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Preface
This book arose from notes written for MATLAB® training courses run 
within the Australian Defence Science and Technology Organisation. 
The book is in two parts. Each part was originally a two-day course, 
designed assuming tha t students were seated at a computer with MATLAB 
running.

Part 1 is an introductory course suitable for those with no experience 
at all with MATLAB. It is written in a self contained way; if you go 
through the notes, all the new commands and ideas are explained as 
they are introduced.

Part 2 is a more advanced course suitable for those who are already 
familiar with the basics of MATLAB. It covers a variety of topics, some 
of which you may not be interested in; if so, you should be able to skip 
tha t section without detriment to other sections.

You can get the m-files tha t accompany this book from the “Down­
load” section of the CRC Press web site (www.crcpress.com). The files 
are available in zip or gzipped ta r format, and can be extracted using 
WinZip on a PC, or by using gunzip and ta r on UNIX. You will need to 
put them in a directory where MATLAB will be able to  find them. You 
can either use the cd command to  move MATLAB’s working directory to 
the directory you extract the files to, or add tha t directory to MATLAB’s 
search path. (You can display MATLAB’s current working directory by

MATLAB is a registered trademark 
of The MathWorks, Inc. For product 
information, please contact:

The MathWorks, Inc.
24 Prime Park Way 
Natick, MA 01760-1500 USA 

Tel: 508-647-7000 
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typing pwd (print working directory) in the command window.) On a 
PC or Macintosh, you can add directories to MATLAB’s path by clicking 
on the path browser button at the top of the MATLAB command window 
(it is the button with two folders on it to the left of the question mark 
button). In the path browser, select the menu “P a th ^ A d d  to path” , 
then select the directory containing the extracted files using the browse 
button (on PCs it is the one with three dots on it), then check the “add 
to back” option before pressing “OK” . Then click “F ile^Save Path” 
before you exit the path browser. If you are using another platform you 
can use the p a th  command from within MATLAB (type h e lp  p a th  for 
instructions). You can install this path each time you start MATLAB 
by putting an appropriate path command in a file called startup.m  in a 
directory called m atlab situated immediately below your home directory.

Many of the graphical examples in this book assume tha t the figure 
window is empty. To ensure an empty figure window issue the command:

c l f

which stands for “clear figure” . If you find th a t the figure window is 
obscured by your command window, try  shrinking both windows. Or 
you can type:

shg

(show graphic) to bring the graphics window to the front. The compan­
ion software implements an even shorter abbreviation; type

s

to bring the graphics window to the front
If, on a PC or Macintosh, the figure window is at the front of the 

screen, or if it has the current focus, just start typing and MATLAB will 
switch to the command window and accept your typing.

Words appearing in this book in typewriter font, for example, type, 
represent MATLAB commands th a t you can type in, or output produced 
by MATLAB.

A n d rew  K n ig h t
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Basics of MATLAB

1 First Steps in M ATLAB

1.1 S tarting  M A T L A B
MATLAB is a software package tha t lets you do mathematics and compu­
tation, analyse data, develop algorithms, do simulation and modelling, 
and produce graphical displays and graphical user interfaces.

To run MATLAB on a PC  double-click on the MATLAB icon. To run 
MATLAB on a UNIX system, type m atlab  at the prompt.

You get MATLAB to do things for you by typing in commands. MAT­
LAB prompts you with two greater-than signs (>>) when it is ready to 
accept a command from you.

To end a MATLAB session type q u i t  or e x i t  at the MATLAB prompt. 
You can type he lp  at the MATLAB prompt, or pull down the Help 

menu on a PC.
When starting MATLAB you should see a message:

To g e t s t a r t e d ,  type one of th e se  commands: helpw in, 
h e lp d esk , o r demo

>>

The various forms of help available are

helpw in Opens a MATLAB help GUI 
helpdesk  Opens a hypertext help browser 
demo Starts the MATLAB demonstration

The complete documentation for MATLAB can be accessed from the 
hypertext helpdesk. For example, clicking the link Full Documentation
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Set ^  Getting Started with MATLAB will download a portable docu­
ment format (PDF) version of the Getting Started with M ATLA B  man­
ual.

You can learn how to use any MATLAB command by typing help  
followed by the name of the command, for example, he lp  sin .

You can also use the lo o k fo r command, which searches the help 
entries for all MATLAB commands for a particular word. For example, if 
you want to  know which MATLAB functions to use for spectral analysis, 
you could type lo o k fo r spectrum. MATLAB responds with the names 
of the commands th a t have the searched word in the first line of the help 
entry. You can search the entire help entry for all MATLAB commands 
by typing lo o k fo r - a l l  keyword .

1.2 F irst Steps

To get MATLAB to work out 1 +  1, type the following at the prompt:

1+1

MATLAB responds with

ans = 
2

The answer to the typed command is given the name ans. In fact ans 
is now a variable tha t you can use again. For example you can type

ans*ans

to check th a t 2 x 2 =  4:

ans*ans 
ans = 

4

MATLAB has updated the value of ans to be 4.
The spacing of operators in formulas does not m atter. The following 

formulas both give the same answer:

1+3 * 2-1 /  2*4 
1 + 3 * 2 - 1 / 2 * 4

The order of operations is made clearer to readers of your MATLAB code 
if you type carefully:

1 + 3*2 -  (1 /2 )*4
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1.3 M atrices

The basic object tha t MATLAB deals with is a matrix. A matrix is an 
array of numbers. For example the following are matrices:

The size of a m atrix is the number of rows by the number of columns. 
The first matrix is a 3 x 3 matrix. The (2,3)-element is one million— 1e6 
stands for 1 x 106—and the (3,2)-element is pi =  n  =  3.14159 . . .  . 
The second matrix is a row-vector, the third matrix is a column-vector 
containing the number i, which is a pre-defined MATLAB variable equal 
to the square root of -1 .  The last matrix is a 1 x 1 matrix, also called 
a scalar.

1.4 Variables
Variables in MATLAB are named objects tha t are assigned using the 
equals sign = . They are limited to 31 characters and can contain 
upper and lowercase letters, any number of ‘_’ characters, and numer­
als. They may not start with a numeral. MATLAB is case sensitive: A 
and a are different variables. The following are valid MATLAB variable 
assignments:

a = 1
speed = 1500
BeamFormerOutput_Type1 = v*Q*v’ 
name = ’ John Sm ith’

These are invalid assignments:

2for1  = ’y e s ’ 
f i r s t  one = 1

To assign a variable without getting an echo from MATLAB end the 
assignment with a semi-colon ;. Try typing the following:

a = 2 
b = 3; 
c = a+b; 
d = c /2 ;
d
who
whos
c le a r
who
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1.5 T he C olon O perator

To generate a vector of equally-spaced elements MATLAB provides the 
colon operator. Try the following commands:

1:5
0 :2 :1 0
0 : .1 :2 * p i

The syntax x:y means roughly “generate the ordered set of numbers 
from x  to y with increment 1 between them .” The syntax x:d:y means 
roughly “generate the ordered set of numbers from x  to y with increment 
d between them .”

1.6 L inspace
To generate a vector of evenly spaced points between two end points, 
you can use the function l in s p a c e ( s ta r t , s to p ,n p o in ts  ):

>> x = l in s p a c e (0 ,1 ,1 0 )  
x =

Columns 1 th rough  7
0 0.1111 0.2222 0.3333 0.4444 0.5556 0.6667 

Columns 8 th rough  10 
0.7778 0.8889 1.0000

generates 10 evenly spaced points from 0 to 1. Typing l in s p a c e ( s t a r t ,  
s to p ) will generate a vector of 100 points.

1.7 P lo ttin g  V ectors

Whereas other computer languages, such as F o r t r a n ,  work on numbers 
one at a time, an advantage of MATLAB is tha t it handles the matrix as 
a single unit. Let us consider an example tha t shows why this is useful. 
Imagine you want to plot the function y =  sin x  for x  between 0 and 2n. 
A F o r t r a n  code to do this might look like this:

DIMENSION X(100),Y(100)
PI = 4*ATAN(1)
DO 100 I = 1,100

X(I) = 2*PI*I/100 
Y (I) = SIN (X (I))

100 CONTINUE 
PLOT(X,Y)

Here we assume th a t we have access to  a F ortran plotting package 
in which PLOT(X,Y) makes sense. In MATLAB we can get our plot by 
typing:
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x = 0 : .1 :2 * p i ;  
y = s in (x ) ;  
p lo t (x ,y )

The first line uses the colon operator to generate a vector x of numbers 
running between 0 and 2n with increment 0.1. The second line calculates 
the sine of this array of numbers, and calls the result y. The third line 
produces a plot of y against x. Go ahead and produce the plot. You 
should get a separate window displaying this plot. We have done in three 
lines of matlab what it took us seven lines to do using the F ortran 
program above.

2 T yping into M ATLAB

2.1 C om m and Line E d iting

If you make a mistake when entering a matlab command, you do not 
have to type the whole line again. The arrow keys can be used to save 
much typing:

j pl-rltc Recall previous line
I ctrl-n Recall next line
— ctrl-b Move back one character

ctrl-f Move forward one character
ctrl— > ctrl-r Move right one word
ctrl-—— ctrl-l Move left one word
home ctrl-a Move to beginning of line
end ctrl-e Move to end of line
esc ctrl-u Clear line
del ctrl-d Delete character at cursor
backspace ctrl-h Delete character before cursor

ctrl-k Delete (kill) to end of line

If you finish editing in the middle of a line, you do not have to put the 
cursor at the end of the line before pressing the return key; you can press 
return when the cursor is anywhere on the command line.

2.2 Sm art R ecall

Repeated use of the j  key recalls earlier commands. If you type the 
first few characters of a previous command and then press the j  key
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m a tla b  will recall the last command tha t began with those characters. 
Subsequent use of j  will recall earlier commands that began with those 
characters.

2.3 Long Lines
If you want to type a matlab command th a t is too long to fit on one 
line, you can continue on to the next by ending with a space followed by 
three full stops. For example, to  type an expression with long variable 
names:

Final_Answer = B igM atrix (row _ind ices,co lum n_ ind ices) + . . .  
A nother_vector*Som ethingElse;

Or to define a long text string:

M ission = [ ’DSTO’ ’s o b je c tiv e  i s  to  g iv e  adv ice  t h a t ’ . . .
’ i s  p ro f e s s io n a l ,  im p a r t ia l  and inform ed on t h e ’ . . .  
’a p p l ic a tio n  of sc ien ce  and technology  th a t  i s  b e s t ’ . . .  
’ s u i te d  to  A u s t r a l ia ’ ’ s defence and s e c u r i ty  n e e d s .’] ;

2.4 C opying and P astin g

Your windowing system’s copy and paste facility can be used to enter 
text into the matlab command line. For example all of MATLAB’s built- 
in commands have some helpful text th a t can by accessed by typing help  
followed by the name of the command. Try typing he lp  contour into 
MATLAB and you will see a description of how to create a contour plot. 
At the end of the help message is an example. You can use the mouse 
to select the example text and paste it into the command line. Try it 
now and you should see a contour plot appear in the figure window.

3 M atrices

3.1 T yping M atrices

To type a matrix into MATLAB you must

•  begin with a square bracket [

•  separate elements in a row with commas or spaces

•  use a semicolon ; to separate rows

•  end the matrix with another square bracket ] .

For example type:
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a = [1 2 3 ;4  5 6 ;7  8 9]

matlab responds with 

a =
1 2  3 
4 5 6
7 8 9

3.2 C on catenating  M atrices
Matrices can be made up of submatrices: Try this:

>> b = 
b =

[a 10*a; - a  [1 00;0 00;1 0 1

1 2 3 10 20 30
4 5 6 40 50 60
7 8 9 70 80 90

-1 -2 -3 1 0 0
-4 -5 -6 0 1 0
-7 -8 -9 0 0 1

The repmat function can be used to replicate a matrix:

>> a = [1 2; 3 4] 
a =

1 2
3 4 

>> re p m a t(a ,2 ,3 )  
ans =

1 2 1 2 1 2
3 4 3 4 3 4
1 2 1 2 1 2
3 4 3 4 3 4

3.3 U sefu l M atrix  G enerators
matlab provides four easy ways to generate certain simple matrices. 
These are

ze ro s  a m atrix filled with zeros
ones a m atrix filled with ones
rand  a m atrix with uniformly distributed random elements
randn a m atrix with normally distributed random elements
eye identity matrix

To tell matlab how big these matrices should be you give the functions 
the number of rows and columns. For example:
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>> a = z e ro s (2 ,3 )  
a =

0 0 0 
0 0 0

>> b = o n e s (2 ,2 ) /2  
b =

0.5000 0.5000 
0.5000 0.5000

>> u = ra n d (1 ,5 )  
u =

0.9218 0.7382 0.1763 0.4057 0.9355

>> n = ran d n (5 ,5 ) 
n =

-0 .4326  1.1909 -0 .1867  0.1139 0.2944
-1 .6656  1.1892 0.7258 1.0668 -1 .3362

0.1253 -0 .0376  -0 .5883  0.0593 0.7143
0.2877 0.3273 2.1832 -0 .0956  1.6236

-1 .1465  0.1746 -0 .1364  -0 .8323  -0 .6918

>> eye(3) 
ans =

1 0
0 1
0 0

3.4 Subscripting

Individual elements in a matrix are denoted by a row index and a column 
index. To pick out the third element of the vector u type:

>> u(3) 
ans =

0.1763

You can use the vector [1 2 3] as an index to u. To pick the first three 
elements of u type

>> u ([1  2 3]) 
ans =

0.9218 0.7382 0.1763

Remembering what the colon operator does, you can abbreviate this to
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>> u (1 :3 ) 
ans =

0.9218 0.7382 0.1763

You can also use a variable as a subscript:

>> i  = 1 :3 ;
>> u ( i )  
ans =

0.9218 0.7382 0.1763

Two dimensional matrices are indexed the same way, only you have 
to provide two indices:

>> a = [ 1 2  3 ;4  5 6 ;7  8 9] 
a =

1 2  3 
4 5 6
7 8 9 

>> a (3 ,2 )
ans =

8
>> a (2 :3 ,3 )  
ans =

6
9

>> a ( 2 , : )  
ans =

4 5 6 
>> a ( : ,3 )  
ans =

3
6
9

The last two examples use the colon symbol as an index, which MATLAB 
interprets as the entire row or column.

If a matrix is addressed using a single index, MATLAB counts the 
index down successive columns:

>> a(4 ) 
ans =

2
>> a(8 ) 
ans =

6

Exercise 1 Do you understand the following result? (Answer on 
page 183.)
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>> [a a(a)] 
ans =

1 2  3 1 4  7 
4 5 6 2 5 8
7 8 9 3 6 9

The colon symbol can be used as a single index to a matrix. Continuing 
the previous example, if you type

a ( : )

MATLAB interprets this as the columns of the a-matrix successively 
strung out in a single long column:

>> a ( : )  
ans =

1
4
7
2
5
8
3
6
9

3.5 End as a subscript
To access the last element of a matrix along a given dimension, use end 
as a subscript (MATLAB version 5 or later). This allows you to go to  the 
final element without knowing in advance how big the matrix is. For 
example:

>> q = 4:10
q =

4 5 6 7 8 9 10 
>> q(end)
ans =

10
>> q(end-4 :end) 
ans =

6 7 8 9 10 
>> q(end-2 :end) 
ans =

8 9 10

This technique works for two-dimensional matrices as well:
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>> q = [ s p i r a l ( 3 )  [10 ;20 ;30]]
q =

7 8 9 10
6 1 2 20
5 4 3 30

>> q(end ,end) 
ans =

30

>> q (2 ,en d -1 :en d ) 
ans =

2 20

>> q (en d -2 :en d ,en d -1 :en d ) 
ans =

9 10
2 20
3 30

>> q (e n d -1 ,:)  
ans =

6 1 2 20

3.6 D e letin g  R ow s or C olum ns

To get rid of a row or column set it equal to  the empty m atrix [] .

>> a = [ 1 2  3 ;4  5 6 ;7  8 9] 
a =

1 2  3
4 5 6
7 8 9

>> a ( : , 2 )  = [] 
a =

1 3
4 6
7 9

3.7 M atrix  A rith m etic

Matrices can be added and subtracted (they must be the same size)

>> b = 10*a 
b =

10 30
40 60 
70 90
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>> a + b 
ans =

11 33 
44 66 
77 99

3.8 T ranspose
To convert rows into columns use the transpose symbol ’ :

>> a ’ 
ans = 

1 4  7
3 6 9 

>> b = [[1 2 3 ] ’ [4 5 6 ] ’] 
b = 

1 4
2 5
3 6

Be careful when taking the transpose of complex matrices. The transpose 
operator takes the complex conjugate transpose. If z is the matrix:

(  1 • 0 “  i ^у 0 +  2i 1 +  i J

then z ’ is:

(  1 0 -  2i \  
у 0 +  i 1 -  i J '

To take the transpose without conjugating the complex elements, use 
the . ’ operator. In this case z . ’ is:

(  1 0 +  2i \
0 -  i 1 + i .

4 Basic Graphics
The bread-and-butter of MATLAB graphics is the p lo t  command. Earlier 
we produced a plot of the sine function:

x = 0 : .1 :2 * p i ;  
y = s in (x ) ;  
p lo t (x ,y )
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In this case we used p lo t  to plot one vector against another. The 
elements of the vectors were plotted in order and joined by straight line 
segments. There are many options for changing the appearance of a plot. 
For example:

p l o t ( x ,y , ’r - . ’ )

will join the points using a red dash-dotted line. O ther colours you can 
use are: ’c ’ , ’m’ , ’y ’ , ’r ’ , ’g ’ , ’b ’ , ’w’, ’k ’ , which correspond to 
cyan, magenta, yellow, red, green, blue, white, and black. Possible line 
styles are: solid ’ - ’ , dashed ’ — ’ , dotted ’ : ’ , and dash-dotted ’- . ’ . 
To plot the points themselves with symbols you can use: dots ’ . ’ , circles 
’o ’ , plus signs ’ + ’ , crosses ’x ’ , or stars ’* ’ , and many others (type 
he lp  p lo t  for a list). For example:

p l o t ( x ,y , ’b x ’ )

plots the points using blue crosses without joining them with lines, and 

p l o t ( x ,y , ’b :x ’ )

plots the points using blue crosses and joins them with a blue dotted 
line. Colours, symbols and lines can be combined, for example, ’r . - ’ , 
’r x - ’ or ’r x : ’ .

4.1 P lo ttin g  M any Lines

To plot more than one line you can specify more than one set of x  and 
y vectors in the p lo t  command:

p lo t(x ,y ,x ,2 * y )

On the screen MATLAB distinguishes the lines by drawing them in differ­
ent colours. If you need to print in black and white, you can differentiate 
the lines by plotting one of them with a dashed line:

p l o t ( x ,y ,x ,2 * y , ’ ’ )
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When you issue a p lo t  command MATLAB clears the axes and produces 
a new plot. To add to an existing plot, type ho ld  on. For example try 
this:

4.2 A dd ing P lo ts

p lo t (x ,y )  
ho ld  on 
p lo t(5 * x ,5 * y )

MATLAB re-scales the axes to fit the new data. The old plot appears 
smaller. Once you have typed ho ld  on, all subsequent plots will be 
added to the current axes:

p lo t (x ,x )

Com panion M -Files Feature 1 If you decide you want to re­
move the last thing you plotted on a plot with hold on in force, 
you can type:

undo

to get back to where you were before.

To switch off the ho ld  behaviour, type ho ld  o ff . Typing ho ld  by itself 
toggles the hold state of the current plot.
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4.3 P lo ttin g  M atrices
If one of the arguments to the p lo t  command is a matrix, MATLAB will 
use the columns of the m atrix to plot a set of lines, one line per column:

MATLAB plots the columns of the m atrix q against the row index. You 
can also supply an x  variable:

>> x = [0 1 3  6]
x =

0 1 3  
>> p lo t (x ,q )
>> g r id

Here the x  values are not uniformly spaced, but they are the same for 
each column of q. You can also plot a m atrix of x  values against a vector 
of y values (be careful: the y values are in the vector x):

p lo t (q ,x )
g r id

If both the x  and y arguments are matrices, MATLAB will plot the suc­
cessive columns on the same plot:
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>> x = [[1 2 3 4 ] ’ [2 3 4 5 ] ’ [3 4 5 6 ] ’]
x = ,o

1 2  3
2 3 4 е
3 4 5 .
4 5 6 

»  p lo t (x ,q )  4 
»  g r id  2

°1 2 3 4 5 в

4.4 C learing th e  F igure W indow
You can clear the plot window by typing c l f ,  which stands for ‘clear 
figure’. To get rid of a figure window entirely, type c lo se . To get rid 
of all the figure windows, type c lo se  a l l .  New figure windows can be 
created by typing f ig u re .

4.5 Subplots

To plot more than one set of axes in the same window, use the su b p lo t 
command. You can type

su b p lo t(m ,n ,p )

to break up the plotting window into m plots in the vertical direction 
and n plots in the horizontal direction, choosing the pth plot for drawing 
into. The subplots are counted as you read text: left to right along the 
top row, then left to right along the second row, and so on. Here is an 
example (do not forget to use the f  key to save typing):

t  = 0 : .1 :2 * p i ;  
s u b p lo t(2 ,2 ,1 )  
p l o t ( c o s ( t ) , s i n ( t ) )  
s u b p lo t(2 ,2 ,2 )  
p l o t ( c o s ( t ) , s i n ( 2 * t ) )  
s u b p lo t(2 ,2 ,3 )  
p l o t ( c o s ( t ) , s i n ( 3 * t ) )  
s u b p lo t(2 ,2 ,4 )  
p l o t ( c o s ( t ) , s i n ( 4 * t ) )

If you want to clear one of the plots in a subplot without affecting 
the others you can use the c la  (clear axes) command. Continuing the 
previous example:
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s u b p lo t(2 ,2 ,2 )
c la

As long as your subplots are based on an array of 9 x 9 little plots or 
less, you can use a simplified syntax. For example, su b p lo t(2 2 1 ) or 
su b p lo t 221 are equivalent to s u b p lo t(2 ,2 ,1 ) .  You can mix different 
subplot arrays on the same figure, as long as the plots do not overlap:

su b p lo t 221 
p lo t(1 :1 0 )  
su b p lo t 222 
p l o t ( 0 , ’* ’ ) 
su b p lo t 212 
p lo t ( [1  0 1 0 ] )

4.6 T h ree-D im en sion al P lo ts
The p lo t3  command is the 3-d equivalent of p lo t:

84

6'
4

t  = 0 : . 1 :2*p i; 
p lo t3 ( c o s ( 3 * t ) , s i n ( 3 * t ) , t )

The three dimensional spiral can be better visualised by changing the 
orientation of the axes. You can invoke a mouse-based 3-d axis mover 
by typing:

ro ta te 3 d

If you click the mouse button down on the plot and drag, you can move 
the axes and view the plot from any angle. Release the mouse button to 
redraw the data. Type ro ta te 3 d  again to turn  off this behaviour.
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4.7  A xes
So far we have allowed MATLAB to choose the axes for our plots. You 
can change the axes in many ways:

ax is([x m in  xmax ymin ymax] )  sets the axes’ minimum and
maximum values

ax is square makes the axes the same length
ax is equal makes the axes the same scale
ax is t i g h t sets the axes limits to the range of the data
ax is auto allows MATLAB to choose axes limits
ax is o ff removes the axes leaving only the plotted data
ax is on puts the axes back again
g r id on draws dotted grid lines
g r id o ff removes grid lines
g r id toggles the grid
box* toggles the box

5kzeroaxes* draws the ж-axis at y =  0 and vice-versa

The functions marked with an asterisk * are nonstandard features, imple­
mented in this book’s companion m-files.1

4.8 Labels
You can put labels, titles, and text on a plot by using the commands:

x l a b e l ( ’ t e x t  ’ ) 
y l a b e l ( ’ t e x t  ’ ) 
z l a b e l ( ’ t e x t  ’ ) 
t i t l e ( ’ t e x t  ’ )
t e x t ( x ,  y , ’ t e x t  ’ ) places text at position x, y 
g t e x t ( ’ t e x t  ’ ) use mouse to place text

To put mathematics in labels you can use MATLAB’s backslash nota­
tion (familiar to users of the TgX typesetting system):

t  = 0 : .1 :2 * p i ;  
y1 = c o s ( t ) ;  
y2 = s i n ( t ) ;  
p lo t ( t ,y 1 , t , y 2 )
x l a b e l ( ’0 \ l e q  \ t h e t a  < 2 \ p i ’ ) 
y l a b e l ( ’ s in  \ t h e t a ,  cos \ t h e t a ’ ) 
t e x t ( 1 , c o s ( 1 ) , ’ c o s in e ’ ) 
t e x t ( 3 , s i n ( 3 ) , ’ s i n e ’ ) 
box

1 M A TLA B version 5.3 im plem ents its own version of th e  box com m and.
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Com panion M -Files Feature 2 To label many curves on a 
plot it is better to put the text close to the curves themselves rather 
than in a separate legend off to one side. Legends force the eye 
to make many jumps between the plot and the legend to sort out 
which line is which. Although MATLAB comes equipped with a 
legend function, I  prefer to use the companion m-file curlabel, 
which is good especially for labelling plots which are close together:

t  = 0 :.1 :2*pi;
p lo t ( t ,s in ( t ) , t ,s in (1 .0 5 * t) )  
curlabel('frequency = 1 ') 
curlabel('frequency = 1.05 ') 
ax is([0  max(t) -1 1]) 
zeroaxes

/frequency=1

2 \ \  

frequency=1.05-

4 r !

You must use the mouse to specify the start and end points of the 
pointer lines. The echo from the function can be pasted into an 
m-file for future use.

5 M ore M atrix  A lgebra
You can multiply two matrices together using the * operator:

>> a = [1 2 ;3  4]
a =

1 2
3 4 

>> b = [1 0 1 0 ;0  1 1 0] 
b =

1 0  1 0
0 1 1 0  

>> a*b 
ans =

1 2  3 0
3 4 7 0

>> u = [1 2 0 1] 
u =

1 2  0 1 
>> v = [1 1 2 2 ] ’
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1
1
2
2

>> v*u 
ans =

1 2 0 1
1 2 0 1
2 4 0 2
2 4 0 2

>> u*v 
ans =

5

The matrix inverse can be found with the inv  command:

>> a = p a sc a l(3 )  
a =

1 1 1
1 2  3
1 3  6 

>> in v (a )
ans =

3 - 3  1 
-3  5 -2  

1 - 2  1 
>> a* in v (a ) 
ans =

1 0  0
0 1 0
0 0 1

To multiply the elements of two matrices use the .* operator:

>> a = [1 2 ;3  4] 
a =

1 2
3 4 

>> b = [2 3 ;0  1] 
b =

2 3
0 1

>> a .* b  
ans =

2 6
0 4
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To raise the elements of a matrix to a power use the ."  operator:

>> a = p a sc a l(3 )  
a =

1 1 1
1 2  3
1 3  6 

>> a ." 2
ans =

1 1 1
1 4  9
1 9 36

6 Basic D ata  A nalysis
The following functions can be used to perform data analysis functions:

max maximum
min minimum
fin d  find indices of nonzero elements
mean average or mean
median median
s td  standard deviation
s o r t  sort in ascending order
so rtro w s sort rows in ascending order
sum sum of elements
prod product of elements
d i f f  difference between elements
tra p z  trapezoidal integration
cumsum cumulative sum
cumprod cumulative product
cum trapz cumulative trapezoidal integration

As we have seen with the p lo t  command, MATLAB usually prefers to 
work with matrix columns, rather than rows. This is true for many of 
MATLAB’s functions, which work on columns when given matrix argu­
ments. For example:

>> a = m agic(3) 
a =

8 1 6
3 5 7
4 9 2 

>> m = max(a)
m =

8 9 7
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max returns a vector containing the maximum value of each column. 
When given a vector, max returns the maximum value:

>> max(m) 
ans =

9

To find the index corresponding to  the maximum value, supply two out­
put arguments to max:

>> [v ,in d ] = max(m) 
v =

9
ind  =

2

The first argument is the maximum value and the second is the index of 
the maximum value. Another example is

>> x = 0 : .0 1 :2 ;
>> y = humps(x);
>> p lo t (x ,y )
»  [v ,in d ] = max(y)

0.3000 
>> y (in d ) 
ans = 

96.5000

The f in d  function is often used with relational and logical operators:

Relational operators ==

<
>

<=
>=

equal to
not equal to
less than
greater than
less than or equal to
greater than or equal to
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Logical operators & AND
I

xor
any
a l l

OR
NOT
EXCLUSIVE OR
True if any element is non-zero
True if all elements are non-zero

We continue the previous example and use f in d  to plot the part of 
the peaks function tha t lies between y =  20 and y =  40:

c l f
ind  = find(20<=y & y<=40);
p lo t ( x ,y ,x ( i n d ) ,y ( i n d ) , ’o ’ )
g r id

When used with one output argument, f in d  assumes tha t the input is 
a vector. When the input is a m atrix f in d  first strings out the elements 
as a single column vector and returns the corresponding indices. As an 
example we consider the spiral matrix:

>> s = s p i r a l ( 3 )  
s =

7 8 9
6 1 2
5 4 3

We find the elements of s less than 6:

>> s<6 
ans =

0 0 0
0 1 1
1 1 1

>> fin d (s< 6 ) 
ans =

3
5
6
8
9

The result of f in d  is a vector of indices of s counted down the first col­
umn, then the second, and then the third. The following example shows 
how the results of the find command can be used to extract elements 
from a m atrix tha t satisfy a logical test:
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>> s = 1 0 0 * sp ira l(3 ) 
s =

700 800 900 
600 100 200 
500 400 300 

>> ind  = find(s> 400) 
ind  =

1
2
3
4
7

>> s ( in d )  
ans =

700 
600 
500 
800 
900 

>> s(s>400) 
ans =

700
600
500
800
900

After introducing graphics of functions of two variables in the next sec­
tion, we will see how the f in d  command can be used to do the three­
dimensional equivalent of the plot shown on page 23, where the domain 
of a curve satisfying a logical test was extracted.

7 Graphics o f Functions of Tw o Variables

7.1 B asic P lo ts

A MATLAB surface is defined by the z coordinates associated with a set 
of (x ,y )  coordinates. For example, suppose we have the set of (x ,y)  
coordinates:

( x ,y )

I  1, 1
1, 2 
1, 3 

\  1  4

2,1 
2, 2 
2, 3 
2,4

3,1 
3, 2 
3, 3 
3, 4

4,1 \
4, 2 
4, 3 
4,4 )

The points can be plotted as (x, y) pairs:
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The (x,y) pairs can be split into two matrices:

( 1 2 3 4 \ 1 1 1 1
1 2 3 4 2 2 2 2x = 1 2 3 4 ; y  = 3 3 3 3
1 2 3 4 ^ 4 4 4 4

The m atrix x  varies along its columns and y varies down its rows. We 
define the surface 2 :

-2 +  y2;

which is the distance of each (x,y) point from the origin (0,0). To 
calculate 2 in MATLAB for the x  and y  matrices given above, we begin 
by using the m eshgrid function, which generates the required x and y 
matrices:

>> [x,y] = m eshgrid (1 :4 )
x =

1 2  3 4 
1 2  3 4
1 2  3 4
1 2  3 4

У =
1
2
3
4

1
2
3
4

1
2
3
4

1
2
3
4

Now we simply convert our distance equation to MATLAB notation; 2 
x 2 +  y2 becomes:

>> z = s q r t (x .  
z =

1.4142 2. 
2.2361 2. 
3.1623 3. 
4.1231 4.

'2  + y ."2 )

2361
8284
6056
4721

1623
6056
2426
0000

1231
4721
0000
6569

2
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We can plot the surface z as a function of x and y:

m esh (x ,y ,z )

6

4

2

0
4

4

1 1
We can expand the domain of the calculation by increasing the input 

to m eshgrid. Be careful to end the lines with a semicolon to avoid being 
swamped with numbers:

The surface is an inverted cone, with its apex at (0, 0, 0).

using a polar grid, instead of a rectilinear grid. We can use the 
companion function polarmesh to produce such a plot. First we 
define a polar grid of points:

[r ,th ] = m eshgrid(0:.5:10,0:pi/20:2*pi);

Then display the surface defined by z = r:

[x ,y] = m esh g rid (-1 0 :1 0 ); 
z = s q r t(x .~ 2  + y .~ 2 ); 
m esh (x ,y ,z ) 0

10

15

10

s

10

- 1 0  - 1 0

Com panion M -Files Feature 3 A clearer plot can be produced

10

- 1 0  - 1 0

A more interesting surface is

3

In MATLAB notation you could type:
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z =  3 * (1 -x ) .~ 2 .* e x p (-(x .~ 2 )  -  (y+1).~2) . . .
-  10*(x/5 -  x ."3  -  y ." 5 ) .* e x p ( -x ." 2 -y ." 2 )  . . .
-  1 /3 * ex p (-(x + 1 )."2  -  y ." 2 ) ;

but you do not have to type this because it is already defined by the 
function peaks. Before plotting we define the data and set the colour 
map to gray:

[x ,y ,z ]  = peaks; 
colorm ap(gray)

The following plots show 10 different ways to view this data.
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plot3(x,y,z,’к ’) 
hold on elf 
contour3(x,y, z,’k ’) spanplot(z)

The con tour function plots the contours using the current colour m ap’s 
colours (see next section). Adding the specifier ’k ’ to the end of the 
argument list draws the contours in black. The sp an p lo t function is 
nonstandard and is included in the companion software.

You should experiment with these plots. Try typing he lp  for each of 
these plot commands. Explore the various ways of shading a surface, try  
using different colour maps (see next section) or viewing angles (help 
view), or try  modifying the surface and replotting. Remember that 
ro ta te 3 d  can be used to switch on a click-and-drag three-dimensional 
view changer: click down on the plot and drag it to alter the viewing 
angle; release the mouse to redraw the plot. (If ro ta te 3 d  is already 
switched on, typing ro ta te 3 d  again will switch it off.)

7.2 Colour M aps

MATLAB uses a matrix called a colour map to  apply colour to surfaces and 
images. The idea is tha t different colours will be used to draw various 
parts of the plot depending on the colour map. The colour map is a list 
of triplets corresponding to the intensities of the red, green, and blue 
video components, which add up to yield other colours. The intensities 
must be between zero and one. Some example colours are shown in this 
table.
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Red Green Blue Colour
0 0 0 Black
1 1 1 White
1 0 0 Red
0 1 0 Green
0 0 1 Blue
1 1 0 Yellow
1 0 1 Magenta
0 1 1 Cyan
.5 .5 .5 Gray
.5 0 0 Dark red
1 .62 .4 Dark orange

.49 1 .83 Aquamarine

.95 .9 .8 Parchment

Yellow, for example, consists of the combination of the full intensities 
of red and green, with no blue, while gray is the combination of 50% 
intensities of red, green, and blue.

You can create your own colour maps or use any of MATLAB’s many 
predefined colour maps:

hsv ho t gray  bone copper p ink
w hite f la g  l in e s  co lorcube j e t  prism
cool autumn sp rin g  w in te r  summer

Two nonstandard colour maps th a t are supplied in the companion soft­
ware include red b lu e  and m yjet. The first consists of red blending to 
blue through shades of gray. The second consists of a modification of 
the j e t  colour map th a t has white at the top instead of dark red.

These functions all take an optional param eter tha t specifies the num­
ber of rows (colours) in the colour map matrix. For example, typing 
g ray (8 ) creates an 8 x 3 matrix of various levels of gray:

>> g ray (8 ) 
ans =

0 0 0
0.1429 0.1429 0.1429
0.2857 0.2857 0.2857
0.4286 0.4286 0.4286
0.5714 0.5714 0.5714
0.7143 0.7143 0.7143
0.8571 0.8571 0.8571
1.0000 1.0000 1.0000

To tell MATLAB to use a colour map, type it as an input to the colormap 
function:
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0.5

m = g ra y (8);
colormap(m) 1
im agesc(1:1000)

200 400  600 800  1000

Most of MATLAB’s surface viewing functions use the colour map to  apply 
colour to the surface depending on the z-value. The imagesc function 
produces a coloured image of the m atrix argument, colouring each ele­
ment depending on its value. The smallest element will take the colour 
specified in the first row of the colour map, the largest element will take 
the colour specified in the last row of the colour map, and all the elements 
in between will take linearly interpolated colours.

To get a plot of the levels of red, green, and blue in the current colour 
map use rg b p lo t:

colormap (summer) ^

On the screen the lines corresponding to the red, green, and blue compo­
nents of the colour map are coloured red, green, and blue, respectively.

7.3 C olour Bar

To display the current colour map use the c o lo rb a r function:

'—I8 
■ -6

■ 4

■ 2

I
7.4 G ood  and B ad C olour M aps

Much research has been done on human perception of colours and, in par­
ticular, how different viewers interpret coloured images as value-scales.

z = peaks; 
co lo rm ap(gray(8)) 
im agesc(z) 
c o lo rb a r
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The conclusion is tha t most viewers find it very difficult to interpret 
these sorts of images; the cognitive switch from, for example, ROYG- 
Biv to  amplitude is very slow and nonintuitive. A way out of this is 
to use a palette of slightly varying, nonsaturated colours. These sorts 
of colours have been used to  create high-quality geographic maps for 
many years. Most of MATLAB’s colour maps consist of highly saturated 
colours (including the default colour map, which is je t (6 4 ) ) .  It is bet­
ter to forgo these sorts of colour maps and stick with the calmer ones 
such as gray, bone, or summer. The g ray  colour map has the added 
advantage tha t printed versions will reproduce easily, for example, on a 
photocopier.2 The companion m-files include some other colour maps: 
redb lue , m yjet, yellow , green, red , and blue.

To distinguish adjacent patches of subtly different colours, the eye 
can be helped by enclosing the patches with a thin dark edge. The 
co n to u rf function, therefore, is an excellent way of displaying this sort 
of data.3

7.5 E xtracting  Logical D om ains

Let us look again at the peaks function:

[x ,y ,z ]  = peaks; 
s u r f l ( x ,y ,z )  
a x is  t i g h t  
co lorm ap(gray(64))

Suppose we want to extract the part of this surface for which the z values 
lie between 2 and 4. We use exactly the same technique as was given 
on page 23. The f in d  command is used first to find the indices of the z 
values tha t satisfy the logical test:

>> ind  = find(2<=z & z<=4);
>> s iz e ( in d )  
ans =

234 1

There are 234 elements in z tha t satisfy our condition. We can plot these 
elements over the surface as follows:

2E dw ard R. Tufte, Visual Explanations (G raphics Press, C heshire C onnecticut, 
1997), pp. 76-77.

3E dw ard R. Tufte, Envisioning Information  (G raphics Press, C heshire C onnecti­
cut, 1990), pp. 88ff.

©  2000 by CRC Press LLC



hold  on
p lo t3 ( x ( in d ) ,y ( in d ) ,z ( in d ) , ’ . ’ )

The x, y domain of the extracted points can be shown clearly with an 
overhead view:

view(2)
xyz
shading  f l a t

The associated z values can be shown with a side view:

v iew (90 ,0)
g r id

7.6 N onrectan gular Surface D om ains

The polarm esh function given on page 26 showed a conical function 
defined over a circular domain of x  and y points. Let us now look a 
bit more generally at how to define such nonrectangular domains for 
surfaces.

The standard MATLAB functions, including graphics functions, tend 
to like working with rectangular matrices: each row must have the same 
number of columns. For surfaces, this requirement applies to the x, y 
and z matrices tha t specify the surface. Let us demonstrate by way of 
an example. First we generate a rectangular domain of x  and y points, 
with x  going from —1 to 1, and y going from 0 to 2:

>> [x ,y] = m e sh g rid (-1 :1 ,1 :3 )
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x
-1 0 1
-1 0 1
-1 0 1

1 1 1
2 2 2
3 3 3

This set of points defines a rectangular domain because the rows of x 
are identical and the columns of y are identical. We can make a plot of 
the points (as we did on page 25):

c l f
p l o t ( x ,y , ’ . ’ )

Now let us change the y m atrix a bit:

>> y = [[1 ; 2; 3] [1; 1 .5 ; 2] [0; .2 ; .4 ]]
y =

1.0000 1.0000 0
2.0000 1.5000 0.2000
3.0000 2.0000 0.4000

The plot of this data  looks like a bent triangle:

p l o t ( x ,y , ’ . ’ )

To define a surface over this domain we simply have to supply the z 
values. We can start by simply defining a constant z:
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>> z = 5*ones(3 ,3 ) 
z =

5 5 5
5 5 5
5 5 5 

>> s u r f ( x ,y ,z )

But, of course, the z values need not be constant:

>> z = 1—
1 

1—
1 ; 5; 6] [4 J

z =
4 .0  4 .5 4 .9
5 .0  5 .0 5 .0
6 .0  5 .5 5.1

>> )zy,x,frus

O ther graphics functions can also handle nonrectangular grids. Here is 
an example using the con tour function:

cs = c o n to u r ( x ,y ,z , ’k ’ ); 
c la b e l(c s )
i  = [1 4 7 9 6 3  1]; 
ho ld  on
p l t ( x ( i ) , y ( i ) , ’ : ’ )

The contour levels are labelled using the c la b e l  command, and the 
region defined by the x  and y points is outlined by the dotted line. The 
contours tha t the labels refer to  are marked by small plus signs ‘+’. The 
outline around the bent domain is drawn using the x and y matrices 
indexed using the vector i .  The vector i  extracts the appropriate points 
from the x  and y matrices using the columnar indexing described in sec­
tion 3.4 on page 9. The other surface graphics functions—mesh, s u r f l ,  
su rfc , and co n to u rf—can handle such nonrectangular grids equally 
well. The image and imagesc functions assume equally spaced rect­
angular grids and cannot handle anything else. (The p co lo r function 
draws a surface and sets the view point to directly overhead, so it is not 
discussed separately.)

Let us now do another example of a surface defined over a non­
rectangular grid. We want to define a set of points tha t cover the semi-
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annular region as shown in the diagram 
at right. To define such a set of points 
we use a polar grid based on radial and 
angular coordinates r and в. We use the 
following limits on these coordinates:

.3 < r < 1 
п /4  < в < 5 п /4

These are set up in MATLAB as follows:

rv  = l in s p a c e ( .3 ,1 ,5 0 ) ;  
th v  = l in s p a c e (p i /4 ,5 * p i /4 ,5 0 ) ;
[ r , th ]  = m esh g rid (rv ,th v );

where the calls to l in sp a c e  produce vectors of 50 points covering the 
intervals. The x  and y points are defined by the following trigonometric 
relations:

x = r .* c o s ( th ) ;  
y = r . * s i n ( t h ) ;

Now our semi-annular region is defined. To prove it, let us plot the 
points:

p l o t ( x ,y , ’ . ’ )

”-1  - 0.5  0  0.5  1

Again, we can define any z m atrix we like. Just for fun, we use the peaks 
function of the right size and add a linear ramp:

z = peaks(50) + 10*x; 
s u r f ( x ,y ,z )

As we did in the previous example, we check th a t the con tour function 
works (omitting the labels this time, and upping the number of contours 
drawn to 30):
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c o n to u r(x ,y ,z ,3 0 ) ;

- 0.5 0 0.5

You may have noticed that the semi-annular region does not appear 
as a circular segment in our plots. T hat is because the axes are not 
square. To get square axes you can use the a x is  square command as 
described on pages 18 and 120.

In this section we have looked at surfaces having domains that could 
be defined in terms of rectangular x  and y data  matrices. Domains 
that cannot be defined with such matrics are discussed in section 36 on 
page 157. For example all x  values may not have the same number of y 
values, or the x, y points could be scattered about in an irregular way.

8 M -Files
Until now we have driven MATLAB by typing in commands directly. This 
is fine for simple tasks, but for more complex ones we can store the typed 
input into a file and tell MATLAB to get its input from the file. Such files 
must have the extension “ .m” . They are called m-files. If an m-file 
contains MATLAB statem ents just as you would type them  into MATLAB, 
they are called scripts. M-files can also accept input and produce output, 
in which case they are called functions.

8.1 Scripts

Using your text editor create a file called m file l.m  containing the fol­
lowing lines:

z = peaks; 
z p lo t  = z;

% Do th e  peaks:

c l f
subp lo t(221)
ind  = f in d (z < 0 );
z p lo t( in d )  = z e ro s ( s iz e ( in d ) ) ;
m esh(zp lo t)
a x is  t i g h t
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% Do th e  v a lle y s :

su bp lo t(222) 
ind  = f in d (z > 0 ); 
z p lo t  = z;
z p lo t( in d )  = z e r o s ( s iz e ( in d ) ) ;  
m esh(zp lo t) 
a x is  t i g h t

Now try  this in the MATLAB window: 

m file1

MATLAB has executed the instructions in m file l.m  just as if you had 
typed them in. The lines beginning with the percent sign % are ignored 
by MATLAB so they can be used to put comments in your code. Blank 
lines can be used to improve readability.

Any variables created by a script m-file are available in the command 
window after the m-file completes running:

>> c le a r  
>> whos 
>> m f ile l  
>> whos 

Name Size Bytes C lass
ind 1544x1 12352 double a r ra y
z 49x49 19208 double a r ra y
z p lo t 49x49 19208 double a r ra y

Grand t o t a l i s  6346 elem ents u sin g  50768 b y tes

These variables are said to exist in the MATLAB workspace. Scripts can 
also operate on variables th a t already exist in the workspace.

You can type the name of a script file within another script file. For 
example you could create another file called m file2  th a t contains the 
text line m f ile l;  the contents of m f i le l  will then be executed at that 
point within m file2 .

8.2 Functions
Functions are m-files tha t can be used to extend the MATLAB language. 
Functions can accept input arguments and produce output arguments. 
Many of MATLAB’s own commands are implemented as m-files; try  typ­
ing type mean to see how MATLAB calculates the mean. Functions use
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variables tha t are local to  themselves and do not appear in the main 
workspace. This is an example of a function:

fu n c tio n  x = q u a d r a t ic (a ,b ,c )

% QUADRATIC Find ro o ts  of a q u a d ra tic  eq u a tio n .
%
% X = QUADRATIC(A,B,C) re tu rn s  th e  two ro o ts  of th e  
% q u a d ra tic  eq u a tio n  
%
% y = A*x"2 + B*x + C.
%
% The ro o ts  a re  co n ta in ed  in  X = [X1 X2].

% A. K night, Ju ly  1997 
d e l t a  = 4*a*c; 
denom = 2*a;
ro o td is c  = s q r t ( b ." 2  -  d e l t a ) ;  % Root of th e  d isc r im in a n t 
x1 = (-b  + ro o td isc ) ./d en o m ; 
x2 = (-b  -  ro o td isc ) ./d en o m ; 
x = [x1 x2];

Function m-files must start with the word fu n c tio n , followed by 
the output variable(s), an equals sign, the name of the function, and 
the input variable(s). Functions do not have to have input or output 
arguments. If there is more than one input or output argument, they 
must be separated by commas. If there are one or more input arguments, 
they must be enclosed in brackets, and if there are two or more output 
arguments, they must be enclosed in square brackets. The following 
illustrate these points (they are all valid function definition lines):

fu n c tio n  [x x ,y y ,zz] = sp h ere(n ) 
fu n c tio n  fa n cy p lo t 
fu n c tio n  a = l i s t s ( x , y , z , t )

Function names must follow the same rules as variable names. The file 
name is the function name with “ .m” appended. If the file name and 
the function name are different, MATLAB uses the file name and ignores 
the function name. You should use the same name for both the function 
and the file to avoid confusion.

Following the function definition line you should put comment lines 
tha t explain how to use the function. These comment lines are printed in 
the command window when you type h e lp  followed by the m-file name 
at the prompt:

>> h e lp  q u a d ra tic
QUADRATIC Find ro o ts  of a q u a d ra tic  eq u a tio n .
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X = QUADRATIC(A,B,C) re tu rn s  th e  two ro o ts  of th e  
q u a d ra tic  eq u a tio n

y = A*x"2 + B*x + C.
The ro o ts  a re  co n ta in ed  in  X = [X1 X2].

MATLAB only echoes the comment lines tha t are contiguous; the first non­
comment line, in this case the blank line before the signature, tells MAT- 
LAB tha t the help comments have ended. The first line of the help com­
ments is searched and, if successful, displayed when you type a lo o k fo r 
command.

Comment lines can appear anywhere in the body of an m-file. Com­
ments can be put at the end of a line of code:

ro o td is c  = s q r t ( b ." 2  -  d e l t a ) ;  % Root of th e  d isc r im in a n t

Blank lines can appear anywhere in the body of an m-file. Apart from 
ending the help comment lines in a function, blank lines are ignored.

8.3 Flow  C ontrol
MATLAB has four kinds of statem ents you can use to  control the flow 
through your code:

i f ,  e ls e  and e l s e i f  execute statem ents based on a logical test 
sw itch , case and o th erw ise  execute groups of statem ents based on 

a logical test
w hile and end execute statem ents an indefinite number of times, 

based on a logical test 
fo r  and end execute statem ents a fixed number of times

If, E lse, E lse if

The basic form of an i f  statem ent is:

i f  t e s t
s ta tem en ts

end

The t e s t  is an expression th a t is either 1 (true) or 0 (false). The 
s ta tem en ts  between the i f  and end statem ents are executed if the 
t e s t  is true. If the t e s t  is false the s ta tem en ts  will be ignored and 
execution will resume at the line after the end statement. The t e s t  
expression can be a vector or matrix, in which case all the elements 
must be equal to 1 for the sta tem en ts  to be executed. Further tests 
can be made using the e l s e i f  and e ls e  statements.

Exercise 2 Write a function m-file that takes a vector input and 
returns 1 if all of the elements are positive, —1 if they are all neg­
ative, and zero for all other cases. Hint: Type help a ll. (Answer- 
on page 183.)
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S w itch

The basic form of a sw itch  statem ent is:

sw itch  t e s t
case r e s u l t l

s ta tem en ts  
case r e s u l t2

s ta tem en ts

o th erw ise
s ta tem en ts

end

The respective s ta tem en ts  are executed if the value of t e s t  is equal 
to the respective r e s u l t  s. If none of the cases are true, the o therw ise  
statem ents are done. Only the first matching case is carried out. If 
you want the same s ta tem en ts  to be done for different cases, you can 
enclose the several r e s u l t  s in curly brackets:

sw itch  x 
case 1

d i s p ( ’x i s  1’ ) 
case { 2 ,3 ,4 }

d i s p ( ’x i s  2, 3 or 4 ’ ) 
case 5

d i s p ( ’x i s  5 ’ ) 
o th erw ise

d i s p ( ’x i s  no t 1, 2 , 3, 4 or 5 ’ )
end

W h ile

The basic form of a w hile loop is

w hile t e s t
s ta tem en ts

end

The sta tem en ts  are executed repeatedly while the value of t e s t  is 
equal to 1. For example, to find the first integer n  for which 1 +  2 +  •••+ n  
is is greater than 1000:

n = 1;
w hile sum(1:n)<=1000 

n = n+1; 
end
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A quick way to ‘comment out’ a slab of code in an m-file is to enclose 
it between a while 0 and end statements. The enclosed code will never 
be executed.

For

The basic form of a fo r  loop is:

fo r  in d ex  = s t a r t : in c r e m e n t :s t o p  
s ta tem en ts

end

You can omit the increment, in which case an increment of 1 is assumed. 
The increment can be positive or negative. During the first pass through 
the loop the in d ex  will have the value s t a r t . The in d ex  will be 
increased by in crem en t during each successive pass until the in d ex  
exceeds the value s t o p . The following example produces views of the 
peaks function from many angles:
c l f
colormap(gray) 
plotnum = 1 ; 
z = peaks(20) ;  
fo r  az = 0:10:350 

su bp lot(6 ,6 ,plotnum) 
su r fl(z ),sh a d in g  f la t  
view (az,30) 
axis t igh t 
axis o f f  
plotnum = plotnum + 1 ; 

end
The index of a fo r  loop can be a vector or a matrix. If it is a vector 
the loop will be done as many times as the number of elements in the 
vector, with the index taking successive values of the vector in each pass. 
If the index is a matrix, the loop will be done as many times as there 
are columns in the matrix, with the index taking successive columns of 
the matrix in each pass. For example:

>> q = pascal(3 )

1 1 1
1 2 3
1 3 6

fo r i  = q ,i,en d

1
1
1
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i
1
2
3

1
3
6

Vectorised C ode

MATLAB is a matrix language, and many of its algorithms are optimised 
for matrices. MATLAB code can often be accelerated by replacing fo r  
and while loops with operations on matrices. In the following example, 
we calculate the factorial of the numbers from 1 to 500 using a fo r  
loop. Create a script m-file called fa ctoria lloop .m  that contains the 
following code:

fo r  number = 1:500 
fa c t  = 1 ; 
fo r  i  = 2 :number 

fa c t  = fa c t* i ;  
end
y(number) = fa c t ; 

end

We can time how long this program takes to run by using the stopwatch 
functions t i c  and toc:

>> t i c ; fa c t o r ia l lo o p ;t o c  
elapsed_time =

4.6332

which is the time in seconds. The same calculation can be done in much 
less time by replacing the internal fo r  loop by the prod function. Create 
an m-file called factoria lvect.m :

fo r  number = 1:500
y(number) = prod (1 :number); 

end

This version takes about a tenth of the time:

>> clear
>> t ic ; fa c t o r ia lv e c t ;t o c  
elapsed_time =

0.4331

i  =
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Further increases in speed can be achieved by pre-allocating the output 
matrix y. If we have an m-file called factoria lpre.m :

y = zeros (1 ,500); 
fo r  number = 1:500

y(number) = prod (1 :number);
end

the execution time is about 10% faster:4 

>> clear
>> t ic ; fa c t o r ia lp r e ;t o c  
elapsed_time =

0.3752

More on vectorising code is given in Part II (see page 175).

8.4 Comparing Strings
The tests in flow control statements often involve strings (arrays of char­
acters). For example you may want to ask the user of an m-file a ques­
tion which has a “yes” or “no” response, and adjust the flow accordingly. 
Although MATLAB has sophisticated menu utilities, the following is often 
sufficient to get a user input:
in p u t(’ Do you want to  continue (y or n) ? ’ , ’ s ’ ) ;
The ’ s ’ at the end tells MATLAB to expect a string response, rather 
than a numerical response. The following MATLAB code tests for a ‘y ’ 
response:
i f  strcm p(low er(ans(1) ) , ’ y ’ ) 

go_ahead 
else

return
end

The strcmp function compares strings, lower converts to lower-case 
characters and ans(1) selects the first letter of the response. Type 
help strcmp for more information. The return command returns to 
the invoking function or to the MATLAB prompt.

9 Data Files
Many techniques are available to read data into MATLAB and to save data 
from MATLAB. The load and save functions can load or save MATLAB 
format binary or plain ASCII files, and low-level input-output routines 
can be used for other formats.

4See MATLAB’s gamma function  if you  are interested in com puting  factorials.
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9.1 M ATLAB Format
To save all the variables in the workspace onto disk use the save com­
mand. Typing save k eep file  will save the workspace variables to a 
disk file called keepfile.m at, a binary file whose format is described in 
the MATLAB documentation. This data can be loaded into MATLAB by 
typing load k eep file .

To save or load only certain variables, specify them after the filename. 
For example, load k eep file  x will load only the variable x from the 
saved file. The wild-card character * can be used to save or load variables 
according to a pattern. For example, load k eep file  *_test loads only 
the variables that end with _test.

When the filename or the variable names are stored in strings, you 
can use the functional forms of these commands, for example:

save k eep file  is the same as sa v e (’ k e e p file ’ ) 
save k eep file  x .. .  sa v e (’ k e e p file ’ , ’ x ’ )
load k eep file  .. .  A = ’ k e e p file ’

load(A)

Exercise 3 The file clown.mat contains an image of a clown.
What colour is his hair? (Answer on page 183.)

9.2 ASCII Format
A file containing a list or table of numbers in ASCII format can be loaded 
into MATLAB. The variable containing the data is given the same name 
as the file name without the extension. For example, if a file nums.dat 
contained ASCII data, load nums.dat would load the data into a vari­
able called nums. If the ASCII file contained a table of numbers, the 
variable would be a matrix the same size as the table.

Other functions are available to read various forms of delimiter- 
separated text files:

csvread Read a comma separated value file
csvwrite Write a comma separated value file
dlmread Read ASCII delimited file
dlmwrite Write ASCII delimited file

9.3 Other Formats
MATLAB’s low-level input/output routines can be used to access more 
unusual data formats. They are listed here for reference:
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File Opening and Closing: fc lo s e  fopen
Unformatted I/O: 
Formatted I/O:

File Positioning:

String Conversion:

fread fw rite  
fg e t l  fp r in t f  
fg ets  fscan f 
fe o f  fseek 
fe rro r  f t e l l  
frewind 
sp rin tf sscanf

10 Directories
When you type a string of characters, say asdf at the MATLAB prompt 
and press return, MATLAB goes through the following sequence to try to 
make sense of what you typed:

1. Look for a variable called asdf;

2. Look for a built in MATLAB function called asdf;

3. Look in the current directory for an m-file called asdf.m;

4. Look in the directories specified by the MATLAB search path for an 
m-file called asdf.m.

The following commands are useful for working with different directories 
in matlab :

cd Change to another directory
pwd Display (print) current working directory
d ir Display contents of current working directory
what Display MATLAB-relevant files

in current working directory
which Display directory containing specified function
type Display file in the MATLAB window
path Display or change the search path
addpath Add directory to the search path
rmpath Remove directory from the search path

If the directory name contains a blank space, enclose it in single quotes: 

d ir  ’ my documents’

(On PCs or Macintoshes you can use the Path Browser GUI to manipu­
late the path. Select ’File’^ ’Set Path’ or click the Path Browser button 
on the tool bar.)
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11 Startup
Each time you start MATLAB it looks for a script m-file called startup.m 
and, if it finds it, does it. Thus, you can use startup.m to do things like 
set the search path, set command and figure window preferences (e.g., 
set all your figures to have a black background), etc.

On PCs you should put the startup.m file in the directory called 
C:\MATLAB\toolbox\local. On UNIX workstations you should put 
your startup file in a directory called matlab immediately below your 
home directory: ~/matlab.

12 Using MATLAB on Different Platforms
A MATLAB format binary (.mat) file that is saved on one platform (say, 
a PC or a Macintosh) can be transferred to a different platform (say, a 
Unix or VMS box) and loaded into MATLAB running on that platform. 
The mat-file contains information about the platform that saved the 
data. MATLAB checks to see if the file was saved on a different platform, 
and performs any necessary conversions automatically.

MATLAB m-files are ordinary ASCII text, and are immediately trans­
portable between platforms. Different platforms may use different char­
acters to terminate lines of text (with CR and LF characters), but MAT­
LAB handles them all. However, the text editor you use must be able to 
handle the end-of-line characters correctly.

The program you use to transfer m-files or mat-files, for example, 
FTP or mail, must do so without corrupting the data. For FTP, for 
example, mat-files must be transmitted in binary mode and m-files must 
be transmitted in A S C II mode.

13 Log Scales
When dealing with data that varies over several orders of magnitude 
a plain linear plot sometimes fails to display the variation in the data. 
For example, consider the census estimates5 of Australia’s European 
population at various times. If this data is contained in the file 
population.dat, we can load and plot it as follows:

5Australian Bureau o f Statistics Web Page, h ttp :/ /w w w .s ta t is t ic s .g o v .a u , and
Australians: A Historical Library, Australians: Historical Statistics, Fairfax, Syme
& Weldon Associates, 235 Jones Street, Broadway, New South Wales 2007, 
Australia, 1987, pp. 25,26.
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load population.dat 
year = p o p u la t io n (:,1) ;  
P = p o p u la t io n (:,2 ) ; 
p lo t (y e a r ,P ,’ : o ’ ) 
box ;grid

The European population prior to 1850 was very low and we are unable 
to see the fine detail. Detail is revealed when we use a logarithmic y- 
scale:

sem ilogy(year,P ,’ : o ’ )
box ;grid

__i* H z

•

ш п ш н м н

•  ■

— !

/
1 '

> 1

17S0 №00 l»S0 <«00 1950 2000

The following functions implement logarithmic axes:

log log  Both axes logarithmic 
semilogx logarithmic ж-axis 
semilogy logarithmic y -axis

14 Curve Fitting— Matrix Division
We continue with the example of Australian population data given in 
the previous section. Let us see how well a polynomial fits this data. We 
assume the data can be modelled by a parabola:

p  =  Co +  ClX +  C2X2

where x  is the year, c0, c1, and c2 are coefficients to be found, and p  is 
the population. We write down this equation substituting our measured 
data:

2pi =  co +  C1X1 +  C2X1 2
P2 =  Co +  C1X2 +  C2X2

2
P n  =  Co +  CiXN +  C2XN
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Where p i is the population for year x i , and i =  1, 2 , . . . N .  We can write 
this series of equations as a matrix equation:

/  Pl \ 1 x l
2 /•V* ̂  x l l2

\
P2 =

1 x 2 x 2

С
С

i—̂ 
О

1

2
Nx

С2
p N x N )

Or, defining matrices,

P =  X  • C .

In MATLAB the X  matrix is calculated as follows:

>> X = [on es(s ize (yea r)) year year."2 ]
X =

1 1788 3196944
1 1790 3204100

1 1993 3972049
1 1994 3976036
1 1995 3980025

The backslash operator solves the equation for the coefficient matrix C:

>> C = X\P 
C =

1.0e+09 *
2.0067

- 0.0022
0.0000

The third coefficient is not really zero; it is simply too small (compared 
to 2.0 x 109) to show in the default output format. We can change this 
by typing:

>> format long e 
>> C 
C =

2.006702229622023e+09
-2.201930087288049e+06

6.039665477603122e+02

The backslash operator does its best to solve a system of linear equations 
using Gaussian elimination or least-squares algorithms, depending on 
whether the system is exact, or over- or under-determined. We can
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display the resulting fit to the data by calculating the parabola. We 
use matrix multiplication to calculate the polynomial over a fine set of 
points separated by half a year:

year_fine = (y e a r (1 ):0 .5 :y e a r (le n g th (y e a r ))) ’ ;
Pfine = [on es (s ize (y ea r_ fin e )) year_fine y ea r_ fin e . ~2]*C;

15

p lot (y e a r ,P ,’ o ’ . 10 
y ea r_ fin e ,P fine) 6

о

"$ 5 0  1B00 1850 1900 1950 2000

This technique can be used to fit any function that is linear in its 
parameters. (MATLAB provides the functions p o ly f it  and polyval as 
easy interfaces to the functionality that we have just illustrated using 
matrix multiplication and division.)

Exercise 4 Use this technique to fit an exponential curve to the 
population data. Hint: Take logs. (Answer on page 183.)

15 Missing Data
Real-world measurements are often taken at regular intervals; for exam­
ple, the position of a comet in the sky measured each night, or the depth 
of the sea along a line at 1 metre increments. Environmental effects or 
equipment failure (a cloudy night or a failed depth meter) sometimes 
result in a set of data that has missing values. In MATLAB these can be 
represented by NaN, which stands for “not-a-number” . NaN is also given 
by MATLAB as the result of undefined calculations such as 0/0. MATLAB 
handles NaNs by setting the result of any calculation that involves NaNs 
to NaN. Let us look at an example:

20  -  

15

у = [1:4 NaN 6:14 NaN 16:20]; 
p lot (y , ’ o ’ ) 10
grid ;box

5

°0 5 10 15 20

In everyday language we would say that the fifth and the fifteenth values 
of the y-vector are missing. MATLAB’s graphics functions usually handle
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NaNs by leaving them off the plot. For example, if we allow p lo t  to try 
to join the points with a straight line, the values on either side of the 
NaNs terminate the line:

p lo t (y )
grid ;box

If we calculate the difference between y-values, the results involving NaNs 
are themselves NaN:

>> d i f f ( y )  
ans =

Columns 1 through 12
1 1 1 NaN NaN 1 1 1 1 1 1 1 

Columns 13 through 19
1 NaN NaN 1 1 1 1

If we calculate the cumulative sum of y, everything from the first NaN 
onwards is NaN:

>> cumsum(y) 
ans =

Columns 1 through 12
1 3 6 10 NaN NaN NaN . . .  NaN 

Columns 13 through 20 
NaN NaN NaN NaN NaN NaN NaN NaN

MATLAB’s surface plotting functions handle NaNs in a similar way: 
z = peaks;
z(5 :3 5 ,1 8 :2 2 ) = NaN; 
su bp lot(221) 
p lo t ( z ’ ) 
su bp lot(222) 
colorm ap(gray(64)) 
imagesc(z) 
axis xy 
subplot(223) 
s u r fl(z )  
shading f la t  
subplot(224) 
con tourf(z)
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16 Polar Plots
When displaying information which varies as a function of angle, it is 
often beneficial to use a polar diagram in which conventional (x, y) values 
are interpreted as angle and radius. Compare the following two displays. 
First the conventional ( x , y) plot:

c l f
t  = l in s p a c e ( -p i ,p i ,201) ;  
g = s in c (2 . 8* s in ( t ) ) ;  
p lo t (t* 1 8 0 /p i,g )  
zeroaxes

(The command zeroaxes is part of the companion software to this 
book.) Then the polar diagram indicating the directional variation in 
the quantity g:

c l f
p o la r (t ,g )

Plots such as these are sometimes displayed in decibel units:

gdb = 10* lo g 10(a b s (g )); 
p lo t(t*1 8 0 /p i,g d b )
zeroaxes

But the polar diagram in this case gives rubbish because it is interpreting 
the negative decibel values as negative radii:
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c l f
p o la r(t,g d b )

In this case you must use a modified version of polar that interprets 
a zero radius as a 0 dB value which should go at the outer limit of the 
plot. Negative decibel values should appear at smaller radii. I have 
implemented these ideas in the m-file negpolar (see companion soft­
ware):

negpolar(t,gdb)

The negpolar function also omits the solid outer circle which, like the 
box drawn around MATLAB’s default p lo t  output, unnecessarily frames 
the plot and can obscure the data that you are trying to display. A faint 
dotted grid is enough to put the plotted points in context. I will say 
more about this in the section on Handle Graphics later (see page 65).

17 Fourier Transform
A theorem of mathematics says, roughly, that any function can be repre­
sented as a sum of sinusoids of different amplitudes and frequencies. The 
Fourier transform is the mathematical technique of finding the ampli­
tudes and frequencies of those sinusoids. The Discrete Fourier Transform 
(DFT) is an algorithm that calculates the Fourier transform for numer­
ical data. The Fast Fourier Transform is an efficient implementation of 
the DFT. The following functions are available in MATLAB to do Fourier 
transforms and related operations:
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f f t One-dimensional fast Fourier transform
f f t 2 Two-dimensional fast Fourier transform
fftn N  -dimensional fast Fourier transform
f f t s h i f t Move zeroth lag to centre of transform
i f f t Inverse one-dimensional fast Fourier transform
i f f t 2 Inverse two-dimensional fast Fourier transform
i f f t n inverse N -dimensional fast Fourier transform
abs Absolute value (complex magnitude)
angle Phase angle
cplxpair Sort complex numbers into complex conjugate pairs
nextpow2 Next power of two
unwrap Correct phase angles

The FFT of the column vector

y [2 0 1 0 2 1 1

is

>> Y = f f t ( y )
Y =

7 .0000
-0 .7071+ 0 . 7071i

2 . 0000- 1 . 0000i
0 .7071+ 0 . 7071i
5 .0000
0 .7071- 0 . 7071i
2 . 0000+ 1 . 0000i

-0 .7071- 0 . 7071i

The first value of Y is the sum of the elements of y, and is the amplitude 
of the “zero-frequency” , or constant, component of the Fourier series. 
Terms 2 to 4 are the (complex) amplitudes of the positive frequency 
Fourier components. Term 5 is the amplitude of the component at the 
Nyquist frequency, which is half the sampling frequency. The last three 
terms are the negative frequency components, which, for real signals, are 
complex conjugates of the positive frequency components.

The f f t s h i f t  function rearranges a Fourier transform so that the 
negative and positive frequencies lie either side of the zero frequency.

Companion M-Files Feature 4 The function f f t f r e q  gives 
you a two-sided frequency vector for use with f f t  and f f t s h i f t .
For example, the frequency vector corresponding to an 8-point 
FFT assuming a Nyquist frequency o f 0.5 is

>> f f t fr e q ( .5 ,8 ) ’ 
ans =
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-0.5000
-0.3750
-0.2500
-0.1250

0
0.1250
0.2500
0.3750

We combine f f t s h i f t  and f f t f r e q  to plot the two-sided FFT:

p lo t ( f f t f r e q ( .5 ,8 ) , f f t s h i f t (a b s (Y ) ) )  
a x is ( [ - .5  .5 0 7 ]) 
zeroaxes

-0 .5  0 0.5

Let us do a slightly more realistic example. We simulate some data 
recorded at a sampling frequency of 1 kHz, corresponding to a time step 
dt = 1/1000  of a second. The Nyquist frequency is, therefore, 500 Hz. 
Suppose there is a 100 Hz sinusoid contaminated by noise. We simulate 
the data, calculate the FFT, and plot the results as follows:

dt = 1/ 1000; 
t  = d t :d t :200*dt; 
sine = s in (2*p i*100* t ) ;  
y = sine + ra n d n (s iz e (t )) ;
Y = f f t ( y ) ;
f  = fft fre q (5 0 0 ,le n g th (Y )); 

c l f
su bp lot(211) 
s ta ir s ( t ,y )  
hold on
s ta ir s ( t ,s in e -4 )  
box
x la b e l( ’ Time (secon ds)’ ) 

su bp lot(212)
s t a i r s ( f , f f t s h i f t (a b s (Y ) ) )  
box
x la b e l( ’ Frequency (H z)’ )
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The top trace in the top plot is the noisy data, and the bottom trace is 
the original pure sinusoid. The lower plot clearly shows the frequency at 
100 Hz.

Two GUI-based FFT demos can be accessed by typing demo at the 
prompt. Select the “Signal Processing” option, then choose the “Discrete 
Fourier Transform” or the “Continuous Fourier Transform” .

Exercise 5 Extend the ideas in the previous example to two 
dimensions, as would be the case, for example, if you made mea­
surements in space and time, rather than time alone. Gener­
ate a two-dimensional sinusoid and explore its FFT. (Answer on 
page 185.)

18 Power Spectrum
The power spectrum (or power spectral density, or PSD) is a measure 
of the power contained within frequency intervals. The problem is that 
we only have a finite set of samples of the true signal so we can never 
have perfect knowledge about its power spectrum. A common way to 
estimate a PSD is to use the square of the FFT of the samples. The 
square of the FFT is called the periodogram. The workhorse of MAT­
LAB’s periodogram-based spectral estimation is the spectrum function 
(in the Signal Processing Toolbox). We illustrate using data similar to 
the previous example of a noisy sinusoid, but we take more samples. A 
PSD estimate can be found by typing:

dt = 1/ 1000; 
t  = d t:d t:8192*dt; 
sine = s in (2* p i*100* t ) ;  
y = sine + ra n d n (s iz e (t )) ; 
c l f
spectrum(y)

The frequency scale is normalised to the Nyquist frequency. The middle 
line is the PSD estimate and the two dashed lines are the 95% con­
fidence intervals. Typing help spectrum reveals that there are many 
parameters that you can adjust when calculating the power spectrum. 
MATLAB’s spectrum function uses the Welch method of PSD estimation,6 
which divides a long signal into a number of smaller blocks, calculates

6See Alan V. Oppenheim and Ronald W . Schafer, Digital Signal Processing, 
Prentice-Hall, 1975, p. 553. An excellent general treatment of PSD estimation is 
also given in William Press, Brian Flannery, Saul Teukolsky and W illiam Vetterling, 
Numerical Recipes, Cambridge University Press, 1989.
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the periodograms of the blocks, and averages the periodograms at each 
frequency. This is a technique commonly used to reduce the variance 
of the PSD. For example, we can compare the variance of the above 
estimate to that of a single periodogram by telling spectrum to use a 
block length equal to the length of the signal:

spectrum(y,8192)

You can also specify windows to reduce spectral leakage, sampling fre­
quencies to get correct frequency scales and overlapping blocks. If you 
are interested in PSD estimation, the Signal Processing toolbox contains 
other methods of PSD estimation including Welch’s method, MUSIC, 
maximum entropy and multitaper. MATLAB also provides a graphical 
user interface for spectral estimation as part of its interactive signal pro­
cessing environment sptool. The System Identification toolbox also con­
tains algorithms for PSD estimation (type iddemo and choose option 5 
for a demonstration).

19 Sounds in MATLAB
MATLAB can send data to your computer’s speaker, allowing you to visu­
ally manipulate your data, and listen to it at the same time. A digitised 
recording of an interesting sound is contained in the mat-file chirp.mat. 
Load this data, do a plot, and listen to the sound by typing:

0.5

load chirp
p lo t (y ) 0
sound(y)

- 0.5

The volume of the sound can be controlled from within MATLAB using 
the soundsc function and supplying an upper and lower limit. Or if 
you wish, you can use your computer’s system software to control the 
volume. On UNIX the volume of the sound can be controlled with the
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audiotool. On a PC the volume can be controlled from the “properties” 
panel of the sound recorder.

You can invoke a sound demo GUI by typing xpsound. This GUI 
includes these bird chirps plus a few other sounds, three different display 
types, a volume slider, and a play button.

20 Time-Frequency Analysis
Signals, such as the sound data of the previous section, often consist of 
time series data with a time-varying frequency content. The specgram 
function allows you to analyse this kind of time-frequency data. As 
an example we generate a frequency modulated carrier and analyse its 
frequency variation with time. The modulate and vco function can be 
used to produce signals with many different modulation types.7 We 
begin with a linear frequency sweep from 0 to 500 Hz sampled at 1 kHz. 
First, you must prepare a frequency control vector, which is normalised 
between —1 and 1, where —1 corresponds to the minimum frequency and
1 corresponds to the maximum frequency. Here we use a linear frequency 
control and 8192 points:

x = lin sp a ce (-1 ,1 ,8 1 9 2 );

Now use the vco function (in the Signal Processing Toolbox) to convert 
this to a frequency modulated signal:

Fs = 1000;
y = v co (x ,[0  500],F s);

The input vector [0 500] says that our frequency sweep will go from
0 Hz to 500 Hz and the sampling frequency is Fs = 1000 Hz. The first 
thousand points of this signal reveal the steady increase in frequency:

7In fact what we are doing here could also be done with the m-flle chirp.m  (not 
to  be confused with the data file chirp.m at).
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p lo t (y (1 : 1000) )  
a x is ([0  1000 -5  5 ]) 
zeroaxes

The frequency content of this signal as a function of time can be calcu­
lated using the specgram function. This function uses the Short Time 
Fourier Transform (STFT) technique. The STFT chops up the signal 
into a series of short segments and calculates the FFT of each segment. 
Each FFT becomes the estimate of the frequency content at that time. 
For our example we can get a quick display by typing:

c l f
specgram(y)
colorm ap(flipud(gray/2+ .5 ))
colorbar

The linear increase in frequency with time is clearly displayed, although 
here we have not told specgram what the sampling frequency is, so it 
has plotted a normalised frequency scale. If we include the sampling 
frequency as an input, we get the true frequencies. If you type help 
specgram you will see that the inputs are such that the sampling fre­
quency comes third in the list, after the signal itself and the FFT size. 
Here we do not want to bother about specifying the FFT size, so we can 
just specify the empty matrix for that input and specgram will use its 
default value of NFFT = 256:8

specgram (y,[],Fs)
co lorm ap(flipud(gray/2+ .5 ))
colorbar

The frequency now goes from zero to 500 Hz.

8Many o f MATLAB’s functions behave this way: specifying the empty matrix will 
tell the function that you want to  use its default value for that input.
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Exercise 6 Try a more complicated modulation function; for  
example, a sinusoidal rather than a linear frequency variation.
Try plotting the results as a surface instead of an image. (Answer 
on page 186.)

21 Line Animation
MATLAB’s comet function can be used to produce an animation on the 
screen of a trajectory through either two-space or three-space. For exam­
ple, we use some recorded aircraft GPS data in the file gps.mat.

>> clear 
>> load gps 
>> whos

Name Size Bytes Class
t 500x1 4000 double array
x 500x1 4000 double array
y 500x1 4000 double array
z 500x1 4000 double array

Grand to ta l  is  2000 elements using 16000 bytes 

A simple 3-d plot is difficult to interpret:

1000

500

»  p lo t3 (x ,y ,z )
о
3

The floating thread has too few visual clues for the eye to interpret, and 
the altitude variation further clutters the display. A two-dimensional 
plot tells us that the aircraft was doing turns (but not how high it was):

2.5 

2

p lo t (x ,y )
axis equal 1-5
box 1

0.5
-0 .5  0 0.5 1 1.5 2

This is an improvement, but we still do not know where the aircraft 
started, where it finished, and how it went in between. We can see an 
animation of the trajectory by typing:

©  2000 by CRC Press LLC



com et(x,y)

(You can get a three-dimensional version by using comet3.) You can see 
it on your screen. But we have just illustrated a disadvantage of such 
a display: you have to be there. I cannot communicate to you what 
it looks like on paper. For that you need to resort to, say, an array of 
two-dimensional plots strung out along the third time dimension. This 
gets us into the subject of plot arrays, which is discussed in Section 32.3 
on page 123.

22 SPTool
SPTool (in the Signal Processing Toolbox) is a graphical user interface 
to many of MATLAB’s signal processing functions. The idea is to import 
signals from the MATLAB workspace into the SPTool environment where 
they can be manipulated in a great variety of ways. As an example, load 
some data into your workspace by typing:

load mtlb

We will use SPTool to look at this time-series data and calculate various 
power spectra. Invoke SPTool by typing:

File Edit Help Window

S igna ls F ilte rs S p ectra

V is *  | vis* v lsw

New Desiqn Create _ |

шшштт Update

Choose the F ile^ Im port menu item to open the import panel, which 
allows you to control the variables that sptool can “see” :
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Source W orkspace Contents

.... I

Import As: Sianal -j  1--------

♦ From W orks cac 

v  From Disk 1 Fs
mtlb

E iw se ... |

Data

Sampling

---- 1 1

HelD 1 Cancel 1 O K 1 s ig l

Click on the variable mtlb and the arrow button (— >) to get mtlb to 
appear in the Data box (or just type mtlb there). Do the same to make 
Fs appear in the Sampling box. Then press OK. A signal called s ig l 
appears in the Signals box in the main SPTool panel. Clicking on the 
View button at the bottom of the Signals box opens the signal browser 
panel:

Here you have a plot of the time series with two “rulers” . The rulers can 
be used to pick values out of the data, as well as to calculate intervals 
and slopes. The data in the Rulers box at the right of the display 
shows this information. At the bottom is a “panner” . If you click on the 
Zoom In-X button a couple of times, the top plot shows an expanded 
portion of the data, and the panner at the bottom shows the location of 
the top box within the entire signal.
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By clicking within the panner box and dragging, you can change the 
location of the zoomed window. You can listen to this time series by 
selecting Options^Play.

To calculate the power spectrum of this signal, go back to the main 
SPTool panel and click the Create button at the bottom of the Spectra 
box. Doing this will open the Spectrum Viewer:

File Cfrtons Window

t  • 

see* Ш
In-V

<5=IM*
Ort-V

l><
kl-X

< >
CM-K

?
Htt

Selection
spedl J  Color.., I

Signal: sigl 
4001 -fcw-1 real Sdtction spwti

j Fs -  0.001 0 9

Method Weltf. -  J
0.8

Nfft 1024 0 7

Nwlnd |?5fi 
Window hannina -■!

0.6

OS

Overlap 0 0.4

Defending none I 0.3

Scaling Unbasec -■ |

J  Conf. 1(1[ 0.1

inherit from -« 1 0

F>uert 1 Apolv

■ Rulers-

1 i 
14T*CK

1 A t
1 W k

№*x*
x l p -
y l -

y2 -
dx -

dy -

A \
Put)

w |
ИИ*у» 1

Save RiJers... 1

Choose a method with the parameters you like to get a plot of a spectral 
estimate:
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You can design and apply filters to data in a similar way.

23 Handle Graphics
So far in this book, we have only used MATLAB’s high-level plotting 
function (plot, surf, etc.). High-level plotting functions produce simple 
graphs and automate the many mundane decisions you might make in 
producing a plot, such as the position of the plot, the colour of the axes, 
the font size, the line thickness, and so on. MATLAB’s system of Handle 
Graphics allows you to control a great many of these “mundane” aspects 
of plotting, to produce plots that are optimised for communicating the 
data at hand. The idea behind Handle Graphics is that every object in 
the figure window (axes, lines, text, surfaces, etc.) has a set of properties. 
These properties can be examined using the get command and set to new 
values using the set command. Every object in the figure window also 
has a unique identifier (a number) called a handle. The object’s handle 
tells get and set what object you are interested in. As an introductory 
example, consider the plot shown on page 58 of the frequency modulated 
sinusoid:
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x = lin sp a ce (-1 ,1 ,8 1 9 2 ); 
Fs = 1000;
y = v c o (x ,[0  500],F s); 
p lo t (y ( 1 : 1000) )  
a x is ([0  1000 -5  5 ]) 
zeroaxes

We used the axis command to set the y-axis limits to [-5  5] instead 
of the default limits, in this case, of [ -1  1]

c l f
p lo t (y (1 : 1000) )

which makes the variation in frequency slightly less apparent, and is 
just too grandiose. The eye can pick up very subtle variations in line 
straightness, but here the variation is so huge that the lines become 
parallel and begin to produce the optical illusion of vibration. Also, 
lines that are very nearly vertical or horizontal begin to be affected by 
the finite resolution of dot printers. Using Handle Graphics we can 
achieve a more elegant result by reducing the height of the y -axis. We 
do this by setting the p os ition  property of the current axes:

s e t (g c a , ’ P o s it io n ’ , [ .1  .5 .8 . 1 ] , ,box ’ , , o f f ’ )

«ИЛЛЛЛШ

The gca input is itself a function, which returns the handle to the current 
set of axes. We are saying that we want to set the position of the current 
axes to be equal to the vector [ .1  .1 .8 . 1]. The position vector has 
the form [ l e f t ,  bottom , w idth , h e ig h t  ] , in units normalised to the 
figure window; (0,0) is the bottom left and (1,1) is the top right. But 
perhaps we should shrink it even further, and dispense with the ever­
present axes:

s e t (g c a , ’ P o s it io n ’ , [ .1  .5 .8 .0 1 ] , ,v is ib l e ’ , , o f f ’ )
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23.1 Custom Plotting Functions
Handle Graphics can be used to write your own graphics m-files that are 
fine-tuned to your requirements. For example, the box around the graph 
produced by the default p lo t  command can obscure the data:

1

O.B
e lf

0.6
t  = linspaceCO,10); 
у = 1 -  e x p ( - t ) ;  o.4

p lo t ( t , у ) o2

°0 2 4 6 в 10

To avoid this problem (which I have found occurs frequently), I use my 
own personal version of the p lo t  command, called p lt, which omits the 
box:

1

O.B 

0.6

p l t ( t , y )  o4

0.2

°0 2 4 6 8 10

The m-file for p lt  (see companion software) simply passes all the input 
parameters directly to the p lo t  command and then sets the ’ box ’ prop­
erty of the current plot to ’ o f f ’ .

23.2 Set and Get
Typing

get(H)

where H is an object handle, displays all of the property names associated 
with the object. Typing

set(H)

displays all of the possible values that can be taken by every property 
associated with the object. Typing

se t(H ,’ P r o p e r ty  ’ )

displays all of the possible values for the P r o p e r ty  associated with the 
object.
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23.3 Graphical Object Hierarchy
MATLAB graphical objects are arranged according to the hierarchy shown 
here.

The object immediately above another is called a parent, and the objects 
below are called children. In general, children inherit their handle graph­
ics properties from their parent. For example the position of a line on a 
plot depends on the position of the axes that it goes in, which, in turn, 
depends on the position of the figure window.

The Root object is the computer screen. There can only be one Root 
object. You can see the properties of the Root object and the allowable 
options by typing s e t (0 ) (the handle of the Root is always equal to 
zero).

The Uicontrol, Uimenu, and Uicontextmenu objects are graphical 
user interface elements that are discussed in Part II of this book (see 
page 133).

A parent can have any number of children. For example the Root 
can have many Figures, a Figure can have many Axes, and a set of Axes 
can have many Lines, Surfaces, and so on. If a parent has many children, 
one of them is designated the current one. For example the current set 
of axes is the one that will be updated the next time you do a lin e  
command. You can make an object current by clicking on it with the 
mouse. For example, I clicked on the fourth line from the bottom before 
setting its linewidth property to 5 (the default linewidth is 0.5):

Root

Figure

Axes Uicontrol Uimenu Uicontextmenu

Line Rectangle Patch Image Surface Text Light

100

80

60
p l o t ( [ 1 : 10] ’ * [ 1 : 10] )
s e t (g c o , ’ linew idth ’ ,5) 40

20

o_0 2 4 6 8 10

The following functions return the handles of current objects:

gcf Get Current Figure 
gca Get Current Axes 
gco Get Current Object
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The handle of a Figure is the number (1, 2, etc.) that normally 
appears in the Figure’s title bar (supplied by the windowing system).

All of the graphical objects, except the Root object, have low-level 
creation functions in which you can specify their properties. For exam­
ple, here is how to create a set of axes with the ж-axis tick marks labelled 
by months of the year:

lb ls  = [ ’ Jan|Feb|Mar|April|May|June|’ . . .  
’ July|Aug|Sept|Oct|Nov|Dec’ ] ;

c l f
a x es (’ p o s it io n ’ , [ .1  .5 .8 . 1 ] , ’ x lim ’ ,[1  1 2 ] , . . .  

’ x t ic k ’ , 1 : 12 , ’ x t ic k la b e l ’ , lb ls )

San Fab Mar April May June July Aug Sapt Oct Nov Dac

The general format of object creation functions is

handle = f u n c t i o n ( ’ propertyn am e ’ , ’ p r o p e r t y v a l u e  ’ )

The output of the function is the handle of the object. This handle 
can then be used in subsequent calls to get and set to modify the 
properties of the object. The p rop er tyn a m es are displayed by MAT­
LAB with capitalisation to make them easier to read; for example, the 
VerticalAlignment text property or the YAxisLocation axes property. 
When you are typing property names, you do not need to use the full 
name or any capitalisation; you need only use enough letters of the prop­
erty name to uniquely specify it, and MATLAB does not care what capi­
talisation you use. Nevertheless, when writing m-files, it is a good idea 
to use the full property name because abbreviated names may no longer 
be unique if extra properties are added in future releases of MATLAB.

Example: Line W idth

The default way to plot a matrix is to draw one line for each column of 
the matrix, with the lines differentiated by colour. Suppose instead that 
we want to differentiate the lines by their thicknesses. One way to do it 
is as follows. First generate the data and plot it:
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Now we need to get the handles of all the lines. We could have said h = 
p lo t (y ) to get them, but for now we use the get function:

h = g e t (g c a , ’ ch ild ren ’ )

The gca function returns the handle of the current axes, and 
g e t (g c a , ’ ch ild ren ’ ) returns the handles of all the current axes’ chil­
dren (the lines on the plot). Now we want to change the thicknesses of 
the lines. We set up a vector of line widths with as many elements as 
there are lines:

widths = l in s p a c e ( .1 , 10,len g th (h ));

The widths of the lines will vary from a minimum of 0.1 to a maximum 
of 10. We use a for-loop to change the width of each of the lines:

fo r  i  = 1:10
s e t ( h ( i ) , ’ linew idth ’ ,w id th s (i)) ;

end

24 Demos
The MATLAB demos are well worth browsing. You can learn about a 
subject (often reading references are given), as well as learning about 
MATLAB’s capabilities. Of interest to sonar and radar signal processors is 
MATLAB’s Higher Order Spectral Analysis toolbox containing, for exam­
ple, functions for direction of arrival estimation (beamforming plus other 
methods), time-frequency distributions, and harmonic estimation. Type 
help hosa for a list of functions in the Higher Order Spectral Analysis 
toolbox. Browsing the demos or doing a keyword search may save you 
from writing your own MATLAB code and re-inventing the wheel. Type 
demo to get the panel:
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Beyond the Basics

Prelude
This part of the book assumes that you already have some competency 
with MATLAB. You may have been using it for a while and you find you 
want to do more with it. Perhaps you have seen what other people do 
and are wondering how it is done. Well, read on.

This part of the book follows an introductory course in MATLAB 
(Part I) that covered the basics: matrices, typing shortcuts, basic graph­
ics, basic algebra and data analysis, basics of m-files and data files, and 
a few simple applications, such as curve fitting, FFTs, and sound. Basic 
handle graphics were introduced using set and get.

We begin by looking at sparse matrices and strings, go on to deal 
with some of the data types that are new to MATLAB version 5: cell 
arrays, multidimensional arrays and structures, then deal with a variety 
of topics that you will probably have to deal with at some stage if you are 
a frequent user of MATLAB. The book can be worked through from start 
to finish, but if you are not interested in a particular topic, you can skip 
over it without affecting your understanding of later topics. Exercises 
are given throughout the book, and answers to most of them are given 
at the end. We start by introducing some new variable types that go 
beyond the functionality of a rectangular matrix.

25 Sparse Arrays
In some applications, matrices have only a few non-zero elements. Such 
matrices might arise, for example, when analysing communication net­
works or when performing finite element modelling. MATLAB provides 
sparse arrays for dealing with such cases. Sparse arrays take up much 
less storage space and calculation time than full arrays.
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25.1 Example: Airfoil
Suppose we are doing some finite element modelling of the airflow over 
an aeroplane wing. In finite element modelling you set up a calculation 
grid whose points are more densely spaced where the solution has high 
gradients. A suitable set of points is contained in the file a ir fo i l :

=гш!-------------------------

load a i r f o i l  
c l f
p l o t ( x ,y , ’ . ’ )

°0 1 2 3 4 5 
X10’

There are 4253 points distributed around the main wing and the two 
flaps. In carrying out the calculation, we need to define the network of 
interrelationships among the points; that is, which group of points will 
be influenced by each point on the grid. We restrict the influence of 
a given point to the points nearby. This information is stored in the 
vectors i  and j,  included in the loaded data. Suppose all the points are 
numbered 1, 2 ,. . .  , 4253. The i  and j vectors describe the links between 
point i and point j .  For example, if we look at the first five elements:

>> [ i (1 :5 )  j ( 1 : 5 ) ] ’ 
ans =

1 2 3 5 4
2 3 10 10 11

The interpretation is that point 1 is connected to point 2, point 2 is 
connected to point 3, points 3 and 5 are connected to point 10, and so 
on. We create a sparse adjacency matrix, A, by using i  and j as inputs 
to the sparse function:

о 

1000

A = sp a rse (i, j  ,1) ; 2000 
spy(A)

3000 

4000
0 2000 4000

nz = 12289

The spy function plots a sparse matrix with a dot at the positions of 
all the non-zero entries, which number 12,289 here (the length of the i  
and j vectors). The concentration of non-zero elements near the diagonal 
reflects the local nature of the interaction (given a reasonable numbering 
scheme). To plot the geometry of the interactions we can use the gplot 
function:
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c l f
g p lo t(A ,[x  y ]) 
axis o f f

(Try zooming in on this plot by typing zoom and dragging the mouse.) 
The adjacency matrix here (A) is a 4251 x 4253 sparse matrix with 12,289 
non-zero elements, occupying 164 kB of storage. A full matrix of this 
size would require 145 MB.

(From now on in this book, the c l f  command will be omitted from 
the examples; you will need to supply your own c l fs  where appropriate.)

25.2 Example: Communication Network
Suppose we have a communications network of nodes connected by wires 
that we want to represent using sparse matrices. Let us suppose the 
nodes are 10 equispaced points around the circumference of a circle.

dt = 2* p i /10 ; 
t  = d t :d t :10*dt; 
x = c o s ( t ) ’ ; 
y = s i n ( t ) ’ ; 
p lt (x ,y )  
axis equal o f f  
fo r  i  = 1:10

t e x t ( x ( i ) , y ( i ) , i n t 2s t r ( i ) )  
end
We want the communications channels to go between each node and its 
two second-nearest neighbours, as well as to its diametrically opposite 
node. For example, node 1 should connect to nodes 3, 6, and 9; node 2 
should connect to nodes 4, 7, and 10; and so on. The function spdiags 
is used on the following to put the elements of e along the second, fifth, 
and eighth diagonals of the (sparse) matrix A. If you look at the help for 
spdiags, you should be able to follow how these statements define the 
connection matrix we want. First we define the connection matrix:

e = ones(10 , 1) ;
A = sp d iags(e ,2 ,10 ,10 ) + . . .  

sp d iags(e ,5 ,10 ,10) + . . .  
sp d ia g s(e ,8 , 10 , 10) ;

A = A + A’ ;

Now do the plot:
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su bp lot(221) 
spy(A)
su bp lot(222) 
g p lo t(A ,[x  y ]) 
axis equal o f f  
fo r  i  = 1:10

t e x t ( x ( i ) , y ( i ) , i n t 2s t r ( i ) )
end

The plots show the sparse node-connection matrix on the left and the 
physical connection on the right.

Exercise 7 Repeat this communications example for the case of 
100 nodes around the circle. Then try changing the connection 
matrix. (Answer on page 187.)

26 Text Strings
A string is an array of characters. For example, these are strings: 
’ h e l lo ’ , ’ John Smith’ , and ’ 12’ . The last one is a string, not the 
number 12, because it is surrounded by quotes. MATLAB represents char­
acters as their ASCII values. You can convert between ASCII values and 
the characters they represent using the double and char commands:

>> alph = ’ ABCDE’ 
alph =
ABCDE

>> num = double(alph) 
num =

65 66 67 68 69

>> char(num) 
ans =
ABCDE

>> char(num+5) 
ans =
FGHIJ

The double command converts its argument to double precision values, 
the default MATLAB format.

To get a quote character in a string use two quotes in succession:

>> s tr  = ’ you’ ’ re the one’
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str  =
you’ re the one
>> str  = ’ ’ ’ you’ ’ re the one’ ’ ’ 
s tr  =
’ you’ re the one’

Exercise 8 Create a table of integers from 0 to 255 and their 
equivalent ASCII values. Printing which ASCII “character" rings 
the system bell? (Answer on page 187.)

26.1 String Matrices
To create a matrix of strings, use the semicolon to separate the lines:

>> m = [alph ; char(num+5) ; ’ KLMNO’ ] 
m =
ABCDE
FGHIJ
KLMNO

You cannot create a matrix of strings having different lengths:

>> z = [alph ; ’ b ’ ]
??? A ll rows in the bracketed expression must have the 
same number o f columns.

(You should use cell arrays— discussed later— if you really want to create 
a “matrix” like this.) To simulate the effect, though, you can pad with 
zeros:

>> z = [ ’ abcd’ ; ’ b ’ ] 
z = 
abcd 
b

The second line has three blank spaces to the right of the “b” . A conve­
nient way to do this is to use the char function, which does the padding 
for you:

>> z = ch a r(’ These’ , ’ l in e s  a re ’ , ’ o f varying le n g th s .’ ) 
z =
These 
lin es  are
of varying lengths.
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26.2 Comparing Strings
The = = test is not a good idea with strings because it compares the 
ASCII values of the strings, which must have the same length; if the 
strings are not the same length, you get an error. The strcmp command 
avoids this difficulty:

>> c 1 = ’ b lond ’ ;
>> c2 = ’ brown’ ;
>> c3 = ’ blonde’ ;
>> c 1 = = c2 
ans =

1 0  1 0  0 
>> c2 = = c3
??? Array dimensions must match fo r  binary array op.

>> strcm p(c2,c3) 
ans =

0

26.3 String Manipulations
Typing help strfun displays the full set of commands for working with 
strings. A common example is to identify words within a string by 
searching for whitespace (blank characters, tabs, etc.):

>> s tr  = ’ I go now’ ;
>> issp a ce (s tr ) 
ans =

0 1 0 0 1 0 0 0

You can also search for letters:

>> is le t t e r ( s t r )  
ans =

1 0 1 1 0 1 1 1

To find where a shorter string occurs within a longer one, use the 
fin d str  command:

>> pos = f in d s t r ( s t r , ’ g o ’ ) 
pos =

3
>> pos = f in d s t r ( s t r , ’ o ’ ) 
pos =

4 7

To replace one string with another, use the strrep command:
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>> s t r r e p (s t r , ’ g o ’ , ’ am’ ) 
ans =
I am now

The replacement text need not be the same length as the text it is 
replacing:

>> s t r r e p (s t r , ’ g o ’ , ’ eat s n a ils ’ ) 
ans =
I eat sn a ils now

And the text to be replaced can occur more than once:

>> s t r r e p (s t r , ’ o ’ , ’ e ’ ) 
ans =
I ge new

To delete characters from a string, replace them with an empty string 
’ ’ or [] :

>> s t r r e p (s t r , ’ o ’ , ’ ’ ) 
ans =
I g nw

26.4 Converting Numbers to Strings
The functions num2str  and in t2s tr  are useful for general purpose con­
version of numbers to strings. The latter is for integers:

>> fo r  i  = 1:3
d is p ( [ ’ Doing loop number ’ in t2 s t r ( i )  ’ o f 3 ’ ] )  
end
Doing loop number 1 of 3 
Doing loop number 2 of 3 
Doing loop number 3 of 3

And num2s tr  is for everything else:

>> fo r  i  = 1:3
d is p ( [ ’ Case ’ in t2 s t r ( i )  ’ , sin  = ’ n u m 2 str(sq rt(i))]) 
end
Case 1, sin  = 1 
Case 2, sin  = 1.4142 
Case 3, sin  = 1.7321

The inputs can be vectors or matrices:
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>> v = s in ( (1 :3 )* p i /6 )  
v =

0.5000 0.8660 1.0000 
>> num2s tr (v ) 
ans =
0. 5 0. 86603 1 
>> q = resh ape(1 :9 ,3 ,3 )
q =

1 4  7
2 5 8
3 6 9

>> in t2str (q ) 
ans =
1 4  7
2 5 8
3 6 9
>> size(ans) 
ans =

3 7

You can tell num2str  how many digits to display by giving it a second 
parameter:

>> num2s t r ( p i ,2 ) 
ans =
3.1
>> num2str(pi,15) 
ans =
3.14159265358979

The second parameter of num2str  can also specify the format by means 
of C language conversions. These involve the percent character, width 
and precision fields, and conversion characters: d, f, e, etc. (see table 
below). The basic idea is to use a string of characters beginning with % 
to control the formatting. For example, to output five decimal places in 
a field of 12 characters with exponential notation, use:

>> num 2str(p i,’ %12.5e’ ) 
ans =
3.14159e+00

>> n u m 2str(-p i,’ %12.5e’ ) 
ans =
-3.14159e+00

>> num2str(pi*1e100,’ %12.5e’ )
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ans =
3.14159e+100

Some additional text can be mixed with the numerical conversion, for 
example:

>> num 2str(p i,’ Pi has a value of %12.5e, or thereabouts.’ ) 
ans =
Pi has a value of 3.14159e+00, or thereabouts.

The online help9 entry for the sp rin tf command gives a full description 
of how to use the various formatting options. (The sp rin tf command 
is the MATLAB version of the C language command of the same name.) 
The following table is taken from the online help.

%c Single character
%d Decimal notation (signed)
%e Exponential notation (using a lowercase e as in 3.1415e+00)
%E Exponential notation (using an uppercase E as in 3.1415E+00)
%f Fixed-point notation
%g The more compact of %e or %f. Insignificant zeros do not print.
%G Same as %g, but using an uppercase E
%o Octal notation (unsigned)
%s String of characters
%u Decimal notation (unsigned)
%x Hexadecimal notation (using lowercase letters a -f)
%X Hexadecimal notation (using uppercase letters A-F)

To further control the formatting, other characters can be inserted 
into the conversion specifier between the % and the conversion character:

Character What it does

A minus sign (-) Left-justifies the converted argument in its 
field.

A plus sign ( +) Always prints a sign character (+  or —).
Zero (0) Pads with zeros rather than spaces.
Digits (field width) Specifies the minimum number of digits to be 

printed.
Digits (precision) Specifies the number of digits to be printed to 

the right of the decimal point.

9Type helpdesk at the command line to get hypertext help.
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Examples:
s p r in t f ( ’ %0.5g’ ,(1 + s q r t (5 )) /2 ) 1.618
s p r in t f ( ’ %0.5g’ ,1 /eps) 4.5036e+15
s p r in t f ( ’ % 10.3f’ , -p i ) -3.142
s p r in t f ( ’ % 10.3f’ ,-pi*1000000) -3141592.654
s p r in t f ( ’ % 10.3f’ ,-pi/1000000) - 0.000
s p r in t f ( ’ %d’ ,round(p i)) 3
s p r in t f ( ’ %s’ , ’ h e l lo ’ ) h e llo
s p r in t f ( ’ The array is  %dx%d.’ ,2 ,3 ) The array is  2x3.
s p r in t f ( ’ \n’ ) Line termination char-

acter on all platforms

These functions are “vectorised” , meaning that if you input a non­
scalar, then all the elements will be converted:

>> s tr  = num 2str(rand(3,3),6) 
str  =
0.502813 0.304617 0.682223 
0.709471 0.189654 0.302764 
0.428892 0.193431 0.541674 
>> s iz e (s t r )  
ans =

3 32

Exercise 9 Explore the operation of the following m-file that 
breaks a sentence up into a list o f words.

function all_words = words(input_string) 
remainder = input_string; 
all_words = ’ ’ ; 
while any(remainder)

[chopped,remainder] = strtok(remainder); 
all_words = strvcat(all_words,chopped); 

end

Why do you think strvcat is used instead of char? (Answer on 
page 188.)

26.5 Using Strings as Commands
The eval Function

The eval function takes a string input and executes it as a MATLAB 
command. For example:

>> s tr  = ’ v = 1 :5 ’ 
str  = 
v = 1:5
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The e v a l(s tr )  statement acts just as if we had typed v = 1:5 at the 
command line. To suppress the output we need to add a semicolon 
character to the end of the string:

>> s tr  = ’ v = 1 :5 ; ’ 
s tr  = 
v = 1:5;
>> ev a l(s tr )

The eval command now produces no output, while still defining the 
variable v. To take another example, let us suppose we want to define a 
set of vectors vi =  1, 2 , . . . i  for i =  1, 2 . . .  10. At the command line we 
could type:

v1 = 1 ; 
v2 = 1 :2 ; 
v3 = 1:3;

and so on. The eval command provides a neat solution:

>> clear 
>> fo r  i  = 1:10

str  = [ ’ v ’ in t2s t r ( i )  ’ = 1 : i ; ’ ] ;  
e v a l(s tr ) 

end

This has generated the variables v1, . . . ,  v10, with the appropriate ele-

>> ev a l(s tr )
v =

1 2 3 4 5

ments:

>> whos 
Name 
i

Size
1x1

Bytes
8

Class
double array

str 1x10 20 char array
v1 1x1 8 double array
v10 1x10 80 double array
v2 1x2 16 double array
v3 1x3 24 double array
v4 1x4 32 double array
v5 1x5 40 double array
v6 1x6 48 double array
v7 1x7 56 double array
v8 1x8 64 double array
v9 1x9 72 double array

Grand to ta l is  66 elements using 468 bytes
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1 2 3 4 5 6 

The feva l Function

The feva l command is like eval, except that it is used for evaluating 
named functions. An example would be:

1 ^
str  = ’ s in ’ ; 
t  = lin sp a ce (0 , 2* p i) ; 
q = f e v a l ( s t r ,t ) ;  
p l t ( t ,q )

>> v6
v6 =

If s tr  is a string containing the name of a function, then y = 
fe v a l(s t r ,x )  evaluates that function for the input argument x. 
Another example defines data for plotting by looping over the trigono­
metric functions sin, cos, and tan contained within a single matrix of 
characters (the command zeroaxes is part of the companion software 
to this book):

str  = [ ’ s in ’ ; ’ c o s ’ ; ’ tan ’ ] ;  
fo r  i  = 1:3

q ( i , : )  = f e v a l ( s t r ( i , : ) , t ) ;
end

p l t ( t ,q )
a x is ( [0  2*pi -6  6] )  
zeroaxes

Inline O bjects

Inline objects allow you to store a function as a string and use it much 
as you would write it symbolically. This, for example, is how to define 
the parabola f  (x) =  (x +  1)(x — 1):

>> f  = in l in e ( ’ (x + 1) .* ( x  -  1) ’ ) 
f  =

In line function :
f (x )  = (x + 1) .* (x  -  1)

We can now evaluate f  (3) by typing:

>> f (3 )  
ans =

8
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Inline objects, like every other MATLAB construction, is vectorised:

>> f (0 :4 )  
ans =

-1 0 3 8 15

They can be used in place of other variables:

x = l in s p a ce (-4 ,4 ); 
c l f
p l t ( x , f ( x ) )  
hold on
p l t ( x , f ( x - 2 ) , ’ — ’ ) 
zeroaxes

Exercise 10 Create a function called fu n plot that takes the 
name of a function and a range o f x-values and produces a plot 
over that range. For example, the following input should produce 
this plot:

1
OB 

0.6
fu n p lo t  ( ’ s i n ’ , [0 p i ] )

0.2

°0 1 2 3 4

The function should work whether you type f u n p l o t ( ’ s i n ’ , [ 0  
p i ] )  or f u n p l o t ( ’ s i n ( x ) ’ , [ 0  p i ] ) .  Hint: What are the ASCII 
values of (  and ) ?  (Answer on page 188.)

27 Cell Arrays
Cell arrays are arrays of different things. The “things” can be scalars, 
vectors, matrices, strings (of different length), structures (see section on 
structures), or other cell arrays. For example, when we looked at string 
matrices we saw that we had to pad the rows with blanks to make them 
all the same length. Using a cell array, we can create a “ragged-right 
matrix” :

t  = { ’ O sacred receptacle  of my j o y s , ’ ;
’ Sweet c e l l  o f v irtue and n o b i l i t y , ’ ;
’ How many sons of mine hast thou in s t o r e , ’ ;
’ That thou w ilt  never render to me m ore!’ }

The curly brackets {  and }  denote cells. The cell we created above is a
4 x 1 cell array:
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>> whos
Name Size Bytes Class
t  4x1 658 c e l l  array

Grand to ta l  is  149 elements using 658 bytes 
>> t ( 1) 
ans =

’ O sacred receptacle  of my j o y s , ’
>> t { 1}  
ans =
O sacred receptacle  of my jo y s ,
>> t { 1} ( 1) 
ans =
O
>> t { 1} ( 1 : 8 ) 
ans =
O sacred

Let us add another element to the cell array by putting a 3 x 3 matrix 
in the first row of the second column:

>> t {1 ,2 }  = sp ira l(3 ) 
t  =

[1x31 char] [3x3 double]
[1x34 char] []
[1x41 char] []
[1x39 char] []

MATLAB has filled the rest of the cells in column 2 with empty cells. We 
used the curly brackets t { 1 ,2}  to refer to that particular cell. If we had 
used ordinary round brackets, we would have produced an error:

>> t (1 ,2 )  = sp ira l(3 )
??? Conversion to c e l l  from double is  not p ossib le .

This is because there is a difference between indexing cells and indexing 
their contents. For example, to extract the word “virtue” from the second 
line of the quotation in the first column, we need to access the cell { 2 , 1}, 
then get characters 15 to 20 from that cell’s contents :

>> t {2 ,1 }(1 5 :2 0 )
ans =
virtue

When assigning a cell you can use the curly brackets on either the left or 
right hand side of the equals sign, but you must put them somewhere, to 
tell MATLAB that you want this to be a cell. Otherwise, MATLAB thinks 
you are defining a mathematical matrix and gives you an error to the 
effect that the things on each side of the equal sign have different sizes. 
For example, we can type:
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>> a (1 ,1 ) = { [1  2 3 ] }  
a =

[1x3 double]

or

>> clear a 
>> a {1 ,1 } = [ 1 2  3] 
a =

[1x3 double]

but not

>> clear a 
>> a (1 ,1 ) = [ 1 2  3]
??? In an assignment A(matrix,matrix) = B, the number of 
columns in B and the number o f elements in the A column 
index matrix must be the same.

Cell arrays can contain other cell arrays. For example:

>> t  = { ’ Fred F lin tston e ’ { [ 1 2  3] , s p ir a l (3 ) } }  
t  =

’ Fred F lin tston e ’ {1x2 c e l l }

MATLAB’s default display of a cell array is in summary form, as in 
the above examples. You can display the details using ce lld isp :

>> c e l ld is p (t )  
t { 1}  =
Fred Flintstone 
t { 2} { 1}  =

1 2  3 
t { 2} { 2}  =

7 8 9 
6 1 2
5 4 3

Or, you can get a graphical summary using c e llp lo t :

c e l lp lo t ( t )

The left-hand box is the first cell, containing the string ’ Fred 
F lin tston e ’ . The right-hand box is the second cell containing a 1 x 2 cell 
array whose cells contain the vector [1 2 3] and the matrix sp ira l(3 ), 
respectively.
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To index nested cell arrays, use as many sets of curly brackets {  and 
}  as needed to get you to the level of nesting required, then use round 
brackets ( and ) to access their contents. For example:

>> t t  = { t  { ’ Barney Rubble’ { [ - 1  1] , ’ Bedrock’ } } }  
t t  =

{ 1x2 c e l l }
{ 1x2 c e l l }

>> c e l lp lo t ( t t )

>> t t { 2}  
ans =

’ Barney Rubble’ {1x2 c e l l }
>> t t { 2} { 2}  
ans =

[1x2 double] ’ Bedrock’
>> t t { 2} { 2} { 1}  
ans =

-1 1 
>> t t { 2} { 2} { 2}  
ans =
Bedrock 
>> t t { 2} { 2} { 1} { 2}
??? C ell contents reference from a n on -ce ll array ob je ct .

>> t t { 2} { 2} { 1} ( 2 ) 
ans =

1

Exercise 11 Do you know where the word “s tu ck ” has come 
from in the following example (answer on page 189):
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>> t = { ’ help’ spiral(3) ; eye(2) ’ I ’ ’ m stuck’ };
>> tt  = {t  t ; t ’ f l ip lr ( t ) } ;
>> tt{2 ,2 }{2 ,1 }(5 :9 )
ans =
stuck

28 Structures
Structures are arrays whose names have dot-separated parts. They can 
be used to store information of different kinds together in a hierarchical 
structure. Let us do a simple example:

>> staff.name = ’ John Smith’ 
s ta f f  =

name: ’ John Smith’
>> s ta ff .a g e  = 43 
s ta f f  =

name: ’ John Smith’ 
age: 43

>> s ta ff .fa v o u r ite s  = [1 42 37] 
s ta f f  =

name: ’ John Smith’ 
age: 43 

favou rites : [1 42 37]

We have created a structure called s ta ff  which is of size 1 x 1:

>> whos
Name Size Bytes Class
s ta ff  1x1 424 struct array

The s ta ff  structure has three fields: name, age, and favourites:

>> s ta ff  
s ta f f  =

name: ’ John Smith’ 
age: 43 

favou rites : [1 42 37]

To add another staff member’s data to this structure, add subscripts to 
define a second element:
staff(2).nam e = ’ Jane Smythe’ ; 
s ta f f (2 ) .a g e  = 30;
s ta ff (2 ) .fa v o u r ite s  = [pi eps realmax realmin NaN In f] ;

The sizes of the fields do not have to be the same for each element of the 
structure. For example, Jane Smythe’s favourite vector contains more 
elements than John Smith’s.
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In this example we create a structure using the struct function. We 
create a meteorological observation database as follows:

meteo = s t r u c t ( ’ S it e ’ , { ’ Adelaide’ , ’ Sydney’ } , . . .
’ Time’ ,{2 .3  4 } , . . .
’ Temperature’ ,{24 1 9 } , . . .
’ Pressure’ ,{1023 1015})

This structure consists of temperature and pressure measurements at 
two different times at Sydney and Adelaide. The Adelaide data was 
taken at 2:30:

>> m eteo(1) 
ans =

S ite : ’ Adelaide’
Time: 2.3000

Temperature: 24
Pressure: 1023

and the Sydney data was taken at 4:00:

>> meteo(2 ) 
ans =

S ite : ’ Sydney’
Time: 4 

Temperature: 19 
Pressure: 1015

Let us suppose we have some new Sydney data taken at 8:00 and 11:00. 
We add this as follows:

>> m eteo(2).Tim e(2:3) = [8 11];
>> m eteo(2).Temperature(2:3) = [16.5 15.3] 
meteo =
1x2 struct array with f ie ld s :

Site
Time
Temperature 
Pressure 

>> meteo(2).Temperature 
ans =

19.0000 16.5000 15.3000

The pressure meter broke so we do not have new pressure data for these 
two new times. We could leave the pressure field with one entry, but 
it might be better to indicate the absence of data more explicitly with 
NaNs:

28.1 Example: Meteorological Database
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>> m eteo(2).Pressure(2 :3) = [NaN NaN];
>> m eteo(2).Pressure 
ans =

1015 NaN NaN

Suppose now that we have discovered that all our pressure readings were 
wrong; we need to delete the pressure field altogether from the structure:

>> meteo = rm field (m eteo,’ Pressure’ ) 
meteo =
1x2 struct array with f ie ld s :

S ite
Time
Temperature

Now we want to add humidity measurements at the two sites. Suppose 
Adelaide’s humidity was 69% and Sydney’s was 86%, 80%, and 76% at 
the three different times:

[meteo.humidity] = d ea l(69 ,[86  80 7 6 ]);
>> m eteo(1) 
ans =

S ite : ’ Adelaide’
Time: 2.3000 

Temperature: 24 
humidity: 69 

>> meteo(2 ) 
ans =

S ite : ’ Sydney’
Time: [4 8 11]

Temperature: [19 16.5000 15.3000] 
humidity: [86 80 76]

(The deal command copies a list of inputs to a list of outputs.)
To do operations on field elements, just treat them as any other 

MATLAB array:

>> meteo(2).Temperature 
ans =

19.0000 16.5000 15.3000 
>> mean(meteo(2).Temperature) 
ans =

16.9333

The temperature measurements at both sites in the structure are 
accessed by typing:
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>> meteo.Temperature 
ans =

24
ans =

19.0000 16.5000 15.3000

We can capture this output in a cell array as follows:

>> q = {meteo.Temperature}
q =

[24] [1x3 double]

Or, we can string them together in a single array by enclosing the 
meteo.Temperature expression in square brackets:

>> q = [meteo.Temperature]
q =

24.0000 19.0000 16.5000 15.3000

In this way you can operate on all elements of a field at once. For 
example, to calculate the mean of all the temperature measurements:

>> mean([meteo.Temperature]) 
ans =

18.7000

28.2 Example: Capturing the List of Variables
Typing whos gives you a list of the variables present in the workspace, 
along with their size, the number of bytes they occupy, and their class. 
For example, create the following variables:

clear 
a = 1 ;
name = ’ Jane Smythe’ ; 
vect = [ 1 2  3 ];
a ce ll  = { 1 2 ; ’ b ig ’ ’ l i t t l e ’ } ;
meteo = s t r u c t ( ’ S it e ’ , { ’ Adelaide’ , ’ Sydney’ } ) ;

The whos command produces the following list:

>> whos
Name Size Bytes Class
a 1x1 8 double array
a ce ll 2x2 402 c e l l  array
meteo 1x2 244 struct array
name 1x11 22 char array
vect 1x3 24 double array

Grand to ta l is  58 elements using 1396 bytes
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We can capture this list by giving whos an output variable:

>> v a r lis t  = whos 
v a r lis t  =
5x1 struct array with f ie ld s :  

name 
size 
bytes 
class

The average size of the variables is

>> m ean ([varlist.b ytes ]) 
ans =

140

A cell array of variable names can be generated by:

>> names = {varlist.nam e} 
names =

’ a ’ ’ a c e l l ’ ’ meteo’ ’ name’ ’ v e c t ’

Similar structures are generated by giving output arguments to what 
and dir.

29 Multidimensional Arrays
Multidimensional matrices are natural extensions of the normal two­
dimensional matrices for cases where the data represent more than two 
dimensions. Examples are

• Medical tomography, where three-dimensional volumetric data are 
built up from a series of two-dimensional images;

• Temperature measurements taken at a three-dimensional grid in a 
room;

• Temperature measurements taken at a three-dimensional grid in 
a room and at a sequence of times, leading to a four-dimensional 
data set;

• Red, green and blue components of a two-dimensional image, an 
M  x  N  x  3 matrix; and

• Acoustic measurements of sound spectra as a function of frequency, 
direction of arrival, and time (sonar).

Let us get the hang of things by generating a 3 x  3 x  3 matrix:
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>> a 
a =

[1 2 3 ;4  5 6 ; 7 8 9]

1 2 3
4 5 6
7 8 9

>> a ( : , : 2 ) = a*2
a ( : , : , 1) =

1 2 3
4 5 6
7 8 9

a ( : , : , 2) =
2 4 6
8 10 12

14 16 18
>> a ( : , : 3) = eye(3)
a ( : , : , 1) =

1 2 3
4 5 6
7 8 9

a ( : , : , 2) =
2 4 6
8 10 12

14 16 18
a ( : , : , 3 ) =

1 0 0
0 1 0
0 0 1

Multidimensional arrays must be full N  -rectangles; that is, they must 
have the same number of elements in parallel dimensions: all rows must 
have the same number of columns, all “pages” must have the same num­
ber of rows and columns, etc.

If you assign a single value to a matrix, MATLAB expands the defini­
tion as you would expect:

>> a ( : , : 3) = 3
a ( : , : , 1) =

1 2 3
4 5 6
7 8 9

a ( : , : , 2) =
2 4 6
8 10 12

14 16 18
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a ( : , : , 3 )  =
3 3 3
3 3 3
3 3 3

Indexing for multidimensional arrays works in the same way as two­
dimensional arrays;
>> a (2 ,: , 1)
ans =

4 5 6
>> a (2 ,: ,2)
ans =

8 10 12
>> a (2 ,: , : )

sna 1) =
4 5 6

a n s ( : , : ,2) =
8 10 12

=)3sna

3 3 3
Data can be removed
matrix:
>> a ( : , : ,2) = []
a ( : , : , 1) =

1 2 3
4 5 6
7 8 9

a ( : , : , 2) =
3 3 3
3 3 3
3 3 3

Elements can be columnarly extracted from multidimensional arrays in 
the same way as they are from two-dimensional arrays:
>> a ( : ) ’ 
ans =

Columns 1 through 12
1 4 7 2 5 8 3 6 9 3 3 3  

Columns 13 through 18
3 3 3 3 3 3

29.1 Generating Multidimensional Grids
The function meshgrid can be used to create matrices representing 
evenly-spaced grids of points.
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>> [x ,y] = m eshgrid(1:5,1:3) 
x =

1 2 3 4 5
1 2 3 4 5
1 2 3 4 5

1 1 1 1 1
2 2 2 2 2
3 3 3 3 3

>> c l f
>> p l t ( x , y , ’ o ’ )
>> a x is ([0 .9  5 0.9 3 ])

Such matrices can be used, for example, as variables in functions of x  
and y:

[x ,y] = m esh g rid (lin sp a ce (0 ,5 ),lin sp a ce (-1 0 ,1 0 )); 
r = s q r t (x ."2 + y . " 2) ; 
con tou r(x ,y ,r ) 
axis equal
a x is([-10 10 -10 10] )

(More detail on the axis command can be found on page 119.) The 
meshgrid function can be used to produce three-dimensional grids, 
returning three-dimensional arrays that can be used in an analogous 
manner. To go to more than three dimensions, you can use the function 
ndgrid. The following example of a three-dimensional volume visualisa­
tion is taken from the help entry for ndgrid:

[x1,x2,x3] = n d g r id (-2 :.2 :2 , -2 : .2 5 :2 ,  -2 : .1 6 :2 ) ;
z = x2 .* e x p (-x l."2  -  x2 ."2  -  x 3 ."2 );

s l i c e (x 2 ,x 1 ,x 3 ,z , [ -1 .2  .8] , [ ] ,  - . 2)  
v iew (-24,28)

Exercise 12 What is the difference between the outputs of 
meshgrid and ndgrid when generating grid matrices of less than 
four dimensions? Why this difference? (Answer on page 189.)
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Many matrix operators work with multidimensional arrays. For example, 
the columnar sum of our 3 x 3 x 2 matrix, a, is

>> a
a ( : , : , 1) =

1 2  3
4 5 6 
7 8 9

a ( : , : , 2) =
3 3 3 
3 3 3 
3 3 3 

>> sum(a) 
a n s ( : , : ,1) =

12 15 18 
a n s ( : , : ,2) =

9 9 9

If you look carefully, you will see that the result of the sum is a 1 x 3 x 2 
matrix:

>> size(sum (a)) 
ans =

1 3  2
This is not the same as a 3 x  2 matrix. If you want the result to be 
a 3 x 2 matrix, you can use the squeeze function, which gets rid of 
singleton dimensions:

>> squeeze(sum(a)) 
ans =

12 9 
15 9 
18 9

MATLAB does not do an automatic squeeze whenever the result has sin­
gleton dimensions because there are times when you need the singleton 
dimension to add more data.

If you want to sum over other dimensions than the rows, you give a 
second parameter to the sum function specifying the dimension you want 
to sum over. For example, to sum over columns:

>> sum(a,2) 
a n s ( : , : ,1) =

6
15
24

29.2 Operations with Multidimensional Arrays
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a n s ( : , : ,2) =
9
9
9

And to sum over “pages” :

>> sum(a,3) 
ans =

4 5 6
7 8 9
10 11 12

Note that sum(a) is equal to sum(a,1). The sum over “pages” gives a 
3 x 3 matrix, which is the same as a 3 x  3 x 1 matrix.

The sum function and other functions that operate on vectors, like 
mean, d i f f , max, and so on, work as you might expect them to for multi­
dimensional arrays. By default they usually operate on the first non­
singleton dimension of the array. Many functions that operate on two­
dimensional matrices do not have such straightforward multidimensional 
extensions. For example, if we try to take the transpose of our matrix:

>> a ’
??? Error using = = > ’
Transpose on ND array is  not defined.

The transpose operation (exchanging rows and columns) makes no sense 
here because it is insufficiently specified. (If you want to rearrange a 
multidimensional array’s dimensional ordering, use the permute func­
tion; in our example, try permute(a,[2 1 3 ])) . Another example is 
the eigenvalue operator eig, which has no mathematical meaning for 
multidimensional arrays. In fact, none of the functions that appear if 
you type help matfun has a reasonable meaning for multidimensional 
matrices. Nor do the matrix operators *, ", \ or / .

29.3 RGB Images 
Introduction  to R G B  Images

RGB images in MATLAB are M  x N  x  3 matrices consisting of red, green, 
and blue intensity maps. When such a three-dimensional matrix is used 
as an input to the image command, MATLAB adds the red, green, and 
blue intensities to give the right colours on the screen. To illustrate the 
idea, our first example reproduces three overlapped discs of red, green, 
and blue light to give yellow, cyan, magenta, and white overlaps. We 
generate matrices of (x,y)  points covering the plane from — 2 to 2:

[x ,y] = m eshgrid(linspace(-2 ,2 ,200) ) ;
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We define a red disc by setting all the pixels that are within a circle to 
one; all the other pixels are zero. The circle is defined by the equation:

(x -  xo)2 +  (y -  yo)2 =  R2 ,

where (x0, y0) is the centre of the circle, and R  is the radius. We set the 
centre of the red disc to (-0 .4 , -0 .4 ) and the radius to 1.0:

R = 1.0;
r = z e r o s (s iz e (x ) ) ;
rind = fin d ((x  + 0 .4 ) ." 2  + (y + 0 .4 ) ." 2  < R"2); 
r (r in d ) = 1;

The green and blue discs are defined in the same way, just shifting the 
centre of the circle in each case:

g = z e r o s (s iz e (x ) ) ;
gind = fin d ((x  -  0 .4 ) ." 2  + (y + 0 .4 ) ." 2  < R"2); 
g (gind) = 1; 
b = z e r o s (s iz e (x ) ) ;
bind = fin d (x ."2  + (y -  0 .4 ) ." 2  < R"2); 
b(bind) = 1;

Now we concatenate the matrices r, g, and b into one 200 x 200 x 3 
matrix called rgb:

rgb = c a t (3 ,r ,g ,b ) ;

We use rgb as an input to imagesc, which interprets the intensities in 
the range 0.0 to 1.0:

imagesc(rgb) 
axis equal o f f

On your screen you can see these as overlapped discs of coloured light.

Exercise 13 Redefine the red, green, and blue discs so that 
instead of a circular disc of light at uniform maximum intensity, 
the intensity increases within each circle from zero at the centre 
to one at the edge; outside the circles the intensity should be zero. 
Create the new overlapped image. (Answer on page 189.)
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An A pplication  o f  R G B  Images

To see how RGB images can be used, we look at how an image can be 
filtered. An image of the Cat’s Eye Nebula, which is stored on disk as a 
JPEG image, can be read into matlab using the imread command:
>> q = imread(’ ngc6543a.jpg’ ) ;
>> s ize (q ) 
ans =

650 600 3
The result is a 650 x 600 x 3 matrix, where the “pages” represent respec­
tive red, green, and blue intensities. We can display the image by typing:

image(q) 
axis image o f f

NGC 6543 HST • WFPC2

(See page 120 for a description of axis image.) On your screen this 
appears as a colour image. Suppose we want to filter out the red com­
ponent. We do this by setting the first “page” , the red component of 
the image, equal to zero. First we take a copy of the original so we can 
later plot the two images side by side:

q_orig ina l = q;
q ( : , : , 1) = 0 ;
subp lot(221) 
im age(q_original) 
axis image o f f  
subp lot(222) 
image(q) 
axis image o f f

29.4 Example:
Let us look at some sonar data consisting of sound spectral power levels 
measured as a function of frequency, direction of arrival, and time. Load 
this data from the file sonar.mat:
>> load sonar

Sonar
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>> whos
Name Size Bytes Class
data 128x103x9 949248 double array
f 1x103 824 double array
t 1x9 72 double array
th 1x128 1024 double array

The data consists of spectra measured at 103 frequencies, 128 arrival 
angles, and 9 time steps. Let us plot the fifth time sample:

colorm ap(flipud(gray)) 
im a g e s c ( f ,th ,d a ta ( : , : ,5 ) )  
axis xy 
colorbar
x la b e l( ’ Frequency, Hz’ ) 
y la b e l( ’ A rrival angle, degrees’ )

Darker colours correspond to higher intensities. You can see two strong 
sources at an angle of zero degrees and at frequencies of 85 and 170 Hz. 
The fact that 170 =  2 x 85 might lead us to suspect that the 170 Hz 
source is just the first harmonic of the 85 Hz source. Let us look at all of 
the time samples together. This time we’ll cut off the lower intensities 
by setting the minimum colour to correspond to an intensity of 5 (this 
is the call to caxis in the following code). We also turn off the y-axis 
tick labels for all but the first plot, and we make the tick marks point 
outwards:10

fo r  i  = 1:9
s u b p lo t (3 ,9 ,i ) ,  im a g e s c ( f ,t h ,d a t a ( : , : , i ) ) ,  axis xy
s e t (g c a , ’ t i c k d ir ’ , ’ ou t ’ )
i f  i  == 1

y la b e l( ’ A rrival angle, degrees’ ) 
x la b e l( ’ Frequency, Hz’ ) 

end
i f  i> 1 , s e t (g c a , ’ y t ic k la b e l ’ , [ ] ) ,  end 
ca x is ([5  I n f ] ) ,  t i t l e ( [ ’ i_ t  = ’ n u m 2 str (t(i))])  

end

10See Handle Graphics Sections 23 and 31 (pages 63 and 107).
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You can see that over the 8 time steps, the arrival direction of the sound 
has changed from —45 degrees to 30 degrees, and the two sources always 
come from the same direction, strengthening our notion that the two are 
in fact harmonics of the same source. Let us look at the time-frequency 
and time-angle distributions of this data. The above output of the whos 
command shows that the row index of data corresponds to the different 
angles, so if we calculate the mean over the rows we will be left with a 
time-frequency distribution:

>> tim e_freq = mean(data);
>> s ize(tim e_freq ) 
ans =

1 103 9

We are left with a 1 x 103 x 9 matrix of averages over the 128 arrival 
angles. To plot the results we have to squeeze this to a two-dimensional
103 9 matrix:

tim e_freq = squeeze(mean(data));
im agesc(t,f,tim e_freq )
axis xy
x la b e l( ’ Time, s ’ ) 
y la b e l( ’ Frequency, Hz’ )

The frequency varies slightly with time. By averaging the rows of the 
data matrix we can get a similar plot of the variation of arrival angle 
with time:

time_angle = squeeze(mean(data,2) ) ;
im agesc(t,th ,tim e_angle)
axis xy
x la b e l( ’ Time, s ’ ) 
y la b e l( ’ Arrival angle, degrees’ )

29.5 Multidimensional Cell Arrays
Multidimensional cell arrays are just like ordinary multidimensional 
arrays, except that the cells can contain not only numbers, but vectors,
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matrices, strings, structures, or other cell arrays. For example, to create 
a 2 x 2 x 2 cell array we can type:

a = { [1  2] ’ h e l lo ’ ; 3 [5 ;6 ] } ;  
b = {s p ir a l(3 )  eye(2) ; ’ good’ ’ bad’ } ;  
c = c a t (3 ,a ,b ) ;

The cat function concatenates arrays a and b along dimension number 3. 
To visualize this array we can use c e lld is p  and c e l lp lo t  as we did 
before. For example:

The contents of the cells are only indicated for the front “page” of the 
multidimensional cell array. To see other pages you can include sub­
scripts into the cell array:

c e l l p l o t ( c ( : , : ,2) )

To access cells use curly bracket indexing and to access cell contents use 
round bracket indexing:

>> c { 1 ,2 ,2}  
ans =

1 0
0 1 

>> c { 1 ,2 ,2} ( 1 , : )  
ans =

1 0

29.6 Multidimensional Structures
Multidimensional structures have dot-separated field names, but they 
are accessed using an arbitrary number of subscripts. For example,

>> sta ff(2 ,1 ,2 ).n am e = ’ Joe B loggs’ 
s ta f f  =
2x1x2 struct array with f ie ld s :
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name
>> s ta ff(2 ,1 ,2 ).n a m e(5 :9 ) 
ans =
Blogg

30 Saving and Loading Data

30.1 M ATLAB Format
MATLAB’s internal standard for saving and loading data is the mat-file. 
The save command saves all the variables in the workspace to a disk file 
called matlab.mat:

>> a = 1 ;
>> b = 1 : 10;
>> s tr  = ’ h e l lo ’ ;
>> save
Saving to : matlab.mat

To save in a file with a different name, type: 

save saved_data

To save only some of the variables, add their names: 

save saved_data a b

Mat-files are binary files whose format is described fully in the MAT­
LAB documentation. Such a file is fully portable to MATLAB running on 
another kind of computer. Information about the kind of computer that 
MATLAB was running on when it saved the data is stored along with the 
data. When MATLAB reads in a mat-file, it checks the type of computer 
that the data were saved on and automatically performs any required 
manipulations (byte swapping, for example).

To load data from mat-files use the load command:

>> clear 
>> a = 1 ;
>> b = 1 : 10;
>> s tr  = ’ h e l lo ’ ;
>> save saved_data 
>> clear 
>> whos
>> load saved_data
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>> whos 
Name 
a

Size
1x1
1x10
1x5

Bytes Class
8 double array

80 double array
10 char array

b
str

Grand to ta l  is  16 elements using 98 bytes

>> a 
a =

1
>> b 
b =

1 2 3 4 5 6 7 8 9  10 
>> str  
str  = 
h e llo

To save the data as readable text use the -a s c i i  switch: 

save saved_data_text -a s c i i

In this case the ‘ .mat’ extension is not appended to the file name. The 
ASCII format is best kept for simple cases where your data is in the form 
of a matrix (or vector or scalar). For example, in this case we have saved 
the variables a, b, and c in a file that has the following contents:

1 .0000000e+00
1.0000000e+00 2.0000000e+00 3.0000000e+00 . . .  
1.0400000e+02 1.0100000e+02 1.0800000e+02 . . .

The first line is the variable a, the second line is the variable 
b = [12  . . .  10], and the third line is the string s tr  = ’ h e l lo ’ con­
verted to its corresponding A s cII  values:

>> dou ble(str) 
ans =

104 101 108 108 111

If you try to load this data using the load command you will get an error 
message because the lines have different numbers of values. To load an 
A s cII  file like this, you’ll have to write your own loading function using 
the functions g e tl etc. described in the next section. If you save an 
ASCII matrix, however, you can load it in again without difficulty:

>> clear
>> q = sp ira l(3 )
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q =
7 8 9
6 1 2
5 4 3

>> save saved_data_text -a s c i i  
>> clear
>> load saved_data_text
>> whos 

Name
saved_data_text

Size
3x3

Bytes Class
72 double array

Grand to ta l  is  9 elements using 72 bytes

>> saved_data_text 
saved_data_text =

7 8 9 
6 1 2
5 4 3

The data is loaded as a variable with the same name as the file name 
(no information about variable names are stored in the file).

You may be presented with some data written by another piece of soft­
ware that you want to load into MATLAB. In this case you have the 
following options:

1. You can write a translation program in another language (C or 
FORTRAN for example) that reads in the data and then writes it to 
another file that can be read into MATLAB—that is, a mat-file.

2. You can write a MATLAB-callable program (mex-file) that reads 
in the data and returns appropriate variables in the MATLAB 
workspace. This is a good option if you already have code to read 
in the data.

3. You can use one of the functions for reading in standard file formats 
for images, sounds, spreadsheets,11 and so on. These are:

dlmread Read ASCII data file.
wk1read Read spreadsheet (WK1) file.
imread Read image from graphics file (JPEG, TIFF, etc.).

x1For Lotus123 spreadsheets you can use the functions wklread and wklwrite. If 
you use Microsoft Excel, the MathWorks’ Excel Link product allows direct commu­
nication between Excel and MATLAB. For example, Excel can be used as a front-end 
for MATLAB; you can call MATLAB functions or graphics routines directly from Excel, 
or you can access your Excel spreadsheet data directly from MATLAB.

30.2 Other Formats
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auread Read SUN (‘ .au’) sound file.
wavread Read Microsoft WAVE (‘ .wav’) sound file.
readsnd Read SND resources and files (Macintosh only).

4. You can write an m-file to read the data, using fopen, fread, and 
associated functions.

In this section we consider item (4). The functions available are

Category Function Description
Open/close fopen Open file

fc lo s e Close file
Binary I/O fread Read binary data from file

fw rite Write binary data to file
Formatted I/O fscanf Read formatted data from file

fp r in t f Write formatted data to file
fg e t l Read line from file, discard newline 

character
fgets Read line from file, keep newline 

character
String Conversion sp rin tf Write formatted data to string

sscanf Read string under format control
File Positioning ferror Inquire file I/O  error status

fe o f Test for end-of-file
fseek Set file position indicator
f t e l l Get file position indicator
frewind Rewind file

Temporary Files tempdir Get temporary directory name
tempname Get temporary file name

Following is an example of how some of these functions are used.

Example: fscan f
Suppose we have some data in a file formatted as follows:
1 0 /0 6  11 18 00 - 3 4 .8 5 5 151 .305 7 2 1 6 .4 7 0 .9 1 32-61 920.

1 0 /0 6  11 18 01 - 34 .8 5 5 5 4 151 .306 49 2 1 4 .8 7 1 .3 8 - 6 0 .8 - 0 .8 8
1 0 /0 6  11 18 02 - 34 .8 5 6 0 9 151 .307 27 2 1 2 .7 7 1 .8 6 460.-6 - 1 .6 4
1 0 /0 6  11 18 03 - 34 .8 5 6 6 4 151 .308 07 2 1 0 .8 7 2 .4 530.-6 - 1 .6 7
1 0 /0 6  11 18 04 - 34 .8 5 7 1 7 151 .308 87 2 0 9 .7 7 2 .8 3 - 6 0 .0 6 - 1 .3 3

The data consists of a date string with a slash separator, a time string 
with colon separators, and then six numbers separated by white space. 
The function fscan f is used for reading formatted ASCII data such as 
this from a file. Suppose this file is called asc.dat. First, we must open 
this file for reading using the fopen command:
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f id  = fop en (’ a sc .d a t ’ ) ;

The fopen command returns a file identifier, f id , which is an integer 
that must be used as the first argument of any subsequent file-reading 
or file-writing function that uses the file asc.dat. If the file cannot be 
opened (for example, if it does not exist or exists in a directory that 
cannot be found by MATLAB), then a value f id  = -1 is returned. Once 
the file is opened the data can be read using the following command:

>> a = f s c a n f ( f id , ’ %d/%d %d:%d:%d %g%g%g%g%g%g’ ) ;
>> s ize (a ) 
ans =

55 1

The fscan f command has read in all the data up to the end of the file. 
In the file are 11 numbers per line (2 numbers in the date, plus 3 in the 
time, plus 6 other numbers), and there are 5 lines, for a total of 55 data 
values; these have been read into a column-vector called a. The format 
string ‘%d/%d %d:%d:%d %g%g%g%g%g%g' means “look for two decimal 
numbers separated by slashes, skip some whitespace, then look for three 
decimal numbers separated by colons, skip some more whitespace, then 
look for six general format floating point numbers” (see the section on 
string conversion on page 79). fscan f reads in such numbers until the 
end of the file, or you can put in a parameter to read in a certain number 
of values. We only now need to reshape the vector a to a matrix having
11 columns

N = len gth (a )/11 ; 
a = reshape(a ,11,N )’ ;

The date and time values are in the first five columns:

>> a ( : ,1 :5 )  
ans =

10 6 1 18 0
10 6 1 18 1
10 6 1 18 2
10 6 1 18 3
10 6 1 18 4

And the remaining values are 

>> a ( : , 6 : 11)
ans =

-34.8550 151.3057 216.4000 70.9100 -61.2300 0.2900
-34.8555 151.3065 214.8000 71.3800 -60.8000 -0.8800
-34.8561 151.3073 212.7000 71.8600 -60.6400 -1.6400
-34.8566 151.3081 210.8000 72.4000 -60.3500 -1.6700
-34.8572 151.3089 209.7000 72.8300 -60.0600 -1.3300
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31 Handle Graphics
Handle Graphics is M ATLAB ’s system of creating and manipulating com­
puter graphics. The system is “object oriented” , meaning that it is based 
around a hierarchy of objects that represent various graphical elements. 
These elements all have a certain state, or “appearance” , defined by a list 
of handle properties, and they can be changed by a number of different 
methods. The properties of objects can be set at creation or they can 
be modified afterwards. The complete set of graphical objects is shown 
in this diagram.

Root
I

Figure

Axes Uicontrol Uimenu Uicontextmenu

Line Rectangle Patch Image Surface Text Light

Graphical objects lower down in the hierarchy inherit many of their 
properties from those higher up. Objects that are immediately below 
another in the hierarchy are said to be that object’s children; the object 
immediately above another is said to be that object’s parent.

Rich graphics contain many of these elements, with the design 
enhancing the overall utility of the display. For example, this diagram 
shows some common Handle Graphics objects. The frame around the

Г ̂ F ig u re  No. 1

File Windows Help
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display and the enclosed area is the Figure object; that is, the window on 
the screen in which the graphics are displayed. Many Figure objects can 
exist at the same time, and the Figure’s handle is the number shown in 
the window’s title bar (usually it is an integer, 1, 2 , . . . ) .  Above Figure 
objects in the hierarchy is the Root object, which is the entire com­
puter screen. Only one of these can exist, and its handle is the number 
zero. In this Figure are four Axes objects (one is invisible): two are 
three-dimensional and two are two-dimensional. The top left-hand Axes 
object contains two Text objects (‘Focus’ and ‘y =  x2’), and two Line 
objects (the parabola and the single point marked by an ‘x ’). These two 
Line objects look different because they have different “LineStyle” and 
“MarkerStyle” properties; more on this later.

31.1 Get and Set
The commands get and set are used to find out about the state of 
graphics elements (get) and to change those elements’ properties (set). 
For example, we will create a simple plot, and use get and set to change 
some of the plot’s properties. The plot is simply:

t  = lin sp a ce (0 ,1 0 ,5 0 ); 
p lo t ( t ,s in ( t ) )

Suppose we want to plot the points themselves as well as the line joining 
them. We could create a new plot by typing p l o t ( t , s i n ( t ) , ’ - o ’ ) , but 
we can do the same thing by first getting the handle of the Line object 
and setting its Marker property, which is initially ’ none’ , to o:

h = g e t (g c a , ’ ch ild ren ’ ) ;  
s e t (h , ’ Marker’ , ’ o ’ )

The command gca that appears here as an argument to the get com­
mand is the Get Current Axes command: it returns the handle of the 
current Axes object, where “current” means the last Axes that were 
plotted to or clicked on with the mouse. We could have combined the 
two commands and eliminated the need to actually assign a value for 
the current Axes’ handle:

s e t (g e t (g c a , ’ ch ild ren ’ ) , ’ Marker’ , ’ o ’ )

In this case there is only one “child” of the current axes; if there were 
more, then a vector of handles would be returned and each would have 
its Marker property changed to ’ o ’ .
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There are usually a great many properties associated with a given 
graphical object. For example the x- and у-axis limits are given by two 
separate properties, xlim and ylim. Continuing with the example above:

>> g e t (g c a , ’ xlim ’ ) 
ans =

0 10 
>> g e t (g c a , ’ ylim ’ ) 
ans =

-1 1
The locations of the x-axis tick marks are another property:

>> g e t (g c a , ’ x t ic k ’ ) 
ans =

0 2 4 6 8 10

The width of the line used to draw the axes is

>> g e t (g c a , ’ linew idth ’ ) 
ans =

0.5

(Your line width might be different.) There are many more. To get 
a complete list of the properties of a graphical object, leave out the 
property argument in a call to get. For example, the properties of the 
Axes object are

>> get(gca )
AmbientLightColor = [ 1 1 1 ]
Box = on
CameraPosition = [3.5 0 17.3205]
CameraPositionMode = auto 
CameraTarget = [3.5 0 0]
CameraTargetMode = auto 
CameraUpVector = [ 0  1 0 ]
(and so on)

And the properties of a Line object are (carrying on from the sine-wave 
example above):

>> get(h )
Color = [1 0 0]
EraseMode = normal 
LineStyle = -  
LineWidth = [0.1]
Marker = o 
MarkerSize = [6]
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MarkerEdgeColor = auto 
(and so on)

In the example above we used get to get the handle of the line after 
we created it. If you know that you will want to modify an object’s 
properties, you can assign its handle at creation time by using an output 
variable. Our example then becomes:

h = p l o t ( t , s i n ( t ) ) ;  
s e t (h , ’ Marker’ , ’ o ’ )

This technique works for all of the plotting commands, surf, semilogx, 
image, and so on.

Another way to set object properties is to call a creation function 
with a list of property/value pairs at the end of the argument list. Each 
kind of graphical object (except the Root object) can be created by 
typing a command with the same name as the object. For example, let 
us create a set of axes suitable for plotting range-depth data:

a x es (’ P os ition ’ , [ .1  .5 .8 .0 8 ] , ’ T ickD ir’ , ’ ou t’ , . . .
’YDir’,’reverse’,’xax’,’top’)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
0 J ___________ I___________ I___________ I___________ I___________ I___________ I___________ I___________ I___________ I___________ I

0.5 -

This call to the axes function has specified the position property so that 
we get a short, wide set of axes; the direction of the tick marks so that 
they stick out of the box instead of into it; the direction of the y-axis 
is reversed, and the location of the ж-axis is on top. The capitalisation 
of the property names is not important. The name of a property need 
not be spelled out in full: you can abbreviate it to the shortest unique 
name. In the above call to axes, for example, the xax property is the 
XAxisLocation.

If you are unsure of the allowed values for a property, you can get a 
list of them by typing set without actually setting a value. For example, 
suppose you know there is an Axes property called XAxisLocation but 
you do not know whether to type ’ above’ , ’ to p ’ , or ’ up’ to get the 
ж-axis drawn at the top. The solution is to type:
>> s e t (g c a , ’ XAxisLocation’ )
[ top | {bottom } ]
The allowed values for the XAxisLocation property are top and bottom. 
Curly brackets are put around the default setting. If you type set
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without specifying a property you get a list of all the allowed values 
for every available property:

>> set(gca )
AmbientLightColor 
Box: [ on | { o f f }  ]
CameraPosition
CameraPositionMode: [ {au to } | manual ]
CameraTarget
CameraTargetMode: [ {au to } | manual ]
(and so on)

The properties for which you can choose values from among a short 
list of alternatives will be shown. Other properties (for example, the 
CameraPosition property above) can take on any numerical value, so a 
list of alternatives is not shown. To get the format of such a property 
(is the CameraPosition a scalar or a vector?) you can get its current 
value:

>> g e t (g c a , ’ CameraPosition’ ) 
ans =

0.5000 0.5000 9.1603

Some properties are common to all objects. For example, all objects 
have a “Type” property that specifies what kind of object it is ( “Axes” , 
“Figure” , “Patch” and so on), a “Parent” property (sometimes empty), 
a “Visible” property that determines whether you can see it or not, 
and a “Color” property (fairly obvious). Other properties are unique 
to a particular kind of object. For example, only line objects have a 
“LineWidth” property, and only “Figure” objects have an “InvertHard- 
Copy” property.

Let us now consolidate these ideas with a few examples.

Exam ple: U ndo

When building a plot from the command line, it is good to have an 
“oops” function that gets rid of the last thing you plotted. Let us start 
by plotting a labelled parabola defined by f  (x) =  x 2.

x = - 1 : . 01 : 1 ; 
f  = in l in e ( ’ x .~2 ’ ) ;  
c l f
p l t ( x , f ( x ) )

-1 -0.5 0 0.5 1

We use the text command to label the parabola.
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t e x t ( - . 7 , f ( - . 7 ) , ' f ( X ) ' )

But we have made a mistake: the “x” should be lower case. We try to 
correct it by issuing another text command with a lower case “x” :

t e x t ( - . 7 , f ( - . 7 ) , ' f ( x ) ' )

But this has printed over the top of the previous label, making a mess. 
Without starting again, we can use the delete  function to delete the 
text objects, once we know their handles. We can get a list of the handles 
of the line and the text objects by getting all the children of the current 
axes:

>> h = g e t (g c a , 'c h i ld r e n ')  
h =

19.0001
18.0001
11.0005

The variable h is a three-element column vector (the actual values are 
not important). These are the handles corresponding to the Line object 
(parabola) and the two Text objects. But which of them is the Line 
object and which are the Text objects? We can get the object types 
corresponding to these handles by typing:

>> types = g e t (h , 't y p e ')  
types =

't e x t '
't e x t '
' l i n e '

(The variable types is returned as a cell array.) A parent’s children 
are always listed in reverse age order: the most recently drawn object 
appears first—youngest first, oldest last. This tells us that the first two 
elements of the vector h correspond to the text objects ‘f(X ) ’ and ‘f (x )  ’ , 
in that order, and the third element corresponds to the parabolic line. 
We can delete the two text objects by typing:
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delete(h(1:2))

We can now issue the correct text command:

-1 -0.5 0 0.5 1

Let us write an m-file to do this automatically. We’ll call it oops. When

t e x t ( - . 7 , f ( - . 7 ) , ’ f ( x ) ’ )

o.:

0.!
o.t

o.<

we call oops without any argument, it should delete the last object 
drawn in the current axes. When called with an integer argument, n, 
oops should delete the last n objects drawn in the current axes. The 
following m-file is a possible solution. (The function nargin returns the 
number of arguments with which a function was called.)

function  oops(N)

% OOPS Delete the la s t  ob ject p lo tted  on the axes.
% Repeating "oops" erases farther back in time.
% OOPS does not work fo r  t i t l e  and la b e ls ; to
% erase these, use " t i t l e ( ’ ’ )"  or "x la b e l( ’ ’ )"
i f  nargin = = 0 N = 1; end 
h = g e t (g c a , ’ ch ild ren ’ ) ;  
d e le te (h (1 :N ));

Let us see if oops works:

c l f
p l t ( x , f ( x ) )
hold on

Now we do an oops to get rid of the shallow parabola,

oops

O.E

o.t

o.<
0.2

-1 -0.5 0 0.5

Now plot the shallow one again with a different line style:
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p l t ( x , f ( x /2) , ’ — ’ )

Let us try calling oops to delete more than one object. (We use a string 
cell array in the following call to text to label the two curves at once.)
x = - 1 : . 01 : 1; 
f  = in l in e ( ’ x .~2 ’ ) ;  
c l f
p l t ( x , f ( x ) ,x , s q r t ( f ( x ) ) )  
xt = [ - .5  - . 5 ] ;  
yt = [ f ( - .5 )  s q r t ( f ( - . 5 ) ) ] ;  
t e x t ( x t ,y t , { ’ |x|’ ’ x~2 ’ } )

Now get rid of the misplaced labels and try again:

oops(2)
t e x t ( x t ,y t , { ’ x~2 ’ ’ |x|’ } )

Example: Figure Positioning

In this example we suppose that we want to set up some windows for 
an application that will have two graphics displays and a graphical user 
interface. We want the two output displays to occupy the bottom half 
of the screen and the GUI should occupy the top left-hand corner. We 
use get and set to control the position of our figures. Let us create a 
figure and get its “position” property:

figu re
g e t ( g c f , ’ p o s it io n ’ ) 
ans =

291 445 560 420

But what do these numbers mean? To find out we need to get the units 
of measurement of this position:

>> g e t ( g c f , ’ u n its ’ )
ans =
p ix e ls

Hmm .. .  . What are the available units of measurement?
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>> s e t ( g c f , ’ u n its ’ )
[ inches | centimeters | normalized | points | p ix e ls  ]

We want to set the units to be normalized: the extremities of the screen 
will correspond to zero and one.

>> s e t ( g c f , ’ u n its , , ,norm’ )
>> g e t ( g c f , ’ u n its ’ ) 
ans = 
normalized

The position of the figure in these new normalized units is

>> g e t ( g c f , ’ p o s it io n ’ ) 
ans =

0.2517 0.4933 0.4861 0.4667

This position vector is of the form [ le f t  bottom width h e igh t]. To
create the two figures we first set the position property of this figure to 
occupy the lower left corner of the screen:

s e t ( g c f , ’ p os ’ ,[0  0 .5 .5 ])

We create the other figure and set its position property at the same time:

I t

f ig u r e ( ’ u n its ’ , ’ norm’ , ’ p os ’ , [ .5  0 .5 .5 ] ) "  ^  ^

Exercise 14 If you look carefully at the two figures you have cre­
ated in this example, you might notice that the borders of the win­
dows overlap. The reason is that the figure’s position property 
only applies to the area contained within the figure and not to the 
borders supplied by the computer’s windowing system. Assume 
that these borders are 5 pixels wide on the left, right and bottom 
edges and 10 pixels wide on the top edge. Write some code to cre­
ate three figures occupying exactly the bottom-left, bottom-right, 
and top-right quarters of the screen, with no gap between them or 
overlap. (The command close a ll might come in handy when 
experimenting with figure creation.) (Answer on page 190.)
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Example: findobj

The findobj command is used to search through the graphical hierarchy 
for objects that satisfy particular property values. For example, generate 
a sphere, a cylinder, and a cone:

subplot(131) 
sphere 
axis equal
ax = ax is ; ""
subplot(132) 
cylinder 
axis equal 
axis(ax)
subplot (133) ° 0 ° ° > ^ °
cy lin d er ([1 0 ]) 
axis equal 
axis(ax)

The three shapes are represented by three surface objects within three 
axes objects. To get the surface handles by getting the children of the 
three axes you would need to type three calls to get; one for each of the 
axes:

axes_handles = g e t ( g c f , ’ ch ild ren ’ ) ;  
surf_handle(1) = g et(axes_h an d les(1 ),’ ch ild ren ’ ) ;  
surf_handle(2) = g et(axes_h an d les(2 ),’ ch ild ren ’ ) ;  
surf_handle(3) = g et(axes_h an d les(3 ),’ ch ild ren ’ ) ;

But an easier way to get the surface handles is to use the findobj 
command. Here we use it to find all the objects in the current figure 
whose type property has the value surface:

surf_handle = f in d o b j (g c f , , typ e , , , su rface ’ ) ;

We can now work with the vector of surface handles to alter all the 
surfaces at once. Let us make them transparent:

se t(su rf_h a n d le ,, FaceColor’ , , none’ )
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31.2 Default Object Properties
Every graphical object has a set of default property values, so that you 
are not obliged to spend time thinking about every detail of every graph­
ical object you draw. For example, when you type p l o t (1 : 10) you do 
not necessarily want to think about how thick the line should be, where 
the tick marks should go, how long the tick marks should be, what colour 
the axes should be, what MATLAB should do when you click on the line, 
etc.

When MATLAB creates a graphical object it searches through the 
successive ancestors (parent, grandparent, etc.) until it either finds a 
default value defined by the user or a factory-set value. For example, 
you could define your own default line width for a figure, in which case 
all new lines drawn in any axes in that figure would have the new line 
width. Or you could set a default line width in an axes object: such a 
default would affect lines drawn in that set of axes, but lines drawn in 
another set of axes would have their widths set by a search through their 
own, different set of ancestors.

To get a list of factory-defined settings, issue the command 
g e t (0 , ’ fa c to ry ’ ). You cannot change the factory settings, but you 
can change the default settings. To get a single factory-defined set­
ting, use the get command, giving it the property name starting with 
factory , followed by the name of the graphical object (figure, axes, 
etc.), followed by the name of the property. For example, the factory 
paper type used for printing figures is

>> g e t (0 , ’ factoryfigurepapertype ’ )
ans =
u sle tter

Factory settings are not necessarily those that will be used; they may be 
over-ridden by setting a default value. Default values may be changed 
for your MATLAB installation in either the matlabrc.m file or in your 
personal startup.m file.

To get a list of default settings, issue the command get(Handle, 
’ D efau lt’ ) , where Handle is the handle of the object you are interested 
in. Setting a default value at the Root level (Handle = 0) will affect all 
objects of that type.

To set a default value you use the set command, giving it the handle 
of the object whose children (grandchildren, etc.) you want affected. You 
create a default property name by creating a three-part string:

1. Start with the word Default;

2. Add the name of the object you want affected (for example, Line, 
Surface, Text);

©  2000 by CRC Press LLC



3. Add the property you want to set for this type of object (for exam­
ple, LineWidth, FaceColor, FontSize).

We fix ideas with an example.
Suppose we do not like the default figure settings that produce plots 

in a white Axes box on a gray Figure background. Instead you want 
transparent Axes plotted on a parchment-coloured background. You 
also want to increase the size of the font used to label the axes. To 
set these preferences for every graphic you draw, change these default 
properties:

s e t ( 0 , ’ D efaultFigureColor’ ,[0 .9 5  0.9 0 .8 ])  % parchment
s e t ( 0 , ’ DefaultAxesColor’ , ’ none’ )
s e t ( 0 , ’ DefaultAxesFontSize’ ,12)

(Capitalization is not essential.) The Axes font size setting affects all 
text associated with Axes objects: tick labels, axis labels and titles, but 
not Text objects or text on uicontrols. If you want to change these as 
well, you could issue the commands:

s e t ( 0 , ’ DefaultUIControlFontSize’ ,12)
s e t ( 0 , ’ DefaultTextFontSize’ ,12)

These sorts of commands often go in your startup.m file, where they 
are executed each time MATLAB starts.

31.3 Current Objects
In MATLAB graphics there are alway three “current” objects: the current 
Figure, the current Axes, and the current Object. The current Figure or 
Axes objects are the ones that the next gaphical object will be drawn in. 
The current Object is the last one drawn or clicked on with the mouse. 
Figures or axes can also be made current by clicking on them with the 
mouse. We have already used the functions that return the handle of the 
current Axes object (gca) and the current Figure object (gcf). There 
is also a gco command that returns the handle of the current Object. 
These three commands are essentially abbreviations of:

g c f : g e t (0 , ’ CurrentFigure’ ) 
gca: g e t ( g c f , ’ CurrentAxes’ ) 
gco: g e t ( g c f , ’ CurrentObject’ )

Exercise 15 Can you explain the difference between the follow­
ing two methods of getting the current figure handle after doing a 
close a ll?  (Answer on page 191.)

>> close all
>> get(0, ’ currentfigure’ )
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ans =
[]

>> gcf 
ans =

1

Exercise 16 The m-file objects.m creates a graphic with 
assorted objects on it. Run objects and try clicking on the objects 
to make them current. Investigate what happens when you do 
get(gco,’ type’ ), or delete(gco). (Answer on page 191.)

32 Axes Effects

32.1 The Axis Command
Axes objects have many properties you can modify to alter details such 
as tick mark labels, positioning of axes, direction of tick marks, and so 
on. These can be changed using the get and set commands. You can 
also change the way axes behave using the axis command, which is an 
easy way to set some axis and related commands to achieve frequently 
sought effects. Let us look first at the axis command. These are the 
available options (adapted from the help entry):

axis([xm in xmax ymin ymax]) sets scaling for the x- and у-axes on 
the current plot.

axis([xm in xmax ymin ymax zmin zmax]) sets the scaling for the x-,
y-, and z-axes on the current 3-D plot.

v = axis returns a row vector containing the scaling for the current 
plot. If the current view is two-dimensional, v has four components; 
if it is three-dimensional, v has six components.

axis auto returns the axis scaling to its default, automatic mode where, 
for each dimension, “nice” limits are chosen based on the extents 
of all line, surface, patch, and image children.

axis manual freezes the scaling at the current limits, so that if hold is 
turned on, subsequent plots will use the same limits.

axis t igh t sets the axis limits to the range of the data.

axis f i l l  sets the axis limits and PlotBoxAspectRatio so that the 
axis fills the position rectangle. This option only has an effect if 
PlotBoxAspectRatioMode or DataAspectRatioMode are manual.

axis i j  puts MATLAB into its “matrix” axes mode. The coordinate 
system origin is at the upper left corner. The i axis is vertical and
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is numbered from top to bottom. The j  axis is horizontal and is 
numbered from left to right.

axis xy puts MATLAB into its default “Cartesian” axes mode. The coor­
dinate system origin is at the lower left corner. The x  axis is hor­
izontal and is numbered from left to right. The y axis is vertical 
and is numbered from bottom to top.

axis equal sets the aspect ratio so that equal tick mark increments on 
the x-, y-, and z-axis are equal in size. This makes sphere(25) 
look like a sphere, instead of an ellipsoid.

axis image is the same as axis equal except that the plot box fits 
tightly around the data.

axis square makes the current axis box a square.

axis normal restores the current axis box to full size and removes any 
restrictions on the scaling of the units. This undoes the effects of 
axis square and axis equal.

axis o f f  turns off all axis labeling (including the title), tick marks, and 
background.

axis on turns axis labeling, tick marks and background back on.

axis vis3d prevents MATLAB from stretching the Axes to fit the size 
of the Figure window or otherwise altering the proportions of the 
objects as you change the 3-D viewing angle.

Let us look at some quick examples. Create sine and cosine compo­
nents and plot a circle:

t  = lin sp a ce (0 ,2* p i) ; 
x = c o s ( t ) ;y  = s in ( t ) ;  
p lo t (x ,y )

The default behaviour here is such that the data are stretched to fill the 
rectangular Axes position. To make it look like a circle use:

axis equal

-1  0 1

To get the top half of the circle:

a x is([-1 1 0  1] )
-1 0 I
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Some new data now:

t  = lin sp a ce (0 , 1) ;  
x = humps(t); 
y = humps(t."2) / 2 ; 
p lo t (x ,y ) 0 50 100

The Axes limits have been set to the next round number in the series of 
tick marks. To change the scale so that the data fill the whole plot:

axis tigh t

To zoom in on the loop: 

ax is ([10  25 5 12])

To zoom back out again:

axis auto

.12

40 

30 

20 

10 ^
20  40  60 80

10 15 20 25

50 100

Now let us look at some image data:

c l f
load clown
image(X)
colormap(map)

100 200 300

60

40

20

The y-axis here increases from top to bottom: the i j  axis mode is the 
default for images. To get the y-axis increasing from bottom to top:

200 
150

axis xy 100
50

To go back again:

12Or you can use the zoom function, which initiates a mouse-based zoomer.
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axis i j

100 200 300

Usually images like this do not need the axes:

axis o f f

A three-dimensional example now:

sphere
colorm ap(fitran ge(gray ,.5 ,1 ) 5 
v iew (5 ,5)
axis equal

c l f 1

MATLAB has drawn a biggish sphere because the near perpendicular view­
point allows the axes to fit within the default plotting area. If we change 
the viewpoint:

the sphere is drawn smaller because the axes are more oblique to the 
plane. Now go back to the first viewpoint, switch on the vis3d axis 
behaviour, and then return to the second viewpoint:

The sphere is kept a constant size (cf. plot before last, above), which 
forces the axes to extend beyond the plotting area (and, in this case, 
beyond the Figure area too). You should turn on axis vis3d whenever 
you are viewing three-dimensional objects from different angles. In such 
situations the axes are usually superfluous anyway, so why not get rid 
of them?

view(45,45)

1 -1

view (5,5) 
axis vis3d

axis o f f
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The axis command works by changing various properties of Axes 
objects. If you look inside the axis, function (type axis) you will 
see many set commands used to change Axes properties. As we said 
before, the axis command gives you an easy way to change frequently 
used Axes features. Some Axes properties are not part of the axis 
command’s functionality; you must change them yourself. For example, 
when drawing physical objects rather than mathematical abstractions, 
realism is improved by allowing perspective distortion. Compare these 
two views of a ship seen from about wharf height:13
c l f
subplot(221); 
ship
axis o f f
pos = [11 2.3 .55] ; 
s e t (g c a , ’ CameraPosition’ ,pos) 
subplot(223); 
ship
s e t (g c a , ’ CameraPosition’ ,p o s , . . .
’ P ro je c t io n ’ , ’ P erspective ’ ) 
axis o f f
Here ship is an m-file on disk that draws the patches representing the 
ship.

As another example, here is what you might see if you were an ant 
crawling along a doughnut (the command torus is part of the companion 
software to this book):
c l f
[x ,y ,z ]  = to r u s ( .5 ,9 0 ,1 ) ; 
s u r f l (x ,y ,z ,[1 5 0 ,5 0 ] ,[0  1 0  0 ]) 
co lorm ap(fitran ge(gray ,0 .5 ,1 )) 
axis equal 
axis o f f  
axis vis3d
pos = [[1 1]*1.1 .7 ] ; 
s e t (g c a , ’ CameraPosition’ ,pos) 
s e t (g c a , ’ CameraTarget’ ,[0  .8 .4 ]) 
s e t (g c a , ’ P ro je ct ion ’ , ’ P erspective ’ )

Exercise 17 When you have driven past a vineyard or an 
orchard, have you ever noticed the many directions in which the 
plants seem to line up? Create an evenly spaced grid of points, 
and see if you can get MATLAB to display the same kind of effect. 
(Answer on page 191.)

13The working of ship.m is explained in Section 37 on three-dimensional modelling, 
see page 160.
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32.2 Tick Marks and Labels
MATLAB’s default behaviour regarding tick marks is to put a reasonable 
number of ticks at evenly spaced, round number increments that at least 
span the data. You can change the tick marks using the various tickmark 
properties:

XTick = [1 2  3 4 5] 
XTickLabel [ ’ a|b|c|d|e’ ] 
XTickLabelMode = manual 
XTickMode = manual

TickLength = [0.01 0.025] 
TickDir = in 
TickDirMode = auto

The properties in the first column have equivalents for the y and z axes; 
the properties in the second column affect the ticks on all axes.

The TickLength property must be set to a two-element vector; 
the first element is the length of tickmarks used for two-dimensional 
plots and the second element is the length of tickmarks used for three­
dimensional plots. The units are normalised to the length of the longest 
axis:
subp lot(221) 
p l t (1 : 10) 
su bp lot(222) 
p l t (1 : 10)
s e t (g c a , ’ t ick len g th ’ ,[ .0 6  . 1] )

It is more common to want to change to location and labels of the 
tickmarks. Here are some tickmarks tied to the data: 
x = sort(ran d (1 ,5 ) ) ;  
p lt (x )
s e t (g c a , ’ y t ic k ’ ,x) 
axis tigh t 
grid
Here is a plot of a sine curve with critical points as tick marks:

t  = lin sp ace(0 ,360 ); 
y = s in (t* p i/1 8 0 ); 
xt = unique([0:45:360 30 :30 :360 ]); 
yt = u n iqu e(sin (x t*p i/180 )); 
p l t ( t ,y )
a x is ([0  360 -1 1])
s e t (g c a , ’ x t ic k ’ , x t , ’ y t ic k ’ , y t , ’ GridLineStyle’ , ’ - ’ ) 
grid
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The tick labels can be either numbers or strings. You have a choice of 
the following formats:

s e t (g c a , ’ XTickLabel’ , { ’ 1 ’ ; ’ 10’ ; ’ 100’ }  
s e t (g c a , ’ XTickLabel’ , ’ 1|10|100’ ) 
s e t (g c a , ’ XTickLabel’ ,[1 ;1 0 ;1 0 0 ]) 
s e t (g c a , ’ XTickLabel’ ,0 :2 ) 
s e t (g c a , ’ XTickLabel’ , [ ’ 1 ’ ; ’ 10 ’ ; ’ 100’ ] )

In the second format, the modulus signs “ | ” separate the tick labels. In 
the fifth format you cannot replace the semicolons by commas; if you do 
you will be specifying a single tick label equal to the string ‘ 1 10 100’, 
which will be used to label all the tick marks. In another example, here 
is how to get months of the year on an x  axis:14

y = [ 0 3 1 6 5 9 ] ;area(y)
str  = ’ Jan|Feb|Mar|April|May|June’ ;
s e t (g c a , ’ x t ic k ’ , 1 :6 , . . .
’ x t ic k la b e l ’ , s t r , . . .
’ x g r id ’ , ’ on ’ , ’ la y e r ’ , ’ to p ’ )

8 

6 

4

2 / / / / Ч

Jan Feb Mar April May June

If you specify fewer tick mark labels than there are tick marks, the labels 
are recycled:

p l t (1 : 10)
s e t (g c a , ’ y t ic k ’ , 1 : 10, . . .

’ y t ic k la b e l ’ , ’ a|b|c’ )

10

If you want only some tick marks labeled, include blanks (or nothing) 
between the modulus signs in the ticklabel setting:

p lt (1 :4 )
s e t (g c a , ’ x t ic k ’ , 1 : . 2 : 4 , . . .  
’ x t ic k la b e l ’ , ’ 1|||||2|||||3|||||4’ )

' 1 2  3 4

It can sometimes be a good idea to turn off the tick mark labels com­
pletely. For example, when stacking plots that cover the same range of 
x  values:

14The d a te tick  function can also be used in conjunction with the date handling 
utility datenum.
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c l f
a x es (’ p os ’ , [ .2  .1 .7 .4 ])
x = lin sp a ce (0 ,2) ;
plt(x,hum ps(x))
axis tigh t
zeroaxes
a x es (’ p os ’ , [ .2  .5 .7 .4 ])  
plt(x,cumsum(humps(x))) 
s e t (g c a , ’ x t ic k la b e l ’ , ’ ’ ) 
axis tigh t

0.5 1 1.5 2

32.3 Subplots
Multivariate data can be displayed by plotting arrays of subplots. For 
example, a column of x - y  plots can represent y plotted as a function of 
x  and z. A sequence of such columns can represent another variable, 
so that you can see y plotted as a function of x, z, and t. MATLAB’s 
subplot command is an easy way of generating arrays of plots, but you 
have no control over the precise positioning; the gap between the plots, 
for example, is not controllable. The m-file pickbox (see companion 
software) is designed for such cases. You give pickbox the number of 
rows and columns you want in your array of plots, and pick out the 
number of the plot you want (in the same way as for subplot). You can 
also specify the amount of x  and y  space between the plots as well as the 
amount of white space around the entire plot array. This space can be 
used for row and column labels. In the following example we generate 
samples of the function

B (x , y , t )  =  (1 -  e -(2x)2-y2)/t

over a three-dimensional grid of x, y, and t. We display the samples by 
drawing repeated plots of B  as a function of x  and arraying them over 
a matrix of rows and columns indexed by y, and t, respectively:15

xv = - 1: . 1:1; 
yv = - 1: . 2:1; 
tv = 1:5;
[x ,y,t] = ndgrid(xv, yv, tv );
B = (1 -  exp(-(2*x).~2 - y .~ 2 )) ./t ; 
Nx = length(xv);
Ny = length(yv);
Nt = length(tv); 
c l f
count = 0;
top = max(max(max(B)));

15The code is given in the companion m-file p lotbxyt.

©  2000 by CRC Press LLC



for yi = 1:Ny 
for t i  = 1:Nt

count = count + 1;
pos = pickbox(Ny,Nt,count,0,0,.2);
ax = axes(’ pos’ ,p o s ,...

’ ylim’,[0 top ], . . .
’ nextplot’ , ’ add’ , . . .
’ v is ib le ’ , ’ o f f ’ ) ; 

p l t (x v ,B ( : ,y i ,t i ) , ’ . ’ ) % Data 
p lt([-1  -1 1] , [1 0 0 ] , ’ k : ’ ) % Dotted frame 
i f  count” = 51

set(gca ,’ xticklabel’ , ’ ’ , . . .
’ yticklabel’ , ’ ’ )

end
i f  count = = 51 

axis on 
x label(’ x ’ ) 
y label(’ B’ ) 

end
i f  count<6

te x t(0 ,1 .2 ,[ ’ Time = ’ . . .
num2str (tv (t i))  ’ s ’ ] , . . .  

’ HorizontalAlignment’ , ’ center’ )
end
i f  rem(count-1,5) = = 0  

te x t (-3 ,0 .5 ,[ ’ y = ’ . . .  
num2str (y v (y i))])

end
end

end

For these kinds of plot arrays it is essential to keep the axes’ scales 
fixed for all the plots. The axes’ scales are fixed by setting the YLim
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property to [0 top] in the call to the axes command (the x  scales are 
the same here). The i f  statement containing the test count<6 ensures 
that only the plots in the top row—plot numbers 1, 2 , . . . ,  5— produce 
the text (created using text commands) on the top row of plots, which 
indicate the time values for each column. The i f  statement containing 
the test rem (count-1,5) = = 0  ensures that only the plots in the left 
column— plot numbers 1, 6 ,11 ,... , 51—produce the text indicating the 
y values for each row.

32.4 Double Axes
To plot more than one set of axes on the same plotting area you can use 
the p lotyy  function, which puts separate axes on the left and right of 
the plot:

f  = in l in e ( ’ e x p (-x ."2) ’ ) ;  
g = in l in e (’1 -  e x p (-x ) ’ ) ;  
x = lin sp a ce (0 , 1) ;  
p lo t y y (x ,f (x ) ,x ,g (x ) )

The left hand y axis refers to the function f  and the right hand y axis 
refers to the function g.

Another double-axis technique is to draw axes with two sets of units. 
The trick here is to create a second set of axes that is very thin:

subplot(211) 
x = lin sp a ce (0 ,1 ); 
plt(x,hum ps(x)) 
x la b e l( ’ Range, km’ ) 
p = g e t (g c a , ’ p o s it io n ’ ) ;  
a x es (’ pos ’ ,[p (1 ) .45 p(3) .0 1 ],
’ x lim ’ ,[0  1 ]/1 .609) 
x la b e l( ’ Range, m iles ’ )

32.5 Axes Labels
The various axis-label commands act as expected:

Title
3

plot(1:3) wxlabelC’x axis’) ■§ 2
ylabel(’y axis’) ^
title(’Title’)

1

°0 0.2 0.4 0.6 0.8 1 
Range, km

0 0.1 0.2 0.3 0.4 0.S 0.5 
Range, miles
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These commands change special Text objects that are associated with 
the Axes object:

>> y l = g e t (g c a , ’ y la b e l ’ ) ;
>> g e t ( y l , ’ S trin g ’ ) 
ans =
y axis
>> s e t ( y l , ’ R otation ’ ,0)
>> pos = g e t ( y l , ’ pos ’ ) ;
»  s e t ( y l , ’ pos ’ ,[0 .3 5  3 ])

To be friendly to the viewers of your graphs, you should always place 
your y labels horizontally. Multi-line labels can be done easily using cell 
arrays:

>> str  = { ’ The answer is  below: 
[ ’ I t  is  ’ num 2str(p i)]} 
s tr  =

’ The answer is  be low :’
’ I t  is  3.1416’

>> t i t l e ( s t r )

33 Text in Graphics
The commands xlabel, y label, z label, and t i t l e  are used to put text 
in special places around the plot. A general way to place text is to use 
text commands:
x = 0 :.0 1 :2 ; 
plt(x,hum ps(x)) 
axis tigh t
[ym,i] = max(humps(x)); 
s tr  = [ ’ Maximum value: ’ . . .

num2str(ym)]; 
te x t (x ( i ) ,y m ,s tr )

The first two inputs to text define the x  and y coordinates of the text’s 
reference point. (The gtext command allows you to define the reference 
point with the mouse.) You can give a third, z-value, to the text com­
mand to place text on three-dimensional plots. Issuing text commands 
creates Text objects, which have a great many properties (type g e t (h ) , 
where h is the handle of a Text object). Often you want to change the 
way the text is aligned to its reference point. By default, text is hori­
zontally aligned such that the left-hand edge is near the reference point, 
and vertically aligned such that the middle of the text is near the refer­
ence point. The following diagrams show the effect of changing a Text
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object’s HorizontalAlignment and VerticalAlignment properties to 
the indicated values:

HorizontalAlignment

VerticalAlignment

Bottom

i My<
Baseline

My<
Middle

:j My<
Cap

iMyt

Top

,,l4v<

These text objects all have the reference point at (0.5,0.5), indicated by 
the cross on each little plot.

33.1 Symbols and Greek Letters
The best way to put symbols and Greek letters in your text is to use 
MATLAB’s implementation of the T^X (or LTgX) syntax. T^X is a 
computer typesetting system for producing high-quality mathematical 
material. (This book was produced using TEX.) In TEX you produce 
symbols and Greek letters by typing a backslash “\” followed by the 
name of the letter or symbol:

A \Delta о \ circ к \kappa P \rho
Г \Gamma X \clubsu it X \lambda \rightarrow
3 \Im = \cong \leftarrow a \sigma
Л \Lambda и \cup \ le ftr igh ta rrow \sim
П \Omega £ \delta < \leq + \spadesuit
Ф \Phi ❖ \diamondsuit \mu С \subset
П \Pi \div = \neq С \subseteq
Ф \Psi i \downarrow Э \ni D \supset
к \Re e \epsilon V \nu D \supseteq
s \Sigma = \equiv 0 \o T \tau
© \Theta n \eta W \omega в \theta
Y n01 i s Ups \ 3 \ ex ists Ф \oplus T \uparrow
3 \Xi V \ fo r a l l 0 \oslash V \upsilon
H \aleph Y \gamma 0 \otimes я \varsigma
a \alpha > \geq d \p a rtia l $ \vartheta
к \approx 9 \heartsuit Ф \phi p \wp
в \beta e \in П \pi € \xi
• \bu llet oo \ in fty ± \pm Z \zeta
n \cap I \int \propto
X \chi I \ iota \psi

Here are some examples:
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x = lin sp a ce (0 ,2) ;  
y = 1 . / ( 1-x ) ;  
p lt (x ,y )  
t e x t (1 ,7 5 , . . .
’ y \rightarrow \pm\infty’ )

The TeX syntax of ‘_ ’ and ‘ " ’ to produce subscripts and superscripts is 
also supported:

t1 = l in s p a ce (-5 ,5 ); 
y = c o s ( t1 . " 2) ;  
p l t ( t 1 ,y)
t i t l e ( ’ c o s (t_ 1"2) ’ )

If the sub- or superscript is more than one character, use curly brackets 
to define the scope:

t i t l e ( ’ c o s ( t _ { i , j } " { 2m + 1} ) ’ )

For degree symbols (e.g. 30°), use \circ. (In TeX you would use \ circ 
in a superscript, $30"\circ$, but doing that in MATLAB makes the 
degree symbol too high and too small.)

t i t l e ( ’ P lot fo r  \alpha = 30\ circ ’ )

33.2 Symbols in Tick Labels
To put TeX symbols in tick mark labels you cannot use the commands of 
the x label family; they currently do not interpret the TeX syntax. How­
ever, you can replace the default ticklabels with Text objects that contain
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the required symbols. The m-file t ick la b e lx  does such a replacement. 
You might like to look at it in your editor to see how it works. To use 
it, you supply a list of tick marks with the TeX symbols included:

x = lin sp a ce (0 ,p i,9 9 ); 
p l t (x ,s in (x ) )  
xt = 0 : p i /6 :p i; 
s e t (g c a , ’ x t ic k ’ ,x t) 
axis tigh t
t ik s tr  = { ’ 0 ’ , ’ \ p i/6 ’ , ’ \ p i/3 ’ , . .  
’ \ p i/2 ’ , ’ 2 \ p i/3 ’ , ’ 5 \ p i/6 ’ , ’ \ p i’ }  
t ic k la b e lx (t ik s tr )

33.3 Global Object Placement
Complex displays might contain many Axes or other objects and you may 
want to place text, lines, or other objects globally without reference to 
any particular Axes object in the display. These objects are children of 
Axes objects, so they must be placed relative to some Axes object, but 
we can use a trick. The trick is to create an invisible axes object that 
covers the entire display and place the required objects inside that. For 
example, consider the following technique to create a global title to a 
series of subplots:

Here are four subplots

su bp lot(221) , subp lot(222) ’ '
subplot (223), subplot (224) o.s o.s

str  = ’ Here are four su bp lots ’ ; °° °s 1 °° 05 1

Here, the last four inputs to the tex t command are abbreviations for 
the title alignment: ’ VerticalAlignm ent’ , ’ bottom’ , ’ Horizontal - 
Alignment’ , ’ cen ter ’ .

Exercise 18 Why not use t i t le  instead of text in the previous 
example? (Answer on page 192.)

Another way to put text on a graphic independently of the data plotted 
is to use normalized position units. The reference point of the text will 
then refer to the area occupied by the axes, independently of the data 
plotted. Suppose, for example, that you want to print a parameter on a 
plot whose axes scaling might change.

©  2000 by CRC Press LLC



x = lin sp a ce (0 , 1 ,200) ; 
y = humps(x); 
su bp lot(221) 
p lt (x ,y )
t e x t ( .5 ,1 , ’ Scale = 1 ’ , . . .

’ u n its ’ , ’ normalized’ ) 
su bp lot(222) 
p l t (x /7 ,y /7 )
t e x t ( .5 ,1 , ’ Scale = 1 /7 ’ , . . .

’ u n its ’ , ’ normalized’ )

Notice that the text commands here use the same positional references, 
being x  =  0.5 and y =  1 in normalized units.

Another example shows a plot and a zoomed portion:
load clown 
su bp lot(221) 
imagesc(X) 
colormap(map) 
axis image o f f  
hold on
p lot([1 5 0  230 230 150 1 5 0 ] , . . .

[100 100 60 60 100] )  
subplot(223)
im agesc(X(60:100,150:230)) 
axis image o f f  
axes
axis manual 
hold on
x = [.195 0 NaN .301 .419]; 
y = [.793 .348 NaN .793 .348]; 
p lt (x ,y )  
axis o f f
The statement axis manual is needed here to freeze the axes limits at 
their default values. To produce the x  and y data for the zoom-lines,
I used the ginput command to obtain the coordinates with the mouse. 
The ginput command gets input from the current axes. So if you want 
to add more points to the invisible axis, you must make it visible again, 
otherwise your mouse click will be interpreted with reference to the last 
plotted (visible) axes.

34 Graphical User Interfaces
A graphical user interface (GUI) is a system of graphical elements that 
allow a user to interact with software using mouse operations. There are 
three ways to make graphical user interfaces:
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1. Use graphical elements that serve no other purpose than to allow 
the user to interact (virtual buttons, switches, knobs, sliders, pop­
up menus, and so on). (See demo for examples of these.)

2. Use graphical elements that perform a dual function: display data 
and interaction. For example, a plotted line can both display data 
and can alter data when a user clicks on the line and drags it to a 
new position. (See sigdemol in the signal processing toolbox for 
an example.)

3. Use mouse-downs, drags, and mouse-ups anywhere within the Fig­
ure to perform an action. (For example, typing rotate3d whenever 
you are displaying a three-dimensional plot allows you to click and 
drag to change the viewpoint.)

The first group of GUI elements (buttons, etc.) are the easiest to work 
with, so we deal with those first.

There are three GUI-specific graphical objects in MATLAB: uicontrols, 
uimenus, and uicontextmenus.

These are at the same level as Axes objects in MATLAB’s object hierarchy. 
They are children of Figures; they have no children. Their appearance 
and behaviour are defined by their property values. We first look at the 
different styles of uicontrol. Then we will look at how you can program 
a uicontrol to do something by setting its callback  property. Finally, 
we will go through the various uicontrols in a bit more detail, before 
considering uimenus. Uicontextmenus control MATLAB’s behaviour when 
you do a “right-click” (or equivalent menu-getting click on your system) 
on a graphical object. They will not be described here, but you can find 
a description in the helpdesk entry under Handle Graphics Objects.

If you type u icon trol, you will get MATLAB’s default uicontrol (we 
assign its handle to h for later use):

As usual, get(h ) will give you a list of properties for this object. An 
important property for uicontrols is the style property. The style of this 
object is

>> g e t (h , ’ s t y le ’ ) 
ans = 
pushbutton
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(Try pushing the button.) The available styles are 

>> s e t (h , ’ s t y le ’ )
[ {pushbutton} | togglebutton | radiobutton | checkbox 

| ed it | text | s lid e r  | frame | lis tb o x  | popupmenu ]

The following table shows the possible uicontrol styles:

pushbutton Push Me __ | radiobutton Choose Me 

checkbox [ J  Click Me |___________ edit [

text Fixed text slider k j j

Edit Me

frame

popupmenu Words

Letters
Words

listbox Sentences
Paragraphs
Chapters

(The togglebutton looks like a normal pushbutton but it stays pushed 
until you click it again.) The appearance of these uicontrols depends on 
the windowing system of your computer, but their behaviour in MATLAB 
from one kind of computer to another is always the same.

34.1 Callbacks
You specify what happens when a uicontrol is activated by setting its 
CallBack property. Callbacks are statements that get executed in the 
MATLAB workspace (the command window) when a user interface ele­
ment is activated. As a simple example consider:

u ic o n t r o l( ’ S tring ’ , ’ Do p lo t ’ , ’ CallBack’ , ’ plot(hum ps)’ )
100

This creates a pushbutton uicontrol (the default) 
containing the text “Do plot” . When this 
button is pressed with the mouse, the com­
mand p l o t  (h u m p s) is executed in the MATLAB 
workspace. Try it now and you should see a plot 
of the humps function appear.

The callback string can be any MATLAB expression or function call. 
The following simple GUI creates three buttons to create a plot of sin (ж), 
cos(x), and tan(x). The buttons call the MATLAB function ezp lot with 
the appropriate trigonometric function as an input. The double quotes 
’ ’ produce a single quote in the callback string (see the section on 
strings, page 74).
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u ic o n t ro l( ’ Callback’ , ’ e z p lo t ( ’ ’ s in (x ) ’ ’ ) ’ , . . .
’ P os it ion ’ ,[508 351 51 2 6 ] , ’ S trin g ’ , ’ S ine’ ) ;  

u ic o n t ro l( ’ Callback’ , ’ e z p lo t ( ’ ’ c o s (x ) ’ ’ ) ’ , . . .
’ P os it ion ’ ,[508 322 51 2 6 ] , ’ S trin g ’ , ’ Cos’ ) ;  

u ic o n t ro l( ’ Callback’ , ’ e z p lo t ( ’ ’ ta n (x ) ’ ’ ) ’ , . . .
’ P os it ion ’ ,[508 293 51 2 6 ] , ’ S trin g ’ , ’ Tan’ ) ;

This plot shows the Figure as it appears when 
you press the ‘Tan’ button. For simple GUIs the 
direct definition of callbacks used above is suffi­
cient, but for more complex actions you generally 
want to execute an m-file as a callback. You can 
execute a separate m-file for each button in your- 
GUI, but this leads to a great many separate m-files associated with 
a single GUI. A better technique is to use switchyard programming. 
In switchyard programming you send all your callbacks to a single m- 
file and change the input to the m-file, depending on which button was 
pressed. The m-file contains all the code for all the buttons; the appro­
priate code for a given button is selected by a logic test within the m-file. 
We adapt the trig-function plotting GUI above to this technique. The 
m-file is as follows:

function trigplt(action) 
i f  nargin = = 0 % Create the GUI:

uicontrol(’ Callback’ , ’ trigp lt Sine’ , . . .
’ Position’ ,[508 351 51 2 6 ],’ String’ , ’ Sine’ ); 

u icontrol(’ Callback’ , ’ trigp lt Cosine’ , . . .
’ Position’ ,[508 322 51 2 6 ],’ String’ , ’ Cos’ ); 

u icontrol(’ Callback’ , ’ trigp lt Tangent’ , . . .
’ Position’ ,[508 293 51 2 6 ],’ String’ , ’ Tan’ ); 

else % Perform the action: 
x = linspace(0,2*pi); 
switch(action) 

case ’ Sine’
y = sin(x); t its tr  = ’ y = s in (x )’ ; 

case ’ Cosine’
y = cos(x); t its tr  = ’ y = cos(x )’ ; 

case ’ Tangent’
y = tan(x); t its tr  = ’ y = tan(x)’ ;

end
plot(x,y)

end

This m-file is given in the companion software file trigp lt.m . If you type 
tr ig p lt , the m-file will execute the part that creates the GUI, since it 
was called with no input arguments (nargin = 0). Pressing the buttons 
will calculate the appropriate trig function and produce the plot.
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Callbacks are fastest when they are implemented as function calls; 
do not implement your callbacks as script m-files or as an eval of a 
string. The reason is that MATLAB compiles a function the first time it 
is encountered, whereas m-files and evals are interpreted line by line.

The button-style uicontrols (pushbuttons, radiobuttons, and check­
boxes) are used by simply clicking on them with the mouse. Others 
need more interaction: you must choose an item from a list (listboxes or 
popupmenus) or specify a numeric value (sliders) or type in text (edit 
boxes). We discuss briefly the operation of each of these different kinds 
of uicontrols.

34.2 UlControls 
Edit Boxes

Edit boxes are designed to read in a piece of typed text. The text inside 
an Edit box is accessed via the box’s String property:

h = u icon tro l( ’ s t y le ’ , ’ e d i t ’ , ’ S tring ’ , ’ H ello ’ ) ; ; i ;i: I'

You can change it using the set command:

set ( h , ’ s tr in g ’ , ’ Bye’ )

or you can click in the box and change it by typing something else. You 
can access what has been typed into an edit box by getting its string 
property. After typing qwe into the box you can type:

>> g e t (h , ’ s tr in g ’ ) 
ans = 
qwe

Numbers typed into edit boxes remain strings until you convert them to 
numbers:

>> x = g e t (h , ’ s tr in g ’ ) 
x =
10.3 
>> x+1 
ans =

50 49 47 52 
>> str2num(x) + 1 
ans =

11.3000

Text

Good GUIs have instructive text that indicates the function of a uicon- 
trol. These can be placed with the text-style uicontrol. In the following 
GUI the “Name:” , “Address:” , and “Sex:” labels are three separate 
uicontrols of Text style.

qwe
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uicontrol(’ Pos’ ,[110 280 60 19 ],’ Style’ , ’ text’ , ’ String’ , ’ Name:’ ); 
u icontrol(’ Pos’ ,[175 280 246 19 ],, Style’ , , ed it’ ); 
u icontrol(’ Pos’ ,[110 262 60 19 ],’ Style’ , ’ text’ , . . .

’ String’ , ’ Address:’ ); 
u icontrol(’ Pos’ ,[175 262 246 19 ],, Style’ , , ed it’ ); 
u icontrol(’ Pos’ ,[110 243 60 19 ],’ Style’ , ’ text’ , ’ String’ , ’ Sex:’ ); 
u icontrol(’ Pos’ ,[175 243 121 19 ],’ Style’ , ’ radiobutton’ , . . .

’ String’ , ’ Male’ ); 
u icontrol(’ Pos’ ,[301 243 121 19 ],’ Style’ , ’ radiobutton’ , . . .

’ String’ , ’ Female’ );

Frame

The frame style uicontrol is not an object that is meant to be interacted 
with. It is a decoration. For example, in the GUI in the previous section 
the text labels stand apart from the uicontrols they refer to because the 
figure color is not the same as the background colour. You can get a 
more integrated appearance by adding a frame:

uicontrol(’ Position’ ,[99 231 332 7 7 ],’ Style’ , ’ frame’ ); 
u icontrol(’ Position’ ,[110 280 60 19 ],’ Style’ , ’ text’ , . . .

’ String’ , ’ Name:’ ); 
u icontrol(’ Position’ ,[175 280 246 19 ],’ Style’ , ’ ed it’ ); 
u icontrol(’ Position’ ,[110 262 60 19 ],’ Style’ , ’ text’ , . . .

’ String’ , ’ Address:’ ); 
u icontrol(’ Position’ ,[175 262 246 19 ],’ Style’ , ’ ed it’ ); 
u icontrol(’ Position’ ,[110 243 60 19 ],’ Style’ , ’ text’ , . . .

’ String’ , ’ Sex:’ ); 
u icontrol(’ Position’ ,[175 243 121 19 ],’ Style’ , ’ radiobutton’ , . . .

’ String’ , ’ Male’ ); 
u icontrol(’ Position’ ,[301 243 121 19 ],’ Style’ , ’ radiobutton’ , . . .  

’ String’ , ’ Female’ );

You must issue the commands to draw the uicontrols over the frame 
after you issue the frame command, otherwise the frame will obscure 
the uicontrols. Some people like to divide their GUIs into sections using 
frames. In this GUI are three frames:
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The two inner frames are labeled by placing text style uicontrols with the 
strings Personal D etails and Tax D etails at appropriate positions. 
Too many frames clutter the GUI. It is often better to use space between 
groups of controls to divide them into logical groups.

Slider

Sliders are designed to allow input of a value between two limits. You 
input a value by clicking on the central bar and dragging it; by clicking 
anywhere between the central bar and the end of the slider, resulting 
in a big jump; or by clicking on the arrows at the ends of the slider, 
resulting in a little jump. Fiddle with the following slider to see how it 
behaves:

h = u ic o n t r o l( ’ s t y le ’ , ’ s l id e r ’ ) ; 
s e t (h , ’ p os ’ ,[50  200 450 40]) 
s e t (h , ’ ca llb a ck ’ , ’ d is p (g e t (h , ’ ’ va lue ’ ’ ) ) ’ )

This slider has its callback  property set so as to display the value of the 
slider in the command window. The callback is executed when (1) you 
release the central bar, (2) you click on the blank area, or (3) you click 
on the arrow.

You may want to display the value of a slider in an edit box, or to use 
the value typed into an edit box to alter the position of the slider. To 
do this you have to get an edit box and a slider to talk to each other to 
reveal their properties. The edit box must have a callback that tells the 
slider its strin g  property, and the slider must have a callback that tells 
the edit box its value property. The following piece of code achieves 
this effect:

c l f
hsl = u ic o n t ro l( ’ P o s it io n ’ ,[200 260 200 20], . . .  

’ S ty le ’ , ’ s l id e r ’ , ’ Value’ , 0 . 5 , . . .
’ CallBack’ , . . .
’ s e t (h e d ,’ ’ S trin g ’ ’ ,num 2str(get(hsl,’ ’ va lue ’ ’ ) , 2 ) ) ’ ) ;  

hed = u ic o n t ro l( ’ BackgroundColor’ ,[1  1 1 ] ,  . . .  
’ P o s it io n ’ ,[200 240 70 20], . . .
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’ S trin g ’ , ’ 0 .5 ’ , ’ S ty le ’ , ’ e d i t ’ , . . .
’ CallBack’ , . . .
’ s e t (h s l , ’ ’ Value’ ’ ,str2num (get(hed,’ ’ S trin g ’ ’ ) ) ) ’ ) ;

The value from the edit box is transmitted to the slider when you press 
return, tab, click outside the edit box, or move the mouse outside the 
GUI’s window. The slider’s callback must convert the slider’s value— 
a number—to a string before setting the edit box’s string property. In 
principle the converse is not true. That is, the slider’s value property can 
be passed directly to the edit box’s string property and the number will 
be displayed automatically as a string. But we have included a numerical 
conversion using num2s t r ( . . . , 2) to limit the number of decimal places 
of the displayed value to 2. (What happens when you type nonnumeric 
text into the edit box?)

The default limits of a slider are set to a minimum of zero and a 
maximum of one. These can be changed via the slider’s min and max 
properties: the slider’s value property is scaled proportionally.

Listbox

Listboxes let you choose from among a scrollable list of alternatives. The 
list of alternatives is set by the listbox’s strin g  property. The options 
for the format of the string are the same as for the axis tick labels (see 
page 122); you can specify the alternatives in any of the following ways:

s e t (h , ’ S trin g ’ , { ’ Red’ ; ’ Green’ ; ’ Blue’ } )
s e t (h , ’ S trin g ’ , ’ Red|Green|Blue’ )
s e t (h , ’ S trin g ’ ,[1 ;1 0 ;1 0 0 ])
s e t (h , ’ S trin g ’ ,1 :3 )
s e t (h , ’ S trin g ’ , [ ’ Red ’ ; ’ Green’ ; ’ Blue ’ ] )

For example, to bring up a list of colour options:

h = u ic o n t r o l( ’ pos ’ ,[168 219 89 116], . . .  
’ S ty le ’ , ’ l is t b o x ’ , . . .  
’ S trin g ’ , { ’ Red’ ; ’ Green’ ; ’ Blue’ } ) ;

If the list is too wide or high for the listbox, MATLAB adds scroll sliders:

©  2000 by CRC Press LLC



s e t (h , ’ s tr in g ’ , { ’ Red’ ; ’ Green’ ; ’ B lue’ ; . . .  
’ Pale Goldenrod’ ; ’ Orange’ ; ’ ye llow ’ } )

The item selected within the listbox is accessed via its “value” property. 
For example, after selecting a colour from the list you can extract it 
using the following commands:

>> str  = g e t (h , ’ s tr in g ’ ) ; 
>> s t r (g e t (h , ’ va lue ’ ) )  
ans =

’ Pale Goldenrod’

Popup menu

Popup menus are similar to listboxes in that they allow you to choose 
from among a list of alternatives, but only one item is shown at a time; 
the others become visible only when you press the button. Assuming 
your listbox is still present from the previous example, you can convert 
it to a popup menu by typing the following:

s e t (h , ’ s t y le ’ , ’ popup’ , . . .
’ p os ’ ,[168 219 145 32]) P ale G o ld e n ro d

We changed the size (position) at the same time to make it look more like 
a standard button. The user’s choice is accessed by the popup menu’s 
“value” property, as for listboxes.

34.3 Exclusive Radio Buttons
Radio buttons can be used to offer a choice of one, and only one, item 
from among alternatives. Think of a car radio with buttons for the 
different radio channels: when you press one button in, the corresponding 
channel only is selected. MATLAB’s radio buttons do not automatically 
behave this way. You may want to allow more than one radio button to 
be pressed at a time. But if you do want exclusive radio buttons you 
must implement them with appropriate callbacks. One way to do it is 
as follows:
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function  exrad io(action ) 
i f  nargin = = 0 

c l f
u ic o n t r o l( ’ P os ition ’ ,[200 321 90 25], . . .

’ S trin g ’ , ’ JJJ’ , . . .
’ S ty le ’ , ’ radiobutton ’ , . . .
’ CallBack’ , ’ e x ra d io (1 ) ’ ) 

u ic o n t r o l( ’ P os ition ’ ,[200 296 90 25], . . .
’ S trin g ’ , ’ ABC-FM’ , . . .
’ S ty le ’ , ’ radiobutton ’ , . . .
’ CallBack’ , ’ e x ra d io (1 ) ’ ) 

u ic o n t r o l( ’ P os ition ’ ,[200 271 90 25], . . .
’ S trin g ’ , ’ SAFM’ , . . .
’ S ty le ’ , ’ radiobutton ’ , . . .
’ CallBack’ , ’ exrad io( 1 ) ’ ) 

u ic o n t r o l( ’ P os ition ’ ,[200 246 90 25], . . .
’ S trin g ’ , ’ 5AD’ , . . .
’ S ty le ’ , ’ radiobutton ’ , . . .
’ CallBack’ , ’ e x ra d io (1 ) ’ )

e lse
h = f in d o b j( ’ s t y le ’ , ’ radiobutton ’ ) ; 
ind = find(h~ = g co ); 
s e t (h ( in d ) , ’ va lue ’ ,0) 

end
Calling the function exradio with no arguments draws the GUI and sets 
up the callbacks. The callbacks are identical for all the buttons: they 
simply call exradio with a single input argument. When any button 
is clicked, the e lse  code is executed: it first finds all the radiobuttons 
and returns their handles in the vector h. Then a vector, ind, of the 
elements of h that are not equal to the Current Object (got by the call 
gco) is defined. The radio button that has just been clicked on will 
be the Current Object. If a radio button is pushed, its “value” toggles 
between zero and one. The set command then sets the “value” property 
of all the other radio buttons to zero.

34.4 Variables in GUIs 
Globals

Variables in the MATLAB workspace are not visible to function m-files. If 
you use a function m-file to implement a GUI, you often need to access 
variables that won’t be visible to the function unless you make them 
so. To explain this, consider the example of the exclusive radio buttons 
given in the last section. Suppose we want to get rid of the findobj 
command in the e lse  section of the code by putting the radio buttons’
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handles into a vector when they are defined. That is, we want to modify 
the code as follows:

function  exradio2 (action ) 
i f  nargin = = 0  

c l f
hi = u ic o n t r o l( ’ P os ition ’ ,[200 321 90 25], . . .  

’ S t r in g V J J J ’ , . . .
’ S ty le ’ , ’ radiobutton ’ , . . .
’ CallBack’ , ’ ex ra d io2 (1 )’ ) ;

h4 = u ic o n t r o l( ’ P os ition ’ ,[200 246 90 25], . . .  
’ S trin g ’ , ’ 5AD’ , . . .
’ S ty le ’ , ’ radiobutton ’ , . . .
’ CallBack’ , ’ ex ra d io2 (1 )’ ) ;

% Save radio button handles in h fo r  la te r  use. 
h = [hi h2 h3 h 4 ]; 

e lse
ind = find(h~ = g co ); 
s e t (h ( in d ) , ’ va lue ’ ,0) ;  

end

This implementation will not work because function variables are local to 
the function and do not persist from one function call to another. When 
a radio button is pushed it will issue a callback to exradio2, which will 
go to the e lse  section of code where it will crash because the variable 
h will not be defined. One way to implement the idea correctly is to 
declare the vector h to be global. Global variables are visible to all other 
functions that declare them global, and thus they will be visible between 
one function call and the next. The correct implementation will be

function  exradio2 (action ) 
g loba l h 
i f  nargin = = 0 

c l f

You can even access such global variables from the MATLAB workspace 
(the command window) by declaring them global there.

Variables in UserData

A problem with global variables is that they are vulnerable to being 
cleared by the user from the workspace. If the user clears the global 
variables that a function expects to be present, then the function will
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fail. One place to put variables that need to be visible to functions and 
where they cannot be cleared is in graphical objects’ UserData property. 
Every graphical object has a UserData property, which can be accessed 
with the get and set commands. The UserData property can be used 
to store any MATLAB variable.

34.5 The Tag Property
As we saw above in the radiobutton example, it is useful to have some 
means of finding the handle to an object without explicitly saving it as 
a variable. The Tag property lets you uniquely name an object. You 
can then find the object anywhere in your code by looking for the object 
with that name. For example, we could find the handle of the button 
called ’JJJ’ using Handle = f in d o b j( ’ ta g ’ , ’ JJJ’ ) ; . (Of course, you 
must set the tag property beforehand.)

34.6 UIMenus
By default, MATLAB’s Figures come with a menu at the top. The menu 
items are File, Windows, and Help.

f .  File Window Help

You can add your own items to this menu or you can delete it and put 
your own in its place. To delete the default menu, you need to set the 
Figure’s menubar property to ’ none’ (set it to ’ f ig u r e ’ to bring it back 
again):

set ( g c f,’menubar’,’none’)

To add your own menu use the uimenu command. The text that appears 
on the menu is set by the menu’s la b e l property; what happens when 
you select the menu item is set by the menu’s callback  property. Menus 
can be children of Figures or of other menus; in the latter case you get 
submenus, or “walking” menus. The following example produces a menu 
of options to change the colour of the Figure.

f  = uimenu(’ Label’ , ’ Figure Colour’ ) ;  
u im enu(f,’ Label’ , ’ D efau lt’ , . . .

’ Callback’ , ’ s e t ( g c f , ’ ’ c o lo r ’ ’ , ’ ’ d e fa u lt ’ ’ ) ’ , . . .  
’ A cce lerator ’ , ’ D’ ) ;
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uim enu(f,’ Label’ 
’ Callback’ 

u im enu(f,’ Label’ 
’ Callback’ 

u im enu(f,’ Label’ 
’ Callback’ 

g = u im enu(f,’ Label’ 
uimenu(g,’ Label’ 

’ Callback’ 
uimenu(g,’ Label’ 

’ Callback’ 
uimenu(g,’ Label’ 

’ Callback’

’ B lack’ , . . .
’ s e t ( g c f , ’ ’ c o lo r ’ ’ , ’ ’ k ’ ’ ) ’ ) ;
’ White’ , . . .
’ s e t ( g c f , ’ ’ c o lo r ’ ’ , ’ ’ w’ ’ ) ’ ) ;
’ Gray’ , . . .
’ s e t ( g c f , ’ ’ c o lo r ’ ’ , [ .5  .5 . 5 ] ) ’ ) ;
’ O th e r . . . ’ , ’ Separator’ , ’ on ’ ) ;
’ Parchment’ , . . .
’ s e t ( g c f , ’ ’ c o lo r ’ ’ , [ .9 5  .9 . 8 ] ) ’ ) ;  
’ Vellum’ , . . .
’ s e t ( g c f , ’ ’ c o lo r ’ ’ , [ .9  .9 . 8 ] ) ’ ) ;  
’ Cream’ , . . .
’ s e t ( g c f , ’ ’ c o lo r ’ ’ , [ .9 5  .9 .7 5 ] ) ’ ) ;

The uimenu item that sets the Figure 
colour to the default has its “accelera­
tor” property set to “D” , meaning that 
when control-D is pressed while the cur­
sor is in the Figure window, the callback 
will be executed; in this case the Figure 
will go to its default colour. The “Other 
. . .  ” menu item has its “separator” set 
to “on” , which draws the line above its 
label. A clear figure ( c l f )  command 
will clear user-created uimenus like this 

one. The command colormenu is worth looking at as another example 
of a simple uimenu.

Exercise 19 Generate the following menu:

_1

Figure Colour

Default <C trl>-D

Black

White

Gray

Other... Parch Trent

Vellum

Cream

(Answer on page 192.)
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34.7 Fast Drawing
For fast drawing of graphics (e.g., when animating), consider the follow­
ing extract from the Mathworks’ web site:

Draw movable or changing objects with the EraseMode 
property set to xor or background. This prevents re­
rendering the axes when changing these objects. EraseMode 
is a property of all objects that are children of axes (line, 
text, surface, image, patch).

Set DrawMode (an axes property) to fast. This prevents 
MATLAB from sorting three-dimensional objects, which can 
speed things up significantly. The side-effect is that three­
dimensional surface plots will not be drawn properly in this 
mode.

Set BackingStore (a figure property) to o f f .  This should 
give roughly a factor of two speed-up in normal drawing but 
turns off the instantaneous update that normally occurs when 
windows are uncovered.

Set NextPlot (a figure property) to new when creating 
a GUI. That way when you make plots from the command 
window they do not appear in the axes of the GUI’s figure 
window.

Wherever possible, recycle figure windows by using the 
v is ib le  property of figures instead of creating and destroy­
ing them. When done with the window, set v is ib le  to 
o f f ; when you need the window again, make any changes 
to the window and then set v is ib le  to on. Creating fig­
ure windows involves much more overhead than setting their 
v is ib le  property to on.

There is also a property of Figures called doublebuffer. Setting this 
property to ’ on ’ can reduce the flicker when redrawing a figure.

When redrawing a figure from within a loop, MATLAB will wait until 
the final run through the loop before rendering the graphic. If you want 
to see intermediate results you need to force MATLAB to dedraw the 
graphic at that point. Use the drawnow command to do this forcing. In 
the following example, animation is used to demonstrate the sampling 
problem known as aliasing.16

c l f
s e t ( g c f , ’ doublebuffer ’ , ’ on’ ) 
h = p l o t ( 0 ,0 , ’ . ’ ) ;  
fo r  i  = 1:1000

t = l in s p a c e (0 ,2 * p i,i ) ;

16This example due to C. Moler, comp.soft-sys.matlab newsgroup.
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s e t (h , ’ xdata’ , t , ’ ydata’ ,s in (3 7 0 *t))
drawnow

end

The example should update the data without flicker. If you then set the 
doublebuffer property to o f f ,  you should see the window flicker as the 
new data updates the plot.

34.8 Guide
When writing code to generate GUIs you can very quickly get bogged 
down in messy coding. For example, it is tedious to calculate the “posi­
tion” properties of the various elements so that they line up nicely. The 
task of generating GUIs is made much easier with the MATLAB tool 
guide. The name guide is short for Graphical User Interface Devel­
opment Environment. Guide is a GUI for drawing GUIs. With it you 
select uicontrols, position them with the mouse, align them with the 
alignment tool, and set the properties with a graphical property editor.
I used guide to produce most of the GUI examples so far. When you 
type guide at the MATLAB prompt, the current figure shows a grid in 
the background, showing that it is now a guide-controlled figure, and 
the guide control panel appears. Try typing guide now and you should 
see the following control panel on your screen:

The four big buttons at the top of the control panel bring up four other 
control panels. The listbox in the middle displays which figures are being
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controlled by guide and which are active (meaning that the uicontrols 
are no longer moveable by guide). The buttons at the bottom of the 
control panel allow you to select different uicontrols and then draw them 
on the figure with the mouse. Clicking on the button with the picture of 
a cursor arrow on it allows you to select objects in the controlled figure.

Exercise 20 As with any good GUI, reading about what it does 
is not as effective as actually using it. Play with guide now and 
see if you can make a spectacular GUI. This one might inspire 
you:

The property editor allows you to select an object, then view and 
change its properties. If you type the first few unique characters into 
the property box and press return, the property name will be auto­
matically completed __________________________________________

l i Guide Property Editor

File Options Tools

and the value will be 
shown in the edit box.
You can select more 
than one object, in 
which case the val­
ues that any partic­
ular property has in 
common for all the 
selected objects will 
be shown; values that 
are different will be 
indicated by question 
marks. For example, 
this property editor 
has five radio buttons 
selected, and their “position” property is being shown. The position 
coordinates are the same except for the y position because all the buttons

1 1
uicontrol (slider ) Slider2 /

uicontrol (slider ) Slider2

uicontrol (listbox Algeria) Listbox

uicontrol (radiobutton Tragic . ) Pushbut

uicontrol (radiobutton Wa x  lyr. ) Pushbut Г
uicontrol (radiobutton Philoso. ) Pushbut

uicontrol (radiobutton Reduce) Pushbut

uicontrol (radiobutton Combine) Pushbut

uicontrol (pushbutton Blur. . .) Pushbut

uicontrol (pushbutton Sharpen. .) Pushbut

uicontrol (pushbutton Detect .. ) Pushbut

Cl

I Position ■ [0.007 7 0.148 0.0469]

Г ' 1

Show Object Browser Help
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are the same size and aligned at the same x  position. If you edit this 
property, all of the selected items will be affected.

Guide can be used for any MATLAB Figure, not just one that has 
uicontrols or uimenus. For example, you can use guide to move around 
a set of axes on a figure.

34.9 Other Aids
A suite of tools to help you program GUIs can be found in the u ito o ls  
subdirectory. Type help u ito o ls  to get a list of these tools and a short 
summary of what they do. For example, the btngroup function can 
be used to automatically create a group of buttons in which only one 
button is allowed to be down at a time. Another possibility is a “flash” 
button that presses in and immediately pops back out again. Button 
appearance can also be customised using the btngroup function.

When building a GUI, prototypes can be saved using print -dm file. 
Elements in your GUI that you have produced from the command win­
dow will then be saved in the m-file.

For further information on GUIs, see the manual Building GUIs with 
MATLAB.

35 Printing Graphics
When you type print at the MATLAB prompt, the current figure is 
printed on your default printer. The plot is printed so that the aspect 
ratio matches that seen on the screen for the default settings, and it is 
placed centrally on the page oriented like a portrait: the long dimension 
of the page upright:

plot(humps)
print

If your MATLAB has been installed properly, you should find the plot 
centred for the paper size you are using. If it is not, put the following 
statement into your startup.m file:

s e t ( 0 , ’ DefaultFigurePaperType’ , ’ a 4 le t te r ’ )

or substitute your correct paper size (see below for a list of options).
There are many ways you can control how a graphic is printed. The 

following is a list of figure properties that have to do with printing and 
their options:
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InvertHardcopy: [ {on } | o f f  ]
PaperUnits: [ {in ch es} | centimeters 

| normalized | points ]
PaperOrientation: [ {p o r tr a it }  | landscape ] 
PaperPosition
PaperPositionMode: [ auto | {manual} ]
PaperType: [ {u s le t te r }  | uslegal | a3 | a 4 letter  

| a5 | b4 | ta b lo id  ]

We won’t look at these in detail to start with; instead we’ll look at an 
easy way to change these properties to get commonly wanted effects.

35.1 Print Size: Orient
The orien t command is an easy way of setting the various figure proper­
ties to get rudimentary control of printed output. There are three kinds 
of orientation, each illustrated below.

Tall

plot(humps) 
orien t t a l l  
print

The t a l l  orientation can be used when you have plots stacked on top 
of each other:

fo r  i  = 1 :4 0 ,su b p lo t(1 0 ,4 ,i) ,en d  
orien t t a l l  
print

Landscape

plot(humps) 
orien t landscape 
print

Portrait

The default orientation is “portrait” , which can be restored using:

plot(humps) 
orien t p ortra it 
print К
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By default, the size of the printed figure does not depend on the size 
of the figure on the screen. If you stretched the window so that the

ЩЩ I Д1 иди
figure looked like this on the screen, Щ ' ' IgL the printed page

35.2 Print Size: W Y S IW Y G

would still look like this: . This is because the figure is scaled

when printing to occupy a rectangular area whose size and position are 
defined by the figure’s paperposition property. The factory default 
value for this property is:

>> g e t ( g c f , ’ paperunits’ )
ans =
inches
>> g e t ( g c f , ’ paperposition ’ ) 
ans =

0.25 2 .5  8.0 6.0

The paperposition vector, like an axes position vector within a figure, 
has the form [ le f t  bottom width height] . The l e f t  and bottom val­
ues are taken relative to the lower left-hand corner of the page. The figure 
window’s border is not considered part of the figure for the purposes of 
printing. To make MATLAB automatically calculate the printed figure’s 
position so that it is the same size as the figure window on the screen 
(excluding the window border), set the figure’s PaperPositionMode 
property to auto:

s e t ( g c f , ’ paperpositionmode’ , ’ auto’ )

Now the figure that looks like this on the screen will look

like this when printed With the paperpositionmode set to

auto, you must make sure that the figure’s size on the screen is not too 
big to fit on the printed page.

35.3 Including Figures in Other Applications
General Com m ents

The best quality printed figures are produced using PostScript print­
ers. To include a postscript file in another document, you should print 
from MATLAB using one of the Encapsulated PostScript formats (colour, 
level 1, or level 2). Use the -deps option when issuing a print command.
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Another option is to use an image format output such as a bitmap, 
JPEG, or TIFF file. These will not give high quality curves (you will see 
the pixels), but they are fine for images. Bitmap files can be produced 
using the -dbitmap on Microsoft Windows, or by using a screen grab 
utility on other platforms (for example, snapshot or xv on the UNIX 
machines, or Snapz on the Macintosh).

When incorporating large images into other documents, consider 
using bitmaps instead of PostScript files. For large images, bitmap files 
are much smaller and may enable you to get around memory problems 
when printing large files.

In some cases large z-data images produced using MATLAB’s image 
function are better rendered using the contourf (filled contour) function. 
The final graphic will take longer to calculate in MATLAB, but if you print 
it in PostScript, the file will not only be much smaller, but the quality 
will be higher because you won’t see the pixelated contour edges.

Finally, consider the viewers of your graphics, and how they will 
view them. If your graphics will be included in text that will end up as 
a report, article, book, etc., your graphics should be the best you can 
make them. Include plenty of rich detail in your graphics, with user- 
friendly text put at appropriate places on the display. Simple graphics, 
such as line plots, can be shrunk to quite a small size (somewhere between 
postage stamp and postcard size) without loss of detail. Such shrinking 
will enable you to put more graphics on a text page, or more explanatory 
text. Try to put your graphic on the same page (or double page spread) 
as the text that discusses it. Your readers won’t be obliged to flip pages 
or, worse, search through all the graphics collected as afterthoughts at 
the end of the document.

If your graphic forms part of a personal presentation (the dreaded 
overhead projector), a different set of considerations apply. Your graph­
ics should be big enough to be seen from the back of the room (is the text 
big enough, are the lines thick enough?). You will be there to personally 
explain the graphic’s features and significance, but such an explanation 
will be transient and linear; your audience won’t be free to look at the 
graphic at their own pace, or go back to it later on.

PostScript and Encapsulated PostScript

As mentioned above, the highest quality results will be achieved using 
PostScript output, and printed on a PostScript printer. PostScript files 
are text files containing page layout commands in Adobe’s PostScript 
language. Encapsulated PostScript (EPS) files are best for including 
in other documents; they are single page PostScript files that include 
information about how big the graphic is. If you print a graphic using 
MATLAB’s plain PostScript option (print -dps f i l e ), the first few lines 
of f i l e . p s  will look like this:
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/!PS-Adobe-2.0
‘/.'/.Creator: MATLAB, The Mathworks, Inc.
//T it le : file .p s
0/ 0/DocumentNeededFonts: Helvetica
//DocumentProcessColors: Cyan Magenta Yellow Black 
//Pages: (atend)
/•/•BoundingBox: (atend)
°/°/EndComments

//BeginProlog

/  MathWorks dictionary 
/MathWorks 150 dict begin

The file begins with the characters %!PS, which, when sent to a 
printer, tells the printer to interpret the rest of the file as PostScript 
language commands, and not as text to be printed. Lines beginning 
with percent characters “%” are comments and are, except for the first 
line, ignored by the printer. Actual PostScript commands begin with 
forward slashes “/ ” . The line here that reads:

/•/•BoundingBox: (atend)

says that the bounding box is to be found at the end of the file.
If you print the same graphic using MATLAB’s Encapsulated 

PostScript option (print -deps f i l e ), the first few lines of f i l e . e p s  
will look like this:

/ ! PS-Adobe-2.0 EPSF-1.2
//Creator: MATLAB, The Mathworks, Inc.
//T it le : file .ep s 
//DocumentNeededFonts: Helvetica
//DocumentProcessColors: Cyan Magenta Yellow Black 
//Pages: 1
//BoundingBox: 74 210 549 589 
//EndComments

//BeginProlog

/  MathWorks dictionary 
/MathWorks 150 dict begin

The crucial difference is that the bounding box information appears near 
the start of the file. The bounding box is of the form x l l  y l l  xur yur, 
where:
x l l  is the x coordinate of the lower left corner of the graphic, 
y l l  is the y coordinate of the lower left corner of the graphic, 
xur is the x coordinate of the upper right corner of the graphic,
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yur is the y coordinate of the upper right corner of the graphic. The 
units are in points (there are 72 points per inch and 2.54 centimetres per 
inch). For example a bounding box specification of:

HBoundingBox: 100 100 172 172

would refer to a graphic occupying a one-inch square that is 100 points 
from the bottom left-hand corner of the page.

Software to include Encapsulated PostScript graphics uses the 
bounding box to correctly position the graphic on the screen.

L-TeX: Version 2e

The inclusion of Encapsulated PostScript files in IATEX2e docu­
ments is fully described in Using EPS Graphics in RTjX^e Docu­
ments, by Keith Reckdahl, available via FTP as epslatex.ps from 
f t p : / / f t p .t e x .a c .u k /t e x -a r c h iv e /in fo /  and from other sites of the 
Comprehensive TEX Archive Network (c t a n ) on the Internet. Reck- 
dahl’s article gives a very thorough description of importing EPS graph­
ics, and associated LTEX commands. The standard technique is to 
use the graphicx package, which implements the \includegraphics’ 
command and options. (A description of the graphicx package can be 
found in Packages in the “graphics” bundle, by David Carlisle, avail­
able as grfgu ide.ps or g rfgu id e .tex  from f t p : / / f t p .t e x .a c .u k /  
tex -arch ive/m acros/la tex /packages/graph ics/ and from other 
CTAN sites. The following is a summary of these two articles.

To include a MATLAB Encapsulated PostScript file (or any other stan­
dard Encapsulated PostScript file) in IATEX2e you can use the com­
mands:

\docum entclass{article}
\usepackage{graphicx}
\begin{document}

\includegraphics{Pg-134(2).eps}
\end{document}

The graphic will be included at its natural size. The .eps extension 
can be left out of the file specification, and full path names are allowed. 
Usually you do not want the graphic to appear at its natural size; you 
will want to scale it so that its width is fixed at some value and its height 
is scaled proportionally. To do this, use commands such as these:

\includegraphics[width = 4 cm ]{f i le }  (width is 4 cm) 
\includegraphics[width = \ te x tw id th ]{file }  (width is the same 
as the text)
\includegraphics[width = 0 .5 \ te x tw id th ]{file } (width is half 
the width of the text)
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\includegraphics[width = \ textw idth -4cm ]{file } (width is 4 cm 
less than the width of the text (needs the ca lc  package))

Other optional arguments to the \includegraphics command allow 
you to specify the height of the graphic, or the total height (height plus 
depth), to scale relative to the graphic’s natural size, to rotate, clip, 
trim, and shift the graphic, and to get many other effects. For example, 
in this book I put the output and the command(s) that produced it side 
by side using two minipage environments:

\ b eg in {flu sh le ft}
\begin{minipage}{30mm}

\begin{verbatim}
p lt (1 :1 0 )

\end{verbatim}
\end{minipage}
\begin{m inipage}{0.2\textwidth}

%\includegraphics[width = \textw idth]{onetoten} 
\end{minipage}

\ en d {flu sh le ft}

to produce:
10

p i t (1 :10) s

Inside a minipage \textwidth is the width of the minipage which, in 
this case, is a fifth of the document’s \textwidth.

L T eX: Version 2.09

To include a MATLAB figure in a IaTeX2.09 document you can use the 
epsf package. Print the figure using the -deps option in MATLAB’s print 
command. This will create an Encapsulated PostScript file in the current 
directory with the name, say, graphic.eps. Put \usepackage{epsf} 
after your \documentclass declaration at the top of your input file. 
Figures can then be included using commands such as:

\epsfxsize = 0 .3\textw idth ]{graphic.eps}

Many LTEX users like to put their graphics in floating figure environ­
ments, with captions and a centred graphic. This is how to do it:

\begin {figure}
\begin{center}

\leavevmode
\epsfxsize = 0 .5\ textw idth \ epsffile {graph ic.eps}
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\end{center}
\caption{This is  the f ig u r e ’ s ca p tion .}
\ label{graph}

\end{figure}

The command \epsfxsize = 0.5\textwidth makes the graphic’s 
width equal to half the value of \textwidth. The y size of the graphic 
will be scaled proportionally. The epsf function uses the bounding box 
comment in the .eps file to determine the size of the graphic.

The final (PostScript) output can be previewed on the screen 
using previewing software such as PageView (Sun), Ghostview, or 
GNU Ghostscript (multiplatform freeware).

M icrosoft W ord

W ord 7 To include a MATLAB graphic in Microsoft Word, print an 
Encapsulated PostScript file from MATLAB. Then, from within Word, 
create a frame by selecting “Insert” ̂  “Frame” and drag the mouse so 
that the frame is as big as you want the graphic. Then insert the Encap­
sulated PostScript file into the frame by choosing “Insert” ̂ “Picture 
. . .  ” . Select the appropriate file using the dialog box that appears. The 
graphic will not be viewable on the screen in the Word document but it 
will appear when printed.

W ord 97 In Word 97, choose “Insert” ̂  “Picture” ̂  “From File . . .  ” 
and select the .eps file from the dialog box. Once the picture is inserted 
you can resize it by clicking on it and dragging the nodes that appear at 
the corners and edges.

M icrosoft PowerPoint

In PowerPoint, select “Insert” ̂  “picture . . .  ” and select the file you 
want to insert. Encapsulated PostScript and bitmap files generally pro­
duce good results. A PostScript figure will not appear on the screen, 
except as a box outline, but a bitmap will appear. However, a PostScript 
figure will be higher quality when printed. If you want to overlay 
explanatory text, arrows, etc. from within PowerPoint, use the bitmap 
format.

CorelDraw

CorelDraw is able to import files of many different formats. From the 
File menu choose “Import . . .  ” and select the file. You may need to 
select a file type from the “Files of type” popup menu. The Encapsulated 
PostScript format will not appear on the screen, except as a box outline,
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but it will be high quality when printed. Bitmaps do appear on the 
screen, but are lower quality when printed.

B itm ap Im port On PCs choose MATLAB’s -dmeta option when using 
the print command to produce a file with the extension .emf. Then 
from CorelDraw select “File” ̂  “Import . . .  ” to get a file finder dia­
log box. Select the .emf file you created with MATLAB and choose the 
“Windows Metafile (WMF)” option in the “Files of Type” box. Click 
the “Import” button and CorelDraw will return you to your document 
where you must drag out a rectangle to define the size of the imported 
graphic. Once you drag the rectangle, the MATLAB graphic will appear 
in bitmap form.

Vector Graphic Im port Another option with CorelDraw is to import 
an HPGL file printed using the -dhpgl option from MATLAB. This is a 
format designed for Hewlett-Packard pen plotters, and has the advantage 
that the imported image can be edited from within CorelDraw. Follow 
the steps as for bitmaps above, but use the “HPGL Plotter File (PLT)” 
option in the “Files of Type” box. You have the option here of changing 
the pen colours used by CorelDraw’s emulation of an HP pen plotter. 
This format works well for graphics that could easily be plotted on a 
pen plotter. Line drawings work well but images do not. Surface plots 
are initially imported with no hidden line removal, but if you change the 
fill colour to white with CorelDraw, hidden lines will be removed. To do 
this fill colour change, ungroup the graphic, select the surface, click the 
right mouse button, and choose “Properties” , then choose white as the 
fill colour. If you have problems importing with this format, try opening 
the .hgl file in a text editor and deleting the last line.

36 Irregular Grids
In this section we discuss how to deal with data that is defined over 
an irregular grid. In Section 7.6 on page 32 we saw how do handle 
nonrectangular grids, but these were still regular in the sense that the 
x and y data grids could be defined using rectangular matrices (though 
the resulting geometrical domains did not have to be rectangles).

Some irregular three-dimensional data is supplied with MATLAB in 
the data file seamount.mat. Load the data and plot the points:
>> load seamount 
>> whos

Name Size . . .
caption 1x229 . . .
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x 294x1 . . .
y 294x1 . . .
z 294x1 . . .

Grand to ta l  is  1111 elements 
>> p lo t 3 ( x ,y ,z , ’ . ’ )
>> axis tigh t

Here we have 294 measurements of x (latitude), y (longitude), and z 
(height above sea level, which is negative). They represent measurements 
of a mountain under the sea.17 The data are stored as column vectors 
of x, y, and z values. Suppose we want to plot a surface and a contour 
map representing this seamount data. If you try to type s u r f (x ,y ,z )  
or con tou r(x ,y ,z ) with this data, you will not get any meaningful plot. 
Two ways of generating the desired plots are as follows:

1. Interpolate the data over a rectangular grid.

2. Use triangular gridding instead of rectangular gridding.

Let us look at each of these.

36.1 Interpolation over a Rectangular Grid
We continue the example above and define vectors of uniformly spaced 
points between the minimum and maximum values of x  and y :

x iv  = linspace(m in (x),m ax(x ),50); 
y iv  = linspace(m in (y),m ax(y ),50);

Each of these vectors has 50 elements. We now use the griddata inter­
polation function to do two things: (1) create matrices of the x  and y 
grids that correspond to a rectangular grid over the vectors x iv  and yiv, 
and (2) interpolate the data over this new rectangular grid. In the call 
to griddata that follows, we need to transpose the vector y iv  because 
griddata expects it to be a column vector in this case:

>> [ x i ,y i , z i ]  = g r id d a ta (x ,y ,z ,x iv ,y iv ’ ) ;
>> whos

Name Size Bytes Class
caption 1x229 458 char array

17The reference can be found by typing the caption variable:
>> caption 

caption =
Parker, R. L., Shure, L. & Hildebrand, J., "The application of inverse 

theory to seamount magnetism", Reviews of Geophysics vol 25, pp 17-40, 

1987. x is latitude (degrees), y is longitude (degrees), z is negative 
depth (meters).
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x 294x1 2352 double array
xi 50x50 20000 double array
xiv 1x50 400 double array
y 294x1 2352 double array
yi 50x50 20000 double array
yiv 1x50 400 double array
z 294x1 2352 double array
z i 50x50 20000 double array

Grand to ta l is  8711 elements using 68314 bytes

We now have three new matrix variables xi, y i, and z i  that correspond 
to the interpolated data. We make a plot of the original data and the 
interpolated surface:

p lo t 3 ( x ,y ,z , ’ o ’ ) 
hold on 
s u r f ( x i ,y i ,z i )  
colormap(autumn) 
axis tigh t

Where the points of the rectangular interpolation grid lie outside the 
convex hull defined by the data, the values are interpolated as NaN and 
are omitted from the surface plot. There are a variety of ways to do the 
interpolation; these are described in the help entry for griddata. We 
can use the interpolated data to plot a contour map of the seamount:

—40 

-4A.1

contour ( x i ,y i , z i ) -482
-46.3 

-40.4
211 211.2 211.4 211 6

36.2 Triangular Gridding
MATLAB comes equipped with the following functions for use in defining 
triangular grids:

griddata delaunay trimesh dsearch 
convhull voronoi t r is u r f  tsearch

The idea is that for any set of points (distinct and with no colinear 
subsets) in two dimensions, a set of triangles can be defined such that 
(1) no points lie within any triangle’s circumcircle and (2) the set com­
pletely covers the convex hull of the points. This idea is illustrated in this
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diagram. Such a triangular grid can be calculated 
for our seamount example of the last section. The 
triangles are defined using the delaunay function:

>> t r i  = delaunay(x,y);
>> tr i(5 6 3 :e n d ,:)  
ans =

2 4 7
1 2 6
8 3 11

25 245 59

We have displayed the last few lines of the M  x  3 matrix t r i ,  which 
defines the triangles by a set of triplets that are indices into the x  and y 
vectors. For example, the four triangles we have displayed in ans are

1: <(x(2),y(2)) (x(4),y(4)) (x(7),y(7))>

2 : <(x(1) ,y (1)) (x (2), y(2)) (x(6),y (6)))

3 : ( ( x (8) ,y(8)) (x (3) ,y(3)) (x (11) ,y (11))>
4 : ((x(25), y(25)) (x(245),y(245)) (x(59),y(59))>

We can use this triangulation matrix to plot a surface of the seamount 
data; each face of the surface is one of the triangles:

t r i s u r f ( t r i ,x ,y ,z )  
hold on
p lo t 3 ( x ,y ,z , ’ o ’ ) 
axis tigh t

The functions tr is u r f  and trimesh do not create surface objects; 
rather, they create patch objects.

37 Three-dimensional Modelling

37.1 Patches
In this section we discuss the representation of real-world objects. Such 
objects are built up using their faces (the six faces of a cube, for exam­
ple). In MATLAB “faces” are patches, and are defined using the patch 
command. Patches are blobs of coloured light (or ink) that are defined by 
vertex points. The line between the vertices is the patch’s edge and the 
enclosed area is the patch’s face. Before talking about three-dimensional 
objects we discuss the simpler two-dimensional patch.
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Simple Two-D im ensional Patches

To define a simple patch, specify the x  and y coordinates and the face 
colour:

x = [0 1 1 0 ]; 
y = [0 0 1 1]; 
p a tch (x ,y , ’ y ’ ) 
a x is ( [ -2  2 -2  2 ])

1

0

-1

- -2

The colour of the edge is black by default. The patch function automat­
ically closes the edge if the last vertex is not the same as the first vertex. 
Patches are usually defined with noncrossing boundaries, but boundaries 
can cross if required:

x(4) = 2; y(4) 
c l f
p a tch (x ,y , ’ y ’ )

.5;

(The patch command is a low-level command, which means that it gen­
erates a patch in the current axes without first clearing the axes. That 
is the reason for the c l f  above.)

Between patches whose boundaries cross and those whose boundaries 
do not cross are the patches whose boundaries “touch” . These can be 
used to create patches with holes:

x = [0 .5 .5 .4 .5 .6 .5 .5 1 .5 ] ; 
y = [0 0 . 1 . 2 . 3 . 2 . 1  0 0  1]; 
c l f
h = p a tch (x ,y , ’ y ’ ) ;

The tell-tale line between the outer boundary and the hole can be deleted 
by making it either invisible or the same colour as the face:

s e t (h , ’ edgeco lor ’ , ’ none’ ) A 
0 ■

(The command s e t (h , ’ edgeco lor ’ , ’ y ’ ) achieves the same effect.) 
But it would be nice to leave the edge boundary drawn around the 
shading; you just have to plot a line with the right points:

2

0

©  2000 by CRC Press LLC



xt = x ([1  9 10 1 ]) ; 
yt = y ([1  9 10 1 ]) ; 
xh = x (3 :7 ) ; 
yh = y (3 :7 ) ; 
hold on
p l o t ( x t ,y t , ’ k ’ ,x h ,y h ,’ k ’ )

Overlapping patches are drawn in order:

x1 = [ 0 1 1 0 ] ;  
y1 = [ 0 0 1 1 ] ;  
x2 = x1 + .5; 
y2 = y1 + .5; 15
c l f
subplot(221)
pa tch (x 1 ,y 1 ,’ y ’ ) .
pa tch (x 2 ,y 2 ,’ y ’ ) 0o
subplot(222) 
pa tch (x 2 ,y 2 ,’ y ’ ) 
pa tch (x 1 ,y 1 ,’ y ’ )

When patches with holes overlap, the one underneath shows through the 
hole:
x = [0 .5 .5 .4 .5 
y = [0 0 .1 .2 .3 
x1 = x + .5;
y1 = y + . 2 ;
c l f
p a tch (x 1 ,y 1 ,’ r ’ )
p a tch (x ,y , ’ y ’ )

.6 .5 .5 1 

. 2 . 1  0 0
.5 ];
1 ];

A
Patches defined by vectors that contain NaNs leave a gap in the edge at 
the NaN point and leave the enclosed region unfilled:

t  = lin sp a ce (0 ,2 *p i,1 0 ); 
x = c o s ( t ) ;y  = s in ( t ) ;  
subplot(221) 
p a tch (x ,y , ’ y ’ ) 
x (5) = NaN;y(5) = NaN; 
subplot(222) 
p a tch (x ,y , ’ y ’ )

0

-0 .5

-1

Three-dim ensional Patches

Three-dimensional patches are produced by giving the patch command 
x, y, and z data. The following generates an inclined triangle:
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xt = [0 1 .5 ] ; 
yt = [0 0 1]; 
z t = [0 0 1]; 
c l f
p a t c h (x t ,y t ,z t , ’ y ’ ) 
view(3) 
box 
xyz

Remember that patch is a low-level graphics function, so we must set 
the view to three dimensional by hand.
A plane is defined by three points, but four points need not lie in a 
plane. In such a case the patch may look a bit strange, depending on 
the viewing angle:

x = [0 1 1 0 ]; 
y = [0 0 1 1]; 
z = [0 0 0 1]; 
c l f
subplot(221) 
p a t c h (x ,y ,z , ’ y ’ ) 
v iew (-40 ,10 );box ;xyz  
subplot(222) 
p a t c h (x ,y ,z , ’ y ’ ) 
view (33 ,30);box;xyz

Three-dimensional patches should be planar. The above case, for exam­
ple, is better done as two patches:

x1 = [0 1 1];y1 = [ 0  0 1 ];z1  = [0 0 0 ]; 
x2 = [0 1 0 ];y2  = [ 0  1 1 ];z2  = [0 0 1]; 
c l f
subplot(221) 
p a tch (x 1 ,y 1 ,z1 ,’ y ’ ) 
p a tch (x 2 ,y 2 ,z2 ,’ y ’ ) 
v iew (-40 ,10 );box ;xyz  1

subplot(222)
« 0 .5p a tch (x 1 ,y 1 ,z1 ,’ y ’ ) 

p a tch (x 2 ,y 2 ,z2 ,’ y ’ ) 0

view (33 ,30);box;xyz

Complex three-dimensional objects should be built up using non­
intersecting three-dimensional patches. These can be drawn with a single 
call to the patch function, in which x, y, and z are matrices. Each col­
umn of the matrix will define a face. For example, consider the triangular 
pyramid:

У

1 0 yУ

0 0У

©  2000 by CRC Press LLC



[0 0 .5 0
.5 .5 1 1
1 .5 .5 .5 ];

[0 0 1 0
1 1 0 0
0 .5 .5 .5 ];

[0 0 0 0
0 0 0 0
0 1 1 1];

c l f
h = p a t c h (x ,y ,z , ’ y ’ ) 
v iew (3);box ;xyz

Exercise 21 Define x, y, and z matrices to draw a truncated 
square pyramid (answer on page 192):

p atch(x,y,z,’y ’)

view(3);box;xyz

Using x , y, and z matrices to draw objects results in the same vertex 
being listed as many times as the number of faces that share the vertex. 
A more compact way of drawing such multifaceted patches is to define 
a matrix of vertices and a matrix of faces.

Consider again the above triangular pyramid 
and which is shown here with labelled corners.
The vertices are numbered from 1 to 4 and the 
faces can be defined by specifying the order of 
joining the vertices. For example, the base is 
formed by joining the vertices 1, 2, and 3, and
the white front face “A” is formed by joining the vertices 2, 3, and 4. 
The vertices and faces can be defined by the following matrices:

V ertices

\ 4

О
/

0.5 N ,

"" 0.5

Faces

x y z
(  0 0 0 ^ ^  vertex 1

0.5 1 0 ^  vertex 2
1 0 0 ^  vertex 3ОЮ

0. 1 ^  vertex 4
/  1 2 3 \ ^  base

1 2 4

432 ^  face A
V 1 3 4
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The MATLAB code to draw the triangular pyramid using these matrices 
is
vertices_mx = [ 0 0 0  

.5 1 0  
1 0  0 

.5 .5 1]; 
faces_mx = [ 1 2 3  % base

1 2  4
2 3 4 % Face 'A ’
1 3  4 ];

c l f
p a tch (’ V ertice s ’ ,v e r t ice s_m x ,... 
’ fa c e s ’ ,faces_m x,’ FaceColor’ , ’ y ’ ) 
view(162,44) 
box;xyz

When drawing three dimensional objects, beware of intersecting patches. 
Each patch is drawn in its entirety, so intersecting patches often look 
strange. For example, here are two triangles that intersect along their 
symmetry axes:

vert = [0 0 0 
1 1 0  
1 - 1 0  
1 0 - 1  
1 0  1];  

f ac = [ 1 2 3  
1 4  5 ];

c l f
p a tch (’ v e r t ic e s ’ , v e r t , . . .
’ fa c e s ’ , f a c , ’ fa c e c o lo r ’ , ’ y ’ ) 
v iew (3 ),g r id ,x yz

Explore this graphic by typing rotate3d and moving the viewpoint with 
the mouse. You should see that you never get a realistic image. A better 
way to create the required display is to generate four nonintersecting 
triangles:

vert2 = [0 0 0 
1 1 0  
1 - 1 0  
1 0 - 1  
1 0  1 
1 0  0] ;
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fac2 = [ 1 2 6  
1 6  3
1 4  6 
1 6  5 ];

The resulting display is now rendered correctly no matter what the view­
ing angle:
c l f
p a tch (’ v e r t ic e s ’ ,v e r t 2 , . . .
’ fa c e s ’ , f a c 2 , ’ fa c e c o lo r ’ , ’ y ’ ) 
v iew (3 ),g r id ,x yz

Patch Colouring

Simple solid colouring of patches can be specified using the named 
colours, as we did for the yellow ( ’ y ’ ) patches of the previous section. 
You can also use arbitrary RGB colours. Here is a patch that should be 
orange on your display:

xt = [0 1 .5 ] ; 
yt = [0 0 1];
c l f  0 .

h = p a tch (x t ,y t ,[1  . 4 0 ] )

Patches have a number of properties that control how they are coloured. 
By using coloured patches, you can make pictures of objects that are 
colour-coded to some quantity you want to display. For example, the 
stress of a bent bar could be presented as the colour of the bar. Here is a 
list of patch colour properties and a description of what they do (taken 
from the Using M ATLAB Graphics manual).

CData Specify single, per face, or per vertex colours in conjunction with 
x, y, and z data.

CDataMapping Specifies whether colour data is scaled or used directly 
as indices into the Figure colormap.

FaceVertexCData Specify single, per face, or per vertex colours in con­
junction with faces and vertices data.

EdgeColor Edges can be invisible, a single colour, a flat colour deter­
mined by vertex colours, or interpolated colours determined by 
vertex colours.

FaceColor Faces can be invisible, a single colour, a flat colour deter­
mined by vertex colours, or interpolated colours determined by 
vertex colours.
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MarkerEdgeColor The colour of the marker, or the edge colour for filled 
markers.

MarkerFaceColor The fill colour for markers that are closed shapes.

The key to patch colouring is to define a colour matrix of the right size 
for the type of colouring you want to apply. The following tables illus­
trate the kinds of patch colouring possible with the FaceVertexCDdata 
property of patches. The matrices are shown assuming that the patch 
has Nf faces and Nv vertices.

Indexed Colours:
One colour One colour 

Single colour per face per vertex

Cl C1
C2 C2

. CNf . . CNv

In the table above, the numbers C  are indices into the current colour 
map and in the following table R , G , and B represent red, green, and 
blue intensity values between 0 and 1:

True (RGB) Colours:
One colour One colour

Single colour per face per vertex

R 1 G 1 B 1 R 1 G1 B i

BGR

R2 G2 B2 R2 G2 B2

RNS Gns B Nf _ . RN g n B N

We now give some examples of colouring effects (for a detailed descrip­
tion of the patch colouring properties see the Using MATLAB Graphics 
manual).

Example: Stressed Cable Suppose that you are an engineer working 
on a problem involving a cable under stress. You want to display the 
shape of the cable and colour the cable according to the stress at each 
point along it. We implement the display using a patch. First we 
generate some x , y , and z data to define the shape of the cable. For 
illustrative purposes let us assume the cable shape is a one-turn helix:
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t  = lin sp a ce (0 ,2 *p i,2 0 ); 
x = c o s ( t ) ;
y = t ;
z = s in ( t ) ;

We will use the vertex-and-faces method of specifying the patch. The 
vertex and face matrices are

v = [x ’ y ’ z ’ ] ;  
f  = 1:20;

We need a colormap of length 20 to colour our 20 data points: 

fvc = summer(20);

We generate a patch whose vertices are coloured according to the matrix 
fvc : 
c l f
h = patch(’Vertices’,v,...

’Faces’,f,...

’FaceVertexCdata’,fvc,...

’FaceColor’,’flat’, . . . qi5

’EdgeColor’,’flat’,... о

’ Marker ’ , ’ о ’ , . . . _aa

’MarkerFaceColor’,’flat’); 

view(44,18),axis equal,box

The patch looks a bit strange because its edge is a helix and not a planar 
shape. The face of this patch is the same colour as the first vertex. If 
we wanted the patch to be shaded the same way as its edge, we could 
set its fa ce co lo r  to interp:

s e t (h , ’ FaceColor’ , ’ in terp ’ )

But in this case our data is contained within the patch’s edge so we can 
set the fa ce co lo r  to none:

s e t (h , ’ FaceColor’ , ’ none’ )
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The patch function has automatically joined the first and last points, 
which we do not want to do. We can get rid of that line by setting the 
final colour of the FaceVertexCData matrix to be NaN:

fvc

)0,2cvf = NaN
= 0 0.5000 0.4000
0.0526 0.5263 0. 4000
[. . .]
0.8947 0.9474 0.4000
0.9474 0.9737 0.4000

NaN NaN NaN
>> s e t (h , ’ facevertexcdata ’ ,fv c )
As for most other instances of plotting NaNs, MATLAB handles not-a- 
number elements by leaving them out. Our final plot of the cable omits 
the points:

>> s e t (h , ’ marker’ , ’ none’ )

Example: Coloured Cylinder Suppose a cylindrical section of pipe 
is heated and that it develops a temperature distribution such that the 
temperature anywhere on its surface depends on the distance from the 
point of heating. We will use a single call to the patch command to 
draw the cylinder and display the temperature coded as different colours 
on the cylinder’s surface. We define the cylinder by defining the two 
rings at its ends. We will use the vertex-and-faces method of spec­
ifying the patch, and num­
ber the vertices according to 
the scheme shown in this dia­
gram. The vertices at the 
bottom are numbered from 1 
to N ; the vertices at the top 
are numbered from N  +  1 to 
2N. The first face will be 
formed by joining vertices 1,
N  + 1 ,  N  +  2 and 2. The 
second face will be formed by 
joining vertices 2, N +2, N +3 
and 3; and so on. The final 
face will be formed by joining vertices N , 2N , N  + 1  and 1. N  is equal 
to 20 in the diagram shown here. We start by defining the x, y, and z 
coordinates that we need:
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N = 20;
dt = 2*pi/N;
t = 0 :d t :(N -1 )*d t;
x = [co s (t )  c o s ( t ) ] ;
y = [s in (t )  s in ( t ) ] ;
z = [z e r o s (s iz e (t ) )  o n e s (s iz e ( t ) ) ] ;

The matrix of vertices is

vert = [x ’ y ’ z ’ ] ;

The matrix of faces must be defined so that each row gives, in order, the 
indices of the vertices that we want to join. The first face is formed by 
joining the vertices 1,N  +  1, N  +  2 and 2; the second face is formed by 
joining the vertices 2,N +  2,N  +  3 and 3; and so on. The faces matrix 
therefore must have the form:

/ N  +  1
N + 2

N  +  2 
N  +  3

\

N -  1
N

The faces matrix can be defined as follows:

2N -  1 
2N

2N 
N  +  1

N  
1

faces = [1:N; N+1:2*N; [N+2:2*N N+1]; [2:N 1]]

We now have all the data we need to draw the patch: 
c l f
view(3)
h = p a tch (’ v e r t ic e s ’ , v e r t , . . .
’ fa c e s , , f a c e s , , fa c e c o lo r , , , y ’ ) ;  
xyz

y x

To colour the patch, we need to specify the temperature at each of the 
vertices. We assume a heat source is located at ( x ,y ,z ) =  (- .5 , 0, 0.25), 
and that the temperature at any point on the cylinder is inversely pro­
portional to its distance away from the source. The temperature at the 
vertices is calculated as follows:

d ist  = sq r t ((x  + 0 .5 ).~ 2  + y.~2 + (z -  0 .2 5 ).~ 2 );
T = 1 . /d is t ;

We can now do the patch colouring: 

colormap(hot)
s e t (h , ’ facevertexcdata ’ ,T ’ , . . .

, fa c e c o lo r ’ , , in terp ’ , . . .
, edgeco lor ’ , ,none’ ) ;
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The colour of each vertex is indexed by the matrix T’ to the colours in 
the hot colour map. (The hot spot is coloured dark in this gray scale 
version.) Each face of the patch is coloured in a way that interpolates 
between the colours of its vertices.

Exercise 22 Can you see what we have done wrong in the above 
example? Hint: the patch colouring does not truly represent the 
distance away from the heat source. How would you go about 
getting a better representation? (Answer on page 193.)

37.2 Light Objects
To create pictures representing real objects, you can colour them as if 
they are lit by one or more lights. The lights can be any colour you 
like, and the lit objects can have their reflectance properties adjusted 
to simulate different surfaces: mirror-like, or self-coloured and shiny, or 
dull. Lighting can be applied to surface or patch objects. Light objects 
themselves cannot be seen. For the following examples the p lt l ig h t  
function plots a dot at the position of each light on the graphic. Let us 
create a sphere and see what it looks like when lit:

c l f
sphere 
axis equal 
grid ,box ,xyz
h = l ig h t ( 'p o s it io n * ,[1  -1 1] ) ; 
p lt l ig h t

You should see a sphere with rather dull z-coded colouring and a glint 
of white light reflecting from about 45°N latitude. The dot at the top 
right hand corner of the plot is the result of the p lt l ig h t  function, and 
represents the light. Let us see the result of using different coloured 
lights:

s e t (h , ’ c o lo r ’ ,[1  0 0 ]) 
l i g h t ( ’ p o s it io n ’ , [ -1  1 

’ c o lo r ’ ,[0  1 0 ]) 
l i g h t ( ’ p o s it io n ’ , [ -1  -  

’ c o lo r ’ ,[0  0 1]) 
p lt l ig h t

1]

1 1]

The light from the different coloured sources mix together to give a 
multicoloured shading. This graphic is still influenced by the z-coded
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colouring of the sphere itself. To show this more clearly, use the fla g  
colour map:

colorm ap(flag)

The flag colouring underlies the colour from the lights. To see the lights 
reflecting from a white sphere, set the colour of the surface to white. 
You could issue the statement colormap([1 1 1 ]), but the following 
achieves the same result:

h = f in d o b j( ’ type ’ , ’ su rface ’ ) ;  
s e t (h , ’ fa c e c o lo r ’ , ’ w’ )

So far, we have been using the default “flat” method of rendering lit 
objects: each facet is a constant colour. But there are other ways. Let 
us generate a gray surface to work on:

c l f
peaks(20),axis o f f  
h = f in d o b j( ’ type ’ , ’ su rface ’ ) ;  
s e t (h , ’ FaceColor’ , [ .5  .5 .5 ] , . . .  

’ edgeco lor ’ , [ .5  .5 .5 ])

Generate a few lights:

x = [-3 -3 3];
y = [-3 3 -3 ] ;
z = [ 8 8 8];
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co ls  = [1 1 1 
1 1 0
0 1 0 ]; 

fo r  i  = 1 :length (x ) 
l i g h t ( ’ p os ’ , [ x ( i ) , y ( i ) , z ( i ) ] , . . .  

’ c o lo r ’ , c o l s ( i , : ) )
end
p lt l ig h t

This is the flat lighting method. Other ways of rendering light are

lig h tin g  gouraud

lig h tin g  phong

The default is lig h tin g  f la t .
Continuing the last example, we illustrate some different material 

properties:

material metal

material shiny
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The default is m aterial default.
The m aterial and lig h tin g  commands are simple interfaces for 

changing the handle graphics properties that affect lighting. See the 
Using MATLAB Graphics manual for more details. For now, we illus­
trate some of the fine tuning effects that you can achieve. Here is the 
MATLAB logo, produced using the membrane function and illuminated:

The flat region near the light is a constant colour. That is because, by 
default, the light rays are parallel to the line joining the position of the 
light and the centre of the plot. To simulate a point source of light at 
the position of the light, set the sty le  property of the light to lo ca l:

As another example, the following uses various reflectance properties 
of the (slightly roughened) sphere, along with a light off to one side, to 
produce a simulated crescent moon (see moon.m in companion software). 
First the spherical data points are randomized to produce a slightly 
rough sphere:

[x ,y ,z ]  = sphere(100);
N = s iz e (x ,1 ) ;  
x = x + randn(N)/1000; 
y = y + randn(N)/1000; 
z = z + randn(N)/1000;
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To get the following result I used trial and error to get the right values 
for the surface reflectance properties:
clf

h = surf(x,y,z);

set(h,’facecolor’,[.5 .5 .5],...

’edgecol’,’none’) 

hi = light(’pos’,[1000,0,0]); 

axis equal 

axis off 

view(-20,0)

set(h,’specularstrength’,0) 

set(h,’ambientstrength’,1) 

set(h,’diffusestrength’,10) 

set(h,’backfacelighting’,’unlit’)

38 MATLAB Programming

38.1 Vectorising Code
I once heard Cleve Moler say, “The fo r  loop gets a bad rap.” One 
of the clearest ways to see the truth of this statement will be in this 
section on speeding up matlab routines by vectorising code. We will be 
eliminating fo r  loops and replacing them with operations on vectors or 
matrices. Yet, do not think that you must then eliminate all fo r  loops 
from your matlab code. When fo r  loops are used appropriately they 
are still very fast, efficient, and convenient. With this proviso, let us 
look at an example.

matlab ’s d i f f  function takes the difference between successive pairs 
of elements in a vector, and writes them to another vector. Suppose you 
want to carry out a similar operation, except now you want to compute 
the sum of successive pairs instead of the difference. In mathematical 
notation, you would write the formula:

bi =  ai +  ai+i, i =  1, 2 , . . .N  — 1.

where a is the input vector of length N , and b is the output vector of 
pairwise sums. The following piece of m atlab code would do the job:

N = len gth (a ); 
b = zeros(1,N  -  1); 
fo r  i  = 1:N-1

b ( i )  = a ( i )  + a ( i  + 1); 
end

This code, or at least the line inside the fo r  loop, has the advantage 
of resembling the mathematical notation quite closely. We measure the
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time taken by this routine to calculate the pairwise sum of a 100,000- 
element vector (the code is saved in the m-file forloop1 and we use 
etime to measure the execution time):

>>t0 = c lo ck ;fo r lo o p 1 ;e t im e (c lo ck ,t0 ) 
ans =

5.3545

A little over five seconds. Now we try to do it another way. Here is 
a diagram of what we want to do, with the elements we want to sum 
written out as indices of the respective vectors:

b

1 2 3 4 N 1 2 N  -  1

2 3 4 5 N  -  1 N

1 2 3 4 N 1 2 N  -  1

Writing the operation in this way allows us to see how we can use vectors 
of indices to do the summation. The top line of the sum can be written 
in MATLAB notation as a(1:N -1), and the second line can be written 
as a(2:N ). The pairwise sum vector b therefore can be calculated in 
MATLAB with the following code:

b = a (1:end-1) + a (2 :end);

We have used the special index end to refer to the final element of the 
vector. This time there is no advantage in pre-allocating the b vector 
as we did before the fo r  loop above. With regular use, the vectorised 
MATLAB representation will seem to resemble the mathematical repre­
sentation just as closely as the fo r  loop. The time taken by this code 
is

t 0 = c lo ck ;b  = a (1 :end-1) + a (2 :e n d );e t im e (c lo ck ,t0) 
ans =

2.2400

The vectorised version runs a little more than twice as fast as the 
fo r  loop implementation.

Looping over matrix or vector subscripts can often be replaced 
by such matrix operations. Appropriate matrices can be generated 
using subscripting, as here, or by rearranging the input matrices using 
reshape, the transpose operator, or other matrix manipulations. MAT­
LAB’s columnar operations sum, d i f f ,  prod, etc. can then be used to
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do very fast operations on the appropriate matrices. MATLAB’s suite of 
utility matrices can also com e in handy when vectorising code (see h e lp  
elm at).

We now look at a slightly more com plicated example. Suppose you 
want to generate a matrix a3 with elements:

^ 2  k j  >  i 
k=i

0 otherwise

The 5 5 version o f a is

1 1 +  2 1 +  2 +  3 1 + 2 + 3 + 4 1 +  2 +  3 +  4 +  5 \
0 2 2 +  3 2 +  3 +  4 2 + 3 + 4 + 5

a = 0 0 3 3 +  4 3 +  4 +  5
0 0 0 4 4 +  5
0 0 0 0 5 /
1 3 6 10 15 \
0 2 5 9 14

= 0 0 3 7 12
0 0 0 4 9
0 0 0 0 5 /

A simple loop implementation of this calculation would resemble the 
following:

N = 200; 
a = zeros(N ,N ); 
fo r  i  = 1:N 

fo r  j = 1:N 
i f  j>= i

a ( i , j )  = su m (i:j) ; 
end 

end 
end

Let us time this code (call it forloop2):

>>t0 = c lo ck ;fo r lo o p 2 ;e t im e (c lo ck ,t0 ) 
ans =

2.9241

There are may different ways that we could vectorise this calculation, 
depending on our ingenuity. For now, we note that we can generate the

3

ai3
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first row of a by taking the columnar sum of the triangular matrix s:

a (1 , : )  = sum( s)
1 1 1 1 1

"  \0 2 2 2 2
0 0 3 3 3

= sum 0 0 0 4 4
0 0 0 0 5

\ . . ..

We can generate the second row of a by taking the same
but leaving out the first row of s:

a (2 , : )  = sum( s (2 e n d ,:) )
0 2 2 2 2 "  \
0 0 3 3 3

= sum 0 0 0 4 4
0 0 0 0 5

\ : .

In general, then, we can generate the ith row of a by taking the columnar 
sum of s leaving out its first i — 1 rows: a ( i , : )  =  sum(s ( i : end , : ) ) .  
Our final code will consist of putting this statement inside a fo r  loop 
(this will be a good use of a fo r  loop—see the first paragraph in this 
section). Before we do that, though, we still need to generate the utility 
matrix s; here we can use matrix multiplication. The matrix we want 
can be obtained by taking the upper triangular part of the product of a 
column vector and a row vector:

1 1 1 1 1 •
"  ^ 1

0 2 2 2 2 2
0 0 3 3 3 3
0 0 0 4 4 =  triu 4 • ( 1 1 1 1  1 •••)
0 0 0 0 5 5

v . . . \ .

So here we have the final code to generate the a matrix (for N  =  200):

N = 200;
s = t r iu ( (1 :N ) ’ *ones(1 ,N )); 
a = zeros(N ,N ); 
fo r  i  = 1:N-1

a ( i , : )  = s u m (s (i:e n d ,:)) ; 
end
a (N ,:) = s (N ,:) ;
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The last row needs special treatment (see what happens when you let 
the loop run to i  = N). On my computer this code took 2.1 seconds to 
execute, compared to 2.9 seconds for the simple fo r  loop implementation 
given on page 177. We have saved nearly one second: not much, but if 
you have to repeat the calculation 10,000 times it becomes worthwhile.

38.2 M-File Subfunctions
matlab allows you to put more than one function in a file. If you put 
more than one function in a file, the second and subsequent functions are 
subfunctions; the first is the main function, or primary function. The 
idea is to have a file with the following structure:

function  dinner = cook(entree,m aincourse,dessert)
% Get matlab to  cook a meal.
E = prepare(entree);
M = prepare(maincourse);
D = prepare(dessert); 
dinner = [E M D];

function  output = prepare(course) 
switch iscourse(course) 

case ’ en tree ’
output = makeentree; 

case ’ maincourse’
output = makemaincourse; 

case ’ d essert ’
output = makedessert; 

otherwise
d is p ( ’ Unknown course: do you re a lly  want to eat t h is ? ’ )

end

In this example prepare is the subfunction of the cook function. When 
matlab encounters the call to prepare, it checks to see if there is a 
subfunction called prepare in the same file before looking along the 
search path for an m-file called prepare. (Actually before looking along 
the path, it checks for the existence of a private subdirectory first. See 
the helpdesk if this intrigues you.) This means that you can give a 
subfunction the same name as an existing matlab function. The main 
function will use the subfunction and any other function will use the 
other existing function. As is true for single-file functions, subfunctions 
cannot “see” variables unless you pass them as arguments or declare 
them global. Subfunctions are invisible to help, which sees only the 
main function.
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38.3 Debugging
matlab has a suite of debugging commands. A list of them can be 
obtained by typing help debug:

dbstop Set breakpoint dbstatus List all breakpoints
dbclear Remove breakpoint dbstep Execute one or more
dbcont Resume execution lines
dbdown Change local dbtype List M-file with

workspace context line numbers
dbup Change local dbmex Enable mex file

workspace context debugging
dbstack List who called whom dbquit Quit debug mode

Other commands that are useful when debugging code are

keyboard Put this command in a function and the function will stop at 
that point and return control to the command window, but within 
the function’s environment. This means that variables within the 
function can be accessed for printing out, plotting, etc. The com­
mand window prompt changes to K>> while the keyboard function 
is in effect. You can resume execution of the function by typing 
the character sequence r, e, t, u, r, and n at the K>> prompt,

echo Use the echo command to display each line of a script or function 
as it is executed.

diary The diary command is used when you want to save a copy of 
everything that appears in the command window, both what you 
type and what matlab types, in a file.

m ore The more command stops the screen from scrolling each time it 
fills with text. You can advance the screen one page at a time by 
pressing the space bar, or one line at a time by pressing the return 
key. If you press q when the screen is stopped, the current display 
will end at that point.

38.4 Profiler
The p r o f i l e  command measures the time taken to execute each line of 
code. Let us use it to examine the performance of the following code to 
produce an image of the Mandelbrot set (see companion software):

function  mandelbrot
% MANDEL.M Produces a p lo t  o f the famous Mandelbrot set.
% see: h ttp ://eu lero.ing .un ibo.it/~strum ia /M and.h tm l 
% The generator is  z = z"2+z0. Try changing the parameters:
N = 400;
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xcentre = -0 .6 ; 
ycentre = 0;
L = 1.5;
x = linspace(xcentre -  L ,xcentre + L,N); 
y = linspace(ycentre -  L ,ycentre + L,N);
[X,Y] = m eshgrid(x,y);
Z = X + i*Y;
Z0 = Z; 
fo r  k = 1:50;

Z = Z.~2 + Z0; 
end
ind1 = fin d (isn a n (Z )); 
ind2 = fin d (~ isn an (Z ));
Z(ind1) = 1;
Z(ind2) = 0;
co n to u r (x ,y ,a b s (Z ),[ .5  .5 ])
grid ;box
axis equal o f f

You must tell the p r o f i le  command which function you want to look 
at. The format of this command changed between MATLAB versions 5.2 
and 5.3.

P ro file  in M A T L A B  5.2

Initiate the profiler in MATLAB version 5.2 by typing:

p r o f i le  mandelbrot

Now go ahead and run the function:

mandelbrot

To see where MATLAB spent most of its time, type: 

>> p r o f i le  report
Total time in "mandelbrot.m": 30.12 seconds

100% of the to ta l  time was spent on lin e s : 
[15 21 12 18 17 19 11 20 22 16 ]
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10 y = linspace(ycentre -  L ,ycentre
0.13s, 0% 11 [X,Y] = m eshgrid(x,y);
0.67s, 2% 12 Z = X + i*Y;

13 N=0Z

14 fo r  k = 1:50;
23.02s, 76% 15 Z = Z.~2 + Z0;

0.02s, 0% 16 end
0.36s, 1% 17 ind1 = fin d (isn a n (Z ));
0.43s, 1% 18 ind2 = fin d (~ isn an (Z ));
0.22s, 1% 19 Z(ind1) = 1;
0.08s, 0% 20 Z(ind2) = 0;
5.15s, 17% 21 co n to u r (x ,y ,a b s (Z ),[ .5  .5 ])
0.02s, 0% 22 grid ;box

23 axis equal o f f

Most of the time here is spent iterating the values of Z. You can get 
a plot of the time taken by the most time-consuming lines of code by 
capturing the output of the profile command and using it to produce a 
pareto chart:

>> t  = p r o f i le  
t  =

f i l e :  [ 1x64 char ] 
in terva l: 0.0100

count: [23x1 double] 
sta te : ’ o f f ’

>> pareto (t.cou n t)

7 7 3 3

60 00 7 8 %

40 00 5 2 %

20 00 2 6 %

0 0 %
15 12 21

Here only the three most time-consuming lines (labelled on the x  axis) 
are shown, the rest taking too little time to be of concern. The left-hand 
scale shows the time taken to do each line, in hundredths of a second. 
The line is the cumulative time. If we wanted to speed up this code, we 
would do well to concentrate on line 15, and forget trying to speed up 
the graphics.

P ro file  in M A T L A B  5.3

The p r o f i le  command has been significantly expanded in MATLAB 5.3. 
Use p r o f i le  on to switch on the profiler. A hypertext report is pro­
duced by typing p r o f i le  report. A graphical display of the profile 
results is obtained by typing p r o f i le  p lot.
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39 Answers to Exercises 
(Part I, Basics of MATLAB)

Exercise 1 (Page 9)
The first three columns are a copy of the a matrix. The second three 
columns are the elements of a indexed by the elements of a. For example, 
a( a( 3, 2) )  = a(8)  = 6, which yields the marked element >6< of the 
answer:

>> [a a(a) ]  
ans =

1 2  3 1 4  7
4 5 6 2 5 8 
7 8 9 3 >6< 9

Exercise 2 (Page 39)
function  out = posneg(in)

% Test fo r  a l l  p os itiv e  (1 ) , or a l l  negative (-1 ) elements.

i f  a ll(in > 0 ) 
out = 1; 

e ls e i f  a ll(in < 0 ) 
out = -1 ; 

e lse
out = 0; 

end

Exercise 3 (Page 44)
The clown’s hair is orange. You can use load clown to load the data 
(type clear first to get rid of any superfluous data). Typing whos will 
tell you that the workspace contains a matrix X and a variable map. Use 
image(X),colormap(map) to view the image.

Exercise 4 (Page 49)
We want to fit the data to an exponential curve:

p =  AeBx .

First we take logs to convert to a linear equation:

log p =  log A  +  Bx .
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We change variables:

p  =  C  +  Bx .

Now we simply do a least-squares fit using this equation; that is, a 
straight line. We could use the backslash notation that we used to fit 
the parabola but, for variety, let’s use the p o ly f it  function. A straight 
line is a polynomial of degree 1. The following code takes the logarithm 
of the population data and fits a straight line to it:

>> logp = log (P );
>> c = p o ly fit (y e a r ,lo g p ,1 )  
c =

0.0430 -68.2191

The vector c contains B  and C , in that order. We use the polynomial 
evaluation function polyval to calculate the fitted population over a fine 
year grid:

>> year_fine = (y e a r (1 ):0 .5 :y e a r (le n g th (y e a r ))) ’ ;
>> lo g p f it  = p o ly v a l(c ,y e a r_ fin e );

And we display the results on linear and logarithmic y-scales: 

subplot(221)
p lo t (y e a r ,P ,’ : o ’ ,y e a r_ fin e ,e x p (lo g p fit ))
subplot(222)
sem ilogy(year,P ,’ : o ’ ,y e a r_ fin e ,e x p (lo g p fit ))

The single straight line cannot fit all the data. The right hand plot 
indicates that there were two growth factors, B: one prior to 1870 and 
one after. Let’s do another fit using only the data after 1870:

ind = find(year>1870); 
logp = lo g (P (in d )) ; 
c = p o ly f it (y e a r ( in d ) ,lo g p ,1 ) ;  
lo g p f it  = p o ly v a l(c ,y e a r_ fin e ); 
c l f  subplot(221)
p lo t (y e a r ,P ,’ : o ’ ,y e a r_ fin e ,e x p (lo g p fit ))
subplot(222)
sem ilogy(year,P ,’ : o ’ ,y e a r_ fin e ,e x p (lo g p fit ))
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If you zoom in on the right hand plot you’ll find that this growth rate is 
too fast for the period between 1990 and 1996.

Exercise 5 (Page 55)
The following m-file illustrates how to generate a 2-dimensional sinusoid 
and its FFT. Experiment with the relative x  and y frequencies and see 
the effect on the FFT. Try different functions of x  and y. Try adding 
some noise. Try plotting the logarithm of P.

t= lin s p a c e (-p i ,p i ,6 4 ) ;
[x ,y]=m eshgrid(t); 
z = sin(3*x + 9*y);
Z = f f t 2 ( z ) ;
P = f f t s h i f t (a b s (Z ) .~ 2 ) ;  
f  = f f t f r e q (0 .5 ,  le n g th (t )) ;

c l f
colormap([0 0 0 ]) 
subplot(221) 
m esh(x,y,z) 
a x is ( [ -p i  p i . . .

-p i  p i . . .
-15 15]) 

view([60 50]) 
x la b e l( ’ x ’ ) 
y la b e l( ’ y ’ ) 
t i t l e ( ’ S ignal’ )

subplot(223) 
m esh (f,f,P ) 
axis tigh t 
view([60 50]) 
x la b e l( ’ x -frequency ’ ) 
y la b e l( ’ y -frequency ’ ) 
t i t l e ( ’ Transform’ )
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Exercise 6 (Page 59)
You can generate a sinusoidal frequency variation by specifying a sinusoid 
input to the voltage controlled oscillator function vco. Get the results of 
specgram by using output arguments and compare a plot of the results 
using an image and a surface plot:

Fs = 1000;
t  = lin sp ace(0 ,2*p i,819 2 ); 
x = s in ( t ) ;
y = v co (x ,[0  500],F s);
[z ,freq ,t im e] = specgram (y ,[],F s);
p = 2 0 * log l0 (a b s (z ))
subplot(221) 

im agesc(tim e,freq,p) 
axis xy
colorm ap(flipud(gray))
colorbar
x la b e l( ’ Time, s e c ’ ) 
y la b e l( ’ Frequency, Hz’ )

subplot(223) 1» .

su r fl(t im e ,fre q ,p ) 
shading f la t
x la b e l( ’ Time, s e c ’ ) 
y la b e l( ’ Frequency, Hz’ ) 
z la b e l ( ’ Power, dB’ )
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40 Answers to Exercises 
(Part II, Beyond the Basics)

Exercise 7 (Page 74)
To repeat the calculation for the case of 100 nodes, we do the following:

dt = 2*pi/100;
t  = dt:d t:100*d t;
x = c o s ( t ) ’ ;y = s i n ( t ) ’ ;
xy = [x y ] ;
e = ones(100,1);
A = spdiags(e ,2  ,100,100) + . . .  

spdiags(e,50,100,100) + . . .  
spd iags(e ,98 ,100,100);

A = A +
A’ ;
subplot(221) 
spy(A)
subplot(222) 
gp lot(A ,xy) 
axis equal o f f

The next part of the exercise is to change the connection matrix. An 
interesting one is the geometrically parallel network:

A = spdiags(e, 25,100,100) + . . .
spd iags(e ,-75 ,100 ,100 );

A = f l i p l r ( A ) ; 
subplot(221) 
spy(A)
subplot(222) 
gp lot(A ,xy) 
axis equal o f f

Exercise 8 (Page 75)
This will produce a list of the ASCII characters corresponding to the 
integers from zero to 255:

I = (0 :2 5 5 )’ ;
[ in t2 s tr (I )  b lanks(256)’ ch ar(I)]

Some of the output is shown below:

©  2000 by CRC Press LLC



33 36 $ 39 ’ 42 * 45 - 48 0
34 ” 37 % 40 ( 43 + 46 . 194
35 # 38 & 41 ) 44 , 47 / 50 2

Typing char(7) rings the bell.

Exercise 9 (Page 80)
The strvcat function is used instead of char because it ignores empty 
strings in the input; the char function doesn’t:

>> char( ’ ’ , ’ The’ , ’ ’ , ’ quick’ ) 
ans =

The

quick
>> s t r v c a t ( ’ ’ , ’ The’ , ’ ’ , ’ quick’ ) 
ans =
The
quick

If char were used instead of strvcat, the result would always begin with 
a blank line.

Exercise 10 (Page 83)
The problem is to deal with the two cases: (1) where the name of a 
function or m-file is given, such as ‘ s in ’, and (2) where the function itself 
is given, such as ‘s i n ( x ) ’ . The difference here boils down to whether 
the string input contains brackets or not (see hint). In other cases the 
string input might not contain brackets, but would contain characters 
used in defining a function, such as +, -, *, / ,  or . (as in t . " 2). The 
ASCII values for these characters are all less than 48, so we detect the 
presence of a function (rather than a function name) by checking the 
input string for ASCII values less than 48. If this is the case, we make 
the input string into an inline function before passing it to feval:

function  funplot ( f , l im s )

% Simple function  p lo tte r .

% Test fo r  characters whose presence would imply that f  
% is  a function  (not a function  name): 
i f  any(f<48) 

f  = i n l i n e ( f ) ;  
end
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x = lin s p a ce (lim s (1 ),lim s (2 )) ;
y = f e v a l ( f ,x ) ;
c l f
p lo t (x ,y )

(This trick is used in the m-file fp lo t  which is a more elaborate version 
of our funplot. fp lo t  adapts the plotting grid to the local behaviour 
of the function, putting in more points where the gradient is steep.)

Exercise 11 (Page 86)
The “stuck” in question is indicated by the arrow in the following plot:

>> t  = { ’ he lp ’ sp ira l(3 ) ; . . .
eye(2) ’ I ’ ’ m stuck ’ } ;  

>> t t  = { t  t  ; t ’ f l i p l r ( t ) } ;
>> t t {2 ,2 } {2 ,1 } (5 :9 )
ans =
stuck
>> c e l lp lo t ( t t )

Exercise 12 (Page 94)
The difference between meshgrid and ndgrid for less than four input 
arguments is that the first two output arguments are transposed. This 
makes it convenient to do x-y plots using the [x ,y] outputs of the 
meshgrid command. The outputs of the ndgrid command follow the log­
ical ordering of indices in MATLAB: if [u,v,w] = n d g r id ( . . . )  then u’s 
elements will vary over its rows, v ’s elements will vary over its columns, 
and w’s elements will vary over its pages.

Exercise 13 (Page 97)
The distance d of each point from (x0,y0) is given by:

d =  \J(x -  xo)2 +  (y -  yo)2 ,

so we calculate this for the centres of the red, green, and blue regions. 
Then we find the points outside the radius and set them equal to zero:

i heip i i hdip i

i heip i

iffl'StUfffr

i heip i

i’m'stuffk
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R = 1; N = 200;
[x ,y] = m esh grid (lin space(-2 ,2 ,N )); 
r = sq r t ((x  + 0 .4 ) ." 2  + (y + 0 .4 ) ." 2 ) ;  
ind = find(r>R ); 
r (in d ) = 0;
g = sq r t ((x  -  0 .4 ) ." 2  + (y + 0 .4 ) ." 2 ) ;  
ind = find(g>R); 
g (ind ) = 0;
b = sq r t (x ."2  + (y -  0 .4 ) . " 2 ) ;  
ind = find(b>R); 
b(ind) = 0; 
rgb = c a t (3 ,r ,g ,b ) ;  
imagesc(rgb) 
axis equal o f f

You may find that the image on the screen has been dithered because we 
now have a very large number of colours. You might like to investigate 
other combinations of red, green, and blue matrices, for example:

r = peaks; 
g = r ’ ;
b = f f t s h i f t ( r ) ;

Mixing linear ramps of colour in different directions is interesting. Be 
adventurous!

Exercise 14 (Page 115)
Since we know the dimensions of the borders in pixels, we set the figure’s 
units property to p ixe ls . It is then just a matter of taking into acount 
the correct number of borders when defining the figures’ positions which, 
remember, don’t include the borders. The following code does the job. 
We start by getting the size of the screen (the root object, whose handle 
is alway zero) in pixels.

s e t ( 0 , ’ U nits’ , ’ p ix e ls ’ ) 
screensize = g e t (0 , ’ ScreenSize’ ) ;  
edgethickness = 5; 
topthickness = 10; 
scr_width = screen size (3 ); 
scr_height = screen size (4 );
figw idth = scr_width/2 -  2*edgethickness; 
figh eigh t = scr_height/2  -  . . .

2*(edgethickness + topth ickness); 
pos1 = [ed g eth ick n ess ,...

ed g eth ick n ess ,...
f ig w id th ,. . .
f ig h e ig h t];

\г

©  2000 by CRC Press LLC



pos2 = [scr_width/2 + edgethickness,... 

edgethickness,... 

figwidth,... 

figheight];
pos3 = [scr_width/2 + edgethickness,... _

scr_height/2 + edgethickness,...

figure(’Position’,posl) 

figure(’Position’,pos2) 

figure(’Position’,pos3)

The width o f the window border might be different from these on your 
com puter. There is no way o f obtaining these widths from within MAT­
LAB. You might have to resort to trial and error to get the window 
thicknesses exactly right for your computer.

Exercise 15 (Page 118)
Issue the com m and type gcf and you will see that if there are no figures, 
gcf creates one, whereas get(0,’CurrentFigure’) doesn ’t.

Exercise 16 (Page 119)
Did you have fun?

Exercise 17 (Page 123)
The following comm ands should produce the required display. First we 
generate a grid o f 100x100 points over the interval [0,1]:

N = 100;

v = linspace(0,1,N);

[x,y] = meshgrid(v);

We want to draw a vertical line at each o f the grid points to  represent 
the vines o f the vineyard or trees o f the orchard. We string out the x  
and y grid points into two row vectors and use matrix multiplication to 
duplicate these. The z values, representing the start and end points, go 
from zero to a height o f 0.01:

x = [1; 1]*x(:)’; 

y = [1; 1]*y(:)’;
z = [zeros(1,N"2); 0.01*ones(1,N"2)]; 

plot3(x,y,z,’r ’)
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(The plot might take a few seconds to render; be patient.) We want 
to modify this plot so that a perspective projection is used, and with a 
viewpoint as if we were standing near the edge of the vineyard:
s e t (g c a , ’ p r o j ’ , ’ p er ’ ) 
axis equal
s e t (g c a , ’ cam eraposition’ , [ .5  -1 .2 ])  
axis vis3d o f f
s e t (g c a , ’ cam eraposition’ , [ .5  - .1  0 .03 ])

Exercise 18 (Page 132)
You should not use t i t l e  instead of text because the title disappears 
when you do axis o f f .

Exercise 19 (Page 145)
The following code does the job. Items are “grayed out” by setting their 
“enable” property to “off” .
uimenu(’ Label’ , ’ F i le ’ )
uimenu(’ Label’ , ’ View’ ) ;
E = uimenu(’ Label’ , ’ E d it ’ )
uimenu(’ Label’ , ’ Options’ )
uimenu(E,’ Label’ , ’ Cut’ , ’ Enable’ , ’ o f f ’ )
uimenu(E,’ Label’ , ’ Copy’ , ’ Enable’ , ’ o f f ’ )
uimenu(E,’ Label’ , ’ Paste’ )
uimenu(E,’ Label’ , ’ R otate’ , ’ Separator’ , ’ on’ )
S = uimenu(E,’ Label’ , ’ S ca le ’ ) 
uimenu(S,’ Label’ , ’ 10%’ , . . .

’ Enable’ , ’ o f f ’ ) 
uimenu(S,’ Label’ , ’ 50%’ , . . .

’ Enable’ , ’ o f f ’ ) 
uimenu(S,’ Label’ , ’ 150%’ , . . .

’ Enable’ , ’ o f f ’ ) 
uimenu(S,’ Label’ , ’ 200%’ , . . .

’ Enable’ , ’ o f f ’ ) 
uimenu(S,’ Label’ , . . .

’ Custom S c a l in g . . . ’ )

Exercise 21 (Page 164)
A truncated pyramid can be produced using the following code:

H Figure N
F b  V w w Edit Cpton*

Cu!

Rotate

Scale КУЧ-

IS to r
m
Custom Sea ling
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[0 0 1 1 0 .4
1 1 1 0 0 .4
1 .6 .6 .4 .4 .6
0 .4 .6 .6 .4 .6 ];

[0 1 1 0 0 .4
0 1 0 0 1 .6
1 .6 .4 .4 .6 .6
1 .6 .6 .4 .4 .4 ];

[0 0 0 0 0 1
0 0 0 0 0 1
0 1 1 1 1 1
0 1 1 1 1 1];

y,x,h( z ’• ̂  i y ’ )
v iew (3);xyz,box

Exercise 22 (Page 171)
The faces are coloured according to the colours of the vertex. We have 
vertices defined for z =  0 and z =  1, but the heat source is located at 
z =  0.25. The result should be symmetric about the z =  0.25 plane, 
but our result does not have this symmetry. The reason is that we only 
have two z values. To produce a better display we simply need to add 
vertices at a range of z values. The following code does the job:

N = 100; % Number o f points around the c ir c le  
M = 30; % Number o f c ir c le s  in the cylinder 
dt = 2*pi/N; 
t  = (0 :d t :(N -1 )* d t ) ’ ;
h = lin space(0 ,1 ,M ); % vector of heights
xv = c o s ( t ) ;  
yv = s in ( t ) ;

% Reproduce the v e rtice s  at d iffe re n t heights:
x = repmat(xv,M,1);
y = repmat(yv,M,1);
z = ones(N,1)*h;
z = z ( : ) ;
vert = [x y z ] ;

% These are the fa ce ts  o f a sing le  ’ la y e r ’ : 
fa cets  = zeros(N ,4 ); 
fa ce ts (1 :N -1 ,1 ) = (1 :N -1 )’ ; 
fa ce ts (1 :N -1 ,2 ) = ((N + 1):(2*N -1 ))’ ; 
fa ce ts (1 :N -1 ,3 ) = ((N +2):(2*N ))’ ; 
fa ce ts (1 :N -1 ,4 ) = (2 :N )’ ; 
fa ce ts (N ,:)  = [N 2*N N+1 1];
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% Reproduce the layers at the d iffe re n t heights: 
faces = zeros((M -1)*N ,4); 
fo r  i=1:M-1

rows = (1:N) + ( i  -  1)*N; 
fa ce s (ro w s ,:)  = fa ce ts  + ( i  -  1)*N; 

end

%Define heat source and temperature: 
xs = -0 .5 ; 
ys = 0; 
zs = 0.25;
d is t  = sq r t ((x  -  x s ) ."2  + (y -  y s ) ."2  + (z -  z s ) . " 2 ) ;
T = 1 . /d is t ;

c l f
colormap(hot)
h = p a tch (’ v e r t ic e s ’ ,v e r t , ’ fa c e s ’ , f a c e s , . . .  

’ facevertexcdata ’ ,T , . . .
’ fa c e c o lo r ’ , ’ in terp ’ , . . .
’ l in e s ty le ’ , ’ none’ ) ;  

view(78,36) 
axis equal 
% P lot the source: 
hold on
p lo t3 ([x s  x s ] ,[y s  y s ] , [0  z s ])  
p l o t 3 ( x s , y s , z s , ’ * ’ , . . .

’ markerSize’ ,12)

In the resulting graphic the vertices are shown as points and the source 
is shown as the star on the stick.
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