size_t	houses,	size_t	settlers,	const	std::string&	name)	

		:	houses_{houses},	settlers_{settlers},	name_{name}	{}	

		auto	reflect()	const	{return	std::tie(houses_,	settlers_,	name_);}	

private:	

		size_t	houses_{};	

		size_t	settlers_{};	

		std::string	name_{};	

};	

C++	 libraries	 which	 simplifies
reflection
There	are	quite	a	few	attempts	in	the	C++	library	world	to	simplify	the	creation
of	 reflection.	 One	 example	 is	 the	 meta-programming	 library	 Boost	 Hana	 by
Louis	 Dionne	 which	 gives	 classes	 reflection	 capabilities	 via	 a	 simple	 macro.
Recently,	 Boost	 has	 also	 added	 the	 Precise	 and	 Flat	 reflection	 by	 Anthony
Polukhin,	which	automatically	 reflects	public	 content	of	 classes,	 as	 long	as	 all
members	are	simple	types.	

However,	for	clarity,	in	this	example	we	will	only	use	our	own		reflect()	member
function.

Using	the	reflection
Now	 that	 the	 Town	 class	 has	 the	 ability	 to	 reflect	 its	member	 variables,	we	 can
automate	the	creation	of	bulk	functionality	which	would	otherwise	require	us	to
retype	 every	 member	 variable.	 As	 you	 know,	 C++	 automatically	 generates
constructors	 and	 assignment	 operators,	 but	 other	 common	 operators,	 such	 as
equality	 (operator==)	and	 less	 than	(operator<)	 are	 required	 to	be	 implemented	by
the	programmer.

class	Town	{	

		...	

		auto	operator==(const	Town&	t)	const	{return	reflect()==t.reflect();}

		auto	operator<(const	Town&	t)	const	{return	reflect()<t.reflect();}

		...	

};	

In	 addition	 to	member	 functions,	 another	 bulk	 function	 in	 C++	 is	 to	 print	 its
content	to	a	stream	in	order	to	print	its	content	to	a	file,	or	more	commonly,	log	it
in	an	application	log.

By	 overloading	 operator<<	 and	 using	 the	 tuple_for_each()	 function	 we	 learned
earlier,	we	can	simplify	the	creation	of	std::ostream	output	for	a	class	like	this:

auto&	operator<<(std::ostream&	ostr,	const	Town&	t)	{	

		tuple_for_each(t.reflect(),	[&ostr](const	auto&	m){	

				ostr	<<	m	<<	"	";	

		});	

		return	ostr;	

}	

Now	the	class	can	be	used	with	any	std::ostream	type	like	this:

auto	v	=	Town{34,	68,	"Shire"};	

std::cout	<<	v;	

//	Prints	"34	68	Shire"	

Quite	neat;	by	reflecting	our	class	members	via	a	tuple	we	only	have	to	update
our	reflect	function	when	members	are	added/removed	from	our	class,	instead	of
updating	every	function	iterating	all	member	variables.

Evaluating	 the	 assembler	 output
of	the	reflection
To	 ensure	 that	 we	 do	 not	 lose	 any	 runtime	 performance,	 let's	 compare	 the
assembler	 output	 of	 our	 Town	 class	 with	 an	 equal	 class	 where	 the	 operator==
operator	has	been	handcrafted	like	this:

auto	operator==(const	Town&	t)	const	{	

		return		

				houses_	==	t.houses_	&&	

				settlers_	==	t.settlers_	&&	

				name_	==	t.name_;	

}

Then,	 we	 create	 a	 simple	 function	 which	 takes	 two	 towns	 as	 references	 and
returns	the	result	of	the	comparison:

auto	compare_towns(const	Town&	t0,	const	Town&	t1)	{	

		return	t0	==	t1;	

}	

Inspecting	 the	 generated	 assembler	 output	 (in	 this	 case	 from	 GCC	 6.3	 with
optimization	level	3),	we	see	that	the	generated	assembler	is	exactly	the	same:

Handcrafted	operators	and	reflected	operators	results	in	same	assembler

With	 this	 in	our	mind,	we	can	 rest	assured	 that	 the	 reflection	approach	doesn't

cost	us	any	runtime	performance.

Conditionally	 overloading	 global
functions
Now	 that	we	have	a	mechanism	 to	write	bulk	 functions	using	 reflection	 rather
than	manually	 typing	 each	 variable,	 we	 still	 need	 to	 type	 the	 simplified	 bulk
functions	for	every	type.	What	if	we	wanted	these	functions	to	be	generated	for
every	type	which	is	reflectable?

In	other	words,	every	type	which	has	the	reflect()	member	function	should	also
have	operator==,	operator<	and	the	global	std::stream&	operator.	First	of	all,	operator==
and	operator<	need	to	be	moved	from	being	member	functions	to	global	functions;
fortunately	 C++	 allows	 these	 functions	 to	 be	 member	 functions	 or	 global
functions.

Secondly,	in	order	to	enable	these	functions	only	for	classes	that	have	a	reflect()
member	function,	we	need	to	conditionally	enable	them	using	a	combination	of
std::experimental::is_detected	and	std::enable_if_t.

First,	 following	 the	 procedure	 learned	 with	 is_detected,	 we	 create	 a	 typedef
referring	to	the	reflect()	member	function:

#include	<experimental/type_traits>	

template	<typename	T>	

using	has_reflect_member	=	decltype(&T::reflect);

Then	we	 create	 a	 template	 based	 bool	 called	 is_reflectable_v	 that	 is	 true	 if	 the
class	contains	the	member	reflect():

namespace	exp	=	std::experimental;

template	<typename	T>

constexpr	bool	is_reflectable_v	=	

		exp::is_detected<has_reflect_member,	T>::value;	

Of	course,	this	test	only	checks	if	a	class	has	a	member	named	reflect(),	it	does
not	assure	that	it	has	no	parameters,	nor	that	it	returns	a	tuple.	Anyhow,	we	can
now	overload	the	three	functions	in	the	global	namespace,	giving	all	reflectable
classes	the	ability	to	be	compared	and	printed	to	a	std::ostream:

//	Global	equal	operator	for	reflectable	types	

template	<typename	T,	bool	IsReflectable	=	is_reflectable_v<T>>	

auto	operator==(const	T&	a,	const	T&	b)		

->	std::enable_if_t<IsReflectable,	bool>	{	

		return	a.reflect()	==	b.reflect();	

}	

//	Global	not-equal	operator	for	reflectable	types

template	<typename	T,	bool	IsReflectable	=	is_reflectable_v<T>>	

auto	operator!=(const	T&	a,	const	T&	b)		

->	std::enable_if_t<IsReflectable,	bool>	{	

		return	a.reflect()	!=	b.reflect();	

}

//	Global	less-than	operator	for	reflectable	types	

template	<typename	T,	bool	IsReflectable	=	is_reflectable_v<T>>	

auto	operator<(const	T&	a,	const	T&	b)		

->	std::enable_if_t<IsReflectable	,	bool>	{	

		return	a.reflect()	<	b.reflect();	

}

//	Global	std::ostream	output	for	reflectable	types	

template	<typename	T,	bool	IsReflectable	=	is_reflectable_v<T>>

auto	operator<<(std::ostream&	ostr,	const	T&	v)		

->	std::enable_if_t<IsReflectable,	std::ostream&>	{	

		tuple_for_each(v.reflect(),	[&ostr](const	auto&	m)	{

				ostr	<<	m	<<	"	";	

		});	

		return	ostr;	

}	

As	explained	in	the	section	about	std::enable_if_t	,	the	functions	above	will	only
exist	 for	 types	which	contain	 the	 reflect()	member	 function,	and	will	 therefore
not	collide	with	any	other	overload.

Testing	reflection	capabilities
Now	we	have	everything	in	place:

The	Town	class	we	will	test	has	a	reflect	member	function	returning	a	tuple	of
references	to	its	members
The	 equality	 and	 less	 than	 comparison	 functions	 are	 enabled	 for	 all
reflectable	types
The	global	std::ostream&	operator<<	is	overloaded	for	reflectable	types

Here	is	a	simple	test	which	verifies	the	functionality:

auto	town_tester()	{

		auto	shire	=	Town{100,	200,	"Shire"};	

		auto	mordor	=	Town{1000,	2000,	"Mordor"};	

		//	Prints	"100	200	Shire"	using	reflection

		std::cout	<<	shire;	

		//	Prints	"1000	2000	Mordor"	using	reflection

		std::cout	<<	mordor;	

		//	Compares	mordor	and	shire	using	reflection

		auto	is_same	=	shire	==	morder;

		assert(!is_same);	

}

Quite	nice,	isn't	it?	With	these	capabilities	in	place	we	are	relieved	from	writing
them	for	every	class	 in	our	code	base.	For	 the	sake	of	 it,	 let's	compare	the	Town
class	side	by	side	with	a	Town	class	without	reflection	capabilities:

Handcrafted	operators Rely	on	reflection	for	operators

class	Town	{	

public:	

	Town(

			size_t	houses,		

			size_t	settlers,		

			std::string	name)	

	:	houses_{houses}	

	,	settlers_{settlers}	

	,	name_{name}	{}

	auto	operator==(const	Town&t)const{

			return	houses_	==	t.houses_	&&

										settlers_	==	t.settlers_&&

										name_	==	t.name_;

	}

	auto	operator!=(const	Town&t)const{

			return	!(*this	==	t);

	}

	auto	operator<(const	Town&	t)const{

class	Town	{	

public:	

	Town(

			size_t	houses,		

			size_t	settlers,		

			std::string	name)	

	:	houses_{houses}

	,	settlers_{settlers}

	,	name_{name}	{}

	auto	reflect()const{

			return	std::tie(

					houses_,	

					settlers_,	

					name_

);

	}	

	size_t	houses_{};	

	size_t	settlers_{};	

	std::string	name_{};

};

			auto	a	=	std::tie(houses_,

					settlers_,	name_);

			auto	b	=	std::tie(t.houses_,	

					t.settlers_,	t.name);

			return	a	<	b;

	}

	size_t	houses_{};

	size_t	settlers_{};	

	std::string	name_{};

};	

auto	operator<<(

		std::ostream&	ostr,	const	Town&	t

)	->	std::ostream&	{	

		ostr	<<	t.houses_	<<	"	";	

		ostr	<<	t.settlers_	<<	"	";

		ostr	<<	t.name_	<<	"	";	

		return	ostr;	

}																																										

	

																																						

	

As	you	can	see,	using	reflection	reduces	a	great	deal	of	boiler	plate	code.

Implementing	 a	 less-than	 operator	 can	 be	 tricky,	 however,	 using
std::tie	as	in	the	Town	example	above	makes	it	easy.

Example	 2	 –	 Creating	 a	 generic
safe	cast	function
When	casting	between	data	types	in	C++	there	is	a	multitude	of	different	ways
things	can	go	wrong:

You	might	lose	a	value	if	casting	to	a	integer	type	of	lower	bit	length
You	lose	a	value	if	casting	a	negative	value	to	an	unsigned	integer
If	 casting	 from	 a	 pointer	 to	 any	 other	 integer	 than	 uintptr_t,	 the	 correct
address	might	 become	wrong	 as	C++	only	 guarantees	 that	 uintptr_t	 is	 the
only	integer	type	to	withhold	an	address
If	casting	from	double	to	float,	the	result	might	be	int	if	the	double	value	is	too
large	for	float	to	withhold
If	 casting	 between	 pointers	 with	 a	 static_cast(),	 we	 might	 get	 undefined
behavior	if	the	types	aren't	sharing	a	common	base	class

In	 order	 to	make	 our	 code	more	 robust	we	 can	 create	 a	 generic	 checked	 cast
function	which	verifies	our	casts	in	debug	mode,	and	performs	the	cast	as	fast	as
possible	if	in	release	mode.

Depending	on	the	types	that	are	being	casted,	different	checks	are	performed.	If
we	try	to	cast	between	types	that	are	not	verified,	it	won't	compile.

These	are	the	cases	the	safe_cast()	are	intended	to	handle:

Same	 type:	 Obviously	 if	 we're	 casting	 the	 same	 type,	 we	 just	 return	 the
input	value.
Pointer	 to	pointer:	 If	 casting	 between	 pointers	 the	 safe_cast()	 performs	 a
dynamic	cast	in	debug	to	verify	it	is	castable.
Double	 to	 floating	 point:	 The	 safe_cast()	 accepts	 precision	 loss	 when
casting	from	double	to	float	with	one	exception:	if	casting	from	a	double	to
floating	point	there	is	a	chance	the	double	is	too	large	for	the	float	to	handle
resulting.
Arithmetic	to	arithmetic:	if	casting	between	arithmetic	types,	the	value	is
cast	back	to	its	original	type	to	verify	no	precision	are	lost.

Pointer	 to	 non-pointer:	 If	 casting	 from	 a	 pointer	 to	 a	 non-pointer	 type,
safe_cast()	 verifies	 that	 the	 destination	 type	 is	 an	 uintptr_t	 or	 intptr_t,	 the
only	integer	type	that	is	guaranteed	to	hold	an	address.
In	any	other	case,	the	safe_cast()	function	will	fail	to	compile.

Let's	see	how	we	can	implement	this,	we	start	by	fetching	information	about	our
cast	operation	 to	constexpr	 booleans.	The	 reason	 they	are	 constexpr	 booleans	 and
not	const	booleans	 is	 that	we	will	utilize	 them	later	 in	if	constexpr	expressions,
which	requires	constexpr	conditions:

template	<typename	T>	constexpr	auto	make_false()	{	return	false;	}

template	<typename	Dst,	typename	Src>	

auto	safe_cast(const	Src&	v)	->	Dst{	

		using	namespace	std;

		constexpr	auto	is_same_type	=	is_same_v<Src,	Dst>;

		constexpr	auto	is_pointer_to_pointer	=		

				is_pointer_v<Src>	&&	is_pointer_v<Dst>;	

		constexpr	auto	is_float_to_float	=		

				is_floating_point_v<Src>	&&	is_floating_point_v<Dst>;	

		constexpr	auto	is_number_to_number	=		

				is_arithmetic_v<Src>	&&	is_arithmetic_v<Dst>;	

		constexpr	auto	is_intptr_to_ptr	=	(

				(is_same_v<uintptr_t,Src>	||	is_same_v<intptr_t,Src>)

				&&	is_pointer_v<To>;	

		constexpr	auto	is_ptr_to_intptr	=	

				is_pointer_v<Src>	&&

				(is_same_v<uintptr_t,Dst>	||	is_same_v<intptr_t,Dst>);	

So	now	that	we	have	all	the	information	about	the	cast	as	constexpr	booleans,	we
assert	 at	 compile	 time	 that	 we	 can	 perform	 the	 cast.	 As	 said	 before,	 a
static_assert()	 will	 fail	 to	 compile	 if	 the	 condition	 is	 not	 satisfied	 (unlike	 a
regular	assert,	which	verifies	conditions	at	runtime).

Note	the	usage	of	static_assert()	and	make_false<T>	at	 the	end	of	 the	 if/else	chain.
We	 cannot	 just	 type	 static_assert(false,	 "")	 as	 that	 would	 prevent	 the
safe_cast()	 from	 compiling	 at	 all;	 instead	 we	 utilize	 the	 template	 function
make_false<T>()	to	delay	the	generation	until	required.

When	that	actual	static_cast()	is	performed,	we	cast	back	to	the	original	type	and
verify	that	the	result	is	equal	to	the	un-casted	argument	using	a	regular	runtime
assert.	This	way	we	can	make	sure	the	static_cast()	has	not	lost	any	data:

		if	constexpr(is_same_type)	{	

				return	v;	

		}

		else	if	constexpr(is_intptr_to_ptr	||	is_ptr_to_intptr){

				return	reinterpret_cast<Dst>(v);	

		}	

		else	if	constexpr(is_pointer_to_pointer)	{	

				assert(dynamic_cast<Dst>(v)	!=	nullptr);	

				return	static_cast<Dst>(v);	

		}	

		else	if	constexpr	(is_float_to_float)	{	

				auto	casted	=	static_cast<Dst>(v);	

				auto	casted_back	=	static_cast<Src>(v);	

				assert(!isnan(casted_back)	&&	!isinf(casted_back));	

				return	casted;	

		}		

		else	if	constexpr	(is_number_to_number)	{	

				auto	casted	=	static_cast<Dst>(v);	

				auto	casted_back	=	static_cast<Src>(casted);	

				assert(casted	==	casted_back);	

				return	casted;	

		}	

		else	{

				static_assert(make_false<Src>(),"CastError");

				return	Dst{};	//	This	can	never	happen,	

				//	the	static_assert	should	have	failed	

		}

}

Note	 how	 we	 use	 the	 if	 constexpr	 in	 order	 for	 the	 function	 to	 conditionally
compile.	If	we	used	a	regular	if	statement,	the	function	would	fail	to	compile.

This	would	fail	to	compile	with	a	regular	if	statement:

auto	x	=	safe_cast<int>(42.0f);	

This	 is	 because	 the	 compiler	 would	 try	 to	 compile	 the	 following	 line
and	dynamic_cast	only	accepts	pointers:

//	type	To	is	an	integer

assert(dynamic_cast<int>(v)	!=	nullptr);	//	Does	not	compile

However,	 thanks	 to	 the	 if	 constexpr	 and	 	 safe_cast<int>(42.0f)	 constructs,	 the
following	function	compiles	properly:

auto	safe_cast(const	float&	v)	->	int	{	

		constexpr	auto	is_same_type	=	false;

		constexpr	auto	is_pointer_to_pointer	=	false;

		constexpr	auto	is_float_to_float	=	false;

		constexpr	auto	is_number_to_number	=	true;

		constexpr	auto	is_intptr_to_ptr	=	false;

		constexpr	auto	is_ptr_to_intptr	=	false

		if	constexpr(is_same_type)	{	/*Eradicated*/	}	

		else	if	constexpr(is_intptr_to_ptr||is_ptr_to_intptr){/*Eradicated*/}	

		else	if	constexpr(is_pointer_to_pointer)	{/*Eradicated*/}	

		else	if	constexpr(is_float_to_float)	{/*Eradicated*/}	

		else	if	constexpr(is_number_to_number)	{	

				auto	casted	=	static_cast<int>(v);	

				auto	casted_back	=	static_cast<float>(casted);	

				assert(casted	==	casted_back);	

				return	casted;	

		}	

		else	{	/*Eradicated*/	}

}	

As	you	can	 see,	 except	 for	 the	 is_number_to_number	 clause,	 everything	 in	between
the	if	constexpr	statements	has	been	completely	eradicated,	allowing	the	function
to	compile.

Example	 3	 –	 Hash	 strings	 at
compile	time
Let's	say	you	have	a	resource	system	consisting	of	an	unordered	map	of	strings
which	 identify	 bitmaps.	 If	 the	 bitmap	 is	 already	 loaded,	 it	 returns	 the	 loaded
bitmap;	otherwise	it	loads	the	bitmap	and	returns	it.

//	External	function	which	loads	a	bitmap	from	the	filesystem

auto	load_bitmap_from_filesystem(const	char*	path)	->	Bitmap	{...}	

	

//	Bitmap	cache	

auto	get_bitmap_resource(const	std::string&	path)	->	const	Bitmap&	{	

		//	Static	storage	of	all	loaded	bitmaps	

		static	auto	loaded	=	std::unordered_map<std::string,	Bitmap>{};	

		//	If	the	bitmap	is	already	in	loaded_bitmaps,	return	it	

		if	(loaded.count(path)	>	0)	{	

				return	loaded.at(path);	

		}	

		//	The	bitmap	isn't	already	loaded,	load	and	return	it	

		auto	bitmap	=	load_bitmap_from_filesystem(path.c_str());	

		loaded.emplace(path,	std::move(bitmap));	

		return	loaded.at(path);	

}	

The	bitmap	cache	is	then	utilized	wherever	a	bitmap	resource	is	needed.

If	it's	not	loaded	yet,	the	get_bitmap_resource()	function	will	load	and	return	it
If	 it's	 already	 loaded	 somewhere	 else,	 the	 get_bitmap_resource()	 will	 simply
return	the	loaded	function

So	independently	of	which	of	these	draw	functions	is	executed	first,	the	second
one	will	not	have	to	load	the	bitmap	from	disc.

auto	draw_something()	{	

		const	auto&	bm	=	get_bitmap_resource("my_bitmap.png");		

		draw_bitmap(bm);	

}	

auto	draw_something_again()	{	

		const	auto&	bm	=	get_bitmap_resource("my_bitmap.png");		

		draw_bitmap(bm);	

}	

The	 advantages	 of	 compile-time
hash	sum	calculation
The	 problem	 which	 we	 will	 try	 to	 solve	 is	 that	 every	 time	 the	 line
get_bitmap_resource("my_bitmap.png")	 is	 executed,	 the	 application	 will	 compute	 the
hash	sum	of	the	string	"my_bitmap.png"	at	runtime.	What	we	would	like	to	do	is	to
perform	 this	 calculation	 already	 at	 compile	 time,	 so	 that	when	 the	 application
executes,	 the	 hash	 sum	 is	 already	 calculated.	 In	 other	 words,	 just	 as	 we	 have
learned	 to	 use	metaprogramming	 to	 generate	 functions	 and	 classes	 at	 compile
time,	we	will	now	have	it	generate	the	hash	sum	at	compile	time.

One	might	come	 to	 the	conclusion	already	 that	 this	 is	a	so	called
micro-optimization:	 calculating	 the	 hash	 sum	 of	 a	 small	 string
won't	affect	the	application	performance	at	all,	as	it	is	such	a	tiny
operation.	That	is	probably	completely	true;	this	is	just	an	example
of	 how	 to	move	a	 calculation	 from	 run	 time	 to	 compile-time,	 and
there	might	 be	 other	 instances	where	 this	 can	make	 a	 significant
performance	impact.
As	 a	 side	 note,	 when	writing	 software	 for	 weak	 hardware,	 string
hashing	is	pure	luxury,	but	hashing	strings	at	compile	gives	us	this
luxury	on	any	platform,	as	everything	is	computed	at	compile	time.

Implement	 and	 verify	 a	 compile-
time	hash	function
In	order	 to	 enable	 the	 compiler	 to	 calculate	 the	hash-sum	at	 compile	 time,	we
rewrite	the	hash_function()	to	take	a	raw	null-terminated	char	string	as	parameter	as
an	advanced	class	like	std::string	cannot	be	evaluated	at	compile	time.	Now,	we
can	mark	the	hash_function()	a	constexpr:

constexpr	auto	hash_function(const	char*	str)	->	size_t	{	

		auto	sum	=	size_t{0};	

		for(auto	ptr	=	str;	*ptr	!=	'\0';	++ptr)	

				sum	+=	*ptr;	

		return	sum;	

}	

Now,	let's	invoke	this	with	a	raw	literal	string	known	at	compile	time:

auto	hash	=	hash_function("abc");

Then,	the	compiler	will	generate	the	following	piece	of	code,	which	is	the	sum
of	the	ASCII	values	corresponding	to	a,	b,	and	c	(97,	98,	and	99):

auto	hash	=	size_t{294};	

Just	 accumulating	 the	 individual	 values	 is	 a	 very	 bad	 hash
function,	do	not	do	 this	 in	a	 real-world	application.	 It's	only	here
because	 it's	 easy	 to	 grasp.	 A	 better	 hash	 function	 would	 be	 to
combine	all	the	individual	characters	with	a	boost::hash_combine()	as
explained	in	Chapter	4,	Data	Structures.
The	hash_function()	will	only	evaluate	at	compile	time	if	the	compiler
knows	the	string	at	compile	time;	if	not,	 the	compiler	will	execute
the	constexpr	at	runtime,	just	as	any	other	expression.

Constructing	 a	 PrehashedString
class
Now	that	we	have	the	hash	function	we	create	a	class	for	pre-hashed	strings.	It
consists	of	the	following:

A	constructor	which	takes	raw	string	as	parameter	and	calculates	the	hash	at
construction.
Comparison	operators.
A	get_hash()	member	function	which	returns	the	hash.
An	 overload	 of	 std::hash()	 which	 simply	 returns	 the	 hash	 value.	 This
overload	 is	 used	 by	 std::unordered_map,	 std::unordered_set	 or	 any	 other	 STL
class	which	uses	hash	values.	To	put	it	simply,	this	makes	the	STL	container
aware	that	it	exists	a	hash	function	for	the	PrehashedString.

Here	is	a	basic	implementation	of	a	PrehashedString	class:

class	PrehashedString	{	

public:	

		template	<size_t	N>	

		constexpr	PrehashedString(const	char(&str)[N])	

		:	hash_{hash_function(&str[0])}	

		,	size_{N	-	1}	//	The	subtraction	is	to	avoid	null	at	end	

		,	strptr_{&str[0]}	

		{}	

		auto	operator==(const	PrehashedString&	s)	const	{	

				return	

						size_	==	s.size_	&&	

						std::equal(c_str(),	c_str()	+	size_,	s.c_str());	

		}	

		auto	operator!=(const	PrehashedString&	s)	const	{

				return	!(*this	==	s);	}	

		constexpr	auto	size()const{	return	size_;	}	

		constexpr	auto	get_hash()const{	return	hash_;	}	

		constexpr	auto	c_str()const->const	char*{	return	strptr_;	}	

private:	

		size_t	hash_{};	

		size_t	size_{};	

		const	char*	strptr_{nullptr};	

};	

	

namespace	std	{	

template	<>	

struct	hash<PrehashedString>	{	

		constexpr	auto	operator()(const	PrehashedString&	s)	const	{	

				return	s.get_hash();	

		}	

};	

}

Forcing	 PrehashedString	 to	 only
accept	compile	time	string	literals
Note	the	template	trick	in	the	constructor.	This	forces	the	PrehashedString	to	only
accept	compile	 time	string	 literals.	The	reason	for	 this	 is	 that	 the	PrehashedString
class	 does	 not	 own	 the	 const	 char*	 ptr	 and	 therefore	 we	may	 only	 use	 it	 with
string	literals	created	at	compile	time:

//	This	compiles	

auto	prehashed_string	=	PrehashedString{"my_string"};	

	

//	This	does	not	compile

//	The	prehashed_string	object	would	be	broken	if	the	str	is	modified	

auto	str	=	std::string{"my_string"};	

auto	prehashed_string	=	PrehashedString{str.c_str()};		

	

//	This	does	not	compile.	

//	The	prehashed_string	object	would	be	broken	if	the	strptr	is	deleted	

auto*	strptr	=	new	char[5];	

auto	prehashed_string	=	PrehashedString{strptr};	

Evaluating	PrehashedString
So	now	that	we	have	everything	in	place,	let's	see	how	the	compiler	handles	the
PrehashedString.	Here	is	a	simple	test	function	which	returns	the	hash	value	for	the
string	"abc":

auto	test_prehashed_string()	{	

		const	auto&	hash_fn	=	std::hash<PrehashedString>{};	

		const	auto&	str	=	PrehashedString("abc");	

		return	hash_fn(str);	

}	

For	 simplicity,	we	 used	 the	 string	 "abc".	 As	 our	 hash	 function	 simply	 sum	 the
values,	and	the	letters	in	"abc"	have	the	following	ASCII	values:	a	=	97,	b	=	98,
and	 	c	=	99,	 the	 assembler	 (generated	 by	Clang	 4.0)	 ought	 to	 output	 the	 sum
97+98+99	 =	 294	 somewhere.	 Inspecting	 the	 assembler	 we	 can	 see	 that	 the
test_prehashed_string()	 function	 compiles	 to	 exactly	 one	 return	 statement	 which
returns	294:

mov					eax,	294	

ret

This	means	 that	 the	whole	 test_prehashed_string()	 function	 has	 been	 executed	 at
compile	time;	when	the	application	executes,	the	hash	sum	is	already	calculated!

Evaluating	get_bitmap_resource()
with	PrehashedString
Let's	return	to	our	original	get_bitmap_resource()	function,	the	std::string	originally
used	is	exchanged	to	a	PrehashedString:

//	Bitmap	cache	

auto	get_bitmap_resource(const	PrehashedString&	path)	->	const	Bitmap&	{	

		//	Static	storage	of	all	loaded	bitmaps	

		static	auto	loaded_bitmaps	=	

				std::unordered_map<PrehashedString,	Bitmap>{};	

		//	If	the	bitmap	is	already	in	loaded_bitmaps,	return	it	

		if	(loaded_bitmaps.count(path)	>	0)	{	

				return	loaded_bitmaps.at(path).second;	

		}	

		//	The	bitmap	isn't	already	loaded,	load	and	return	it	

		auto	bitmap	=	load_bitmap_from_filesystem(path.c_str());	

		loaded_bitmaps.emplace(path,	std::move(bitmap));	

		return	loaded_bitmaps.at(path);	

}	

We	also	need	a	function	to	test	with:

auto	test_get_bitmap_resource()	{	return	get_bitmap_resource("abc");	}	

What	we	would	like	to	know	is	if	even	this	function	precalculated	the	hash	sum.
As	the	get_bitmap_resource()	does	quite	a	lot	(constructing	a	static	std::unordered_map,
inspecting	 the	 map),	 the	 resulting	 assembly	 is	 about	 five	 hundred	 lines.
Nevertheless,	if	our	magic	hash	sum	is	found	in	the	assembler,	it	means	that	we
have	succeeded.

Inspecting	 the	 assembler	 generated	 by	 Clang	 4.0	 we	 find	 a	 line	 which
corresponds	to	our	hash	sum,	294:

.quad			294																					#	0x126	

Just	to	be	even	more	sure,	we	change	the	string	from	"abc"	to	"aaa",	which	ought
to	 change	 this	 line	 in	 assembler	 to	97*3	 =	291,	 but	 everything	 else	 should	 be
exactly	the	same.

We	do	this	to	make	sure	this	wasn't	just	some	other	magic	number	which	popped
up,	totally	unrelated	to	the	hash	sum.

Inspecting	the	resulting	assembler,	we	find	the	desired	result:

.quad			291																					#	0x123	

Everything,	except	this	line,	is	the	same,	and	we	can	therefore	safely	assume	that
the	hash	is	calculated	at	compile	time.

Summary
In	 this	 chapter	 you	 have	 learned	 how	 to	 use	 metaprogramming	 to	 generate
functions	and	values	at	compile	time	instead	of	runtime.	You	also	learned	how	to
do	 this	 in	 a	 modern	 C++	 way	 by	 using	 templates,	 constexpr,	 static_assert(),	 if
constexpr	 and	 type	 traits.	Moreover,	 with	 the	 constant	 string	 hashing,	 you	 also
learned	how	 to	 use	 compile	 time	 evaluation	 in	 a	 practical	 context.	 In	 the	 next
chapter	 we	 will	 learn	 how	 to	 further	 expand	 our	 C++	 toolbox	 for	 creating
libraries	by	learning	how	to	construct	hidden	proxy	objects.

Proxy	 Objects	 and	 Lazy
Evaluation
In	 this	chapter,	you	will	 learn	how	to	use	proxy	objects	and	 lazy	evaluation	 in
order	 to	 postpone	 the	 execution	 of	 certain	 code	 until	 required.	 Using	 proxy
objects	 enables	 optimizations	 to	 occur	 under	 the	 hood,	 thereby	 leaving	 the
exposed	interfaces	intact.

An	introduction	to	lazy	evaluation
and	proxy	objects
First	 and	 foremost,	 the	 techniques	 used	 in	 this	 chapter	 are	 used	 to	 hide
optimizations	 in	 a	 library	 from	 the	 user	 of	 that	 library.	 This	 is	 useful	 because
exposing	 every	 single	 optimization	 technique	 as	 a	 separate	 function	 requires	 a
lot	of	attention	and	education	from	the	user	of	the	library.	

It	also	bloats	the	code	base	with	a	multitude	of	specific	functions,	making	it	hard
to	read	and	understand.	By	using	proxy	objects,	you	can	achieve	optimizations
under	the	hood;	hence,	the	resultant	code	is,	both,	optimized	and	readable.

Lazy	versus	eager	evaluation
Lazy	evaluation	 is	a	 technique	used	 to	postpone	an	operation	until	 its	 result	 is
really	 required.	 The	 opposite,	 where	 operations	 are	 performed	 right	 away,	 is
called	eager	evaluation.	 In	some	situations	eager	evaluation	 is	undesired	as	we
might	end	up	constructing	a	value	which	is	not	utilized.

Take	a	look	at	the	following	function	class	corresponding	to	an	audio	library.	It
consists	 of	 two	 functions	 for	 retrieving	 an	 audio	 file	 by	 name,	 get_eager()	 in
which	we	pass	an	audio	file	if	the	name	cannot	be	found,	and	get_lazy()	in	which
we	pass	a	function	which	returns	an	audio	file	if	the	name	cannot	be	found:

struct	Audio	{};	

auto	load_audio(const	std::string&	path)	->	Audio	{...};	

class	AudioLibrary	{

public:

	auto	get_eager(std::string	id,	const	Audio&	otherwise)const{

			return	map_.count(id)	?	map.at(id)	:	otherwise;

	}

	auto	get_lazy(std::string	id,	std::function<Audio>	otherwise)const{

			return	map_.count(id)	?	map.at(id)	:	otherwise();

	}

private:

	std::map<std::string,	Audio>	map_{};

};

If	we	were	 to	 utilize	 the	 get_eager()	 function	 the	 load_audio("default_fox.wav")	 file
would	be	executed	even	if	the	returned	value	is	unused:

auto	library	=	AudioLibrary{};

auto	red_fox_sound	=	library.get_eager(

		"red_fox",	

		load_audio("default_fox.wav")

);

However	 using	 the	 get_lazy()	 member	 function,	 where	 a	 function	 returning	 an
audio	 file	 when	 invoked	 is	 passed,	 the	 load_audio("default_fox.wav")	 is	 only
executed	when	necessary:

auto	library	=	AudioLibrary{};

auto	red_fox_sound	=	library.get_lazy(

		"red_fox",	

		[](){	return	load_audio("default_fox.wav");	}

);

This	 is	 a	 very	 simple	 example,	 but	 the	 idea	 is	 that	 your	 code	 gets	 expressed
almost	exactly	in	the	same	way	as	if	it	were	declared	eagerly.	You	will	now	learn
how	to	use	proxy	objects	in	order	to	evaluate	more	advanced	expressions	lazily.

Proxy	objects
Proxy	objects	are	internal	library	objects	that	aren't	intended	to	be	visible	to	the
user	 of	 the	 library.	 Their	 task	 is	 to	 postpone	 operations	 until	 required	 and	 to
collect	 the	 data	 of	 an	 expression	 until	 it	 can	 be	 evaluated	 and	 optimized.
However,	proxy	objects	act	in	the	dark;	the	user	of	the	library	should	be	able	to
handle	the	expressions	as	if	the	proxy	objects	were	not	there.

In	other	words,	using	proxy	objects,	you	can	encapsulate	optimizations	in	your
libraries	while	leaving	the	syntax	intact—more	or	less,	a	free	lunch.

Comparing	 concatenated	 strings
using	a	proxy
Take	a	 look	at	 this	code	snippet,	which	concatenates	 two	strings	and	compares
the	result:

auto	func_a()	{	

		auto	a	=	std::string{"Cole"};	

		auto	b	=	std::string{"Porter"};	

		auto	c	=	std::string{"ColePorter"};	

		auto	is_cole_porter	=	(a	+	b)	==	c;	

		//	is_cole_porter	is	true	

}

Here	is	a	visual	representation	of	the	preceding	code	snippet:

Accumulating	two	strings	into	a	new	string

The	problem,	here,	is	that	(a	+	b)	constructs	a	new	temporary	string	in	order	to
compare	it	with	c.	 Instead	of	constructing	a	new	string,	we	could	 just	compare
the	concatenation	right	away,	like	this:

auto	is_concat_equal(

	const	std::string&	a,const	std::string&	b,const	std::string&	c

)	{	

		return		

				a.size()	+	b.size()	==	c.size()	&&	

				std::equal(a.begin(),	a.end(),	c.begin())	&&		

				std::equal(b.begin(),	b.end(),	c.begin()	+	a.size());	

}		

We	can	then	use	it	like	this:

auto	func_b()	{	

		auto	a	=	std::string{"Cole"};	

		auto	b	=	std::string{"Porter"};	

		auto	c	=	std::string{"ColePorter"};	

		auto	is_cole_porter	=	is_concat_equal(a,	b,	c);	

}	

Performance	wise,	we've	achieved	a	bit	of	a	win,	but	syntactically,	a	code	base
littered	with	special-case	convenience	functions	like	this	is	not	realistic.	So,	let's
see	how	this	optimization	can	be	achieved	with	the	original	syntax	still	intact.

Implementing	the	proxy
First,	we'll	create	a	proxy	class	representing	the	concatenation	of	two	strings:

struct	ConcatProxy	{	

		const	std::string&	a;	

		const	std::string&	b;	

};	

Then,	we'll	construct	our	own		String	class,	simply	consisting	of	std::string	and	an
overloaded	operator+	method.	Note	 that	 this	 is	 an	example	of	how	 to	make	and
use	 proxy	 objects;	 creating	 your	 own	 String	 class	 is	 not	 something	 we
recommend:

class	String	{	

public:	

		String()	=	default;	

		String(std::string	istr)	:	str_{std::move(istr)}{}	

		std::string	str_{};

};	

	

auto	operator+(const	String&	a,	const	String&	b)	{

			return	ConcatProxy{	a.str_,	b.str_	};

}

Here's	a	visual	representation	of	the	preceding	code	snippet:

Proxy	object	representing	an	accumulation	of	two	strings

Lastly,	 we'll	 create	 a	 global	 operator==	 method,	 which	 will	 utilize	 the
is_concat_equal()	function.	Note	that	ConcatProxy	is	an	explicit	r-value;	we	will	talk
about	this	later	in	this	chapter:

auto	operator==(ConcatProxy&&	concat,	const	String&	str)	->	bool	{

		return	is_concat_equal(concat.a,	concat.b,	str.str_);	

}	

Now	that	we	have	everything	in	place,	we	can	get	the	best	of	both	worlds:

auto	func_c()	{	

		auto	a	=	String{"Cole"};	

		auto	b	=	String{"Porter"};	

		auto	c	=	String{"ColePorter"};	

		auto	is_cole_porter	=	(a	+	b)	==	c;	

		//	is_cole_porter	is	true	

}	

In	 other	 words,	 we	 gained	 the	 performance	 of	 	 func_b()	 while	 preserving	 the
expressive	syntax	of	func_a().	

Performance	evaluation
To	 evaluate	 the	 performance	 benefits,	 we'll	 utilize	 the	 following	 code,	 which
compares	100'000'000	strings:

auto	n	=	size_t{100'000'000};	

auto	a	=	std::vector<String>{};	

auto	b	=	std::vector<String>{};	

auto	c	=	std::vector<String>{};

a.resize(n);

b.resize(n);

c.resize(n);

//	{Fill	the	vectors	with	random	strings...}	

auto	num_equal	=	0;	

for(size_t	i	=	0;	i	<	n;	++i)	{	

		num_equal	+=	(a[i]	+	b[i]	==	c[i])	?	1	:	0;	

}	

When	executing	this	on	an	Intel	i7	7700k	CPU,	we	get	the	following	results:

Comparison	type Time	(milliseconds) Speed	up

No	proxy	object 																												675 																								1.00	x

With	a	proxy	object 																													62 																								10.7	x

	

In	other	words,	the	speed	up	with	a	proxy	object	is	almost	eleven	times	as	fast,
when	we	got	rid	of	the	temporary	string	and	the	allocation	that	comes	with	it.

The	r-value	modifier
In	the	preceding	code,	the	global	operator==	method	only	accepts	r-values.	If	we
were	to	accept	an	l-value,	we	could	end	up	accidentally	misusing	the	proxy,	like
this:

auto	fail()	{	

		auto	concat	=	String("Cole")	+	String("Porter");	

		auto	is_cole_porter	=	concat	==	String("ColePorter");	

}	

The	problem	here	is	that	both	the	Cole	and	Porter	strings	are	destructed	when	the
comparison	is	executed,	leading	to	a	failure.	As	we	force	the	concat	object	to	be
an	r-value,	the	code	will	not	compile	when	used	like	in	the	preceding	code.	Of
course,	 you	 could	 brute-force	 it	 to	 compile	 using	 std::move(concat)	 ==

String("ColePorter"),	but	that	wouldn't	be	a	realistic	case.

Assigning	a	concatenated	proxy
Now	you	might	be	thinking,	what	if	we	actually	want	to	store	the	concatenated
string	as	a	new	string	rather	than	just	compare	it?	What	we	do	is	simply	overload
an	operator	String()	method	so	that	the	concatenation	of	the	strings	can	implicitly
convert	itself	to	a	string,	like	this:

struct	ConcatProxy	{	

		const	std::string&	a;	

		const	std::string&	b;	

		operator	String()	const	&&	{	return	String{a	+	b};	}	

};	

	

auto	func()	{	

		String	c	=	String{"Marc"}	+	String{"Chagall"};	

}	

There	is	one	little	snag	though;	we	cannot	initialize	the	new	String	object	with	the
auto	keyword,	as	this	would	result	in	ConcatProxy:

auto	c	=	String{"Marc"}	+	String{"Chagall"};	

//	c	is	a	ConcatProxy	due	to	the	auto	

Unfortunately,	we	have	no	way	to	get	around	this;	the	result	must	be	explicitly
cast	to	String.

Postponing	 an	 sqrt	 computation
when	comparing	distances
In	 this	 example,	 we	 will	 show	 you	 how	 to	 use	 a	 proxy	 object	 in	 order	 to
postpone,	 or	 even	 avoid,	 using	 the	 computationally	 heavy	 std::sqrt()	 method
when	comparing	the	distance	between	two	dimensional	points.

A	 simple	 two-dimensional	 point
class
Let's	 start	 with	 a	 simple	 point	 class	 in	 2D.	 It	 has	 x	 and	 y	 coordinates	 and	 a
member	function,	which	calculates	the	distance	to	another	point:

class	Point{

public:

		Point(float	x,	float	y)	:	x_{x},	y_{y}	{}

		auto	distance(const	Point&	p)	const	{

				auto	dist_sqrd	=	std::pow(x_-p.x_,	2)	+	std::pow(y_-p.y_,	2)

				return	std::sqrt(dist_sqrd);

		}

private:

		float	x_{};

		float	y_{};

};

A	simple	usage	example	would	be	as	follows:

auto	target	=	Point{3,	5};	

auto	a	=	Point{6,	9};	

auto	b	=	Point{7,	4};	

auto	nearest_target	=	

		target.distance(a)	<	target.distance(b)	?	

		a	:	b;	

auto	a_to_b_distance	=	a.distance(b);

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	Distances	from	two	arbitrary	points	to
target	point

The	underlying	mathematics
Looking	 into	 the	 mathematics	 of	 the	 distance	 calculation,	 you	 may	 notice
something	interesting.	The	formula	used	for	distance	is	as	follows:

However,	 if	we	only	need	to	compare	the	distance	between	points,	 the	squared
distance	is	all	we	need,	as	the	following	formula	shows:

As	the	std::sqrt()	operation	is	not	required	if	we	just	want	to	compare	distances
to	each	other,	we	can	omit	 it.	The	nice	 thing	 is,	 std::sqrt()	 is	 a	 relatively	 slow
operation,	 meaning	 that	 if	 we	 compare	 a	 lot	 of	 distances	 between	 points,	we
can	gain	some	performance.

The	question	is,	how	can	we	do	this	while	preserving	a	clean	syntax?	Let's	see
how	 we	 can	 use	 a	 proxy	 object	 to	 make	 a	 simple	 library	 perform	 this
optimization	under	the	hood	when	comparing	distances.

Using	 the	 squared	 distance	 also	 has	 better	 precision	 on	 floating
point	 values,	 as	 std::sqrt()	 loses	 precision	 and,	 thus,	 two	 very
similar	 values	 might	 result	 in	 the	 same	 square	 root.	 That
is,	 std::sqrt(56.999999999999)	 might	 result	 in	 the	 same	 value	 as
std::sqrt(57)	due	to	lost	precision.

For	 clarity,	 we	 start	 with	 the	 original	 Point	 class	 but	 we	 split	 the
distance()	function	into	two—the	distance_squared()	and	distance()	functions:

class	Point	{

public:

		Point(float	x,	float	y)	:	x_{x},	y_{y}	{}		

		auto	distance_squared(const	Point&	p)	const	{

				return	std::pow(x_-p.x_,	2)	+	std::pow(y_-p.y_,	2);		

		}

		auto	distance(const	Point&	p)	const	{

				return	std::sqrt(distance_squared(p));

		}

private:

		float	x_{};

		float	y_{};

};

Here's	a	visual	representation	of	the	preceding	code	snippet:

Distance,	and	squared	distance	between	two	points

Let's	 say	 a	 user	 of	 the	 Point	 class	 is	 implementing	 a	 convenient	 function	 that
determines	if	two	points	are	nearer	to	each	other	 than	a	specific	 threshold.	She
now	 has	 two	 options,	 either	 use	 the	 distance()	 function	 or	 the
distance_squared()	function.	Their	corresponding	implementations	are	shown	in	the
following	table:

Using	the	distance()	member	function Using	 the	 distance_squared()	 member
function

auto	is_near0(Point	a,	Point	b,	float	th)	{

		auto	dist	=	a.distance(b);

		return	dist	<	th;

}

auto	is_near1(Point	a,	Point	b,	float	th)	{

	auto	th_sqrd	=	std::pow(th,	2);

	auto	dist_sqrd	=	a.distance_squared(b);

	return	dist_sqrd	<	th_sqrd;

}

	

The	 is_near0()	 method	 has	 the	 advantage	 of	 being	more	 readable,	 whereas	 the
is_near1()	method	has	the	advantage	of	being	faster,	since	std::pow(th,	2)	is	much
faster	than	the	std::sqrt(th)	method	invoked	inside	the	a.distance(b)	call	of	is_near0.

The	optimal	solution	would	be	to	have	the	syntax	of	is_near0	and	the	performance
of	is_near1.	

In	 order	 to	 achieve	 this,	 instead	 of	 returning	 a	 float	 value	 from	 the	 distance()

member	 function,	 we	 return	 an	 intermediate	 object	 hidden	 to	 the	 user.
Depending	 on	 how	 the	 user	 uses	 the	 hidden	 object,	 it	 should	 not	 perform	 the
std::sqrt()	operation	until	 it	 is	really	required.	This	object	will	be	referred	to	as
DistProxy.

Implementing	 the	 DistProxy
object
Now,	let's	create	the	proxy	object	for	distances	between	points:	DistProxy.	A	point
distance	 simply	 consists	 of	 the	 squared	 distance	 between	 two	 points	 and	 a
comparison	to	a	distance.	The	actual	squared	distance	is	never	exposed	in	order
to	 prevent	 the	 library	 user	 from	mixing	 the	 squared	 distance	 with	 the	 regular
distance.	 That	 is,	 if	 we	 do	 not	 take	 precaution,	 the	 user	 of	 the	 code	 might
accidentally	write	the	following:

auto	a	=	Point{23,	45};	

auto	b	=	Point{55,	66};	

auto	spot	=	Point{34,	55};	

//	Subtle	bug	below	as	distance	is	compared	to	distance_squared	

bool	a_is_nearest	=	a.distance(spot)	<	b.distance_squared(spot);	

Thus,	he	may	end	up	accidentally	comparing	the	squared	distance	with	the	real
distance,	yielding	hard-to-track	bugs.

The	proxy	object,	DistProxy,	is	implemented	as	follows,	taking	the	coordinates	of
the	two	points	as	input	and	a	method	that	compares	it	with	a	regular	distance:

class	DistProxy{

public:

		DistProxy(float	x0,	float	y0,	float	x1,	float	y1)	

		:	dist_sqrd_{	std::pow(x0-x1,	2)	+	std::pow(y0-y1,	2)	}	{}

		auto	operator<(float	dist)	const	{	return	dist_sqrd_	<	dist*dist;	}

private:

		float	dist_sqrd_{};

};

Then,	we	rewrite	the	Point	class	to	return	DistProxy	 instead	of	the	actual	distance
as	float:

class	Point	{

public:

		Point(float	x,	float	y)	:	x_{x},	y_{y}	{}

		auto	distance(const	Point&	p)	const	{	

				return	DistProxy{x_,	y_,	p.x_,	p.y_};	}

		float	x_{};

		float	y_{};

};

The	is_near0()	method	now	performs	its	comparison	much	faster,	as	the	std::sqrt()

operation	is	omitted	in	favor	of	std::pow(x,	2),	which	is	a	much	faster	operation,
especially	when	the	second	parameter	is	an	integer	(2).

Moreover,	the	nicest	thing	is	that	it	all	happens	under	the	hood;	the	implementor
of	the	is_near0()	function	can	compare	the	result	of	the	distance	function	with	a
floating	point	value,	 as	 if	 the	 distance	 function	 returned	 a	 floating	 point	 value
right	away.

Expanding	 DistProxy	 to
something	more	useful
Now	that	we	have	the	basis,	we	want	to	make	the	DistProxy	class	more	useful.	For
example,	the	user	might	actually	want	to	utilize	the	received	distance	or	compare
it	with	other	distances.

Let's	 expand	 the	 DistProxy	 class	 accordingly,	 with	 a	 comparator	 to	 another
DistProxy	class	and	an	implicit	cast	to	float:

class	DistProxy{

public:

		DistProxy(float	x0,	float	y0,	float	x1,	float	y1)

		:	dist_sqrd_{std::pow(x0	-	x1,	2)	+	std::pow(y0	-	y1,	2)}

		{}

		auto	operator==(const	DistProxy&	dp)	const	{	

				return	dist_sqrd_	==	dp.dist_sqrd_;	}

		auto	operator<(const	DistProxy&	dp)	const	{	

				return	dist_sqrd_	<	dp.dist_sqrd_;	}

		auto	operator<(float	dist)	const	{	

				return	dist_sqrd_	<	dist*dist;	}

		//	Implicit	cast	to	float

		operator	float()	const	{	return	std::sqrt(dist_sqrd_);	}

private:

		float	dist_sqrd_{};

};

Comparing	 distances	 with
DistProxy
So	 let's	 see	how	 the	 	 PointDistance	 proxy	class	 looks	 in	 action.	 In	 this	 example,
we'll	determine	which	of	the	points,	a	or	b,	that	are	closest	to	bingo.	Note	how	the
code	 syntactically	 looks	exactly	 the	 same	as	had	we	not	utilized	a	 PointDistance
proxy	class:

auto	bingo	=	Point{31,	11};

auto	a	=	Point{23,	42};

auto	b	=	Point{33,	12};

bool	a_is_nearest	=	a.distance(bingo)	<	b.distance(bingo);

Under	the	hood,	the	final	statement	is	expanded	to	something	similar	to	this:

//	These	"DistProxy"	proxy	objects	are	never	visible	from	the	outside

DistProxy	a_to_bingo	=	a.distance(bingo);

DistProxy	b_to_bingo	=	b.distance(bingo);

//	Member	operator<	on	DistProxy	is	invoked,	which	compares	member	dist_sqrd_

auto	a_is_nearest	=	a_to_bingo	<	b_to_bingo;

Sweet!	The	std::sqrt()	operation	is	omitted	while	the	interface	of	the	Point	class	is
still	intact.	Let's	see	how	it	looks	if	we	need	the	actual	distance.

Calculating	 distances	 with
DistProxy
When	requesting	the	actual	distance,	the	calling	code	changes	a	teeny-weeny	bit;
we	have	to	explicitly	parse	the	DistProxy	object	to	float;	that	is,	we	can't	just	use
auto	as	usual:

auto	a	=	Point{23,	42};

auto	b	=	Point{33,	12};

float	dist	=	a.distance(b);	//	Note	that	we	cannot	use	auto	here

If	we	were	to	just	write	auto,	the	dist	object	would	be	of	the	DistProxy	type	rather
than	 float.	 We	 do	 not	 want	 the	 users	 of	 our	 code	 base	 to	 explicitly	 handle
DistProxy	objects;	proxy	objects	should	operate	in	the	dark	and	only	their	results
should	be	utilized	(in	this	case,	the	comparison	result	or	the	actual	distance	value
is	float).	Even	though	we	cannot	hide	proxy	objects	completely,	let's	see	how	we
can	tighten	them	to	prevent	misuse.

Preventing	 the	 misuse	 of
DistProxy
You	may	 have	 noted	 that	 there	 can	 be	 a	 case	where	 using	 the	 	 DistProxy	 class
might	lead	to	worse	performance—if	the	user	of	the	class	were	to	use	the	Point
class	 like	 this,	 that	 is,	 if	 the	 std::sqrt()	 method	 were	 invoked	 multiple	 times
according	to	the	programmer's	requests	for	the	distance	value:

auto	a	=	Point{23,	42};	

auto	b	=	Point{33,	12};	

auto	dist	=	a.distance(b);	

float	dist_float0	=	dist;	//	Assignment	invoked	std::sqrt()

float	dist_float1	=	dist;	//	std::sqrt()	of	dist	is	invoked	again

Although	 a	 stupid	 example,	 there	 can	 be	 real-world	 cases	 where	 this	 might
happen,	and	we	want	 to	 force	 the	user	 to	only	 invoke	 operator	float()	 once	 per
DistProxy	 object.	 In	 order	 to	 prevent	 this	 we	make	 the	 operator	 float()	 member
function	 invocable	 only	 on	 r-values;	 that	 is,	 the	 DistProxy	 object	 can	 only	 be
converted	to	a	floating	point	if	it	is	not	tied	to	a	variable.

We	force	this	behavior	by	using	&&	as	a	modifier	on	the	operator	float()	member
function.	 The	 &&	 modifier	 works	 just	 like	 a	 const	 modifier,	 but	 where	 a	 const
modifier	 forces	 the	 member	 function	 to	 not	 modify	 the	 class,	 the	 &&	 modifier
forces	the	function	to	only	invoke	on	temporary	classes.

The	modification	looks	like	this:

operator	float()	const	&&	{	return	std::sqrt(dist_sqrd_);	}	

If	we	were	to	invoke	operator	float()	on	a	DistProxy	object	that	is	tied	to	a	variable,
such	 as	 the	 dist	 object	 in	 the	 following	 example,	 the	 compiler	 will	 refuse	 to
compile:

auto	a	=	Point{23,	42};	

auto	b	=	Point{33,	12};	

auto	dist	=	a.distance(b);	//	"dist"	is	of	type	DistProxy

float	dist_float	=	dist;	

However,	 we	 can	 still	 invoke	 operator	 float()	 directly	 on	 the	 a.distance(b)

operation,	like	this:

auto	a	=	Point{23,	42};	

auto	b	=	Point{33,	12};	

float	dist_float	=	a.distance(b);	

A	temporary	DistProxy	class	will	still	be	created	in	the	background,	but	since	it	is
not	 tied	to	a	variable,	we	are	allowed	to	implicitly	convert	 it	 to	float.	This	will
prevent	 such	 misuse	 as	 invoking	 operator	 float()	 several	 times	 on	 a	 DistProxy
object.

Performance	evaluation
For	the	sake	of	it,	let's	see	how	much	performance	we've	actually	gained.	Here	is
a	 function	 that	 finds	 the	 distance	 to	 a	 specified	 point	 in	 a	 vector	 of	 randomly
generated	points:

//	Generate	10000	random	points	

auto	points	=	std::vector<Point>{};	

for(size_t	i	=	0;	i	<	10000;	++i)	{	

		auto	x	=	static_cast<float>(std::rand());	

		auto	y	=	static_cast<float>(std::rand());	

		points.emplace_back(x,	y);	

}	

//	Find	the	distance	to	the	nearest	point	

auto	needle	=	Point{135.0f,	246.0f};

auto	nearest_point	=	*std::min_element(

		points.begin(),		

		points.end(),		

		[&needle](const	Point&	a,	const	Point&	b)	{

				return	a.distance(needle)	<	b.distance(needle);

		});

float	dist	=	nearest_point.distance(needle);

Using	DistProxy,	 this	piece	of	code	is	executed	twice	as	fast	(measured	using	an
Intel	i7	7700k	CPU).	And,	as	you	can	see,	the	syntax	is	exactly	the	same	as	if	we
did	not	implement	any	optimization.

Creative	 operator	 overloading
and	proxy	objects
As	you	know,	C++	has	the	ability	to	overload	operators	that	are	usually	utilized
to	make	 custom	math	 objects	 that	 can	 be	 used	 with	 standard	math	 operators,
such	 as	 plus,	 minus,	 and	 so	 on,	 in	 order	 to	 make	 the	 code	 more	 readable.
Another	 example	 is	 the	 stream	 operator,	 which	 in	 the	 standard	 library	 is
overloaded	in	order	to	convert	the	objects	to	streams,	as	shown	below:	

std::cout	<<	"iostream	"	<<	"uses	"	<<	"overloaded	"	<<	"operators.";	

Some	 libraries,	however,	use	 the	overloading	 in	other	contexts.	The	Range	V3
library,	as	discussed	earlier,	uses	overloading	to	compose	views	like	this:

namespace	rv	=	ranges::view;

auto	odd_positive_numbers	=	

		std::vector<int>{-5,	-4,	-3,	-2,	-1,	0,	1,	2,	3,	4,	5}		

		|	rv::filtered([](auto	v){	return	v	>	0;	}		

		|	rv::filtered([](auto	v){	return	(v	%	2)	==	1;	}		

		;	

Other	libraries	have	used	it	to	create	an	infix	operator	so	that	we	can	emulate	the
Python	keyword,	in,	like	this:

bool	has_three	=	3	<in>	{1,	2,	3,	4,	5};	

Although	 most	 people	 would	 probably	 argue	 against	 creative	 operator
overloading,	it	can	be	educational	to	learn	how	it's	implemented.

The	pipe	operator	as	an	extension
method
Compared	 to	 other	 languages,	 for	 example,	 C#	 and	 JavaScript,	 C++	 does	 not
support	extension	methods,	that	is,	you	cannot	extend	a	class	locally	with	a	new
member	function.

For	example,	you	cannot	extend	std::vector	with	a	contains(T	val)	 function	 to	be
used	like	this:

auto	numbers	=	std::vector<int>{1,2,3,4};	

auto	has_two	=	numbers.contains(2);	

However,	you	can	overload	the	pipe	operator	to	achieve	this,	almost	equivalent,
syntax:

	auto	has_two	=	numbers	|	contains(2);	

The	pipe	operator
Let's	see	how	we	can	implement	a	simple	pipe	operator	so	that	we	can	write	the
following:

auto	numbers	=	std::vector<int>{1,	3,	5,	7,	9};	

auto	seven	=	7;	

bool	has_seven	=	numbers	|	contains(seven);	

The	contains	function	used	with	a	pipeable	syntax	has	two	arguments:	numbers	and
seven.	As	 the	 left	 argument,	 numbers	 could	be	 anything;	we	need	 the	overload	 to
contain	something	unique	on	the	right	side.

So,	we	create	a	struct	named	ContainsProxy,	which	holds	onto	the	right	argument;
this	way,	the	overloaded	pipe	operator	can	recognize	the	overload:

template	<typename	T>

struct	ContainsProxy	{	const	T&	value_;	};

template	<typename	Range,	typename	T>

auto	operator|(const	Range&	r,	const	ContainsProxy<T>&	proxy)	{

		const	auto&	v	=	proxy.value_;

		return	std::find(r.begin(),	r.end(),	v)	!=	r.end();

}

Now	we	can	use	it	like	this;	the	pipe	operator	works,	although	the	syntax	is	still
ugly	as	we	need	to	specify	the	type:

auto	numbers	=	std::vector<int>{1,3,5,7,9};	

auto	seven	=	7;	

auto	proxy	=	ContainsProxy<decltype(seven)>{seven};	

bool	has_seven	=	numbers	|	proxy;	

In	order	to	make	the	syntax	neater,	we	can	simply	make	a	convenience	function
take	the	value	and	create	a	proxy	containing	the	type:

template	<typename	T>

auto	contains(const	T&	v)	{	return	ContainsProxy<T>{v};	}

That's	all	we	need;	we	can	now	use	it	for	any	type	or	container:

auto	penguins	=	std::vector<std::string>{"Ping","Roy","Silo"};	

bool	has_silo	=	penguins	|	contains("Silo");

The	infix	operator
First	of	all,	adding	an	infix	operator	is	both	a	hack	and,	more	or	less,	an	abuse	of
operator	 overloading.	 What	 you	 actually	 do	 is	 overload	 both	 the	 less	 than
(operator<)	and	greater	than	(operator>)	operators	in	order	to	make	something	that
looks	like	an	infix	operator.

If	nothing	less,	it	can	be	used	to	show	to	your	Python-fan	friends,	who	praise	the
in	keyword	in	Python,	that	you	can	implement	something	similar	in	C++.

Essentially,	 we	 want	 to	 see	 whether	 an	 object	 is	 contained	 in	 a	 list	 with	 the
following	syntax:

auto	asia	=	std::vector<std::string>{"Korea","Philippines","Macau"};	

auto	africa	=	std::vector<std::string>{"Senegal","Botswana","Guinea"};	

auto	is_botswana_in_asia	=	"Botswana"	<in>	asia;	

auto	is_botswana_in_africa	=	"Botswana"	<in>	africa;	

//	is_botswana_in_asia	is	false	

//	is_botswana_in_africa	is	true	

As	with	the	pipe	overload,	we	create	a	proxy,	but	in	this	case,	the	proxy	holds	the
left	value	of	the	operation:

template	<typename	T>	struct	InProxy	{	const	T&	val_;	};	

We	then	define	an	empty	struct	called	in_tag	and	instantiate	a	static	object	called
in	like	this.	Note	that	the	in	object	is	only	a	convenience	in	order	to	invoke	the
infix	operator	using	<in>	rather	than	<in_tag{}>,	that	is,	to	remove	the	curly	braces:

struct	InTag{};	

constexpr	static	auto	in	=	InTag{};	

The	InTag	type	is	then	used	for	operator<,	so	it	can	recognize	the	overload:

template	<typename	T>

auto	operator<(const	T&	v,	const	InTag&)	{	return	InProxy<T>{v};	}

Finally,	 we	 overload	 the	 greater	 than	 operator	 to	 take	 in_proxy	 as	 the	 first
argument	 and	 the	 right	 side	 as	 its	 second	 argument.	 It	 also	 holds	 the	 actual
function:

template	<typename	T,	typename	Range>

auto	operator>(const	InProxy<T>&	p,	const	Range&	r)	{

		return	std::find(r.begin(),	r.end(),	p.val_)	!=	r.end();

}

Now	we	can	use	it	like	this:

auto	africa	=	std::vector<std::string>{	"Kenya",	"Ethiopia",	"Kongo"};

auto	sweden	=	std::string{"Sweden"};

auto	is_sweden_in_africa	=	sweden	<in>	africa;	

//	is_sweden_in_africa	is	false	

Under	the	hood,	the	code	expands	to	the	following	code:

auto	africa	=	std::vector<std::string>{	"Kenya",	"Ethiopia",	"Kongo"};

auto	sweden	=	std::string{"Sweden"};

InTag	in_tag{};

InProxy<std::string>	p	=	sweden	<	in_tag;

bool	is_sweden_in_africa	=	p	>	africa;	//	is_sweden_in_africa	is	false

Further	reading
The	 examples	 covered	 in	 this	 section	 show	 a	 rudimentary	 approach	 to
implementing	the	pipe	and	infix	operators.	Libraries	such	as	Range	V3	and	the
Fit	 library	 by	 Paul	 Fultz,	 available	 at	 https://github.com/pfultz2/Fit,	 implement
adapters	 that	 take	 a	 regular	 function	 and	 give	 them	 the	 ability	 to	 be	 invoked
using	the	pipe	syntax.

https://github.com/pfultz2/Fit

Summary
In	 this	 chapter,	 you	 learned	 the	 difference	 between	 lazy	 evaluation	 and	 eager
evaluation.	You	also	learned	how	to	use	hidden	proxy	objects	to	implement	lazy
evaluation	behind	 the	 scenes,	meaning	 that	 you	 understood	 how	 to	 implement
lazy	evaluation	optimizations	while	preserving	an	easy-to-use	interface	for	your
classes.

This	makes	writing	optimized	code	much	more	readable	and	less	error-prone,	as
the	 complex	 optimizations	 can	 be	 kept	 inside	 your	 library	 classes	 instead	 of
having	it	exposed	in	the	application	code.

Concurrency
In	 this	 chapter,	 we	 are	 going	 to	 explore	 how	 to	write	 concurrent	 programs	 in
C++	 using	 threads	 with	 shared	 memory.	 We	 will	 look	 at	 ways	 to	 make
concurrent	programs	correct	by	writing	programs	 that	 are	 free	 from	data	 races
and	deadlocks.	This	chapter	will	also	contain	some	pieces	of	advice	on	how	to
make	concurrent	programs	run	with	low	latency	and	high	throughput.

Before	we	go	any	 further,	 it	 should	be	 said	 that	 this	 chapter	 is	not	 a	 complete
introduction	 to	 concurrent	 programming,	 nor	 will	 it	 cover	 all	 the	 details	 of
concurrency	in	C++.	Instead,	this	chapter	is	an	introduction	to	the	core	building
blocks	of	writing	concurrent	programs	 in	C++,	mixed	with	some	performance-
related	guidelines.	If	you	haven't	been	writing	concurrent	programs	before,	it	is
probably	 wise	 to	 go	 through	 some	 introduction	 texts	 to	 cover	 the	 theoretical
aspects	 of	 concurrent	 programming	 first.	 Concepts	 such	 as	 deadlocks,	 critical
sections,	 monitors,	 condition	 variables,	 and	 mutexes,	 will	 be	 very	 briefly
discussed,	but	that	serves	more	as	a	refresher	than	a	thorough	introduction	to	the
concepts.

The	chapter	includes	the	following:

The	fundamentals	of	concurrent	programming,	including	parallel	execution,
shared	memory,	data	races,	and	deadlocks
An	 introduction	 to	 the	C++	 thread	 support	 library,	 the	atomic	 library,	 and
the	C++	memory	model
A	short	example	of	lock-free	programming
Performance	guidelines

Understanding	 the	 basics	 of
concurrency
A	concurrent	program	can	execute	multiple	 tasks	at	 the	same	 time.	Concurrent
programming	is,	in	general,	a	lot	harder	than	sequential	programming,	but	there
are	several	reasons	why	a	program	may	benefit	from	being	concurrent:

Efficiency:	 Smartphones	 and	 desktop	 computers	 of	 today	 have	 multiple
CPU	 cores	 that	 can	 execute	 multiple	 tasks	 in	 parallel	 if	 your	 program
allows	it	to.	If	you	manage	to	split	a	big	task	into	subtasks	that	can	be	run	in
parallel,	it	is	theoretically	possible	to	divide	the	running	time	of	the	big	task
by	the	number	of	CPU	cores.	For	programs	that	run	on	machines	with	one
single	core,	there	can	still	be	a	gain	in	performance	if	a	task	is	I/O	bound.
While	one	subtask	is	waiting	for	I/O,	other	subtasks	can	still	perform	useful
work	on	the	CPU.
Responsiveness	 and	 low	 latency	 contexts:	 For	 applications	 with	 a
graphical	 user	 interface,	 it	 is	 important	 to	 never	 block	 the	UI	 so	 that	 the
application	 becomes	 unresponsive.	 To	 prevent	 unresponsiveness,	 it	 is
common	 to	 let	 long-running	 tasks	execute	 in	 separate	background	 threads
so	that	the	 thread	responsible	for	 the	UI	 is	never	blocked	by	long-running
tasks.	Another	example	where	 low	latency	matters	 is	 real-time	audio.	The
function	responsible	for	producing	buffers	of	audio	data	 is	being	executed
in	a	separate	high-priority	thread,	while	the	rest	of	the	program	can	run	in
lower-priority	threads	to	handle	the	UI	and	so	on.
Simulation:	 Concurrency	 can	make	 it	 easier	 to	 simulate	 systems	 that	 are
concurrent	 in	 the	 real	 world.	 After	 all,	 most	 things	 around	 us	 happen
concurrently,	and	sometimes	it	is	very	hard	to	model	concurrent	flows	with
a	 sequential	 programming	model.	We	will	 not	 focus	on	 simulation	 in	 this
book,	but	instead	focus	on	performance-related	aspects	of	concurrency.

What	 makes	 concurrent
programming	hard?
There	are	a	couple	of	reasons	why	concurrent	programming	is	hard,	and,	if	you
have	 been	 writing	 concurrent	 programs	 before,	 you	 have	 most	 likely	 already
encountered	the	ones	listed	here:

1.	 Sharing	state	between	multiple	threads	in	a	safe	manner	is	hard.	Whenever
we	 have	 data	 that	 can	 be	 read	 and	written	 to	 at	 the	 same	 time,	 we	 need
some	 way	 of	 protecting	 that	 data	 from	 data	 races.	 We	 will	 see	 a	 lot	 of
examples	of	this	later	on.

2.	 Concurrent	programs	are	usually	more	complicated	to	reason	about	because
of	the	multiple	parallel	execution	flows.

3.	 Concurrency	complicates	debugging.	Bugs	that	occur	because	of	data	races
can	 be	 very	 hard	 to	 debug	 since	 they	 are	 dependent	 on	 how	 threads	 are
being	scheduled.	These	kinds	of	bugs	can	be	hard	to	reproduce	and	in	the
worst	case,	they	cease	to	exist	when	running	the	program	using	a	debugger.
Sometimes	an	innocent	debug	trace	to	the	console	could	change	the	way	a
multithreaded	 program	 behaves	 and	make	 the	 bug	 temporarily	 disappear.
You	have	been	warned!

Concurrency	and	parallelism
Concurrency	 and	 parallelism	 are	 two	 terms	 that	 are	 sometimes	 used
interchangeably.	 However,	 they	 are	 not	 the	 same	 and	 it	 is	 important	 to
understand	 the	 difference.	 A	 program	 is	 said	 to	 run	 concurrently	 if	 it	 has
multiple	 individual	 control	 flows	 running	 during	 overlapping	 time	 periods.	 In
C++,	each	individual	control	flow	is	represented	by	a	thread.	The	threads	may	or
may	 not	 execute	 at	 the	 exact	 same	 time,	 though.	 If	 they	 do,	 they	 are	 said	 to
execute	 in	parallel.	For	a	concurrent	program	 to	 run	 in	parallel,	 it	needs	 to	be
executed	 on	 a	machine	 that	 has	 support	 for	 parallel	 execution	 of	 instructions:
that	is,	machines	with	multiple	CPU	cores.

At	first	glance,	it	might	seem	obvious	that	we	always	want	concurrent	programs
to	 run	 in	 parallel	 if	 possible,	 for	 efficiency	 reasons.	 However,	 that	 is	 not
necessarily	always	true.	A	lot	of	synchronization	primitives	we	will	cover	in	this
chapter	are	required	only	to	support	the	parallel	execution	of	threads.	Concurrent
tasks	that	are	not	run	in	parallel	do	not	require	the	same	locking	mechanisms	and
can	be	a	lot	easier	to	reason	about.

Time	slicing
"How	 are	 concurrent	 threads	 executed	 on	 machines	 with	 only	 a	 single	 CPU
core?"	you	might	ask.	The	answer	is	time	slicing.	It	is	the	same	mechanism	that
is	 being	 used	 by	 the	 operating	 system	 to	 support	 concurrent	 execution	 of
processes.	In	order	to	understand	time	slicing,	let's	assume	we	have	two	separate
sequences	of	instructions	that	should	be	executed	concurrently,	as	shown	in	 the
following	figure:

Two	separate	sequences	of	instructions	executed	in	two	threads	labeled	T1	and	T2

The	 numbered	 boxes	 represent	 instructions.	 Each	 sequence	 of	 instructions	 is
executed	 in	 separate	 threads	 labeled	 T1	 and	 T2.	 The	 operating	 system	 will
schedule	each	thread	to	have	some	limited	time	on	the	CPU	and	then	perform	a
context	switch.	The	context	switch	stores	the	current	state	of	the	running	thread
and	 loads	 the	 state	 of	 the	 thread	 that	 should	 be	 executed.	 This	 is	 done	 often
enough	so	that	it	appears	as	if	the	threads	are	running	at	the	same	time.	A	context
switch	 is	 time-consuming	 though,	 and	 most	 likely	 generates	 a	 lot	 of	 cache
misses	each	 time	a	new	 thread	gets	 to	execute	on	a	CPU	core.	Therefore,	you
don't	want	context	switches	to	happen	too	often.

The	 following	 figure	 shows	 a	 possible	 execution	 sequence	 of	 the	 two	 threads
that	are	being	scheduled	on	a	single	CPU:

A	possible	execution	of	two	threads	which	are	being	scheduled	on	a	single	core.	The	red	dots	indicate
context	switches

The	first	 instruction	of	 thread	T1	 is	starting,	and	 is	 then	followed	by	a	context
switch	 to	 let	 the	 other	 thread	 (T2)	 execute	 the	 first	 two	 instructions.	 As
programmers,	 we	 must	 make	 sure	 that	 the	 program	 can	 run	 as	 expected,
regardless	 of	 how	 the	 operating	 system	 scheduler	 is	 scheduling	 the	 tasks.	 If	 a
sequence,	 for	 some	 reason,	 should	 be	 illegal,	 there	 are	 ways	 to	 control	 the
order	in	which	the	instructions	get	executed	by	using	locks—more	on	that	in	the
sections	to	come.

If	a	machine	has	multiple	CPU	cores,	it	is	possible	to	execute	the	two	threads	in
parallel.	However,	there	is	no	guarantee	(it's	even	unlikely)	that	the	two	threads
will	execute	on	one	core	each	throughout	the	lifetime	of	the	program.	The	entire
system	 is	 sharing	 time	 on	 the	 CPU	 so	 the	 scheduler	 will	 let	 other	 processes
execute	as	well.	This	is	one	of	the	reasons	why	the	threads	are	not	scheduled	on
dedicated	cores.

The	following	figure	shows	the	execution	of	the	same	two	threads,	but	now	they
are	running	on	a	machine	with	two	CPU	cores.	As	can	be	seen,	the	second	and
third	instructions	of	the	first	thread	(white	boxes)	are	being	executed	at	the	exact
same	 time	 as	 the	 other	 thread	 is	 executing—the	 two	 threads	 are	 executing	 in
parallel:

Two	threads	are	executing	on	a	multicore	machine.	This	makes	it	possible	to	execute	the	two	threads	in
parallel

Shared	memory
Threads	created	in	the	same	process	share	the	same	virtual	memory.	This	means
that	 a	 thread	 can	 access	 any	 data	 that	 is	 addressable	 within	 the	 process.	 The
operating	 system,	 which	 protects	 memory	 between	 processes	 using	 virtual
memory,	does	nothing	to	protect	us	from	accidentally	accessing	memory	inside	a
process	 that	 was	 not	 intended	 to	 be	 shared	 among	 different	 threads.	 Virtual
memory	 only	 protects	 us	 from	 accessing	memory	 allocated	 in	 other	 processes
than	our	own.

Sharing	memory	between	multiple	threads	can	be	a	very	efficient	way	to	handle
communication	 between	 threads.	 However,	 sharing	 memory	 in	 a	 safe	 way
between	 threads	 is	 one	 of	 the	 major	 challenges	 when	 writing	 concurrent
programs	 in	C++.	You	should	always	strive	 to	minimize	 the	number	of	 shared
resources	between	threads.

Fortunately,	not	all	memory	is	shared	by	default.	Each	thread	has	its	own	stack
for	storing	 local	variables	and	other	data	necessary	for	handling	function	calls.
Unless	a	thread	passes	references	or	pointers	to	local	variables	to	other	threads,
no	other	thread	will	be	able	to	access	the	stack	from	that	thread.	This	is	one	more
reason	to	use	the	stack	as	much	as	possible	(if	you	are	not	already	convinced	that
the	 stack	 is	 a	 good	 place	 for	 your	 data	 after	 reading	 Chapter	 7,	 Memory
Management).

There	is	also	thread	local	storage,	sometimes	abbreviated	to	TLS,	which	can	be
used	for	storing	variables	that	are	global	in	the	context	of	a	thread	but	which	are
not	shared	between	threads.	A	thread	local	variable	can	be	thought	of	as	a	global
variable	where	each	thread	has	its	own	copy.

Everything	else	 is	shared	by	default:	 that	 is,	dynamic	memory	allocated	on	 the
heap,	global	variables,	and	static	local	variables.	Whenever	you	have	shared	data
that	 is	 mutated	 by	 some	 thread,	 you	 need	 to	 ensure	 that	 no	 other	 thread	 is
accessing	that	data	at	the	same	time	or	you	will	have	a	data	race.

Remember	 the	 figure	 from	 the	Process	memory	 section	 of	 Chapter	 7,	Memory
Management,	which	illustrated	the	virtual	address	space	of	a	process?	Here	it	is

again,	 but	 modified	 to	 show	 how	 it	 looks	 when	 a	 process	 contains	 multiple
threads.	As	you	can	 see	 in	 the	 following	 figure,	 each	 thread	has	 its	 own	 stack
memory,	but	there	is	only	one	heap	for	all	threads:

A	possible	layout	of	the	virtual	address	space	for	a	process

The	process	contains	three	threads	in	this	example,	and	each	thread	has	its	own
dedicated	stack	memory.	The	heap	memory	is	by	default	shared	by	all	threads.

Data	races
A	data	race	 happens	when	 two	 threads	 are	 accessing	 the	 same	memory	 at	 the
same	time	and	at	least	one	of	the	threads	is	mutating	the	data.	If	your	program
has	 a	 data	 race,	 it	 means	 that	 your	 program	 has	 undefined	 behavior.	 In	 other
words,	you	can	under	no	circumstances	allow	data	 races	 in	your	program.	The
compiler	usually	doesn't	warn	you	about	data	races	since	they	are	hard	to	detect
at	compile	time.

The	 following	 image	 shows	 two	 threads	 that	 are	 going	 to	 update	 an	 integer
called	 counter.	 Imagine	 that	 we	 have	 two	 threads	 that	 are	 both	 incrementing	 a
global	counter	variable	by	the	instruction	++counter.	It	turns	out	that	incrementing
an	int	might	 involve	multiple	CPU	 instructions.	 This	 can	 be	 done	 in	 different
ways	on	different	CPUs,	but	 let's	pretend	 that	 ++counter	 generates	 the	 following
made-up	machine	instructions:

	R:		Read	counter	from	memory	

+1:		Increment	counter	

	W:		Write	new	counter	value	to	memory	

Now,	 if	 we	 have	 two	 threads	 that	 are	 going	 to	 update	 the	 counter	 value	 that
initially	 is	 42,	 we	would	 expect	 it	 to	 become	 44	 after	 both	 threads	 have	 run.
However,	 as	we	can	 see	 in	 the	 following	 figure,	 there	 is	no	guarantee	 that	 the
instructions	will	be	executed	sequentially	to	guarantee	a	correct	increment	of	the
counter	variable:

The	two	threads	are	both	incrementing	the	same	shared	variable

Without	a	data	race,	the	counter	would	have	reached	the	value	44,	but	instead,	it

only	reaches	43.

In	this	example,	both	threads	read	the	value	42	and	incremented	that	value	to	43.
Then,	they	both	write	the	new	value,	43,	which	means	that	we	never	reached	the
correct	answer	of	44.	Had	the	first	thread	been	able	to	write	the	value	43	before
the	next	 thread	started	 to	 read,	we	would	have	ended	up	with	44	 instead.	Note
also	 that	 this	would	have	been	possible	 even	 if	 there	was	only	one	CPU	core.
The	scheduler	could	have	scheduled	the	two	threads	in	a	similar	way	so	that	both
read	instructions	were	executed	before	any	writes.

Again,	this	is	one	possible	scenario,	but	the	important	thing	is	that	the	behavior
is	undefined.	Anything	could	happen	when	your	program	has	a	data	race.

How	can	we	avoid	data	races?	There	are	two	main	options:

Use	 an	 atomic	 data	 type	 instead	 of	 the	 int.	 This	will	 tell	 the	 compiler	 to
execute	the	read,	increment,	and	write	atomically.	In	general,	this	approach
works	if	the	size	of	the	data	type	we	are	modifying	is	less	than	or	equal	to
the	word	size	of	the	machine.	We	will	spend	more	time	discussing	atomic
data	types	later	in	this	chapter.
Use	a	mutually	exclusive	lock	(mutex)	that	guarantees	that	multiple	threads
never	execute	a	critical	section	at	the	same	time.	A	critical	section	is	a	place
in	 the	 code	 that	must	 not	 be	 executed	 simultaneously	 since	 it	 updates	 or
reads	shared	memory	that	potentially	could	generate	data	races.

It	is	also	worth	emphasizing	that	immutable	data	structures—data	structures	that
are	never	being	changed—can	be	accessed	by	multiple	threads	without	any	risk
of	data	races.	Minimizing	the	use	of	mutable	objects	is	good	for	many	reasons,
but	 it	 becomes	 even	 more	 important	 when	 writing	 concurrent	 programs.	 A
common	pattern	is	to	always	create	new	immutable	objects	instead	of	mutating
existing	 objects.	When	 the	 new	 object	 is	 fully	 constructed	 and	 represents	 the
new	state,	it	can	be	swapped	with	the	old	object.	In	that	way,	we	can	minimize
the	critical	 sections	of	our	code.	Only	 the	swap	 is	a	critical	section,	and	hence
needs	to	be	protected	by	an	atomic	operation	or	a	mutex.

Mutex
A	mutex,	 short	 for	 mutual	 exclusion	 lock,	 is	 a	 synchronization	 primitive	 for
avoiding	data	races.	A	thread	that	needs	to	enter	a	critical	section	is	first	locking
the	mutex	(locking	is	sometimes	also	called	acquiring	a	mutex	lock).	This	means
that	no	other	thread	can	lock	the	same	mutex	until	the	first	thread	that	holds	the
lock	has	 unlocked	 the	mutex.	 In	 that	way,	 the	mutex	 guarantees	 that	 only	 one
thread	at	a	time	is	inside	a	critical	section.

In	the	following	figure,	we	can	see	how	the	example	of	the	race	condition	can	be
avoided	by	using	a	mutex.	The	instruction	labeled	L	is	a	lock	instruction	and	the
instruction	labeled	U	is	an	unlock	instruction.	The	first	thread	executing	on	Core
0	reaches	the	critical	section	first	and	locks	the	mutex	before	reading	the	value	of
the	counter.	It	then	adds	one	to	the	counter	and	writes	it	back	to	memory.	After
that,	it	releases	the	lock.	

The	second	thread,	executing	on	Core	1,	reaches	the	critical	section	just	after	the
first	thread	has	acquired	the	mutex	lock.	Since	the	mutex	is	already	locked,	the
thread	is	blocked	until	 the	first	 thread	has	updated	 the	counter	undisturbed	and
released	the	mutex:

The	mutex	lock	is	protecting	the	critical	section	and	avoids	the	data	races	on	the	counter	variable

The	net	result	is	that	the	two	threads	can	update	the	mutable	shared	variable	in	a

safe	and	correct	way.	But,	it	also	means	that	the	two	threads	can	no	longer	be	run
in	parallel.	If	most	of	the	work	a	thread	does	cannot	be	done	without	serializing
the	work,	there	is,	from	a	performance	perspective,	no	point	in	using	threads.

The	state	where	the	second	thread	is	blocked	by	the	first	thread	to	finish	its	work
is	called	contention.	This	 is	something	we	strive	 to	minimize,	because	 it	hurts
the	 scalability	 of	 a	 concurrent	 program.	 Adding	 more	 CPU	 cores	 will	 not
improve	performance	if	the	degree	of	contention	is	high.

Deadlock
When	using	mutex	 locks	 to	 protect	 shared	 resources,	 there	 is	 a	 risk	 of	 getting
stuck	in	a	state	called	deadlock.	A	deadlock	can	happen	when	 two	 threads	are
waiting	for	each	other	to	release	their	locks.	None	of	the	threads	can	proceed	and
are	 stuck	 in	 a	 deadlock	 state.	 One	 condition	 that	 needs	 to	 be	 fulfilled	 for	 a
deadlock	to	occur	is	that	one	thread	that	already	holds	a	lock	tries	to	acquire	an
additional	lock.	When	a	system	grows	and	gets	larger,	it	becomes	more	and	more
difficult	to	track	all	locks	that	might	be	used	by	all	threads	running	in	a	system.
This	is	one	reason	for	always	trying	to	minimize	the	use	of	shared	resources,	and
this	demonstrates	the	need	for	exclusive	locking.

The	 following	 figure	 shows	 how	 two	 threads	 are	 in	 a	 waiting	 state,	 trying	 to
acquire	the	lock	held	by	the	other	thread:

Example	of	a	deadlock	state.	Thread	1	and	Thread	2	are	waiting	for	each	other	to	release	their	locks,
respectively

Synchronous	 and	 asynchronous
tasks
We	will	 refer	 to	 synchronous	 and	 asynchronous	 tasks	 or	 function	 calls	 in	 this
chapter.	Synchronous	tasks	are	like	the	ordinary	functions	that	we	are	used	to	in
a	 C++	 program.	 When	 a	 synchronous	 task	 is	 finished	 doing	 whatever	 it	 is
supposed	to	do,	 it	will	 return	 the	control	 to	 the	caller	of	 the	 task.	The	caller	of
the	task	is	waiting	or	blocked	until	the	synchronous	task	has	finished.

An	 asynchronous	 task,	 on	 the	 other	 hand,	 will	 return	 the	 control	 back	 to	 the
caller	 immediately	and	 instead	perform	 its	work	concurrently.	The	sequence	 in
the	following	diagram	shows	the	difference	between	calling	a	synchronous	and
asynchronous	task,	respectively:

Synchronous	versus	asynchronous	calls.	The	asynchronous	task	returns	immediately	but	continue	to	work
after	the	caller	has	regained	control.

If	 you	 haven't	 seen	 asynchronous	 tasks	 before,	 it	 might	 look	 strange	 at	 first,
since	ordinary	 functions	 in	C++	 always	 stop	 executing	when	 they	 encounter	 a
return	statement	or	reach	the	end	of	 the	function	body.	Asynchronous	APIs	are
getting	 more	 and	 more	 common	 though,	 and	 it	 is	 likely	 that	 you	 have
encountered	 them	 before,	 for	 example,	 when	 working	 with	 asynchronous

JavaScript.

Sometimes,	we	use	the	term	blocking	of	operations	that	blocks	the	caller—that
is,	it	makes	the	caller	wait	until	the	operation	has	finished.

Concurrent	programming	in	C++
The	 concurrency	 support	 in	 C++	 makes	 it	 possible	 for	 a	 program	 to	 execute
multiple	 tasks	 concurrently.	As	mentioned	 earlier,	writing	 a	 correct	 concurrent
C++	program	is,	in	general,	a	lot	harder	than	writing	a	program	that	executes	all
tasks	 sequentially	 in	 one	 thread.	 This	 section	 will	 also	 demonstrate	 some
common	 pitfalls	 to	make	 you	 aware	 of	 all	 the	 difficulties	 involved	 in	writing
concurrent	programs.

Concurrency	 support	 was	 first	 introduced	 in	 C++11	 and	 has	 since	 then	 been
extended	 into	 both	 C++14	 and	 C++17.	 Before	 concurrency	 was	 part	 of	 the
language,	concurrency	was	 implemented	with	native	concurrency	support	 from
the	operating	system,	POSIX	Threads	 (pthreads),	or	some	other	 library.	With
concurrency	 support	 directly	 in	 the	 C++	 language,	 we	 can	 now	 write	 cross-
platform	concurrent	programs,	which	 is	great!	However,	 since	 the	concurrency
support	 in	 C++	 is	 rather	 new,	 don't	 be	 surprised	 if	 you	 have	 to	 reach	 for
platform-specific	functionality	when	dealing	with	concurrency	on	your	platform.
It	should	also	be	said	that	the	thread	support	library	is	likely	to	be	extended	quite
a	bit	in	the	next	few	releases	of	C++.	The	need	for	good	concurrency	support	is
increasing	because	of	the	way	hardware	is	being	developed,	and	there	is	a	lot	yet
to	be	discovered	when	it	comes	to	the	efficiency,	scalability,	and	correctness	of
highly	concurrent	programs.

The	thread	support	library
We	will	here	 take	a	 tour	 through	 the	C++	 thread	support	 library	and	cover	 the
most	important	components	of	the	library.

Threads
A	 running	 program	 contains	 at	 least	 one	 thread.	When	 your	 main	 function	 is
being	called,	it	 is	executed	on	a	 thread	usually	referred	 to	as	 the	main	thread.
Each	thread	has	an	identifier,	which	can	be	useful	when	debugging	a	concurrent
program.	The	following	program	prints	the	thread	identifier	of	the	main	thread:

auto	main()	->	int	{	

		std::cout	<<	"Thread	ID:	"	<<		std::this_thread::get_id()	<<	'\n';	

}	

Running	the	preceding	program	might	produce	something	like	this:

	Thread	ID:	0x1001553c0	

It	is	possible	to	make	a	thread	sleep.	Sleep	is	rarely	used	in	production	code	but
can	be	very	useful	during	debugging.	For	example,	if	you	have	a	data	race	that
only	occurs	under	rare	circumstances,	adding	sleep	to	your	code	might	make	it
appear	more	often.	Here	is	how	you	make	the	currently	running	thread	sleep	for
a	second:

std::this_thread::sleep_for(std::chrono::seconds{1});	

Your	program	 should	never	 expose	any	data	 races	after	 inserting
random	 sleeps	 in	 your	 code.	 Your	 program	 may	 not	 work
satisfactorily	after	adding	sleeps:	buffers	may	become	full,	 the	UI
lags,	and	so	on,	but	 it	should	always	behave	 in	a	predictable	and
defined	 way.	 We	 don't	 have	 control	 over	 the	 scheduling	 of	 the
threads,	 and	 random	 sleeps	 simulate	 unlikely	 but	 possible
scheduling	scenarios.

Now,	let	us	create	an	additional	thread	using	the	std::thread	class	from	the	<thread>
header.	It	represents	a	single	thread	of	execution	and	is	usually	a	wrapper	around
an	 operating	 system	 thread.	 The	 print	 function	 will	 be	 invoked	 from	 a	 thread
created	by	us	explicitly:

auto	print()	{	

		std::this_thread::sleep_for(std::chrono::seconds{1});	

		std::cout	<<	"Thread	ID:	"<<		std::this_thread::get_id()	<<	'\n';	

}	

	

auto	main()	->	int	{	

		auto	t1	=	std::thread{print};	

		t1.join();	

		std::cout	<<	"Thread	ID:	"<<		std::this_thread::get_id()	<<	'\n';	

}	

	

When	creating	the	thread,	we	pass	in	a	callable	object	(a	function,	lambda,	or	a
functor)	that	the	thread	will	begin	to	execute	whenever	it	gets	scheduled	time	on
the	CPU.	We	have	added	a	call	to	sleep	to	make	it	obvious	why	we	need	to	call
join	 on	 the	 thread.	When	 a	 std::thread	 object	 is	 destructed,	 it	 must	 have	 been
joined	or	detached	or	it	will	cause	the	program	to	call	std::terminate(),	which	by
default	will	call	std::abort()	if	you	haven't	installed	a	custom	std::terminate_handler.

If	 we	 forget	 to	 call	 either	 join	 or	 detach	 on	 a	 std::thread	 object	 before	 it	 is
destructed,	the	program	will	abort,	as	demonstrated	in	the	following	example:

auto	main()	->	int	{	

			auto	t1	=	std::thread{print};	

			//	Error:	forgot	to	detach	or	join	t1,	program	will	abort	

}	

Always	remember	that	you	have	to	call	either	 join	or	detach	on	a
thread	object	before	it	is	destructed,	or	the	program	will	abort.

In	 the	 preceding	 example,	 the	 join()	 function	 is	 blocking—it	 waits	 until	 the
thread	has	finished	running.	So,	in	the	preceding	example,	the	main	function	will
not	return	until	thread	t1	has	finished	running.	Consider	the	following	line:

t1.join();

Suppose	 we	 detach	 the	 thread	 t1	 by	 replacing	 the	 preceding	 line	 with	 the
following	line:

t1.detach();		

In	such	a	case,	our	main	function	will	end	before	thread	t1	wakes	up	to	print	the
message,	and	as	a	result,	the	program	will	(most	likely)	only	output	the	thread	ID
of	 the	 main	 thread.	 Remember,	 we	 have	 no	 control	 of	 the	 scheduling	 of	 the
threads	and	 it	 is	possible	but	very	unlikely	 that	 the	main	 thread	will	output	 its
message	after	 the	print()	 function	has	had	 time	 to	sleep,	wake	up,	and	print	 its
thread	ID.

Using	detach()	instead	of	join()	in	this	example	also	introduces	another	problem.
We	are	using	std::cout	from	both	threads	without	any	synchronization,	and	since
main()	 is	no	 longer	waiting	 for	 thread	t1	 to	 finish,	 they	both	could	 theoretically
use	std::cout	in	parallel.	Fortunately,	std::cout	is	thread-safe	and	can	be	used	from
multiple	 threads	 without	 introducing	 data	 races,	 so	 there	 is	 no	 undefined
behavior.	However,	it	is	still	possible	that	the	output	generated	by	the	threads	are
interleaved,	resulting	in	something	like:

Thread	ID:	Thread	ID:	0x1003a93400x700004fd4000

If	we	want	 to	 avoid	 the	 interleaved	 output,	we	 need	 to	 treat	 the	 outputting	 of
characters	as	a	critical	section	and	synchronize	access	 to	std::cout.	We	will	 talk
more	about	critical	sections	and	race	conditions	in	a	while,	but	first,	some	details
about	std::thread.

Thread	states
Before	 we	 go	 any	 further,	 we	 should	 make	 sure	 that	 we	 have	 a	 good
understanding	of	what	a	std::thread	object	really	represents	and	in	what	states	it
can	be.	We	haven't	yet	talked	about	what	sort	of	threads	there	normally	are	in	a
system	executing	a	C++	program.	 In	 the	 following	 figure,	we	have	 captured	a
snapshot	of	a	hypothetical	running	system:

Snapshot	of	a	hypothetical	running	system

Starting	 from	 the	 bottom,	 the	 figure	 shows	 the	CPU	and	 its	 hardware	 threads.
Those	are	 the	 execution	units	 on	 the	CPU.	 In	 this	 example,	 the	CPU	provides
four	hardware	threads;	usually	that	means	it	has	four	cores,	but	it	could	be	some
other	configuration.	Some	cores	can	execute	two	hardware	threads,	for	example.
The	total	number	of	hardware	threads	can	be	printed	at	runtime	with	this:

		std::cout	<<	std::thread::hardware_concurrency()	<<	'\n';	

		//	Possible	output:	4	

The	preceding	code	might	also	output	0	if	the	number	of	hardware	threads	cannot
be	determined	on	the	running	platform.

The	 layer	 above	 the	 hardware	 threads	 contains	 the	 operating	 system	 threads.
These	are	 the	 actual	 software	 threads.	The	OS	 scheduler	determines	when	and
how	long	an	OS	thread	is	executed	by	a	hardware	thread.	In	the	preceding	figure,
there	are	currently	three	out	of	six	software	threads	executing.

The	 topmost	 layer	 in	 the	 figure	 contains	 the	 std::thread	 objects.	 A	 std::thread
object	is	nothing	more	(or	nothing	less)	than	an	ordinary	C++	object	that	may	or
may	not	be	associated	with	an	underlying	OS	thread.	Two	instances	of	std::thread
cannot	be	associated	with	the	same	underlying	thread.	In	the	figure,	we	can	see
that	 the	 program	 currently	 has	 three	 instances	 of	 std::thread,	 whereas	 two	 are
associated	with	threads	and	one	is	not.	It	is	possible	to	query	a	std::thread	object
in	 what	 state	 it	 is	 by	 using	 the	 std::thread::joinable	 property.	 A	 thread	 is	 not
joinable	if	it	has	been:

Default	constructed;	that	is,	if	it	has	nothing	to	execute
Moved	from	(its	associated	running	thread	has	been	transferred	to	another
std::thread	object)
Detached	by	a	call	to	detach()
Already	joined	by	a	call	to	join()

Otherwise,	 the	 std::thread	 object	 is	 in	 the	 joinable	 state.	 Remember,	 when
a	std::thread	object	is	destructed,	it	must	no	longer	be	in	the	joinable	state	or	the
program	will	terminate.

Protecting	critical	sections
As	already	mentioned,	our	code	must	not	contain	any	data	races.	Unfortunately,
writing	 code	 with	 data	 races	 is	 very	 easy.	 Finding	 the	 critical	 sections	 and
protecting	them	with	locks	is	something	we	constantly	need	to	think	about	when
writing	concurrent	programs	in	this	style	using	threads.

C++	provides	 us	with	 a	 std::mutex	 class	 that	 can	 be	 used	 for	 protecting	 critical
sections	and	avoiding	data	races.	We	will	demonstrate	how	to	use	a	mutex	with	a
classic	 example	 using	 a	 shared	 mutable	 counter	 variable	 updated	 by	 multiple
threads.

First,	 we	 define	 a	 global	 mutable	 variable	 and	 the	 function	 incrementing	 the
counter:

auto	counter	=	0;	//	Warning!	Global	mutable	variable	

	

auto	increment_counter(int	n)	{	

		for	(int	i	=	0;	i	<	n;	++i)	

				++counter;	

}	

The	 main()	 function	 below	 creates	 two	 threads	 that	 will	 both	 execute	 the
increment_counter()	function.	Note	also	in	this	example	how	we	can	pass	arguments
to	 the	 function	 invoked	 by	 the	 thread.	 We	 can	 pass	 an	 arbitrary	 number	 of
arguments	 to	 the	 thread	 constructor	 in	 order	 to	 match	 the	 parameters	 in	 the
signature	of	the	function	to	be	called.	Finally,	we	assert	that	the	counter	has	the
value	we	expect	it	to	have	if	the	program	was	free	from	race	conditions:

auto	main()	->	int	{	

		constexpr	auto	n_times	=	int{1000000};	

		auto	t1	=	std::thread{increment_counter,	n_times};	

		auto	t2	=	std::thread{increment_counter,	n_times};	

		t1.join();	

		t2.join();	

		std::cout	<<	counter	<<	'\n';	

		//	If	we	don't	have	a	data	race,	this	assert	should	hold:	

		assert(counter	==	(n_times	*	2));	

}	

This	program	will	most	 likely	 fail.	The	 assert()	 function	doesn't	hold	 since	 the
program	currently	contains	a	race	condition.	When	I	repeatedly	run	the	program,

I	 end	 up	 with	 different	 values	 of	 the	 counter.	 Instead	 of	 reaching	 the	 value
2000000,	 I	 once	 ended	 up	with	 no	more	 than	 1032304.	 This	 example	 is	 very
similar	to	the	data	race	example	that	was	illustrated	earlier	in	this	chapter.

The	 line	 with	 the	 expression	 ++counter	 is	 a	 critical	 section—it	 uses	 a	 shared
mutable	 variable	 and	 is	 executed	 by	 multiple	 threads.	 In	 order	 to	 protect	 the
critical	 section,	 we	 will	 now	 use	 the	 std::mutex	 included	 in	 the	 <mutex>	 header.
Later	 on,	 we	will	 see	 how	we	 can	 avoid	 data	 races	 in	 this	 example	 by	 using
atomics,	but	for	now	we	will	use	a	lock.

First,	add	the	global	std::mutex	object	next	to	the	counter:

auto	counter	=	0;	//	Counter	will	be	protected	by	counter_mutex		

auto	counter_mutex	=	std::mutex{};	

Isn't	the	std::mutex	object	 itself	a	mutable	shared	variable	 that	can	generate	data
races	if	used	by	multiple	threads?	Yes,	it	is	a	mutable	shared	variable,	but	no,	it
will	not	generate	data	races.	The	synchronization	primitives	from	the	C++	thread
such	as	std::mutex	are	designed	for	this	particular	purpose.	In	that	respect,	they	are
very	 special	 and	 use	 hardware	 instructions	 or	 whatever	 is	 necessary	 on	 your
platform	to	guarantee	that	they	don't	generate	data	races	themselves.

Now	we	need	to	use	the	mutex	in	our	critical	section	that	reads	and	updates	the
counter	variable.	We	could	use	 the	lock()	and	unlock()	member	 functions	on	 the
counter_mutex,	but	the	preferred	and	safer	way	is	to	always	use	RAII	for	handling
the	mutex.	Think	of	 the	mutex	as	a	 resource	 that	always	needs	 to	be	unlocked
when	we	are	done	using	it.	The	thread	library	provides	us	with	some	useful	RAII
class	 templates	 for	 handling	 locking.	 Here,	 we	 will	 use
the	std::lock_guard<Mutex>	template	to	ensure	that	we	release	the	mutex	safely.	The
following	 is	 the	 updated	 increment_counter	 function	 now	 protected	with	 a	mutex
lock:

auto	increment_counter(int	n)	{	

		for	(int	i	=	0;	i	<	n;	++i)	{	

				auto	lock	=	std::lock_guard<std::mutex>{counter_mutex};	

				++counter;	

		}	

}	

The	program	now	works	as	expected,	free	from	data	races,	and	if	we	run	it	again,
the	condition	in	the	assert()	function,	it	will	now	hold	true.

Avoiding	deadlocks
As	long	as	a	thread	never	acquires	more	than	one	lock	at	a	time,	there	is	no	risk
of	deadlocks.	Sometimes,	 though,	 it	 is	necessary	 to	acquire	another	 lock	while
already	holding	on	to	a	previously	acquired	lock.	The	risk	of	deadlocks	in	those
situations	can	be	 avoided	by	grabbing	both	 locks	 at	 the	 exact	 same	 time.	C++
has	a	way	 to	do	 this	by	using	 the	 std::lock()	 function,	which	 takes	an	arbitrary
number	of	locks,	and	blocks	until	all	locks	have	been	acquired.

The	 following	 is	 an	 example	 of	 transferring	 money	 between	 accounts.	 Both
accounts	need	 to	be	protected	during	 the	 transaction,	and	 therefore	we	need	 to
acquire	two	locks	at	the	same	time.	Here	is	how	it	works:

struct	Account	{	

		Account()	{}	

		int	balance_	=	0;	

		std::mutex	m_{};	

};	

	

void	transfer_money(Account&	from,	Account&	to,	int	amount)	{	

			auto	lock1	=	std::unique_lock<std::mutex>{from.m_,	std::defer_lock};	

			auto	lock2	=	std::unique_lock<std::mutex>{to.m_,	std::defer_lock};	

					

			//	Lock	both	unique_locks	at	the	same	time	

			std::lock(lock1,	lock2);	

					

			from.balance_	-=	amount;	

			to.balance_	+=	amount;	

}	

We	 are	 again	 using	 a	 RAII	 class	 template	 to	 ensure	 that	 we	 release	 the	 lock
whenever	this	function	returns.	In	this	case,	we	are	using	std::unique_lock,	which
provides	 us	 with	 the	 possibility	 to	 defer	 the	 locking	 of	 the	 mutex.	 Then,	 we
explicitly	lock	both	mutexes	at	the	same	time	by	using	the	std::lock()	function.

Condition	variables
A	condition	variable	makes	 it	 possible	 for	 threads	 to	wait	 until	 some	 specific
condition	has	been	met.	Threads	can	also	use	the	condition	variable	to	signal	to
other	threads	that	the	condition	has	changed.

A	common	pattern	in	a	concurrent	program	is	to	have	one	or	many	threads	that
are	waiting	for	data	to	be	consumed	somehow.	These	threads	are	usually	called
consumers.	Another	 group	 of	 threads	 are	 then	 responsible	 for	 producing	 data
that	 is	ready	to	be	consumed.	The	group	of	 threads	 that	are	producing	data	are
called	producers,	or	producer	if	it	is	only	one	thread.

The	 producer	 and	 consumer	 pattern	 can	 be	 implemented	 using	 a	 condition
variable.	We	can	use	a	combination	of	 std::condition_variable	 and	 std::unique_lock
for	this	purpose.	Let's	have	a	look	at	an	example	of	a	producer	and	consumer	to
make	it	less	abstract:

auto	cv	=	std::condition_variable{};	

auto	q	=	std::queue<int>{};	

auto	mtx	=	std::mutex{};	//	Protects	the	shared	queue	

constexpr	int	done	=	-1;	//	Special	value	to	signal	that	we	are	done	

	

void	print_ints()	{	

		auto	i	=	int{0};	

		while	(i	!=	done)	{	

				{	

						auto	lock	=	std::unique_lock<std::mutex>{mtx};	

						while	(q.empty())

								cv.wait(lock);	//	The	lock	is	released	while	waiting	

						i	=	q.front();	

						q.pop();	

				}	

				if	(i	!=	done)	{	

						std::cout	<<	"Got:	"	<<	i	<<	'\n';	

				}	

		}	

}	

	

auto	generate_ints()	{	

		for	(auto	i	:	{1,	2,	3,	done})	{	

				std::this_thread::sleep_for(std::chrono::seconds(1));	

				{	

						std::lock_guard<std::mutex>	lock(mtx);	

						q.push(i);	

				}	

				cv.notify_one();	

		}	

}	

		

auto	main()	->	int	{	

			auto	producer	=	std::thread{generate_ints};	

			auto	consumer	=	std::thread{print_ints};	

		

			producer.join();	

			consumer.join();	

}	

We	 are	 creating	 two	 threads:	 one	 consumer	 thread	 and	 one	 producer	 thread.	 The
producer	thread	is	generating	a	sequence	of	integers	and	pushes	them	to	a	global
std::queue<int>	once	every	second.	Whenever	 it	adds	an	element	 to	 the	queue,	 it
signals	that	the	condition	has	changed.	The	condition	in	this	program	is	whether
there	 is	 data	 in	 the	 queue	 available	 for	 consumption	 by	 the	 consumer	 thread.
Note	 also	 that	 it	 is	 not	 required	 to	hold	 the	 lock	while	notifying	 the	 condition
variable.

The	consumer	thread	is	responsible	for	printing	the	data	(that	is,	the	integers)	to
the	console.	It	uses	the	condition	variable	to	wait	for	the	empty	queue	to	change.
When	the	consumer	calls	cv.wait(lock),	the	thread	goes	to	sleep	and	will	leave	the
CPU	for	other	threads	to	execute.	It	is	important	to	understand	why	we	need	to
pass	the	variable	lock	when	calling	wait().	Apart	from	putting	the	thread	to	sleep,
wait()	also	unlocks	the	mutex	while	sleeping	and	then	acquires	the	mutex	before
it	 returns.	 If	wait()	 didn't	 release	 the	mutex,	 the	producer	would	not	 be	 able	 to
add	elements	to	the	queue.

Why	is	the	consumer	waiting	on	the	condition	variable	with	a	while-loop	around
it	and	not	an	if	statement?	This	is	a	common	pattern,	and	sometimes	we	need	to
do	 that	 since	 there	 might	 be	 other	 consumers	 that	 were	 also	 woken	 up	 and
emptied	the	queue	before	us.	In	our	program,	we	only	have	one	consumer	thread
though,	 so	 that	 cannot	 happen.	However,	 it	 is	 possible	 for	 the	 consumer	 to	 be
awoken	 from	 its	 wait	 even	 though	 the	 producer	 thread	 did	 not	 signal.	 This
phenomenon	 is	 called	 spurious	 wakeup,	 and	 the	 reasons	 for	 why	 this	 can
happen	are	beyond	the	scope	of	this	book.	We	now	at	least	know	how	to	handle
situations	where	 spurious	wakeups	 can	 happen:	always	 check	 the	 condition	 in
a	while-loop.

Returning	 data	 and	 handling
errors
The	 examples	 presented	 so	 far	 in	 this	 chapter	 have	 used	 shared	 variables	 to
communicate	state	between	threads.	We	have	used	mutex	locks	to	ensure	that	we
avoid	data	races.	Using	shared	data	with	mutexes,	as	we	have	been	doing,	can	be
very	hard	to	do	correctly	when	the	size	of	a	program	increases.	There	is	also	a
lot	of	work	in	maintaining	code	that	uses	explicit	locking	spread	out	over	a	code
base.	 Keeping	 track	 of	 shared	 memory	 and	 explicit	 locking	 moves	 us	 farther
away	from	what	we	really	want	to	accomplish	and	spend	time	on	when	writing	a
program.

In	addition,	we	haven't	dealt	with	error	handling	at	all	yet.	What	if	a	thread	needs
to	report	an	error	to	some	other	thread?	How	do	we	do	that	using	exceptions,	as
we	are	used	to	do	when	a	function	needs	to	report	a	runtime	error?

In	the	standard	library	<future>	header,	we	can	find	some	class	templates	that	help
us	writing	concurrent	code	without	global	variables	and	locks,	and,	in	addition,
can	communicate	exceptions	between	threads	for	handling	errors.	We	will	here
present	 futures	and	promises,	which	 represent	 two	 sides	of	 a	value.	The	 future
is	 the	 receiving	 side	 of	 the	 value	 and	 the	 promise	 is	 the	 returning	 side	 of	 the
value.

The	following	is	an	example	of	using	std::promise	to	return	the	result	to	the	caller:

auto	divide(int	a,	int	b,	std::promise<int>&	p)	{	

		if	(b	==	0)	{	

				auto	e	=	std::runtime_error{"Divide	by	zero	exception"};	

				p.set_exception(std::make_exception_ptr(e));	

		}	

		else	{	

				const	auto	result	=	a	/	b;	

				p.set_value(result);	

		}	

}	

	

auto	main()	->	int	{	

			auto	p	=	std::promise<int>{};	

			std::thread(divide,	45,	5,	std::ref(p)).detach();	

					

			auto	f	=	p.get_future();	

			try	{	

					const	auto&	result	=	f.get();	//	Blocks	until	ready	

					std::cout	<<	"Result:	"	<<	result	<<	'\n';	

			}	

			catch	(const	std::exception&	e)	{	

					std::cout	<<	"Caught	exception:	"	<<	e.what()	<<	'\n';	

			}	

}	

	

The	caller	(the	main()	function)	creates	the	std::promise	object	and	passes	it	to	the
divide()	function.	We	need	to	use	std::ref	from	<functional>	so	that	a	reference	can
be	correctly	forwarded	through	the	std::thread	to	compute().

When	 the	 divide()	 function	 has	 computed	 the	 result,	 it	 passes	 the	 return	 value
through	the	promise	by	calling	the	set_value()	function.	If	an	error	occurred	in	the
divide()	function,	it	would	have	called	the	set_exception()	function	on	the	promise
instead.

The	 future	 represents	 the	 value	 of	 the	 computation	 that	 may	 or	 may	 not	 be
computed	yet.	Since	the	future	is	an	ordinary	object,	we	can,	for	example,	pass	it
around	to	other	objects	that	need	the	computed	value.	Finally,	when	the	value	is
needed	by	some	client,	 it	calls	get()	 to	get	hold	of	 the	actual	value.	 If	 it	 is	not
computed	at	that	point	in	time,	the	call	to	get()	will	block	until	it	is	finished.

Note	 also	 how	 we	 managed	 to	 pass	 data	 back	 and	 forth	 with	 proper	 error
handling	 without	 using	 any	 shared	 global	 data	 and	 no	 explicit	 locking.	 The
promise	takes	care	of	that	for	us,	and	we	can	focus	on	implementing	the	essential
logic	of	the	program	instead.

Tasks
With	 futures	 and	 promises,	 we	 managed	 to	 get	 away	 from	 explicit	 locks	 and
shared	global	 data.	Our	 code	will	 benefit	 from	 using	 higher	 level	 abstractions
when	possible,	 especially	when	 the	code	base	grows.	Here,	we	will	go	 further
and	explore	classes	that	make	us	have	the	futures	and	promises	automatically	set
up	for	us.	We	will	also	see	how	we	can	get	rid	of	the	manual	administration	of
threads	and	leave	that	to	the	library.

In	many	cases,	we	don't	have	any	need	for	managing	threads—instead,	what	we
really	 need	 is	 to	 be	 able	 to	 execute	 a	 task	 asynchronously	 and	 have	 that	 task
execute	on	its	own	concurrently	with	the	rest	of	the	program,	and	then	eventually
get	the	result	or	error	communicated	to	the	parts	of	the	program	that	need	it.	The
task	 should	 be	 done	 in	 isolation	 to	 minimize	 contention	 and	 the	 risk	 of	 data
races.

We	 begin	 by	 rewriting	 our	 previous	 example	 that	 divided	 two	 numbers.	 This
time,	we	will	use	the	std::packaged_task	from	<future>,	which	makes	all	the	work	of
setting	up	the	promise	correct	for	us:

auto	divide(int	a,	int	b)	->	int	{	//	No	need	to	pass	a	promise	ref	here!	

		if	(b	==	0)	{	

				throw	std::runtime_error{"Divide	by	zero	exception"};	

		}	

		return	a	/	b;	

}	

	

auto	main()	->	int	{	

		auto	task	=	std::packaged_task<decltype(divide)>{divide};	

		auto	f	=	task.get_future();	

		std::thread{std::move(task),	45,	5}.detach();	

					

		//	The	code	below	is	unchanged	from	the	previous	example	

		try	{	

				const	auto&	result	=	f.get();	//	Blocks	until	ready	

				std::cout	<<	"Result:	"	<<	result	<<	'\n';	

		}	

		catch	(const	std::exception&	e)	{	

				std::cout	<<	"Caught	exception:	"	<<	e.what()	<<	'\n';	

		}	

		return	0;	

}	

std::packaged_task	 is	 itself	 a	 callable	 object	 that	 can	 be	moved	 to	 the	 std::thread
object	we	are	creating.	As	you	can	see,	std::packaged_task	now	does	most	of	 the

work	 for	 us:	 we	 don't	 have	 to	 create	 the	 promise	 ourselves.	 But,	 more
importantly,	 we	 can	 write	 our	 divide()	 function	 just	 like	 a	 normal	 function,
without	 the	 need	 for	 explicitly	 returning	 values	 or	 exceptions	 through	 the
promise;	the	std::packaged_task	will	do	that	for	us.

As	a	last	step	in	this	section,	we	would	also	like	to	get	rid	of	the	manual	thread
management.	 Creating	 threads	 is	 not	 free,	 and	 we	 will	 see	 later	 on	 that	 the
number	 of	 threads	 in	 a	 program	 can	 affect	 performance.	 It	 seems	 like	 the
question	of	whether	we	should	create	a	new	thread	for	our	divide	function	is	not
necessarily	 up	 to	 the	 caller	 of	 divide().	 The	 library	 again	 helps	 us	 here	 by
providing	another	useful	function	template	called	std::async().	The	only	thing	we
need	 to	 do	 in	 our	 divide()	 example	 is	 replace	 the	 code	 creating	 the
std::packaged_task	and	the	std::thread	object	with	a	simple	call	to	std::async():

			auto	f	=	std::async(divide,	45,	5);	

We	have	now	switched	from	a	thread-based	programming	model	to	a	task-based
model.	The	complete	task-based	example	now	looks	like	this:

auto	divide(int	a,	int	b)	->	int	{	

		if	(b	==	0)	{	

				throw	std::runtime_error{"Divide	by	zero	exception"};	

		}	

		return	a	/	b;	

}	

	

auto	main()	->	int	{	

		auto	future	=	std::async(divide,	45,	5);	

		try	{	

				const	auto&	result	=	future.get();	

				std::cout	<<	"Result:	"	<<	result	<<	'\n';	

		}	

		catch	(const	std::exception&	e)	{	

				std::cout	<<	"Caught	exception:	"	<<	e.what()	<<	'\n';	

		}	

}	

There	is	really	a	minimal	amount	of	code	left	here	for	handling	concurrency.	The
recommended	way	to	call	 functions	asynchronously	 is	 to	use	std::async().	For	a
deeper	 discussion	 about	why	 and	when	 std::async()	 is	 to	 be	 preferred,	 I	 highly
recommend	the	Concurrency	chapter	in	Effective	Modern	C++	by	Scott	Meyers.

Atomic	support	in	C++
The	 standard	 library	 contains	 support	 for	 atomic	 variables,	 sometimes	 called
atomics.	An	atomic	variable	 is	 a	variable	 that	 can	 safely	be	used	and	mutated
from	multiple	threads	without	introducing	data	races.	An	atomic	variable	may	or
may	not	use	a	lock	to	protect	 the	data,	 this	depends	on	the	type	of	the	variable
and	the	platform.	If	the	atomic	does	not	use	a	lock,	it	is	said	to	be	lock-free.	You
can	query	 the	variable	 in	 runtime	 (or	compile	 time	since	C++17)	 to	be	certain
that	 it	 is	 lock-free	 if,	 for	 some	 reason,	you	need	 to	 ensure	 that	 it	 does	not	use
locks	internally.	

Do	you	remember	the	data	race	example	we	looked	at	earlier	where	two	threads
updated	a	global	counter?	We	solved	it	by	adding	a	mutex	lock	together	with	the
counter.	 Instead	 of	 using	 an	 explicit	 lock,	 we	 could	 have	 used	 a
std::atomic<int>	instead:

std::atomic<int>	counter;	

	

auto	increment_counter(int	n)	{	

		for	(int	i	=	0;	i	<	n;	++i)	

				++counter;	//	Safe,	counter	is	now	an	atomic<int>	

}	

The	 ++counter	 is	 a	 convenient	 way	 of	 saying	 counter.fetch_add(1).	 All	 member
functions	that	can	be	invoked	on	an	atomic	are	safe	to	call	from	multiple	threads
concurrently.

The	 atomic	 types	 are	 from	 the	 <atomic>	 header.	 There	 are	 typedefs	 for	 all	 the
scalar	 data	 types	 named	 on	 the	 std::atomic_int	 form.	 This	 is	 identical	 to	 saying
std::atomic<int>.	It	 is	possible	to	wrap	a	custom	type	in	a	std::atomic	 template,	as
long	as	the	custom	type	is	trivially	copyable.	Basically,	this	means	that	an	object
of	a	class	is	fully	described	by	the	bits	of	its	data	members.	In	that	way,	an	object
can	be	copied	with,	for	example,	std::memcpy(),	by	only	copying	the	raw	bytes.	So,
if	a	class	contains	virtual	functions,	pointers	to	dynamic	memory,	and	so	on,	it's
no	longer	possible	to	just	copy	the	raw	bits	of	the	object	and	expect	it	to	work,
and	hence	 it	 is	not	 trivially	copyable.	This	can	be	checked	at	compile	 time,	 so
you	will	get	a	compilation	error	if	you	try	to	create	an	atomic	of	a	type	that	is	not
trivially	copyable:

struct	Point	{	

		int	y{};	

		int	x{};	

};	

	

auto	p	=	std::atomic<Point>{};							//	OK:	Point	is	trivially	copyable	

auto	s	=	std::atomic<std::string>{};	//	Error:	cannot	be	trivially	copied	

It's	also	possible	to	create	atomic	pointers.	This	makes	the	pointer	itself	atomic,
but	not	the	object	it	points	at.

Using	 shared_ptr	 in	 a
multithreaded	environment
What	about	 the	 std::shared_ptr?	Can	 it	be	used	 in	a	multithreaded	environment,
and	how	is	the	reference	counting	handled	when	multiple	threads	are	accessing
an	object	referenced	by	multiple	shared	pointers?

To	 understand	 shared	 pointers	 and	 thread	 safety,	 we	 need	 to	 recall	 how
std::shared_ptr	 is	 typically	 implemented	 (see	 also	 Chapter	 7,	 Memory
Management).	Consider	the	following	code:

//	Thread	1	

auto	p1	=	std::make_shared<int>(int{42});	

The	 code	 creates	 an	 int	 on	 the	 heap	 and	 a	 reference-counted	 smart	 pointer
pointing	 at	 the	 int	 object.	 When	 creating	 the	 shared	 pointer	 with
std::make_shared(),	 a	 control	 block	 will	 be	 created	 next	 to	 the	 int.	 The	 control
block	contains,	among	other	things,	a	variable	for	the	reference	count,	which	is
incremented	 whenever	 a	 new	 pointer	 to	 the	 int	 is	 created	 and	 decremented
whenever	 a	pointer	 to	 the	 int	 is	 destroyed.	To	 summarize,	when	 the	preceding
code	line	is	executed,	three	separate	entities	are	being	created:

The	actual	std::shared_ptr	object	p1	(local	variable	on	the	stack)
A	control	block	(heap	object)
An	int	(heap	object)

The	following	figure	shows	the	three	objects:

A	shared_ptr	instance	p1	which	points	to	the	integer	object	and	a	control	block	which	contains	the	reference
counting.	In	this	case,	there	is	only	one	shared	pointer	using	the	int,	and	hence	the	ref	count	is	1.

Now,	consider	what	would	happen	if	the	following	code	is	executed	by	a	second
thread:

//	Thread	2	

auto	p2	=	p1;	

We	are	creating	a	new	pointer	pointing	at	the	int	(and	the	control	block).	When
creating	the	p2	pointer,	we	read	p1,	but	we	also	need	to	mutate	the	control	block
when	updating	the	ref	counter.	The	control	block	lives	on	the	heap	and	is	shared
among	the	two	threads,	so	it	needs	synchronization	to	avoid	data	races.	Since	the
control	 block	 is	 an	 implementation	 detail	 hidden	 behind	 the	 std::shared_ptr
interface,	there	is	no	way	for	us	to	know	how	to	protect	it,	and	it	turns	out	that	it
has	already	been	taken	care	of	by	the	implementation.	Typically,	it	would	use	a
mutable	atomic	counter.	In	other	words,	the	ref	counter	update	is	thread-safe	so
that	we	can	use	multiple	shared	pointers	from	different	threads	without	worrying
about	synchronizing	the	ref	counter.	This	is	good	practice	and	something	to	think
of	when	designing	classes:	if	you	are	mutating	variables	in	methods	that	appear
to	 be	 semantically	 read-only	 (const)	 from	 the	 client's	 perspective,	 you	 should
make	the	mutating	variable	thread-safe.	On	 the	other	hand,	everything	 that	can
be	detected	by	the	client	as	mutating	functions	should	be	left	to	the	client	of	the
class	to	synchronize.

The	following	figure	shows	two	std::shared_ptrs,	p1	and	p2,	that	have	access	to	the
same	object.	The	int	 is	 the	 shared	object	and	 the	control	block	 is	an	 internally
shared	object	between	the	std::shared_ptr	 instances.	The	control	block	 is	 thread-
safe	by	default:

Two	shared_ptrs	accessing	the	same	object

To	summarize:

The	 shared	 object,	 the	 int	 in	 this	 example,	 is	 not	 thread-safe	 and	 needs
explicit	locking	if	accessed	from	multiple	threads
The	 control	 block	 is	 already	 thread-safe,	 so	 the	 reference	 counting
mechanism	works	in	multi-threaded	environments

Now	 there	 is	 only	 one	 part	 remaining:	 what	 about	 the	 actual	 std::shared_ptr
objects,	p1	and	p2,	 in	 the	previous	example?	To	understand	 this,	 let's	 turn	 to	an
example	using	only	one	global	std::shared_ptr	object	called	p:

//	Global	

auto	p	=	std::shared_ptr<int>{};	

How	can	we	mutate	p	from	multiple	threads	without	introducing	a	data	race?

Of	 course,	 we	 could	 protect	 p	 with	 a	mutex	 lock	 whenever	 we	 use	 p.	 Or,	 we
could	 use	 functions	 from	 the	 atomic	 library.	 There	 is	 no	 way	 to	 say
std::atomic<shared_ptr<T>>	at	the	time	of	writing,	but	we	can	instead	use	overloads
of	 the	atomic	functions	for	mutating	a	 std::shared_ptr	 atomically.	The	 following
example	demonstrates	how	to	load	and	store	a	shared	pointer	object	atomically
from	multiple	threads:

//	Thread	T1	calls	this	function

auto	f1()	{	

		auto	new_p	=	std::make_shared<int>(std::rand());

		//	...	

		std::atomic_store(&p,	new_p);

}	

	

//	Thread	T2	calls	this	function

auto	f2()	{	

		auto	local_p	=	std::shared_ptr<int>{std::atomic_load(&p)};	

		//	Use	local_p...	

}	

In	the	example	above	we	assume	that	there	are	two	threads,	T1	and	T2	,	which	call
functions	f1()	and	f2(),	 respectively.	New	heap-allocated	int	objects	are	created
from	the	thread	T1	with	the	call	to	std::make_shared<int>().	

There	 is	 one	 subtle	 detail	 to	 consider	 in	 this	 example:	 in	 which	 thread	 is	 the
heap-allocated	int	deleted?	When	local_p	goes	out	of	scope	in	the	f2()	function,	it
might	be	the	last	reference	to	the	int	(the	reference	count	reaches	zero).	In	that
case,	 the	 deletion	 of	 the	 heap-allocated	 int	 will	 happen	 from	 thread	 T2.
Otherwise,	 the	 deletion	 will	 happen	 from	 thread	 T1	 when	 std::atomic_store()	 is
called.	 So,	 the	 answer	 is	 that	 the	 deletion	 of	 the	 int	 can	 happen	 from	 both
threads.

C++	memory	model
Why	 are	 we	 talking	 about	 the	 memory	 model	 of	 C++	 in	 a	 chapter	 about
concurrency?

The	memory	model	 is	 closely	 related	 to	 concurrency	 since	 it	 defines	 how	 the
reads	and	writes	to	the	memory	should	be	visible	among	threads.	This	is	a	rather
complicated	 subject	 which	 touches	 on	 both	 compiler	 optimizations	 and
multicore	computer	architecture.	The	good	news,	though,	is	that	if	your	program
is	 free	 from	data	 races	 and	you	use	 the	memory	order	 that	 the	atomics	 library
provides	 by	 default,	 your	 concurrent	 program	 will	 behave	 according	 to	 an
intuitive	memory	model	that	is	easy	to	understand.	Still,	it	is	important	to	at	least
have	 an	 understanding	 of	 what	 the	 memory	 model	 is	 and	 what	 the	 default
memory	order	guarantees.

The	concepts	covered	in	this	section	are	thoroughly	explained	by	Herb	Sutter	in
his	talks,	Atomic	Weapons:	The	C++	Memory	Model	and	Modern	Hardware	1	&
2.	The	talks	are	freely	available	at	https://herbsutter.com/2013/02/11/atomic-weapons-th
e-c-memory-model-and-modern-hardware/	and	are	highly	recommended	if	you	need	more
depth	on	this	subject.

https://herbsutter.com/2013/02/11/atomic-weapons-the-c-memory-model-and-modern-hardware/

Instruction	reordering
To	 understand	 the	 importance	 of	 the	 memory	 model,	 we	 first	 need	 some
background	about	how	programs	we	write	are	actually	being	executed.

When	we	write	 and	 run	 a	 program,	 it	would	 be	 reasonable	 to	 assume	 that	 the
instructions	 in	 the	 source	 code	 are	 being	 executed	 in	 the	 same	 order	 as	 they
appear	 in	 the	 source	code.	This	 is	 not	 true	 though—the	 code	we	write	will	 be
optimized	in	multiple	stages	before	it	is	finally	executed.	Both	the	compiler	and
the	 hardware	will	 reorder	 instructions	with	 the	 goal	 of	 executing	 the	 program
more	efficiently.	This	is	not	new	technology:	compilers	have	done	this	for	a	long
time,	 and	 this	 is	 one	 reason	 why	 an	 optimized	 build	 runs	 faster	 than	 a	 non-
optimized	build.	The	compiler	(and	hardware)	are	free	to	reorder	instructions	as
long	as	the	reordering	is	not	observable	when	running	the	program.	The	program
runs	as	if	everything	happens	in	program	order.

Let's	look	at	an	example	code	snippet	to	clarify:

int	a	=	10;	//	1	

cout	<<	a;		//	2	

int	b	=	a;		//	3	

cout	<<	b;		//	4	

//	Observed	output:	1010	

Here,	it	is	obvious	that	line	number	two	and	line	number	three	could	be	swapped
without	introducing	any	observable	effect:

int	a	=	10;	//	1	

int	b	=	a;		//	3	This	line	moved	up		

cout	<<	a;		//	2	This	line	moved	down	

cout	<<	b;		//	4	

//	Observed	output:	1010	

Here	is	another	example,	similar,	but	not	identical,	to	the	example	from	Chapter	4,
Data	 Structures,	 where	 the	 compiler	 can	 optimize	 a	 cache-unfriendly	 version
when	iterating	over	a	two-dimensional	matrix:

constexpr	auto	ksize	=	size_t{100};	

using	MatrixType	=	std::array<std::array<int,	ksize>,	ksize>;	

	

auto	cache_thrashing(MatrixType&	matrix,	int	v)	{	//	1	

		for	(size_t	i	=	0;	i	<	ksize;	++i)														//	2	

				for	(size_t	j	=	0;	j	<	ksize;	++j)												//	3	

						matrix[j][i]	=	v;																											//	4	

}	

We	saw	in	Chapter	4,	Data	Structures,	 that	code	similar	 to	 this	produces	a	 lot	of
cache	misses,	which	hurts	performance.	A	compiler	 is	 free	 to	optimize	 this	 by
reordering	the	for	statements,	like	this:

auto	cache_thrashing(MatrixType&	matrix,	int	v)	{	//	1	

		for	(size_t	j	=	0;	j	<	ksize;	++j)														//	3	This	line	moved	up	

				for	(size_t	i	=	0;	i	<	ksize;	++i)												//	2	This	line	moved	down	

						matrix[j][i]	=	v;																											//	4		

}	

There	 is	 no	 way	 to	 observe	 the	 difference	 between	 the	 two	 versions	 when
executing	the	program,	but	the	latter	will	run	faster.

Optimizations	 performed	 by	 the	 compiler	 and	 the	 hardware	 (including
instruction	 pipelining,	 branch	 prediction,	 and	 cache	 hierarchies)	 are	 very
complicated	 and	 constantly-evolving	 technologies.	 Fortunately,	 all	 these
transformations	of	the	original	program	can	be	seen	as	reorderings	of	reads	and
writes	in	the	source	code.	This	also	means	that	it	doesn't	matter	whether	it	is	the
compiler	 or	 some	 part	 of	 the	 hardware	 that	 performs	 the	 transformations.	 The
important	 thing	 for	 C++	 programmers	 to	 know	 is	 that	 the	 instructions	 can	 be
reordered	but	without	any	observable	effect.

If	you	have	been	trying	to	debug	an	optimized	build	of	your	program,	you	have
probably	noticed	that	it	can	be	hard	to	step	through	it	because	of	the	reorderings.
So,	by	using	a	debugger,	the	reorderings	are	in	some	sense	observable,	but	they
are	not	observable	when	running	the	program	in	a	normal	way.

Atomics	and	memory	orders
When	writing	 single-threaded	 programs	 in	C++,	 there	 is	 no	 risk	 of	 data	 races
occurring.	We	can	write	our	programs	happily	without	being	aware	of	instruction
reorderings.	 However,	 when	 it	 comes	 to	 shared	 variables	 in	 multi-threaded
programs,	 it	 is	a	completely	different	 story.	The	compiler	 (and	hardware)	does
all	 its	optimizations	based	on	what	 is	 true	 and	observable	 for	one	 thread	only.
The	 compiler	 cannot	 know	 what	 other	 threads	 are	 able	 to	 observe	 by	 shared
variables,	 so	 it	 is	 our	 job	 as	 programmers	 to	 inform	 the	 compiler	 of	 what
reorderings	are	allowed.	In	fact,	that	is	exactly	what	we	are	doing	when	we	are
using	an	atomic	variable	or	a	mutex	to	protect	us	from	data	races.

When	protecting	 a	 critical	 section	with	 a	mutex,	 it	 is	 guaranteed	 that	 only	 the
thread	 that	 currently	 owns	 the	 lock	 can	 execute	 the	 critical	 section.	 But,	 the
mutex	 is	also	creating	memory	 fences	around	 the	critical	 section	 to	 inform	 the
system	that	certain	reorderings	are	not	allowed	at	the	critical	section	boundaries.
When	acquiring	the	lock,	an	acquire	fence	is	added,	and	when	releasing	the	lock,
a	release	fence	is	added.

We	 will	 demonstrate	 this	 with	 an	 example.	 Imagine	 that	 we	 have	 four
instructions:	i1,	i2,	i3,	and	i4.	There	is	no	dependency	between	each	other,	so	the
system	could	 reorder	 the	 instructions	 arbitrarily	without	 any	observable	 effect.
The	 instructions	 i2	 and	 i3	 are	 using	 shared	 data	 and	 are,	 therefore,	 critical
sections	 that	 needs	 to	 be	 protected	 by	 a	 mutex.	 After	 adding	 the	 acquire	 and
release	 of	 the	mutex	 lock,	 there	 are	 now	 some	 reorderings	 that	 are	 no	 longer
valid.	Obviously,	we	 cannot	move	 the	 instructions	 that	 are	 part	 of	 the	 critical
section	outside	of	the	critical	section,	or	they	will	no	longer	be	protected	by	the
mutex.	The	one-way	 fences	ensure	 that	no	 instructions	can	move	out	 from	 the
critical	section.	The	i1	instruction	could	be	moved	inside	the	critical	section	by
passing	 the	acquire	 fence,	but	not	beyond	 the	 release	 fence.	The	 i4	 instruction
could	also	be	moved	inside	the	critical	section	by	passing	the	release	fence,	but
not	beyond	the	acquire	fence.

The	 following	 figure	 shows	 how	 one-way	 fences	 limit	 the	 reordering	 of
instructions.	No	read	or	write	instructions	can	pass	above	the	acquire	fence,	and

nothing	can	pass	below	the	release	fence:

The	one-way	fences	limit	the	reordering	of	the	instructions

When	acquiring	a	mutex,	we	are	creating	an	acquire	memory	fence.	It	 tells	 the
system	that	no	memory	accesses	(reads	or	writes)	can	be	moved	above	the	line
where	the	acquire	fence	 is	 located.	 It	 is	possible	 for	 the	system	to	move	 the	 i4
instruction	 above	 the	 release	 fence	 beyond	 the	 i3	 and	 i2	 instructions,	 but	 no
longer	than	that	because	of	the	acquire	fence.

Now,	 let's	have	a	 look	at	 atomic	variables	 instead	of	mutexes.	When	we	use	a
shared	atomic	variable	in	our	program,	it	gives	us	two	things:

Protection	 against	 torn	 writes:	 The	 atomic	 variable	 is	 always	 updated
atomically	so	there	is	no	way	a	reader	can	read	a	partially	written	value.
Synchronization	of	memory	by	adding	 sufficient	memory	 fences:	This
prevents	certain	instruction	reorderings	to	guarantee	a	certain	memory	order
specified	by	the	atomic	operations.

The	C++	memory	model	 guarantees	 sequential	consistency	 if	 your	 program	 is
free	from	data	races	and	you	use	the	default	memory	order	when	using	atomics.
So,	what	 is	 sequential	consistency?	 Sequential	 consistency	 guarantees	 that	 the
result	of	the	execution	is	the	same	as	if	the	operations	were	executed	in	the	order
specified	 by	 the	 original	 program.	 The	 interleaving	 of	 instructions	 among
threads	 is	 arbitrary;	 that	 is,	 we	 have	 no	 control	 over	 the	 scheduling	 of	 the
threads.	 This	 may	 sound	 complicated	 at	 first,	 but	 it	 is	 probably	 the	 way	 you
already	think	about	how	a	concurrent	program	is	executed.

The	downside	with	sequential	consistency	is	 that	 it	can	hurt	performance.	It	 is,
therefore,	possible	 to	 use	 atomics	with	 a	 relaxed	memory	model	 instead.	 This
means	 that	 you	 only	 get	 the	 protection	 against	 torn	writes,	 but	 not	 the	 strong

sequential	consistency	memory	order	guarantees.	We	strongly	advise	you	against
using	 anything	 else	 except	 the	 default	 sequential	 consistency	 memory	 order,
unless	you	have	a	very	thorough	understanding	of	the	effects	a	weaker	memory
model	can	introduce.	We	will	not	discuss	relaxed	memory	order	any	further	here
because	 it	 is	 beyond	 the	 scope	 of	 this	 book.	 But	 as	 a	 side	 note,	 it	 can	 be
interesting	to	know	that	 the	reference	counter	 in	a	std::shared_ptr	uses	a	 relaxed
model	when	incrementing	the	counter	(but	not	when	decrementing	the	counter).
This	is	the	reason	why	the	std::shared_ptr	member	function	use_count()	only	reports
the	 approximate	 number	 of	 actual	 references	 when	 being	 used	 in	 a	 multi-
threaded	environment.

Lock-free	programming
Lock-free	programming	is	hard.	We	will	not	spend	a	lot	of	time	discussing	lock-
free	programming	in	this	book,	but	instead	provide	you	with	an	example	of	how
a	 very	 simple	 lock-free	 data	 structure	 could	 be	 implemented.	 There	 is	 a	 great
wealth	 of	 resources—on	 the	 web	 and	 in	 books—dedicated	 to	 lock-free
programming	 that	 will	 explain	 the	 concepts	 you	 need	 to	 understand	 before
writing	your	own	lock-free	data	structures.	Some	concepts	you	might	have	heard
of,	 related	 to	 lock-free	 programming,	 such	 as	 Compare-And-Swap	 (CAS)	 and
the	ABA-problem	will	not	be	further	discussed	in	this	book.

Lock-free	queue	example
Here,	 we	 are	 going	 to	 show	 an	 example	 of	 a	 lock-free	 queue,	 which	 is	 a
relatively	 simple	 but	 useful	 lock-free	 data	 structure.	 Lock-free	 queues	 can	 be
used	 for	 one-way	 communication	 with	 threads	 that	 cannot	 use	 locks	 to
synchronize	access	to	shared	data.	

Its	implementation	is	straightforward	because	of	the	limited	requirements:	it	only
supports	one	 reader	 thread	and	one	writer	 thread.	The	capacity	of	 the	queue	 is
also	fixed	and	cannot	change	during	runtime.

The	writer	thread	is	allowed	to	call:

push():	adds	an	element	to	the	queue

The	reader	thread	is	allowed	to	call:

front():	returns	the	front	element	of	the	queue
pop():	removes	the	front	element	from	the	queue

Both	threads	can	call:

size():	returns	the	current	size	of	the	queue

The	following	is	the	complete	implementation	of	the	queue:

template	<class	T,	size_t	N>	

class	LockFreeQueue	{	

public:	

		LockFreeQueue()	:	read_pos_{0},	write_pos_{0},	size_{0}	{	

				assert(size_.is_lock_free());	

		}	

		

		auto	size()	const	{	return	size_.load();	}	

					

		//	Writer	thread	

		auto	push(const	T&	t)	{	

				if	(size_.load()	>=	N)	{	

						throw	std::overflow_error("Queue	is	full");	

				}	

				buffer_[write_pos_]	=	t;	

				write_pos_	=	(write_pos_	+	1)	%	N;	

				size_.fetch_add(1);	

		}	

					

		//	Reader	thread	

		auto&	front()	const	{	

				auto	s	=	size_.load();	

				if	(s	==	0)	{	

						throw	std::underflow_error("Queue	is	empty");	

				}	

				return	buffer_[read_pos_];	

		}	

					

		//	Reader	thread	

		auto	pop()	{	

				if	(size_.load()	==	0)	{	

						throw	std::underflow_error("Queue	is	empty");	

				}	

				read_pos_	=	(read_pos_	+	1)	%	N;	

				size_.fetch_sub(1);	

		}	

private:			

		std::array<T,	N>	buffer_{};		//	Used	by	both	threads	

		std::atomic<size_t>	size_{};	//	Used	by	both	threads	

		size_t	read_pos_	=	0;								//	Used	by	reader	thread	

		size_t	write_pos_	=	0;							//	Used	by	writer	thread	

};

The	 only	 data	 member	 that	 needs	 atomic	 access	 is	 the	 size_	 variable.	 The
read_pos_	member	is	only	used	by	the	reader	thread,	and	the	write_pos_	is	only	used
by	writer	 thread.	So	what	about	 the	buffer	of	 type	std::array?	It	 is	mutable	and
accessed	 by	 both	 threads—doesn't	 that	 require	 synchronization?	 Since	 the
algorithm	ensures	that	the	two	threads	are	never	accessing	the	same	element	in
the	array	concurrently,	C++	guarantees	that	individual	elements	in	an	array	can
be	 accessed	 without	 data	 races.	 It	 doesn't	 matter	 how	 small	 the	 elements	 are,
even	a	char	array	holds	this	guarantee.

When	 can	 a	 non-blocking	 queue	 like	 this	 be	 useful?	One	 example	 is	 in	 audio
programming,	when	there	is	a	UI	running	on	the	main	thread	that	needs	to	send
or	 receive	 data	 from	 a	 real-time	 audio	 thread,	 which	 cannot	 block	 under	 any
circumstances.	 The	 real-time	 thread	 cannot	 use	 mutex	 locks,	 allocate/free
memory,	or	anything	else	that	may	cause	the	thread	to	wait	on	threads	with	lower
priority.	Lock-free	data	structures	are	required	for	scenarios	like	these.

Both	the	reader	and	the	writer	are	lock-free	in	LockFreeQueue,	so	we	could	have	two
instances	 of	 the	 queue	 to	 communicate	 in	 both	 directions	 between	 the	 main
thread	and	the	audio	thread,	as	the	following	figure	demonstrates:

Using	two	lock-free	queues	to	pass	state	between	the	main	thread	and	a	real-time	audio	thread	

Performance	guidelines
This	chapter	will	 end	with	 some	guidelines	 related	 to	performance.	We	cannot
stress	enough	the	importance	of	having	a	concurrent	program	running	correctly
before	 trying	 to	 improve	 the	 performance.	Also,	 before	 applying	 any	 of	 these
guidelines	 related	 to	 performance,	 you	 first	 need	 to	 set	 up	 a	 reliable	 way	 of
measuring	what	you	are	trying	to	improve.

Avoid	contention
Whenever	 multiple	 threads	 are	 using	 shared	 data,	 there	 will	 be	 contention.
Contention	hurts	performance	and	sometimes	the	overhead	caused	by	contention
can	make	a	parallel	algorithm	work	slower	than	a	single-threaded	alternative.

Using	a	lock	that	causes	a	wait	and	a	context	switch	is	an	obvious	performance
penalty,	but	what	 is	not	equally	obvious	 is	 that	both	 locks	and	atomics	disable
optimizations	in	 the	code	generated	by	the	compiler,	and	they	do	so	at	runtime
when	 the	 CPU	 executes	 the	 code.	 This	 is	 necessary	 in	 order	 to	 guarantee
sequential	consistency.	But	remember,	the	solution	to	such	problems	is	never	to
ignore	 synchronization	 and	 therefore	 introduce	 data	 races.	 Data	 races	 mean
undefined	behavior,	and	having	a	fast	incorrect	program	makes	nobody	happy.

Instead,	we	need	to	minimize	the	time	spent	in	critical	sections.	We	can	do	that
by	 entering	 critical	 sections	 less	 often,	 and	 by	minimizing	 the	 critical	 section
itself	so	that	once	we	are	in	a	critical	section	we	will	leave	it	as	soon	as	possible.

Avoid	blocking	operations
To	write	 a	 modern	 responsive	 UI	 application	 that	 always	 runs	 smoothly,	 it	 is
absolutely	 necessary	 to	 never	 block	 the	 main	 thread	 for	 more	 than	 a	 few
milliseconds.	A	smooth	running	app	is	updating	its	interface	60	times	a	second.
This	means	that	 if	you	are	doing	something	that	blocks	the	UI	thread	for	more
than	16	ms,	the	FPS	will	drop.

You	can	design	your	internal	APIs	in	an	application	with	this	in	mind.	Whenever
you	write	a	 function	 that	performs	I/O	or	something	else	 that	might	 take	more
than	 a	 few	 milliseconds,	 it	 needs	 to	 be	 implemented	 as	 an	 asynchronous
function.	This	pattern	has	become	very	common	in	iOS	and	Windows	where,	for
example,	all	network	APIs	have	become	asynchronous.

Number	of	threads/CPU	cores
The	more	CPU	cores	 a	machine	has,	 the	more	 active	 running	 threads	you	 can
have.	If	you	manage	to	split	a	sequential	CPU-bound	task	into	a	parallel	version,
you	 can	 gain	 performance	 by	 having	 multiple	 cores	 working	 on	 the	 task	 in
parallel.

Going	from	a	single-threaded	algorithm	to	an	algorithm	that	can	be	run	by	two
threads	can,	in	the	best	case,	double	the	performance.	But,	after	adding	more	and
more	 threads,	 you	 will	 eventually	 reach	 a	 limit	 when	 there	 is	 no	 more
performance	gain.	Adding	more	threads	beyond	that	limit	will	actually	degrade
performance	 since	 the	 overhead	 caused	 by	 context	 switching	 becomes	 more
significant	the	more	threads	you	add.

For	I/O	intensive	tasks,	for	example,	a	web	crawler	that	will	spend	a	lot	of	time
waiting	 for	network	data,	 it	would	 require	 a	 lot	 of	 threads	before	 reaching	 the
limit	where	the	CPU	is	oversubscribed.	A	thread	that	is	waiting	for	I/O	will	most
likely	be	 switched	 out	 from	 the	CPU	 to	make	 room	 for	 other	 threads	 that	 are
ready	to	execute.

For	CPU-bound	tasks,	there	is	usually	no	point	in	using	more	threads	than	there
are	cores	on	the	machine.

Controlling	 the	 total	 number	of	 threads	 in	 a	big	program	can	be	hard.	A	good
way	of	controlling	the	number	of	threads	is	to	use	a	thread	pool	that	can	be	sized
to	match	the	current	hardware.

In	 the	next	chapter,	we	will	see	examples	of	how	to	parallelize	algorithms	and
how	to	tweak	the	amount	of	concurrency	based	on	the	number	of	CPU	cores.

Thread	priorities
The	priority	of	a	thread	affects	how	the	thread	is	being	scheduled.	A	thread	with
high	 priority	 is	 likely	 to	 be	 scheduled	 more	 often	 than	 threads	 with	 lower
priorities.	Thread	priorities	are	important	for	lowering	the	latency	of	tasks.

Threads	 provided	 by	 the	 operating	 system	 usually	 have	 priorities.	 There	 is
currently	no	way	of	setting	the	priority	on	a	thread	with	the	current	C++	thread
APIs.	However,	 by	 using	 std::thread::native_handle,	 one	 can	 get	 a	 handle	 to	 the
underlying	operating	system	thread	and	use	native	APIs	for	setting	priorities.

One	phenomenon	related	 to	 thread	priorities	 that	can	hurt	 the	performance	and
should	 be	 avoided	 is	 called	 priority	 inversion.	 It	 happens	when	 a	 thread	with
high	priority	is	waiting	to	acquire	a	lock	that	is	currently	held	by	a	low	priority
thread.	Such	dependencies	hurt	 the	high	priority	 thread,	which	 is	blocked	until
the	 next	 time	 the	 low	 priority	 thread	 gets	 scheduled	 so	 that	 it	 can	 release	 the
lock.	For	real-time	applications,	this	is	a	big	problem.	In	practice,	it	means	that
you	cannot	use	locks	to	protect	any	shared	resources	that	need	to	be	accessed	by
real-time	threads.	A	thread	that	produces	real-time	audio,	for	example,	runs	with
the	 highest	 possible	 priority,	 and	 in	 order	 to	 avoid	 priority	 inversion,	 it	 is	 not
possible	 for	 the	 audio	 thread	 to	 call	 any	 functions	 (including	 std::malloc())	 that
might	block	and	cause	a	context	switch.

Thread	affinity
Thread	affinity	makes	it	possible	to	give	the	scheduler	hints	about	which	threads
could	 benefit	 from	 sharing	 the	 same	 CPU	 caches.	 In	 other	 words,	 this	 is	 a
request	 to	 the	 scheduler	 that	 some	 threads	 should	 be	 executed	 on	 a	 particular
core	if	possible,	to	minimize	cache	misses.

Why	would	you	want	one	thread	to	be	executed	on	a	particular	core?	The	answer
is	(again)	caching.	Threads	that	operate	on	the	same	memory	could	benefit	from
running	 on	 the	 same	 core,	 and	 hence	 take	 advantage	 of	warm	 caches.	 For	 the
scheduler,	 this	 is	 just	 one	 of	 many	 parameters	 to	 take	 into	 account	 when
assigning	 a	 thread	 to	 a	 core,	 so	 this	 is	 hardly	 any	 guarantee,	 but	 again	 the
behavior	is	very	different	among	operating	systems.	Thread	priorities,	and	even
utilization	of	all	cores	(to	avoid	overheating),	are	some	of	the	requirements	that
need	to	be	taken	into	account	by	a	modern	scheduler.

It	 is	 not	possible	 to	 set	 thread	 affinity	 in	 a	portable	way	with	 the	 current	C++
APIs,	 but	 most	 platforms	 support	 some	 way	 of	 setting	 an	 affinity	 mask	 on	 a
thread.	 In	 order	 to	 access	 platform-specific	 functionality,	 you	 need	 to	 get	 a
handle	 on	 the	 native	 thread.	 The	 example	 ahead	 demonstrates	 how	 to	 set	 the
thread	affinity	mask	on	Linux:

#include	<pthreads>	//	Non-portable	header	

auto	set_affinity(const	std::thread&	t,	int	cpu)	{

		cpu_set_t	cpuset;

		CPU_ZERO(&cpuset);

		CPU_SET(cpu,	&cpuset);

		pthread_t	native_thread	=	t.native_handle();	

		pthread_set_affinity(native_thread,	sizeof(cpu_set_t),	&cpuset);	

}	

Note,	this	is	not	portable	C++,	but	it	is	likely	that	you	need	to	do
some	 non-portable	 configuration	 of	 threads	 if	 you	 are	 doing
performance-critical	concurrency	programming.

False	sharing
False	 sharing,	 or	 destructive	 interference,	 can	 degrade	 performance.	 It	 occurs
when	 two	 threads	 use	 some	 data	 (that	 is	 not	 logically	 shared	 between	 the
threads)	but	happen	 to	be	 located	 in	 the	 same	cache	 line.	 Imagine	what	would
happen	if	the	two	threads	are	executing	on	different	cores	and	constantly	update
the	variable	that	resides	on	the	shared	cache	line.	The	threads	will	invalidate	the
cache	 line	for	each	other	although	 there	 is	no	 true	sharing	of	data	between	 the
threads.

False	 sharing	 will	 most	 likely	 occur	 when	 using	 global	 data	 or	 dynamically-
allocated	data	that	is	shared	between	threads.	An	example	where	false	sharing	is
likely	 to	occur	 is	when	 allocating	 an	 array	 that	 is	 shared	 between	 threads,	 but
each	thread	is	only	using	a	single	element	of	the	array.

The	 solution	 to	 this	 problem	 is	 to	 pad	 each	 element	 in	 the	 array	 so	 that	 two
adjacent	elements	cannot	reside	on	the	same	cache	line.	Since	C++17,	there	is	a
portable	 way	 of	 doing	 this	 using
the	 std::hardware_destructive_interference_size	 constant	 defined	 in	 <new>	 in
combination	with	the	alignas	specifier.	The	following	example	demonstrates	how
to	create	an	element	that	prevents	false	sharing:

struct	alignas(std::hardware_destructive_interference_size)	Element	{

			int	counter_{};

};	

	

auto	elements	=	std::vector<Element>(num_threads);	

The	elements	in	the	vector	are	now	guaranteed	to	reside	on	separate	cache	lines.

Summary
In	this	chapter,	we	have	seen	how	to	create	programs	that	can	execute	multiple
threads	concurrently.	We	have	seen	how	to	avoid	data	races	by	protecting	critical
sections	with	 locks	 or	 by	 using	 atomics.	We	have	 looked	 into	 execution	 order
and	 the	 C++	 memory	 model,	 which	 becomes	 important	 to	 understand	 when
writing	 lock-free	 programs.	 We	 have	 seen	 that	 immutable	 data	 structures	 are
thread-safe.	 The	 chapter	 ended	 with	 some	 guidelines	 for	 improving	 the
performance	in	concurrent	applications.

Parallel	STL
In	 this	 chapter,	 you	will	 learn	 how	 to	 use	 the	 computer's	 graphical	 processing
unit	for	computationally	heavy	tasks.	We	will	use	the	excellent	Boost	Compute
library,	 which	 exposes	 the	 GPU	 via	 an	 interface	 that	 resembles	 the	 STL,
meaning	that	you	will	move	your	standard	C++	code	almost	seamlessly	from	the
CPU	to	the	GPU.

This	chapter	is	not	going	to	go	in	depth	into	theories	of	parallelizing	algorithms
or	 parallel	 programming	 in	 general,	 as	 these	 subjects	 are	 far	 too	 complex	 to
cover	 in	 a	 single	 chapter.	 Also,	 there	 is	 a	multitude	 of	 books	 on	 this	 subject.
Instead,	this	chapter	is	going	to	take	a	more	practical	approach	and	demonstrate
how	 to	extend	a	 current	C++	code	base	 to	utilize	parallelism	while	preserving
the	readability	of	the	code	base.

In	other	words,	we	do	not	want	the	parallelism	to	get	in	the	way	of	readability;
rather,	we	want	 the	 parallelism	 to	 be	 abstracted	 away	 so	 that	 parallelizing	 the
code	is	only	a	matter	of	changing	a	parameter	to	an	algorithm.

In	 earlier	 chapters,	 we	 have	 stressed	 that	 we	 prefer	 STL	 algorithms	 over
handcrafted	for-loops;	in	this	chapter,	we	will	see	some	great	advantages	of	using
algorithms.

We	will	 start	 this	 chapter	 off	 by	 looking	 at	 a	 few	 parallel	 implementations	 of
standard	 algorithms,	 and	 the	 added	 complexity	 of	 writing	 parallel	 versions	 of
them.	We	will	then	go	on	to	see	how	we	can	adapt	a	code	base	to	use	the	parallel
extensions	of	STL,	and	finally	we	will	 take	a	brief	look	at	how	we	can	use	the
capabilities	of	the	GPU	in	a	simple	way	by	using	Boost	Compute	and	OpenCL.

Importance	of	parallelism
From	 a	 programmer's	 perspective,	 it	 would	 have	 been	 very	 convenient	 if	 the
computer	hardware	of	today	had	been	a	100	GHz	single	core	CPU	rather	than	a
three	gigahertz	multi-core	CPU,	and	we	wouldn't	need	to	care	about	parallelism.
But,	 as	 the	 evolution	of	 computer	hardware	 is	 going	 in	 the	direction	of	multi-
core	CPUs,	programmers	have	to	use	efficient	parallel	patterns	in	order	to	make
the	most	out	of	the	hardware.

Parallel	algorithms
As	 mentioned	 in	 Chapter	 10,	 Concurrency,	 with	 parallelism	 we	 refer	 to
programming	that	takes	advantage	of	hardware	with	multiple	cores.	It	makes	no
sense	 to	 parallelize	 algorithms	 if	 the	 hardware	 does	 not	 provide	 any	 of	 the
benefits	of	it.

Therefore,	 a	 parallel	 algorithm	 equivalent	 of	 a	 sequential	 algorithm	 is
algorithmically	slower	than	the	sequential.	Its	benefits	come	from	the	ability	to
spread	the	algorithms	onto	several	processing	units.

With	 that	 in	 mind,	 it's	 also	 notable	 that	 not	 all	 algorithms	 gain	 the	 same
performance	 increase	 when	 run	 in	 parallel.	 As	 a	 simple	measurement	 of	 how
well	an	algorithm	scales,	we	can	measure:

A:	The	time	it	takes	to	execute	sequentially	at	one	CPU	core
B:	 The	 time	 it	 takes	 to	 execute	 in	 parallel,	 multiplied	 by	 the	 number	 of
cores

If	 A	 and	 B	 are	 equal,	 the	 algorithm	 parallelizes	 perfectly,	 and	 the	 larger	 B	 is
compared	to	A,	the	worse	the	algorithm	parallelizes.

How	well	an	algorithm	parallelizes	depends	on	how	independently	each	element
can	be	processed.	For	example,	std::transform()	is	trivial	to	parallelize	in	the	sense
that	 each	 element	 is	 processed	 completely	 independent	 of	 every	 other.	 This
means	that	theoretically,	for	n	number	of	cores,	it	would	execute	n	times	as	fast
as	a	sequential	execution.	In	practice,	though,	there	are	a	multitude	of	parameters
that	 limit	 parallel	 execution	 such	 as	 creating	 threads,	 context	 switches,	 and	so
on,	as	mentioned	in	Chapter	10,	Concurrency	in	C++.

As	 parallel	 algorithms	 always	 have	 a	 higher	 computational	 cost
than	 their	 sequential	 equivalent,	 there	 are	 some	 cases	 where	 you
may	want	a	sequential	version	even	though	it's	slower.	An	example
of	such	a	case	is	if	you	are	optimizing	for	low	energy	consumption
rather	than	low	computational	time.	Even	though	this	is	probably	a
very	 rare	 case	 (perhaps	 a	 solar-powered	 galaxy-exploring

spacecraft),	it	might	be	worth	noting.

Implementing	 parallel
std::transform()
Although	 algorithmically	 std::transform()	 is	 easy	 to	 implement,	 in	 practice
implementing	even	a	rudimentary	parallel	version	is	more	complex	than	it	might
appear	at	first	sight.

A	 naive	 parallel	 implementation	 of	 std::transform()	 would	 probably	 look
something	like	this:

Divide	 the	 elements	 into	 chunks	 corresponding	 to	 the	number	of	 cores	 in
the	computer
Execute	each	chunk	in	a	separate	task	in	parallel
Wait	for	all	tasks	to	finish

Naive	implementation
Using	 std::thread::hardware_concurrency()	 to	 determine	 the	 number	 of	 supported
hardware	 threads,	 a	 naive	 implementation	 could	 look	 like	 this.	 Note	 that
hardware_concurrency()	 might	 return	 0	 if	 it	 for	 some	 reason	 is	 undetermined,	 and
therefore	it	is	clamped	to	be	at	least	one:

template	<typename	SrcIt,	typename	DstIt,	typename	Func>

auto	par_transform_naive(SrcIt	first,	SrcIt	last,	DstIt	dst,	Func	f)	{

		auto	n	=	static_cast<size_t>(std::distance(first,	last));

		auto	num_tasks	=	std::max(std::thread::hardware_concurrency(),	1);

		auto	chunk_sz	=	std::max(n	/	num_tasks,	1);

		auto	futures	=	std::vector<std::future<void>>{};

		futures.reserve(num_tasks);	//	Invoke	each	chunk	on	a	separate	

																														//	task,	to	be	executed	in	parallel

		for	(size_t	task_idx	=	0;	task_idx	<	num_tasks;	++task_idx)	{

				auto	start_idx	=	chunk_sz	*	task_idx;

				auto	stop_idx	=	std::min(chunk_sz	*	(task_idx	+	1),	n);

				auto	fut	=	std::async([first,	dst,	start_idx,	stop_idx,	&f](){

						std::transform(first+start_idx,	first+stop_idx,	dst+start_idx,	f);

				});

				futures.emplace_back(std::move(fut));

		}		

		//	Wait	for	each	task	to	finish

		for	(auto&	fut	:	futures)	{	fut.wait();}

}

Performance	evaluation
Continuing	the	naive	implementation,	let's	measure	its	performance	with	a	naive
performance	evaluation	compared	to	std::transform()	at	a	single	CPU	core.

We	measure	two	scenarios:

1.	 Process	32	elements	with	an	expensive	function	called	heavy_f
2.	 Process	100,000,000	elements	with	an	inexpensive	function	called	light_f

The	 following	 code	 processes	 a	 low	 number	 of	 elements	 with	 the
expensive	heavy_f	transform	function:

//	Low	number	of	elements	-	heavy	transform	function	

auto	heavy_f	=	[](float	v)	{

		auto	sum	=	v;

		for	(size_t	i	=	0;	i	<	100'000'000;	++i)	{	sum	+=	(i*i*i*sum);	}

		return	sum;	

};	

auto	measure_heavy()	{	

		auto	n	=	32;

		auto	src	=	std::vector<float>(n);

		auto	dst	=	std::vector<float>(n);

		std::transform(src.begin(),	src.end(),	dst.begin(),	heavy_f);	

		par_transform_naive(src.begin(),	src.end(),	dst.begin(),	heavy_f);	

}	

The	following	code	processes	a	high	number	of	elements	with	 the	 inexpensive
light_f	transform	function:

//	High	number	of	elements	-	light	transform	function	

auto	light_f	=	[](float	v)	{

		auto	sum	=	v;

		for	(size_t	i	=	0;	i	<	10;	++i)	{	sum	+=	(i*i*i*sum);	}

		return	sum;	

};	

auto	measure_light()	{	

		auto	n	=	100'000'000;

		auto	src	=	std::vector<float>(n);

		auto	dst	=	std::vector<float>(n);

		std::transform(src.begin(),	src.end(),	dst.begin(),	light_f);	

		par_transform_naive(src.begin(),	src.end(),	dst.begin(),	light_f);	

}	

The	 following	 table	 shows	 the	 results	 for	 low	 number	 of	 elements	 with	 the
expensive	heavy_f	function:

Algorithm Time	(lower	is	better) Speed	up	(higher	is	better)

std::transform() 2913914	microseconds 																																							1.00	x

par_transform_naive() 364596	microseconds 																																							7.99	x

	

The	parallelization	is	perfect	as	it	is	approximately	eight	times	as	fast	at	an	eight-
core	 CPU.	 Perfect	 parallelization	 like	 this	 is	 very	 rare,	 but	 under	 certain
conditions	where	memory	access	is	not	a	bottle	neck,	it	is	possible.

Here	 are	 the	 results	 for	 a	 high	 number	 of	 elements	 with	 the	 inexpensive
light_f	function:

Algorithm Time	(lower	is	better) Speed	up	(higher	is	better)

std::transform() 407859	microseconds 																																							1.00	x

par_transform_naive() 88887	microseconds 																																							4.60	x

	

The	parallel	version	is	five	times	as	fast,	which	is	roughly	what	a	parallelization
of	 std::transform()	 at	 eight	 cores	 usually	 ends	 up	 at,	 as	 the	 parallelization	 is
affected	by	a	lot	of	external	parameters	such	as	memory	bandwidth,	as	discussed
in	Chapter	10,	Concurrency.

Shortcomings	 of	 the	 naive
implementation
The	 naive	 implementation	might	 do	 a	 good	 job	 if	we	 are	 the	 only	 application
utilizing	the	hardware,	and	transforming	each	chunk	has	the	same	computational
cost.	However,	 this	 is	 rarely	 the	 case;	 rather,	we	want	 a	 good	general	 purpose
parallel	implementation.

The	 following	 illustrations	 show	 the	 problems	 we	 want	 to	 avoid.	 If	 the
computational	 cost	 is	 not	 equivalent	 for	 each	 chunk,	 the	 implementation	 is
limited	to	the	chunk	that	takes	the	most	time:

Possible	scenarios	where	computation	time	is	not	proportional	to	chunk	size

If	the	application	and/or	the	operating	system	has	other	processes	to	handle,	the
operation	will	not	process	all	chunks	in	parallel:

Possible	scenarios	where	computation	time	is	proportional	to	chunk	size

As	 you	 can	 see,	 splitting	 the	 operation	 into	 smaller	 chunks	 makes	 the
parallelization	adjust	to	the	current	condition,	avoiding	single	tasks	that	stall	the
whole	operation.

Divide	and	conquer
In	 order	 to	 get	 a	 good	 general	 purpose	 implementation	 of	 the	 parallel
transformation,	we	divide	 the	range	recursively	 into	smaller	 ranges,	sometimes
referred	to	as	"divide	and	conquer".

It	works	as	follows:

1.	 The	input	range	is	divided	into	two	ranges;	if	the	input	range	is	smaller	than
a	specified	threshold,	 the	range	is	processed,	or	else	 the	range	is	split	 into
two	parts:

One	part	is	branched	to	another	task	recursively	processed	at	that	task
One	part	is	recursively	processed	at	the	calling	thread

The	 following	 illustration	 shows	 how	 it	 would	 recursively	 transform	 a	 range
with	the	following	properties:

Range	size:	16
Chunk	size:	4
Transformation	function:		[](const	auto&	v){	return	v*v;	}

A	range	is	divided	recursively	for	parallel	processing

Implementation
Implementation-wise,	 it's	 quite	 a	 small	 bit	 of	 code.	 The	 incoming	 range	 is
recursively	split	into	two	chunks;	the	first	chunk	is	recursively	invoked	as	a	new
task,	and	the	second	chunk	is	processed	on	the	same	task:

template	<typename	SrcIt,	typename	DstIt,	typename	Func>	

auto	par_transform(SrcIt	first,SrcIt	last,DstIt	dst,Func	f,size_t	chunk_sz)	{	

		const	auto	n	=	static_cast<size_t>(std::distance(first,	last));

		if	(n	<=	chunk_sz)	{	

				std::transform(first,	last,	dst,	f);	

				return;	

		}	

		const	auto	src_middle	=	std::next(first,	n/2);	

		//	Branch	of	first	part	to	another	task	

		auto	future	=	std::async([=,	&func]{	

				par_transform(first,	src_middle,	dst,	f,	chunk_sz);	

		});	

		//	Recursively	handle	the	second	part	

		const	auto	dst_middle	=	std::next(dst,	n/2);	

		par_transform(src_middle,	last,	dst_middle,	f,	chunk_sz);	

		future.wait();	

}	

Performance	evaluation
Now	 we	 create	 another,	 rather	 stupid,	 transform_func	 that	 takes	 more	 time
depending	on	the	input	value,	and	a	range	of	increasing	values	using	std::iota()
like	this:

const	auto	transform_func	=	[](float	v)	{

		auto	sum	=	v;

		auto	i_max	=	v	/	100'000;		//	The	larger	"v"	is,	the	more	to	compute

		for	(size_t	i	=	0;	i	<	i_max;	++i)	{	sum	+=	(i*i*i*sum);	}

		return	sum;

};

auto	n	=	size_t{	10'000'000	};

auto	src	=	std::vector<float>(n);

std::iota(src.begin(),	src.end(),	0.0f);	//	"src"	goes	from	0	to	n

If	we	evaluate	them	with	different	chunk	sizes,	as	well	as	std::transform()	and	the
old	par_transform_naive(),	we	get	the	following	computation	times:

Function Chunk	size Number	 of
tasks Microseconds Speed

up

std::transform() 10000000	(=	n) 1 844629 1.00x

par_transform_naive()
1250000	 (=	 n	 /
8) 8 222933 3.79x

par_transform() 1000000 10 210942 4.00x

par_transform() 100000 100 148066 5.70x

par_transform() 10000 1000 144189 5.86x

par_transform() 1000 10000 152123 5.55x

par_transform() 100 100000 208969 4.04x

par_transform() 10 1000000 1536680 0.55x

Computation	time	using	different	chunk	sizes

As	the	table	illustrates,	the	best	performance	in	this	case	lies	around	chunk	sizes
of	10000	elements.	With	 larger	chunks,	 the	performance	 is	bottlenecked	 in	 the
time	it	takes	to	process	the	final	chunks,	whereas	too	small	chunks	results	in	too
much	overhead	in	creating	and	invoking	tasks	compared	to	the	computation.	As
mentioned	 earlier,	 this	 implementation	 is	 rather	 rudimentary	 as	 it	 simply
allocates	all	the	tasks	in	one	big	list,	but	the	outcome	is	still	worth	pointing	out.

As	 noted,	 a	 chunk	 size	 around	 10'000	 elements	 seems	most	 optimal,	 but	 how
much	would	this	affect	a	transformation	where	each	computation	takes	the	same
amount	of	time?

If	we	change	the	transform_func	to	have	a	fixed	computation	cost,	regardless	of	its
argument,	like	this:

auto	transform_func	=	[](float	v)	{

		auto	sum	=	v;

		auto	end	=	60

		for	(size_t	i	=	0;	i	<	end;	++i)	{

				sum	+=	(i*i*i*sum);

		}

		return	sum;

};

...and	execute	the	code	as	in	the	previous	example,	we	get	the	following	table:

Function Chunk
size

Number
of	tasks Microseconds

std::transform() 10000000
(=	n)

1 815498

par_transform_naive()
1250000
(=	n	/	8) 8 129403

par_transform_chunks() 1000000 10 184041

par_transform_chunks() 100000 100 132248

par_transform_chunks() 10000 1000 131812

par_transform_chunks() 1000 10000 141705

par_transform_chunks() 100 100000 179279

par_transform_chunks() 10 1000000 1542512

Computation	time	using	different	chunk	sizes

The	 fastest	 version,	 although	 marginally,	 is	 the	 par_transform_naive()	 function
where	the	number	of	chunks	corresponds	to	the	number	of	cores	in	the	computer.
This	is	expected	though,	as	this	code	is	executed	in	a	clinical	environment	where
the	CPU	does	more	or	less	nothing	more	than	perform	this	calculation.

The	 important	 takeaway	 from	 this	 example,	 though,	 is	 that	 the	 performance
penalty	of	scheduling	1000	smaller	 tasks	rather	 than	eight	big	ones	is	marginal
enough	to	draw	the	conclusion	that	a	generic	implementation	would	be	wise	to
use	a	large	number	of	tasks	rather	than	trying	to	figure	out	the	correct	number	of
tasks	based	on	the	number	of	CPU	cores	on	the	machine.	In	other	words,	let	the
scheduler	involved	in	launching	an	asynchronous	task	do	the	scheduling.

Implementing	 parallel
std::count_if
We	can	easily	use	the	same	divide	and	conquer	concept	to	implement	a	parallel
version	 of	 std::count_if(),	 with	 the	 difference	 that	 we	 need	 to	 accumulate	 the
returned	value	like	this:

template	<typename	It,	typename	Pred>	

auto	par_count_if(It	first,	It	last,	Pred	pred,	size_t	chunk_sz)	{	

		auto	n	=	static_cast<size_t>(std::distance(first,	last));	

		if	(n	<=	chunk_sz)	

				return	std::count_if(first,	last,	pred);

		auto	middle	=	std::next(first,	n/2);	

		auto	future	=	std::async([=,	&pred]{	

				return	par_count_if(first,	middle,	pred,	chunk_sz);	

		});	

		auto	num	=	par_count_if(middle,	last,	pred,	chunk_sz);	

		return	num	+	future.get();	

}	

Implementing	parallel	std::copy_if
We've	 had	 a	 look	 at	 std::transform()	 and	 std::count_if(),	which	 are	 quite	 easy	 to
implement	both	sequentially	and	in	parallel.	If	we	take	another	algorithm	that	is
easily	implemented	sequentially,	std::copy_if(),	things	get	a	lot	harder	to	perform
in	parallel.

Sequentially,	implementing	std::copy_if()	is	as	easy	as	this:

template	<typename	SrcIt,	typename	DstIt,	typename	Pred>	

auto	copy_if(SrcIt	first,	SrcIt	last,	DstIt	dst,	Pred	pred)	{	

		for(auto	it	=	first;	it	!=	last;	++it)	{	

				if(pred(*it))	{	

						*dst	=	*it;	

						++dst;

				}

		}

		return	dst;

}	

...	and	used	like	this:

auto	vals	=	{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15};	

auto	odd_vals	=	std::vector<int>(vals.size(),	-1);	

auto	is_odd	=	[](int	v){	return	(v	%	2)	==	1;};	

auto	new_end	=	copy_if(vals.begin(),	vals.end(),	odd_vals.begin(),	is_odd);	

//	odd_vals	is	{1,3,5,7,9,11,13,15,-1,-1,-1,-1,-1,-1,-1,-1}

//	new_end	points	to	the	first	-1

odd_vals.erase(new_end,	odd_vals.end());	

//	odd_vals	is	{1,3,5,7,9,11,13,15}

However,	if	we	were	to	parallelize	this,	we	immediately	run	into	problems	as	we
cannot	write	to	the	destination	iterator	concurrently:

//	This	is	pure	undefined	behavior,	

//	both	tasks	will	write	to	the	same	position	

template	<typename	SrcIt,	typename	DstIt,	typename	Func>	

auto	par_copy_if(SrcIt	first,	SrcIt	last,	DstIt	dst,	Func	func)	{	

		auto	n	=	std::distance(first,	last);

		auto	middle	=	std::next(first,	n	/	2);	

		auto	fut0	=	std::async([=](){	

				return	std::copy_if(first,	middle,	dst,	func);	});	

		auto	fut1	=	std::async([=](){	

				return	std::copy_if(middle,	last,	dst,	func);	});

		auto	dst0	=	fut0.get();

		auto	dst1	=	fut1.get();

		return	*std::max(dst0,	dst1);	//	Just	to	return	something...

}	

We	now	have	two	simple	approaches;	either	we	synchronize	the	index	which	we
write	 to	 (by	using	an	atomic/lock-free	variable),	 or	we	 split	 the	 algorithm	 into
two	parts.

Approach	 one	 –	 Use	 a
synchronized	write	position
The	 first	 approach	 one	might	 consider	 is	 to	 synchronize	 the	write	 position	 by
using	an	atomic	size_t	and	the	fetch_add()	member	function,	as	learned	in	Chapter	1
0,	Concurrency.	Whenever	a	 thread	 tries	 to	write	a	new	element,	 it	 fetches	 the
current	 index	 and	 adds	 one	 atomically,	 thus	 each	 value	 is	written	 to	 a	 unique
index.

In	code,	we	will	split	 the	function	into	two	functions:	an	inner	function	and	an
outer	function.	The	atomic	write	index	is	defined	in	the	outer	function,	and	the
actual	 implementation	 in	 the	 inner	 function	 which	 we
call	_inner_par_copy_if_sync().

Inner	function
The	 inner	 function	 requires	 an	 atomic	 size_t	 that	 synchronizes	 the	 write
positions.	As	the	algorithm	is	recursive,	it	cannot	store	the	atomic	size_t	itself;	it
requires	an	outer	function	to	invoke	the	algorithm:

template	<typename	SrcIt,	typename	DstIt,	typename	Pred>

auto	_inner_par_copy_if_sync(

		SrcIt	first,

		SrcIt	last,

		DstIt	dst,

		std::atomic_size_t&	dst_idx,

		Pred	pred,

		size_t	chunk_sz

)	->	void	{

		auto	n	=	std::distance(first,	last);

		if	(n	<=	chunk_sz)	{

				std::for_each(first,	last,	[&](const	auto&	v)	{

						if	(pred(v))	{

								auto	write_idx	=	dst_idx.fetch_add(1);

								*std::next(dst,	write_idx)	=	v;

						}

				});

				return;

		}

		auto	middle	=	std::next(first,	n	/	2);

		auto	future	=	std::async(

				[first,	middle,	dst,	chunk_sz,	&pred,	&dst_idx]	{

						return	_inner_par_copy_if_sync(

								first,	middle,	dst,	dst_idx,	pred,	chunk_sz

);

				});

		_inner_par_copy_if_sync(middle,	last,	dst,	dst_idx,	pred,	chunk_sz);

		future.wait();

}

Outer	function
The	 outer	 function,	 called	 from	 the	 user	 code,	 is	 simply	 a	 placeholder	 for	 the
atomic	 size_t,	 which	 is	 initialized	 to	 zero.	 It	 then	 initializes	 the	 first	 inner
function,	which	parallelizes	the	code	further:

template	<typename	SrcIt,	typename	DstIt,	typename	Pred>

auto	par_copy_if_sync(SrcIt	first,SrcIt	last,DstIt	dst,Pred	p,size_t	chunk_sz){

		auto	dst_write_idx	=	std::atomic_size_t{	0	};

		_inner_par_copy_if_sync(first,	last,	dst,	dst_write_idx,	p,	

				chunk_sz);

		return	std::next(dst,	dst_write_idx);

}

Approach	 two	 –	 Split	 algorithm
into	two	parts
The	 second	 approach	 is	 to	 split	 the	 algorithm	 into	 two	 parts.	 First,	 the
conditional	 copying	 is	 performed	 in	 parallel	 chunks,	 then	 the	 resulting	 sparse
range	is	squeezed	to	a	continuous	range.

Part	 one	 –	 Copy	 elements	 in
parallel	into	the	destination	range
The	first	part	copies	 the	elements	 in	chunks,	 resulting	 in	 the	sparse	destination
illustrated	in	the	following	figure.	Each	chunk	is	conditionally	copied	in	parallel,
and	the	resulting	range	iterators	are	stored	in	the	future	for	later	retrieval:

Sparse	destination	range	after	first	step	of	conditional	copy

The	following	code	implements	the	algorithm:
template	<typename	SrcIt,	typename	DstIt,	typename	Pred>	

auto	par_copy_if_split(SrcIt	first,SrcIt	last,DstIt	dst,Pred	pred,size_t	chunk_sz){	

		//	Part	#1:	Perform	conditional	copy	in	parallel	

		auto	n	=	static_cast<size_t>(std::distance(first,	last));	

		using	CopiedRange	=	std::pair<DstIt,	DstIt>;	

		using	FutureType	=	std::future<	CopiedRange	>;

		auto	futures	=	std::vector<FutureType>{};

		futures.reserve(n	/	chunk_sz);

		for	(size_t	start_idx	=	0;	start_idx	<	n;	start_idx	+=	chunk_sz)	{

				auto	stop_idx	=	std::min(start_idx	+	chunk_sz,	n);

				auto	future	=	std::async([=,	&pred]	{	

						auto	dst_first	=	dst	+	start_idx;	

						auto	dst_last	=	std::copy_if(first	+	start_idx,	first	+	stop_idx,	

								dst_first,	pred);	

						return	std::make_pair(dst_first,	dst_last);

				});

				futures.emplace_back(std::move(future));

		}	

		//	To	be	continued...	

Part	two	–	Move	the	sparse	range
sequentially	 into	 a	 continuous
range
When	 the	 sparse	 range	 is	 created,	 it	 is	merged	 sequentially	using	 the	 resulting
value	 from	 each	 std::future,	 as	 illustrated	 in	 the	 following	 figure.	 This	 is
performed	sequentially	as	the	parts	overlap.	Note	that	std::move	is	used	instead	of
copying	to	avoid	unnecessary	copying:

Merge	sparse	range	into	a	continuous	range

		//	...continued	from	above...	

		//	Part	#2:	Perform	merge	of	resulting	sparse	range	sequentially	

		auto	new_end	=	futures.front().get().second;	

		for(auto	it	=	std::next(futures.begin());	it	!=	futures.end();	++it)	{	

				auto	chunk_rng	=	it->get();	

				new_end=std::move(chunk_rng.first,	chunk_rng.second,	new_end);

		}	

		return	new_end;	

}	//	end	of	par_copy_if_split	

Performance	evaluation
Now	 that	 we	 have	 two	 different	 implementations,	 let's	 see	 how	 they	measure
up.	 The	 performance	 boost	 from	 using	 this	 parallelized	 version	 of	 copy_if	 is
heavily	 dependent	 on	 how	 expensive	 the	 predicate	 is.	 Therefore,	 we	measure
with	 two	 predicates;	 is_odd,	 which	 is	 very	 inexpensive	 and	 is_prime,	 which	 is
expensive.	

The	light	is_odd	predicate: The	heavy	is_prime	predicate:

auto	is_odd	=	[](unsigned	v)	{	

		return	(v	%	2)	==	1;	

};	

	

	

	

	

	

	

auto	is_prime	=	[](unsigned	v)	{

		if	(v	<	2)	return	false;

		if	(v	==	2)	return	true;

		if	(v	%	2	==	0)	return	false;

		for	(unsigned	i=3;	(i*i)<=v;	i+=2)	{

				if	((v	%	i)	==	0)	{return	false;	}

		}

		return	true;

};

	

The	following	table	shows	the	performance	as	measured	using	an	Intel	i7	7700k
CPU.	Note	 that	 for	 the	algorithms	which	 is	split	 into	chunks,	 the	chunk	size	 is
set	to	100'000.

Predicate Algorithm Number	 of
elements Milliseconds Speed	up

is_odd std::copy_if 100,000,000 64 				1.00	x

is_odd par_copy_if_split 100,000,000 58 				1.10	x

is_odd par_copy_if_sync 100,000,000 871 	 	 	 	 0.07	 x
(disaster)

is_prime std::copy_if 10,000,000 1630 				1.00	x

is_prime par_copy_if_split 10,000,000 320 				5.09	x

is_prime par_copy_if_sync 10,000,000 321 				5.08	x

Conditional	copy	strategies	versus	computation	time

The	 most	 obvious	 observation	 when	 measuring	 the	 performance	 is	 how
ridiculously	 slow	 the	 synchronized	 version	 is	 with	 the	 lightweight	 is_odd

predicate,	 it's	 not	 even	 one	 tenth	 as	 fast	 as	 the	 serial	 version.	 The	 disastrous
performance	is	actually	not	due	to	the	atomic	write	index;	rather	it	is	because	the
cache	mechanism	of	the	hardware	is	trashed	due	to	several	threads	writing	to	the
same	cache	line	(as	learned	in	Chapter	7,	Memory	Management).

So,	 with	 that	 knowledge,	 let's	 focus	 on	 the	 par_copy_if_split	 implementation
instead.	On	the	lightweight	predicate	it	is	just	slightly	faster	than	the	sequential
version,	 but	with	 the	 heavyweight	 is_prime	 predicate,	 the	 performance	 is	 vastly
increased.

The	increased	performance	 is	a	result	of	spending	most	of	 the	computations	 in
the	first	part,	which	executes	in	parallel.

Parallel	STL
As	of	C++17,	the	STL	library	has	been	extended	with	parallel	versions	of	most,
but	not	all,	algorithms.	Changing	your	algorithms	to	execute	in	parallel	is	only	a
matter	of	 adding	 a	 parameter	 that	 tells	 the	 algorithm	which	 parallel	 execution
policy	to	use.

As	stressed	earlier	in	this	book,	if	your	code	base	is	based	upon	STL	algorithms,
or	at	least	if	you	have	the	habit	of	writing	C++	by	using	algorithms,	you	get	an
instant	performance	boost	almost	for	free	by	adding	an	execution	policy	where
suitable.

auto	roller_coasters	=	std::vector<std::string>{	

		"woody",	"steely",	"loopy",	"upside_down"	

};	

Sequential	version Parallel	version

auto	loopy_coaster	=	*std::find(

		roller_coasters.begin(),

		roller_coasters.end(),	

		"loopy"

);

	

auto	loopy_coaster	=	*std::find(

		std::execution::par,	

		roller_coasters.begin(),

		roller_coasters.end(),

		"loopy"

);

Execution	policies
The	 execution	 policy	 informs	 the	 algorithms	 of	 how	 they	 are	 allowed	 to
parallelize	 the	 algorithm;	 there	 are	 three	 default	 execution	policies	 included	 in
the	 STL	 parallel	 extensions.	 In	 the	 future,	 there	 will	 probably	 be	 libraries
extending	these	policies	for	certain	hardware	and	conditions.	This	would	make	it
possible	to	seamlessly	use	the	parallel	power	of	modern	graphics	card	from	STL
algorithms.

The	 execution	 policies	 are	 defined	 in	 the	 header	 <execution>	 and	 reside	 in	 the
namespace	std::execution.

Sequenced	policy
The	sequenced	execution	policy,	std::execution::seq,	makes	the	algorithm	execute
sequentially	with	no	parallelism,	just	as	the	algorithm	would	execute	if	invoked
without	 any	execution	policy	 at	 all.	 It	might	 seem	odd	 that	 this	policy	 is	 even
provided,	 but	 it	 allows	 the	 programmer	 to	 specify	 an	 algorithm	 to	 execute
sequentially	 if	 the	 number	 of	 elements	 is	 below	 a	 certain	 threshold	 where
executing	an	algorithm	in	parallel	is	slower:

auto	find_largest(const	std::vector<int>&	v)	{	

		auto	threshold	=	2048;	

		return	v.size()	<	threshold	?	

				*std::max_element(std::execution::seq,	v.begin(),	v.end())	:	

				*std::max_element(std::execution::par,	v.begin(),	v.end());

}

Parallel	policy
The	parallel	execution	policy,		std::execution::par	,	can	be	considered	the	standard
execution	 policy	 for	 parallel	 algorithms.	 In	 contrast	 with	 the	 parallel
unsequenced	 policy	 described	 later,	 	 it	 handles	 exceptions,	meaning	 that	 if	 an
exception	is	thrown	during	the	execution	of	the	algorithm,	the	exception	will	be
thrown	 out	 back	 on	 the	 main	 thread	 and	 the	 algorithm	 will	 break	 at	 an
unspecified	position:

auto	inv_numbers(const	std::vector<float>&	c,	std::vector<float>&	out)	{	

		out.resize(c.size(),	-1.0f);

		auto	inversef	=	[](float	denominator){	

				if(denominator	!=	0.0f)	{	return	1.0f/denominator;	}

				else	throw	std::runtime_error{"Division	by	zero};}

		};	

		auto	p	=	std::execution::par;

		std::transform(p,	c.begin(),	c.end(),	out.begin(),	inversef);	

}	

	

auto	test_inverse_numbers()	{	

		auto	numbers	=	std::vector<float>{3.0f,	4.0f,	0.0f,	8.0f,	2.0f};	

		auto	inversed	=	std::vector<float>{};	

		try	{	

				inv_numbers(numbers,	inversed);	

		}	

		catch	(const	std::exception&	e)	{	

				std::cout	<<	"Exception	thrown,	"	<<	e.what()	<<	'\n';	

		}	

		for(auto	v:	inversed)	{	std::cout	<<	v	<<	",	";	}	

}	

Executing	 the	 previous	 code	would	 result	 in	 the	 following	 output,	where	 it	 is
undetermined	which	of	the	elements	has	actually	been	divided:

//	Possible	output	

Exception	thrown,	division	by	zero	

0.33,	-1.0,	-1.0,	0.125,	-1.0,	

Parallel	unsequenced	policy
The	parallel	unsequenced	policy,		std::execution::par_unseq	,	executes	the	algorithm
in	parallel	like	the	parallel	policy,	but	with	the	addition	that	it	may	also	vectorize
the	loop	using,	for	example,	SIMD	instructions	if	plausible.

In	addition	to	the	vectorization,	it	has	stricter	conditions	for	the	predicates	than
std::execution::par:

Predicates	 may	 not	 throw,	 doing	 so	 will	 cause	 undefined	 behavior	 or	 an
instant	crash
Predicates	may	not	use	a	mutex	for	synchronization,	doing	so	might	cause	a
deadlock

The	 following	 example	 might	 cause	 a	 deadlock	 as	 the
std::execution::par_unseq	might	execute	concurrently	on	the	same	thread:

auto	trees	=	std::vector<std::string>{"Pine",	"Birch",	"Oak"};

auto	m	=	std::mutex{};

auto	p	=	std::execution::par_unseq;

std::for_each(p,	trees.begin(),	trees.end(),	[&m](const	auto&	t){

		auto	guard	=	std::lock_guard<std::mutex>{m};

		std::cout	<<	t	<<	'\n';

});

In	 other	 words,	 when	 using	 the	 std::execution::par_unseq	 policy	 you	 must	 make
sure	that	the	predicate	does	not	throw	or	acquire	a	lock.

Parallel	 modifications	 of
algorithm
Most	 algorithms	 in	STL	are	 available	 as	parallel	versions	 straight	out	 the	box,
but	there	are	some	noteworthy	changes	to	std::accumulate	and	std::for_each,	as	their
original	requirements	required	in-order	execution.

std::accumulate	and	std::reduce
The	std::accumulate	algorithm	cannot	be	parallelized	as	it	requires	to	be	executed
in	 order	 of	 the	 elements,	 which	 is	 not	 possible	 to	 parallelize.	 Instead,	 a	 new
algorithm	called	std::reduce	has	been	added,	which	works	just	like	std::accumulate
with	the	exception	that	it	is	executed	un-ordered.

With	 commutative	 operations	 their	 result	 is	 the	 same,	 as	 the	 order	 of
accumulation	doesn't	matter.

In	other	words,	given	a	range	of	integers:

auto	c	=	std::vector<int>{1,	2,	3,	4,	5};	

Accumulating	them	by	addition	or	multiplication:

auto	sum	=	std::accumulate(c.begin(),	c.end(),	0,	

		[](int	a,	int	b)	{	return	a	+	b;	}	

);	

auto	product	=	std::accumulate(c.begin(),	c.end(),	1,	

		[](int	a,	int	b)	{	return	a	*	b;	}	

);

Would	yield	the	same	result	if	invoked	with	std::reduce()	instead	of	std::accumulate,
as	both	addition	and	multiplication	of	integers	are	commutative:

But,	if	the	operation	is	not	commutative,	the	result	is	dependent	on	the	order	of
arguments.	For	example,	if	we	were	to	accumulate	a	list	of	strings	like	this:

auto	mice	=	std::vector<std::string>{"Mickey",	"Minnie",	"Jerry"};	

auto	acc	=	std::accumulate(mice.begin(),	mice.end(),	{});	

std::cout	<<	acc	<<	'\n';	

//	Prints	"MickeyMinnieJerry"	

But,	using	std::reduce,	the	resulting	string	could	be	any	order	of	names,	as:

std::string{"Mickey"}	+	std::string{"Jerry"}	==	std::string{"MickeyJerry"};	

std::string{"Jerry"}	+	std::string{"Mickey"}	==	std::string{"JerryMickey"};	

Therefore,	the	following	code	might	produce	different	results:

auto	red	=	std::reduce(mice.begin(),	mice.end(),	{});	

std::cout	<<	red	<<	'\n';	

//	Possible	output	"MinnieJerryMickey"	or	"MickeyMinnieJerry"	etc	

std::transform_reduce
As	an	addition	to	the	STL	algorithms,	std::transform_reduce	has	also	been	added.	It
does	exactly	what	it	says;	it	transforms	a	range	of	elements	as	std::transform	and
then	applies	a	functor.	This	accumulates	them	out	of	order,	like	std::reduce:

auto	mice	=	std::vector<std::string>{"Mickey","Minnie","Jerry"};	

auto	num_chars	=	std::transform_reduce(

		mice.begin(),		

		mice.end(),		

		size_t{0},	

		[](const	std::string&	m)	{	return	m.size();	},	//	Transform	

		[](size_t	a,	size_t	b)	{	return	a	+	b;	}							//	Reduce	

);	

//	num_chars	is	17

std::for_each
Although	 std::for_each	 is	 mainly	 used	 for	 applying	 a	 functor	 to	 a	 range	 of
elements,	 it	 is	 quite	 similar	 to	 std::transform()	 although	 it	 only	 processes
elements,	like	this:

auto	peruvians	=	std::vector<std::string>{

		"Mario",	"Claudio",	"Sofia",	"Gaston",	"Alberto"};	

std::for_each(peruvians.begin(),	peruvians.end(),	[](std::string&	s)	{

		s.resize(1);	

});	

//	Peruvians	is	now	{"M",	"C",	"S",	"G",	"A"}		

It	actually	also	returns	the	functor	passed	into	it,	which	means	it	can	be	used	like
this:

auto	result_func	=	std::for_each(

		peruvians.begin(),		

		peruvians.end(),	

		[all_names	=	std::string{}](const	std::string&	name)	mutable	{	

				all_names	+=	name	+	"	";	

				return	all_names;	

		}	

);	

auto	all_names	=	result_func("");	

//	all_names	is	now	"Mario	Claudio	Sofia	Gaston	Alberto	";	

To	be	honest,	this	is	quite	a	weird	example,	as	std::accumulate	is	better	suited	for
the	 job,	and	 I've	actually	never	seen	anyone	use	 the	 returned	 functor	 in	a	 real-
world	 code	 base.	 However,	 as	 with	 std::accumulate,	 executing	 it	 out	 of	 order
would	yield	different	results	every	time	it	is	executed	as	the	invocation	order	is
undefined.

Therefore,	the	parallel	version	of	std::for_each	simply	just	returns	void.

Parallelizing	 an	 index-based	 for-
loop
Even	 though	 we	 recommend	 using	 algorithms,	 sometimes	 a	 raw,	 index-based
for-loop	 is	 required	 for	 a	 specific	 task.	 The	 STL	 algorithms	 do	 provide	 an
equivalent	 of	 a	 range-based	 for-loop,	 but	 there	 is	 no	 equivalent	 of	 a	 regular
index-based	for-loop.	

In	other	words,	a	range	based	for-loop	is	equal	to	the	STL	algorithm	for_each...

auto	mice	=	std::vector<std::string>{"Mickey",	"Minnie",	"Jerry"};	

//	Range	based	for	loop

for(auto	m:	mice)	{	

		std::cout	<<	m	<<	'\n';	

}

//	STL	algorithm	std::for_each

std::for_each(mice.begin(),	mice.end(),	[](auto	m){	

		std::cout	<<	m	<<	'\n';	

});	

...but,	there	is	no	STL	algorithm	equivalent	of	an	index-based	for-loop:

for(size_t	i	=	0;	i	<	mice.size();	++i)	{	

		std::cout	<<	i	<<	"	"	<<	mice[i]	<<	'\n';	

}	

Therefore,	 we	 cannot	 parallelize	 an	 index-based	 for-loop	 by	 simply	 adding	 a
parallel	policy	like	with	other	STL-algorithms.	Let's	see	how	we	can	build	one.

As	mentioned	earlier,	we	do	not	recommend	to	write	parallel	algorithms	yourself
due	to	the	complexity	of	writing	a	parallel	algorithm.	However,	in	this	case	we
will	 build	 the	 parallel_for	 algorithm	 using	 std::for_each	 as	 building	 block,	 thus
leaving	the	complexity	parallelism	to	std::for_each.

Combining	 std::for_each	 with
linear	range
What	we	 can	 do	 instead	 is	 to	 combine	 std::for_each()	 with	 the	 LinearRange	 class
described	in	Chapter	5,	A	Deeper	Look	at	Iterators.	To	remind	you,	the	LinearRange
class	 is	constructed	via	 the	 function	 make_linear_range()	which	 returns	a	 range	of
numbers	that	can	be	iterated	just	like	a	regular	container.

An	index-based	for-loop	based	on	an	STL	algorithm	can	be	created	like	this:

auto	first_idx	=	size_t{0};	

auto	last_idx	=	mice.size();	

auto	indices	=	make_linear_range(first_idx,	last_idx,	last_idx);	

std::for_each(indices.begin(),	indices.end(),	[&mice](size_t	i){	

		std::cout	<<	i	<<	"	"	<<	mice[i]	<<	'\n';	

});	

This	can	then	be	further	parallelized	with	an	execution	policy	of	choice:

auto	p	=	std::execution::par;

std::for_each(p,	indices.begin(),	indices.end(),	[&mice](size_t	i){	

		if	(i	==	0)	mice[i]	+=	"	is	first.";	

		else	if	(i	+	1	==	mice.size())	mice[i]	+=	"	is	last.";	

});	

for(const	auto&	m:	mice)	{	std::cout	<<	m	<<	',	';	}

	

//	Output:	Mickey	is	first,	Minnie,	Jerry	is	last,

Simplifying	 construction	 via	 a
wrapper
In	order	 to	 iterate	 the	 indices	with	a	neat	 syntax	 the	previous	code	 is	wrapped
into	a	utility	function	named	parallel_for()	as	shown	below:

template	<typename	Policy,	typename	Index,	typename	F>

auto	parallel_for(Policy	p,	Index	first,	Index	last,	F	f)	{

		auto	r	=	make_linear_range<Index>(first,	last,	last);

		std::for_each(std::move(p),	r.begin(),	r.end(),	std::move(f));

}

The	parallel_for()	can	then	be	used	like	this:

parallel_for(std::execution::par,	size_t{0},	mice.size(),	[&](size_t	i){	

		if	(idx	==	0)	mice[i]	+=	"	is	first.";	

		else	if	(i	+	1	==	mice.size())	mice[i]	+=	"	is	last.";	

});

for(const	auto&	m:	mice)	

		std::cout	<<	m	<<	',	';

//	Output:	Mickey	is	first,	Minnie,	Jerry	is	last,

As	 the	 parallel_for	 is	 built	 upon	 std::for_each,	 it	 accepts	 any	 policy
that	std::for_each	accepts.

Executing	 STL	 algorithms	 on	 the
GPU
Graphics	 processing	 units,	 or	 GPUs,	 were	 originally	 designed	 and	 used	 for
processing	points	and	pixels	for	computer	graphics	rendering.	Briefly,	what	the
GPUs	did	was	to	retrieve	a	buffer	of	pixel	data	or	vertex	data,	perform	a	simple
operation	on	each	one	of	them	individually,	and	store	the	result	in	a	new	buffer
(to	eventually	be	displayed).

GPU	APIs	and	parallel	operations
The	 main	 API	 for	 programming	 the	 GPU	 is	 OpenGL,	 although	 similar
functionality	is	available	in	DirectX	as	well.

Here	 are	 some	 examples	 of	 simple,	 independent	 operations	 that	 could	 be
executed	on	the	GPU	at	an	early	stage:

Transform	a	point	from	world	coordinates	to	screen	coordinates.
Perform	a	 lighting	calculation	at	a	specific	point	(by	 lighting	calculation	I
refer	to	calculating	the	color	of	a	specific	pixel	in	an	image).

As	these	operations	could	be	performed	in	parallel,	the	GPUs	were	designed	for
executing	small	operations	in	parallel.	

Technically,	a	CPU	commonly	consists	of	a	few	general-purpose	cached	cores,
whereas	 a	 GPU	 consists	 of	 a	 huge	 number	 of	 highly	 specialized	 cores.	 This
means	that	the	better	an	algorithm	scales	when	parallelized,	the	more	suitable	it
is	to	execute	on	the	GPU.

Programmable	GPUs
Later	on,	 these	operations	became	programmable,	 although	 the	programs	were
written	 in	 terms	of	computer	graphics	 (that	 is,	 the	memory	 reads	were	done	 in
terms	of	 reading	colors	 from	a	 texture,	 and	 the	 result	was	 always	written	 as	 a
color	to	a	texture).	These	programs	are	called	shaders.

Shader	programs
At	the	beginning,	there	were	two	types	of	shader	programs,	vertex	shaders	and
fragment	shaders.

Vertex	 shaders	 were	 used	 to	 transform	 world	 coordinates	 into	 screen	 space
coordinates,	 and	 fragment	 shaders	 performed	 lighting	 calculations/texture
lookups	just	before	writing	a	pixel	to	the	screen.

Over	time,	more	shader-type	programs	were	introduced	and	shaders	gained	more
and	 more	 low-level	 options,	 such	 as	 reading/writing	 raw	 values	 from	 buffers
instead	of	color	values	from	textures.

STL	algorithms	and	the	GPU
In	 the	 future,	 the	 execution	 policies	 mentioned	 earlier	 in	 this	 chapter	 will
hopefully	be	extended	to	support	processing	on	the	GPU,	thus	making	all	of	the
power	 available	 on	 a	 standard	 computer	 utilizable	 in	C++.	Nevertheless,	 there
are	 already	 several	 libraries	 available	 that	 make	 GPU	 programming	 easily
accessible.

As	stressed	earlier,	if	you	have	a	code	base	built	on	algorithms	rather	than	hand-
crafted	for-loops,	moving	it	to	take	advantage	of	the	GPU	is	far	more	accessible.

Boost	Compute
In	 this	 book,	 we	 have	 chosen	 Boost	 Compute	 (written	 by	 Kyle	 Lutz)	 as	 the
library	for	accessing	the	GPU.	The	reasons	we	picked	Boost	Compute	are	that	it
is	 very	 well	 written,	 vendor	 independent,	 and	 contains	 almost	 all	 STL
algorithms.	On	top	of	that,	it	is	a	part	of	Boost,	one	of	the	most	widely	used	C++
library.

Throughout	this	section	we	will	keep	a	steady	focus	on	the	syntactic	similarities
between	Boost	 Compute	 and	 STL	 algorithms,	 therefore	many	Boost	 Compute
code	examples	will	be	presented	side	by	side	with	its	equivalent	STL	algorithm
implementation.

Basic	 concepts	 of	 Boost
Compute
Boost	Compute	has	a	few	basic	concepts,	which	are	good	to	grasp	before	going
further:

Device,	 the	equivalent	of	 the	actual	GPU	on	which	 the	operations	will	be
executed
Context,	the	context	could	be	considered	the	gate	to	the	device
Queue,	 a	 command	queue	 on	which	 you	 push	 operations,	which	 are	 then
executed	asynchronously	via	the	GPU	driver

On	 top	 of	 that,	 as	 GPUs	 in	 many	 cases	 have	 their	 own	 exclusive	 memory
(although	 it	 often	 uses	 the	 standard	 RAM),	 all	 containers	 handled	 by	 Boost
Compute	 must	 be	 copied	 to	 Boost	 Compute's	 designated	 containers	 before
processing,	and	back	to	standard	containers	for	further	processing	by	the	CPU.

OpenCL
We	 will	 not	 use	 OpenCL	 directly	 in	 this	 chapter.	 However,	 OpenCL	 is	 the
underlying	 framework	 used	 by	 the	 Boost	 Compute	 library	 that	 we	 will	 use.
OpenCL	 is	maintained	 by	 the	Khronos	 group,	 which	 also	maintains	OpenGL,
and	is	available	for	a	large	number	of	platforms.	Internally,	the	OpenCL	program
uses	a	C99	syntax	that	 it	executes	on	the	GPU	(just	 like	 the	OpenGL	shaders).
The	OpenCL	shader	is	passed	from	your	C++	application	as	a	string	containing
its	source	code	and	compiled	by	the	OpenCL	when	the	application	executes.

To	 use	 OpenCL,	 you	 would	 need	 to	 set	 up	 custom	 buffers	 through	 a	 quite
complicated	state	machine,	which	we	will	 not	 cover	 in	 this	 book.	 Instead,	we
will	use	Boost	Compute	to	access	OpenCL.

Initializing	Boost	Compute
Before	you	can	use	Boost	Compute,	we	need	to	initialize	a	device,	context,	and	a
command	 queue.	We	 will	 be	 passing	 the	 context	 and	 the	 command	 queue	 as
mutable	references	to	all	our	examples	with	Boost	Compute.

The	most	simple	way	to	initialize	the	context	and	the	command	queue	is	to	use
the	system	default	device,	like	this:

#include	<boost/compute.hpp>	

auto	main()	->	int	{	

		//	Initialize	Boost	Compute	and	OpenCL	

		namespace	bc	=	boost::compute;

		auto	device	=	bc::system::default_device();		

		auto	context	=	bc::context(device);

		auto	command_queue	=	bc::command_queue(context,	device);

}

Transfer	 a	 simple	 transform-
reduce	 algorithm	 to	 Boost
Compute
Let's	say	we	have	a	std::vector	of	circles,	and	we	want	to	calculate	the	sum	of	all	
circle	areas.	The	algorithm	we	will	use	is	std::transform()	to	transform	the	vector
of	circles	to	a	vector	of	areas,	and	then	std::reduce()	to	summarize	the	areas.

The	Circle	struct	is	defined	as	shown	below,	where	x	and	y	denotes	the	position,
and	r	denotes	the	radius.

struct	Circle	{	float	x,	y,	r;	};	

We	will	also	use	this	function	to	generate	a	std::vector	of	random	circles:

auto	make_circles(size_t	n)	{	

		auto	cs	=	std::vector<Circle>{};	

		cs.resize(n);

		std::generate(cs.begin(),	cs.end(),	[](){

				auto	x	=	float(std::rand());

				auto	y	=	float(std::rand());

				auto	r	=	std::abs(float(std::rand()));

				return	Circle{x,	y,	r};	

		});

		return	cs;	

}

Circles	of	different	size	and	position

The	algorithm	in	standard	C++
The	formula	for	the	area	of	a	circle	is,	as	you	probably	remember	from	middle-
school;	 .	In	english,	it's	radius	squared	times	pi.	Here	it	is	in	code:

auto	circle_area_cpu(const	Circle&	c)	{

		const	auto	pi	=	3.14f;

		return	c.r	*	c.r	*	pi;

}

Using	 the	 circle_area_cpu()	 function,	 we	 can	 calculate	 the	 full	 area	 using
std::transform()	and	std::reduce()	in	C++:

auto	sum_circle_areas_cpu()	{	

		constexpr	auto	n	=	1024;	

		auto	circles	=	make_circles(n);	

		auto	areas	=	std::vector<float>(n);

		std::transform(circles.begin(),	circles.end(),	areas.begin(),	

				circle_area_cpu);	

		auto	plus	=	std::plus<float>{};

		auto	area	=	std::reduce(areas.begin(),	areas.end(),	0.0f,	plus);

		std::cout	<<	area	<<	'\n';	

}

Transforming	 the	 algorithm	 to
Boost	Compute
Let's	see	how	the	equivalent	would	be	implemented	using	the	GPU	with	Boost
Compute.	In	order	to	implement	it,	we	have	to	perform	a	few	extra	steps:

Inform	Boost	Compute	of	the	content	of	the	Circle	struct
Implement	an	OpenCL	equivalent	of	the	circle_area_cpu()	function
Copy	the	data	back	and	forth	to	the	GPU

Note	 that	 circle_area_gpu()	 and	 boost::compute::plus<float>	 are	 compiled	 by	 the
OpenCL	driver	at	runtime,	although	the	binary	can	be	stored	for	future	use.		

Adapting	 the	circle	struct	 for	use
with	Boost	Compute
The	first	 thing	we	have	 to	do	 is	 to	make	Boost	Compute	know	what	 the	Circle
struct	 looks	 like,	 in	order	 to	be	able	 to	use	 it	on	 the	GPU.	This	 is	achieved	by
using	a	macro	where	 the	 first	 two	parameters	 are	 the	C++	name	and	 the	GPU
name	of	the	struct,	and	the	third	parameter	is	the	list	of	members	in	the	struct.

Only	 the	 members	 of	 the	 struct	 are	 exposed,	 member	 functions	 of	 the	 struct
cannot	be	accessed	from	within	Boost	Compute.

Below	 is	 how	 we	 adapt	 the	 Circle	 for	 use	 with	 Boost	 Compute	 using	 the
BOOST_COMPUTE_ADAPT_STRUCT_MACRO.	The	first	parameter	is	the	name	of	the	C++	struct,
and	 the	 second	 parameter	 is	 the	 name	 when	 accessed	 from	 inside	 Boost
Compute.

BOOST_COMPUTE_ADAPT_STRUCT(Circle,	Circle,	(x,	y,	r));	

This	adaption	is	only	necessary	if	we	want	to	use	a	custom	struct;	standard	data
types	such	as	floats,	integers,	and	so	on	can	be	used	directly.	

All	 members	 of	 a	 struct	 adapted	 in	 Boost	 Compute	 must	 be
aligned,	that	is,	it	may	not	contain	any	padding	between	members.
For	 more	 information	 about	 alignment	 see	 Chapter	 4,	 Data
Structures.

Converting	 circle_area_cpu	 to
Boost	Compute
We	 now	 need	 to	 create	 an	 OpenCL	 function	 equivalent	 of	 the
circle_area_cpu()	function.	The	OpenCL	programming	language	uses	a	standard	C
syntax,	and	is	therefore	quite	similar	to	the	C++	version.	For	further	reference	of
the	OpenCL	language,	we	refer	to	its	official	documentation	available	at	https://w
ww.khronos.org/opencl/.

The	 source	 code	 of	 the	 function	 is	 passed	 as	 a	 std::string

to	boost::compute::function,	where	 the	 first	parameter	 is	 the	name	of	 the	OpenCL
function	intended	to	be	exposed,	and	 the	second	parameter	 is	 the	actual	source
code.

namespace	bc	=	boost::compute;	

auto	src_code	=	std::string_view{	

		"float	circle_area_gpu(Circle	c)	{	"

		"		float	pi	=	3.14f;															"

		"		return	c.r	*	c.r	*	pi;										"

		"}																																	"

};	

	

auto	circle_area_gpu	=	bc::make_function_from_source<float(Circle)>	(

		"circle_area_gpu",	src_code.data()	

);

https://www.khronos.org/opencl/

The
BOOST_COMPUTE_FUNCTION
macro
As	mentioned,	we	are	using	strings	for	the	OpenCL	source	code.	In	order	to	get	a
little	 bit	 more	 readability,	 Boost	 Compute	 comes	 with	 a	 convenience	 macro
called	 BOOST_COMPUTE_FUNCTION,	 which	 makes	 strings	 out	 of	 the	 source	 code
parameter.

The	following	table	shows	a	syntactical	comparison	of	them:

Using	make_function_from_source: Using	BOOST_COMPUTE_FUNCTION	macro:

namespace	bc	=	boost::compute;	

auto	circle_area_gpu	=	

	bc::make_function_from_source

		<float(Circle)>	(

			"circle_area_gpu",

"float	circle_area_gpu(Circle	c){"

"		float	pi	=	3.14f;													"

"		return	c.r	*	c.r	*	pi;								"

"}																															"

);

BOOST_COMPUTE_FUNCTION(

		float,	//	Return	type

		circle_area_gpu,	//	Name

		(Circle	c),	//	Arg

		{

				float	pi	=	3.14f;

				return	c.r	*	c.r	*	pi;

		}

);

	

As	 you	 can	 see,	 the	 return	 value,	 function	 name,	 and	 parameters	 have	 been
stripped	out	of	the	string,	and	the	source	code	does	not	need	to	be	provided	as	a
string.

Implementing	 the	 transform-
reduction	algorithm	on	the	GPU
When	 implementing	 the	 actual	 transformation,	we	 need	 to	 copy	 the	 data	 back
and	forth.	The	data	structures	housed	at	the	GPU	are	prefixed	with	gpu_,	and	data
structures	housed	at	the	CPU	are	prefixed	with	cpu_.

Note	that	Boost	Compute	has	been	nice	enough	to	provide	a	compute::plus<float>
functor	equivalent	of	std::plus,	which	we	use	when	the	areas	are	reduced:

namespace	bc	=	boost::compute;	

auto	circle_areas_gpu(bc::context&	context,	bc::command_queue&	q)	{	

		//	Create	a	bunch	of	random	circles	and	copy	to	the	GPU

		const	auto	n	=	1024;	

		auto	cpu_circles	=	make_circles(n);	

		auto	gpu_circles	=	bc::vector<Circle>(n,	context);

		bc::copy(cpu_circles.begin(),	cpu_circles.end(),	gpu_circles.begin(),	q);	

		//	Transform	the	circles	into	their	individual	areas	

		auto	gpu_areas	=	bc::vector<float>(n,	context);	

		bc::transform(

				gpu_circles.begin(),	

				gpu_circles.end(),	

				gpu_areas.begin(),	

				circle_area_gpu,	

				q	

);	

		//	Accumulate	the	circle	areas,	

		//	Note	that	we	are	writing	to	a	GPU	vector	of	size	1	

		auto	gpu_area	=	bc::vector<float>(1,	context);	

		bc::reduce(gpu_areas.begin(),	gpu_areas.end(),	gpu_area.begin(),	q);	

		//	Copy	the	accumulated	area	back	to	the	cpu	

		auto	cpu_area	=	float{};	

		bc::copy(gpu_area.begin(),	gpu_area.end(),	&cpu_area,	q);	

		std::cout	<<	cpu_area	<<	'\n';	

}	

Using	 predicates	 with	 Boost
Compute
If	we	would	like	to	execute	other	algorithms,	for	example	sort	the	circles	by	their
radius,	we	provide	predicates	just	like	in	STL.

Here	 is	how	you	would	use	a	predicate	 for	 sorting	circles	on	 the	CPU	and	 the
corresponding	predicate	in	Boost	Compute/OpenCL.

Note	that	in	this	example,	we	use	the	Boost	Computes	capability	to
use	a	regular	std::vector	as	input,	although	it	does	not	operate	on	it.
Internally,	 it	still	copies	the	std::vector	back	and	 forth	 to	 the	GPU
device	before	and	after	the	algorithm	is	executed:

CPU	predicate GPU	predicate

auto	less_r_cpu	=	[](Circle	a,Circle	b){

		return	a.r	<	b.r;

};

	

	

	

BOOST_COMPUTE_FUNCTION(

		bool,	//	Return	type

		less_r_gpu,	//	Function	Name

		(Circle	a,	Circle	b),	//	Args

		{	return	a.r	<	b.r;	}	//	Code

);

Sort	the	content	on	the	GPU,	and	verify	using	the	CPU:

namespace	bc	=	boost::compute;

auto	sort_by_r(bc::context&	context,	bc::command_queue&	q)	{	

		auto	n	=	1024;

		auto	circles	=	make_circles(n);

		//	Sort	on	GPU

		bc::sort(circles.begin(),	circles.end(),	less_r_gpu,	q);

		//	Verify	on	the	CPU	using	less_r_cpu

		assert(std::is_sorted(circles.begin(),	circles.end(),	less_r_cpu);

}

As	you	can	see,	modifying	a	standard	STL	function	to	execute	on	the	GPU	using
Boost	Compute	only	requires	very	few	modifications.

Using	 a	 custom	 kernel	 in	 Boost
Compute
As	mentioned	 earlier,	 this	 is	 not	 intended	 as	 a	 course	 in	OpenCL,	but	we	will
now	have	a	look	at	how	to	move	away	from	the	algorithms	and	abstractions	of
Boost	Compute	and	invoke	regular	for-loops	where	elements	are	read	at	random
positions	 in	 an	 array.	 In	 other	 words,	 the	 following	 example	 is	 almost	 bare
OpenCL,	rather	than	Boost	Compute.

As	 OpenCL	 evolves	 from	 a	 computer	 graphics	 background,	 it	 does	 contain	 a
multitude	of	operations	for	handling	textures	and	filtering,	but	in	order	to	see	the
resemblance	of	regular	C++	code,	we	will	use	traditional	vectors	to	operate	on.

Remember	 that	 a	 GPU	 is	 very	 good	 at	 executing	many	 tasks	 in	 parallel,	 and
OpenCL	correspondingly	needs	to	be	informed	of	what	exactly	it	can	parallelize.
When	executing	the	kernel,	we	will	therefore	give	it	a	number	of	ranges,	just	like
a	multidimensional	for-loop	of	which	it	will	apply	the	kernel	in	parallel.

Box	filter
We	are	going	to	implement	an	algorithm,	which	applies	a	box	filter	of	size	r	to	a
gray	 scale	 image.	 The	 box	 filter	 simply	 calculates	 the	 mean	 value	 of	 the
surrounding	floats,	illustrated	as	follows,	and	the	image	itself	is	represented	as	a
std::vector<float>	and	an	integer	representing	its	width.	Note	that	we	simplify	the
algorithm	by	avoiding	the	borders,	which	relieves	us	from	out-of-bounds	checks:

Box	filter	of	an	individual	grid	element

Implementing	the	kernel
We	implement	 the	per	element	box	filter	as	a	 regular	 lambda	function	 in	C++,
and	 the	 corresponding	 OpenCL	 kernel	 as	 a	 string.	 In	 order	 to	 see	 the
resemblance,	we've	put	them	side	by	side:

C++	box	filter	kernel OpenCL	box	filter	kernel

auto	box_filter	=	[](

		int	x,	

		int	y,

		const	auto&	src,

		auto&	odst,	

		int	w,

		int	r

)	{

	float	sum	=	0.0f;

	for	(int	yp=y-r;	yp<=y+r;	++yp)	{	

		for	(int	xp=x-r;	xp<=(x+r);++xp){

			sum	+=	src[yp	*	w	+	xp];

		}

	}	

	float	n	=	((r*2	+	1)	*	(r*2	+	1));

	float	average	=	sum	/	n;

	odst[y*w	+	x]	=	average;

};

auto	src_code	=	std::string_view{

"kernel	void	box_filter("

"		global	const	float*	src,											"

"		global	float*	odst,																"

"		int	w,																													"

"		int	r																														"

")	{																																		"

"		int	x	=	get_global_id(0);										"

"		int	y	=	get_global_id(1);										"

"		float	sum	=	0.0f;																		"

"		for	(int	yp=y-r;	yp<=y+r;	++yp){			"

"				for	(int	xp=x-r;	xp<=x+r;	++xp){	"

"						sum	+=	src[yp*w+xp];											"

"				}																																"

"		}																																		"

"		float	n=(float)((r*2+1)*(r*2+1));		"

"		float	average	=	sum	/	n;											"

"		odst[y*w+x]	=	average;													"

"}																																				"

};

namespace	bc	=	boost::compute;

auto	p=bc::program::create_with_source(

		src_code.data(),	context

);

p.build();

auto	kernel	=	bc::kernel{	

		p,	"box_filter"

};

Parallelizing	for	two	dimensions
Now,	let's	use	the	filters	by	applying	them	to	the	images.	The	arguments	for	the
Boost	 Compute	 kernel	 are	 set	 using	 set_arg	 before	 execution,	 and	 when	 the
execution	 is	 performed	 using	 enqueue_nd_range_kernel(),	 we	 apply	 the	 number	 of
dimensions	and	the	ranges	of	each	dimension,	which	is	the	equivalent	of	how	a
double	for-loop	is	used	in	the	C++	code.	The	corresponding	x	and	y	variables	in
the	kernel	are	then	fetched	using	get_global_id()	in	OpenCL.

Take	notice	of	 the	similarities	between	STL	algorithms	and	the	Boost	Compute
equivalents	as	shown	in	the	table	below:

Box	filter	on	CPU Box	filter	on	GPU

auto	box_filter_test_cpu(

	int	w,

	int	h,

	int	r

)	{

	using	array_t	=	std::array<size_t,2>;

	//	Create	std	vectors

	auto	src	=	std::vector<float>(w*h);

	std::iota(src.begin(),src.end(),0.f);

	auto	dst	=	std::vector<float>(w*h);

	std::fill(res.begin(),res.end(),0.f);

	//	Make	offset	and	elements

	auto	offset	=	array_t{r,r};

	auto	elems	=	array_t{w-r-r,	h-r-r};

	//	Invoke	filter	on	CPU

	for	(int	x=0;	x	<	elems[0];	++x){

			for	(int	y=0;	y	<	elems[1];	++y){

					auto	xp	=	x	+	offset[0];

					auto	yp	=	y	+	offset[1];

					box_filter(xp,yp,src,dst,w,r);

			}

	}

	return	dst;

}

	

namespace	bc	=	boost::compute;

auto	box_filter_test_gpu(

	int	w,

	int	h,

	int	r,

	bc::context&	ctx,

	bc::command_queue&	q,

	bc::kernel&	kernel

)	{

	using	array_t	=	std::array<size_t,	2>;

	//	Create	vectors	for	GPU

	auto	src=bc::vector<float>(w*h,	ctx);

	bc::iota(src.begin(),src.end(),0.f,q);

	auto	dst=bc::vector<float>(w*h,	ctx);

	bc::fill(dst.begin(),dst.end(),0.f,q);

	//	Make	offset	and	elements

	auto	offset	=	array_t{r,r};

	auto	elems	=	array_t{w-r-r,	h-r-r};

	//	Invoke	filter	on	GPU

	kernel.set_arg(0,	src);

	kernel.set_arg(1,	dst);

	kernel.set_arg(2,	w);

	kernel.set_arg(3,	r);

	q.enqueue_nd_range_kernel(

				kernel,

				2,

				offset.data(),

				elems.data(),

				nullptr

);

	//	Copy	back	to	cpu

	auto	dst_cpu=std::vector<float>(w*h);

	bc::copy(

			dst.begin(),

			dst.end(),

			dst_cpu.begin(),

			q

);

	return	dst_cpu;

}

Note	that	the	enqueue_nd_range_kernel()	function	accepts	any	amount	of	dimensions
to	parallelize	over,	although	we	use	two	dimensions	in	this	example.

Verify	 GPU	 computation	 on	 the
CPU
As	GPUs	are	generally	harder	 to	debug	than	a	regular	C++	program,	verifying
the	results	is	utterly	important.	As	we	are	dealing	with	floating-point	math,	 the
result	 might	 not	 be	 100%	 accurate,	 therefore	 we	 use	 a	 flt_eq()	 function	 that
accepts	minor	differences	as	equal:

auto	test_kernel(bc::context&	ctx,	bc::command_queue&	q,	bc::kernel&	k)	{

		auto	flt_eq	=	[](float	a,	float	b)	{

					auto	epsilon	=	0.00001f;

					return	std::abs(a	-	b)	<=	epsilon;

		};	

		auto	cpu	=	box_filter_test_cpu(2000,	1000,	2);	

		auto	gpu	=	box_filter_test_gpu(2000,	1000,	2,	ctx,	q,	k);	

		auto	is_equal	=	cpu	==	dst;	

		auto	is_almost_equal	=	std::equal(

				cpu.begin(),	cpu.end(),	gpu.begin(),	flt_eq

);	

		std::cout		

				<<	"is_equal:	"	<<	is_equal	<<	'\n'	

				<<	"is_almost_equal:	"	<<	is_float_equal	<<	'\n'	

}	

//	Possible	output		

is_equal:	0

is_almost_equal:	1

Note	 that	 is_equal	might	 as	well	 be	 one	 depending	 on	 the	 hardware.	With	 this
piece	 of	 code,	 we	 have	 successfully	 verified	 that	 our	 algorithm	works	 on	 the
GPU.	We've	 intentionally	 not	 included	 any	 performance	 comparisons	 between
the	CPU	and	GPU	in	this	book,	as	the	GPU	algorithms	are	often	bottlenecked	by
transferring	 data	 back	 and	 forth	 to	 the	 GPU.	 But	 with	 that	 in	 mind,	 a
computation	 time	 in	 the	 range	of	30x	 faster	on	a	standard	GPU	compared	 to	a
standard	CPU	is	not	uncommon.

In	 other	 words,	 a	 modern,	 computationally-heavy	 application	 will	 be	 written
with	GPU	parallelization	in	mind	in	order	to	be	competitive.

Summary
In	this	chapter,	you	have	learned	the	complexity	of	handcrafting	an	algorithm	to
execute	in	parallel	and	how	to	use	 the	parallel	versions	of	 the	STL	algorithms.
On	top	of	that,	we've	had	a	look	at	how	to	use	Boost	Compute	 in	order	to	take
advantage	of	the	heavy	processing	power	of	modern	GPU	hardware.	

Other	Books	You	May	Enjoy
If	you	enjoyed	this	book,	you	may	be	interested	in	these	other	books	by	Packt:

Mastering	C++	Multithreading
Maya	Posch

ISBN:	978-1-78712-170-6

Deep	dive	 into	 the	details	of	 the	how	various	operating	 systems	currently
implement	multithreading
Choose	the	best	multithreading	APIs	when	designing	a	new	application
Explore	the	use	of	mutexes,	spin-locks,	and	other	synchronization	concepts
and	see	how	to	safely	pass	data	between	threads
Understand	the	level	of	API	support	provided	by	various	C++	toolchains
Resolve	 common	 issues	 in	 multithreaded	 code	 and	 recognize	 common
pitfalls	 using	 tools	 such	 as	Memcheck,	 CacheGrind,	DRD,	Helgrind,	 and
more
Discover	 the	nature	of	atomic	operations	and	understand	how	they	can	be
useful	in	optimizing	code
Implement	 a	 multithreaded	 application	 in	 a	 distributed	 computing
environment
Design	a	C++-based	GPGPU	application	that	employs	multithreading

https://www.packtpub.com/application-development/mastering-c-multithreading

Mastering	C++	Programming
Jeganathan	Swaminathan

ISBN:	978-1-78646-162-9

Write	 modular	 C++	 applications	 in	 terms	 of	 the	 existing	 and	 newly
introduced	features
Identify	code-smells,	clean	up,	and	refactor	legacy	C++	applications
Leverage	the	possibilities	provided	by	Cucumber	and	Google	Test/Mock	to
automate	test	cases
Test	frameworks	with	C++
Get	acquainted	with	the	new	C++17	features
Develop	GUI	applications	in	C++
Build	portable	cross-platform	applications	using	standard	C++	features

https://www.packtpub.com/application-development/mastering-c-programming

Leave	a	review	-	let	other	readers
know	what	you	think
Please	share	your	thoughts	on	this	book	with	others	by	leaving	a	review	on	the
site	 that	 you	 bought	 it	 from.	 If	 you	 purchased	 the	 book	 from	Amazon,	 please
leave	us	an	honest	review	on	this	book's	Amazon	page.	This	is	vital	so	that	other
potential	 readers	 can	 see	 and	 use	 your	 unbiased	 opinion	 to	 make	 purchasing
decisions,	we	can	understand	what	our	customers	think	about	our	products,	and
our	authors	can	see	your	feedback	on	the	title	that	they	have	worked	with	Packt
to	create.	It	will	only	 take	a	few	minutes	of	your	 time,	but	 is	valuable	 to	other
potential	customers,	our	authors,	and	Packt.	Thank	you!

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Conventions used

	Get in touch
	Reviews

	A Brief Introduction to C++
	Why C++?
	Zero-cost abstractions
	Programming languages and machine code abstractions
	Abstractions in other languages

	Portability
	Robustness
	C++ of today

	The aim of this book
	Expected knowledge of the reader

	C++ compared with other languages
	Competing languages and performance
	Non-performance-related C++ language features
	Value semantics
	Const correctness

	Object ownership and garbage collection in C++
	Avoiding null objects using C++ references
	Drawbacks of C++

	Class interfaces and exceptions
	Strict class interfaces
	Error handling and resource acquisition
	Preserving the valid state
	Resource acquisition
	Exceptions versus error codes

	Libraries used in this book
	Summary

	Modern C++ Concepts
	Automatic type deduction with the auto keyword
	Using auto in function signatures
	Using auto for variables
	Const reference
	Mutable reference
	Forwarding reference
	Conclusion

	The lambda function
	Basic syntax of a C++ lambda function
	The capture block
	Capture by reference versus capture by value
	Similarities between a Lambda and a class
	Initializing variables in capture

	Mutating lambda member variables
	Mutating member variables from the compiler's perspective

	Capture all
	Assigning C function pointers to lambdas

	Lambdas and std::function
	Assigning lambdas to std::functions
	Implementing a simple Button class with std::function
	Performance consideration of std::function
	An std::function cannot be inlined
	An std::function heap allocates and captures variables
	Invoking an std::function requires a few more operations than a lambda

	The polymorphic lambda
	Creating reusable polymorphic lambdas

	Const propagation for pointers
	Move semantics explained
	Copy-construction, swap, and move
	Copy-constructing an object
	Swapping two objects
	Move-constructing an object

	Resource acquisition and the rule of three
	Implementing the rule of three
	Constructor

	Limitations of the rule of three
	Avoiding copies without move semantics

	Introducing move semantics
	Named variables and r-values
	Accept arguments by move when applicable

	Default move semantics and the rule of zero
	Rule of zero in a real code base
	A note on empty destructors

	A common pitfall - moving non-resources
	Applying the && modifier to class member functions

	Representing optional values with std::optional
	Optional return values
	Optional member variables
	Sorting and comparing std::optional

	Representing dynamic values with std::any
	Performance of std::any

	Summary

	Measuring Performance
	Asymptotic complexity and big O notation
	Growth rates
	Amortized time complexity

	What to measure?
	Performance properties
	Performance testing – best practices

	Knowing your code and hot spots
	Profilers
	Instrumentation profilers
	Sampling profilers

	Summary

	Data Structures
	Properties of computer memory
	STL containers
	Sequence containers
	Vector and array
	Deque
	List and forward_list
	The basic_string

	Associative containers
	Ordered sets and maps
	Unordered sets and maps
	Hash and equals
	Hash policy

	Container adaptors
	Priority queues

	Parallel arrays
	Summary

	A Deeper Look at Iterators
	The iterator concept
	Iterator categories
	Pointer-mimicking syntax
	Iterators as generators
	Iterator traits
	Implementing a function using iterator categories
	Extending the IntIterator to bidirectional

	Practical example – iterating floating point values within a range
	Illustrated usage examples
	Utility functions
	How to construct a linear range iterator
	Iterator usage example

	Generalizing the iterator pair to a range
	The make_linear_range convenience function

	Linear range usage examples

	Summary

	STL Algorithms and Beyond
	Using STL algorithms as building blocks
	STL algorithm concepts
	Algorithms operate on iterators
	Implementing a generic algorithm that can be used with any container
	Iterators for a range point to the first element and the element after the last
	Algorithms do not change the size of the container
	Algorithms with output require allocated data
	Algorithms use operator== and operator< by default
	Custom comparator function
	General-purpose predicates

	Algorithms require move operators not to throw
	Algorithms have complexity guarantees
	Algorithms perform just as well as C library function equivalents

	STL algorithms versus handcrafted for-loops
	Readability and future-proofing
	Real-world code base example

	Usage examples of STL algorithms versus handcrafted for-loops
	Example 1 – Unfortunate exceptions and performance problems
	Example 2 – STL has subtle optimizations even in simple algorithms

	Sorting only for the data you need to retrieve
	Use cases
	Performance evaluation

	The future of STL and the ranges library
	Limitations of the iterators in STL
	Introduction to the ranges library
	Composability and pipeability

	Actions, views, and algorithms
	Actions
	Views
	Algorithms

	Summary

	Memory Management
	Computer memory
	The virtual address space
	Memory pages
	Thrashing

	Process memory
	Stack memory
	Heap memory

	Objects in memory
	Creating and deleting objects
	Placement new
	The new and delete operators

	Memory alignment
	Padding

	Memory ownership
	Handling resources implicitly
	Containers
	Smart pointers
	Unique pointer
	Shared pointer
	Weak pointer

	Small size optimization
	Custom memory management
	Building an arena
	A custom memory allocator

	Summary

	Metaprogramming and Compile-Time Evaluation
	Introduction to template metaprogramming
	Using integers as template parameters
	How the compiler handles a template function
	Using static_assert to trigger errors at compile time

	Type traits
	Type trait categories
	Using type traits
	Receiving the type of a variable with decltype
	Conditionally enable functions based on types with std::enable_if_t
	Introspecting class members with std::is_detected
	Usage example of is_detected and enable_if_t combined

	The constexpr keyword
	Constexpr functions in a runtime context
	Verify compile-time computation using std::integral_constant
	The if constexpr statement
	Comparison with runtime polymorphism
	Example of generic modulus function using if constexpr

	Heterogeneous containers
	Static-sized heterogenous containers
	The std::tuple container
	Accessing the members of a tuple
	Iterating std::tuple
	Unrolling the tuple
	Implementing other algorithms for tuples

	Accessing tuple elements
	Structured bindings

	The variadic template parameter pack
	An example of a function with variadic number of arguments
	How to construct a variadic parameter pack

	Dynamic-sized heterogenous containers
	Using std::any as the base for a dynamic-size heterogenous container

	The std::variant
	Visiting variants
	Heterogenous container of variants
	Accessing the values in our variant container
	Global function std::get

	Real world examples of metaprogramming
	Example 1 – Reflection
	Making a class reflect its members
	C++ libraries which simplifies reflection
	Using the reflection
	Evaluating the assembler output of the reflection

	Conditionally overloading global functions
	Testing reflection capabilities

	Example 2 – Creating a generic safe cast function
	Example 3 – Hash strings at compile time
	The advantages of compile-time hash sum calculation
	Implement and verify a compile-time hash function
	Constructing a PrehashedString class
	Forcing PrehashedString to only accept compile time string literals
	Evaluating PrehashedString
	Evaluating get_bitmap_resource() with PrehashedString

	Summary

	Proxy Objects and Lazy Evaluation
	An introduction to lazy evaluation and proxy objects
	Lazy versus eager evaluation

	Proxy objects
	Comparing concatenated strings using a proxy
	Implementing the proxy
	Performance evaluation

	The r-value modifier
	Assigning a concatenated proxy

	Postponing an sqrt computation when comparing distances
	A simple two-dimensional point class
	The underlying mathematics
	Implementing the DistProxy object
	Expanding DistProxy to something more useful
	Comparing distances with DistProxy
	Calculating distances with DistProxy
	Preventing the misuse of DistProxy

	Performance evaluation

	Creative operator overloading and proxy objects
	The pipe operator as an extension method
	The pipe operator

	The infix operator
	Further reading

	Summary

	Concurrency
	Understanding the basics of concurrency
	What makes concurrent programming hard?
	Concurrency and parallelism
	Time slicing
	Shared memory
	Data races
	Mutex
	Deadlock
	Synchronous and asynchronous tasks

	Concurrent programming in C++
	The thread support library
	Threads
	Thread states
	Protecting critical sections
	Avoiding deadlocks
	Condition variables
	Returning data and handling errors
	Tasks

	Atomic support in C++
	Using shared_ptr in a multithreaded environment

	C++ memory model
	Instruction reordering
	Atomics and memory orders

	Lock-free programming
	Lock-free queue example

	Performance guidelines
	Avoid contention
	Avoid blocking operations
	Number of threads/CPU cores
	Thread priorities
	Thread affinity
	False sharing

	Summary

	Parallel STL
	Importance of parallelism
	Parallel algorithms
	Implementing parallel std::transform()
	Naive implementation
	Performance evaluation

	Shortcomings of the naive implementation
	Divide and conquer
	Implementation
	Performance evaluation

	Implementing parallel std::count_if
	Implementing parallel std::copy_if
	Approach one – Use a synchronized write position
	Inner function
	Outer function

	Approach two – Split algorithm into two parts
	Part one – Copy elements in parallel into the destination range
	Part two – Move the sparse range sequentially into a continuous range

	Performance evaluation

	Parallel STL
	Execution policies
	Sequenced policy
	Parallel policy
	Parallel unsequenced policy

	Parallel modifications of algorithm
	std::accumulate and std::reduce
	std::transform_reduce

	std::for_each

	Parallelizing an index-based for-loop
	Combining std::for_each with linear range
	Simplifying construction via a wrapper

	Executing STL algorithms on the GPU
	GPU APIs and parallel operations
	Programmable GPUs
	Shader programs

	STL algorithms and the GPU

	Boost Compute
	Basic concepts of Boost Compute
	OpenCL
	Initializing Boost Compute
	Transfer a simple transform-reduce algorithm to Boost Compute
	The algorithm in standard C++
	Transforming the algorithm to Boost Compute
	Adapting the circle struct for use with Boost Compute
	Converting circle_area_cpu to Boost Compute
	The BOOST_COMPUTE_FUNCTION macro
	Implementing the transform-reduction algorithm on the GPU

	Using predicates with Boost Compute
	Using a custom kernel in Boost Compute
	Box filter
	Implementing the kernel
	Parallelizing for two dimensions
	Verify GPU computation on the CPU

	Summary

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

