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PREFACE

This book introduces applied numerical methods for engineering and science 
students in sophomore to senior levels; it targets the students of today who do 
not like or do not have time to derive and prove mathematical results. It can 
also serve as a reference to MATLAB applications for professional engineers 
and scientists, since many of the MATLAB codes presented after introducing 
each algorithm’s basic ideas can easily be modified to solve similar problems 
even by those who do not know what is going on inside the MATLAB routines 
and the algorithms they use. Just as most drivers only have to know where to 
go and how to drive a car to get to their destinations, most users only have to 
know how to define the problems they want to solve using MATLAB and how 
to use the corresponding routines to solve their problems. We never deny that 
detailed knowledge about the algorithm (engine) of the program (car) is helpful 
for getting safely to the solution (destination); we only imply that one-time users 
of any MATLAB program or routine may use this book as well as the students 
who want to understand the underlying principle of each algorithm.

In this book, we focus on understanding the fundamental mathematical con
cepts and mastering problem-solving skills using numerical methods with the 
help of MATLAB and skip some tedious derivations. Obviously, basic con
cepts must be taught so that students can properly formulate the mathematics 
problems. Afterwards, students can directly use the MATLAB codes to solve 
practical problems. Almost every algorithm introduced in this book is followed 
by example MATLAB code with a friendly interface so that students can easily 
modify the code to solve real life problems. The selection of exercises fol
lows the some philosophy of making the learning easy and practical. Students 
should be able to solve similar problems immediately after taking the class using 
the MATLAB codes we provide. For most students— and particularly nonmath 
majors— understanding how to use numerical tools correctly in solving their 
problems of interest is more important than studying lengthy proofs and deriva
tions.

MATLAB is one of the most developed software packages available today. 
It provides many numerical methods and it is very easy to use, even for people 
without prior programming experience. We have supplemented MATLAB’s built- 
in functions with more than 100 small MATLAB routines. Readers should find

xiii
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these routines handy and useful. Some of these routines give better results for 
some problems than the built-in functions. Students are encouraged to develop 
their own routines following the examples.

The knowledge in this book is derived from the work of many eminent sci
entists, scholars, researchers, and MATLAB developers, all of whom we thank. 
We thank our colleagues, students, relatives, and friends for their support and 
encouragement. We thank the reviewers, whose comments were so helpful in 
tuning this book. We especially thank Senior Researcher Yong-Suk Park for his 
invaluable help in correction. We thank the editorial and production staff of John 
Wiley & Sons, Inc. including Editor Val Moliere and Production Editor Lisa 
VanHorn for their kind, efficient, and encouraging guide.

Won Young Yang 
Wenwu Cao 

Tae-Sang Chung 
John Morris

October 2004



1
MATLAB USAGE AND 

COMPUTATIONAL ERRORS

1.1 BASIC OPERATIONS OF MATLAB

MATLAB is a high-level software package with many built-in functions that 
make the learning of numerical methods much easier and more interesting. In 
this section we will introduce some basic operations that will enable you to 
learn the software and build your own programs for problem solving. In the 
workstation environment, you type “matlab” to start the program, while in the 
PC environment, you simply double-click the MATLAB icon.

Once you start the MATLAB program, a Command window will open with the 
MATLAB prompt >>. On the command line, you can type MATLAB commands, 
functions together with their input/output arguments, and the names of script files 
containing a block of statements to be executed at a time or functions defined 
by users. The MATLAB program files must have the extension name ***.m to 
be executed in the MATLAB environment. If you want to create a new M-file 
or edit an existing file, you click File/New/M-file or File/Open in the top left 
corner of the main menu, find/select/load the file by double-clicking it, and then 
begin editing it in the Editor window. If the path of the file you want to run 
is not listed in the MATLAB search path, the file name will not be recognized 
by MATLAB. In such cases, you need to add the path to the MATLAB-path 
list by clicking the menu ‘File/SetPath’ in the Command window, clicking the 
‘A ddFolder’ button, browsing/clicking the folder name, and finally clicking the 
SAVE button and the Close button. The lookfor command is available to help 
you find the MATLAB commands/functions which are related with a job you

Applied Numerical M ethods Using MATLAB®, by Yang, Cao, Chung, and M orris 
Copyright © 2005 John W iley & Sons, Inc., ISBN 0-471-69833-4
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2 MATLAB USAGE AND COMPUTATIONAL ERRORS

want to be done. The help command helps you know the usage of a particular 
command/function. You may type directly in the Command window

>>lookfor repeat or >>help for

to find the MATLAB commands in connection with ‘repeat’ or to obtain infor
mation about the “for loop”.

1.1.1 Input/O utput of D ata from  MATLAB C om m and W indow

MATLAB remembers all input data in a session (anything entered through direct 
keyboard input or running a script file) until the command ‘c l e a r ( ) ’ is given or 
you exit MATLAB.

One of the many features of MATLAB is that it enables us to deal with the 
vectors/matrices in the same way as scalars. For instance, to input the matri
ces/vectors,

A =
1 2 3 
4 5 6 B =

3
2 C =  [1 - 2  3 - 4 ]

type in the MATLAB Command window as below:

>>A = [ 1 2  3;4 5 6]
A = 1 2 3 

4 5 6
>>B = [3;-2;1]; %put the semicolon at the end of the statement to suppress 

the result printout onto the screen 
>>C = [1 -2 3 -4]

At the end of the statement, press <Enter> if you want to check the result 
of executing the statement immediately. Otherwise, type a semicolon “;” before 
pressing < Enter> so that your window will not be overloaded by a long display 
of results.

1

1.1.2 Input/O utput of D ata T hrough Files

MATLAB can handle two types of data files. One is the binary format mat- 
files named ***.mat. This kind of file can preserve the values of more than one 
variable, but will be handled only in the MATLAB environment and cannot be 
shared with other programming environments. The other is the ASCII dat-files 
named ***.dat, which can be shared with other programming environments, but 
preserve the values of only one variable.

Below are a few sample statements for storing some data into a mat-file in 
the current directory and reading the data back from the mat-file:

>>save ABC A B C  %store the values of A,B,C in to  the f i l e  'ABC.mat' 
>>clear A C %clear the memory of MATLAB about A,C
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>>A %what is  the value of A?
??? Undefined function or variab le  'A'

>>load ABC A C %read the values of A,C from the f i l e  'ABC.mat'
>>A %the value of A 

A = 1 2 3 
4 5 6

If you want to store the data into an ASCII dat-file (in the current directory), 
make the filename the same as the name of the data and type ‘/ a s c i i ’ at the 
end of the save statement.

>>save B.dat B /a s c i i

However, with the save/load commands into/from a dat-file, the value of only 
one variable having the lowercase name can be saved/loaded, a scalar or a vec
tor/matrix. Besides, non-numeric data cannot be handled by using a dat-file. If 
you save a string data into a dat-file, its ASCII code will be saved. If a dat-file 
is constructed to have a data matrix in other environments than MATLAB, every 
line (row) of the file must have the same number of columns. If you want to read 
the data from the dat-file in MATLAB, just type the (lowercase) filename ***.dat 
after ‘load’, which will also be recognized as the name of the data contained in 
the dat-file.

>>load b.dat %read the value of variable b from the asc ii f i le  'b .da t'

On the MATLAB command line, you can type ‘nm112’ to run the following 
M-file ‘nm112.m’ consisting of several file input(save)/output(load) statements. 
Then you will see the effects of the individual statements from the running 
results appearing on the screen.

%nm112.m
clear
A = [1 2 3;4 5 6]
B = [3 ;-2 ;1 ];
C(2) = 2; C(4) = 4
d isp ( 'P re ss  any key to  see the input/output through F i l e s ')  
save ABC A B C  %save A,B & C as a MAT-file named 'ABC.mat' 
c le a r ( 'A ', 'C ')  %remove the memory about A and C 
load ABC A C %read MAT-file to  re co llec t the memory about A and C 
save B.dat B /a s c i i  %save B as an ASCII-file named 'b .d a t ' 
c lea r B
load b .dat %read ASCII-file to  re co llec t the memory about b 
b
x = in p u t( 'E n te r x : ')  
format short e 
x
format ra t,  x 
format long, x 
format short, x
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1.1.3 Input/O utput of D ata Using Keyboard
The command ‘i n p u t ’ enables the user to input some data via the keyboard. 
For example,

>>x = in p u t( 'E n te r x: ')
Enter x: 1/3 
x = 0.3333

Note that the fraction 1/3 is a nonterminating decimal number, but only four 
digits after the decimal point are displayed as the result of executing the above 
command. This is a choice of formatting in MATLAB. One may choose to 
display more decimal places by using the command ‘form at’, which can make 
a fraction show up as a fraction, as a decimal number with more digits, or even 
in an exponential form of a normalized number times 10 to the power of some 
integer. For instance:

>>format ra t %as a ra tio n a l number 
>>x

x = 1/3
>>format long %as a decimal number with 14 d ig its  
>>x

x = 0.33333333333333 
>>format long e %as a long exponential form
>>x

x = 3.333333333333333e-001 
>>format hex %as a hexadecimal form as represen ted /stored  in memory
>>x

x = 3fd5555555555555 
>>format short e %as a short exponential form
>>x

x = 3.3333e-001 
>>format short %back to  a short form (d e fau lt)
>>x

x = 0.3333

Note that the number of displayed digits is not the actual number of significant 
digits of the value stored in computer memory. This point will be made clear in 
Section 1.2.1.

There are other ways of displaying the value of a variable and a string on the 
screen than typing the name of the variable. Two useful commands are ‘d isp ()  ’ 
and ‘f p r in t f ( )  ’. The former displays the value of a variable or a string without 
‘x = ’ or ‘ans = ’; the latter displays the values of several variables in a specified 
format and with explanatory/cosmetic strings. For example:

>>disp('The value of x = ') ,d isp (x )
% disp('string_to_disp lay ' or variable_name)

The value of x = 0.3333

Table 1.1 summarizes the type specifiers and special characters that are used in 
‘f p r i n t f ( ) ’ statements.

Below is a program that uses the command ‘i n p u t ’ so that the user could 
input some data via the keyboard. If we run the program, it gets a value of the
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Table 1.1 Type Specifiers and Special Characters Used in f p r i n t f ( )  Statements

Type
Specifier

Printing Form:
fprintf(‘**format string**’, variables_to_be_printed,..)

Special
Character Meaning

%c Character type \n New line
%s String type \ t Tab
%d Decimal integer number type \b Backspace
%f Floating point number type \r CR return
%e Decimal exponential type \f Form feed
%x Hexadecimal integer number 'O'O -o
%bx Floating number in 16 hexadecimal digits(64 bits) 1 1 1

temperature in Fahrenheit [°F] via the keyboard from the user, converts it into 
the temperature in Centigrade [°C] and then prints the results with some remarks 
both onto the screen and into a data file named ‘nm113.dat’.

%nm113.m
f = in p u t( 'In p u t the temperature in F ah ren h e it[F ]:') ; 
c = 5 /9*(f-32);
fp r in tf( '% 5 .2 f(in  Fahrenheit) is  %5.2f(in C e n tig ra d e ) .\n ',f ,c )  
fid=fopen('nm 113.dat', 'w ');
f p r in t f ( f id ,  '% 5.2f(Fahrenheit) is  % 5 .2 f(C en tig rad e).\n ',f ,c ); 
fc lo se (f id ) ;

In case you want the keyboard input to be recognized as a string, you should 
add the character 's ' as the second input argument.

>>ans = input('Answer <yes> or <no>: ' , ' s ' )

1.1.4 2-D G raphic Input/O utput
How do we plot the value(s) of a vector or an array? Suppose that data reflecting 
the highest/lowest temperatures for 5 days are stored as a 5 x 2 array in an ASCII 
file named ‘tem p.da t’.

The job of the MATLAB program “nm114_1.m” is to plot these data. Running 
the program yields the graph shown in Fig. 1.1a. Note that the first line is a 
comment about the name and the functional objective of the program(file), and 
the fourth and fifth lines are auxiliary statements that designate the graph title 
and units of the vertical/horizontal axis; only the second & third lines are indis
pensable in drawing the colored graph. We need only a few MATLAB statements 
for this artwork, which shows the power of MATLAB.

%nm114_1: p lo t the data of a 5x2 array stored in "temp.dat" 
load temp.dat
c lf ,  plot(temp) %clear any ex is ten t figure and plot 
t i t l e ( ' t h e  highest/low est temperature of these days') 
y lab e l( 'd eg re e s[C ] ') , x lab e l( 'd ay ')
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The highest/lowest temperature of days The highest/lowest temperature of days

variable unspecified variable specified

Figure 1.1 Plot of a 5 x 2 matrix data representing the highest/lowest temperature.

Here are several things to keep in mind.

• The command p lo t( )  reads along the columns of the 5 x 2 array data given 
as its input argument and recognizes each column as the value of a vector.

• MATLAB assumes the domain of the horizontal variable to be [1 2 .. 5] by 
default, where 5 equals the length of the vector to be plotted (see Fig. 1.1a).

• The graph is constructed by connecting the data points with the straight lines 
and is piecewise-linear, while it looks like a curve as the data points are 
densely collected. Note that the graph can be plotted as points in various 
forms according to the optional input argument described in Table 1.2.

(Q1) Suppose the data in the array named ‘temp’ are the highest/lowest temperatures 
measured on the 11th,12th,14th,16th, and 17th days, respectively. How should we 
modify the above program to have the actual days shown on the horizontal axis?

(A1) Just make the day vector [11 12 14 16 17] and use it as the first input argument 
of the plot() command.

>>days = [11 12 14 16 17]
>>plot(days,temp)

Executing these statements, we obtain the graph in Fig. 1.1b.
(Q2) What statements should be added to change the ranges of the horizontal/vertical 

axes into 10-20 and 0-30, respectively, and draw the grid on the graph?

Table 1.2 Graphic Line Specifications Used in the p lo t ( )  Command

Line Type Point Type (Marker Symbol) Color

- solid line
: dotted line
- - dashed line 
-. dash-dot

. (dot) 
л : Л 
p : ☆ 
d : ❖

+ (plus) 
> : > 
v : V 
< : <

* (asterisk) 
о (circle) 
x : x-mark 
s : □

г : red 
g : green 
b : blue 
к : black

m : magenta
у : yellow
с : cyan (sky blue)
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(A2) >>axis([10 20 0 30]), grid on 
>>plot(days,temp)

(Q3) How do we make the scales of the horizontal/vertical axes equal so that a circle 
appears round, not like an ellipse?

(A3) >>axis('equal')
(Q4) How do we have another graph overlapped onto an existing graph?
(A4) If you use the ‘hold on’ command after plotting the first graph, any following 

graphs in the same section will be overlapped onto the existing one(s) rather 
than plotted newly. For example:

>>hold on, p lo t(d a y s ,te m p (:,1 ) , 'b * ', d a y s ,te m p (:,2 ) ,'ro ')

This will be good until you issue the command ‘hold off ’ or clear all the graphs 
in the graphic window by using the ‘c l f ’ command.

Sometimes we need to see the interrelationship between two variables. Sup
pose we want to plot the lowest/highest temperature, respectively, along the 
horizontal/vertical axis in order to grasp the relationship between them. Let us 
try using the following command:

>>plot(tem p(:,1),tem p(:,2),'kx ') % temp(:,2) vs. temp(:,1) in black 'x'

This will produce a pointwise graph, which is fine. But, if you replace the third 
input argument by ‘b: ’ or just omit it to draw a piecewise-linear graph connecting 
the data points as Fig. 1.2a, the graphic result looks clumsy, because the data on 
the horizontal axis are not arranged in ascending or descending order. The graph 
will look better if you sort the data on the horizontal axis and also the data on 
the vertical axis accordingly and then plot the relationship in the piecewise-linear 
style by typing the MATLAB commands as follows:

>>[temp1,I] = so rt(tem p (:,1 )); temp2 = tem p(I,2);
>>plot(temp1,temp2)

The graph obtained by using these commands is shown in Fig.1.2b, which looks 
more informative than Fig.1.2a.

(a) Data not arranged (b) Data arranged along the horizontal axis.

Figure 1.2 Examples of graphs obtained using the p lo t() command.
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We can also use the p lo t( )  command to draw a circle.

>>r = 1; th = [0 :0 .01:2]*pi; % [0:0.01:2] makes [0 0.01 0.02 .. 2] 
> > p lo t(r* co s(th ),r* sin (th ))
>>plot(r*exp(j*th)) % alternatively ,

Note that the p lo t( )  command with a sequence of complex numbers as its first 
input argument plots the real/imaginary parts along the horizontal/vertical axis.

The p o la r( )  command plots the phase (in radians)/magnitude given as its 
first/second input argument, respectively (see Fig.1.3a).

> >polar(th ,exp(-th)) %polar p lo t of a s p ira l

Several other plotting commands, such as sem ilogx(), sem ilogy(), lo g lo g (), 
s t a i r s ( ) ,  stem (), b a r ( ) /b a rh ( ) ,  and h i s t ( ) ,  may be used to draw various 
graphs (shown in Figs.1.3 and 1.4). Readers may use the ‘he lp ’ command to get 
the detailed usage of each one and try running the following MATLAB program 
‘n m ll4  2.m’.

%nm114_2: p lo t several types of graph 
th = [0: .02:1]*pi; 
subplot(221), p o la r(th ,ex p (-th )) 
subplot(222), semilogx(exp(th)) 
subplot(223), semilogy(exp(th)) 
subplot(224), loglog(exp(th)) 
pause, c lf
subplot(221), s ta irs ( [1  3 2 0]) 
subplot(222), stem([1 3 2 0]) 
subplot(223), bar([2 3; 4 5]) 
subplot(224), barh([2 3; 4 5]) 
pause, c l f
y = [0.3 0.9 1.6 2.7 3 2 .4]; 
subplot(221), h is t(y ,3 ) 
subplot(222), h is t(y ,0 .5  + [0 1 2])

Moreover, the commands s p r in t f ( ) ,  te x t ( ) ,  and g te x t( )  are used for com
bining supplementary statements with the value(s) of one or more variables to 
construct a string and printing it at a certain location on the existing graph. 
For instance, let us try the following statements in the MATLAB Command 
window:

>>f = 1./[1:10]; p lot(f)
>>n = 3; [s,errmsg] = sprintf('f(% 1d) = % 5.2f',n,f(n))
>>text(3,f(3),s) %writes the text string at the point (3,f(3))
>>gtext('f(x) = 1/x ') %writes the input string at point clicked by mouse

The command g in p u t()  allows you to obtain the coordinates of a point 
by clicking the mouse button on the existent graph. Let us try the following
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90
1 2 0 ^ 9^ 6 0

150,

180

210'

30

0

330

240 270 :300

(a) polar (th, r) (b) semilogx (x, y)

(d) loglog (x, y)

Figure 1.3 Graphs drawn by various graphic commands.

(c) bar ([2 3; 4 5])

1 2
(e) hist ([0.3 .. 2.4], 3)

---------------

о

r---------------

с)

1 2  3 4
(b) stem ([1 3 2 0])

(d) barh ([2 3; 4 5])

1 2 3
(f) hist ([..], [0.5 1.5 2.5])

Figure 1.4 Graphs drawn by various graphic commands.
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commands:

>>[x,y,butkey] = ginput %get the x,y coordinates & # of the mouse button 
or a sc ii code of the key pressed t i l l  pressing the ENTER key 

>>[x,y,butkey] = ginput(n) %repeat the same job for up to n points clicked

1.1.5 3-D G raphic O utput

MATLAB has several 3-D graphic plotting commands such as p lo t3 () , mesh(), 
and co n to u r(). p lo t3 ()  plots a 2-D valued-function of a scalar-valued vari
able; m esh ()/con tou r() plots a scalar valued-function of a 2-D variable in a 
mesh/contour-like style, respectively.

Readers are recommended to use the help command for detailed usage of each 
command. Try running the MATLAB program ‘nm115.m’ to see what figures 
will appear (Figs.1.5 and 1.6).

%nm115: to  p lo t 3D graphs 
t  = 0 :p i/50 :6*pi; 
expt = exp(-0 .1* t);
xt = ex p t.* co s(t); yt = ex p t.* s in ( t) ;
%dividing the screen in to  2 x 2  sections 
subplot(221), p lo t3 (x t, y t, t ) ,  grid on %helix 
subplot(222), p lo t3 (x t, y t, t ) ,  grid on, view([0 0 1]) 
subplot(223), p lo t3 ( t, x t, y t) ,  grid on, view([1 -3 1]) 
subplot(224), p lo t3 ( t, y t, x t) ,  grid on, view([0 -3 0]) 
pause, c lf
x = -2 :.1 :2 ; y = -2 :.1 :2 ;
[X,Y] = meshgrid(x,y); Z = X."2 + Y."2;
subplot(221), mesh(X,Y,Z), grid on %[azimuth,elevation] = [-37.5,30] 
subplot(222), mesh(X,Y,Z), view ([0,20]), grid on 
pause, view([30,30]) 
subplot(223), contour(X,Y,Z) 
subplot(224), contour(X ,Y ,Z ,[.5 ,2 ,4 .5])

1.1.6 M athem atical Functions

Mathematical functions and special reserved constants/variables defined in MAT- 
LAB are listed in Table 1.3.

MATLAB also allows us to define our own function and store it in a file 
named after the function name so that it can be used as if it were a built-in 
function. For instance, we can define a scalar-valued function:

f 1 (x) = 1/(1 +  8x2)

and a vector-valued function

x2 +  4 x | -  5 
2x2 — 2x1 — 3x2 — 2.5
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(b) plot3( ), view([0 0 1])

(d) plot3( ), view ([0 -3 0]) 
Figure 1.5 Graphs drawn by the p lo t3() command with different views.

10

5

-2 -2
(a) mesh( ), view (-37.5, 30)

-2 - 1 0  1 
(c) contour(X,Y,Z)

10

5

^2

0 2 -2 
(b) mesh( ), view (30, 20)

(d) contour(X,Y,Z, [0.5, 2, 4.5])
Figure 1.6 Graphs drawn by the mesh() and contour() commands. 

as follows.

function y = f1(x) 
y = 1 ./(1+8*x.A2);

function y = f49(x)
y(1) = x(1)*x(1)+4*x(2)*x(2) -5;
у (2) = 2*x(1)*x (1 )-2*x(1) -3*x(2) -2.5;

2
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Table 1.3 Functions and Variables Inside MATLAB

Function Rem ark Function Rem ark

cos(x) exp(x) Exponential function

sin(x) log(x) Natural logarithm

tan(x) log 10(x ) Com m on logarithm

acos(x) cos_1(x) abs(x) Absolute value

asin(x) sin_1(x) angle(x) Phase o f a  complex 
num ber [rad]

atan(x) —tt/ 2  <  tan- 1 (x) <  tt/ 2 sqrt(x) Square root

atan2(y,x) —n  <  tan_1(y, x)  <  71 real(x) Real part

cosh(x) {ex +  e~x ) j l imag(x) Im aginary part

sinh(x)

H11H

conj(x) Complex conjugate

tanh(x) (ex -  e - x ) / ( ex +  e-x) round(x) The nearest integer 
(round-off)

acosh(x) cosh_1(x) fix(x) The nearest integer 
tow ard 0

asinh(x) sinh_1(x) floor(x) The greatest integer
<  X

atanh(x) 1 1

ceil(x) The sm allest integer
>  X

max M axim um  and its index sign(x) l(positive)/0/- 
1 (negative)

min M inim um  and its index mod(y,x) Rem ainder o f y/x

sum Sum rem(y,x) Rem ainder o f y/x

prod Product e v a l ( f ) Evaluate an expression

norm N orm feval(f,a) Function evaluation

sort Sort in the ascending 
order

polyval Value o f a  polynomial 
function

clock Present time poly Polynom ial with given 
roots
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Table 1.3 (continued)

find Index of elem ent(s) roots Roots o f polynomial

f l o p s (0) Reset the flops count to 
zero

tic Start a  stopwatch tim er

flops Cum ulative #  o f floating 
point operations 
(unavailable in 
MATLAB 6.x)

too Read the stopwatch 
tim er (elapsed time 
from  tic)

date Present date magic M agic square

Reserved \& riab lesw ith  Special Meaning

i.i Pi ж

eps M achine epsilon floating 
point relative accuracy

realmax realmin Largest/sm allest 
positive number

break Exit w hile/for loop Inf, inf Largest num ber (oo)

end The end of for-loop or 
if, while, case statement 
or an array index

NaN N ot_a_N um ber
(undetermined)

nargin N um ber o f input 
arguments

nargout N um ber o f output 
arguments

varargin Variable input argum ent 
list

varargout Variable output 
argum ent list

Once we store these functions into the files named and ‘f49.m’ after the
function names, respectively, we can call and use them as needed inside another 
M-file or in the MATLAB Command window.

>>f1([0 1]) %several values of a scalar function of a scalar variable 
ans = 1.0000 0.1111

>>f49([0 1]) %a value of a 2-D vector function of a vector variable 
ans = -1.0000 -5.5000

> >feval('f1 ',[0  1]), fe v a l( 'f4 9 ',[0  1]) %equivalently, yields the same 
ans = 1.0000 0.1111 
ans = -1.0000 -5.5000

(Q5) With the function f1(x) defined as a scalar function of a scalar variable, we enter 
a vector as its input argument to obtain a seemingly vector-valued output. What’s 
going on?
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(A5) It is just a set of function values [f1(x1) f1(x2) ...] obtained at a time for several 
values [x1 x2...] of x. In expectation of one-shot multi-operation, it is a good 
practice to put a dot(.) just before the arithmetic operators * (multiplication), 
/(division), and - (power) in the function definition so that the term-by-term 
(termwise) operation can be done any time.

Note that we can define a simple function not only in an independent M-file, 
but also inside a program by using the in l in e ( )  command or just in a form of 
literal expression that can be evaluated by the command e v a l( ) .

>>f1 = in l in e ( '1 . / ( 1 + 8 * x .- 2 ) ', 'x ') ;  
>>f1([0 1 ]), fe v a l(f1 ,[0  1])

ans = 1.0000 0.1111
ans = 1.0000 0.1111

>>f1 = '1./(1+8*x. 0=x2) f1l(ave
ans = 1.0000 0.1111

As far as a polynomial function is concerned, it can simply be defined as its 
coefficient vector arranged in descending order. It may be called to yield its 
value for certain value(s) of its independent variable by using the command 
p o ly v a l().

>>p = [1 0 -3 2]; %polynomial function p(x) = x3 -  3x + 2 
>>polyval(p,[0 1])

ans = 2.0000 0.0000

The multiplication of two polynomials can be performed by taking the con
volution of their coefficient vectors representing the polynomials in MATLAB, 
since

(aNx N +------- + a1x + ao)(bNx N +------- + b 1x + bo) = C2n x 2N +------- + C1x +  co

where

min(k,N)
ck = ak-mbm for k = 2N, 2N — 1 , . . . ,  1, 0

m=max(0,k—N)

This operation can be done by using the MATLAB built-in command conv() as 
illustrated below.

>>a = [1 -1]; b=[1 1 1]; c = conv(a,b)

c = 1 0 0 - 1  %meaning that (x — 1)(x2 +  x +  1) =  x 3 +  0 ■ x 2 +  0 ■ x — 1

But, in case you want to multiply a polynomial by only x", you can simply 
append n zeros to the right end of the polynomial coefficient vector to extend 
its dimension.

>>a = [ 1 2  3]; c = [a 0 0] %equivalently, c = conv(a,[1 0 0])

c = 1 2 3 0 0 %meaning that (x2 +  2x +  3)x2 =  x4 +  2x3 +  3x2 +  0 ■ x +  0
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1.1.7 O perations on V ecto rs and  M atrices
We can define a new scalar/vector/matrix or redefine any existing ones in terms 
of the existent ones or irrespective of them. In the MATLAB Command window, 
let us defineA and B as

A = 1 2 3 
4 5 6 B =

3
—2

1

by typing

>>A = [1 2 3;4 5 6], B = [3;-2;1]

We can modify them or take a portion of them. For example:

>>A = [A;7 8 9]
A = 1 2 3

4 5 6
7 8 9

>>B = [B [1 0 -1 ] ']
B = 3 1 

-2 0
1 -1

Here, the apostrophe (prime) operator ( ')  takes the complex conjugate transpose 
and functions virtually as a transpose operator for real-valued matrices. If you 
want to take just the transpose of a complex-valued matrix, you should put a 
dot(.) before ', that is, ‘ . '  ’.

When extending an existing matrix or defining another one based on it, the 
compatibility of dimensions should be observed. For instance, if you try to annex 
a 4 x 1 matrix into the 3 x 1 matrix B, MATLAB will reject it squarely, giving 
you an error message.

>>B = [B ones(4,1)]
???All matrices on a row in the bracketed expression must have 

the same number of rows

We can modify or refer to a portion of a given matrix.

>>A(3,3) 
A = 1

4 
7

from 1st column to 2nd column>>A(2:3,1:2) %from 2nd row to 3rd row, 
ans = 4  5 

7 8

>>A(2,:) %2nd row, a l l  columns 
ans = 4  5 6

The colon (:)  is used for defining an arithmetic (equal difference) sequence 
without the bracket [ ]  as

>>t = 0 :0 .1 :2
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which makes

t  = [0.0 0.1 0.2 . . .  1.9 2.0]

(Q6) What if we omit the increment between the left/right boundary numbers?
(A6) By default, the increment is 1.

>>t = 0:2 
t  = 0 1 2

(Q7) What if the right boundary number is smaller/greater than the left boundary 
number with a positive/negative increment?

(A7) It yields an empty matrix, which is useless.

>>t = 0:-2
t  = Empty matrix: 1-by-0

(Q8) If we define just some elements of a vector not fully, but sporadically, will we 
have a row vector or a column vector and how will it be filled in between? 

(A8) We will have a row vector filled with zeros between the defined elements.

>>D(2) = 2; D(4) = 3 
D = 0 2 0 3

(Q9) How do we make a column vector in the same style?
(A9) We must initialize it as a (zero-filled) row vector, prior to giving it a value.

>>D = zeros(4 ,1 ); D(2) = 2; D(4) = 3 
D = 0

2
0
3

(Q10) What happens if the specified element index of an array exceeds the defined 
range?

(A10) It is rejected. MATLAB does not accept nonpositive or noninteger indices. 

>>D(5)
??? Index exceeds matrix dimensions.

>>D(0) = 1;
??? Index in to  matrix is  negative or zero.

>>D(1.2)
??? Subscript indices must e ith e r be rea l positive 

in tegers ..

(Q11) How do we know the size (the numbers of rows/columns) of an already- 
defined array?
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(A11) Use the length() and size() commands as indicated below.

>>length(D) 
ans = 4 

>>[M,N] = size(A)
M = 3 
N = 3

MATLAB enables us to handle vector/matrix operations in almost the same 
way as scalar operations. However, we must make sure of the dimensional com
patibility between vectors/matrices, and we must put a dot (. ) in front of the 
operator for termwise (element-by-element) operations. The addition of a matrix 
and a scalar adds the scalar to every element of the matrix. The multiplication 
of a matrix by a scalar multiplies every element of the matrix by the scalar.

There are several things to know about the matrix division and inversion.

Rem ark 1.1. Rules of Vector/Matrix Operation

1. For a matrix to be invertible, it must be square and nonsingular; that is, the 
numbers of its rows and columns must be equal and its determinant must 
not be zero.

2. The MATLAB command pinv(A) provides us with a matrix X  of the same 
dimension as A T such that A X A  = A and X A X  = X.  We can use this 
command to get the right/left pseudo- (generalized) inverse A T[AAT]—1/  
[ATA]—1A T for a matrix A given as its input argument, depending on 
whether the number (M ) of rows is smaller or greater than the number 
(N ) of columns, so long as the matrix is of full rank; that is, rank(A) =  
min(M, N)[K-1, Section 6.4]. Note that A T[AAT]—1 /[A TA]—1AT is called 
the right/left inverse because it is multiplied onto the right/left side of A 
to yield an identity matrix.

3. You should be careful when using the pinv(A) command for a rank- 
deficient matrix, because its output is no longer the right/left inverse, which 
does not even exist for rank-deficient matrices.

4. The value of a scalar function having an array value as its argument is also 
an array with the same dimension.

Suppose we have defined vectors a 1, a2, b1, b2 and matrices A1, A2, Basfollows: 

>>a1 = [-1 2 3]; a2 = [4 5 2]; b1 = [1 -3 ] ';  b2 = [-2 0];

a 1 =  [ —1 2 3], a2 =  [4 5 2], b1 =  

>>A1 = [a1;a2], A2 = [a1;[b2 1 ]], B = [b1 b2

A 1 =

1
—3

b2 = [ —1 2 3]

—1 2 3 —1 2 3 1 —2"
4 5 2 , A2 = —2 0 1 , в  = —3 0
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The results of various operations on these vectors/matrices are as follows (pay 
attention to the error message):

>>A3 = A1 + A2, A4 = A1 - A2, 1 + A1 %matrix/scalar addition/subtraction 
A3 = -2 4 6 A4 = 0 0 0 ans = 0 3 4 

2 5 3  6 5 1  5 6 3
>>AB = A1*B % AB(m, n) = J] Ai(m, k)B(k, n) matrix m ultiplication?

к
??? Error using ==> *
Inner matrix dimensions must agree.

>>BA1 = B*A1 % regular matrix multiplication 
BA1 = -9 -8 -1

3 -6 -9
>>AA = A1.*A2 %termwise multiplication 

AA = 1 4 9 
-8 0 2

>>AB=A1.*B % AB(m, n) = A1(m, n)B(m, n) termwise multiplication 
??? Error using ==> .*
Matrix dimensions must agree.

»A1_1 = pinv(A1), A1 ' * (A1 *A1 ' ) л -1, eye (size (A1, 2)) / А1 %Л[[ЛИ[]-1 
A1 1 = -0.1914 0.1399 %right inverse of a 2 x 3 matrix A1 

0.0617 0.0947 
0.2284 -0.0165

»A1*A1_1 %A1/A1 = I implies the valid ity  of A1_1 as the right inverse 
ans = 1.0000 0.0000 

0.0000 1.0000
>>A5 = A1'; % a 3 x 2 matrix
»A5_1 = pinv(A5), (A51*A5)1*A51,A5\eye(size(A5,1)) % [л£л5]-1л£

A5 1 = -0.1914 0.0617 0.2284 %left inverse of a 3x2 matrix A5 
0.1399 0.0947 -0.0165

»A5_1*A5 % = I implies the valid ity  of A5_1 as the le f t  inverse 
ans = 1.0000 -0.0000 

-0.0000 1.0000
>>A1_li = (A11*A1)л-1*A1' %the le f t  inverse of matrix A1 with M < N? 

Warning: Matrix is  close to singular or badly scaled.
Results may be inaccurate. RCOND = 9.804831e-018.

A1_li = -0.2500 0.2500 
0.2500 0 
0.5000 0.5000

(Q12) Does the left inverse of a matrix having rows fewer than columns exist?
(A12) No. There is no N x M matrix that is premultiplied on the left of an M x N 

matrix with M < N  to yield a nonsingular matrix, far from an identity matrix. 
In this context, MATLAB should have rejected the above case on the ground 
that [AT A1] is singular and so its inverse does not exist. But, because the round
off errors make a very small number appear to be a zero or make a real zero 
appear to be a very small number (as will be mentioned in Remark 2.3), it is 
not easy for MATLAB to tell a near-singularity from a real singularity. That is 
why MATLAB dares not to declare the singularity case and instead issues just a 
warning message to remind you to check the validity of the result so that it will 
not be blamed for a delusion. Therefore, you must be alert for the condition
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mentioned in item 2 of Remark 1.1, which says that, in order for the left inverse 
to exist, the number of rows must not be less than the number of columns.

>>A1_li*A1 %No identity matrix, since A1_li isn 't the le ft inverse 
ans = 1.2500 0.7500 -0.2500 

-0.2500 0.5000 0.7500 
1.5000 3.5000 2.5000

>>det(A1'*A1) %A1 is not left-invertible for A1'*A1 is singular 
ans = 0

(cf) Let us be nice to MATLAB as it is to us. From the standpoint of promoting mutual 
understanding between us and MATLAB, we acknowledge that MATLAB tries to 
show us apparently good results to please us like always, sometimes even pretending 
not to be obsessed by the demon of ‘ill-condition’ in order not to make us feel uneasy. 
How kind MATLAB is! But, we should be always careful not to be spoiled by its 
benevolence and not to accept the computing results every inch as it is. In this case, 
even though the matrix [A1'*A1] is singular and so not invertible, MATLAB tried 
to invert it and that’s all. MATLAB must have felt something abnormal as can be 
seen from the ominous warning message prior to the computing result. Who would 
blame MATLAB for being so thoughtful and loyal to us? We might well be rather 
touched by its sincerity and smartness.

In the above statements, we see the slash(/)/backslash(\) operators. These oper
ators are used for right/left division, respectively; B/A is the same as B*inv(A) and 
A\B is the same as inv(A)*B when A is invertible and the dimensions of A and B 
are compatible. Noting that B/A is equivalent to (A' \ B ') ' , let us take a close look 
at the function of the backslash(\) operator.

>>X = A1\A1 % an id en tity  matrix?
X = 1.0000 0 -0.8462

0 1.0000 1.0769
0 0 0

(Q13) It seems that A1\A1 should have been an identity matrix, but it is not, contrary 
to our expectation. Why?

(A13) We should know more about the various functions of the backslash(\), which 
can be seen by typing ‘help slash’ into the MATLAB Command window. Let 
Remark 1.2 answer this question in cooperation with the next case.

>>A1*X - A1 %zero i f  X is  the so lution to  A1*X = A1? 
ans = 1.0e-015 * 0 0 0

0 0 -0.4441

Rem ark 1.2. The Function of Backslash (\) Operator. Overall, for the command 
‘A\B’, MATLAB finds a solution to the equation A*X = B. Let us denote the 
row/column dimension of the matrix A by M and N.

1. If matrix A is square and upper/lower-triangular in the sense that all of 
its elements below/above the diagonal are zero, then MATLAB finds the 
solution by applying backward/forward substitution method (Section 2.2.1).
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2. If matrix A is square, symmetric (Hermitian), and positive definite, then 
MATLAB finds the solution by using Cholesky factorization (Section 2.4.2).

3. If matrix A is square and has no special feature, then MATLAB finds the 
solution by using LU decomposition (Section 2.4.1).

4. If matrix A is rectangular, then MATLAB finds a solution by using QR 
factorization (Section 2.4.2). In case A is rectangular and of full rank with 
rank(A) =  min(M,N), it will be the LS (least-squares) solution [Eq. (2.1.10)] 
for M > N (overdetermined case) and one of the many solutions that is not 
always the same as the minimum-norm solution [Eq. (2.1.7)] for M < N 
(underdetermined case). But for the case when A is rectangular and has 
rank deficiency, what MATLAB gives us may be useless. Therefore, you 
must pay attention to the warning message about rank deficiency, which 
might tell you not to count on the dead-end solution made by the backslash 
(\) operator. To find an alternative in the case of rank deficiency, you 
had better resort to singular value decomposition (SVD). See Problem 2.8 
for details.

For the moment, let us continue to try more operations on matrices.

>>A1./A2 %termwise right division 
ans = 1  1 1

-2 Inf 2 
>>A1.\A2 %termwise le f t  division 

ans = 1 1 1
-0.5 0 0.5

>>format ra t, B~-1 %represent the numbers (of B—1) in fractional form 
ans = 0 -1/3 

-1/2 -1/6 
>>inv(B) %inverse matrix, equivalently 

ans = 0 -1/3 
-1/2 -1/6

>>B.~-1 %termwise inversion(reciprocal of each element) 
ans = 1 -1/2 

-1/3 Inf 
>>B~2 %square of B, i . e . ,  B2 = B * B 

ans = 7 -2 
-3 6

>>B.~2 %termwise square(square of each element) 
ans = 1 (b 1̂) 4(b22)

9(b21) 0(b22)
>>2.~B %2 to the power of each number in B 

ans = 2 (2b11) 1/4(2b12)
1/8(2b21) 1 (2b22)

>>A1.~A2 %element of A1 to the power of each element in A2 
ans = -1 (A1(1, 1)A2(1,1)) 4(A1(1, 2}Ai(1,2)) 27(A1(1, 3)A2(1,3))

1/16(A1(2, 1)A2(2,1)) 1(A1(2, 2)A2(2,T)) 2(A1(2, 3)A2(2,3))
>>format short, exp(B) %elements of eB with 4 d ig its  below the dp 

ans = 2.7183(eb11) 0.1353(eb12)
0.0498(eb21) 1.0000(eb22)

There are more useful MATLAB commands worthwhile to learn by heart.
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Rem ark 1.3. More Useful Commands for Vector/Matrix Operations

1. We can use the commands ze ro s () , ones(), and eye() to construct a 
matrix of specified size or the same size as an existing matrix which has 
only zeros, only ones, or only ones/zeros on/off its diagonal.

>>Z = zeros(2,3) %or zeros(size(A1)) yielding a 2 x 3 zero matrix 
Z = 0 0 0 

0 0 0
>>E = ones(size(B)) %or ones(3,2) yielding a 3 x 2 one matrix 

E = 1 1
1 1
1 1

>>I = eye(2) %yielding a 2 x 2 identity  matrix
I = 1 0 

0 1

2. We can use the d iag () command to make a column vector composed 
of the diagonal elements of a matrix or to make a diagonal matrix with 
on-diagonal elements taken from a vector given as the input argument.

>>A1, diag(A1) %column vector consisting of diagonal elements
A1 = -1 2 3

4 5 2 
ans = -1

5

3. We can use the commands sum ()/prod() to get the sum/product of ele
ments in a vector or a matrix, columnwisely first (along the first non
singleton dimension).

>>sa1 = sum(a1) %sum of all the elements in vector a 1 

sa1 = 4 a 1 (n) =  —  1 +  2 +  3 =  4 

>>sA1 = sum(A1) %sum of all the elements in each column of matrix A 1 

sA1 = 3 7 5 %sA1(n) =  = 1 A 1(m, n ) =  [—  1 +  4 2 +  5 3 +  2]

>>SA1 = sum(sum(A1)) %sum of all elements in matrix A 1

SA1 = 15 %SA1 =  E n  = 1 E M  = 1 A 1 (m, n ) =  3 +  7 +  5 =  15 

>>pa1 = prod(a1) %product of all the elements in vector a 1 

pa1 = 4 a 1 (n) =  ( —  1) x  2 x  3 =  —  6 

>>pA1=product(A1) %product of all the elements in each column of matrix A 1 

pA1 = -4 10 6 %pA1(n) =  Пт = 1 A 1 ( m , n) =  [— 1 x  4 2 x  5 3 x  2]

>>PA1 = product(product(A1)) %product of all the elements of matrix A 1 

PA1 = -240 % R A  1 =  ПП = 1 Пт = 1 A 1 (m, n ) =  ( —  4) x  10 x  6 =  —  240

4. We can use the commands m ax()/m in() to find the first maximum/minimum 
number and its index in a vector or in a matrix given as the input argument.

>>[aM,iM] = max(a2)
aM = 5, iM = 2 %means that the max. element of vector a2 is a2(2) = 5

>>[AM,IM] = max(A1)
AM = 4 5 3 
IM = 2 2 1
%means that the max. elements of each column of A1 are 

A1(2,1) = 4, A1(2,2) = 5, A1(1,3) = 3
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>>[AMx,J] = max(AM)
AMx =5, J =2
%implies that the max. element of A1 is A1(IM(J),J) = A1(2,2) = 5

5. We can use the commands r o t 9 0 ( ) / f l i p l r ( ) / f l ip u d ( )  to rotate a matrix 
by an integer multiple of 90° and to flip it left-right/up-down.

>>A1, A3 = rot90(A1), A4 = rot90(A1,-2)
A1 = -1 2 3

4 5 2
A3 = 3 2 %90° ro ta tion

2 5
-1 4

A4 = 2 5 4 %90°x(-2) ro ta tion
3 2 -1

II5A> f lip lr(A 1) %flip le f t - r ig h t
A5 = 3 2 -1

2 5 4

II6A> flipud(A1) %flip up-down
A6 = 4 5 2

-1 2 3

6. We can use the reshape() command to change the row-column size of a 
matrix with its elements preserved (columnwisely first).

>>A7 = reshape(A1,3,2)
A7 = -1 5

4 3
2 2

>>A8 = reshape(A1,6,1), A8 = A1(:) %makes supercolumn vector 
A8 = -1

4
2
5
3
2

1.1.8 R andom  N um ber G en era to rs

MATLAB has the built-in functions, ra n d ()/ra n d n (), to generate random 
numbers having uniform/normal (Gaussian) distributions, respectively ([K-1], 
Chapter 22).

rand(M,N): generates an M x N matrix consisting of uniformly distributed 
random numbers

randn(M,N): generates an M x N matrix consisting of normally distributed 
random numbers
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1. R a n d o m  N u m b e r  Having Uniform Distribution
The numbers in a matrix generated by the MATLAB function rand(M,N) have 
uniform probability distribution over the interval [0,1], as described by U(0,1). 
The random number x  generated by rand() has the probability density function

(1 Vx > 0
0 Yx < о ' the unit step function)

(1.1.1)
whose value is 1 over [0,1] and 0 elsewhere. The average of this standard uniform 
number x  is

-J —c
=  I xfx(x)dx =  j x dx =  —/'J0

1
2

(1.1.2)

and its variance or deviation is

—
c  2 Г  1 2 1 1 3

(ЛГ -  mx)-fx(x)dx =  (x -  -)~dx =  - (x -  -y
1

12 
(1.1.3)

If you want another random number y with uniform distribution U(a, b), trans
form the standard uniform number x as follows:

y =  (b — a)x +  a (1.1.4)

For practice, we make a vector consisting of 1000 standard uniform numbers, 
transform it to make a vector of numbers with uniform distribution U(—1, +1), 
and then draw the histograms showing the shape of the distribution for the two 
uniform number vectors (Fig. 1.7a,b).

>>u_noise = rand(1000,1) %a 1000x1 noise vector with U(0,1) 
>>subplot(221), h ist(u_noise,20) %histogram having 20 d iv isions

150

100

50

0

(c) Gaussian noise W(0, 1)

20

0

- I  X L - I
1

1 -0.5 0 0.5 
(b) Uniform noise U[-1, 1]

: /
-5

(d) Gaussian noise N(0, 1/22)

Figure 1.7 Distribution (histogram) of noise generated by the rand()/randn() command.

2

0
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>>u_noise1 = 2*u_noise-1 %a 1000x1 noise vector with U(-1,1) 
>>subplot(222), hist(u_noise1,20) %histogram

2. R a n d o m  N u m b e r  wi th  Normal  (Gaussian) Distribution
The numbers in a matrix generated by the MATLAB function randn(M,N) have 
normal (Gaussian) distribution with average m =  0 and variance о 2 =  1, as 
described by N (0,1). The random number x generated by rand() has the prob
ability density function

1 2
f x (x) = — e-* ' 2 (1.1.5)

s / b t

If you want another Gaussian number y with a general normal distribution 
N(m,  о 2), transform the standard Gaussian number x as follows:

y =  o x  +  m (1.1.6)

The probability density function of the new Gaussian number generated by this 
transformation is obtained by substituting x =  (y — m ) / o  into Eq. (1.1.5) and 
dividing the result by the scale factor о  (which can be seen in dx  =  d y / o ) 
so that the integral of the density function over the whole interval (—c ,  + c )  
amounts to 1.

M y )  =  (1Л Л )

V 2no

For practice, we make a vector consisting of 1000 standard Gaussian numbers, 
transform it to make a vector of numbers having normal distribution N (1,1/4), 
with mean m =  1 and variance о 2 =  1/4, and then draw the histograms for the 
two Gaussian number vectors (Fig. 1.7c,d).

>>g_noise = randn(1000,1) %a 1000x1 noise vector with N(0,1) 
>>subplot(223), h ist(g_noise,20) %histogram having 20 d iv isions 
>>g_noise1 = g_noise/2+1 %a 1000x1 noise vector with N(1,1/4) 
>>subplot(224), hist(g_noise1,20) %histogram

1.1.9 Flow C ontrol

1. i f - e n d  a n d  sw itc h -c a se -e n d  S t a t e m e n t s
An if-e n d  block basically consists of an i f  statement, a sequel part, and an end 
statement categorizing the block. An i f  statement, having a condition usually 
based on the relational/logical operator (Table 1.4), is used to control the program 
flow— that is, to adjust the order in which statements are executed according to 
whether or not the condition is met, mostly depending on unpredictable situa
tions. The sequel part consisting of one or more statements may contain e l s e  or 
e l s e i f  statements, possibly in a nested structure containing another i f  statement 
inside it.

The sw itch-case-end  block might replace a multiple i f - e l s e i f - . . - e n d  
statement in a neat manner.
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Table 1.4 Relational Operators and Logical Operators
Relational
operator

Remark Relational
operator

Remark Logical
operator

Remark

< less than > greater than & and

<= less than or equal to >= greater than or equal to 1 or

== equal -= not equal(^) - not

Let us see the following examples:

Example 1. A Simple if -e ls e -e n d  Block

%nm119 2: example of if -e ls e if -e n d  block
i f  t  > 0

sgnt = 1
e ls e if  t < 0

sgnt = -1
end

Example3. An i f - e ls e i f - e l s e - e n d  Block

%nm119_3: example of i f -e ls e if -e ls e -e n d  block 
i f  t  > 0, sgnt = 1 

e ls e if  t<0, sgnt = -1 
else  sgnt = 0 

end

Example4. An i f - e l s e i f - e l s e i f - . . - e l s e - e n d  Block

%nm119_4: example of i f - e ls e i f -e lse if-e lse -en d  block
point = 85;
i f  point >= 90, grade = 'A'

e ls e if  point >= 80, grade = 'B'
e ls e if  point >= 70, grade = 'C'
e ls e if  point >= 60, grade = 'D'
else grade = 'F'

end
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%nm119_5: example of switch-case-end block 
point = 85;
switch floo r(po in t/10 ) %floor(x): in teger less  than or equal to  x 

case 9, grade = 'A' 
case 8, grade = 'B' 
case 7, grade = 'C' 
case 6, grade = 'D' 
otherwise grade = 'F ' 

end

2. f o r  index  = i_ 0 : in c re m e n t :i_ la s t -e n d  Loop
A fo r  loop makes a block of statements executed repeatedly for a specified 
number of times, with its loop index increasing from i_0 to a number not 
greater than i_ la s t  by a specified step (increm ent) or by 1 if not specified. 
The loop iteration normally ends when the loop index reaches i_ la s t ,  but it 
can be stopped by a break statement inside the fo r  loop. The fo r  loop with a 
positive/negative increment will never be iterated if the last value ( i_ la s t )  of 
the index is smaller/greater than the starting value (i_0).

Example6. A fo r  Loop

%nm119_6: example of fo r loop 
point = [76 85 91 65 87]; 
fo r n = 1:length(poin t)

i f  point(n) >= 80, p f(n ,:)  = 'p a s s ';  
e ls e if  point(n) >= 0, p f(n ,:)  = ' f a i l ' ;  
else  %if point(n)< 0 
p f(n ,:)  = '? ??? ';
fp r in t f ( '\n \a  Something wrong with the d a ta?? \n '); 
break; 

end
end
pf

3. w h ile  Loop
A w hile loop will be iterated as long as its predefined condition is satisfied and 
a break statement is not encountered inside the loop.

Example 7. A  w hile Loop

%nm119_7: example of while loop 
r = 1;
while r < 10

r = in p u t( '\nType radius (or nonpositive number to  s to p ) : ') ;  
i f  r <= 0, break, end %isempty(r)| r <= 0, break, end 
v = 4/3*pi*r*r*r;
fp r in tf( 'T h e  volume of a sphere with radius %3.1f = % 8 .2 f\n ',r ,v ); 

end
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Example 8. w hile Loops to Find the Minimum/Maximum Positive Numbers

The following program “nm ll9_8.m ” contains three w hile loops. In the first 
one, x = 1 continues to be divided by 2 until just before reaching zero, and it 
will hopefully end up with the smallest positive number that can be represented 
in MATLAB. In the second one, x = 1 continues to be multiplied by 2 until just 
before reaching in f  (the infinity defined in MATLAB), and seemingly it will get 
the largest positive number (x_max0) that can be represented in MATLAB. But, 
while this number reaches or may exceed in f  if multiplied by 2 once more, it still 
is not the largest number in MATLAB (slightly less than in f)  that we want to 
find. How about multiplying x_max0 by (2 — 1/2")? In the third w hile loop, the 
temporary variable tmp starting with the initial value of 1 continues to be divided 
by 2 until just before x_max0*(2-tmp) reaches in f ,  and apparently it will end 
up with the largest positive number (x_max) that can be represented in MATLAB.

%nm119_8: example of while loops 
x = 1; k1 = 0 ; 
while x/2 > 0

x = x/2; k1 = k1 + 1;
end
k1, x_min = x;
fp rin tf( 'x_m in  is  %20.18e\n',x_min)

x = 1; k2 = 0; 
while 2*x < in f

x = x*2; k2 = k2+1;
end
k2, x_max0 = x;

tmp = 1; k3 = 0; 
while x_max0*(2-tmp/2) < in f 

tmp = tmp/2; k3 = k3+1; 
end
k3, x_max = x_max0*(2-tmp); 
fprin tf('x_m ax is  %20.18e\n',x_max)

format long e 
x_min,-x_min,x_max,-x_max 
format hex
x_min,-x_min,x_max,-x_max 
format short

1.2 COMPUTER ERRORS VERSUS HUMAN MISTAKES

Digital systems like calculators and computers hardly make a mistake, since they 
follow the programmed order faithfully. Nonetheless, we often encounter some 
numerical errors in the computing results made by digital systems, mostly coming 
from representing the numbers in finite bits, which is an intrinsic limitation of dig
ital world. If you let the computer compute something without considering what 
is called the finite-word-length effect, you might come across a weird answer. In
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that case, it is not the computer, but yourself as the user or the programmer, who 
is to blame for the wrong result. In this context, we should always be careful not 
to let the computer produce a farfetched output. In this section we will see how 
the computer represents and stores the numbers. Then we think about the cause 
and the propagation effect of computational error in order not to be deceived by 
unintentional mistakes of the computer and, it is hoped, to be able to take some 
measures against them.

1.2.1 IEEE 64-bit F loating-Point N um ber R ep resen ta tio n

MATLAB uses the IEEE 64-bit floating-point number system to represent all 
numbers. It has a word structure consisting of the sign bit, the exponent field, 
and the mantissa field as follows:

63 62 52 51 0

Exponent MantissaS

Each of these fields expresses S, E,  and M  of a number f  in the way described 
below.

Sign bit
0 for positive numbers

S =  b63 =  1 for negative numbers

Exponent field (b62b61b60 ■ ■ ■ b52): adopting the excess 1023 code

E  =  Exp — 1023 = { 0 ,1 , . . . ,  211 — 1 =  2047} — 1023

=  {-1023, —1 0 2 2 ,.. .,  +1023, +1024}

' —1023 +  1 for | f  | < 2—1022 (Exp =  00000000000)
— 1022 ~  +1023 for 2—1022 < | f  | < 21024(normalized ranges) 
+1024 for ±  X

• Mantissa field (b51b50 . . .  b1b0):
In the un-normalized range where the numbers are so small that they can be 

represented only with the value of hidden bit 0, the number represented by the 
mantissa is

M  =  0.b51b50 ■ ■ ■ b1b0 =  [b51b50 ■ ■ ■ b1b0] x 2—52 (1.2.1)

You might think that the value of the hidden bit is added to the exponent, instead 
of to the mantissa.

In the normalized range, the number represented by the mantissa together with 
the value of hidden bit bh =  1 is

M  =  1 .b51b50 ■ ■ ■ b1b0 =  1 +  [b51b50 ■ ■ ■ b 1b0] x 2 52

=  1 +  b51 x 2—1 +  b50 x 2—2 +  ■ ■ ■+ b 1 x 2—51 +  b0 x 2—52



=  {1, 1 +  2—52, 1 +  2 x 2 —52, . . . ,  1 +  (252 — 1) x 2 —52}

=  {1, 1 +  2—52, 1 +  2 x 2—52, . . . , ( 2  — 2—52)}

=  {1, 1 +  A, 1 +  2 A , . . . ,  1 +  (252 — 1)A =  2 — A} (A =  2—52) (1.2.2)

The set of numbers S, E,  and M , each represented by the sign bit S, the 
exponent field Exp and the mantissa field M, represents a number as a whole

f  =  ± M  ■ 2e (1.2.3)

We classify the range of numbers depending on the value (E ) of the exponent 
and denote it as

R e =  [2e , 2e+1) with — 1022 < E  < +1023 (1.2.4)

In each range, the least unit— that is, the value of LSB (least significant bit) or 
the difference between two consecutive numbers represented by the mantissa of 
52 bits — is

A e =  A x 2e =  2—52 x 2e =  2E—52 (1.2.5)

Let us take a closer look at the bitwise representation of numbers belonging 
to each range.

0. 0(zero)
63 62 52 51 0

000 . . 0000 I 0000 0000 . . . 0000 0000 I

1. Un-normalized Range (with the value of hidden bit bh =  0)

Д -1023  =  [2-1074, 2~1022) with Exp =  0, E = Exp -  1023 +  1 =  -1022 

| s | 0 0 0 . . .  0 0 0 0 10000 0000 ____ OOOOOOdTl (0 +  2 - 52) X 2E =  (0 +  2 - 52) X 2 - 1022
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| S | 0 0 0 . . .  0 0 0 0 |1 1 1 1  1111 ____ 11111111 | {(0 +  (252 ~ 1 ) 2 - 52) =  (1 ^ 2 - 52)} x 2 - ' “ 2

Value of LSB: A -1 0 2 3  =  A -1 0 2 2  =  2-1022-52 =  2-1074
2. The Smallest Normalized Range (with the value of hidden bit bh =  1)

R—1022 =  [2—1022 , 2—1021) with Exp =  1 ,E  =  Exp — 1023 =  —1022

|S ; 000 . . . 0001 ; 0000 0000 . . . . 0000 0000] (1 +  0) x  2E =  (1 +  0) x  2-1022 

|S ; 000 . . . 0001 ; 0000 0000 . . . . 0000 0001 (1 +  2-52) X 2-1022

Is! 000. . . 0001 ; 1111 1111 . . . . 1 1 1 1 1 1 1 1  {(1 +  (252 -  1) 2-52) =  (2 -  2-52)} x  2-1022

Value of LSB: A -1022 =  2-1022-52 =  2-1074
3. Basic Normalized Range (with the value of hidden bit bh =  1)
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R0 =  [20, 21) with Exp =  210 — 1 =  1023, E  =  Exp — 1023 =  0

|S| 011 . . . 1111 ; 0000 0000 . . . . 0000 0000] (1 + 0) x 2e = (1 + 0) x 20 = 1
|sj 011 . . . 1111 | 0000 0000 . . . . 0 000 0 0 0 1  (1 + 2-52) x 20

S 011 1111 11111111 1111 1111 {(1 + (252 - 1) 2-52) = (2 - 2-52)} x 20

52Value of LSB: A0 =  2—
4. The Largest Normalized Range (with the value of hidden bit bh =  1)

R1024 =  [21023 , 21024) with Exp =  211 —2 =  2046, E  =  Exp —1023 =  1023

S 111 1110 0000 0000 0000 00001 (1 + 0) x 2e = (1 + 0) x 21023
S 111 1110 0000 0000 0000 0 0 0 1  (1 + 2-52) x 2 1023

|s | 111 . . . 1110 ! 1111 1111 . . . . 1111 1111~1 {(1 + (252 - 1) 2-52) = (2 - 2-52)} x 21023

Value of LSB: A —1022 =  2—1022—52 =  2—1074 
5. ±ro(inf) Exp =  211 — 1 =  2047, E  =  Exp — 1023 =  1024 (meaningless)

10 ! 111 . . . 1111 ; 0000 0000 . . . . 0000 0000] +~ * (1 + 0) x 2e = (1 + 0) x 21024
0000 00001 -<*> * -(1 + 0) x 2e = -(1 + 0) x 210241111 1111 0000 0000
0000 0001 invalid (not used)

1111 1111 invalid (not used)

From what has been mentioned earlier, we know that the minimum and max
imum positive numbers are, respectively,

f min =  (0 +  2—52) x 2—1022 =  2—1074 =  4.9406564584124654 x 10—324

fmax =  (2 — 2—52) x 21023 =  1.7976931348623157 x 10

This can be checked by running the program “nm119_8.m” in Section 1.1.9.
Now, in order to gain some idea about the arithmetic computational mecha

nism, let’s see how the addition of two numbers, 3 and 14, represented in the 
IEEE 64-bit floating number system, is performed.

Digital-to-Binary Conversion-» Normalization-» 64-bit Representation 

3 i o = 1 1 2 = 1 . 1 a ж21=Щ-1а x г1024"1023 

1410 = 11102 = 1.112 x 2 3 = Ш-11гх 21026-1023

hidden bit 64-bit representation
З10 = 0 1024,0 Ш-Ю000....... C K

+) 1 4m = 0 1026m ГП-11000....... 0 ) alignment
Зю = 0 1026, о 0.01100.............

+) 14m = 0 1026m m. 11000............. 0

carry bit = 1
r° 1026ю 10.00100... ...0 Binary-to-Decimal Conversion

normalize l>q 1027io Щ.ооою......... 0 = 1 .00012 x Ю1027"1023 = 100012 = 1 x 24 + 1 x 2° = 17ш

308

2]_3_ . . .  1 2)14 . . .  0
1 2) 7 . . .  1

Зю = 112 2) 3 . . .  1
11

14,o = 1110a

s! 111 . . . 1111! 0000 0000

s ! 111 . . . 111 ! 11111111
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In the process of adding the two numbers, an alignment is made so that the 
two exponents in their 64-bit representations equal each other; and it will kick 
out the part smaller by more than 52 bits, causing some numerical error. For 
example, adding 2-23 to 230 does not make any difference, while adding 2-22 to 
230 does, as we can see by typing the following statements into the MATLAB 
Command window.

>>x = 2"30; x + 2^-22 == x, x + 2"-23 == x 
ans = 0 (fa lse ) ans = 1(true)

(cf) Each range has a different minimum unit (LSB value) described by Eq. (1.2.5). It 
implies that the numbers are uniformly distributed within each range. The closer the 
range is to 0, the denser the numbers in the range are. Such a number representation 
makes the absolute quantization error large/small for large/small numbers, decreasing 
the possibility of large relative quantization error.

1.2.2 V arious Kinds of C om puting Errors

There are various kinds of errors that we encounter when using a computer for 
computation.

• Truncation Error: Caused by adding up to a finite number of terms, while 
we should add infinitely many terms to get the exact answer in theory.

• Round-off Error: Caused by representing/storing numeric data in finite bits.
• Overflow/Underflow: Caused by too large or too small numbers to be rep

resented/stored properly in finite bits— more specifically, the numbers hav
ing absolute values larger/smaller than the maximum ( / max)/minimum(/min) 
number that can be represented in MATLAB.

• Negligible Addition: Caused by adding two numbers of magnitudes differing 
by over 52 bits, as can be seen in the last section.

• Loss o f  Significance: Caused by a “bad subtraction,” which means a sub
traction of a number from another one that is almost equal in value.

• Error Magnification: Caused and magnified/propagated by multiplying/divi
ding a number containing a small error by a large/small number.

• Errors depending on the numerical algorithms, step size, and so on.

Although we cannot be free from these kinds of inevitable errors in some degree, 
it is not computers, but instead human beings, who must be responsible for 
the computing errors. While our computer may insist on its innocence for an 
unintended lie, we programmers and users cannot escape from the responsibility 
of taking measures against the errors and would have to pay for being careless 
enough to be deceived by a machine. We should, therefore, try to decrease the 
magnitudes of errors and to minimize their impact on the final results. In order 
to do so, we must know the sources of computing errors and also grasp the 
computational properties of numerical algorithms.
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For instance, consider the following two formulas:

f i ( x )  = y/x (y/x + 1 -  y/x), f 2(x) = —= = ------— (1.2.6)
V x  +  1 +  у/x

These are theoretically equivalent, hence we expect them to give exactly the 
same value. However, running the MATLAB program “nm122.m” to compute 
the values of the two formulas, we see a surprising result that, as x increases, 
the step of f 1(x) incoherently moves hither and thither, while f 2(x) approaches 
1/2 at a steady pace. We might feel betrayed by the computer and have a doubt 
about its reliability. Why does such a flustering thing happen with f 1(x)? It is 
because the number of significant bits abruptly decreases when the subtraction 
(y/x + 1 — y/x)  is performed for large values of x,  which is called Toss of 
significance’. In order to take a close look at this phenomenon, let x =  1015. 
Then we have

y/x + 1 =  3.162277660168381 x 107 =  31622776.60168381 

yfx  =  3.162277660168379 x 107 =  31622776.60168379

These two numbers have 52 significant bits, or equivalently 16 significant digits 
(252 к  1 0 52x3/ 10 к  1015) so that their significant digits range from 108 to 10-8 . 
Accordingly, the least significant digit of their sum and difference is also the 
eighth digit after the decimal point (10-8).

y/x +  1 +  yfc  =  63245553.20336761

y/x +  1 - y f c  = 0.00000001862645149230957 «  0.00000002

Note that the number of significant digits of the difference decreased to 1 from 
16. Could you imagine that a single subtraction may kill most of the significant 
digits? This is the very ‘loss of significance’, which is often called ‘catastrophic 
cancellation’.

%nm122
clear
f1 = in lin e ( 'sq rt (x) *(sqrt(x + 1) - s q r t ( x ) ) ', 'x ') J
f2 = in lin e ( 'sq rt (x) ./(sq rt(x + 1) + s q r t (x ) ) ', 'x ' );
x = 1;
format long e
for k = 1:15

fp rin tf( 'A t x=%15. 0f, f1(x)= %20. 18f, f2(x) = %20■ 18 f ',  x ,f1(x), f2(x));
x = 10*x;

end
sx1 = sqrt(x+1); sx = sqrt(x) ; d = sx1 - sx; s = sx1 + sx;
fprin tf( 'sqrt(x+1 ) = %25.13f, sqrt (x) = %25.13f ', sx1, sx);
fp r in tf( ' d iff = %25.23f, sum = %25.23f ' ,d ,s);
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>> nm122
At x= 1, f1
At x= 10, f1
At x= 100, f1
At x= 1000, f1
At x= 10000, f1
At x= 100000, f1
At x= 1000000, f1
At x= 10000000, f1
At x= 100000000, f1
At x= 1000000000, f1
At x= 10000000000, f1
At x= 100000000000, f1
At x= 1000000000000, f1
At x= 10000000000000, f1
At x= 100000000000000, f1

x)=0.414213562373095150
x)=0.488088481701514750
x)=0.498756211208899460
x)=0.499875062461021870
x)=0.499987500624854420
x)=0.499998750005928860
x)=0.499999875046341910
x)=0.499999987401150920
x)=0.500000005558831620
x)=0.500000077997506340
x)=0.499999441672116520
x)=0.500004449631168080
x)=0.500003807246685030
x)=0.499194546973835970
x)=0.502914190292358400

, f2(x)=0.414213562373095090 
, f2(x)=0.488088481701515480 
, f2(x)=0.498756211208902730 
, f2(x)=0.499875062460964860 
, f2(x)=0.499987500624960890 
, f2(x)=0.499998750006249940 
, f2(x)=0.499999875000062490 
, f2(x)=0.499999987500000580 
, f2(x)=0.499999998749999950 
, f2(x)=0.499999999874999990 
, f2(x)=0.499999999987500050 
, f2(x)=0.499999999998750000 
, f2(x)=0.499999999999874990 
, f2(x)=0.499999999999987510 
, f2(x)=0.499999999999998720

sqrt(x+1) = 31622776.6016838100000, sqrt(x) = 31622776.6016837920000 
diff=0.00000001862645149230957, sum=63245553.20336760600000000000000

1.2.3 A bsolu te/R elative C om puting Errors

The absolute/relative error of an approximate value x to the true value X  of a 
real-valued variable is defined as follows:

ex = X(true value) — x(approximate value) (1.2.7)
ex X  — x

Px = — = --------  (1.2.8)1 X  X

If the least significant digit (LSD) is the d th digit after the decimal point, then 
the magnitude of the absolute error is not greater than half the value of LSD.

Ы  =  \ X - x \  < \ \ 0 - d (1.2.9)

If the number of significant digits is s, then the magnitude of the relative error 
is not greater than half the relative value of LSD over MSD (most significant 
digit).

|ex | |X — x | 1 s\px \ = ' —^  = ----------L < _ i o ^  (1.2.10)
1 \X\ \X\ ~  2

1.2.4 Error P ropagation

In this section we will see how the errors of two numbers, x and y, are propagated 
with the four arithmetic operations. Error propagation means that the errors in the 
input numbers of a process or an operation cause the errors in the output numbers.

Let their absolute errors be ex and ey , respectively. Then the magnitudes of 
the absolute/relative errors in the sum and difference are

ex±y = (X  ±  7) — (x ±  y) =  (X — x) ±  (7  — y) =  ex ±  ey

|ex±y | < ^x  | +  ^y  |
|g,±yl \X\\ex/ X \  + \Y\\ey/Y \  \X\\px \ + \Y\\py\

\Px±y \ |x  ±  Y\ ~  \ X ± Y \  \ X ± Y \

(1.2.11)

(1.2.12)
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From this, we can see why the relative error is magnified to cause the “loss 
of significance” in the case of subtraction when the two numbers X  and 7  are 
almost equal so that |X — 71 «  0.

The magnitudes of the absolute and relative errors in the multiplication/division
are

|exy | =  |X 7 — xy| =  |X 7 — (X +  ex)(7 + ey)\ «  |Xey ±  7ex |

|exy| < |X||ey| +  |71|ex|

|ex/y| =

< |£y|
+

\ex \
|px\XY\ \Y\ 1*1

X x X X + ex
7  ~~ y 7 7 +

| py |

\Xey - Y e x \
Y 2

(1.2.13)

(1.2.14)

|ex/yl <
№ y| +  |7 ||fijc| 

7 2
I I _ \ex/y\ \ex | |ey| _ . I l l  I

_  \X/Y\  ] z [  ~|7~j~ _

(1.2.15)

(1.2.16)

This implies that, in the worst case, the relative error in multiplication/division 
may be as large as the sum of the relative errors of the two numbers.

xy

1.2.5 Tips for Avoiding Large Errors

In this section we will look over several tips to reduce the chance of large errors 
occurring in calculations.

First, in order to decrease the magnitude of round-off errors and to lower the 
possibility of overflow/underflow errors, make the intermediate result as close to 
1 as possible in consecutive multiplication/division processes. According to this 
rule, when computing xy /z ,  we program the formula as

• (xy) /z  when x and y in the multiplication are very different in magnitude,
• x (y / z )  when y and z in the division are close in magnitude, and
• (x /z )y  when x and z in the division are close in magnitude.

For instance, when computing yn/enx with x >- 1 and y > 1, we would program 
it as (y /ex)n rather than as y n/enx, so that overflow/underflow can be avoided. You 
may verify this by running the following MATLAB program “nm125_1.m”.

%nm125 1:
x = 36; y = 1e16;
fo r n = [-20 -19 19 20]

fprintf('y~%2d/e~%2dx = % 2 5 . 15 e \ n 1, n , n , улп/ехр(п*х)) ;
fprintf('(y/e~x)~% 2d = % 2 5 . 15 e \ n 1, n , (y /exp(x) ) лп ) ;

end
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>>nm125_1
y"-20/e"-20x = 0.000000000000000e+000 
(y/e"x)"-20 = 4.920700930263814e-008 
y"-19/e"-19x = 1.141367814854768e-007 
(y /eAx )A-19 = 1.141367814854769e-007 
yA19/eA19x = 8.761417546430845e+006 
(y /eAx )A19 = 8.761417546430843e+006 
yA20/eA20x = NaN
(y /eAx )A20 = 2.032230802424294e+007

Second, in order to prevent ‘loss of significance’, it is important to avoid a 
‘bad subtraction’ (Section 1.2.2)— that is, a subtraction of a number from another 
number having almost equal value. Let us consider a simple problem of finding 
the roots of a second-order equation ax2 +  bx  +  c =  0 by using the quadratic 
formula

—b +  y/b2 — 4 ac —b — y/b2 — 4 ac
x i = -------- ^ ------------ , *2 = --------- ^ ------------  (1.2.17)

2a 2a

Let |4ac| -< b2. Then, depending on the sign of b, a “bad subtraction” may be 
encountered when we try to find x 1 or x 2 , which is the smaller one of the two 
roots. This implies that it is safe from the “loss of significance” to compute the 
root having the larger absolute value first and then obtain the other root by using 
the relation (between the roots and the coefficients) x1x2 =  c/a.

For another instance, we consider the following two formulas, which are ana
lytically the same, but numerically different:

1 — cos x  sin2 x
f i (x)  = ------ -̂----, f 2(x) =  -------- - (1.2.18)

x 2 x 2(1 +  cos x)

It is safe to use f 1(x) for x «  n  since the term (1 +  cosx)  in f 2(x) is a ‘bad sub
traction’, while it is safe to use f 2(x) for x «  0 since the term (1 — cos x)  in f 1 (x) 
is a ‘bad subtraction’. Let’s run the following MATLAB program “nm125_2.m” 
to confirm this. Below is the running result. This implies that we might use some 
formulas to avoid a ‘bad subtraction’.

%nm125_2: round-off erro r te s t
f1 = in lin e ( '(1  - c o s ( x ) ) /x /x ', 'x ') ;
f2 = in lin e ( 's in (x )* s in (x ) /x /x /(1  + c o s ( x ) ) ' , 'x ') ;
fo r k = 0:1

x = k*pi; tmp = 1; 
fo r k1 = 1:8

tmp = tmp*0.1; x1 = x + tmp; 
fp r in tf ( 'A t  x = %10.8f, ' ,  x1)
fp r in tf ( 'f 1 (x )  = %18.12e; f2(x) = %18.12e', f1 (x 1 ),f2 (x 1 )); 

end 
end
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>> LOCMEС 2
At x = 0 10000000, f1 x) = 4 995834721974e-001 f2(x) = 4 995834721974e-001
At x = 0 01000000, f1 x) = 4 999958333474e-001 f2(x) = 4 999958333472e-001
At x = 0 00100000, f1 x) = 4 999999583255e-001 f2(x) = 4 999999583333e-001
At x = 0 00010000, f1 x) = 4 999999969613e-001 f2(x) = 4 999999995833e-001
At x = 0 00001000, f1 x) = 5 000000413702e-001 f2(x) = 4 999999999958e-001
At x = 0 00000100, f1 (x) = 5 000444502912e-001 f2(x) = 5 000000000000e-001
At x = 0 00000010, f1 (x) = 4 996003610813e-001 f2(x) = 5 000000000000e-001
At x = 0 00000001, f1 (x) = 0 000000000000e+000 f2(x) = 5 000000000000e-001
At x = 3 24159265, f1 (x) = 1 898571371550e-001 f2(x) = 1 898571371550e-001
At x = 3 15159265, f1 (x) = 2 013534055392e-001 f2(x) = 2 013534055391e-001
At x = 3 14259265, f1 (x) = 2 025133720884e-001 f2(x) = 2 025133720914e-001
At x = 3 14169265, f1 (x) = 2 026294667803e-001 f2(x) = 2 026294678432e-001
At x = 3 14160265, f1 (x) = 2 026410772244e-001 f2(x) = 2 026410604538e-001
At x = 3 14159365, f1 (x) = 2 026422382785e-001 f2(x) = 2 026242248740e-001
At x = 3 14159275, f1 (x) = 2 026423543841e-001 f2(x) = 2 028044503269e-001
At x = 3 14159266, f1 (x) = 2 026423659946e-001 f2(x) = Inf

It may be helpful for avoiding a ‘bad subtraction’ to use the Taylor series 
expansion ([W-1]) rather than using the exponential function directly for the 
computation of ex. For example, suppose we want to find

ex — 1
/ 3(x) = --------  at x =  0 (1.2.19)

We can use the Taylor series expansion up to just the fourth-order of ex about x  =  0

^  X „  , g"(0) 2 , £ (3) (0) 3 , ^ (4) (0) 4g(x) = ex ss g(0) +  g (0)x +  ~ ^ ~ x + 3 , * +  4 , *

1 2 1 3 1 4=  l + x - | -----x2 H-----x 3 H-----x 4
2! 3! 4!

to approximate the above function (1.2.19) as

ex — 1 1 1 2 1 3
h ( x )  = «  1 +  - x  +  - x 12 +  - x 3 =  f 4(x) (1.2.20)

Noting that the true value of (1.2.9) is computed to be 1 by using the L’Hopital’s 
rule ([W-1]), we run the MATLAB program “nm125_3.m” to find which one of 
the two formulas f 3(x) and f 4(x) is better for finding the value of the expression 
(1.2.9) at x  =  0. Would you compare them based on the running result shown 
below? How can the approximate formula f 4(x) outrun the true one f 3(x) for 
the numerical purpose, though not usual? It is because the zero factors in the 
numerator/denominator of f 3(x) are canceled to set f 4(x) free from the terror of 
a “bad subtraction.”
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%nm125_3: reduce the round-off erro r using Taylor se rie s
f3 = in l in e ( '( e x p ( x ) - 1 ) /x ', 'x ') ;
f4 = in lin e ('((x /4 + 1 )* x /3 ) + x/2+1', x 1 );
x = 0; tmp = 1;
fo r k1 = 1:12

tmp = tmp*0.1; x1 = x + tmp;
fp r in tf ( 'A t  x = %14.12f, ',  x1)
fp r in tf ( 'f 3 (x )  = %18.12e; f4(x) = %18.12e1, f 3(x1) ,f4 (x1 ));

end

>> nm125_3
At x=0.100000000000, f3(x =1 051709180756e+000 f4(x =1.084166666667e+000
At x=0.010000000000, f3(x =1 005016708417e+000 f4(x =1 008341666667e+000
At x=0.001000000000, f3(x =1 000500166708e+000 f4(x =1.000833416667e+000
At x=0.000100000000, f3(x =1 000050001667e+000 f4(x =1 000083334167e+000
At x=0.000010000000, f3(x =1 000005000007e+000 f4(x =1 000008333342e+000
At x=0.000001000000, f3(x =1 000000499962e+000 f4(x =1 000000833333e+000
At x=0.000000100000, f3(x =1 000000049434e+000 f4(x =1 000000083333e+000
At x=0.000000010000, f3(x =9 010e-522939999999 f4(x =1 000000008333e+000
At x=0.000000001000, f3(x =1 000000082740e+000 f4(x =1 000000000833e+000
At x=0.000000000100, f3(x =1 000000082740e+000 f4(x =1 000000000083e+000
At x=0.000000000010, f3(x =1 000000082740e+000 f4(x =1 000000000008e+000
At x=0.000000000001, f3(x =1 000088900582e+000 f4(x =1.000000000001e+000

1.3 TOWARD GOOD PROGRAM

Among the various criteria about the quality of a general program, the most 
important one is how robust its performance is against the change of the problem 
properties and the initial values. A good program guides the program users who 
don’t know much about the program and at least give them a warning message 
without runtime error for their minor mistake. There are many other features 
that need to be considered, such as user friendliness, compactness and elegance, 
readability, and so on. But, as far as the numerical methods are concerned, the 
accuracy of solution, execution speed (time efficiency), and memory utilization 
(space efficiency) are of utmost concern. Since some tips to achieve the accuracy 
or at least to avoid large errors (including overflow/underflow) are given in the 
previous section, we will look over the issues of execution speed and memory 
utilization.

1.3.1 N ested  C om puting for C om putational Efficiency

The execution speed of a program for a numerical solution depends mostly on 
the number of function (subroutine) calls and arithmetic operations performed in 
the program. Therefore, we like the algorithm requiring fewer function calls and 
arithmetic operations. For instance, suppose we want to evaluate the value of a
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polynomial
p 4(x) =  a1x 4 +  a2x 3 +  a3x 2 +  a4x +  a$ (1.3.1)

It is better to use the nested structure (as below) than to use the above form as 
it is.

p 4n(x) =  (((a1 x +  a2)x +  a3)x +  a4)x +  as (1.3.2)

Note that the numbers of multiplications needed in Eqs. (1.3.2) and (1.3.1) are
4 and (4 +  3 +  2 +  1 =  9), respectively. This point is illustrated by the program 
“nm131_1 . m”, where a polynomial J ]^ - j1 atx1 of degree N  =  106 for a certain 
value of x is computed by using the three methods— that is, Eq. (1.3.1), Eq.
(1.3.2), and the MATLAB built-in function ‘p o ly v al() ’. Interested readers could 
run this program to see that Eq. (1.3.2)— that is, the nested multiplication— is 
the fastest, while ‘p o ly v a l( ) ’ is the slowest because of some overhead time for 
being called, though it is also fabricated in a nested structure.

%nm131_1: nested m ultip lica tion  vs. plain m ultiple m ultip lication  
N = 1000000+1; a = [1:N]; x = 1; 
t i c  % in i t i a l i z e  the timer
p = sum(a.*x.A[N -1:-1:0]); %plain m ultip lication
p, toc % measure the time passed from the time of executing ' t i c '
t i c ,  pn=a(1);
fo r i  = 2:N %nested m ultip lication  

pn = pn*x + a ( i) ;
end
pn, toc
t i c ,  po lyval(a ,x ), toc

Programming in a nested structure is not only recommended for time-efficient 
computation, but also may be critical to the solution. For instance, consider a 
problem of finding the value

к yk
S(K)  = ^ — e - x for k = 100 and £  =  155 (1.3.3)

k=0 ’

%nm131_2_1: nested s tru c tu re %nm131_2_2: not nested stru c tu re
lam = 100; К = 155; lam = 100; К = 155;
p = exp(-lam ); S = 0;
S = 0; fo r к = 1: К
fo r к = 1: К p = lamAk /fa c to r ia l (k ) ;

p=p*lam/k; S=S+p; S = S + p;
end end
S S*exp(-lam)

The above two programs are made for this computational purpose. Noting that 
this sum of Poisson probability distribution is close to 1 for such a large K , we
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can run them to find that one works fine, while the other gives a quite wrong 
result. Could you tell which one is better?

1.3.2 V ector O peration  V ersus Loop Iteration

It is time-efficient to use vector operations rather than loop iterations to perform a 
repetitive job for an array of data. The following program “nm132_1.m” compares 
a vector operation versus a loop iteration in terms of the execution speed. Could 
you tell which one is faster?

%nm132_1: vector operation vs. loop i te ra tio n
N = 100000; th = [0:N-1] /50000*pi;
t i c
ss= sin (th (1 ));
for i  = 2:N, ss = ss + s in (t h (i )); end % loop i te ra tio n
toc, ss
t i c
ss = sum(sin(th) ; % vector operation
toc, ss

As a more practical example, let us consider a problem of finding the DtFT 
(discrete-time Fourier transform) ([W-3]) of a given sequence x [n].

N-1
X(Q) = Y ^  x[n]e-jQn for Q =  [-1 0 0 :1 0 0 1 ^ /1 0 0  (1.3.4)

n=0

The following program “nm132_2.m” compares a vector operation versus a loop 
iteration for computing the DtFT in terms of the execution speed. Could you tell 
which one is faster?

%nm132_2: nested s tru c tu re
N = 1000; x = rand(1,N); % a random sequence x[n] fo r n = 0:N-1
W = [-100: 100]*pi/100; % frequency range
t i c
fo r k = 1: length(W)

X1(k) = 0; %for fo r loop
fo r n = 1:N, X1(k) = X1(k) + x(n)*exp( j*W(k)*(n-1)); end

end
toc
t i c
X2 = 0;
fo r n = 1: N %for vector loop

X2 = X2 +x(n)*exp(-j*W*(n-1));
end
toc
discrepancy = norm(X1-X2) %transpose for dimension com patib ility



40 MATLAB USAGE AND COMPUTATIONAL ERRORS

1.3.3 Iterative R outine V ersus N ested  R outine

In this section we compare an iterative routine and a nested routine performing the 
same job. Consider the following two programs f c t r l1 ( n ) / f c t r l 2 ( n ) ,  whose 
common objectives is to get the factorial of a given nonnegative integer k.

k! =  k(k -  1) •••2  ■ 1 (1.3.5)

They differ in their structure. While f c t r l1 ( )  uses a fo r  loop structure, f c t r l2 ( )  
uses the nested (recursive) calling structure that a program uses itself as a subroutine 
to perform a sub-job. Compared with f c t r l 1 ( ) , f c t r l2 ( )  is easier to program as 
well as to read, but is subject to runtime error that is caused by the excessive use 
of stack memory as the number of recursive calls increases with large n. Another 
disadvantage of f c t r l2 ( )  is that it is time-inefficient for the number of function 
calls, which increases with the input argument (n). In this case, a professional 
programmer would consider the standpoint of users to determine the programming 
style. Some algorithms like the adaptive integration (Section 5.8), however, may 
fit the nested structure perfectly.

function m = fc tr l1 (n ) function m = fc tr l2 (n )
m = 1; i f  n <= 1, m = 1;
fo r к = 2:n, m = m*k; end else m = n * fc tr l2 (n -1 );

end

1.3.4 To Avoid R untim e Error

A good program guides the program users who don’t know much about the 
program and at least gives them a warning message without runtime error for 
their minor mistake. If you don’t know what runtime error is, you can experience 
one by taking the following steps:

1. Make and save the above routine f c t r l1 ( )  in an M-file named ‘fctrl.m’ 
in a directory listed in the MATLAB search path.

2. Type f c t r l ( - 1 )  into the MATLAB Command window. Then you will see

> > fctrl(-1 ) 
ans = 1

This seems to imply that (-1 )!  =  1, which is not true. It is caused by the mistake 
of the user who tries to find (-1 )! without knowing that it is not defined. This 
kind of runtime error seems to be minor because it does not halt the process. 
But it needs special attention because it may not be easy to detect. If you are a 
good programmer, you will insert some error handling statements in the program 
f c t r l ( )  as below. Then, when someone happens to execute f c t r l ( - 1 )  in the 
Command window or through an M-file, the execution stops and he will see the 
error message in the Command window as

??? Error using ==> f c t r l
The fa c to r ia l  of negative number ??
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function m = fc tr l(n )
i f  n < 0, erro r('T he fa c to r ia l  of negative number ? ? ') ;

else  m = 1; fo r k = 2:n, m = m*k; end 
end

This shows the error message (given as the input argument of the e r ro r ( )  
routine) together with the name of the routine in which the accidental “error” 
happens, which is helpful for the user to avoid the error.

Most common runtime errors are caused by an “out of domain” index of array 
and the violation of matrix dimension compatibility, as illustrated in Section 1.1.7. 
For example, consider the gauss(A,B) routine in Section 2.2.2, whose job is to 
solve a system of linear equations Ax = b for x. To appreciate the role of the fifth 
line handling the dimension compatibility error in the routine, remove the line 
(by putting the comment mark % before the line in the M-file defining gauss()) 
and type the following statements in the Command window:

>>A = rand(3,3); B = rand(2,1); x = gauss(A,B)
?? Index exceeds matrix dimensions.
Error in ==> C:\MATLAB6p5\nma\gauss.m
On lin e  10 ==> AB = [A(1:NA,1:NA) B(1:NA,1:NB)];

Then MATLAB gives you an error message together with the suspicious state
ment line and the routine name. But it is hard to figure out what causes the 
runtime error, and you may get nervous lest the routine should have some bug. 
Now, restore the fifth line in the routine and type the same statements in the 
Command window:

>>x = gauss(A,B)
?? Error using ==> gauss 
A and B must have compatible dimension

This error message (provided by the programmer of the routine) helps you to 
realize that the source of the runtime error is the incompatible matrices/vectors A 
and B given as the input arguments to the gauss() routine. Very like this, a good 
program has a scenario for possible user mistakes and fires the e r ro r  routine for 
each abnormal condition to show the user the corresponding error message.

Many users often give more/fewer input arguments than supposed to be given 
to the MATLAB functions/routines and sometimes give wrong types/formats of 
data to them. To experience this type of error, let us try using the MATLAB 
function s in c1 (t,D ) (Section 1.3.5) to plot the graph of a sinc function

sin (n t/D ) r
sinc(f/D ) = --------------with D = 0.5 and £ =  [ —2 ,2 ]  (1.3.6)

n t / D  L J

With this purpose, type the following statements in the Command window.
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(a) sinc1() with division-by-zero handling (b) sinc1() without division-by-zero handling

Figure 1.8 The graphs of a sinc function defined by s in c1 ().

>>D = 0.5; b1 = -2; b2 = 2; t  = b1+[0:200]/200*(b2 - b1); 
> > p lo t(t,s in c1 (t,D )), axis([b1 b2 -0.4 1.2])
>>hold on, p lo t ( t , s i n c 1 ( t ) , 'k : ')

The two plotting commands coupled with s in c1 (t,D ) and s in c 1 ( t)  yield the 
two beautiful graphs, respectively, as depicted in Fig. 1.8a. It is important to 
note that s in c1 () doesn’t bother us and works fine without the second input 
argument D. We owe the second line in the function s in c1 () for the nice error- 
handling service:

i f  nargin < 2 ,  D = 1; end

This line takes care of the case where the number of input arguments (nargin) is 
less than 2, by assuming that the second input argument is D = 1 by default. This 
programming technique is the key to making the MATLAB functions adaptive 
to different number/type of input arguments, which is very useful for breathing 
the user-convenience into the MATLAB functions. To appreciate its role, we 
remove the second line from the M-file defining s in c1 () and then type the same 
statement in the Command window, trying to use s in c1 () without the second 
input argument.

> > p lo t ( t ,s in c 1 ( t ) , 'k : ')
??? Input argument 'D' is  undefined.
Error in ==> C:\MATLAB6p5\nma\sinc1.m 
On lin e  4 ==> x = s in (p i* t/D )./(p i* t/D );

This time we get a serious (red) error message with no graphic result. It is implied 
that the MATLAB function without the appropriate error-handling parts no longer 
allows the user’s default or carelessness.

Now, consider the third line in s in c1 () , which is another error-handling state
ment.

t(find(t==0))=eps;
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or, equivalently

fo r i  = 1 :le n g th (t) , i f  t ( i )  == 0, t ( i )  = eps; end, end

This statement changes every zero element in the t  vector into eps (2.2204e- 
016). What is the real purpose of this statement? It is actually to remove the 
possibility of division-by-zero in the next statement, which is a mathematical 
expression having t  in the denominator.

x = s in (p i* t/D )./(p i* t/D );

To appreciate the role of the third line in s in c 1 () , we remove it from the M-file 
defining s in c1 () , and type the following statement in the Command window.

> > p lo t( t ,s in c 1 ( t ,D ) , 'r ')
Warning: Divide by zero.
(Type "warning off MATLAB:divideByZero" to  suppress th is  warning.) 
In C:\MATLAB6p5\nma\sinc1.m at lin e  4)

This time we get just a warning (black) error message with a similar graphic 
result as depicted in Fig. 1.8b. Does it imply that the third line is dispensable? 
No, because the graph has a (weird) hole at t =  0, about which most engi
neers/mathematicians would feel uncomfortable. That’s why authors strongly 
recommend you not to omit such an error-handling part as the third line as 
well as the second line in the MATLAB function s in c1 () .

(cf) What is the value of sinc1(t,D) for t  = 0 in this case? Aren’t you curious? If so, 
let’s go for it.

>>sinc1(0,D), sin(pi*0/D )/(pi*0/D ), 0/0 
ans = NaN (Not-a-Number: undetermined)

Last, consider of the fourth line in s in c1 () , which is only one essential 
statement performing the main job.

x = s in (p i* t/D )./(p i* t/D );

What is the .(dot) before /(division operator) for? In reference to this, authors 
gave you a piece of advice that you had better put a .(dot) just before the 
arithmetic operators *(multiplication), /(division), and "(power) in the function 
definition so that the term-by-term (termwise) operation can be done any time 
(Section 1.1.6, (A5)). To appreciate the existence of the . (dot), we remove it from 
the M-file defining s in c1 () , and type the following statements in the Command 
window.

>>clf, p lo t( t ,s in c 1 ( t ,D )) ,  sinc1 (t,D ), s in (p i* t/D )/(p i* t/D ) 
ans = -0.0187



44 MATLAB USAGE AND COMPUTATIONAL ERRORS

What do you see in the graphic window on the screen? Surprise, a (horizontal) 
straight line running parallel with the t -axis far from any sinc function graph! 
What is more surprising, the value of s in c1 (t,D ) or s in (p i* t/D )/(p i* t/D )  
shows up as a scalar. Authors hope that this accident will help you realize how 
important it is for right term-by-term operations to put .(dot) before the arithmetic 
operators *, / and " . By the way, aren’t you curious about how MATLAB deals 
with a vector division without .(dot)? If so, let’s try with the following statements:

>>A = [1:10]; B = 2*A; A/B, A*B'*(B*B')A-1, A*pinv(B) 
ans = 0.5

To understand this response of MATLAB, you can see Section 1.1.7 or Sec
tion 2.1.2.

In this section we looked at several sources of runtime error, hoping that it 
aroused the reader’s attention to the danger of runtime error.

1.3.5 P a ra m e te r Sharing via Global V ariables

When we discuss the runtime error that may be caused by user’s default in passing 
some parameter as input argument to the corresponding function, you might feel 
that the parameter passing job is troublesome. Okay, it is understandable as a 
beginner in MATLAB. How about declaring the parameters as global so that 
they can be accessed/shared from anywhere in the MATLAB world as far as the 
declaration is valid? If you want to, you can declare any varable(s) by inserting 
the following statement in both the main program and all the functions using 
the variables.

global Gravity_Constant D ielectric_Constant

%plot_sinc
c lea r, c lf
global D
D = 1; b1 = -2; b2 = 2;
t  = b1 +[0:100]/100*(b2 - b1);
%passing the parameter(s) through arguments of the function
subplot(221), p lo t( t ,  sinc1(t,D ))
axis([b1 b2 -0.4 1.2])
%passing the parameter(s) through global variab les
subplot(222), p lo t( t ,  s in c2 (t))
a x is ( [Ы b2 -0.4 1.2])
function x = sinc1(t,D ) function x = sinc2 (t)
i f  nargin<2, D = 1; end global D
t ( f in d ( t  == 0)) = eps; t ( f in d ( t  == 0)) = eps;
x = s in (p i* t/D ). / (p i* t/ D); x = s in (p i* t/D ). / (p i* t / D);

Then, how convenient it would be, since you don’t have to bother about pass
ing the parameters. But, as you get proficient in programming and handle many
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functions/routines that are involved with various sets of parameters, you might 
find that the global variable is not always convenient, because of the follow
ing reasons.

• Once a variable is declared as global, its value can be changed in any of the 
MATLAB functions having declared it as global, without being noitced by 
other related functions. Therefore it is usual to declare only the constants as 
global and use long names (with all capital letters) as their names for easy 
identification.

• If some variables are declared as global and modified by several func
tions/routines, it is not easy to see the relationship and the interaction among 
the related functions in terms of the global variable. In other words, the pro
gram readability gets worse as the number of global variables and related 
functions increases.

For example, let us look over the above program “plot_sinc.m” and the func
tion “s in c 2 ()”. They both have a declaration of D as global; consequently, 
sin c2 () does not need the second input argument for getting the parameter 
D. If you run the program, you will see that the two plotting statements adopting 
sin c1 () and s in c2 () produce the same graphic result as depicted in Fig. 1.8a.

1.3.6 P a ra m e te r P assin g  Through Varargin

In this section we see two kinds of routines that get a function name (string) 
with its parameters as its input argument and play with the function.

First, let us look over the routine “ez _ p lo t1 ()”, which gets a function name 
(ftn ) with its parameters (p) and the lower/upper bounds (bounds = [b1 b2]) 
as its first, third, and second input argument, respectively, and plots the graph of 
the given function over the interval set by the bounds. Since the given function 
may or may not have its parameter, the two cases are determined and processed 
by the number of input arguments (nargin) in the i f -e ls e -e n d  block.

%plot_sinc1
clear, clf
D = 1; b1 = -2; b2 = 2;
t = b1+[0:100]/100*(b2 - b1);
bounds = [b1 b2];
subplot(223) , ez_plot1( 1sincl1,bounds,D)
axis([b1 b2 -0.4 1.2])
subplot(224), ez plot('sinc1',bounds,D)
axis ([Ы b2 -0.4 1 .2])
function ez_plot1(ftn,bounds,p) function
if nargin < 2, bounds = [-1 1]; end ez_plot(ftn,bounds,varargin)
Ы = bounds(1); b2 = bounds(2); if nargin < 2, bounds = [-1 1]; end
t = Ы + [0:100] / 100* (Ь2 - Ы) ; Ы = bounds(1); b2 = bounds(2);
if nargin <= 2, x = fev a l(ftn ,t); t = Ы + [0:100] /100*(Ь2 - Ы) ;
else x = fev a l(ftn ,t,p ); x = fev a l(ftn ,t,varargin{:});

end plot(t,x)
plot(t,x)



Now, let us see the routine “e z _ p lo t( )”, which does the same plotting job 
as “ez _ p lo t1 ()”. Note that it has a MATLAB keyword v ararg in  (variable 
length argument list) as its last input argument and passes it into the MATLAB 
built-in function fe v a l( )  as its last input argument. Since v ararg in  can repre
sent comma-separated multiple parameters including expression/strings, it paves 
the highway for passing the parameters in relays. As the number of parame
ters increases, it becomes much more convenient to use v ara rg in  for passing 
the parameters than to deal with the parameters one-by-one as in ez_ p lo t1 (). 
This technique will be widely used later in Chapter 4 (on nonlinear equations), 
Chapter 5 (on numerical integration), Chapter 6 (on ordinary differential equa
tions), and Chapter 7 (on optimization).

(cf) Note that MATLAB has a built-in graphic function ezplot(), which is much more 
powerful and convenient to use than ez_plot(). You can type ‘help ezplot’ to see 
its function and usage.

1.3.7 A daptive Input A rgum ent List

A MATLAB function/routine is said to be “adaptive” to users in terms of input 
arguments if it accepts different number/type of input arguments and makes a 
reasonable interpretation. For example, let us see the nonlinear equation solver 
routine ‘newton() ’ in Section 4.4. Its input argument list is

(f,d f,x0 ,to l,km ax)

where f ,  d f, x0, to l  and kmax denote the filename (string) of function (to 
be solved), the filename (string) of its derivative function, the initial guess (for 
solution), the error tolerance and the maximum number of iterations, respectively. 
Suppose the user, not knowing the derivative, tries to use the routine with just 
four input arguments as follows.

>>newton(f,x0,tol,kmax)

At first, these four input arguments will be accepted as f ,d f ,x 0 ,  and to l ,  
respectively. But, when the second line of the program body is executed, the 
routine will notice something wrong from that df is not any filename but a 
number and then interprets the input arguments as f , x 0 , t o l ,  and kmax to the 
idea of the user. This allows the user to use the routine in two ways, depending 
on whether he is going to supply the routine with the derivative function or not. 
This scheme is conceptually quite similar to function overloading of C++, but 
C++ requires us to have several functions having the same name, with different 
argument list.

PROBLEMS

1.1 Creating a Data File and Retrieving/Plotting Data Saved in a Data File
(a) Using the MATLAB editor, make a program “nm1p01a”, which lets its 

user input data pairs of heights [ft] and weights [lb] of as many persons

46  MATLAB USAGE AND COMPUTATIONAL ERRORS
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as he wants until he presses <Enter> and save the whole data in the 
form of an N  x 2 matrix into an ASCII data file (***.dat) named by 
the user. If you have no idea how to compose such a program, you 
can permutate the statements in the box below to make your program. 
Store the program in the file named “nm1p01a.m” and run it to save 
the following data into the data file named “hw.dat”:

5.5162
6.1185
5.7170
6.5195
6.2191

%nm1p01a: input data pairs and save them into an ASCII data file  
clear 
k = 0; 
while 1
end 
k = k + 1; 
x(k,1) = h;
h = input('Enter height:') 
x(k,2) = input('Enter weight:') 
if  isempty(h), break; end
cd('c:\matlab6p5\work') %change current working directory 
filename = input('Enter filenam e(.da t):','s '); 
filename = [filename '.d a t '] ;  %string concatenation 
save(filenam e,'x ','/ascii')

(b) Make a MATLAB program “nm1p01b”, which reads (loads) the data 
file “hw.dat” made in (a), plots the data as in Fig. 1.1a in the upper- 
left region of the screen divided into four regions like Fig. 1.3, and 
plots the data in the form of piecewise-linear (PWL) graph describing 
the relationship between the height and the weight in the upper-right 
region of the screen. Let each data pair be denoted by the symbol ‘+ ’ 
on the graph. Also let the ranges of height and weight be [5, 7] and 
[160, 200], respectively. If you have no idea, you can permutate the 
statements in the below box. Additionally, run the program to check if 
it works fine.

%nm1p01b: to  read the data f i l e  and p lo t the data
c d ( 'c : \matlab6p5\work') %change current working d irec to ry
weight = hw(I,2);
load hw.dat
c lf ,  subplot(221)
plot(hw)
subplot(222)
ax is([5  7 160 200])
p lo t(h e ig h t,w e ig h t,h e ig h t,w e ig h t,'+ ')
[h e ig h t,I] = so rt(h w (:,1 ));
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1.2 Text Printout of Alphanumeric Data

Make a routine max_array(A),  which uses the max() command to find one 
of the maximum elements of a matrix A given as its input argument and 
uses the f p r i n t f ( )  command to print it onto the screen together with its 
row/column indices in the following format.

'\n  Max(A) i s  A(%2d,%2d) = %5.2f\n' , row_index,col_index,maxA

Additionally, try it to have the maximum element of an arbitrary matrix 
(generated by the following two consecutive commands) printed in this 
format onto the screen.

>>rand( ' s ta te ' , su m(100*clock ) ) ,  rand(3)

1.3 Plotting the Mesh Graph of a Two-Dimensional Function

Consider the MATLAB program “nm1p03a”, whose objective is to draw 
a cone.
(a) The statement on the sixth line seems to be dispensable. Run the pro

gram with and without this line and see what happens.
(b) If you want to plot the function fcone(x,y) defined in another M-file 

‘fcone .m’, how will you modify this program?
(c) If you replace the fifth line by ‘Z = 1 - a b s ( X ) - a b s ( Y ) ; ’, what differ

ence does it make?

%nm1p03a: to p lo t a cone 
c le a r ,  c l f
x = - 1 : 0 . 0 2 : 1 ; y = - 1 : 0 . 0 2 : 1 ; 
[X,Y] = meshgrid(x,y);
Z = 1-sqrt (X."2+Y."2);
Z = max(Z,zeros(s ize(Z)) ) ;  
mesh(X,Y,Z)___________________

func tion z = fcone(x,y)  
z = 1 - s q r t ( x . A2 + y . A2 ) ;

1.4 Plotting The Mesh Graph of Stratigraphic Structure

Consider the incomplete MATLAB program “nm1p04”, whose objective is 
to draw a stratigraphic structure of the area around Pennsylvania State 
University from the several perspective point of view. The data about 
the depth of the rock layer at 5 x  5 sites are listed in Table P1.4. Sup
plement the incomplete parts o f the program so that it serves the pur
pose and run the program to answer the following questions. If you com
plete it properly and run it, MATLAB will show you the four similar 
graphs at the four corners of the screen and be waiting for you to press 
any key.
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(a) At what value of k does MATLAB show you the mesh/surface-type graphs 
that are the most similar to the first graphs? From this result, what do you 
guess are the default values of the azimuth or horizontal rotation angle and 
the vertical elevation angle (in degrees) of the perspective view point?

(b) As the first input argument Az of the command view(Az,E1) decreases, 
in which direction does the perspective viewpoint revolve round the 
z-axis, clockwise or counterclockwise (seen from the above)?

(c) As the second input argument El ofthecom m and view(Az,E1) increases, 
does the perspective viewpoint move up or down along the z-axis?

(d) W hat is the difference between the plotting commands mesh() and 
meshc()?

(e) W hat is the difference between the usages of the command view() 
with two input arguments Az ,El  and with a three-dimensional vector 
argument [ x , y , z ] ?

Table P1.4 The Depth of the Rock Layer

y  Coordinate

x Coordinate

0.1 1.2 2.5 3.6 4.8

0.5 410 390 380 420 450
1.4 395 375 410 435 455
2.2 365 405 430 455 470
3.5 370 400 420 445 435
4.6 385 395 410 395 410

%nm1p04: to  p lo t a s t r a t i g r a p h i c  s t ru c tu re  
c le a r ,  c l f
x = [0 . 1 .............];
y = [ 0 . 5 .............];
Z = [410 390 ..................... ];
[X,Y] = meshgrid(x,y);  
subplot (221),  mesh(X,Y,500 - Z) 
subplot (222),  surf(X,Y,500 - Z) 
subplot (223),  meshc(X,Y,500 - Z) 
subplot (224),  meshz(X,Y,500 - Z) 
pause
fo r  k = 0:7

Az = -12.5*k; El = 10*k; Azr = Az*pi/180; Elr  = El*pi/180;
subplot (221),  view(Az,El)
su bp lo t ( 222),
k, v ie w ( [ s i n ( A z r ) , - c o s ( A z r ) , t a n ( E l r ) ] ) ,  pause %pause(1)

end

1.5 Plotting a Function over an Interval Containing Its Singular Point Noting 
that the tangent function f ( x )  =  tan(x) is singular at x =  n /2, 3 n /2, let us 
plot its graph over [0 , 2n ] as follows.
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(a)

(b)

Define the domain vector x consisting of sufficiently many intermediate 
point x i ’s along the x-axis and the corresponding vector y consisting 
of the function values at x i ’s and plot the vector y over the vector x. 
You may use the following statements.

>>x = [0 : 0 . 0 1 : 2* 
>>subplot(221),

p i ] ;  y = tan(x) ;  
p lo t (x , y )

Which one is the most similar to what you have got, among the graphs 
depicted in Fig. P1.5? Is it far from your expectation?
Expecting to get the better graph, we scale it up along the y -axis by 
using the following command.

>>axis([0 6.3 -10 10])

Which one is the most similar to what you have got, among the graphs 
depicted in Fig. P1.5? Is it closer to your expectation than what you 
got in (a)?

(c) Most probably, you must be nervous about the straight lines at the 
singular points x =  n / 2  and x =  3 n /2 . The more disturbed you become 
by the lines that must not be there, the better you are at the numerical 
stuffs. As an alternative to avoid such a singular happening, you can 
try dividing the interval into three sections excluding the two singular 
points as follows.

1500

1000

500

0

-500

(a) (b)

(c)

Figure P1.5 Plotting the graph of f(x) = tan x.
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>>x1 = [0:0.01:pi/2-0.01];  x2 = [pi/2+0.01:0.01:3*pi/2-0.01];
>>x3 = [3*pi/2+0.01:0.01:2*pi];
>>y1 = tan(x1); y2 = tan(x2); y3 = tan(x3);
>>subplot(222), plot(x1,y1,x2,y2,x3,y3),  axis([0 6.3 -10 10])

(d) Try adjusting the number of intermediate points within the plotting 
interval as follows.

>>x1 = [0 : 200] * p i / 100; y1 = t a n ( x 1 );
>>x2 = [0:400]*pi/200; y2 = tan(x2);
>>subplot(223),  p lo t (x1 ,y 1) ,  ax i s ( [0  6.3 -10 10]) 
>>subplot(224),  p lo t (x2 ,y 2) ,  ax i s ( [0  6.3 -10 10])

From the difference between the two graphs you got, you might have 
guessed that it would be helpful to increase the number of intermediate 
points. Do you still have the same idea even after you adjust the range 
of the y-axis to [ -5 0 , +50] by using the following command?

>>axis([0 6.3 -50 50])

(e) How about trying the easy plotting command e z p l o t ( )  ? Does it answer 
your desire?

> > e z p l o t ( ' t a n ( x ) ' , 0 , 2*pi)

1.6 Plotting the Graph of a Sinc Function 

The sinc function is defined as

sin x
f i x )  =  ------  (Pl.6.1)

x

whose value at x =  0 is

sin x (sin x)'
f ( 0 )  =  lim

x—— 0 x
cos x

x=0 1
=  1 (P1.6.2)

x=0

We are going to plot the graph of this function over [—4n,  + 4 n  ]. 
(a) Casually, you may try as follows.

x

>>x = [ -100:100]*pi /25;  y = s i n ( x ) . / x ;
>>plo t (x ,y) ,  a x i s ( [ -1 5  15 -0.4 1.2])

In spite of the warning message about ‘division-by-zero’, you may 
somehow get a graph. But, is there anything odd about the graph? 

(b) How about trying with a different domain vector?

>>x = [ -4*p i :0 .1 :+4*pi ] ;  y = s i n ( x ) . / x ;  
>>plo t (x ,y) ,  a x i s ( [ -1 5  15 -0.4 1.2])
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Surprisingly, MATLAB gives us the function values without any com
plaint and presents a nice graph of the sinc function. W hat is the 
difference between (a) and (b)?

(cf) Actually, we would have no problem if we used the MATLAB built-in function 
s in c( ) .

1.7 Termwise (Element-by-Element) Operation in In-Line Functions
(a) Let the function f 1 (x) be defined without one or both of the do t(.) 

operators in Section 1.1.6. Could we still get the output vector consist
ing of the function values for the several values in the input vector? 
You can type the following statements into the MATLAB command 
window and see the results.

>>f1 = i n l i n e ( ' 1 . / ( 1+8*xA2 ) ' , ' x ' ) ;  f 1 ([0  1 ])
>>f1 = i n l i n e ( ' 1/ ( 1+8*x .A2 ) ' , ' x ' ) ;  f 1 ([0  1 ])

(b) Let the function f 1 (x) be defined with both of the do t(.) operators as in 
Section 1.1.6. W hat would we get by typing the following statements 
into the MATLAB command window?

>>f1 = i n l i n e ( ' 1 . / ( 1+8* x .A2 ) ' , ' x ' ) ;  f 1 ([0  1 ] ' )

1.8 In-Line Function and M-file Function with the Integral Routine ‘quad() ’

As will be seen in Section 5.8, one of the MATLAB built-in functions for 
computing the integral is ‘q u a d ( ) ’, the usual usage of which is

f  is the name of the integrand function (M-file name should be categorized 
by ' ')
a ,b  are the lower/upper bound of the integration interval
t o l  is the error tolerance (10-6  by default [])
t r a c e  set to 1(on)/0 (off) (0 by default [ ] )  for subintervals
p1 ,p 2 , .. are additional parameters to be passed directly to function f

Let’s use this quad()  routine with an in-line function and an M-file function

q u a d ( f , a , b , t o l , t r a c e , p 1 ,p 2 , ..) for

(P1.8.1)

where

to obtain

and

(P1.8.2b)
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where

X0 =  1, f i x )  =  * e - ^ - m )2! ^ 2 with rn =  \ , a  =  2 (Pl.8.3) 
y / 2 n a

Below are an incomplete main program ‘nm1p08’ and an M-file function 
defining the integrand of (P1.8.2a). Make another M-file defining the inte
grand of (P1.8.2b) and complete the main program to compute the two 
integrals (P1.8.2a) and (P1.8.2b) by using the in-line/M-file functions.

func t ion xfx = xGaussian_pdf(x,m,sigma,x0)
xfx = (x - x0 ) .*exp( - (x  - m) .A2 / 2 /sigmaA2 ) / s q r t ( 2*pi )/s igma;

%nm1p08: to  try  using quad() with in- l ine /M-f i le  functions 
clear
m = 1 ; sigma = 2 ;
int_xGausspdf = quad('xGaussian_pdf' ,m - 10,m + 10,[],0,m,sigma,1) 
Gpdf = ' exp(-(x-m).~2/2/sigma~2)/sqrt(2*pi)/sigma' ;  
xGpdf = i n l i n e ( [ ' ( x  - x0).*'  G p d f ] , 'x ' , 'm ' , ' s i g m a ' , ' x 0 ' ) ;  
int_xGpdf = quad(xGpdf,m - 10,m+10,[],0,m,sigma,1)

1.9 д -Law Function Defined in an M-File

The so-called д -law function and д ^ -law function used for non-uniform 
quantization is defined as

ln (1 +  д \x  \ / \x  \max) . , 4 
У =  g f i ( x )  =  |y  Imax------- Г—— --------------S lgn(x)

ln (1 +  д )

(1 +  д ) |y|/|y|max -  1 
*  =  8 a  (y) =  N rnax----------------------------- Slgn(y)

Below are the д -law function mulaw() defined in an M-file and a main 
program nm1p09, which performs the following jobs:
• Finds the values y of the д -law function for x = [ - 1 : 0 . 0 1 : 1 ], plots the 

graph of y versus x.
• Finds the values x0 of the д ^ -law function for y.
• Computes the discrepancy between x and x0 .

Complete the д ^ -law function mulaw_inv() and store it together with 
mulaw() and nm1p09 in the M-ffles named “mulaw_inv.m”, “mulaw.m”, 
and “nm1p09.m”, respectively. Then run the main program nm1p09 to plot 
the graphs of the д -law function with д  =  10, 50 and 255 and find the 
discrepancy between x and x0 .

(P1.9a)

(P1.9b)
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function [y,xmax] = mulaw(x,mu,ymax) 
xmax = max(abs(x));
у = ymax*log(1+mu*abs(x/xmax)) . / l o g (1+mu). *sign(x); % Eq.(P1,9a)

function x = mulaw_inv(y, mu,xmax)

%nm1p09: to plot the mulaw curve
clear ,  c lf
x = [-1: .005:1];
mu = [10 50 255];
fo r i  = 1:3

[y,xmax] = mulaw(x,mu(i),1);
p l o t ( x , y , ' b - ' ,  x,x0 , ' r - ' ) ,  hold on
x0 = mulaw_inv(y,mu(i),xmax);
discrepancy = norm(x-x0 )

end

1.10 Analog-to-Digital Converter (ADC)

Below are two ADC routines adc1 ( a , b , c )  and adc2 ( a , b , c ) , which assign 
the corresponding digital value c ( i )  to each one of the analog data belong
ing to the quantization interval [ b ( i ) ,  b ( i + 1 )]. Let the boundary vector 
and the centroid vector be, respectively,

b = [-3 -2 -1 0 1 2 3]; c = [ -2.5  -1.5 -0.5 0.5 1.5 2 .5];

(a) Make a program that uses two ADC routines to find the output d for 
the analog input data a = [ -300: 300 ] /1 00  and plots d versus a to see 
the input-output relationship of the ADC, which is supposed to be like 
Fig. P1.10a.

function d = adc1 (a,b,c)
%Analog-to-Digital Converter
%Input a = analog signal ,  b(1 N + 1) = boundary vector

c(1:N)=centroid vector
%Output: d = d i g i ta l  samples
N = length(c);
for  n = 1 :length(a)

I = find(a(n) < b(2:N));
i f  -isempty(I),  d(n) = c(I(1) ;
else d(n) = c(N);

end
end
function d=adc2 (a,b,c)
N = length(c);
d(f ind(a < b(2 ))) = c ( 1);
for  i  = 2:N-1

index = f ind(b(i )  <= a & a <= b i + ; d(index) = c ( i ) ;
end
d( f ind (b(N) <= a ) ) = с (N) ;
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Figure P1.10 The characteristic of an ADC (analog-to-digital converter).

(b) Make a program that uses two ADC routines to find the output d for 
the analog input data a = 3 * s i n ( t )  with t  = [ 0 :2 00 ] /1 00*pi  and 
plots a and d versus t  to see how the analog input is converted into the 
digital output by the ADC. The graphic result is supposed to be like 
Fig. P1.10b.

1.11 Playing with Polynomials
(a) Polynomial Evaluation: p o ly v a l ( )

Write a MATLAB statement to compute

p ( x )  =  x 8 -  1 for x =  1 (P1.11.1)

(b) Polynomial Addition/Subtraction by Using Compatible Vector Addi
tion/Subtraction
Write a MATLAB statement to add the following two polynomials:

p 1(x) =  x 4 +  1, p 2(x) =  x 3 -  2x2 +  1 (P1.11.2)

(c) Polynomial Multiplication: conv()
W rite a MATLAB statement to get the following product o f polynomials:

p ( x )  =  (x4 +  1)(x2 +  1)(x +  1)(x -  1) (P1.11.3)

(d) Polynomial Division: deconv()
W rite a MATLAB statement to get the quotient and the remainder of 
the following polynomial division:

p ( x )  =  x 8/ ( x 2 -  1) (P1.11.4)

(e) Routine for Differentiation/Integration of a Polynomial
W hat you see in the below box is the routine “p o l y _ d e r ( p ) ”, which 
gets a polynomial coefficient vector p (in the descending order) and 
outputs the coefficient vector pd of its derivative polynomial. Likewise, 
you can make a routine “p o l y _ i n t ( p ) ”, which outputs the coefficient



vector of the integral polynomial for a given polynomial coefficient 
vector.
(cf) MATLAB has the built-in routines p o ly d e r() /p o ly in t()  for finding the 

derivative/integral of a polynomial.
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function pd = poly_der(p)
%p: the vector of polynomial coeff icien ts  in descending order 
N = length(p);
i f  N <= 1, pd = 0; % constant 
else

for i  = 1: N - 1, pd(i) = p(i)*(N - i ) ;  end 
end

(f) Roots of A Polynomial Equation: r o o t s ( )
Write a MATLAB statement to get the roots of the following polynomial 
equation

p ( x )  =  x 8 -  1 =  0 (P1.11.5)

You can check if the result is right, by using the MATLAB command 
p o ly ( ) ,  which generates a polynomial having a given set of roots.

(g) Partial Fraction Expansion of a Ratio of Two Polynomials: r e s i d u e ( ) /  
r e s i d u e z ( )

(i) The MATLAB routine [ r , p , k ]  = res idue(B,A) finds the partial 
fraction expansion for a ratio of given polynomials B ( s ) / A ( s )  as

B(s)  _  b i s M~l +  b2s M ~ 2 H--------r( i)

A ( s ) a \ s N~l +  a2SN ~ 2 +  ■ ■ ■ +  . s — p ( i )
1 (P1.11.6a)

which is good for taking the inverse Laplace transform. Use this 
routine to find the partial fraction expansion for

4s +  2
X { s )  =  —;---- —;---- —------ — = --------- 1------------1---------

s3 +  6s 2 +  11s +  6 s +  s +  s +
(P1.11.7a)

(ii) The MATLAB routine [ r , p , k ]  = residuez(B,A)  finds the par
tial fraction expansion for a ratio of given polynomials B ( z ) / A ( z )  
as

B(z)  b1 +  b2z -1 +--------+ bM z -(M-1) r (i)z
=  k (z  ) +  > ■

A(z)  a 1 +  a2z -1 +--------+ aNz _(N-1) “ z _  p ( i )
1 (P1.11.6b)

which is good for taking the inverse z-transform. Use this routine 
to find the partial fraction expansion for

w  . 4 +  2z -1 z z z
^ ( z ) — л , ^ , 11 _9 , ^ — — ;------1------;------^1 +  6z -1 +  11z _2 +  6z _ 3 z +  z +  z +

(P1.11.7b)
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(h) Piecewise Polynomial: mkpp()/ppval( )
Suppose we have an M x N matrix P, the rows of which denote 
M (piecewise) polynomials of degree (N - 1 )  for different (non
overlapping) intervals with (M + 1) boundary points bb = [b(1) 
. .  b(M + 1) ],  where the polynomial coefficients in each row are 
supposed to be generated with the interval starting from x  =  0. Then 
we can use the MATLAB command pp = mkpp(bb,P) to construct a 
structure of piecewise polynomials, which can be evaluated by using 
p p v a l ( p p ) .

Figure P1.11(h) shows a set of piecewise polynomials j p ^ x  +  3), 
p 2(x +  1 ) , p 3(x -  2)} for the intervals [ - 3 ,  —1],[—1, 2] and [2, 4], 
respectively, where

P 1 (x) =  x 2, p 2 (x) =  - ( x  -  1)2, and р з (x) =  x 2 -  2 (P1.11.8)

Make a MATLAB program which uses mkpp()/ppval( )  to plot this 
graph.

Figure P1.11(h) The graph of piecewise polynomial functions.

(cf) You can type ‘help mkpp’ to see a couple of examples showing the usage 
of mkpp.

1.12 Routine for Matrix Multiplication

Assuming that MATLAB cannot perform direct multiplication on vectors/ 
matrices, supplement the following incomplete routine “m u l t ip ly _ m a t r ix  
(A,B)” so that it can multiply two matrices given as its input arguments only 
if their dimensions are compatible, but displays an error message if their 
dimensions are not compatible. Try it to get the product of two arbitrary 
3 x  3 matrices generated by the command rand(3) and compare the result 
with that obtained by using the direct multiplicative operator *. Note that



the matrix multiplication can be described as

K
C(m,  n) = Y ^  A ( m , k ) B ( k , n )  (P1.12.1)

k=i
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function C = multiply _matrix(A,B)
[M,K] = size(A); [K1 , N] = size (B);
i f  K1 ~= K

error( 'The # of col umns of A is not equal to the # of rows of B1)
else

for m = 1 :
for n = 1 :

C(m,n) = A(m, 1)*B(1 ,n) ;
for k = 2

C(m,n) =C (m,n) + A(m,k)*B(k,n);
end

end
end

end

1.13 Function for Finding Vector Norm

Assuming that MATLAB does not have the norm() command finding us the 
norm of a given vector/matrix, make a routine norm_vec tor (v ,p) ,  which 
computes the norm of a given vector as

N
II v|| p =  ^ \vn\p (P1.13.1)

\  n=1

for any positive integer p, finds the maximum absolute value of the elements 
for p = in f  and computes the norm as if p = 2 , even if the second input 
argument p is not given. If you have no idea, permutate the statements in the 
below box and save it in the file named “norm_vector.m”. Additionally, try 
it to get the norm with p = 1,2 ,<x> ( in f )  and of an arbitrary vector generated 
by the command r a n d ( 2 , 1 ) . Compare the result with that obtained by using 
the norm() command.

func t ion nv = norm_vector(v,p)
i f nargin < 2 , p = 2 ; end
nv = sum(abs(v) . Ap ) A(1 I p ) ;
nv = max(abs(v));
i f p > 0 & p -= in f

e l s e i f  p == inf
end
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1.14 B ackslash(\) Operator

Let’s play with the backslash(\) operator.
(a) Use the backslash(\) command, the minimum-norm solution (2.1.7) and 

the p i nv ( )  command to solve the following equations, find the residual 
error || A ;x — b; 1|’s and the rank of the coefficient matrix A ; , and fill in 
Table P1.14 with the results.

(i) A ix  =

(ii) A2x =

<N1-H *1 '  6
4 5 6_ *2 = 15

_*3 _

<N1-H *1 '  6"
2 4 6 *2 = 8L J *3 L J

=  bi

=  Ь2

(P1.14.1)

(P1.14.2)

(iii) A3x =

1 2 3 * 1 6
2 4 6 * 2 = 12L J *3 L J

=  Ьз (P1.14.3)

Table P1.14 Results of Operations with backslash (\) Operator and p in v ( ) Command

backslash(\) Minimum-Norm or 
LS Solution

pinv() Remark
on rank(Ai)

X IIAX — b; || X II Л х — Ь; || X ||А;х -Ь ;|| redundant/
inconsistent

A\X = b!
1.5000 
0
1.5000

4.4409e-15
(1.9860e-15)

A2X = b2
0.3143
0.6286
0.9429

1.7889

X II

IIX 2.5000
0.0000

1.2247

X II X

A6x = b 6

(cf) When the mismatching error ||Ai x — Ь; ||’s obtained from MATLAB 5.x/6.x version are slightly different, the 
former one is in the parentheses ().



6 0 MATLAB USAGE AND COMPUTATIONAL ERRORS

(b) Use the backslash (\) command, the LS (least-squares) solution (2.1.10) 
and the p inv ( )  command to solve the following equations and find the 
residual error || A tx — b 1|’s and the rank of the coefficient matrix A t , 
and fill in Table P1.14 with the results.

(i) A4X =

(ii) A5X =

(iii) A6x =

' 1  2 ' _ _ 2
— 2 3 *1 = 6

3 4 _X2 _ 7

" 1 2 " " 1 "
_ 2 4 *1 — 5

3 6 _*2 _ 8

" 1 2 " '  3 "
— 2 4 *1 = 6

3 6 , X2 . 9

=  b4

=  b5

=  b 6

(P1.14.4)

(P1.14.5)

(P1.14.6)

(cf) If some or all of the rows of the coefficient matrix A  in a set of linear equations 
can be expressed as a linear combination of other row(s), the corresponding 
equations are dependent, which can be revealed by the rank deficiency, that is, 
rank(A ) <  min(M , N ) where M  and N  are the row dimension and the column 
dimension, respectively. If some equations are dependent, they may have either 
inconsistency (no exact solution) or redundancy (infinitely many solutions), 
which can be distinguished by checking if augmenting the RHS vector b to the 
coefficient matrix A  increases the rank or not— that is, rank([A b]) > rank(A) 
or not [M-2].

(c) Based on the results obtained in (a) and (b) and listed in Table P1.14, 
answer the following questions.

(i) Based on the results obtained in (a)(i), which one yielded the 
non-minimum-norm solution among the three methods, that is, 
the backslash(\) operator, the minimum-norm solution (2.1.7) and 
the p in v( )  command? Note that the minimum-norm solution 
means the solution whose norm (||x||) is the minimum over the 
many solutions.

(ii) Based on the results obtained in (a), which one is most reliable 
as a means of finding the minimum-norm solution among the 
three methods?

(iii) Based on the results obtained in (b), choose two reliable methods 
as a means of finding the LS (least-squares) solution among the 
three methods, that is, the backslash (\) operator, the LS solu
tion (2.1.10) and the p inv ( )  command. Note that the LS solution
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means the solution for which the residual error (||Ax — b ||) is the 
minimum over the many solutions.

1.15 Operations on Vectors
(a) Find the mathematical expression for the computation to be done by 

the following MATLAB statements.

>>n = 0:100; S = sum(2.A-n)

(b) Write a MATLAB statement that performs the following computation.

(c) Write a MATLAB statement which uses the commands prod()  and 
sum() to compute the product o f the sums of each row of a 3 x  3 
random matrix.

(d) How does the following MATLAB routine “ r e p e t i t i o n ( x , M , m ) ” con
vert a given row vector sequence x to make a new sequence y ?

func t ion у = repet i t ion(x,M,m)
i f  m == 1
MNx = ones(M,1)*x; у = MNx( : ) 1;

e lse
Nx = length(x) ;  N = cei l (Nx/m) ;
x = [x zeros(1,N*m - Nx)];
MNx = ones(M,1)*x;
y = [];
for n = 1:N

tmp = MNx(:,(n - 1 )*m + [ 1 : m]) . 1;
y = [y t m p ( : ) . ' ] ;

end
end

(e) Make a MATLAB routine “z e r o _ i n s e r t i o n ( x , M , m ) ”, which inserts 
m zeros just after every Mth element of a given row vector sequence
x to make a new sequence. Write a MATLAB statement to apply the 
routine for inserting two zeros just after every third element of x =  
[1 3 7 2 4 9 ] to get

y =  [1 3 7 0 0 2 4 9 0  0 ]

(f) How does the following MATLAB routine “zero ing(x ,M,m)” convert 
a given row vector sequence x to make a new sequence y?

E (2 n +  1)2n=0 v ' J / 8
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func tion y = zeroing(x,M,m)
%zero out every (kM - m)th element 
i f  nargin < 3 ,  m = 0 ; end 
i f  M<=0, M = 1; end 
m = mod(m,M);
Nx = length(x) ;  N = floor(Nx/M); 
y = x; y(M*[1:N] - m) = 0;

(g) Make a MATLAB routine “sampling(x,M,m)”, which samples every 
(kM - m)th element of a given row vector sequence x to make a new 
sequence. Write a MATLAB statement to apply the routine for sampling 
every (3k — 2)th element of x =  [1 3 7 2 4 9 ] to get

y =  [1 2 ]

(h) Make a MATLAB routine ‘r o t a t i o n _ r ( x , M ) ”, which rotates a given 
row vector sequence x right by M samples, say, making r o t a t e _ r ( [ 1
2 3 4 5 ] , 3 )  = [ 3 4 5 1  2].

1.16 Distribution of a Random Variable: Histogram

Make a routine r an du (N ,a ,b ) ,  which uses the MATLAB function rand( )  
to generate an N-dimensional random vector having the uniform distribution 
over [a, b] and depicts the graph for the distribution of the elements of 
the generated vector in the form of histogram divided into 20 sections as 
Fig.1.7. Then, see what you get by typing the following statement into the 
MATLAB command window.

>>randu(1000 , - 2 , 2 )

W hat is the height of the histogram on the average?

1.17 Number Representation

In Section 1.2.1, we looked over how a number is represented in 64 bits. 
For example, the IEEE 64-bit floating-point number system represents the 
number 3(21 <  3 <  22) belonging to the range R 1 =  [21, 22) with E =  1 as

| 0 1100 0000 000011000 0000 0000 ....................  0000 0000 0000 0000 0000

4 0 0 8  0 0 .............  0 0 0 0 0

where the exponent and the mantissa are

Exp =  E +  1023 =  1 +  1023 =  1024 =  210 =  100 0000 0000 

M =  (3 x  2—E — 1) x  252 =  251

=  1000 0000  0 0 0 0 . . . .  0000  0000  0000  0000  0000
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This can be confirmed by typing the following statement into MATLAB 
command window.

> > f p r i n t f ( ' 3  = %bx\n' ,3) or >>format hex, 3, format short

which will print out onto the screen

0000000000000840 4008000000000000

Noting that more significant byte (8 [bits] =  2[hexadecimal digits]) of a 
number is stored in the memory of higher address number in the INTEL 
system, we can reverse the order of the bytes in this number to see the 
number having the most/least significant byte on the left/right side as we 
can see in the daily life.

00 00 00 00 00 00 08 40 ^  40 08 00 00 00 00 00 00

This is exactly the hexadecimal representation of the number 3 as we 
expected. You can find the IEEE 64-bit floating-point number represen
tation of the number 14 and use the command f p r i n t f ( )  or format hex to 
check if the result is right.

<procedure of adding 2 1 to 23>

1 .0000 x 23 ffl.00000x 23„  . alignment „
+0.0000 x 2 -------> +0.0001:0: x 23

truncation of guard bit (  0  00010 x 23 
*1 .0 00 1  x 23 

= (1 + 2-4) x 23 
right result

<procedure of subtracting 2 1 from 23>

1.0000 x 23 m .00000 x 23 2’s 1 .0 0 00 0  x 23„  .alignment^ "  „complement „
-1 .0 0 0 0  x 2-1 ----- > -0 .0 0 0 1 0 x 23 ---------- > + 1 .1 1 11 0 x 23

normalization ✓ 0.11110i x 23 
truncation of guard bit Vi 1 ц ю * "" x 22

= (1 + 1 -  2-3) x 22 
right result

<procedure of adding 2 2 to 23>

1.0000 x 23 .1.00000" x 23„  „ alignment „
+1.0000 x 2 -------> + 0 .00001  x 23

truncation of guard bit (  1  00001 x 23 
*1 .0 0 0 0  x 23 
= (1 + 0) x 23 

no difference 
(cf) □  : hidden bit, [ \ : guard bit

<procedure of subtracting 2 2 from 23>

1.0000 x 23 ,1 .0 0 0 0 0  x 23 2 ’s 1 .0 0 0 0 0 x  23 alignment .complement 
^ -------> -0 .0 0 0 0 1  x 23 — ------ x .m и и м ^ о 3-  1 .0000 x 2- -> +1 .11111  x 23

normalization 0.1111:1 x 23 
truncation of guard bit \i 1 ц ц  x 22

= (1 + 1 -  2-4) x 22
right result

Figure P1.18 Procedure of addition/subtraction with four mantissa bits.

1.18 Resolution of Number Representation and Quantization Error

In Section 1.2.1, we have seen that adding 2 -22 to 230 makes some dif
ference, while adding 2 -23 to 230 makes no difference due to the bit shift 
by over 52 bits for alignment before addition. How about subtracting 2 -23 
from 230? In contrast with the addition of 2 -23 to 230, it makes a differ
ence as you can see by typing the following statement into the MATLAB
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command window.

>>x = 2"30; x + 2" - 23 == x, x - 2" - 23 == x

which will give you the logical answer 1 (true) and 0 (false). Justify this 
result based on the difference of resolution of two ranges [230 , 231) and [229, 
230) to which the true values of computational results (230 +  2 —23) and (230 — 
2—23) belong, respectively. Note from Eq. (1.2.5) that the resolutions— that is, 
the maximum quantization errors— are A E =  2E—52 =  2 —52+30 =  2 —22 and
2 —52+29 =  2-23, respectively. For details, refer to Fig. P1.18, which illustrates 
the procedure of addition/subtraction with four mantissa bits, one hidden bit, 
and one guard bit.

1.19 Resolution of Number Representation and Quantization Error
(a) W hat is the result o f typing the following statements into the MATLAB 

command window?

>>7/100*100 - 7

How do you compare the absolute value of this answer with the reso
lution A  of the range to which 7 belongs?

(b) Find how many numbers are susceptible to this kind of quantization 
error caused by division/multiplication by 100 , among the numbers 
from 1 to 31.

(c) W hat will be the result of running the following program? Why?

%nm1p19: Quant izat ion Error 
x = 2-2"-50; 
fo r  n = 1:2"3

x = x+2"-52; fp r in t f ( '% 20. 18E \n ' ,x )
end

1.20 Avoiding Large Errors/Overflow/Underflow
(a) For * =  9.8201 and y  =  10.2199, evaluate the following two expressions 

that are mathematically equivalent and tell which is better in terms of 
the power of resisting the overflow.

(i) z  =  J x 2 +  J,2 (P l.20 .la)

(ii) z =  y j ( x / y ) 2 +  1 (P I.20.lb)

Also for * =  9.8—201 and y  =  10.2-199, evaluate the above two expres
sions and tell which is better in terms of the power of resisting the 
underflow.

(b) With a =  c =  1 and for 100 values of b over the interval [1074, 108 5] 
generated by the MATLAB command ‘l o g s p a c e ( 7 . 4 , 8 . 5 , 1 0 0 ) ’,
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evaluate the following two formulas (for the roots of a quadratic 
equation) that are mathematically equivalent and plot the values of the 
second root of each pair. Noting that the true values are not available 
and so the shape of solution graph is only one practical basis on which 
we can assess the quality of numerical solutions, tell which is better in 
terms of resisting the loss of significance.

(i)
1

x i , x 2 =  —  {—b - F sign(b )y /b2 — 4ac)  
2 a

(P1.20.2a)

(ii) xi  =  — {—b — sign (b )y /b2 — 4 a c) , X 2 =
2 a x 1

(P1.20.2b)

(c) For 100 values of x over the interval [1014, 1016], evaluate the follow
ing two expressions that are mathematically equivalent, plot them, and 
based on the graphs, tell which is better in terms of resisting the loss 
of significance.

(i) у =  V 2x2 +  1 -  1 (PI ,20.3a)

2x 2
ii У =  - i (PI.20.3b)

V 2x2 +  1 +  1

(d) For 100 values of x over the interval [10 9, 10 7 4], evaluate the fol
lowing two expressions that are mathematically equivalent, plot them, 
and based on the graphs, tell which is better in terms of resisting the 
loss of significance.

(i) У =  V x T 4  -  V x T 3  (PI,20.4a)

(ii) у =  ------  1 ------= (PI.20.4b)
y /x  +  4 +  y /x  +  3

(e) On purpose to find the value of (300125/ 125!)e 300, type the following 
statement into the MATLAB command window.

>>300A125/prod([1:125])*exp(-300)

W hat is the result? Is it of any help to change the order of multipli
cation/division? As an alternative, make a routine which evaluates the 
expression

k k ,
p( k)  =  — e for X =  300 and an integer к (PI .20.5) 

k!

in a recursive way, say, like p ( k  +  1) =  p (k )  * X / k  and then, use the 
routine to find the value of (300125/125!)e -300.
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(f) Make a routine which computes the sum

Y
к

S ( K )  =  Y '  — e x for X =  100 and an integer К  (PI .20.6) 
к!к=0

and then, use the routine to find the value of 5(155).

1.21 Recursive Routines for Efficient Computation
(a) The Hermite Polynomial [K-1]

Consider the Hermite polynomial defined as

2 d N 2
Ho(x)  =  1, HN(x) =  ( ~ l ) Nex — e - x (Pl.21.1)

(i) Show that the derivative of this polynomial function can be writ
ten as

2 d N , , d N+1
HN {x) =  ( - 1  f i x e *  — e~* +  ( - 1 )  V  —  e-

=  2 x H n (x)  _  Hn + 1 (x) (P1.21.2)

and so the (N  +  1)th-degree Hermite polynomial can be obtained 
recursively from the N th-degree Hermite polynomial as

H n +1 (x ) =  2x H n (x ) _  H'n (x ) (P1.21.3)

(ii) Make a MATLAB routine “Henmitp(N)” which uses Eq. (P1.21.3) 
to generate the N  th-degree Hermite polynomial H n (x ).

(b) The Bessel Function of the First Kind [K-1]
Consider the Bessel function of the first kind of order к defined as

1 f n
=  -  cos(kS -  p  sin 5)^5 (P1.21.4a)

n  J 0

f p V ^  ( _ 1 )me 2m к
=  ( ! )  g 0 4 . 'm )(,„ +  t , ! S ( - | )  J - ‘ ( / i , < P L 2 l -4b)

(i) Define the integrand of (P1.21.4a) in the name of ‘B e s s e l _ i n t e -  
g n a n d ( x , b e t a , k ) ’ and store it in an M-file named “Bessel_  
in t egr and .m ”.

(ii) Complete the following routine “J k b ( K , b e t a ) ”, which uses 
(P1.21.4b) in a recursive way to compute Jk(fi) of order к =  
1:K for given K and в  (beta).

(iii) Run the following program nm1p21b which uses Eqs. (P1.21.4a) 
and (P1.21.4b) to get J15(fi) for в  =  0:0.05:15. W hat is the norm
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of the difference between the two results? How do you compare 
the running times of the two methods?

(cf) Note that Jkb(K ,beta) computes Jk(fi) of order к =  1:K, while the inte
gration does for only к =  K.

func t ion [ J , J J ]  = Jkb(K,beta)  %the 1st  kind of k th-order  Bessel  f t n
tmpk = o n e s ( s iz e (b e t a ) ) ;
fo r  k = 0:K

tmp = tmpk; JJ (k  + 1 , : )  = tmp;
fo r  m = 1:100

t mp = ?????????????????????;
JJ (k  + 1 , : )  = JJ (k  + 1 , : ) +  tmp;
i f  norm(tmp)<.001 , break; end
end
tmpk = tmpk.*beta/2 / (k  + 1 );

end
J = JJ(K+1 , : ) ;

%nm1p21b: Besse l_f tn
c l e a r ,  c l f
beta = 0 : .05 :15;  K = 15;
t i c
fo r  i  = 1 : leng th(be ta )  %Integrat ion

J151( i)  = q u a d ( 'B e s s e l_ in t e g ra n d ' , 0 ,p i [ ] , 0 , b e t a ( i ) , K)/pi;
end
toc
t i c ,  J152 = Jkb(K,be ta) ;  toc  %Recursive Computation
discrepancy = norm(J151-J152)

1.22 Find the four routines in Chapter 5 and 7, which are fabricated in a nested 
(recursive calling) structure.
(cf) Don’t those algorithms, which are the souls of the routines, seem to have been 

born to be in a nested structure?

1.23 Avoiding Runtime Error in Case of Deficient/Nonadmissible Input Argu
ments
(a) Consider the MATLAB routine “ r o t a t i o n _ r ( x , M ) ”, which you made 

in Problem 1.15(h). Does it work somehow when the user gives a 
negative integer as the second input argument M ? If not, add a statement 
so that it performs the rotation left by _M samples for M <  0, say, 
making

r o t a t e _ r ( [ 1 2 3 4 5 ] , -2 )  = [ 3 4 5 1 2 ]

(b) Consider the routine ‘t r p z d s ( f , a , b , N ) ’ in Section 5.6, which com 
putes the integral of function f  over [a, b] by dividing the integration 
interval into N sections and applying the trapezoidal rule. If the user 
tries to use it without the fourth input argument N, will it work? If not, 
make it work with N =  1000 by default even without the fourth input 
argument N.
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function INTf = trpzds(f,a,b,N)
%integral of f(x) over [a,b] by trapezoidal rule with N segments
if  abs(b - a) < eps | N <= 0, INTf = 0; return; end
h = (b - a)/N; x = a+[0:N]*h;
fx = feval(f ,x);  %values of f for a l l  nodes
INTf = h*((fx(1)+ fx(N + 1))/2 + sum(fx(2:N))); %Eq.(5.6.1)

1.24 Parameter Passing through v a r a r g i n

Consider the integration routine ‘t r p z d s ( f , a , b , N ) ’ in Section 5.6. Can 
you apply it to compute the integral of a function with some parame
te rs) , like the ‘B e s s e l _ i n t e g r a n d ( x , b e t a , k ) ’ that you defined in Prob
lem 1.21? If not, modify it so that it works for a function with some param
e te rs )  (see Section 1.3.6) and save it in the M-file named ‘t r p z d s _ p a r .m ’. 
Then replace the ‘quad()  ’ statement in the program ‘nm1p21b’ (introduced 
in P1.21) by an appropriate ‘t r p z d s _ p a r ( ) ’ statement (with N =  1000)and 
run the program. W hat is the discrepancy between the integration results 
obtained by this routine and the recursive computation based on Problem 
1.21.4(b)? Is it comparable with that obtained with ‘quad( ) ’? How do you 
compare the running time of this routine with that of ‘q u a d ( ) ’ ? Why do 
you think it takes so much time to execute the ‘quad()  ’ routine?

1.25 Adaptive Input Argument to Avoid Runtime Error in the Case of Different 
Input Arguments

Consider the integration routine ‘ t r p z d s ( f , a , b , N )  ’ in Section 5.6. If some 
user tries to use this routine with the following statement, will it 
work?

t r p z d s ( f , [ a  b],N) or t r p z d s ( f , [ a  b])

If not, modify it so that it works for such a usage (with a bound vector as 
the second input argument) as well as for the standard usage and save it in 
the M-file named ‘t rpzds_bnd.m’. Then try it to find the intergal of e-t 
for [0,100] by typing the following statements in the MATLAB command 
window. W hat did you get?

> > f t n = i n l i n e ( ' e x p ( - t ) ' , ' t ' ) ;
>>t rpzds_bnd(f tn , [0  100] , 1000)
>>t rpzds_bnd(f tn , [0  100])

1.26 CtFT(Continuous-Time Fourier Transform) of an Arbitrary Signal 

Consider the following definitions of CtFT and ICtFT(Inverse CtFT) [W-4]:

(P1.26.1a)

X( m )e ia tdm: ICtFT (P1.26.1b)
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(a) Similarly to the MATLAB routine “CtFT1(x,Dt ,w)” computing the 
CtFT (P1.26.1a) of x ( t )  over [-Dt ,Dt  ] for w, make a MATLAB rou
tine “ ICtFT1(X,Bw,t )” computing the ICtFT (P1.26.1b) of X(w) over 
[-Bw, Bw] for t .  You can choose whatever integral routine including 
‘t r p z d s _ p a r ( )  ’ (Problem 1.24) and ‘quad()  ’, considering the running 
time.

(b) The following program ‘nm1p26’ finds the CtFT of a rectangular pulse 
(with duration [_1,1]) defined by ‘rDt ()  ’ for rn =  [ _ 6n,  + 6n ] and the 
ICtFT of a sinc spectrum (with bandwidth 2 n ) defined by ‘s incBw()’ 
for t =  [_5 ,  +5]. After having saved the routines into M-files with the 
appropriate names, run the program to see the rectangular pulse, its 
CtFT spectrum, a sinc spectrum, and its ICtFT. If it doesen’t work, 
modify/supplement the routines so that you can rerun it to see the 
signals and their spectra.

func t ion Xw = CtFT1(x,Dt,w)
x_ejkwt = i n l i n e ( [ x  ' ( t ) . * e x p ( - j * w * t ) ' ] , ' t ' , ' w ' ) ;  
Xw = t rpzds_par(x_ejkwt ,-Dt ,Dt ,1000,w);
%Xw = quad(x_ejkwt, - D t , D t , [ ] , 0 ,w) ;

func t ion xt  = ICtFT1(X,Bw,t)

func t ion x = rDt ( t )

x = ( -D/2  <= t  & t  <= D/2 );______________________________

func t ion X = sincBw(w)

X = 2*pi /B*sinc(w/B);____________________________________

%nm1p26: CtFT and ICtFT 
c l e a r ,  c l f  
g loba l  B D
%CtFT of a Rectangular Pulse Function
t  = [-50 :50] /10;  %time vector
w = [-60 :60] /10*pi ;  %frequency vector
D = 1; %Duration of a rec tangular  pulse rD(t)
fo r  k = 1: length(w) , Xw(k) = CtFT1( ' rDt ' ,D*5,w(k) );  end
subplot (221) ,  p l o t ( t , r D t ( t ) )
subplot (222) ,  plot(w,abs(Xw))
%ICtFT of a Sinc Spectrum
B = 2*pi; %Bandwidth of a s inc  spectrum sncB(w)
fo r  n = 1 : l e n g t h ( t ) ,  xt (n)  = ICtFT1( 's incBw',B*5, t (n) ) ;
end
subplot (223) ,  p l o t ( t , r e a l ( x t ) )  
s u b p l o t (224), plot(w,sincBw(w))



2
SYSTEM OF LINEAR 

EQUATIONS

In this chapter, we deal with several numerical schemes for solving a system of 
equations

a n x 1 +  a 12 X2 +--------+ a 1NXN =  bi

a21X1 +  a22 X2 +--------+ a 2NXN =  b2

(2 .0 .1a)

aM1X1 +  a M2X2 +----- +  aMNXN =  bM

which can be written in a compact form by using a m atrix-vector notation as

A MxN x =  b (2 .0 .1b)

where

a 11 a i2 ■ ■ aiN X1 " bi  "

A m xn =
a 21 a22 ■ ■ a2N , x = X2 , b = b2

aM1 aM2 ■ ■ aMN XN bM

We will deal with the three cases:

(i) The case where the number (M ) of equations and the number (N ) of 
unknowns are equal (M  =  N ) so that the coefficient matrix A MxN is 
square.
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(ii) The case where the number ( M ) of equations is smaller than the number 
( N ) of unknowns (M  <  N ) so that we might have to find the minimum- 
norm solution among the numerous solutions.

(iii) The case where the number of equations is greater than the number of 
unknowns (M  >  N ) so that there might exist no exact solution and we 
must find a solution based on global error minimization, like the “LSE 
(Least-squares error) solution.”

2.1 SOLUTION FOR A SYSTEM OF LINEAR EQUATIONS

2.1.1 T he N o n sin g u la r C a s e  (M =  N)

If the number (M ) of equations and the number (N ) of unknowns are equal 
( M  =  N ), then the coefficient matrix A  is square so that the solution can be 
written as

x =  A -1 b (2.1.1)

so long as the matrix A  is not singular. There are MATLAB commands for 
this job.

>>A = [1 2;3 4]; b = [ -1 ; -1 ] ;
>>x = AA-1*b %or, x = inv(A)*b 

x = 1.0000 
- 1.0000

W hat if A  is square, but singular?

>>A = [1 2 ;2  4 ]; b = [ -1 ; -1 ] ;
>>x = A"-1*b

Warning: Matrix i s  s i ngular  to working prec is ion .  
x = - Inf  

-Inf

This is the case where some or all of the rows of the coefficient matrix A  are 
dependent on other rows and so the rank of A  is deficient, which implies that 
there are some equations equivalent to or inconsistent with other equations. If 
we remove the dependent rows until all the (remaining) rows are independent of 
each other so that A  has full rank (equal to M ), it leads to the case of M  <  N , 
which will be dealt with in the next section.

2 .1 .2  T he U n d e rd e te rm in e d  C a s e  (M < N): M in im um -N orm  S o lu tio n

If the number (M ) of equations is less than the number (N ) of unknowns, the 
solution is not unique, but numerous. Suppose the M  rows of the coefficient 
matrix A  are independent. Then, any N -dimensional vector can be decomposed 
into two components

x =  x+ +  x-  (2 .1 .2 )
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where the one is in the row space R ( A )  of A  that can be expressed as a linear 
combination of the M  row vectors

x+ =  A T a  (2.1.3)

and the other is in the null space N ( A )  orthogonal(perpendicular) to the row 
space1 so that

Ax- =  0 (2.1.4)

Substituting the arbitrary N -dimensional vector representation (2.1.2) into 
Eq. (2.0.1) yields

A ( x + +  x- ) =  A A Ta  +  A x -  (2= 4) A A Ta  =  b (2.1.5)

Since A A T is supposedly a nonsingular M  x  M  matrix resulting from multiplying 
an M  x  N  matrix by an N  x  M  matrix, we can solve this equation for a  to get

a o =  [ A A T ] -1b (2.1.6)

Then, substituting Eq. (2.1.6) into Eq. (2.1.3) yields

xo+ (2= 3) A Ta o (2= 6) A T[AAT]-1b (2.1.7)

This satisfies Eq. (2.0.1) and thus qualifies as its solution. However, it is far 
from being a unique solution because the addition of any vector x-  (in the 
null space) satisfying Eq. (2.1.4) to xo+ still satisfies Eq. (2.0.1) [as seen from 
Eq. (2.1.5)], yielding infinitely many solutions.

Based on the principle that any one of the two perpendicular legs is shorter 
than the hypotenuse in a right-angled triangle, Eq. (2.1.7) is believed to represent 
the minimum-norm solution. Note that the matrix A T[ A A T] -1 is called the right 
pseudo- (generalized) inverse of A  (see item 2 in Remark 1.1).

MATLAB has the p in v ( )  command for obtaining the pseudo-inverse. We 
can use this command or the slash(/) operator to find the minimum-norm solu
tion (2.1.7) to the system of linear equations (2.0.1).

>>A = [1 2]; b = 3;
>>x = pinv(A)*b %x = A'*(A*A')~ - 1*b or eye(size(A,2))/A*b, equivalently 

x = 0.6000 
1.2000

R em ark  2.1. Projection Operator and Minimum-Norm Solution

1. The solution (2.1.7) can be viewed as the projection of an arbitrary solution 
xo onto the row space R ( A )  of the coefficient matrix A  spanned by the

1 See the website @http://www.psc.edu/~burkardt/papers/linear_glossary.html

http://www.psc.edu/~burkardt/papers/linear_glossary.html


row vectors. The remaining component of the solution xo

xo- =  xo -  xo+ =  xo -  A T[ A A T]-1 b =  xo -  A T[ A A T] - 1Axo 

=  [I -  A T[ A A T] - 1A]xo

is in the null space N ( A ) ,  since it satisfies Eq. (2.1.4). Note that

PA =  [ I -  A T[ A A T] - 1A]

is called the projection operator.
2. The solution (2.1.7) can be obtained by applying the Lagrange multiplier 

method (Section 7.2.1) to the constrained optimization problem in which 
we must find a vector x minimizing the (squared) norm ||x ||2 subject to the 
equality constraint A x =  b.

Min l ( \ , X )  Eq'(= 2'2) i | | x ||2 — XT( A \  — b) =  | x r x — XT( A \  — b)

By using Eq. (7.2.3), we get

д
—  J = x - A r A. =  0; x =  A X =  A [AA ] b 
dx

—  J  =  A x - b  =  0; A A TX =  b; X =  [AAr ]_1b 
дХ

Exam ple 2.1. Minimum-Norm Solution. Consider the problem of solving the 
equation

7 4  SYSTEM OF LINEAR EQUATIONS

[1  2 ] X1
X2

=  3; Ax =  b, where A =  [1 2 ], b =  3 (E2.1.1)

This has infinitely many solutions and any x =  [ X1 X2 ]T satisfying this 
equation, or, equivalently,

1 3
Xi +  2x2 =  3; x2 =  —- * 1 +  -  (E2.1.2)

is a qualified solution. Equation (E2.1.2) describes the solution space as depicted 
in Fig. 2.1.

On the other hand, any vector in the row space of the coefficient matrix A 
can be expressed by Eq. (2.1.3) as

T 1
xT =  A a  =  2 a (a is a scalar, since M  =  1) (E2.1.3)
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and any vector in the null space of A  can be expressed by Eq. (2.1.4) as

Ax- =  [1 2]
_ X2 _

=  0 ; x ,  =  — x , 
2 2 1

(E2.1.4)

We use Eq. (2.1.7) to obtain the minimum-norm solution

1
xo+ =  A T [AAT]-1b = [1  2 ]

0.6
1.2

(E2.1.5)

Note from Fig. 2.1 that the minimum-norm solution xo+ is the intersection of 
the solution space and the row space and is the closest to the origin among the 
vectors in the solution space.

1X

2.1 .3  T he O v e rd e te rm in e d  C a s e  (M >  N): LSE S o lu tio n

If the number (M ) of (independent) equations is greater than the number (N ) 
of unknowns, there exists no solution satisfying all the equations strictly. Thus 
we try to find the LSE (least-squares error) solution minimizing the norm of the 
(inevitable) error vector

e =  Ax -  b (2.1.8)

Then, our problem is to minimize the objective function

J  =  I | |e ||2 =  1|Ax -  b ||2 =  ±[Ax -  b ]r [Ax -  b] (2.1.9)
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whose solution can be obtained by setting the derivative of this function (2.1.9) 
with respect to x to zero.

—  /  =  A r [ A x - b ]  =  0; x° =  [АГА]^1А ГЬ (2.1.10)
д x

Note that the matrix A  having the number of rows greater than the number of 
columns ( M  >  N ) does not have its inverse, but has its left pseudo (generalized) 
inverse [ATA] -1 A T as long as A  is not rank-deficient— that is, all of its columns 
are independent of each other (see item 2 in Remark 1.1). The left pseudo-inverse 
matrix can be computed by using the MATLAB command p i n v ( ) .

The LSE solution (2.1.10) can be obtained by using the p in v( )  command or 
the backslash ( \)  operator.

>>A = [1; 2 ]; b = [2.1; 3 .9];
>>x = pinv(A)*b %A\b or x = (A'*A)A-1*A'*b, equiva len t ly  

x = 1.9800

func t ion x = l in_eq(A,B)
%This func t ion f inds  the so lu t ion  to Ax = B 
[M,N] = size(A);  
i f  s ize(B,1)  ~= M

erro r ( ' In com pa t ib le  dimension of A and B in l i n _ e q ( ) ! ' )  
end
i f  M == N, x = A"-1*B; %x = inv(A)*B or gaussj(A,B);  %Eq.(2.1.1) 

e l s e i f  M < N %Minimum-norm so lu t io n  (2.1.7)
x = pinv(A)*B; %A'*(A*A')A-1*B; or eye(size(A,2))/A*B 

e lse  %LSE so lu t io n  (2.1.10) fo r  M > N
x = pinv(A)*B; %(A'*A)A-1*A'*B or x = A\B

end

The above MATLAB routine l i n _ e q ( )  is designed to solve a given set of 
equations, covering all of the three cases in Sections 2.1.1, 2.1.2, and 2.1.3.

(cf) The power of the pinv() command is beyond our imagination as you might have 
felt in Problem 1.14. Even in the case of M  < N , it finds us a LS solution if the 
equations are inconsistent. Even in the case of M  > N , it finds us a minimum-norm 
solution if the equations are redundant. Actually, the three cases can be dealt with 
by a single pinv() command in the above routine.

2 .1 .4  RLSE (R ecu rs iv e  L e a s t-S q u a re s  E stim ation )

In this section we will see the so-called RLSE (Recursive Least-Squares Esti
mation) algorithm, which is a recursive method to compute the LSE solution. 
Suppose we know the theoretical relationship between the temperature t [°] and
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the resistance R [^ ]  of a resistor as

C11 +  C2 — R

and we have lots of experimental data {(tb  R 1), (t2, R2) , . . . ,  (tk, Rk)} collected 
up to time k. Since the above equation cannot be satisfied for all the data with any 
value of the parameters c1 and c2, we should try to get the parameter estimates 
that are optimal in some sense. This corresponds to the overdetermined case dealt 
with in the previous section and can be formulated as an LSE problem that we 
must solve a set of linear equations

t1 1 R 1

Ak xk ^  bk, where Ak = t2 1
, xk = c1,k , and b k = R2

tk 1
.C2,k _

Rk

for which we can apply Eq. (2.1.10) to get the solution as

xk =  [ A Tk Ak] -1 A Tk bk (2 .1 .11)

Now, we are given a new experimental data (tk+1, Rk+1) and must find the 
new parameter estimate

xk+1 — [Ak+1Ak+1] A k+1b k+1 (2 .1 .1 2 )

with

t1 1 R 1

A k+1  =
tk 1 , xk+1 = C1,k+1 

_ C2,k+1 _
, and b k+1 =

Rk
tk+1 1 Rk+1

How do we compute this? If we discard the previous estimate xk and make direct 
use of Eq. (2.1.12) to compute the next estimate xk+1 every time a new data pair 
is available, the size of matrix A  will get bigger and bigger as the data pile up, 
eventually defying any powerful computer in this world.

How about updating the previous estimate by just adding the correction term 
based on the new data to get the new estimate? This is the basic idea of the 
RLSE algorithm, which we are going to trace and try to understand. In order to 
do so, let us define the notations

Ak+1 =
A k

aT
ak+1

ak+1 =
tk+1

1 bk+1 = b k
Rk+1

and Pk =  [Ak Ak] -1 

(2.1.13)
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and see how the inverse matrix Pk is to be updated on arrival of the new data
(tk+1, Rk+1) .

Pk+1  =  [AT+1Ak+1] 1 =
Ak nn 1 

aT+1
[ AT ak+1 ]

=  [Ak A k +  ak+1aT+1] 1 =  [Pk 1 +  ak+1aT+1] 1 (2.1.14) 

(Matrix Inversion Lemma in Appendix B )

Pk+1 =  Pk -  Pkak+1[at +1 Pkak+1 +  1] 1 a *+1 Pk (2.1.15)

It is interesting that [af+1 Pk ak+1 +  1] is nothing but a scalar and so we do 
not need to compute the matrix inverse thanks to the Matrix Inversion Lemma 
(Appendix B). It is much better in the computational aspect to use the recursive 
formula (2.1.15) than to compute [A^+1Ak+1] -1 directly. We can also write Eq. 
(2 .1.12) in a recursive form as

x (2.1.12,14) P a t b (2.1ЛЗ) P [ A t a ] 
xk+1 =  Pk+1Ak+1bk+1 =  Pk+1[Ak ak+1]

b k
Rk+1

=  Pk+1 [aT  b k +  ak+1Rk+1] ( =  ) Pk+1[AT A k xk +  ak+1Rk+1]

(2.1.13) ТЛ Г /  A T A T \  r ,

=  Pk+1[(A k+1 Ak+1 -  ak+1 ak+1)xk +  ak+1Rk+1]

( =  ) Pk+1[P k+11 xk -  ak+1aT+1xk +  ak+1Rk+1] 

xk+1 =  xk +  Pk+1 ak+1(Rk+1 -  aT+1 xk) (2 .L 16)

We can use Eq. (2.1.15) to rewrite the gain matrix Pk+1 ak+1 premultiplied by 
the ‘error’ to make the correction term on the right-hand side of Eq. (2.1.16) as

K k+ 1  =  Pk+1 ak+1 ( =  ) [Pk -  Pkak+1[aT+1Pkak+1 +  1] 1aT+1Pk]ak+1

=  Pkak+1[I  -  [aT+ 1 Pkak+1 +  1] 1aT+1Pkak+1]
rp _A T  T

=  Pkak+1 [ak+1 Pkak+1 +  1] {[ak+1 Pkak+1 +  1] -  ak+1 Pkak+1}

Kk+1 =  Pk ak+1[aT+1 Pk ak+1 +  1] 1 (2.1.17) 

and substitute this back into Eq. (2.1.15) to write it as

Pk+1 =  Pk -  Kk+1aT+1Pk (2.1.18)

The following MATLAB routine “ r l s e _ o n l i n e ( ) ” implements this RLSE 
(Recursive Least-Squares Estimation) algorithm that updates the parameter 
estimates by using Eqs. (2.1.17), (2.1.16), and (2.1.18). The MATLAB program
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“do_ r l s e . m ” updates the parameter estimates every time new data arrive and 
compares the results o f the on-line processing with those obtained by the off-line 
(batch job) processing— that is, by using Eq.(2.1.12) directly. Noting that

• the matrix [AkAk] as well as b k consists of information and is a kind of 
squared matrix that is nonnegative, and

• [AT A k] will get larger, or, equivalently, Pk =  [ATA k] -1 will get smaller and, 
consequently, the gain matrix K k will get smaller as valuable information 
data accumulate,

one could understand that Pk is initialized to a very large identity matrix, since 
no information is available in the beginning. Since a large/small Pk makes the 
correction term on the right-hand side of Eq. (2.1.16) large/small, the RLSE 
algorithm becomes more conservative and reluctant to learn from the new data 
as the data pile up, while it is willing to make use of the new data for updating 
the estimates when it is hungry for information in the beginning.

fu n c t i o n  [x,K,P] = r l s e _ o n l in e ( a T _ k 1 ,b _ k 1 ,x ,P )
K = P*aT_k1' /(aT_k1*P*aT_k1'+1) ;  %Eq.(2.1.17) 
x = x +K*(b_k1-aT_k1*x); %Eq.(2.1.16)
P = P-K*aT_k1*P; %Eq. ( 2 . 1 . 1 8 ) ____________________________________

%do_rlse
c le an
xo = [2 1 ] ' ;  %The t r u e  va lue  of  unknown c o e f f i c i e n t  v e c t o r  
NA = l e n g t h ( x o ) ;
x = zeros(NA,1) ;  P = 100*eye(NA,NA); 
f o r  k = 1 :100

A ( k , : )  = [k*0.01 1];  
b ( k , : )  = A ( k , : )* x o  +0.2*nand;
[x,K,P] = n l s e _ o n l i n e ( A ( k , : ) , b ( k , : ) , x , P ) ;  

end
x % the  f i n a l  pa rameter  e s t i m a te
A\b % fon companison wi th  th e  o f f - l i n e  p ro cess in g  (ba tch  job)

2 .2  SOLVING A SYSTEM  OF LINEAR EQUATIONS

2.2 .16  G a u s s  E lim ination

For simplicity, we assume that the coefficient matrix A  in Eq. (2.0.1) is a non
singular 3 x  3 matrix with M  =  N  =  3. Then we can write the equation as

^ 11^1 +  ^ 12^2 +  ^13-̂ 3 — b  

a21^1 +  Я22Х2 +  a23x3 =  b2 

Я31Х1 +  a32X2 +  a33X3 =  &3

(2 .2 .0a)

(2 .2 .0b)

(2 .2 .0c)
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First, to remove the x 1 terms from equations (2.2.0.m) other than (2.2.0.a), we 
subtract (2 .2 .0a )x a m1/ a 11 from each of them to get

a (<J)x 1 +  af2 x 2 +  a (0)x3 =  b(0)

(1) , (1) j (1)a22  x 2 +  a 23  x 3 =  b2

(1) (1) (1) a32  x 2 +  a 33 x 3 =  b3

(2 .2 .1a)

(2 .2 .1b)

(2 .2 .1c)

with

a (0) am Ь((0) =  Ь„ for m , n  =  1, 2, 3

,(1) _  a (0) _  (a (0)/ a (0)) a (0) b (1) -  b (0) _  (a (0)/ a (0))b (0) 
mn =  amn (am1 / a 11 )a 1n , bm =  bm (am1 / a 11 )b 1

(2 .2 .2a)

for m, n =  2 , 3 
(2 .2 .2b)

We call this work ‘pivoting at a 11’ and call the center element a 11 a ‘pivot’.
Next, to remove the x2 term from Eq. (2.2.1c) other than (2.2.1a,b), we sub

tract (2.2.1b) x a ^ / a ^  (m =  3) from it to get

a |<J)x 1 +  af2 x 2 +  a |0)x3 =  b(0)

a22)x2 +  a23)x3 =  b21)
(2)

x3 =  b

(2.2.3a)

(2.2.3b)

(2.2.3c)

with

-.(2) _ a (1) _  (a (1) / a (1)) a (1)
lmn =  amn (am2 / a 22 )a2n , bm = bm1) -  (am2 /a(:2 )b(2 ) for m, n =  3 

(2 .2 .4 )
We call this procedure ‘Gauss forward elimination’ and can generalize the updat
ing formula (2.2.2)/(2.2.4) as

a k  =  amr-1} -  /a(kk-))a((r n 1) for m , n  =  k +  1 , k  +  2 , . . . , M  (2.2 .5a)

b (m =  bmk-1) -  ( a ^ / a ^ b t 1  for m =  k +  1 , k +  2 , . . . ,  M  (2.2.5b)

After having the triangular m atrix-vector equation as Eq. (2.2.3), we can solve 
Eq. (2.2.3c) first to get

x3 =  b32)/ a 32  (2 .2 .6a)

and then substitute this result into Eq. (2.2.3b) to get

x2 =  (b21) -  a23)x3)/a22) (2 .2 .6b )

Successively, we substitute Eqs. (2.2.6a,b) into Eq.(2.2.3a) to get

x 1 =  b 10) -  ^  a ^ x A  / a/ a (0) n / a 11
n=2

( 2 .2 .6c)
3
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We call this procedure ‘backward substitution’ and can generalize the solution 
formula (2 .2 .6 ) as

m \
bmm—1  — E  a m r ^ n )  /amm—1) for m =  M , M  — 1 , . . . ,  1

n=m+1 /
(2.2.7)

In this way, the Gauss elimination procedure consists of two steps, namely, 
forward elimination and backward substitution. Noting that

• this procedure has nothing to do with the specific values of the unknown 
variable xm’s and involves only the coefficients, and

• the formulas (2.2.5a) on the coefficient matrix A  and (2.2.5b) on the RHS 
(right-hand side) vector b conform with each other,

we will augment A  with b and put the formulas (2.2.5a,b) together into one 
framework when programming the Gauss forward elimination procedure.

2 .2 .2  P artia l P ivoting

The core formula (2.2.5) used for Gauss elimination requires division by aff- 1  
at the kth stage, where aff- 1  is the diagonal element in the kth row. W hat if 

=  0? In such a case, it is customary to switch the kth row and another row 
below it having the element of the largest absolute value in the kth column. This 
procedure, called ‘partial pivoting’, is recommended for reducing the round-off 
error even in the case where the kth pivot aff- 1  is not zero.

Let us consider the following example:

" 0  1 Г x 1 b 1 =  2
2 —1 —1 x2 = b2 =  0
1 1 —1 _X3_ b3 =  1

(2 .2 .8)

We construct the augmented matrix by combining the coefficient matrix and the 
RHS vector to write

a 11 a 12 a 13 b 1 0 1 1 2 : r 1
a 21 a 22 a 23 b2 = 2 —1 —1 0 : r2
a 31 a 32 a 33 b3 1 1 —1 1 : гз

(2.2.9)

and apply the Gauss elimination procedure.
In the stage of forward elimination, we want to do pivoting at a 11, but a 11 

cannot be used as the pivoting element because it is zero. So we switch the first 
row and the second row having the element of the largest absolute value in the 
first column.
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(a1
1

a(2) a(3) b (1 r

1
2 1- - 1 0

1

a(1)a 21 a2(12) a2(3) b (1)
b2 = 0 1 1 2

1 a (1 a3(2) a3(3) b3(1) 1 1 - 1 1

(1)

(1)

(1)
(2 .2 .10a)

Then we do pivoting at by applying Eq. (2.2.2) to get

r1(1) (2) (2) 
a 11 a 12 1a

(
 

3 
)

12() 
1 

(
b1^ - a (1)a 21 / a f !  x r ((1)

2) 2 
(2

 
a 

2) 1 
(2

 
a 2) 3 

(
2a b (2)

b2

Г3(1) -

1( 31 a x(/a1 r ((1)
2) 2 
(3

 a 

2) 1 
(3

 a 1

(2)
a33 b )2

1

2 - 1 - 1 0 " )2

= 0 1 1 2 2)(
2r

0 3 /2 - 1 /2 1 r )

(2 .2 .10b)

(2)Here, instead of pivoting at a22), we switch the second row and the third row 
having the element of the largest absolute value among the elements not above

(2)a2 2  in the second column.

(3)a 131) (3)
a 12

(3)
a 13

b (13 2 - 1 - 1 0 : r
(3)a231) a (

to 
w (3)

a 23 b (3)b2 = 0 3/2 - 1 /2 1 : r
(3)

a31

3)
2

(3a 3 
3 

(3
 a b f 0 1 1 2 : r

(3)r1(3)

r(3)
r 2

r (3)r3

(2 .2 .10c)

And we do pivoting at a ((2  by applying Eq. (2.2.4)— more generally, Eq. 
(2.2.5)— to get the upper-triangularized form:

3()(r1 4() 11 
(a1

1

24

3) (4)
a 21

4( 
22 

a

-3)(Г1

3
) 

1 
(3a / a 1(1) x 3)(

2r

4() 
31a1

(4)a3( 2)

2 - 1 - 1 0 : 4( 
1

= 0 3 /2 - 1 /2 1 r(4)r2

a (4) (4) 
13 К

a(4) (4)
23
(4)7a33

2
(4)

0 0 4 /3  4 /3

(2 .2 .10d)
(4)

Now, in the stage of backward substitution, we apply Eq. (2.2.6), more gen
erally, Eq. (2.2.7) to get the final solution as

X3 =  fe34)/a34) =  (4 /3 )/(4 /3 )  =  1

X2 =  (b24) -  a24)X3)/a24) =  (1 -  ( - 1/ 2 ) x  1 )/(3 /2 ) =  1

3
(4)

X1

(4) (2 .2 .11)

=  ( b 4’ -  £

[Х1 X2 X3 ] =  [1 1 1]

a r > «  I /« п  =  (0 -  ( - 1) x  1 -  ( - 1) x  1 )/2  =  1

(2 .2 .12)

2

3

3

3
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Let us consider another system of equations.

"1  0 1 " X1 b 1 =  2
1 1 1 X2 = b2 =  3
1 —1 1 X3 b3 =  1

(2.2.13)

We construct the augmented matrix by combining the coefficient matrix and the 
RHS vector to write

(2.2.14)

and apply the Gauss elimination procedure.
First, noting that all the elements in the first column have the same absolute 

value and so we don’t need to switch the rows, we do pivoting at a 11.

a 11 a 12 a 13 b 1 1 0 1 2 • r 1
a 21 a 22 a23 b2 = 1 1 1 3 • r2
a 31 a 32 a33 b3 1 —1 1 1 • r3

a (1)
a 11

1() 2 
(a1 a 1(13)

1

(b 1

1
1—̂ 0 1 2

a (1)
a 21 a 22) a2(3) b (1)

b2 = 0 1 0 1
a (1)
a31 a32) a3(3) b3(1) 0 —1 0 —1

r (1)
1

r (1)
2

(1)
3

(2.2.15a)

r.

Second, without having to switch the rows, we perform pivoting at a (1)
22

(1)

(1)

(1) (1) (1) 
r* — a \2 /a 2 2  x  r

(1)
2

2()1(a1
1 (2)

a 12
(2)

a 13 1 b
( 2 1

" l 0 1 2 2(1(r1

(2)a2(2)

2)
2

(2a 2 
3 

(2
 

a 2( 
2 

b = 0 1 0 1 2(
2r

2)1(3a1

(2) a3( 2) (2
a33 b ( 2

1 0 0 0 0 r ( to
(2.2.15b)

Now, we are at the stage of backward substitution, but a3^, which is supposed 
to be the denominator in Eq. (2.2.7), is zero. We may face such a weird situation 
of zero division even during the forward elimination process where the pivot is 
zero; besides, we cannot find any (nonzero) element below it in the same column 
and on its right in the same row except the RHS element. In this case, we 
cannot go further. This implies that some or all rows of coefficient matrix A  are 
dependent on others, corresponding to the case of redundancy (infinitely many 
solutions) or inconsistency (no exact solution). Noting that the RHS element 
of the zero row in Eq. (2.2.15.2) is also zero, we should declare the case of 
redundancy and may have to be satisfied with one of the infinitely many solutions 
being the RHS vector as

[Х1 X2 X3] =  [b(2) b.(2) b32)] =  [2 1 0 ] (2.2.16)

Furthermore, if we remove the all-zero row(s), the problem can be treated as an 
underdetermined case handled in Section 2.1.2. Note that, if the RHS element 
were not zero, we would have to declare the case of inconsistency, as will be 
illustrated.

Suppose that b1 =  1 in Eq. (2.2.14). Then, the Gauss elimination would have 
proceeded as follows:

1

2
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1 0 1 1 1 0 1 1 1 0 1 1
1 1 1 3 0 1 0 2 0 1 0 2
1 —1 1 1 0 —1 0 0 0 0 0 2

(2.2.17)

This ended up with an all-zero row except the nonzero RHS element, corre
sponding to the case of inconsistency. So we must declare the case of ‘no exact 
solution’ for this problem.

The following MATLAB routine “g a u s s ( ) ” implements the Gauss elimination 
algorithm, and the program “do_gauss” is designed to solve Eq. (2.2.8) by using 
“g a u s s ( ) ” . Note that at every pivoting operation in the routine “g a u s s ( ) ”, the 
pivot row is divided by the pivot element so that every diagonal element becomes 
one and that we don’t need to perform any computation for the kth column at 
the kth stage, since the column is supposed to be all zeros but the kth element 
a (k) 1. 
akk =  1.

function x = gauss(A,B)
%The sizes of matrices A,B are supposed to be NA x NA and NA x NB. 
%This function solves Ax = B by Gauss elimination algorithm.
NA = size(A,2); [NB1,NB] = size(B);
i f  NB1 ~= NA, e rror ( 'A and B must have compatible dimensions');  end 
N = NA + NB; AB = [A(1:NA,1:NA) B(1:NA,1:NB)]; % Augmented matrix 
epss = eps*ones(NA,1); 
for k = 1:NA

%Scaled Par t ia l  Pivoting at AB(k,k) by Eq.(2.2.20)
[akx,kx] = max(abs(AB(k:NA,k))./ . . .

max(abs([AB(k:NA,k + 1:NA) epss(1:NA - k + 1 ) ] ' ) ) ' ) ;  
i f  akx < eps, e r ror ( 'S ingular  matrix and No unique so lu t ion ' ) ;  end 
mx = k + kx - 1;
i f  kx > 1 % Row change i f  necessary 

tmp_row = AB(k,k:N);
AB(k,k:N) = AB(mx,k:N);
AB(mx,k:N) = tmp_row;

end
% Gauss forward elimination 
AB(k,k + 1:N) = AB(k,k+1:N)/AB(k,k);
AB(k,k) = 1; %make each diagonal element one 
for m = k + 1: NA

AB(m,k+1:N) =AB(m,k+1:N) - AB(m,k)*AB(k,k+1:N); %Eq.(2.2.5) 
AB(m,k) = 0;

end
end
%backward subst i tut ion for  a upper-triangular matrix eqation 
% having a l l  the diagonal elements equal to one 
x(NA,:) = AB(NA,NA+1:N); 
for m = NA-1: -1:1

x(m,:) = AB(m,NA + 1:N)-AB(m,m + 1:NA)*x(m + 1:NA,:); %Eq.(2.2.7)
end
%do_gauss
A = [0 1 1;2 -1 -1;1 1 -1]; b = [2 0 1] ' ;  %Eq.(2.2.8) 
x = gauss(A,b)
x1 = A\b %for comparison with the resu lt  of backslash operation
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(cf) The number of floating-point multiplications required in this routine ‘gauss()’ is

NA NA-1
^{ (N A  -  к +  1)(NA +  NB -  к) +  NA -  к +  1}+ ^  (NA -  k)NB
к=1 к=1 

NA NA NA

=  J 2  к(к +  NB -  1) -  N ^ ^  к +  J 2  NA ■ NB
к=1  к=1  к=1

=  - (N A +  1)NA(2NA+ 1) -  - NA(NA +  1) +  NA2NB
6 2

=  ^NA(NA+1)(NA- 1) +  NA2NB 

1
«  -NA3 for NA >- NB (2.2.18)

where NA is the size of the matrix A, and NB is the column dimension of the RHS 
matrix B.

Here are several things to note.

R em ark  2.2. Partial Pivoting and Undetermined/Inconsistent Case

1. In Gauss or G auss-Jordan elimination, some row switching is performed 
to avoid the zero division. Even without that purpose, it may be helpful 
for reducing the round-off error to fix

M a x ^ a ^ |,  к <  m <  M } (2.2.19)

as the pivot element in the к\к iteration through some row switching, which 
is called ‘partial pivoting.’ Actually, it might be better off to fix

M a x ! ------------- — ------------- , к < т < м \  (2.2.20)
[Max^/amnl^  <  n <  M } J

as the pivot element in the кШ iteration, which is called ‘scaled partial 
pivoting’ or to do column switching as well as row switching for choosing 
the best (largest) pivot element, which is called ‘full pivoting.’ Note that 
if the columns are switched, the order of the unknown variables should be 
interchanged accordingly.

2. W hat if some diagonal element акк and all the elements below it in the 
same column are zero and, besides, all the elements in the row including 
акк are also zero except the RHS element? It implies that some or all 
rows of the coefficient matrix A  are dependent on others, corresponding 
to the case of redundancy (infinitely many solutions) or inconsistency (no
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ex ac t so lu tio n ). I f  even  th e  R H S  e lem en t is zero , it  sh o u ld  b e  d ec la red  
to  b e  th e  case  o f  red u n d an cy . In  th is case , w e  can  g e t r id  o f  th e  a ll-ze ro  
ro w (s) an d  th en  trea t th e  p ro b lem  as th e  u n d e rd e te rm in ed  case  h a n d le d  in 
S ec tion  2 .1 .2 . I f  th e  R H S  e lem en t is on ly  o n e  n o n ze ro  in  th e  ro w , it  shou ld  
b e  d ec la red  to  b e  th e  case  o f  in co n sis ten cy .

E x a m p le  2 .2 . D e licacy  o f  P a rtia l P iv o tin g . To g e t an  ac tu a l fee lin g  ab o u t the 
de licacy  o f  p a rtia l p iv o tin g , co n sid e r th e  fo llo w in g  sy s tem s o f  lin ea r equa tions, 
w h ich  ap p a ren tly  h av e  x° =  [1 1 ]r  as th e ir  so lu tions.

(a) Aix =  bi with Ai =
10—

101 b1 =
1 +  10—15 
1011 +  1 (E2.2.1)

W ith o u t an y  ro w  sw itch ing , the  G au ss e lim in a tio n  p ro ced u re  w ill find  us 
the  tru e  so lu tion  o n ly  i f  th ere  is no  q u an tiza tio n  error.

[A1 b1] =
10—15 1 1 +  10—15 

1 1011 1011 +  1

forward
elimination 1 1015 1015 +  1 

0 1011 — 1015 1011 — 1015

backward
substitution

1

x

B ut, b ecau se  o f  th e  ro u n d -o ff erro r, it  w ill d ev ia te  fro m  th e  true  so lu tion .

forward
elimination 1 1015 =  9.999999999999999e+014 1015 +  1 =  1.000000000000001e+015 

0 1011 — 1015 1011 +  1 — (1015 — 1)
=  —9.998999999999999e+014 =  -9.999000000000000e+014

backward
substitution 8.750000000000000e-001

1.000000000000000e+000

I f  w e  en fo rce  th e  stra teg y  o f  p a rtia l p iv o tin g  o r sca led  p a rtia l p iv o tin g , the 
G auss e lim in a tio n  p ro ced u re  w ill g iv e  us m u ch  b e tte r  re su lt as fo llow s:

row swap 
[A1 b 1 ]-----------►

1 1011 1011 +  1 
10—15 1 1 +  10—15

forward
elimination 1 1011 =  1.000e+011 1011 +  1 =  1.000000000010000e+011 

0 1 — 10—4 =  9.999e-001 9.999000000000001e-001

x

backward
substitution 9.999847412109375e-001

1.000000000000000e+000

(b) A2 x =  b2 with A2 =
10—

10L b2 =
1 +  10—14f 

1015 +  1 (E2.2.2)

x

14.6 1
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Without partial pivoting, the Gauss elimination procedure will give us a 
quite good result.

[A1 b 1] = 1 10146 =  3.981071705534969e+014 10146 +  1 =  3.981071705534979e+014 
0 6.018928294465030e+014 6.018928294465030e+014

' 1 3.981071705534969e+014 3.981071705534979e+014
0 1 1

backward
substitution

But, if we exchange the first row with the second row having the larger 
element in the first column according to the strategy of partial pivoting, the 
Gauss elimination procedure will give us a rather surprisingly bad result 
as follows:

row
swapping
forward

elimination

1 1015 =  1.000000000000000e+015 1015 +  1 =  1.000000000000001e+015
0 1 -  1015 ■ 10-14 6

=  -1.5118864315095819

backward
substitution 0.7500000000000000

1.0000000000000002

1 +  10- -  (1 +  1015) ■ 10-
=  -1.5118864315095821

One might be happy to have the scaled partial pivoting scheme 
[Eq. (2.2.20)], which does not switch the rows in this case, since the 
relative magnitude (dominancy) of a 11 in the first row is greater than that 
of a21 in the second row, that is, 10-14 6/1 >  1/ 1015.

(c) A3x =  b3 with A3 =
1015

1
1

10-146 b3 =
1015+ 1  

1 +  10-146 (E2.2.3)

With any pivoting scheme, we don’t need to switch the rows, since the 
relative magnitude as well as the absolute magnitude of a 11 in the first row 
is greater than those of a 21 in the second row. Thus, the Gauss elimination 
procedure will go as follows:

forward
elimination 1 1.000000000000000e-015 1.000000000000001e+000 

0 1.511886431509582e-015 1.332267629550188e-015

backward
substitution 1.000000000000000

0.811955724875121

(cf) Note that the coefficient matrix, A3 is the same as would be obtained by applying 
the full pivoting scheme for A 2 to have the largest pivot element. This example 
implies that the Gauss elimination with full pivoting scheme may produce a worse 
result than would be obtained with scaled partial pivoting scheme. As a matter of

x

x

x
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factor, we cannot say that some pivoting scheme always yields better solution than 
other pivoting schemes, because the result depends on the random round-off error as 
well as the pivoting scheme (see Problem 2.2). But, in most cases, the scaled partial 
pivoting shows a reasonably good performance and that is why we adopt it in our 
routine “gauss()”.

R em ark  2.3. Computing Error, Singularity, and Ill-Condition

1. As the size of the matrix grows, the round-off errors are apt to accumu
late and propagated in matrix operations to such a degree that zero may 
appear to be an absolutely small number, or a nonzero number very close 
to zero may appear to be zero. Therefore, it is not so simple a task to 
determine whether a zero or a number very close to zero is a real zero or 
not.

2. It is desirable, but not so easy, for us to discern the case of singularity 
from the case of ill-condition and to distinguish the case of redundancy 
from the case of inconsistency. In order to be able to give such a qual
itative judgm ent in the right way based on some quantitative analysis, 
we should be equipped with theoretical knowledge as well as practical 
experience.

3. There are several criteria by which we judge the degree of ill-condition, 
such as how discrepant A A —1 is with the identity matrix, how far 
det{A}det{A—1} stays away from one(1), and so on:

AA—1 =  I,  [A—1]—1 =  A, det(A)det(A—1) =  1 (2.2.21)

The MATLAB command cond()  tells us the degree of ill-condition for a 
given matrix by the size of the condition number, which is defined as

COnd(A) =  | |A|| | |A—11| with ||A|| =  largest eigenvalue of A TA,

i.e., largest singular value of A

E xam ple 2.3. The Hilbert matrix defined by

A [amn]
1

(E2.3)

is notorious for its ill-condition.
We increase the dimension of the Hilbert matrix from N  =  7 to 12 and make 

use of the MATLAB commands cond()  and d e t ( )  to compute the condition 
number and det(A)det(A—1) in the MATLAB program “do_ co n d i t i o n ” . Espe
cially for N  =  10, we will see the degree of discrepancy between AA—1 and
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the identity matrix. Note that the number RCOND following the warning message 
about near-singularity or ill-condition given by MATLAB is a reciprocal condi
tion number, which can be computed by the rcond()  command and is supposed 
to get close to 1/0 for a well-/badly conditioned matrix.

%do_condition. m
clear
for m = 1:6

for n = 1:6
A(m,n) = 1/(m+n-1); %A = hilb(6) , Eq.(E2.3)

end
end
for N = 7:12

for m = 1:N, A(m,N) = 1/ (m + N - 1); end
for n = 1:N - 1, A(N,n) = 1/ (N + n - 1); end
c = cond(A); d = det(A)* det(AA- 1);
fprintf( 'N = %2d: cond(A) = %e, det(A)det(Ал - 1) = %8 .6f \n ' ,  N, c, d);
i f  N == 10, AAI = A*AA - 1 , end

end

> > d o _ c o n d itio n

N = 7: cond(A ) = 4.753674e+008, d e t ( A ) d e t ( A A-1 ) = 1.000000
N = 8: cond(A ) = 1 .525758e+010, d e t ( A ) d e t ( A A-1 ) = 1.000000
N = 9: cond(A ) = 4.931532e+011, d e t ( A ) d e t ( A A-1 ) = 1.000001
N = 10: cond(A ) = 1 .602534e+013, d e t ( A ) d e t ( A A-1 ) = 0.999981

AAI =
1.0000 0 0000 -0 .0001 -0 0000 0 0002 -0 . 0005 0.,0010 -0 .,0010 0. 0004 -0 .0001
0 .0000 1 , 0000 -0 .0001 -0 0000 0 0002 -0 . 0004 0. 0007 -0 . 0007 0. 0003 -0 .0001
0 .0000 0 0000 1 , 0000 -0 0000 0 0002 -0 . 0004 0..0006 -0 . 0006 0. 0003 -0 .0 0 00
0 .0000 0 0000 -0 0000 1 , 0000 0 .0001 -0 . 0003 0. 0005 -0 . 0006 0. 0003 -0 .0 0 00
0 .0000 0 0000 -0 0000 -0 0000 1 ,.0001 -0 . 0003 0. 0005 -0 . 0005 0. 0002 -0 .0 0 00
0 .0000 0 0000 -0 0000 -0 0000 0 .0001 0. 9998 0. 0004 -0 . 0004 0. 0002 -0 .0 0 00
0 .0000 0 0000 -0 0000 -0 0000 0 .0001 -0 . 0002 1. 0003 -0 . 0004 0. 0002 -0 .0 0 00
0 .0000 0 0000 -0 0000 -0 0000 0 .0001 -0 . 0002 0. 0003 0. 9997 0. 0002 -0 .0 0 00
0 .0000 0 0000 -0 0000 -0 0000 0 .0001 -0 ..0001 0. 0003 -0 . 0003 1..0001 -0 .0 0 00
0 .0000 0 0000 -0 0000 -0 0000 0 .0001 -0 . 0002 0. 0003 -0 . 0003 0.,0001 1.0000

N = 11: cond(A ) =5 .218389e+014, d e t (A )d e t (A A-1 ) = 1.000119 
W a rn in g : M a t r ix  i s  c lo s e  to  s in g u la r  o r  b a d ly  s c a le d .

R e s u lts  may be in a c c u ra te .  RCOND = 3 .6 5 92 4 9 e -0 1 7 .
> In  C :\M A TLA B \nm a\do_condition.m  a t  l in e  12 

N = 12: cond(A ) =1 .768065e+016, d e t (A )d e t (A A-1 ) = 1.015201

2.2 .3  G a u s s - J o r d a n  E lim ination

While Gauss elimination consists o f forward elimination and backward sub
stitution as explained in Section 2.2.1, G auss-Jordan elimination consists of 
forward/backward elimination, which makes the coefficient matrix A  an identity 
matrix so that the resulting RHS vector will appear as the solution.
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For simplicity, we start from the triangular m atrix-vector equation (2.2.3) 
obtained by applying the forward elimination:

(0) (0) (0) , ( 0)
11

0

a 12

a

13
(1) (1)

23
(2)a3(23)

к
(1)

(2)
(2 .2 .2 2 )

(2)First, we divide the last row by a33

a (0) (0)
11

0

0

12
a (1)
a 22

(0)
a13
a (1)
a23

0 a33] =  1 b31] =  b32)/a

*1
(0)

b(1) 
*2

[1] (2) a (2) 
a33

(2 .2 .23)

and subtract (the third row x a ^  1)(m =  1 , 2 )) from the above two rows to get

(0)
a n a(2) a [ 3] = 0 *11] =  b f  - a (0)*31]

0 a 22) a2[13] = 0 *[1]*2 -  b (1) -  =  b2 a ( ) b 1

0 0 a33] = b3[1]

(2.2.24)

(1)Now, we divide the second row by a22):

(0)
an
0

0

(0)
a 12

a [2] -  1 a 22 =

0

0

a3[13] =  1

[1]

*22] =  *21]/ a 22] 
[1]

(2.2.25)

and subtract (the second row x a ^  1)(m =  1)) from the above first row to get

(0)
an
0

0

0 0 *12] =  *11] -  a f2)*22]'

1 0 

0 1

[2]
2
[1]

(2.2.26)

Lastly, we divide the first row by a®  to get

1 0 0 *13] =  *12]/ a (0)11

0 1 0 

0 0 1

[2]
2
[1]

(2.2.27)

2

3

3

3

3
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which denotes a system of linear equations having an identity matrix as the 
coefficient matrix

i  x =  b [] =  [ b 3] b,2] 4 1]]r

and, consequently, take the RHS vector b [] as the final solution.
Note that we don’t have to distinguish the two steps, the forward/backward 

elimination. In other words, during the forward elimination, we do the pivot
ing operations in such a way that the pivot becomes one and other elements 
above/below the pivot in the same column become zeros.

Consider the following system of linear equations:

<N211i *1 - 1
1 1 - 1 *2 = 1
1 2 - 1 _*3_ 2

(2.2.28)

We construct the augmented matrix by combining the coefficient matrix and the 
RHS vector to write

a 11 a 12 a 13 bx - 1 - 2 2 - 1 • r 1
a 21 a 22 a23 b2 = 1 1 - 1 1 • r2
a31 a32 a33 b3 1 2 - 1 2 • r3

(2.2.29)

and apply the G auss-Jordan elimination procedure.
First, we divide the first row r  1 by ац  =  - 1  to make the new first row r{ 1 ) 

have the pivot a (1 =  1 and subtract am1 x  r (1) (m =  2, 3) from the second and 
third row r2 and r3 to get

r 1 - ( - 1) a (1)
a 11 a i 2) a (3)

b ( ) " l 2 - 2 Г • r 1(1)

2 1 1 x  r 1(1) a (1)
a 21 a22) a23)

( 2 
b = 0 - 1 0 • r2( )

1-r3 x  r 1(1) 1( 31 a 1 a32) a33) b 1 0 0 1 i_ • r3( )

(2.2.30a)
Then, we divide the second row r21) by a22) =  — 1 to make the new second row 
r22) have the pivot a ((2  =  1 and subtract a ^  x  r ((2)(m =  1 , 3) from the first and 
third row r 1(1) and r3(1) to get

r ( )
-  2 x  r 22)

1
a( )2 2() 2 

(a 2() 3 
(a

12()(b " l 0 0 Г 2()(r

r2( ) -  ( -  1)

2)(
2a 2) 2 

(2
 

a 2) 3 
(2

 
a b (2)

b2 = 0 1 - 0 • r (2) • r2

r3( ) -  0 x  r 22)

2)(
3a1

(2) a3( 2) 2) 3 
(3

 
a b ( )2

1 0 0 1 1 2)

(2.2.30b)
Lastly, we divide the third row r32) by af3  =  1 to make the new third row 
r3(3) have the pivot af3  =  1 and subtract a ^  x  r33) (m =  1 , 2 ) from the first and
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second row r (2) and r'22) to get(2)

2() 
1 -  0 x  r33) ^

i
1 

)3 (3)
a 12

3( 
3

13( 1 " l 0 0 1 =  x  1

2)(
2r 1 - ) x r ( ) 3)1(2<3

3)
2

(2<3 3 
3 

(2
 

<3 r (3r 2 = 0 1 0 1 =  X2

2)(
3r

3)1(3<3i

(3)
a 32

(3
a33 r

( w
1 0 0 1 1 =  x3

(3)

(3)

(3)

(2.2.30c)
After having the identity m atrix-vector form like this, we take the RHS vector 
as the solution.

The general formula applicable for G auss-Jordan elimination is the same as 
Eq. (2.2.5), except that the index set is m =  k — that is, all the numbers from 
m =  1 to m =  M  except m =  k. Interested readers are recommended to make 
their own routines to implement this algorithm (see Problem 2.3).

2

3

2.3  INVERSE MATRIX

In the previous section, we looked over some algorithms to solve a system of 
linear equations. We can use such algorithms to solve several systems of linear 
equations having the same coefficient matrix

Axi =  b i, Ax2 =  b 2 , . . . ,  Axnb =  bNB

by putting different RHS vectors into one RHS matrix as

A[xi  x2 ■xnb ] =  [ bi  b 2 - bNB ], A X  =  B

X  =  a -1 B
(2.3.1)

If we substitute an identity matrix I  for B into this equation, we will get the matrix 
inverse X  =  A -1 1 =  A -1 . We, however, usually use the MATLAB command 
inv(A) or A"-1 to compute the inverse of a matrix A.

2 .4  DECOM POSITION (FACTORIZATION)

2.4.1 LU D e c o m p o s itio n  (F ac to riza tion ): T rian g u la riza tio n

LU decomposition (factorization) of a nonsingular (square) matrix A  means 
expressing the matrix as the multiplication of a lower triangular matrix L  and 
an upper triangular matrix U , where a lower/upper triangular matrix is a matrix 
having no nonzero elements above/below the diagonal. For the case where some 
row switching operation is needed like in the Gauss elimination, we include a 
permutation matrix P  representing the necessary row switching operation(s) to 
write the LU decomposition as

P A  =  L U (2.4.1)
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The usage of a permutation matrix is exemplified by

PA =
0 0 1 a 11 a 12 a 13 a 31 a32 a33
1 0 0 a 21 a 22 a23 = a 11 a 12 a 13
0 1 0 a31 a32 a33 a 21 a 22 a23

(2.4.2)

which denotes switching the first and third rows followed by switching the second 
and third rows. An interesting and useful property of the permutation matrix is 
that its transpose agrees with its inverse.

P T P  =  I, P T =  P - (2 .4 .3)

To take a close look at the LU decomposition, we consider a 3 x  3 nonsingular 
matrix:

a 11 a 12 a 13 " 1 0 0 u 11 u 12 u13
a 21 a 22 a 23 = l21 1 0 0 u22 u23
a31 a32 a 33 _l31 l32 1 0 0 u33

a 11 a 12 a 13 u 11 «12 u 13
a 21 a 22 a 23 = /21 «11 /21U12 +  «22 /21u13 +  u23
a31 a32 a 33 _ l31u 11 l31u 12 +  l32u22 l31u 13 +  l32u23 +  u33

First, equating the first rows of both sides yields

u 1n =  a 1n, n =  1 , 2 , 3  (2.4.5a)

Then, equating the second rows of both sides yields

a21 =  l21u 11, a22 =  l21u 12 +  u22, a23 =  l21u 13 +  u23

from which we can get

l21 =  a 21 / u 11, u22 =  a 21 -  /21u 12, u23 =  a23 -  l21u 13 (2.4 .5b)

Now, equating the third rows of both sides yields

a31 =  /31И11, a32 =  I31U12 +  I32U2 2 , a33 =  I31U13 +  И32И23 +  U33

from which we can get

I31 =  a31/u11, I32 =  (a32 -  /31 U12) / u 22 , U33 =  (a33 -  /31 и 13) -  I32«23
(2.4.5c)

In order to put these formulas in one framework to generalize them for matri
ces having dimension greater than 3, we split this procedure into two steps 
and write the intermediate lower/upper triangular matrices into one matrix for 
compactness as
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step 1:
a 11

a 21

a31

a 12

a 22

a32

a 13
a23
a33

“ 11 =  a n 

l 21 =  a 21 / М11 

l31 =  a 31 /м 11

z(1)22
(1)

“ 12 =  a 12 

=  a 22 -  l21М12 

=  a32 -  l31М12

(1)
23
(1)

“ 13 =  a 13 
=  a23 -  l21М13 
=  a33 -  l31 М13

“ 11

l21

“ 12 

“ 22 =  a 22

“ 13 
“23 =  a23'

(1)

I31 I32 =  a32 /“22
(2) =  a ^  -  l32“23

(2.4.6a)

(2.4.6b)

This leads to an LU decomposition algorithm generalized for an NA x  NA 
nonsingular matrix as described in the following box. The MATLAB routine 
“ lu_dcmp()” implements this algorithm to find not only the lower/upper 
triangular matrix L  and U , but also the permutation matrix P . We run it for 
a 3 x  3 matrix to get L, U , and P  and then reconstruct the matrix P -1 L U  =  A 
from L, U , and P  to ascertain whether the result is right.

32 33

33

function [L,U,P] = lu_dcmp(A)
%This gives LU decomposition of A with the permutation matrix P 
% denoting the row switch(exchange) during fac tor izat ion 
NA = size(A,1);
AP = [A eye(NA)]; %augment with the permutation matrix. 
for  k = 1:NA - 1

%Partial Pivoting at AP(k,k)
[akx, kx] = max(abs(AP(k:NA,k))); 
i f  akx < eps

er ror ( 'S ingular  matrix and No LU decomposition')
end
mx = k+kx-1;
i f  kx > 1 % Row change i f  necessary 

tmp_row = AP(k,:);
AP(k,:) = AP(mx,:);
AP(mx,:) = tmp_row; 

end
% LU decomposition 
for  m = k + 1: NA

AP(m,k) = AP(m,k)/AP(k,k); %Eq.(2.4.8.2)
AP(m,k+1:NA) = AP(m,k + 1:NA)-AP(m,k)*AP(k,k + 1:NA); %Eq.(2.4.9) 

end 
end
P = AP(1:NA, NA + 1:NA + NA); %Permutation matrix 
for m = 1:NA 

for n = 1:NA
if  m == n, L(m,m) = 1.; U(m,m) = AP(m,m); 
e ls e if  m > n, L(m,n) = AP(m,n); U(m,n) = 0.; 
else L(m,n) = 0.; U(m,n) = AP(m,n); 

end 
end 

end
i f  nargout == 0, disp('L*U = P*Awith' );  L,U,P, end 
%You can check i f  P'*L*U = A?
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(cf) The number of floating-point multiplications required in this routine lu_dcmp() is

NA-1 NA-1
^ ( N A  -  k)(NA -  k +  1) =  ^{ N A (N A  +  1) -  (2NA +  1)k +  k2}
k=1  k=1

=  (N A - 1)NA(NA+ 1) -  - (2NA +  1 )(N A - 1)NA+ - ( N A -  1)NA(2NA- 1)
2  6

1 1  
=  -  (NA -  1)NA(NA+ 1) «  -N A 3 (2.4.7)

with NA: the size of matrix A

0. Initialize A(0) =  A, or equivalently, a®  =  amn for m , n  =  1 : NA.
1. Let k =  1.
2. If a (kkr1) =  0, do an appropriate row switching operation so that

a t l) =  0 .
When it is not possible, then declare the case of singularity and stop.

3. afn) =  a(r- 1) =  ukn for n =  k : NA (Just leave the kth row as it is.)
(2.4.8a)

ammk =  am- 1 ) / a(kk-1 )  =  lmk for m =  k +  1 : NA  (2.4 .8b)

4 . a(rmn =  aM- )  -  for m , n  =  k +  1 : NA  (2A 9)
5. Increment k by 1 and if k <  NA -  1, go to step 1; otherwise, go to step 6 .
6 . Set the part of the matrix a (WA-1) below the diagonal to L  (lower tri

angular matrix with the diagonal of 1’s) and the part on and above the 
diagonal to U  (upper triangular matrix).

>>A = [ 1 2  5 ;0 .2  1.6 7.4;  0.5 4 8 .5] ;  
>>[L,U,P] = lu_dcmp(A) %LU decomposition

L = 1 .0 0 0 U = 1 2 5 P = 1 0 0
0 .5 1 . 0 0 0 3 6 0 0 1
0 .2 0 ..4 1.0 0 0 4 0 1 0

• P'* L*U - A %check the v a l i d i t y of the r e s u l t (P' =
ans = 0 0 0

0 0 0
0 0 0

PA-1’

>>[L,U,P] = lu(A) %for comparison with the MATLAB b u i l t - i n  funct ion

W hat is the LU decomposition for? It can be used for solving a system of 
linear equations as

Ax =  b (2.4.10)

Once we have the LU decomposition of the coefficient matrix A  =  P TL U , it is 
more efficient to use the lower/upper triangular matrices for solving Eq. (2.4.10)
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than to apply the Gauss elimination method. The procedure is as follows:

P TLU x =  b, LU x =  P  b, U  x =  L -1 P  b, x =  U -1  L -1 P  b
(2 .4.11

Note that the premultiplication of L -1 and U -1 by a vector can be per
formed by the forward and backward substitution, respectively. The following 
program “do_lu_dcmp.m” applies the LU decomposition method, the Gauss 
elimination algorithm, and the MATLAB operators ‘\ ’ and ‘in v ’ or ‘A- 1’ to 
solve Eq. (2.4.10), where A  is the five-dimensional Hilbert matrix (introduced 
in Example 2.3) and b =  Ax° with x° =  [1 1 1 1 1 ]T. The residual error 
|| Ax,- -  b|| of the solutions obtained by the four methods and the numbers of 
floating-point operations required for carrying out them are listed in Table 2.1. 
The table shows that, once the inverse matrix A -1 is available, the inverse matrix 
method requiring only N 2 multiplications/additions (N  is the dimension of the 
coefficient matrix or the number of unknown variables) is the most efficient in 
computation, but the worst in accuracy. Therefore, if we need to continually 
solve the system of linear equations with the same coefficient matrix A  for dif
ferent RHS vectors, it is a reasonable choice in terms of computation time and 
accuracy to save the LU decomposition of the coefficient matrix A  and apply the 
forward/backward substitution process.

%do_lu_dcmp
% Use LU decomposition, Gauss elimination to solve Ax = b 
A = hilb(5);
[L,U,P] = lu_dcmp(A); %LU decomposition 
x = [1 -2 3 -4 5 -6 7 -8 9 -10]'; 
b = A*x(1:size(A,1));
flops(0), x_lu = backsubst(U,forsubst(L,P*b)); %Eq.(2.4.11)
flps(1) = flops; % assuming that we have already got L\U decomposition
flops(0), x_gs = gauss(A,b); flps(3) = flops;
flops(0), x_bs = A\b; flps(4) = flops;
AI = A~-1; flops(0), x_iv = AI*b; flps(5) = flops;
% assuming that we have already got the inverse matrix 
disp('  x_lu x_gs x_bs x_iv')
format short e
solutions = [x_lu x_gs x_bs x_iv]
errs = [norm(A*x_lu - b) norm(A*x_gs - b) norm(A*x_bs - b) norm(A*x_iv - b)] 
format short, flps
function x = forsubst(L,B)
%forward substitution for a lower-triangular matrix equation Lx = B
N = size(L,1);
x(1,:) = B(1 , : ) /L(1, 1);
for m = 2:N

x(m,:) = (B(m,:)-L(m,1:m - 1)*x(1:m-1,:))/L(m,m);
end
function x = backsubst(U,B)
%backward substitution for a upper-triangular matrix equation Ux = B
N = size(U,2);
x(N,:) = B(N,:)/U(N,N);
for m = N-1: -1:1

x(m,:) = (B(m,:) - U(m,m + 1:N)*x(m + 1:N,:))/U(m,m);
end
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Table 2.1 Residual Error and the Number of Floating-Point Operations of Various 
Solutions

tmp = forsubst(L,P*b)
backsubst(U,tmp) gauss(A,b) A\b A~-1*b

||Ax, -  b|| 1.3597e-016 5.5511e-017 1.7554e-016 3.0935e-012
# of flops 123 224 155 50

(cf) The numbers of flops for the LU decomposition and the inverse of the matrix A  are not counted. 
(cf) Note that the command ‘flops’ to count the number of floating-point operations is no longer 

available in MATLAB 6.x and higher versions.

2.4 .2  O th e r D e c o m p o s itio n  (F ac to riza tion ): C h o lesk y , QR, a n d  SVD

There are several other matrix decompositions such as Cholesky decomposition, 
QR decomposition, and singular value decomposition (SVD). Instead of looking 
into the details o f these algorithms, we will simply survey the MATLAB built-in 
functions implementing these decompositions.

Cholesky decomposition factors a positive definite symmetric/Hermitian matrix 
into an upper triangular matrix premultiplied by its transpose as

A  =  U TU ( U : an upper triangular matrix) (2.4.12 )

and is implemented by the MATLAB built-in function c h o l( )  .

(cf) If a (complex-valued) matrix A  satisfies A*T =  A — that is, the conjugate transpose 
of a matrix equals itself— it is said to be Hermitian. It is said to be just symmetric 
in the case of a real-valued matrix with AT =  A .

(cf) If a square matrix A  satisfies x*TA x > 0 V x =  0, the matrix is said to be positive 
definite (see Appendix B).

>>A = [ 2  3 4;3 5 6;4 6 9 ]; %a p os i t i ve  d e f i n i t e  symmetric matrix 
>>U = chol(A) %Cholesky decomposition 

U = 1.4142 2.1213 2.8284 
0 0.7071 0.0000
0 0 1.0000 

>>U'*U - A %to check i f  the r e s u l t  i s  r ig h t

QR decomposition is to express a square or rectangular matrix as the product 
of an orthogonal (unitary) matrix Q and an upper triangular matrix R as

A =  Q R  (2.4.13)

where Q T Q =  I  (Q*T Q =  I) .  This is implemented by the MATLAB built-in 
function q r ( )  .
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(cf) If all the columns of a (complex-valued) matrix A  are orthonormal to each other— that 
is, A*TA =  I , or, equivalently, A*T =  A-1 — it is said to be unitary. It is said to be 
orthogonal in the case of real-valued matrix with A T =  A-1 .

SVD (singular value decomposition) is to express an M  x  N  matrix A  in the 
following form

A =  USV T (2.4.14)

where U  is an orthogonal (unitary) M  x  M  matrix, V  is an orthogonal (uni
tary) N  x  N  matrix, and S is a real diagonal M  x  N  matrix having the sin
gular values of A  (the square roots of the eigenvalues of A TA) in decreasing 
order on its diagonal. This is implemented by the MATLAB built-in function 
svd( ) .

>>A = [1 2;2 3;3 5]; %a rectangular matrix 
>>[U,S,V] = svd(A) %Singular Value Decomposition

U = 0.3092 0.7557 -0.5774 S = 7.2071 0 V = 0.5184 -0.8552
0.4998 -0.6456 -0.5774 0 0.2403 0.8552 0.5184
0.8090 0.1100 0.5774 0 0

>>err = U*S*V'-A %to check i f  the resul t  i s  right 
e r r  = 1.0e-015* -0.2220 -0.2220 

0 0 
0.4441 0

2.5  ITERATIVE M ETHODS TO SOLVE EQUATIONS

2.5.1 J a c o b i  Ite ra tio n

Let us consider the equation
3x +  1 =  0

which can be cast into an iterative scheme as

x +  1 1 1
2x =  - x  -  l ; x  = ------- ---------- > x k+i =  - ~ x k -  -

Starting from some initial value x0 for k =  0, we can incrementally change k 
by 1 each time to proceed as follows:

X1 =  —2 1 — 2 1X0

X2 =  — 2 1 — 2 1X1 =  —2 1 +  2 2 +  2 2X0

x3 =  -  2 -1 -  2 -1 x2 =  -  2 -1 +  2 -  2 -  2 -3  -  2 - 3x0

W hatever the initial value x0 is, this process will converge to the sum of a 
geometric series with the ratio of (—1/2) as
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a 0 - 1 /2  1 о
xk = ------- = ----------------- =  —  =  x  a s K ^ - o o

1 — r  1 — (—1/2) 3

and what is better, the limit is the very true solution to the given equation. 
We are happy with this, but might feel uneasy, because we are afraid that this 
convergence to the true solution is just a coincidence. Will it always converge, 
no matter how we modify the equation so that only x  remains on the LHS?

To answer this question, let us try another iterative scheme.

x =  —2x — 1 ^  xk+1 =  — 2 xk — 1 

x 1 =  — 1 — 2x0

x2 =  —1 — 2x 1 =  —1 — 2 (—1 — 2xo) =  —1 +  2 +  22 xo 

x3 =  —1 — 2x2 =  —1 +  2 — 22 — 23xo

This iteration will diverge regardless of the initial value x0. But, we are never 
disappointed, since we know that no one can be always lucky.

To understand the essential difference between these two cases, we should 
know the fixed-point theorem (Section 4.1). Apart from this, let’s go into a system 
of equations.

Гз 2 1  Г x  1 Г 1 1
Ax =  b

3 2 x 1 1
1 2 x 2 - 1

Dividing the first equation by 3 and transposing all term(s) other than x 1 to the 
RHS and dividing the second equation by 2 and transposing all term(s) other 
than x2 to the RHS, we have

x 1,k+1
_ x2,k+1 _

0 —2/3 
— 1 /2  0

xk+1 =  A xk +  b

x u
x2 ,k

+
1/3

—1 /2

(2.5.1)

Assuming that this scheme works well, we set the initial value to zero (x0 =  0) 
and proceed as

xk ^  [I  +  A  +  A2 +----- ]b =  [I  — A] 1b =

1
1 /2 3

I -1
1 / 3 '

1 /2  1 211
1

1 1 - 2 / 3 1/3 1 2/3 1
1 -  1/3 — 1 /2  1 . —1/ 2 . =  2 /3 - 2 / 3 - 1

= x

(2.5.2)
which will converge to the true solution x° =  [1 — 1]r . This suggests another 
method of solving a system of equations, which is called Jacobi iteration. It can 
be generalized for an N  x  N  m atrix-vector equation as follows:
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,(k+1) _ E amn (k) . bm j. -t r* at----- x {„ ’ H--------for m =  1, 2,  . . . , N
a amm mmn=m

xk+1 =  A xk +  b for each time stage k (2.5.3)

where

IN xN =

0 —a 12/ a 11 •' —a 1N / a n b 1/ a 11
—a21 / a 22 0 •• —a2N/ a 22 , b =

b2/ a 22

—aN1/ a NN —aN 2/ a NN ■■ 0 bN/aNN

This scheme is implemented by the following MATLAB routine “ j a c o b i ( ) ” . 
We run it to solve the above equation.

N

function X = jacobi(A,B,X0,kmax)
%This function finds a soltuion to Ax = В by Jacobi i t e ra t ion .
i f  nargin < 4, t o l  = 1e-6; kmax = 100; %called by jacobi(A,В,X0)
e ls e i f  kmax < 1, to l  = max(kmax,1e-16); kmax = 100; %jacobi(A,B,X0,tol)
else t o l  = 1e -6 ; %jacobi(A,B,X0,kmax)

end
i f  nargin < 3 ,  X0 = zeros(size(B)) ; end
NA = size(A,1);
X = X0; At = zeros(NA,NA);
for  m = 1:NA

for n = 1:NA
i f  n ~= m, At(m,n) = -A(m,n) /A(m,m); end

end
Bt(m,:) = B(m,:)/A(m,m);

end
for k = 1: kmax

X = At*X + Bt; %Eq. (2.5.3)
i f  nargout == 0, X, end %To see the intermediate resul ts
i f  norm(X - X0)/(norm(X0) + eps ) < t o l ,  break; end
X0 = X;

end

>>A = [3 2;1 2]; b = [1 -1] ' ;  %the coeff ic ient  matrix and RHS vector 
>>x0 = [0 0 ] ' ;  %the i n i t i a l  value
>>x = jacobi(A,b,x0,20) %to repeat 20 i t e r a t ions  s ta r t ing  from x0 

x = 1.0000 
- 1.0000

>>jacobi(A,b,x0,20) %omit output argument to see intermediate resul t s
X = 0.3333 0.6667 0.7778 0.8889 0.9259 ..........

-0.5000 -0.6667 -0.8333 -0.8889 -0.9444 ..........

2 .5 .2  G a u s s -S e id e l  Ite ra tio n

Let us take a close look at Eq. (2.5.1). Each iteration of Jacobi method updates 
the whole set of N  variables at a time. However, so long as we do not use a
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multiprocessor computer capable of parallel processing, each one of N  variables 
is updated sequentially one by one. Therefore, it is no wonder that we could 
speed up the convergence by using all the m ost recent values of variables for 
updating each variable even in the same iteration as follows:

2 1
Xl,k+1 =  - ~ X 2  ,k +  ~

X2,k+l —  ~ 2 X hk+l 2

This scheme is called G auss-Seidel iteration, which can be generalized for an 
N  x  N  m atrix-vector equation as follows:

xm
b _  y - m — 1 a x (k+1) _  y - N a x (k)

( jt+ 1 )  _  Um L ^ n = l  u m n X n_________ Z ^ n = m + 1 Mm n A n

for m =  1 , . . .  , N  and for each time stage k (2.5.4)

This is implemented in the following MATLAB routine “g a u s e i d ( ) ”, which 
we will use to solve the above equation.

function X = gauseid(A,B,X0,kmax)
%This function finds x = A~-1 B by Gauss-Seidel i t e r a t ion .  
i f  nargin < 4, to l  = 1e-6; kmax = 100;

e l s e i f  kmax < 1 , to l  = max(kmax,1e-16); kmax = 1000; 
else to l  = 1e -6 ; 

end i f  nargin < 4, to l  = 1e-6; kmax = 100; end 
i f  nargin < 3, X0 = zeros(size(B));  end 
NA = size(A,1); X = X0; 
for k = 1 : kmax

X(1,:) = (B(1,:)-A(1,2:NA)*X(2:NA,:))/A(1,1); 
for  m = 2:NA-1

tmp = B(m,:)-A(m,1:m-1)*X(1:m - 1,:)-A(m,m + 1:NA)*X(m + 1:NA,:); 
X(m,:) = tmp/A(m,m); %Eq.(2.5.4)

end
X(NA,:) = (B(NA,:)-A(NA,1:NA - 1)*X(1:NA - 1,:))/A(NA,NA); 
i f  nargout == 0, X, end %To see the intermediate resul ts  
i f  norm(X - X0)/(norm(X0) + eps)<tol,  break; end 
X0 = X;

end

>>A = [3 2;1 2]; b = [1 -1] ' ;  %the coeff icient  matrix and RHS vector 
>>x0 = [0 0 ] ' ;  %the i n i t i a l  value
>>gauseid(A,b,x0,10) %omit output argument to see intermediate resu lt s

X = 0.3333 0.7778 0.9259 0.9753 0.9918 ..........
-0.6667 -0.8889 -0.9630 -0.9877 -0.9959 ..........

1 1

amm

As with the Jacobi iteration in the previous section, we can see this G auss-Seidel 
iteration converging to the true solution x° =  [1 — 1] r  and that with fewer iter
ations. But, if we use a multiprocessor computer capable of parallel processing,
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the Jacobi iteration may be better in speed even with more iterations, since it can 
exploit the advantage of simultaneous parallel computation.

Note that the Jacobi/G auss-Seidel iterative scheme seems unattractive and 
even unreasonable if we are given a standard form of linear equations as

A x =  b

because the computational overhead for converting it into the form of Eq. (2.5.3) 
may be excessive. But, it is not always the case, especially when the equations 
are given in the form of Eq. (2.5.3)/(2.5.4). In such a case, we simply repeat 
the iterations without having to use such ready-made routines as “ j a c o b i ( ) ” or 
“g a u s e i d ( ) ” . Let us see the following example.

E xam ple 2.4. Jacobi or G auss-Seidel Iterative Scheme. Suppose the tempera
ture of a metal rod of length 10 m has been measured to be 0°C and 10° C at 
each end, respectively. Find the temperatures x 1 , x 2 , x 3, and x4 at the four points 
equally spaced with the interval of 2 m, assuming that the temperature at each 
point is the average of the temperatures of both neighboring points.

We can formulate this problem into a system of equations as
x0 +  x2 x 1 +  x3 x2 +  x4

X i  =  ----------- , X2 =  -----------, x 3 =  -----------,i 2 2 2

X4 =  X3  ^  * 5 with x 0 =  0 and x5 =  10 (E2.4)

This can easily be cast into Eq. (2.5.3) or Eq. (2.5.4) as programmed in the 
following program “nm2e04.m”:

%nm2e04
N = 4; %the number of unknown va r ia b le s /e qua t i on s  
kmax = 20 ; t o l  = 1e - 6 ;
At = [0 1 0 0; 1 0 1 0; 0 1 0 1; 0 0 1 0] /2;  
x0 = 0 ;  x5 = 10; %boundary values 
b = [x0/2 0 0 x 5 / 2 ] ' ;  %RHS vector
% i n i t i a l i z e  a l l  the values to the average of boundary values 
xp=ones(N,1)*(x0 + x5)/2;
%Jacobi i t e r a t i o n  
for  k = 1:kmax

x = At*xp +b; %Eq.(E2.4)
i f  norm(x - xp)/(norm(xp)+eps) < t o l ,  break; end 
xp = x;

end
k, x j  = x
%Gauss-Seidel i t e r a t i o n
xp = ones(N,1)*(x0 + x5)/2;  x = xp; % in i t i a l  value 
for  k = 1:kmax

for  n = 1:N, x(n) = A t (n , : ) *x  + b(n);  end %Eq.(E2.4) 
i f  norm(x - xp)/(norm(xp) + eps) < t o l ,  break; end 
xp = x;

end
k, xg = x
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The following example illustrates that the Jacobi iteration and the G auss-Seidel 
iteration can also be used for solving a system of nonlinear equations, although there 
is no guarantee that it will work for every nonlinear equation.

Exam ple 2.5. G auss-Seidel Iteration for Solving a Set of Nonlinear Equations.
We are going to use the G auss-Seidel iteration to solve a system of nonlinear 

equations as
x ,2 +  10x1 +  2x, — 13 =  0

3 2 (E2.5.1)
2 x 1 — x? +  5x2 — 6 — 0

In order to do so, we convert these equations into the following form, which 
suits the G auss-Seidel scheme.

(E2.5.2)

We make the MATLAB program “nm2e05.m”, which uses the G auss-Seidel 
iteration to solve these equations. Interested readers are recommended to run 
this program to see that this simple iteration yields the solution within the given 
tolerance of error in just six steps. How marvelous it is to solve the system of 
nonlinear equations without any special algorithm!

(cf) Due to its remarkable capability to deal with a system of nonlinear equations, the 
Gauss-Seidel iterative method plays an important role in solving partial differential 
equations (see Chapter 9).

Xi 1 1 x 1 2 x )2 1 О

x 2 (6 — 2X3 +  x |) /5

%nm2e05.m
% use Gauss-Seide l  i t e r a t i o n  to  solve a se t  of nonlinear  equations
c lear
kmax = 100; t o l  = 1e - 6 ;
x = ze ros ( 2 , 1 ); % in i t i a l  value
fo r  k = 1 :kmax

xp = x; % to remember the previous so lu t ion
x(1) = (13 - x ( 1 ) A2 - 2*x(2)A2)/10;  % (E2.5 2 )
x(2) = (6 - x ( 1 ) A3) /5;
i f  norm(x - xp)/(norm(xp) + eps)<to l ,  break; end

end
k, x

2 .5 .3  T he C o n v e rg e n c e  of J a c o b i a n d  G a u s s -S e id e l  I te ra tio n s

Jacobi and G auss-Seidel iterations have a very simple computational structure 
because they do not need any matrix inversion. So, it may be of practical use, if 
only the convergence is guaranteed. However, everything cannot always be fine,
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as illustrated in Section 2.5.1. Then, what is the convergence condition? It is the 
diagonal dominancy of coefficient matrix A, which is stated as follows:

lamm I | amn I for m — 1 , 2  . . .  , N  (2.5 .5)
n=m

This implies that the convergence of the iterative schemes is ensured if, in 
each row of coefficient matrix A, the absolute value of the diagonal element 
is greater than the sum of the absolute values of the other elements. It should 
be noted, however, that this is a sufficient, not a necessary, condition. In other 
words, the iterative scheme may work even if the above condition is not strictly 
satisfied.

One thing to note is the relaxation technique, which may be helpful in accel
erating the convergence of G auss-Seidel iteration. It is a slight modification of 
Eq. (2.5.4) as

b _ y m—1 a x (k+1) _ y - N a x (k) 
x (*+ l)  =  ( 1  — c o ) x (k) +  CO n=1 n________ L ^ n = m + \ u m n X n

amm
with 0 <  ш <  2 (2.5.6)

and is called SOR (successive overrelaxation) for the relaxation factor 1 <  ш <
2 and successive underrelaxation for 0 <  ш <  1. But regrettably, there is no 
general rule for selecting the optimal value of the relaxation factor ш.

N

PROBLEMS

2.1 Recursive Least-Squares Estimation (RLSE)
(a) Run the program ‘d o _ r l s e .m ’ (in Section 2.1.4) with another value of 

the true parameter
xo = [1 2 ] '

W hat is the parameter estimate obtained from the RLS solution?
(b) Run the program “d o _ r l s e ” with a small matrix P  like

P = 0.01*eye(NA);

W hat is the parameter estimate obtained from the RLS solution? Is it 
still close to the value of the true parameter?

(c) Insert the statements in the following box at appropriate places in the 
MATLAB code “do_ r l s e .m ” appeared in Section 2.1.4. Remove the 
last two statements and run it to compare the times required for using 
the RLS solution and the standard LS solution to get the parameter 
estimates on-line.
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%nm2p01.m

time_on = 0 ; t ime_off  = 0 ;

t i c

time_on = time_on + toc;  
t i c
xk_off = A\b; %standard LS so lu t ion  
t ime_off  = t ime_off  + toc;

s o lu t io ns  = [x xk_off] 
di screpancy = norm(x - xk_off) 
times = [time_on t ime_off]

2.2 Delicacy of Scaled Partial Pivoting

As a complement to Example 2.2, we want to compare no pivoting, par
tial pivoting, scaled partial pivoting, and full pivoting in order to taste the 
delicacy of row switching strategy. To do it in a systematic way, add the 
third input argument (p iv o t in g)  to the Gauss elimination routine ‘gaus s( )  ’ 
and modify its contents by inserting the following statements into appropri
ate places so that the new routine “g a u s s ( A , b , p i v o t i n g ) ” implements the 
partial pivoting procedure optionally depending on the value of ‘p i v o t i n g ’. 
You can also remove any unnecessary parts.

- i f  nargin < 3, pivoting = 2; end %scaled par t i a l  pivoting by default
- switch pivoting

case 2, [akx,kx] = max(abs(AB(k:NA,k))./.. .
max(abs([AB(k:NA,k + 1:NA) eps*ones(NA - k + 1 , 1 ) ] ' ) ) ' ) ;  

otherwise, [akx,kx] = max(abs(AB(k:NA,k))); %partial pivoting 
end

- &pivoting > 0 %partial pivoting not to be done for  pivot = 1

(a) Use this routine with p iv o t i n g  = 0 / 1 / 2 , the ‘\ ’ operator and the 
‘i n v ( ) ’ command to solve the systems of linear equations with the 
coefficient matrices and the RHS vectors shown below and fill in 
Table P2.2 with the residual error | |A,x — b | |  to compare the results 
in terms of how well the solutions satisfy the equation, that is,
| |Агx — bi| |  *  0 .

(1) Ai —

(2) A2 —

(3) A3 —

10 — 15

10 11

10 
1

1011

1

— 14.6

10 15

1
10—15

b 1 —

b2 —

b 3 —

1 +  10 —15

1011 +  1

1 +  10—146 

1015 +  1

1011 +  1 
1 +  10—15

1

1
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Table P2.2 Comparison of gauss() with Different Pivoting Methods in Terms of
IIAXi -  b||

A ^  — b A2x — b2 A3 x — b3 A4 x — b4

gauss(A,b,0)

gauss(A,b,1)

gauss(A,b,2)

A\b

A"-1*b

(no pivoting)

(partial pivoting)

(scaled partial pivoting)

1.25e-01

4.44e-16

0

6.25e-02

(4) A4 —
1014.6 1 

1 10—15
b4 —

10146 + 1 

1 + 10—15

(b) Which pivoting strategy yields the worst result for problem (1) in (a)? 

Has the row swapping been done during the process of partial pivoting 

and scaled partial pivoting? If yes, did it work to our advantage? Did 

the ‘\’ operator or the ‘inv () ’ command give you any better result?

(c) Which pivoting strategy yields the worst result for problem (2) in (a)? 

Has the row swapping been done during the process of partial pivoting 

and scaled partial pivoting? If yes, did it produce a positive effect for 

this case? Did the ‘\’ operator or the ‘ in v ( ) ’ command give you any 

better result?

(d) Which pivoting strategy yields the best result for problem (3) in (a)? Has 

the row swapping been done during the process of partial pivoting and 

scaled partial pivoting? If yes, did it produce a positive effect for this 

case?

(e) The coefficient matrix A3 is the same as would be obtained by applying 

the full pivoting scheme for A 1 to have the largest pivot element. Does 

the full pivoting give better result than no pivoting or the (scaled) partial 

pivoting?

(f) Which pivoting strategy yields the best result for problem (4) in (a)? Has 

the row swapping been done during the process of partial pivoting and 

scaled partial pivoting? If yes, did it produce a positive effect for this 

case? Did the ‘\’ operator or the ‘ inv() ’ command give you any better 

result?

2.3 Gauss-Jordan Elimination Algorithm Versus Gauss Elimination Algorithm

Gauss-Jordan elimination algorithm mentioned in Section 2.2.3 is trimming 

the coefficient matrix A into an identity matrix and then takes the RHS 

vector/matrix as the solution, while Gauss elimination algorithm introduced 

with the corresponding routine “gauss()” in Section 2.2.1 makes the matrix 

an upper-triangular one and performs backward substitution to get the solu

tion. Since Gauss-Jordan elimination algorithm does not need backward 

substitution, it seems to be simpler than Gauss elimination algorithm.
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Table P2.3 Comparison of Several Methods for Solving a Set of Linear Equations

gauss(A,b) gaussj(A,b) A\b A~-1*b

A  — b|| 3.1402e-016 8.7419e-016

# of flops 1124 1744 785 7670

(a) Modify the routine “gauss()” into a routine “gauss j()” which imple

ments Gauss-Jordan elimination algorithm and count the number of 

multiplications consumed by the routine, excluding those required for 

partial pivoting. Compare it with the number of multiplications consumed 

by “gauss()” [Eq. (2.2.18)]. Does it support or betray our expecta

tion that Gauss-Jordan elimination would take fewer computations than 

Gauss elimination?

(b) Use both of the routines, the ‘\’ operator and the ‘in v ( ) ’ command or 

‘ A-1 ’ to solve the system of linear equations

Ax =  b (P2.3.1)

where A is the 10-dimensional Hilbert matrix (see Example 2.3) and 

b =  Ax° with x° =  [ 1 1 1 1 1 1 1 1 1  1]r . Fill in Table P2.3 with the 

residual errors

||Ax — b||* 0 (P2.3.2)

as a way of describing how well each solution satisfies the equation.

(cf) The numbers of floating-point operations required for carrying out the 

computations are listed in Table P2.3 so that readers can compare the com

putational loads of different approaches. Those data were obtained by using 

the MATLAB command flops(), which is available only in MATLAB of 

version below 6.0.

2.4 Tridiagonal System of Linear Equations

Consider the following system of linear equations:

an x! + a12x2 =  b

a21x1 + a22x2 + a23x3 =  b2

......................................  (P2.4.1)

aN —1,N—2xN—2 + aN —1,N — 1xN —1 + aN—1,NxN =  bN —1 

aN,N—1xN —1 + aN,NxN =  bN

which can be written in a compact form by using a matrix-vector notation as

Anxnx =  b (P2.4.2)
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Table P2.4 The Computational Load of the Methods to Solve a Tri-diagonal 
System of Equations

gauss(A,b) trid(A,b) gauseid() gauseid1() A\b

# of flops 141 50 2615 2082 94

where

~an a12 0 0 0

Я21 a22 a23 0 0

AnxN = 0 0

0 0 <N—1Na 11Na 4
1Na

_ 0 0 0 aN,N — 1 aNN

x =

*1 г b1 ]

*2 b2

, b =

Xn—1 bN — 1

- *N - - bN _

This is called a tridiagonal system of equations on account of that the 

coefficient matrix A has nonzero elements only on its main diagonal and 

super-/subdiagonals.

(a) Modify the Gauss elimination routine “gauss()” (Section 2.2.1) in such 

a way that this special structure can be exploited for reducing the com

putational burden. Give the name ‘t r i d ( ) ’ to the modified routine and 

save it in an m-file named “tr id .m ” for future use.

(b) Modify the Gauss-Seidel iteration routine “gauseid()” (Section 2.5.2) 

in such a way that this special structure can be exploited for reduc

ing the computational burden. Let the name of the modified routine be 

“Gauseid1()” .

(c) Noting that Eq. (E2.4) in Example 2.4 can be trimmed into a tridiago

nal structure as (P2.4.2), use the routines “gauss()”, “t r id ( ) ”, “gau- 

se id ()”, “gauseid1()”, and the backslash (\) operator to solve the 

problem.

(cf) The numbers of floating-point operations required for carrying out the 

computations are listed in Table P2.4 so that readers can compare the com

putational loads of the different approaches.

2.5 LU Decomposition of a Tridiagonal Matrix

Modify the LU decomposition routine “lu_dcmp()” (Section 2.4.1) in such a 

way that the tridiagonal structure can be exploited for reducing the
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computational burden. Give the name “lu _ t r id ( ) ” to the modified routine 

and use it to get the LU decomposition of the tridiagonal matrix

A =

2 -1 0 0

1 2 -1 0

0 -1 2 -1

0 0 -1 2

(P2.5.1)

You may type the following statements into the MATLAB command window:

>>A = [ 2 - 1 0  0; -1 2 -1 0; 0 -1 2 -1; 0 0-1 2];
>>[L,U] = lu_trid(A)
>>L*U - A % = 0 (No error)?

2.6 LS Solution by Backslash Operator and QR Decomposition

The backslash ( ‘A\b’) operator and the matrix left division 

(‘m ld iv ide(A ,b)’) function turn out to be the most efficient means for solv

ing a system of linear equations as Eq. (P2.3.1). They are also capable of 

dealing with the under/over-determined cases. Let’s see how they handle the 

under/over-determined cases.

(a) For an underdetermined system of linear equations

A 1x =  b1;

1 2 3

X1
■ 14"

4 5 6
X2 =

32J _*3_

(P2.6.1)

find the minimum-norm solution (2.1.7) and the solutions that can be 

obtained by typing the following statements in the MATLAB command 

window:

>>A1 = [1 2 3; 4 5 6]; b1 = [14 32]';
>>x_mn = A1'*(A1*A1')A-1*b1, x_pi = pinv(A1)*b1, x_bs = A1\b1

Are the three solutions the same?

(b) For another underdetermined system of linear equations

A2x =  b2,

<N1-H X1
■ 14"

2 4 6
X2 =

28
_x3 _

(P2.6.2)

find the solutions by using Eq. (2.1.7), the commands p inv(), and back

slash (\). If you are not pleased with the result obtained from Eq. (2.1.7), 

you can remove one of the two rows from the coefficient matrix A2 and 

try again. Identify the minimum solution(s). Are the equations redundant 

or inconsistent?



Table P2.6.1 Comparison of Several Methods for Computing the LS Solution

1 1 0  SYSTEM OF LINEAR EQUATIONS

QR LS: Eq. (2.1.10) pinv(A)*b A\b

||Ax; - b|| 2.8788e-016 2.8788e-016

# of flops 25 89 196 92

(c) For another underdetermined system of linear equations

A2 x =  Ьз

<N1-H *1
" 21"

2 4 6
*2 =

21J _*3 _

(P2.6.3)

find the solutions by using Eq. (2.1.7), the commands p in v () , and back

slash (\). Does any of them satisfy Eq. (P2.6.3) closely? Are the equations 

redundant or inconsistent?

(d) For an overdetermined system of linear equations

A4x =  b4

"1 2 " _ _ 5.2

2 3 *1
7.8

4 -1
_ *2 _

2.2

(P2.6.4)

find the LS (least-squares) solution (2.1.10), that can be obtained from 

the following statements. Fill in the corresponding blanks of Table P2.6.1 

with the results.

>>A4 = [1 2; 2 3; 4 -1]; b4 = [5.2 7.8 2 .2]';
>> x_ls = (A4'*A4)\A4'*b4, x_pi = pinv(A4)*b4, x_bs = A4\b4

(e) We can use QR decomposition to solve a system of linear equations as 

Eq. (P2.3.1), where the coefficient matrix A is square and nonsingular or 

rectangular with the row dimension greater than the column dimension. 

The procedure is explained as follows:

Ax =  QRx =  b, Rx =  Q -1b =  Q'b, x =  R -1 Q'b (P2.6.5)

Note that Q 'Q  =  I ; Q' =  Q -1 (orthogonality) and the premultiplica

tion of R -1 can be performed by backward substitution, because R is 

an upper-triangular matrix. You are supposed not to count the num

ber of floating-point operations needed for obtaining the LU and QR 

decompositions, assuming that they are available.

(i) Apply the QR decomposition, the LU decomposition, Gauss elimi

nation, and the backslash (\) operator to solve the system of linear
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Table P2.6.2 Comparison of Several Methods for Solving a System of Linear 

Equations

LU QR gauss(A,b) A\b

IIAxi — b|| 7.8505e-016 8.7419e-016

# of flops 453 327 1124 785

equations whose coefficient matrix is the 10-dimensional Hilbert 

matrix (see Example 2.3) and fill in the corresponding blanks of 

Table P2.6.2 with the results.

(ii) Apply the QR decomposition to solve the system of linear equations 

given by Eq. (P2.6.4) and fill in the corresponding blanks of 

Table P2.6.2 with the results.

(cf) This problem illustrates that QR decomposition is quite useful for solving 

a system of linear equations, where the coefficient matrix A is square and 

nonsingular or rectangular with the row dimension greater than the column 

dimension and no rank deficiency.

2.7 Cholesky Factorization of a Symmetric Positive Definite Matrix:

If a matrix A is symmetric and positive definite, we can find its LU 

decomposition such that the upper triangular matrix U is the transpose of 

the lower triangular matrix L, which is called Cholesky factorization.

Consider the Cholesky factorization procedure for a 4 x 4 matrix

a11 a12 a13 a14 u11 0 0 0 u11 u12 u13 u14

a12 a22 a23 a24 u12 u22 0 0 0 u22 u23 u24

a13 a23 a33 a34 u13 u23 u33 0 0 0 u33 u34

_ a14 a24 a34 a44 u14 u24 u34 u 44 0 0 0 u 44

un
u12u11

u13u11

u14un

u11u12

u12

u13u12

u14u12

u22 

u 23 u 22 

u24u22

u11u13 

u12u13 + u22u23 

u213 + u23 + u^3

u14u13 + u24u23 + u34u33

u11u14

u12u14 + u22u24

u13u14 + u23u24 + u33u34

24 + u34 + u44 J

(P2.7.1)

uf4 + u

Equating every row of the matrices on both sides yields

Li, «12 =  a n / u u ,  «13 =  a y i j u w ,  u \ \  =  a \ \ j u \ \  (P2.7.2.1)un  =

u22 =

u33 =  

u44 =

a22 — uX2, u23 =  (a23 — u13 u12)/u22> u24 =  (a24 — u14u12)/u22

________ (P2.7.2.2)

a33 — u^3 — u^n, u34 =  (a43 — u24u23 — u14u13)/u33 (P2.7.2.3)

a44 — u^4 — u24 — u214 (P2.7.2.4)
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which can be combined into two formulas as

Ukk =  л/ akk -  ^ , = 1 u2k for k =  1 : N  (P2.7.3a)

ukm — f akm Т . -  Uim uik j / ukk for m =  k + 1 : N  and k =  1 : N  

'= (P2.7.3b)

(a) Make a MATLAB routine “cholesky()”, which implements these for

mulas to perform Cholesky factorization.

(b) Try your routine “cholesky()” for the following matrix and check if 

U TU -  A «  O (U:the upper triangular matrix). Compare the result with 

that obtained by using the MATLAB built-in routine “ch o l()”.

A

1 2 4 7

2 13 23 38

4 23 77 122

7 38 122 294

(P2.7.4)

(c) Use the routine “lu_dcmp()” and the MATLAB built-in routine “lu ( ) ” 

to get the LU decomposition for the above matrix (P2.7.4) and check if 

P TLU -  A «  O, where L and U are the lower/upper triangular matrix, 

respectively. Compare the result with that obtained by using the MAT- 

LAB built-in routine “ lu ( ) ”.

2.8 Usage of SVD (Singular Value Decomposition)

What is SVD good for? Suppose we have the singular value decomposition 

of an M  x N  real-valued matrix A as

A =  USV T (P2.8.1)

where U is an orthogonal M  x M  matrix, V an orthogonal N  x N  matrix, 

and S a real diagonal M  x N  matrix having the singular value ot ’s of A (the 

square roots of the eigenvalues of A TA) in decreasing order on its diagonal. 

Then, it is possible to improvise the pseudo-inverse even in the case of 

rank-deficient matrices (with rank(A) < min(M, N)) for which the left/right 

pseudo-inverse can’t be found. The virtual pseudo-inverse can be written as

A-1 =  V S-1 U T (P2.8.2)

where S-1 is the diagonal matrix having 1/стг- on its diagonal that is recon

structed by removing all-zero(-like) rows/columns of the matrix S and substi

tuting 1/oi for at =  0 into the resulting matrix; V and U are reconstructed 

by removing the columns of V and U corresponding to the zero singular 

value(s). Consequently, SVD has a specialty in dealing with the singular 

cases. Let us take a closer look at this through the following problems.
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(a) Consider the problem of solving

A 1x =

1 2 3

Xi
■ 6 "

2 4 6
X2 = 12J _X3_

=  bi (P2.8.3)

Since this belongs to the underdetermined case (M  =  2 < 3 =  N ), it 

seems that we can use Eq. (2.1.7) to find the minimum-norm solution.

(i) Type the following statements into the MATLAB command window.

>>A1 = [1 2 3; 2 4 6]; b1 = [6;12]; x = A1'*(A1*A1')~-1*b1 %Eq. (2.1.7)

What is the result? Explain why it is so and support your answer by 

typing

>>r = rank(A1)

(ii) Type the following statements into the MATLAB command window 

to see the SVD-based minimum-norm solution. What is the value of 

x =  A-1bi =  VS-1U Tbi and || Aix -  bi||?

[U,S,V] = svd(A1); %(P2.8.1) 
u = U (:,1 :r); v = V(:,1:r); s = S(1:r,1:r);
AIp = v*diag(1./diag(s))*u'; %faked pseudo-inverse (P2.8.2) 
x = AIp*b1 %minimum-norm solution for singular underdetermined 
err = norm(A1*x - b1) %residual error

(iii) To see that the norm of this solution is less than that of any other 

solution which can be obtained by adding any vector in the null space 

of the coefficient matrix A1, type the following statements into the 

MATLAB command window. What is implied by the result?

nullA = null(A1); normx = norm(x); 
for n = 1:1000

if  norm(x + nullA*(rand(size(nullA,2),1)-0.5)) < normx
disp('What the hell smaller-norm sol - not minimum norm'); 

end 
end

(b) For the problem

A2x =
■ 1 2 3 ' X1

' 6"

2 3 4 X2 =
9J _X3_

=  b2 (P2.8.4)

compare the minimum-norm solution based on SVD and that obtained 

by Eq. (2.1.7).
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(c) Consider the problem of solving

A3 x =

<N1-H r _ 1

4 5 9
Xi

2

7 11 18
X2 =

3

-2 3 1
_X3_

4

=  b3 (P2.8.5)

Since this belongs to the overdetermined case (M  =  4 > 3 =  N ), it 

seems that we can use Eq. (2.1.10) to find the LS (least-squares) solution.

(i) Type the following statements into the MATLAB command window:

>>A3=[1 2 3; 4 5 9;7 11 18;-2 3 1];
>>b3=[1;2;3;4]; x=(A3'*A3)"-1*A3'*b3 %Eq. (2.1.10)

What is the result? Explain why it is so in connection with the rank 

of A3.

(ii) Similarly to (a)(ii), find the SVD-based least-squares solution.

[U,S,V] = svd(A3);
u=U(:,1:r); v = V (:,1 :r); s = S (1 :r ,1 :r); 
AIp = v*diag(1 ./d iag(s))*u '; x = AIp*b

(iii) To see that the residual error of this solution is less than that of 

any other vector around it, type the following statements into the 

MATLAB command window. What is implied by the result?

err = norm(A3*x-b3) 
for n = 1:1000

i f  norm(A3*(x+rand(size(x))-0.5)-b)<err
disp('What the he ll smaller error sol - not LSE?'); 

end
end

(d) For the problem

A4 x =

<Nl-H r _ 1

4 5 9
X1

2

7 11 -1
X2 =

3

-2 3 1
X3

4

=  b4 (P2.8.6)

compare the LS solution based on SVD and that obtained by Eq. (2.1.10). 

(cf) This problem illustrates that SVD can be used for fabricating a universal 

solution of a set of linear equations, minimum-norm or least-squares, for 

all the possible rank deficiency of the coefficient matrix A.
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2.9 Gauss-Seidel Iterative Method with Relaxation Technique

(a) Try the relaxation technique (introduced in Section 2.5.3) with several 

values of the relaxation factor rn =  0.2, 0 .4 ,. . . ,  1.8 for the following 

problems. Find the best one among these values of the relaxation factor 

for each problem, together with the number of iterations required for 

satisfying the termination criterion ||xk+1 — xk||/||xk|| < 10—6.

(i) A1x =

(ii) A2x =

5 —4 x1 1

—9 10 _X2 _ 1

2 —1 x1 ' 1 "

—1 4 x2 3

=  b1

=  b2

(P2.9.1)

(P2.9.2)

(iii) The nonlinear equations (E2.5.1) given in Example 2.5.

(b) Which of the two matrices A 1 and A2 has stronger diagonal dominancy 

in the above equations? For which equation does Gauss-Seidel iteration 

converge faster, Eq. (P2.9.1) or Eq. (P2.9.2)? What would you conjecture 

about the relationship between the convergence speed of Gauss -Seidel 

iteration for a set of linear equations and the diagonal dominancy of the 

coefficient matrix A ?

(c) Is the relaxation technique always helpful for improving the convergence 

speed of the Gauss-Seidel iterative method regardless of the value of 

the relaxation factor rn?



3
INTERPOLATION 

AND CURVE FITTING

There are two topics to be dealt with in this chapter, namely, interpolation1 and 

curve fitting. Interpolation is to connect discrete data points in a plausible way 

so that one can get reasonable estimates of data points between the given points. 

The interpolation curve goes through all data points. Curve fitting, on the other 

hand, is to find a curve that could best indicate the trend of a given set of data. 

The curve does not have to go through the data points. In some cases, the data 

may have different accuracy/reliability/uncertainty and we need the weighted 

least-squares curve fitting to process such data.

3.1 INTERPOLATION BY LAGRANGE POLYNOMIAL

For a given set of N + 1 data points {(x0, y0), (x1y y1) , . . . ,  (xN, yN)}, we want 

to find the coefficients of an N  th-degree polynomial function to match them:

p N(x) =  a0 + a1x + a2x2 + • • •+ aNxN (3.1.1)

The coefficients can be obtained by solving the following system of linear 

equations.
2 N

a0 + x0a 1 + x0 a2 +---- + x0 aN =  У0

2 Na0 + x1a1 + x1 a2 + ■ ■ ■ + xl aN =  y1
(3.1.2)

2 N
a0 + xNa1 + xNa2 +---- + xNaN =  yN

1 If we estimate the values of the unknown function at the points that are inside/outside the range 

of collected data points, we call it the interpolation/extrapolation.

Applied Numerical Methods Using MATLAB®, by Yang, Cao, Chung, and Morris 
Copyright © 2005 John Wiley & Sons, Inc., ISBN 0-471-69833-4

1 1 7
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But, as the number of data points increases, so does the number of unknown 

variables and equations, consequently, it may be not so easy to solve. That is 

why we look for alternatives to get the coefficients {a0, a1, . . .  ,a N}.

One of the alternatives is to make use of the Lagrange polynomials

(x -  x1)(x -  x2) ■■■(x -  xn) , (x -  x0)(x -  x2) ■ ■ ■ (x -  xn) 
Ь ( х ) = У о - ------- -------- ----- ;-------- г +  У1

(x0 -  x1)(x0 -  x2) ■ ■ ■ (x0 -  xn) (x1 -  x0)(x1 -  x2) ■ ■ ■ (x1 -  x")  

(x -  x0)(x -  x1) ■ ■ (x -  xn-1)
+ ■■ ■ + yN

(xn -  x0)(xn -  x1 )■ ■ ■ (xn -  xn-1)

, / 4 V -' T { \ * T / Ч П  k^m (x-xk) Д  x - x k 
’n (x ) =  /  ymL Ntm(x) with L N,m(x) =  — у--------- =  ------- (3.1.3)

m=0 U "=m(xm - xk) t=m xm - xk

It can easily be shown that the graph of this function matches every data point

l" (xm) =  ym V m =  0 ,1 , . . . ,  N  (3.1.4)

since the Lagrange coefficient polynomial L N,m(x) is 1 only for x =  xm and zero 

for all other data points x =  xk (k =  m). Note that the N th-degree polynomial 

function matching the given N + 1 points is unique and so Eq. (3.1.1) having 

the coefficients obtained from Eq. (3.1.2) must be the same as the Lagrange 

polynomial (3.1.3).

Now, we have the MATLAB routine “lagranp()” which finds us the coef

ficients of Lagrange polynomial (3.1.3) together with each Lagrange coefficient 

polynomial L N,m(x). In order to understand this routine, you should know that 

MATLAB deals with polynomials as their coefficient vectors arranged in descend

ing order and the multiplication of two polynomials corresponds to the convolu

tion of the coefficient vectors as mentioned in Section 1.1.6.

function [l,L] = lagranp(x,y)
%Input : x = [x0 xl . . .  xN], y = [y0 y1 . . .  yN]
%Output: l  = Lagrange polynomial coefficients of degree N 
% L = Lagrange coefficient polynomial
N = length(x)-1; %the degree of polynomial 
l  = 0;
for m = 1:N + 1 

P = 1;
for k = 1:N + 1

i f  k ~= m, P = conv(P,[1 -x(k)])/(x(m)-x(k)); end 
end
L(m,:) = P; %Lagrange coefficient polynomial 
l  = l  + y(m)*P; %Lagrange polynomial (3.1.3) 

end

%do_lagranp.m
x = [-2 -1 1 2]; y = [ - 6 0 0 6 ] ;  % given data points
l  = lagranp(x,y) % find the Lagrange polynomial 
xx = [-2: 0.02 : 2]; yy = polyval(l,xx); %interpolate for [-2,2] 
e lf , p lot(xx,yy, 1b1, x,у , 1 * 1) %plot the graph
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Figure 3.1 The graph of a third-degree Lagrange polynomial.

We make the MATLAB program “do_lagranp.m” to use the routine 

“lagnanp()” for finding the third-degree polynomial l3(x) which matches the 

four given points

{(-2, -6 ),(-1 , 0),(1, 0),(2, 6)}

and to check if the graph of l3(x) really passes the four points. The results from 

running this program are depicted in Fig. 3.1.

>>do la g ra n p
1 = 1  0 - 1  0 % meaning l3(x) =  l - x 3 + 0 - x 2 — l - x + 0

3.2 INTERPOLATION BY NEWTON POLYNOMIAL

Although the Lagrange polynomial works pretty well for interpolation irrespec

tive of the interval widths between the data points along the x-axis, it requires 

restarting the whole computation with heavier burden as data points are appended. 

Differently from this, the N th-degree Newton polynomial matching the N + 1 

data points {(x0, y0), (xi , y-±),. . . ,  (xN, yN)} can be recursively obtained as the 

sum of the (N — i)th-degree Newton polynomial matching the N  data points 

{(x0, y0), (xi , yi ) , . . . ,  (xN—i , yN—i )} and one additional term.

nN(x) =  a0 + ai (x — x0) + a2(x — x0)(x — xi ) + ■■■

=  nN—i (x) + aN(x — x0)(x — xi ) ■■■ (x — xN—i ) with n0(x) =  a0

(3.2.1)

In order to derive a formula to find the successive coefficients {a0,a i , . . . ,  aN} 

that make this equation accommodate the data points, we will determine a0 and 

ai so that

n i (x) =  n0(x) + ai (x — x0) (3.2.2)



matches the first two data points (x0, y0) and (x1, y1). We need to solve the two 

equations

И1 (x0) =  a0 + a1 (x0 -  x0) =  y0 

n1(x1) =  a0 + a1(x1 -  x0) =  y1

to get

y1 -  a0 y1 - y0
ao =  Уо, a\ = ----- = ------ =  Dfo (3.2.3)

x1 - x0 x1 - x0

Starting from this first-degree Newton polynomial, we can proceed to the second- 

degree Newton polynomial

n2(x) =  n 1(x) + a2(x -  x0)(x -  x1) =  a0 + a1(x -  x0) + a2(x -  x0)(x -  x1)

(3.2.4)

which, with the same coefficients a0 and a1 as (3.2.3), still matches the first 

two data points (x0,y 0) and (x1,y 1), since the additional (third) term is zero 

at (x0, y0) and (x1, y1). This is to say that the additional polynomial term does 

not disturb the matching of previous existing data. Therefore, given the addi

tional matching condition for the third data point (x2, y2), we only have to 

solve

n2(x2) =  a0 + a1(x2 -  x0) + a2(x2 -  x0)(x2 -  x1) =  y2

1 2 0  INTERPOLATION AND CURVE FITTING

for only one more coefficient a2 to get

y1 - y0
/ \ У2 — Уо------- (-̂2 — X0)

y2 -  a0 -  ai(x2 -  Xo) J J Xl -  x0
0-2 — ----------------- =  ---------------------

(x2 -  x0)(x2 -  x1) (x2 -  x0)(x2 -  x1)

. У1 - У 0 , . ,
У2 - У 1 +У1 - У 0 ------- (X2 ~ Xi + Xi -  X0)

= ____________________ Xl -  Xp___________________

(x2 -  X0)(x2 -  Xl)

y2 - y1 y1 - y0

=  x2 - x i  X i - X Q  =  D f i - D f o  ^  d2  fo ( 3 2 5 )

x2 - x0 x2 - x0

Generalizing these results (3.2.3) and (3.2.5) yields the formula to get the N th 

coefficient aN of the Newton polynomial function (3.2.1) as

D N-1f 1 -  D n-1f 0 N
aN = ---- --------— =  D Nf 0 (3.2.6)

xN - x0

This is the divided difference, which can be obtained successively from the 

second row of Table 3.1.
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Table 3.1 Divided Difference Table

Xk Ук D f k D 2 f k D 3f k —

Xo Уо D f o  =  ^ ^ -
Х\ -  Xo

D 2 f 0 =  ° f l  ~  ° f0
Х2 -  Xo

, D 2 f \  -  D 2 f 0 
D 3 f 0 =  — -------- -

Хз -  Xo
—

X, У1 D f i  =  У 2 ~  Ух
Х2 ~  Xl

D 2f i  =  D ^2 ~  D ^
X3 — X\

—

X2 У2
Щ г = У Ъ ^ У 2 

Хз -  Х2
—

x 3 Уз —

function [n,DD] = newtonp(x,y)
%Input : x = [x0 x1 . . .  xN]
% y = [y0 y1 . . .  yN]
%Output: n = Newton polynomial coefficients of degree N
N = length(x)-1;
DD = zeros(N + 1,N + 1);
DD(1:N + 1,1) = y ';
for k = 2:N + 1

for m = 1: N + 2 - k %Divided Difference Table
DD(m,k) = (DD(m + 1,k - 1) - DD(m,k - 1))/(x(m + k - 1) x(m));

end
end
a = DD(1,:); %Eq.(3.2.6)
n = a(N+1); %Begin with Eq.(3.2.7)
for k = N:-1:1 %Eq.(3.2.7)

n = [n a(k)] - [0 n*x(k)]; %n(x)*(x - x(k - 1))+a_k - 1
end

Note that, as mentioned in Section 1.3, it is of better computational efficiency to 

write the Newton polynomial (3.2.1) in the nested multiplication form as

nN(x) =  ((••• (aN(x -  xN-1) + aN-1)(x -  xN-2) + •••) + a1)(X -  x0) + a0

(3.2.7)

and that the multiplication of two polynomials corresponds to the convolution 

of the coefficient vectors as mentioned in Section 1.1.6. We make the MATLAB 

routine “newtonp()” to compose the divided difference table like Table 3.1 and 

construct the Newton polynomial for a set of data points.

For example, suppose we are to find a Newton polynomial matching the fol

lowing data points

{(-2, -6), (-1, 0), (1, 0), (2, 6), (4, 60)}

From these data points, we construct the divided difference table as Table 3.2 

and then use this table together with Eq. (3.2.1) to get the Newton polynomial
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Table 3.2 Divided differences

Xk Ук Dfk D2f k D 3f k D4f k

- 2 —6 0 - (-6) 6 0 - 6 о 2 - ( - 2 )  t 1 -  1 o
- 1  -  ( -2) 1 -  ( -2) 2 - (-2) 4 -  ( -2)

- 1 0
0 - 0

=  0
l - ( - l )

6 - 0
=  2

2 -  ( -1)
7 - 2

=  1
4 — (—1)

1 0
6 - 0
-------  =  6
2 -  1

2 7 - 6
=  7

4 -  1

2 6
6 0 - 6

=  27
4 - 2

4 60

as follows:

n(x) =  yo + Dfo(x -  xo) + D 2fo(x -  xo)(x -  xi)

+ D^ fo(x — xo)(x — xi )(x — x2) + 0 

=  — 6 + 6(x — (—2)) — 2(x — (—2))(x — (—1))

+ i(x  — (—2))(x — (—i))(x — 1)

=  —6 + 6(x + 2) — 2(x + 2)(x + 1) + (x + 2)(x2 — 1)

=  x3 + (—2 + 2)x2 + (6 — 6 — i)x  — 6 + 12 — 4 — 2 =  x3 — x

We might begin with not necessarily the first data point, but, say, the third one 

(1,0), and proceed as follows to end up with the same result.

n(x) =  У2 + D f2 (x — x2) + D 2f 2 (x — x2)(x — x3)

+ D 3f 2(x — x2)(x — x3)(x — x4) + 0 

=  0 + 6(x — 1) + 7(x — 1)(x — 2) + 1 (x — 1 )(x — 2)(x — 4)

=  6(x — 1) + 7 (x2 — 3x + 2) + (x2 — 3x + 2)(x — 4)

=  x3 + (7 — 7)x2 + (6 — 21 + 14)x — 6 + 14 — 8 =  x3 — x

This process is cast into the MATLAB program “do_newtonp.m”, which illus

trates that the Newton polynomial (3.2.i) does not depend on the order of the 

data points; that is, changing the order of the data points does not make any 

difference.
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%do_newtonp.m
x = [-2 -1 1 2 4]; y = [-6 0 0 6 60]; 
n = newtonp(x,y) %l = lagranp(x,y) for comparison 
x = [-1 -2 1 2 4]; y = [ 0 -6 0 6 60];
n1 = newtonp(x,y) %with the order of data changed for comparison 
xx = [-2:0.02: 2]; yy = polyval(n,xx); 
c lf , p lo t(x x ,y y ,'b - ',x ,y ,'* ')

Now, let us see the interpolation problem from the viewpoint of approximation. 

For this purpose, suppose we are to approximate some function, say,

1
f ix )  =

1 + 8x2

by a polynomial. We first pick up some sample points on the graph of this 

function, such as listed below, and look for the polynomial functions n4(x), n8(x), 

and n i0(x) to match each of the three sets of points, respectively.

Xk -1 .0

О1 0 0.5 1.0

Ук 1/9 1/3 l 1/3 1/9

Xk -1 .0 -0 .75 1 О l/l -0 .2 5 0 0.25 0.5 0.75 1.0

Ук 1/9 2/11 1/3 2/3 1 2/3 1/3 2/11 1/9

Xk -1 .0 -0 .8 -0 .6 -0 .4 -0 .2 0 0.2 0.4 0.6 0.8 1.0

Ук 1/9 25/153 25/97 25/57 25/33 1 25/33 25/57 25/97 25/153 1/9

We made the MATLAB program “do_newtonp1.m” to do this job and plot the 

graphs of the polynomial functions together with the graph of the true function 

f(x )  and their error functions separately for comparison as depicted in Fig. 3.2, 

where the parts for n8(x) and n 10(x) are omitted to provide the readers with 

some room for practice.

%do_newtonp1.m - plot Fig.3.2
x = [-1 -0.5 0 0.5 1.0]; y = f31(x); 
n = newtonp(x,y)
xx = [-1:0.02: 1]; %the interval to look over 
yy = f31(xx); %graph of the true function
yy1 = polyval(n,xx); %graph of the approximate polynomial function 
subplot(221), p lo t(xx ,yy ,'k- ', x ,y , 'o ',  xx,yy1,'b ') 
subplot(222), plot(xx,yy1-yy,'r') %graph of the error function

function y = f31(x) 
y=1./(1+8*x.A2);
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0.5

0
-0.5 0 0.5 

n8(x): A
0.5

0.5 |-n-|o(x) - f(x)

0

- n8(x) - f(x)

(a) 4/8/10th -degree polynomial 
approximation

(b) The error between the approximating 
polynomial and the true function

Figure 3.2 Interpolation from the viewpoint of approximation.

Remark 3.1. Polynomial Wiggle and Runge Phenomenon. Here is one thing to 

note. Strangely, increasing the degree of polynomial contributes little to reducing 

the approximation error. Rather contrary to our usual expectation, it tends to make 

the oscillation strikingly large, which is called the polynomial wiggle and the error 

gets bigger in the parts close to both ends as can be seen in Fig. 3.2, which is 

called the Runge phenomenon. That is why polynomials of degree 5 or above are 

seldom used for the purpose of interpolation, unless they are sure to fit the data.

3.3 APPROXIMATION BY CHEBYSHEV POLYNOMIAL

At the end of the previous section, we considered a polynomial approximation 

problem of finding a polynomial close to a given (true) function f(x )  and have 

the freedom to pick up the target points {x0, x1, . . . ,  xN} in our own way. Once 

the target points have been fixed, it is nothing but an interpolation problem that 

can be solved by the Lagrange or Newton polynomial.

In this section, we will think about how to choose the target points for better 

approximation, rather than taking equidistant points along the x axis. Noting that 

the error tends to get bigger in the parts close to both ends of the interval when 

we chose the equidistant target points, it may be helpful to set the target points 

denser in the parts close to both ends than in the middle part. In this context, a 

possible choice is the projection (onto the x axis) of the equidistant points on the 

circle centered at the middle point of the interval along the x axis (see Fig. 3.3). 

That is, we can choose in the normalized interval [-1, +1]

xk =  cos
IN  + I- 2 k  

2(N + 1)
n  for k =  0 ,1 , . . . ,  N (3.3.1a)

and for an arbitrary interval [a,b],

for k =  0, 1 , . . . ,N  

(3.3.1b)
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which are referred to as the Chebyshev nodes. The approximating polynomial 

obtained on the basis of these Chebyshev nodes is called the Chebyshev polynomial. 

Let us try the Chebyshev nodes on approximating the function

1
f ix )  =

1 + 8x2

We can set the 5/9/11 Chebyshev nodes by Eq. (3.3.1) and get the Lagrange 

or Newton polynomials c4(x),c8(x), and c10(x) matching these target points, 

which are called the Chebyshev polynomial. We make the MATLAB program 

“do_lagnewch.m” to do this job and plot the graphs of the polynomial functions 

together with the graph of the true function f(x )  and their error functions sep

arately for comparison as depicted in Fig. 3.4. The parts for c8(x) and c10(x) 

are omitted to give the readers a chance to practice what they have learned in 

this section.

%do_lagnewch.m - plot Fig.3.4 
N = 4; k = [0:N];
x=cos((2*N + 1 - 2*k)*pi/2/(N + 1)); %Chebyshev nodes(Eq.(3.3.1)) 
y=f31(x);
c=newtonp(x,y) %Chebyshev polynomial
xx = [-1:0.02: 1]; %the interval to look over
yy = f31(xx); %graph of the true function
yy1 = polyval(c,xx); %graph of the approximate polynomial function 
subplot(221), p lo t(xx ,yy ,'k- ', x ,y , 'o ',  xx,yy1,'b') 
subplot(222), plot(xx,yy1-yy,'r') %graph of the error function

Comparing Fig. 3.4 with Fig. 3.2, we see that the maximum deviation of the 

Chebyshev polynomial from the true function is considerably less than that of
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(a) 4/8/10th -degree polynomial approximation (b) The error between the Chebyshev
approximating polynomial and the true function

Figure 3.4 Approximation using the Chebyshev polynomial.

Lagrange/Newton polynomial with equidistant nodes. It can also be seen that 

increasing the number of the Chebyshev nodes— or, equivalently, increasing 

the degree of Chebyshev polynomial— makes a substantial contribution towards 

reducing the approximation error.

There are several things to note about the Chebyshev polynomial.

Remark 3.2. Chebyshev Nodes and Chebyshev Coefficient Polynomials Tm(x)

1. The Chebyshev coefficient polynomial is defined as

TN+i(x ) =  cos((N + 1) cos-1 x ) for — 1 < x <+ 1  (3.3.2)

and the Chebyshev nodes defined by Eq. (3.3.1a) are actually zeros of this 

function:

TN+1(x') =  cos((N + 1) cos-1 x ) =  0, (N + 1) cos-1 x =  (2k + 1)n/2

2. Equation (3.3.2) can be written via the trigonometric formula in a recursive 

form as

TN+1(x) =  cos(cos—1 x + N  cos-1 x )

=  cos(cos-1 x ) cos(N cos-1 x ) -  sin(cos-1 x ) sin(N cos-1 x )

=  xT N{x ) + ^{cos((iV + 1) cos-1 x ) -  cos((N — 1) cos-1 x')}

, , 1 , 1 ,
=  x TN (x ) +  - jT N+i(x  ) — - 7w_i(x )

TN+1(x ) =  2xTN(x ) -  TN-1 (x ) for N  > 1 (3.3.3a)

T0(x ) =  cos0 =  1, T1(x/) =  cos(cos-1 x ) =  x (3.3.3b)

3. At the Chebyshev nodes xk defined by Eq. (3.3.1a), the set of Chebyshev 

coefficient polynomials

{T„(x'),T 1(x ) , . . . ,  Tn(x')}
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are orthogonal in the sense that

^2,Tm(x'k )Tn(xk) =  0 

N + 1

k=0

N

Y , T 2m (xk) =
k=0

N

Y,T02(xk) =  N  + 1

for m =  n 

for m  =  0 

for m =  0

(3.3.4a)

(3.3.4b)

(3.3.4c)

k=0

4. The Chebyshev coefficient polynomials TN+1(x ) for up to N =  6 are col

lected in Table 3.3, and their graphs are depicted in Fig. 3.5. As can be 

seen from the table or the graph, the Chebyshev coefficient polynomials of 

even/odd degree (N  +  1) are even/odd functions and have an equi-ripple 

characteristic with the range of [- 1 , +1], and the number of rising/falling 

(intervals) within the domain of [-1, +1]is N + 1.

We can make use of the orthogonality [Eq. (3.3.4)] of Chebyshev coefficient 

polynomials to derive the Chebyshev polynomial approximation formula.

f(x )  =  Cn (x ) =  ^  dmTm(x)

=0 b-i
(  a+b \

v ~ ~ )

(3.3.5)

(a) T> (x') = 1 (b) T (x') = x'

1 -1
(c) T2 (x') (d) T3 (x')

1 X \ 1
i\ ■ / \

/  \  / 0 \ /  \ fV/ , \J -1 \/, \l
1 -1

(e) T4 (x') (f) T5 (x')

Figure 3.5 Chebyshev polynomial functions.

N

2x

1
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To(x') =  1

Ti(x') =  x (x a variable normalized onto [-1, 1])

T2 (X') =  2x '2 - 1

T3(x') =  4x/3 - 3x

T4 (x') II 8 4 - 8x'2 + 1

T5 (x') =  16x 5 - 20x'3+ 5x‘

T6(x') =  32x '6 - 48x 4 + 18x 2 - 1

Tj(x') =  64x 7 - 112x 5 + 56x‘3 - 7x'

where

(3.3.6a)

,N

(3.3.6b)

N
1

do = N + N  + _ 
k=0 k=0

2 N  ,

dm =  д Г м  2 _ ^ f (Xk)Tm(xk)
+ k=0

N
2 ^  ^  л m (2N + 1 — 2k) f 1 o

= ----  > f (xt) cos-------------7Г for m =  1 ,2 ,. . .
iV + 1 ^  2(ЛГ + 1) ’ ’

function [c,x,y] = cheby(f,N,a,b)
%Input : f = function name on [a,b]
%Output: c = Newton polynomial coefficients of degree N
% (x,y) = Chebyshev nodes
i f  nargin ==2,  a = -1; b = 1; end

N]

О

=

theta = (2*N + 1 - 2*k)*pi/(2*N + 2);
xn = cos(theta); %Eq. (3.3.1a)
x = (b - a)/2*xn +(a + b)/2; %Eq. (3.3.1b)
y = feva l(f,x );
d(1) = y*ones(N + 1,1)/(N+1);
for m = 2: N + 1

cos_mth = cos((m-1)*theta);
d(m) = y*cos_mth'*2/(N + 1); %Eq. (3.3.6b)

end
xn = [2 -(a + b)]/(b - a); %the inverse of (3.3.1b)
T0 = 1; T1 = xn; %Eq. (3.3.3b)
c = d(1)*[0 T_0] +d(2)*T_1; %Eq. (3.3.5)
for m = 3: N + 1

_1T=pmt

T_1 = 2*conv(xn,T_1) -[0 0 T_0]; %Eq. (3.3.3a)
T_0 = tmp;
c = [0 c] + d(m)*T_1; %Eq. (3.3.5)

end
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We can apply this formula to get the polynomial approximation directly for 

a given function f(x ), without having to resort to the Lagrange or Newton 

polynomial. Given a function, the degree of the approximate polynomial, and the 

left/right boundary points of the interval, the above MATLAB routine “cheby()” 

uses this formula to make the Chebyshev polynomial approximation.

The following example illustrates that this formula gives the same approximate 

polynomial function as could be obtained by applying the Newton polynomial 

with the Chebyshev nodes.

Example 3.1. Approximation by Chebyshev Polynomial. Consider the problem 

of finding the second-degree (N =  2) polynomial to approximate the function 

f(x )  =  1/(1 + 8x2). We make the following program “do_cheby.m”, which uses 

the MATLAB routine “cheby() ” for this job and uses Lagrange/Newton polyno

mial with the Chebyshev nodes to do the same job. Readers can run this program 

to check if the results are the same.

%do_cheby.m 
N = 2; a = -2; b = 2;
[c,x1,y1] = cheby('f31',N,a,b) %Chebyshev polynomial ftn 
%for comparison with Lagrange/Newton polynomial ftn
k = [0:N]; xn = cos((2*N + 1 - 2*k)*pi/2/(N + 1));%Eq.(3.3.1a):Chebyshev nodes
x = ((b-a)*xn +a + b)/2; %Eq.(3.3.1b) 
y = f31(x); n = newtonp(x,y), l  = lagranp(x,y)

>>do_cheby
c = -0.3200 -0.0000 1.0000

3.4 PADE APPROXIMATION BY RATIONAL FUNCTION

Pade approximation tries to approximate a function f(x )  around a point xo by a 

rational function

o Qm (x -  xo)
pMN(x - x ° )  =  ^ - ----- - with M  =  N  or M  =  N  + 1

D N(x -  xo)

_  <?o + qi(x -  x°) + q2(x -  x°)2 H---- 1- qM(x -  x°)M

1 + d\(x — x°) + d2(x — x°)2 + • • • + dff(x — x°)N

(3.4.1)

where f ( x o), f !(xo), f (2)(xo) , . . . ,  f (M+N)(xo) are known.

How do we find such a rational function? We write the Taylor series expansion 

of f(x )  up to degree M  + N  at x =  xo as
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f(x ) *  Tm +n (x -  xo) =  f ( x o) + f  (xo)(x — xo)

f(2)(xo) f(M+N)(xo)
+ L J ^ 1 (X _  x°)2 + . . . + I -----Ш  (x _  xof+ N

2 (M  + N)!

— 0-0 + a 1(x — xo) + a.2 (x — xo) + ■■■ + Om+n(x — xo)
o\M+N (3.4.2)

Assuming xo =  0 for simplicity, we get the coefficients of D N(x) and QM(x) 

such that

rr , , Qm(x) n 
Tm +n (x ) —  — 0 

Dn(x)

(00 + 01 x + • • •+ ам+nxM+N)(1 + d1x + • • •+ dNxN)

______________~(go + Ч\х H---+ 4mXM)_______________ _  q

1 + d1 x + d2x2 + ■■■+ dNxN

(00 + a1x + • • •+ ам+nxM+N)(1 + d1x + • • •+ dNxN)

=  q0 + q1x +---- + qMxM (3.4.3)

by solving the following equations:

a0 =  q0

a1 + a0d1 =  q1

a2 + a1 d1 + a0d2 =  q2

aM + aM—1d1 + ам—2d2 + aM—NdN =  qM

Om +1 + aMd1 + Om —1d2 ■ ■ + ам—N+1dN = 0

Om +2 + aM+1d1 + 0Md2 ■ ■ + ам—N+2dN = 0

aM+N + aM+N—1d1 + aM+N—2d2 ■■ ■ + OMdN = 0

(3.4.4b)

Here, we must first solve Eq. (3.4.4b) for d1, d2, . . . , d N and then substitute dt ’s 

into Eq. (3.4.4a) to obtain q0,q 1, . . .  ,qM.

The MATLAB routine “padeap()” implements this scheme to find the coef

ficient vectors of the numerator/denominator polynomial QM(x)/DN(x) of the 

Pade approximation for a given function f(x ). Note the following things:

• The derivatives f !(xo), f (2)(xo) , . . . ,  f (M+N)(xo) up to order (M  + N ) are 

computed numerically by using the routine “d ifap x ()”, that will be intro

duced in Section 5.3.

• In order to compute the values of the Pade approximate function, we substi

tute (x — xo) for x in pM,N(x) which has been obtained with the assumption 

that xo =  0.
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function [num,den] = padeap(f,xo,M,N,x0,xf)
%Input : f = function to be approximated around in [xo, xf]
%Output: num = numerator coeffs of Pade approximation of degree M 
% den = denominator coeffs of Pade approximation of degree N
a(1) = feval(f,xo); 
h = .01; tmp = 1; 
for i  = 1:M + N

tmp = tmp*i*h; %i!h~i
dix = difapx(i,[-i i])*feval(f,xo+[-i:i]*h)'; %derivative(Section 5.3) 
a (i + 1) = dix/tmp; %Taylor series coefficient

end
for m = 1:N

n = 1:N; A(m,n) = a(M + 1 + m - n); 
b(m) = -a(M + 1 + m);

end
d = A\b'; %Eq.(3.4.4b) 
for m = 1: M + 1

mm = min(m - 1,N);
q(m) = a(m:-1:m - mm)*[1; d(1:mm)]; %Eq.(3.4.4a)

end
num = q(M + 1:-1:1)/d(N); den = [d(N:-1:1)' 1]/d(N); %descending order 
i f  nargout == 0 % plot the true ftn, Pade ftn and Taylor expansion 

i f  nargin <6 , x0 = xo - 1; xf = xo + 1; end
x = x0+[xf-x0]/100*[0:100]; yt = feval(f,x); 
x1 = x-xo; yp = polyval(num,x1)./polyval(den,x1); 
yT = polyval(a(M + N + 1:-1:1),x1); 
c lf, p lo t(x ,y t,'k ', x ,yp ,'r ', x,yT,'b')

end

Example 3.2. Pade Approximation for f(x )  =  ex. Let’s find the Pade approx

imation p 3,2(x) =  Q3(x)/D2(x) for f(x )  =  ex around xo =  0. We make the 

MATLAB program “do_pade.m”, which uses the routine “padeap()” for this 

job and uses it again with no output argument to see the graphic results as 

depicted in Fig. 3.6.

>>do_pade %Pade approximation
n = 0.3333 2.9996 11.9994 19.9988 
d = 1.0000 -7.9997 19.9988

%do_pade.m to get the Pade approximation for f(x) = eAx 
f1 = in lin e ( 'e x p (x ) ', 'x ') ;
M = 3; N = 2; %the degrees of Numerator Q(x) and Denominator D(x) 
xo = 0; %the center of Taylor series expansion 
[n,d] = padeap(f1,xo,M,N) %to get the coefficients of Q(x)/P(x) 
x0 = -3.5; xf = 0.5; % left/right boundary of the interval 
padeap(f1,xo,M,N,x0,xf) %to see the graphic results

To confirm and support this result from the analytical point of view and to help 

the readers understand the internal mechanism, we perform the hand-calculation
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Figure 3.6 Pade approximation and Taylor series expansion for f(x) = e*(Example 3.2.).

procedure. First, we write the Taylor series expansion at x =  0 up to degree 

M  + N  =  5 for the given function f(x ) =  ex as

^  f (k)(x) k 1 2 1 3 1 4 1 5
Ty(x) =  , ■ x = l + x  + -x2 + —X3 + —X4 + —X5

k=0

whose coefficients are

k! 2 3! 4! 5!

(E3.2.1)

an =  l ,  щ =  1, a.2 =  —, fih =  ал =  — , a< = ---, . . .  (E3.2.2)
о , i  ’ 2 2 6 24 120

We put this into Eq. (3.4.4b) with M  =  3, N  =  2 and solve it for dt’s to get

D 2(x) =  1 + d1x + d2x2.

04 + a3d1 + 02 d2 — 0 

03 + a2d1 + 01 d2 =  0

■ 1 /6 1/ 2 ' d 1 —1/24 d 1 —2/5

1/24 1 /6  _ d 2 . —1/ 1 2 0 . ’ d 2 a 1 /20

(E3.2.3)

Substituting this to Eq. (3.4.4a) yields

q0 =  a0 =  1

q1 =  01 + a0d1 =  1 + 1 x (—2/5) =  3/5

q2 =  02 + a^ 1  + a0d2 =  1 / 2  + 1 x (—2 / 5) + 1 x (1 / 20 ) =  3/2 0

q3 =  03 + a2d1 + a ^ 2  =  1 /6  + (1/ 2 ) x (—2 / 5) + 1 x (1/ 20 ) =  1/60

(E3.2.4)
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With these coefficients, we write the Pade approximate function as

Q3(x) 1 + (3/5)x + (3/20)x2 + (1/60)x3
Ръ l ix )  — — ^
F J D 2(x ) 1 + (-2/5)x + (1/20)x2

(l/3 )x3 + 3x2 + 12* + 20
(E3.2.5)

x2 -  8x + 20

3.5 INTERPOLATION BY CUBIC SPLINE

If we use the Lagrange/Newton polynomial to interpolate a given set of N  + 1 

data points, the polynomial is usually of degree N  and so has N  -  1 local extrema 

(maxima/minima). Thus, it will show a wild swing/oscillation (called ‘polynomial 

wiggle’), particularly near the ends of the whole interval as the number of data 

points increases and so the degree of the polynomial gets higher, as illustrated 

in Fig. 3.2. Then, how about a piecewise-linear approach, like assigning the 

individual approximate polynomial to every subinterval between data points? 

How about just a linear interpolation— that is, connecting the data points by 

a straight line? It is so simple, but too short of smoothness. Even with the 

second-degree polynomial, the piecewise-quadratic curve is not smooth enough 

to please our eyes, since the second-order derivatives of quadratic polynomials 

for adjacent subintervals can’t be made to conform with each other. In real 

life, there are many cases where the continuity of second-order derivatives is 

desirable. For example, it is very important to ensure the smoothness up to order 2 

for interpolation needed in CAD (computer-aided design)/CAM (computer-aided 

manufacturing), computer graphic, and robot path/trajectory planning. That’s why 

we often resort to the piecewise-cubic curve constructed by the individual third- 

degree polynomials assigned to each subinterval, which is called the cubic spline 

interpolation. (A spline is a kind of template that architects use to draw a smooth 

curve between two points.)

For a given set of data points {(xk, yk),k  =  0 : N }, the cubic spline s(x) 

consists of N  cubic polynomial sk(x)’s assigned to each subinterval satisfying 

the following constraints (S0)-(S4).

(50) s(x) =  sk(x) =  Sk,3 (x -  xk)3 + Sk,2 (x -  xk)2 + Sk,1(x -  xk) + Sk,0 

for x e [xk, xk+1], k =  0 : N

(51) sk(xk) =  Sk,0 =  yk for k =  0 : N

(52) sk-1(xk) =  sk(xk) =  Sk,0 =  yk for k =  1 : N  -  1

(53) s'k_ 1(xk) =  sk(xk) =  Sk, 1 for k =  1 : N  -  1

(54) s"_1(xk) =  s"(xk) =  2Sk,2 for k =  1 : N  -  1

These constraints (S1)-(S4) amount to a set of N  + 1 + 3(N  -  1) =  4N -  2 

linear equations having 4N  coefficients of the N  cubic polynomials

{Sk,0,Sk,1,Sk,2,Sk,3,k =  0 : N  -  1}
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Table 3.4 Boundary Conditions for a Cubic Spline

(i) First-order derivatives s0(x0) =  S0,1, s!N(xN) =  SN,1 

specified

(ii) Second-order s!̂ (x0) =  2S0,2,s'N(xN) =  2SN,2 

derivatives specified

(end-curvature adjusted)

(iii) Second-order derivatives s[{(xo) =  s'{(x\) H— — (s"(jci) — 

extrapolated h1 h

s ' n(Xn ) =  s 'x _ jCtjV-l) +  (s^_i(*JV-l) -  s 'n- 2 (x N - 2 ))
hN—2

as their unknowns. Two additional equations necessary for the equations to be 

solvable are supposed to come from the boundary conditions for the first/second

order derivatives at the end points (x0, y0) and (xN,y N) as listed in Table 3.4.

Now, noting from (S1) that Sk 0 =  yk, we will arrange the constraints (S2)-(S4) 

and eliminate Sk,1, Sk,3’s to set up a set of equations with respect to the N + 1 

unknowns {Sk 2, k =  0 : N }. In order to do so, we denote each interval width by 

hk =  xk+1 — xk and substitute (S0) into (S4) to write

sk(xk+1) =  6Sk,3hk + 2Sk,2 =  4+1 (xk+1) =  2Sk+1,2

4 A - 5 f c u - ^  <3'5'la)

1
=  j ( S | . 2  -  S i - , . 2 )  ( 3 . 5 . 1 b )

We substitute these equations into (S2) with k + 1 in place of k

sk(xk+1) =  Sk,3(xk+1 — xk)3 + Sk,2(xk+1 — xk)2 + Sk,1(xk+1 — xk) + Sk,0 =  yk+1

Sk,3h1 + Sk,2hk + Sk,1hk + yk =  yk+1

to eliminate Sk,3's and rewrite it as

hk yk 1 yk 
-f(Sk+1,2 -  Sk,2) + Sk,2hk + Skд =  n+1 П  =  dyk
3 hk

hk(Sk+1,2 + 2Sk,2) + 3Sk,1 =  3 dyk (3..5.2a)

hk—1(Sk,2 + 2Sk—1,2) + 3Sk—1,1 =  3 dyk—1 (3.5.2b)

We also substitute Eq. (3.5.1b) into (S3)

s'k—1(xk) =  3Sk—1,3h2—1 + 2Sk—1,2hk—1 + Sk—1,1 =  s'k (xk) =  Sk,1



to write

Sk,1 -  Sk-1,1 =  hk-1(Sk,2 -  Sk-1,2) + 2hk-1Sk-1,2 =  hk-1 (Sk,2 + Sk-1,2)

(3.5.3)

In order to use this for eliminating Sk1 from Eq. (3.5.2), we subtract (3.5.2b) 

from (3.5.2a) to write

hk(Sk+1,2 + 2Sk,2) -  hk-1 (Sk,2 + 2Sk-1,2) + 3(Sk,1 -  Sk-1,1) =  3(dyk -  dyk-1) 

and then substitute Eq. (3.5.3) into this to write

hk(Sk+1,2 + 2Sk,2) -  hk-1 (Sk,2 + 2Sk-1,2) + 3hk-1(Sk,2 + Sk-1,2)

=  3(dyk -  dyk-1)

hk-1 Sk-1,2 + 2(hk-1 + hk)Sk,2 + hkSk+1,2 =  3(dyk -  dyk-1) (3.5.4) 

for k =  1 : N  -  1

Since these are N  -  1 equations with respect to N  + 1 unknowns {Sk 2, k =  0 : 

N }, we need two more equations from the boundary conditions to be given as 

listed in Table 3.4.

How do we convert the boundary condition into equations? In the case where 

the first-order derivatives on the two boundary points are given as (i) in Table 3.4, 

we write Eq. (3.5.2a) for k =  0 as

h0(S1,2 + 2S0,2) + 3S0,1 =  3 dУ0, 2h0S0,2 + h0S1,2 =  3(dy0 -  S0,1)
(3.5.5a)

We also write Eq. (3.5.2b) for k =  N  as

hN-1 (Sn,2 + 2Sn-1,2) + 3Sn-1,1 =  3 dyN-1 

and substitute (3.5.3)(k =  N ) into this to write

hN-1 (SN,2 + 2SN-1,2) + 3SN,1 -  3hN-1 (SN,2 + SN-1,2) =  3 dyN-1

hN-1SN-1,2 + 2hN-1 SN,2 =  3(SN, 1 -  dyN-1) (3.5.5b)

Equations (3.5.5a) and (3.5.5b) are two additional equations that we need to solve 

Eq. (3.5.4) and that’s it. In the case where the second-order derivatives on the 

two boundary points are given as (ii) in Table 3.4, S0 2 and SN 2 are directly 

known from the boundary conditions as

S0,2 =  s'^(x0) /2 , Sn,2 =  s'N (xn)/2 (3.5.6)

INTERPOLATION BY CUBIC SPLINE 1 3 5
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and, subsequently, we have just N — 1 unknowns. In the case where the second- 

order derivatives on the two boundary points are given as (iii) in Table 3.4

s"(x0) =  s"(xi) +  ^ ( s ' K x i) -  4 (X 2 ))  
hi

Sn (xn ) =  s'x_i(xjv-l) + -  Sh_2(xn_2))
hN-2

we can instantly convert these into two equations with respect to So,2 and SN,2 as

hiSo,2 -  (ho + h i)S i ,2 + hoS2,2 =  0 (3.5.7a)

hN-2SN,2 -  (hN-1 + hN-2)SN-1,2 + hN-1SN-2,2 =  0 (3.5.7b)

Finally, we combine the two equations (3.5.5a) and (3.5.5b) with Eq. (3.5.4) 

to write it in the matrix-vector form as

2ho ho o • • So,2

ho 2(ho + h 1) h1 • • S1,2
o • • • o •

• • hN-2 2(hN-2 + hN-1) hN-1 SN-1,2
• • o hN-1 2hN-1 _ _ Sn,2 _

3(dyo -  So,1) 

3(dy1 -  dyo)
•

3(dyN-1 -  dyN-2) 

3(SN,1 -  dyN-1)

(3.5.8)

After solving this system of equation for {Sk,2, k =  o : N }, we substitute them 

into (S1), (3.5.2), and (3.5.1) to get the other coefficients of the cubic spline as

(S1) (3.5.2) hk ,„  , ч e (3.5.1) Sk+1,2 -  Sk,2 m
Sk,o =  yk, Sk,i =  dyk -  — (Sk+h2 +2Ska), sk,3 =  --- —----  (3.5.9)

3 3hk

The MATLAB routine “c sp lin e ()” constructs Eq.(3.5.8), solves it to get the 

cubic spline coefficients for given x, y coordinates of the data points and the 

boundary conditions, uses the mkpp() routine to get the piecewise polynomial 

expression, and then uses the ppval() routine to obtain the value(s) of the piece

wise polynomial function for x i— that is, the interpolation over xi. The type of 

the boundary condition is supposed to be specified by the third input argument 

KC. In the case where the boundary condition is given as (i)/(ii) in Table 3.4, 

the input argument KC should be set to 1/2 and the fourth and fifth input argu

ments must be the first/second derivatives at the end points. In the case where 

the boundary condition is given as extrapolated like (iii) in Table 3.4, the input 

argument KC should be set to 3 and the fourth and fifth input arguments do not 

need to be fed.
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function [yi,S] = cspline(x,y,xi,KC,dy0,dyN)
%This function finds the cubic splines for the input data points (x,y) 
%Input: x = [x0 xl ... xN], y = [y0 y1 ... yN], xi=interpolation points 
% KC = 1/2 for 1st/2nd derivatives on boundary specified
% KC = 3 for 2nd derivative on boundary extrapolated
% dy0 = S'(x0) = S01: in it ia l derivative
% dyN = S'(xN) = SN1: final derivative
%Output: S(n,k); n = 1:N, k = 1,4 in descending order 
if  nargin < 6, dyN = 0; end, if  nargin < 5, dy0 = 0; end 
if  nargin <4, KC = 0; end 
N = length(x) - 1;
% constructs a set of equations w.r.t. {S(n,2), n = 1:N + 1}
A = zeros(N + 1,N + 1); b = zeros(N + 1,1);
S = zeros(N +1,4); % Cubic spline coefficient matrix 
k = 1:N; h(k) = x(k + 1) - x(k); dy(k) = (y(k + 1) - y(k))/h(k);
% Boundary condition 
if  KC <= 1 %1st derivatives specified 

A(1,1:2) = [2*h(1) h(1)]; b(1) = 3*(dy(1) - dy0); %Eq.(3.5.5a)
A(N + 1,N:N + 1) = [h(N) 2*h(N)]; b(N + 1) = 3*(dyN - dy(N));%Eq.(3.5.5b) 

elseif KC == 2 %2nd derivatives specified
A(1,1) = 2; b(1) = dy0; A(N + 1,N+1) = 2; b(N + 1) = dyN; %Eq.(3.5.6) 

else %2nd derivatives extrapolated 
A(1,1:3) = [h(2) - h(1) - h(2) h(1)]; %Eq.(3.5.7)
A(N + 1,N-1:N + 1) = [h(N) - h(N)-h(N - 1) h(N - 1)]; 

end
for m = 2:N %Eq.(3.5.8)

A(m,m - 1:m + 1) = [h(m - 1) 2*(h(m - 1) + h(m)) h(m)]; 
b(m) = 3*(dy(m) - dy(m - 1)); 

end
S(:,3) = A\b;
% Cubic spline coefficients 
for m = 1 : N

S(m,4) = (S(m+1,3)-S(m,3))/3/h(m); %Eq.(3.5.9)
S(m,2) = dy(m) -h(m)/3*(S(m + 1,3)+2*S(m,3));
S(m,1) = y(m); 

end
S = S(1:N, 4:-1:1); %descending order
pp = mkpp(x,S); %make piecewise polynomial
yi = ppval(pp,xi); %values of piecewise polynomial ftn

(cf) See Problem 1.11 for the usages of the MATLAB routines mkpp() and ppval().

Example 3.3. Cubic Spline. Consider the problem of finding the cubic spline 

interpolation for the N  + 1 =  4 data points

{(0, 0),(1, 1),(2 ,4),(3 , 5)} (E3.3.1)

subject to the boundary condition

s0 (x0) =  s0 (0) =  S0,1 =  2, sN (xn ) =  *3(3) =  h3,1 =  2 (E3.3.2)

With the subinterval widths on the x-axis and the first divided differences as

h0 =  h 1 =  h2 =  h3 =  1
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, y1 — уо 1 , y2 — y1 ~ , y3 — y2 ,  , 4
« y0 =  — ---- =  1, dy i =  — ---- =  3, dy 2 =  --;--- =  1 (ЬЗ.З.З)

hi

we write Eq. (3.5.8) as
2 1 о о Го,2

1

-о3(

1

т1
1 4 1 о

2, 
2,

)0

-

£
3( 6

о 1 4 1 Г2,2 3(dy2 -  dy1) 6-

о о 1 2 1 Г 2 1 1

1 
y1 
d

-
3,3(1 1

3
1

(E3.3.4)

Then we solve this equation to get

Го,2 =  -3, Г1,2 =  3, Г2,2 =  -3, Г3,2 =  3 

and substitute this into Eq. (3.5.9) to obtain

Го,о =  0, П,о =  1, Г2,о =  4

50.1 =  dyo — з”^ 1’2 2lV 2) =  1 — з ^  ^ x ^  =  ^

h1 1
51.1 =  dyi -  у  (S2,2 + 2Sh l) =  3 -  -(-3 + 2 x 3) =  2

h2 1 
^2,1 =  dy2 --3~^3’2 2^2.2) =  1 — ^  =  ^

^1,2 — ^0,2 3 — ( — 3)
^0,3 =  -- ~---- =  ---1---  =  Z.

Г1,3 =

3hо 3

Г2,2 -  S1,2 -3 -  3

3h1 3
=  -2

c *$3,2 — $2,2 3 — ( — 3)
Oo a — ---------  — --------  — Z

' 3 h9 3

(E3.3.5)

(E3.3.6)

(E3.3.7a)

(E3.3.7b)

(E3.3.7c)

(E3.3.8a)

(E3.3.8b)

(E3.3.8c)

о 2

%do_csplines.m
KC = 1; dy0 = 2; dyN = 2; % with specified 1st derivatives on boundary
x = [0 1 2 3]; y = [0 1 4 5];
xi = x(1)+[0:200]*(x(end)-x(1))/200; %intermediate points
[yi,S] = cspline(x,y,xi,KC,dy0,dyN); S %cubic spline interpolation 
clf, p lot(x,y ,'ko ',x i,y i,'k :')
yi = spline(x,[dy0 y dyN],xi); %for comparison with MATLAB built-in ftn 
hold on, pause, p lo t(x ,y ,'ro ',x i,y i,'r :')
yi = spline(x,y,xi); %for comparison with MATLAB built-in ftn 
pause, p lot(x,y,'bo',x i,yi,'b ')
KC = 3; [yi,S] = cspline(x,y,xi,KC);%with the 2nd derivatives extrapolated 
pause, plot(x,y ,'ko ',x i,y i,'k ')
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Finally, we can write the cubic spline equations collectively from (So) as

•^oW =  So,3(x -  xo)3 + So,2(x -  xo)2 + So,1(x -  xo) + So,o 

=  2x3 — 3x2 + 2x + o

s1(x) =  S1,3(x -  x1)3 + S1,2(x -  x1)2 + S1,1(x -  x1) + S1,o 

=  —2(x -  1)3 + 3(x -  1)2 + 2(x -  1) + 1 

s2(x) =  S2,3(x -  x2)3 + S2,2(x -  x2)2 + S2,1 (x -  x2) + S2,o

=  2(x -  2)3 -  3(x -  2)2 + 2(x -  1) + 4

We make and run the program “do_csplines.m”, which uses the routine 

“c sp lin e ()” to compute the cubic spline coefficients {Sk 3, Sk 2, Sk,1, Sk,o,k  =

o : N  -  1} and obtain the value(s) of the cubic spline function for x i (i.e., the 

interpolation over xi) and then plots the result as depicted in Fig. 3.7. We also 

compare this result with that obtained by using the MATLAB built-in function 

“s p lin e (x ,y ,x i)”, which works with the boundary condition of type (i) for the 

second input argument given as [dy0 y dyN], and with the boundary condition 

of type (iii) for the same lengths of x and y.

>>do_csplines %cubic spline
S = 2.0000 -3.0000 2.0000 0

-2.0000 3.0000 2.0000 1.0000 
2.0000 -3.0000 2.0000 4.0000

3.6 HERMITE INTERPOLATING POLYNOMIAL

In some cases, we need to find the polynomial function that not only passes 

through the given points, but also has the specified derivatives at every data 

point. We call such a polynomial the Hermite interpolating polynomial or the 

osculating polynomial.



For simplicity, we consider a third-order polynomial

h(x) =  H3x3 + H2x2 + H1x + Ho (3.6.1)

matching just two points (xo, yo), (x1, y1) and having the specified first derivatives 

^o, y1 at the points. We can obtain the four coefficients H3,H 2,H 1, Ho by solving

h(xo) =  H3xo + H2x'2 + H1 xo + Ho =  yo 

h(x1) =  H3x3 + H2x\ + H1 x1 + Ho =  У1

2 , (3.6.2)
h (xo) =  3H3xo + 2 H2xo + H1 =  yo

h!(xx) =  3H3x? + 2 H2x1 + H1 =  y1

As an alternative, we approximate the specified derivatives at the data points by 

their differences

, h(xo + e) -  h(xo) У2 -  yo , h(x{) -  h(x1 -  е) У1 -  У3

Уо = --------------= ------ . У1 = -------------- = ------
е е е е

(3.6.3)

and find the Lagrange/Newton polynomial matching the four points

(xo, yo), (x2 =  xo + e, y2 =  yo + yoe), (x3 =  x1 -  e,y3 =  y1 -  y1 e), (x1, y1)

(3.6.4)

The MATLAB routine “herm it()” constructs Eq. (3.6.2) and solves it to get 

the Hermite interpolating polynomial coefficients for a single interval given the 

two end points and the derivatives at them as the input arguments. The next 

routine “herm its()” uses “herm it()” to get the Hermite coefficients for a set 

of multiple subintervals.
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function H = hermit(x0,y0,dy0,x1,y1,dy1)
A = [x0~3 x0~2 x0 1; x1"3 x1"2 xl 1;

3*x0~2 2*x0 1 0; 3*x1"2 2*x1 1 0]; 
b = [y0 y1 dy0 dy1]'; %Eq.(3.6-2)
H = (A\b)';

function H = hermits(x,y,dy)
% finds Hermite interpolating polynomials for multiple subintervals 
%Input : [x,y],dy - points and derivatives at the points 
%Output: H = coefficients of cubic Hermite interpolating polynomials 
for n = 1:length(x)-1

H(n,:) = hermit(0,y(n),dy(n),x(n + 1)-x(n),y(n + 1),dy(n + 1));
end

Example 3.4. Hermite Interpolating Polynomial. Consider the problem of find

ing the polynomial interpolation for the N  + 1 =  4 data points

{(o, o ),(1 ,1 ),(2 ,4 ),(3 , 5)} (E3.4.1)
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subject to the conditions

h'0(x0) =  h0 (0) =  2, h id )  =  0, h2(2) =  0, h'N(xN) =  *3(3) =  2

(E3.4.2)

For this problem, we only have to type the following statements in the MAT

LAB command window.

>>x = [0 1 2 3]; y =  [0 1 4 5]; dy= [2 0 0 2]; xi = [0:0.01:3];
>>H = hermits(x,y,dy); yi = ppval(mkpp(x,H), x i);

3.7 TWO-DIMENSIONAL INTERPOLATION

In this section we deal with only the simplest way of two-dimensional 

interpolation— that is, a generalization of piecewise linear interpolation called

x1 x2 x3 y1 y1 y1

x1 x2 x3 y2 y2 y2

x1 x2 x3 y3 y3 y3

(x1, y1) (x2, y1) (x3, y1)

(x1, y2) (x2, y2) (x3, y2)

x  y3) (x2, y3) (x3, y3)

X Y
x = [Х1 X2 X3] y = [У1 У2 У3]

Zi = interp2 (X, Y, Z, Xi, Yi) 
or interp2 (x, y, Z, Xi, Yi)

-►Zi

(X, Y)
[X, Y] = meshgrid (x, y)

z1, 1 z1, 2 z1, 3

z2, 1 z2, 2 z2, 3

z3, 1 z3, 2 z3, 3

z1, 1 z1i, 2 z1i, 3 z1, 4 z1i, 5

z2, 1
i

z2, 2
i

z2, 3 z2, 4 z2i, 5

z3, 1 z3, 2 z3, 3 z3, 4 z3, 5

z4, 1 z4, 2 z4, 3 z4, 4 z4, 5

z5, 1 z5, 2 z5, 3 z5, 4 z5, 5

xi = [X1 X2 X3 x4 x5] yi = [У1 У2 У3 y4 У5] 
Xi Yi

[Xi, Yi] =meshgrid (xi, yi) 
(Xi, Yi)

Z

xi x2 x3 x4 x5 y1i y1i y1i y1i y1i (x1, yi) (xi, У1) (x3, У1) (x!, у1) (xi, У1)

xi x2 x3 x4 x5 y2i y2i y2i y2i y2i (x1, y2) (x2, y) y2) (x!, yi) (x5, yi)

xi x2 x3 x4 x5 y3i y3i y3 y3i y3i (x1, yi) (x2, у) (x3, y) (x!, у3) (x5, y)

xi x2 x3 x4 x5 y4i y4i y4i y4i y4i (x1, у!1) (xi, у!) (x3, у!) (x!, у!) (xi, у!)

xi x2 x3 x4 x5 y5i y5i y5i y5i y5i (x1, У5) (x2, y) (x3, y) (x!, у5) (x5, y5)

Figure 3.8 A two-dimensional interpolation using Zi = interp2() on the grid points 
[Xi,Yi] generated by the meshgrid() command.



the bilinear interpolation. The bilinear interpolation for a point (x, y) on the rect

angular sub-region having (Xm_ 1, y„_i) and (xm, yn) as its left-upper/right-lower 

corner points is described by the following formula.

xm -  x x -  xm i 
z(x, yn-1) =  -- ----- Zrn-\,n-\ Л--------- Zrn,n-1 (3.7.1a)

xm -  xm-i xm -  xm-i

xm -  x x -  xm i 
z(x, yn) =  — ----- Zm-\,n H--------- zm,n (3.7.1b)

xm -  xm-i xm -  xm-i

yn -  y y -  yn-i
z(x, y) = ------- z(x, Уп-l) H---------z(x, yn)

yn -  yn-i yn -  yn-i

1
=  7-------- -------- ~{(xm -  x)(yn -  y)zm-l,n-l

(Xm _  Xm_1 )(Уп _  Уп-l)

+ (X _  Хт_1)(Уп _  y)Zm,n_1 + (Xm _  X)(y _  yn_l)Zm_1,n 

+ (X _  Xm_1)(y _  yn_1)Zm,n} for Xm_1 < X < Xm, Уп_1 < y < Уп

(3.7.2)
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function Zi = in trp2 (x ,y ,Z ,x i,y i)
%To interpolate Z(x,y) on (x i,y i)
M = length(x); N = length(y);
Mi = length(x i); Ni = length(yi);
for mi = 1:Mi
for ni = 1:Ni
for m = 2:M
for n = 2:N

breakl = 0;
i f  xi(mi) <= x(m) & y i(n i) <= y(n)

tmp = (x(m)-xi(m i))*(y(n)-yi(ni) )*Z(n - 1,m - 1). . .
+(xi(mi) - x(m-1))*(y(n) - y i(n i) )*Z(n - 1 ,m). . .
+(x(m) - x i(m i))* (y i(n i) - y(n - 1) )*Z(n,m - 1) . . .
+(xi(m) - x(m-1))*(yi(ni) - y(n-1 ) )*Z(n,m);

Z i(n i,m i) = tmp/(x(m) - x(m-1))/(y(n) - У(п-1)); %Eq.(3.7.2)
break1 = 1;

end
i f  break1 > 0 break, end

end
i f  break1 > 0 break, end

end
end

end

This formula is cast into the MATLAB routine “in trp 2 ()”, which is so named 

in order to distinguish it from the MATLAB built-in routine “ in te rp2 ()”. Note 

that in reference to Fig. 3.8, the given values of data at grid points (x(m ),y(n)) 

and the interpolated values for intermediate points (x i(m ),y i(n )) are stored in 

Z(n,m) and Z i(n ,m ), respectively.
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%do_interp2.m
% 2-dimensional interpolation for Ex 3.5
xi = -2:0.1:2; yi = -2:0.1:2;
[Xi,Yi] = meshgrid(xi,yi);
Z0 = X i."2 + Y i."2; %(E3.5.1) 
subplot(131), mesh(Xi,Yi,Z0)
x = -2:0.5:2; y = -2:0.5:2;
[X,Y] = meshgrid(x,y);
Z = X."2 + Y."2; 
subplot(132), mesh(X,Y,Z)
Zi = in terp2(x ,y ,Z ,X i,Y i); %built-in routine 
subplot(133), mesh(xi,yi,Zi)
Zi = in trp2 (x ,y ,Z ,x i,y i); %our own routine 
pause, mesh(xi,yi,Zi) 
norm(Z0 - Zi)/norm(Z0)

Example 3.5. Two-Dimensional Bilinear Interpolation. We consider interpolat

ing the sample values of a function

for the 5 x 5 grid over the 21 x 21 grid on the domain D  =  {(x, y )|_  2 < X <

2, _ 2  < y < 2}.

We make the MATLAB program “do_interp2.m”, which uses the routine 

“in trp 2 ()” to do this job, compares its function with that of the MATLAB 

built-in routine “in te rp2 ()”, and computes a kind of relative error to estimate 

how close the interpolated values are to the original values. The graphic results 

of running this program are depicted in Fig. 3.9, which shows that we obtained 

a reasonable approximation with the error of 2.6% from less than 1/16 of the 

original data. It is implied that the sampling may be a simple data compression 

method, as long as the interpolated data are little impaired.

3.8 CURVE FITTING

When many sample data pairs {(Xk,yk),k  =  0 : M } are available, we often need 

to grasp the relationship between the two variables or to describe the trend of the

f(X ,y )  =  X2 + y2 (E3.5.1)

-2-2 

(a) True function

-2 -2 

(b) The function over 
sample grid

-2 -2 

(c) Bilinear interpolation

2

Figure 3.9 Two-dimensional interpolation (Example 3.5).
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data, hopefully in a form of function y =  f(x ). But, as mentioned in Remark 3.1, 

the polynomial approach meets with the polynomial wiggle and/or Runge phe

nomenon, which makes it not attractive for approximation purpose. Although the 

cubic spline approach may be a roundabout toward the smoothness as explained 

in Section 3.5, it has too many parameters and so does not seem to be an effi

cient way of describing the relationship or the trend, since every subinterval 

needs four coefficients. What other choices do we have? Noting that many data 

are susceptible to some error, we don’t have to try to find a function passing 

exactly through every point. Instead of pursuing the exact matching at every data 

point, we look for an approximate function (not necessarily a polynomial) that 

describes the data points as a whole with the smallest error in some sense, which 

is called the curve fitting.

As a reasonable means, we consider the least-squares (LS) approach to min

imizing the sum of squared errors, where the error is described by the vertical 

distance to the curve from the data points. We will look over various types of 

fitting functions in this section.

3.8.1 Straight Line Fit: A Polynomial Function of First Degree

If there is some theoretical basis on which we believe the relationship between 

the two variables to be

9ix + во =  y (3.8.1)

we should set up the following system of equations from the collection of many 

experimental data:

eixi + во =  y1 

в1Х2 + во =  У2

в1Хм + во =  Ум 

Ав =  y with A =

x1 1 У1

x2 1
, в =

1 
1

в
в

О 
н-*

1 
1

> y =
У2

_Хм 1 Ум

(3.8.2)

Noting that this apparently corresponds to the overdetermined case mentioned 

in Section 2.1.3, we resort to the least-squares (LS) solution (2.1.Ю)

вo =
e1o

Leo
=  [AT A]-1A Ty (3.8.3)

which minimizes the objective function

J  =  ||e||2 =  A  -  y||2 =  [Ae -  y]T[Ae -  y] (3.8.4)
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Sometimes we have the information about the error bounds of the data, and it is 

reasonable to differentiate the data by weighing more/less each one according to 

its accuracy/reliability. This policy can be implemented by the weighted least- 

squares (WLS) solution

С  = no
0 ,

=  [AT WA]-1ATW y (3.8.5)

which minimizes the weighted objective function

Jw =  [A0 -  y]T W[Ae -  y] (3.8.6)

If the weighting matrix is W  =  V 1 =  R T R 1, then we can write the WLS 

solution (3.8.5) as

С  =

where

W
o

0W 0
=  [(R-1A )T(R-1 A)]-1(R-1 A )TR -1y =  [ARAr ]-1 AR yR1 T

(3.8.7)

Ar =  R -1A, yR =  R -1y, W =  V-1 =  R -TR -1 (3.8.8)

One may use the MATLAB built-in routine “lscov(A ,y,V )” to obtain this 

WLS solution.

3.8.2 Polynomial Curve Fit: A Polynomial Function of Higher Degree

If there is no reason to limit the degree of fitting polynomial to one, then we may 

increase the degree of fitting polynomial to, say, N  in expectation of decreasing 

the error. Still, we can use Eq. (3.8.4) or (3.8.6), but with different definitions of 

A and в as

A =

Г xN 
x1 X1 1" 0

—N

xN
x2 X2 1

, в =
01

1 x M
N Хм 1. &0

(3.8.9)

The MATLAB routine “p o ly f i t s ( ) ” performs the WLS or LS scheme to 

find the coefficients of a polynomial fitting a given set of data points, depending 

on whether or not a vector (г) having the diagonal elements of the weighting 

matrix W  is given as the fourth or fifth input argument. Note that in the case of 

a diagonal weighting matrix W , the WLS solution conforms to the LS solution 

with each row of the information matrix A and the data vector y multiplied by 

the corresponding element of the weighting matrix W . Let us see the following 

examples for its usage:
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function [th,err,yi] = polyfits(x,y,N,xi,r)
%x,y : the row vectors of data pairs 
%N : the order of polynomial(>=0)
%r : reverse weighting factor array of the same dimension as y 
M = length(x); x = x(:); y = y(:); %Make a ll column vectors 
if  nargin == 4

if  length(xi) == M, r = xi; xi = x; %With input argument (x,y,N,r) 
else r = 1; %With input argument (x,y,N,xi) 

end
elseif nargin == 3, xi = x; r = 1; % With input argument (x,y,N) 

end
A(:,N + 1) = ones(M,1);
for n = N:-1:1, A(:,n) = A(:,n+1).*x; end %Eq.(3.8.9) 
if  length(r) == M

for m = 1:M, A(m,:) = A(m,:)/r(m); y(m) = y(m)/r(m); end %Eq.(3.8.8) 
end
th = (A\y)' %Eq.(3.8.3) or (3.8.7)
ye = polyval(th,x); err = norm(y - ye)/norm(y); %estimated y values, error 
yi = polyval(th,xi);

%do_polyfit 
load xy1.dat
x = xy1(:,1); y = xy1(:,2);
[x,i] = sort(x); y = y ( i) ;  %sort the data for p lotting
xi = min(x)+[0:100]/100*(max(x) - min(x)); %intermediate points 
for i  = 1:4

[th ,err,y i] = po ly fits (x ,y ,2 * i - 1 ,x i); err %LS 
subplot(220+i) 
p lo t(x ,y ,'k * l , x i , y i , lb :1) 

end

%xy1 tad

-3.0 -0.2774
-2.0 0.8958
-1.0 -1.5651
0.0 3.4565
1.0 3.0601
2.0 4.8568
3.0 3.8982

Example 3.6. Polynomial Curve Fit by LS (Least Squares). Suppose we have 

an ASCII data file “xy1.dat” containing a set of data pairs {(xk, yk), k =  0:6} in 

two columns and we must fit these data into polynomials of degree 1, 3, 5, and 7.

X -3 -2 -1 0 1 2 3

У -0.2774 0.8958 -1.5651 3.4565 3.0601 4.8568 3.8982

We make the MATLAB program “do_poly fit.m ”, which uses the routine 

“p o ly f i t s ( ) ” to do this job and plot the results together with the given data
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4
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(b) Polynomial of degree 3

(d) Polynomial of degree 7 

Figure 3.10 Polynomial curve fitting by the LS (Least-Squares) method.

points as depicted in Fig. 3.10. We can observe the polynomial wiggle that the 

oscillation of the fitting curve between the data points becomes more pronounced 

with higher degree.

Example 3.7. Curve Fitting by WLS (Weighted Least Squares). Most experimen

tal data have some absolute and/or relative error bounds that are not uniform for 

all data. If we know the error bounds for each data, we may give each data a 

weight inversely proportional to the size of its error bound when extracting valu

able information from the data. The WLS solution (3.8.7) enables us to reflect such 

a weighting strategy on estimating data trends. Consider the following two cases.

(a) Suppose there are two gauges A and B with the same function, but dif

ferent absolute error bounds ±0.2 and ±1.0, respectively. We used them 

to get the input-output data pair (xm,ym) as

{(1, 0.0831), (3, 0.9290), (5, 2.4932), (7,4.9292), (9, 7.9605)}

from gauge A

{(2, 0.9536), (4, 2.4836), (6, 3.4173), (8, 6.3903), (10, 10.2443)}

from gauge B

Let the fitting function be a second-degree polynomial function

y =  a2x2 + a1x + a0 (E3.7.1)
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10

(a) Fitting to a polynomial y = a 2x2 + a x +  a0

5 10 15

(b) Fitting to y= axb

Figure 3.11 LS curve fitting and WLS curve fitting for Example 3.7.

To find the parameters a2,a 1, and a0, we write the MATLAB program 

“do_wlse1.m”, which uses the routine “p o ly f i t s ( ) ” twice, once without 

weighting coefficients and once with weighting coefficients. The results 

are depicted in Fig. 3.11a, which shows that the WLS curve fitting tries 

to be closer to the data points with smaller error bound, while the LS 

curve fitting weights all data points equally, which may result in larger 

deviations from data points with small error bounds.

(b) Suppose we use one gauge that has relative error bound ±40[%] for 

measuring the output y for the input values x =  [1, 3, 5 ,. .. ,1 9 ]  and so 

the size of error bound of each output data is proportional to the magnitude 

of the output. We used it to get the input-output data pair (xm,ym) as

{(1,4.7334), (3, 2.1873), (5, 3.0067), (7, 1.4273), (9,1.7787)

(11, 1.2301), (13,1.6052), (15,1.5353), (17,1.3985), (19, 2.0211)}

Let the fitting function be an exponential function

y =  axb (E3.7.2)

To find the parameters a and b, we make the MATLAB program 

“do_wlse2.m”, which uses the routine “curve _ fit() ” without the weight

ing coefficients one time and with the weighting coefficients another time. 

The results depicted in Fig. 3.11b shows that the WLS curve fitting tries to 

get closer to the data points with smaller | y |, while the LS curve fitting pays 

equal respect to all data points, which may result in larger deviation from 

data points with small |y |. Note that the MATLAB routine “cu rve _ fit()  ” 

appears in Problem 3.11, which implements all of the schemes listed in 

Table 3.5 with the LS/WLS solution.
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(cf) Note that the objective of the WLS scheme is to put greater emphasis on more 

reliable data.

%do_wlse1 for Ex.3.7 
clear, c lf
x =  [1 3 5 7 9 2 4 6 8  10]; %input data 
y = [0.0831 0.9290 2.4932 4.9292 7.9605 . . .

0.9536 2.4836 3.4173 6.3903 10.2443]; %output data 
eb = [0.2*ones(5,1); ones(5,1)]; %error bound for each y 
[x,i] = sort(x); y = y ( i) ;  eb = eb(i); %sort the data for p lotting 
e rro rba r(x ,y ,eb ,': ') , hold on
N = 2; %the degree of the approximate polynomial
xi = [0:100]/10; %interpolation points 
[ th l,e rr l,y l]  = po ly fits(x ,y ,N ,x i);
[thwl,errwl,ywl] = po ly fits(x ,y ,N ,x i,eb ); 
p lo t ( x i ,y l , 'b ',  x i,y w l,'r ')
%KC = 0; th lc  = curve_fit(x,y,KC,N ,xi); %for cross-check 
%thwlc = curve_fit(x,y,KC,N,xi,eb);

%do_wlse2 
clear, c lf
x = [1:2:20]; Nx = length(x); %changing input
xi = [1:200]/10; %interpolation points
eb = 0.4*ones(size(x)); %error bound for each y 
y = [4.7334 2.1873 3.0067 1.4273 1.7787 1.2301 1.6052 1.5353 . . .  

1.3985 2.0211];
[x,i] = sort(x); y = y ( i) ;  eb = eb(i); %sort the data for p lotting 
eby = y.*eb; %our estimation of error bounds 
KC = 6; [th lc ,err,y l] = curve_fit(x ,y ,KC,0,xi);
[thwlc,err,ywl] = curve_fit(x,y,KC,0,xi,eby); 
errorbar(x,y,eby), hold on 
p lo t ( x i ,y l , 'b ',  x i,y w l,'r ')

3.8.3 Exponential Curve Fit and  Other Functions

Why don’t we use functions other than the polynomial function as a candidate 

for fitting functions? There is no reason why we have to stick to the polynomial 

function, as illustrated in Example 3.7(b). In this section, we consider the case 

in which the data distribution or the theoretical background behind the data tells 

us that it is appropriate to fit the data into some nonpolynomial function. 

Suppose it is desired to fit the data into the following exponential function.

c eax =  y (3.8.10)

Taking the natural logarithm of both sides, we linearize this as

a x + ln c =  ln y (3.8.11)
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Function to Fit Linearized Function

Variable Substitution/ 

Parameter Restoration

(1) у =  - + ь
x

b
(2) У = ^

x + a

(3) у =  a bx

(4) у =  b eax

(5) у =  C — b e-

(6) у =  a xb

(7) у =  ax ebx 

C
(8) у =

1 + b eax 

(a(0,b)0,C =  у(<х))

(9) у =  a ln x + b

у =  a — \- b у =  ax' + b
x

1 1 a
— = —x H----у у =  a x + b
у b b

ln у =  (ln b)x + ln a

^  у! =  a!x + У  

ln у =  ax + ln b ^  у' =  ax + b' 

ln(C — у) =  -ax + ln b 

^  у! =  a'x + У  

ln у =  b(ln x) + ln a 

^  у; =  a!x' + b! 

ln у — ln x =  bx + ln a 

^  у; =  a'x + у  

C
I n ---1 — ax + ln b

у
^  у7 =  ax + У

^  у =  ax' + b

/ _  1 _  b> b _  1
^ j  ’ a1 ’ a1 

у' =  ln у, a =  eb ,b =  ea

у' =  ln у, b =  eb 

у' =  ln(C — у) 

a =  —a', b =  eb 

у' =  ln у, x' =  lnx 

a =  eb ,b =  a!

у' =  1п(уА)

V i / a =  eb , b =  a

/  =  ln ^ ---1^ , b =  e‘

x' =  ln x

1

x

ax

so that the LS algorithm (3.8.3) can be applied to estimate the parameters a  and 

ln c based on the data pairs {(xk , ln ук), k  =  0 : M }.

Like this, there are many other nonlinear relations that can be linearized to fit 

the LS algorithm, as listed in Table 3.5. This makes us believe in the extensive 

applicability of the LS algorithm. If you are interested in making a MATLAB 

routine that implements what are listed in this table, see Problem 3.11, which lets 

you try the MATLAB built-in function “ls q c u rv e f it ( f ,th 0 ,x ,y )” that enables 

one to use any type of function (f) for curve fitting.

3.9 FOURIER TRANSFORM

Most signals existent in this world contain various frequency components, where 

rapidly/slowly changing one contains high/low-frequency components. Fourier 

series/transform is a mathematical tool that can be used to analyze the fre

quency characteristic of periodic/aperiodic signals. There are four similar defini

tions of Fourier series/transform, namely, continuous-time Fourier series (CtFS), 

continuous-time Fourier transform (CtFT), discrete-time Fourier transform 

(DtFT), and discrete Fourier series/transform (DFS/DFT). Among these tools, 

DFT can easily and efficiently be programmed in computer languages and that’s 

why we deal with just DFT in this section.
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Suppose a sequence of data {x[n] =  x(nT ),n  =  0 : M  — 1}(T: the sampling 

period) is obtained by sampling a continuous-time/space signal once every T 

seconds. The N (>  M)-point DFT/IDFT (inverse DFT) pair is defined as

DFT: X(k) =  Y ^  x[n]e—j2nnk/N, к =  0 : N  — 1 (3.9.1a)

n=0

1 N—1
IDFT: x[n] =  ~ Y ^  X(k)ej2lInk/N, n = 0 : N - l  (3.9.1b)

k=0

Remark 3.3. DFS/DFT (Discrete Fourier Series/Transform)

0. Note that the indices of the DFT/IDFT sequences appearing in MATLAB 

range from 1 to N .

1. Generally, the DFT coefficient X(k) is complex-valued and denotes the 

magnitude and phase of the signal component having the digital frequency 

Qk =  Ш 0 =  2nk /N  [rad], which corresponds to the analog frequency rnk =  

krn0 =  kQ0/T  =  2nk /N T [rad/s]. We call ^ 0 =  2n /N  and rn0 =  2n/N T  

(N  represents the size of DFT) the digital/analog fundamental or resolution 

frequency, since it is the minimum digital/analog frequency difference that 

can be distinguished by the N -point DFT.

2. The DFS and the DFT are essentially the same, but different in the range 

of time/frequency interval. More specifically, a signal x[n] and its DFT 

X(k) are of finite duration over the time/frequency range {0 < n < N  — 1} 

and {0 < k < N  — 1}, respectively, while a signal x [n] (to be analyzed by 

DFS) and its DFS X  (k) are periodic with the period N  over the whole set 

of integers.

3. FFT (fast Fourier transform) means the computationally efficient algorithm 

developed by exploiting the periodicity and symmetry in the multiplying 

factor el2ltnk/N to reduce the number of complex number multiplications 

from N 2 to (N /2) log2 N (N  represents the size of DFT). The MATLAB 

built-in functions “f f t ( ) ”/“i f f t ( ) ” implement the FFT/IFFT algorithm for 

the data of length N  =  2l (l represents a nonnegative integer). If the length 

M of the original data sequence is not a power of 2, it can be extended by 

padding the tail part of the sequence with zeros, which is called zero-padding.

3.9.1 FFT Versus DFT

As mentioned in item 3 of Remark 3.3, FFT/IFFT (inverse FFT) is the compu

tationally efficient algorithm for computing the DFT/IDFT and is fabricated into 

the MATLAB functions “f f t ( ) ”/“i f f t ( ) ”. In order to practice the use of the 

MATLAB functions and realize the computational advantage of FFT/IFFT over 

DFT/IDFT, we make the MATLAB program “compare_dft_fft.m”. Readers are 

recommended to run this program and compare the execution times consumed by 

the 1024-point DFT/IDFT computation and its FFT/IFFT scheme, seeing that the
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resulting spectra are exactly the same and thus are overlapped onto each other 

as depicted in Fig. 3.12.

%compare_DFT_FFT 
clear, c lf
N = 2"10; n = [0:N - 1];
x = cos(2*pi*200/N*n)+ 0.5*sin(2*pi*300/N*n); 
t ic
for k = 0:N - 1, X(k+1) = x*exp(-j*2*pi*k*n/N).'; end %DFT 
k = [0:N - 1];
for n = 0:N - 1, xr(n + 1) = X*exp(j*2*pi*k*n/N).'; end %IDFT 
time_dft = toc %number of floating-point operations 
p lot(k ,abs(X)), pause, hold on 
t ic
X1 = f f t (x ) ;  %FFT 
xr1 = ifft(X 1 ); %IFFT
tim e_fft = toc %number of floating-point operations 
c lf , p lo t(k ,abs(X 1 ),'r ') %magnitude spectrum in Fig. 3.12

3.9.2 Physical Meaning of DFT

In order to understand the physical meaning of FFT, we make the MATLAB 

program “d o _ fft” and run it to get Fig. 3.13, which shows the magnitude spectra 

of the sampled data taken every T seconds from a two-tone analog signal

Readers are recommended to complete the part of this program to get Fig. 3.13c,d 

and run the program to see the plotting results (see Problem 3.16).

What information do the four spectra for the same analog signal x(t) carry? 

The magnitude of X a(k) (Fig. 3.13a) is large at k =  2 and 5, each corresponding 

to krn0 =  2nk/N T  =  2nk/3.2 =  1.25n ~ 1.5n and 3.125n ~ 3n . The magni

tude of X b(k) (Fig. 3.13b) is also large at k =  2 and 5, each corresponding to 

krn0 =  1.25n ~ 1.5n and 3.125n ~ 3n . The magnitude of X c(k) (Fig. 3.13c) is

x(t) =  sin(1.5nt) + 0.5cos(3nt) (3.9.2)

600

400 digital frequency 
Q2oo = 2p x 200/N [rad]

400 500 600 724 824 900 k 1023

Figure3.12 The DFT(FFT) {X(k), k = 0: N — 1} of x[N] = cos(2n x 200n/N) + 0.5sin 
(2n x 300n/N) for n = 0 : N — 1(N = 210 = 1024).
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%do_fft (to get Fig. 3.13) 
clear, c lf
w1 = 1.5*pi; w2=3*pi; %two tones 
N = 32; n = [0:N - 1]; T = 0.1; %sampling period 
t = n*T; xan = sin(w1*t) + 0.5*sin(w2*t); 
subplot(421), stem(t,xan,'.') 
k = 0:N - 1; Xa = fft(xan);
dscrp=norm(xan-real(ifft(Xa))) %x[n] reconstructible from IFFT{X(k)}? 
subplot(423), stem(k,abs(Xa),'.')
%upsampling
N = 64; n = [0:N - 1]; T = 0.05; %sampling period 
t = n*T; xbn = sin(w1*t)+ 0.5*sin(w2*t); 
subplot(422), stem(t,xbn,'.') 
k = 0:N - 1; Xb = fft(xbn); 
subplot(424), stem(k,abs(Xb),'.')
%zero-padding
N = 64; n = [0:N-1]; T = 0.1; %sampling period
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Figure 3.13 DFT spectra of a two-tone signal.
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large at k =  4,5 and 9,10, and they can be alleged to represent two tones of krn0 =  

2nk/N T  =  2nk/6.4 ~ 1.25п ~ 1.5625п and 2.8125п ~ 3.125п. The magni

tude of X d(k) (Fig. 3.13d) is also large at k =  5 and 10, each corresponding to 

krn0 =  1.5625 п ~ 1.5 п and 3.125 п ~ 3п.

It is strange and interesting that we have many different DFT spectra for the same 

analog signal, depending on the DFT size, the sampling period, the whole interval, 

and zero-padding. Compared with spectrum (a), spectrum (b) obtained by decreas

ing the sampling period T from 0.1s to 0.05s has wider analog frequency range 

[0,2n/Tb], but the same analog resolution frequency is rn0 =  Q0/Tb =  2n/N bTb =  

п/1.6 =  2n/N aTa; consequently, it does not present us with any new information 

over (a) for all increased number of data points. The shorter sampling period may be 

helpful in case the analog signal has some spectral contents of frequency higher than 

п/ Ta. The spectrum (c) obtained by zero-padding has a better-looking, smoother 

shape, but the vividness is not much improved compared with (a) or (b), since the 

zeros essentially have no valuable information in the time domain. In contrast with

(b) and (c), spectrum (d) obtained by extending the whole time interval shows us 

the spectral information more distinctly.

Note the following things:

• Zero-padding in the time domain yields the interpolation (smoothing) effect 

in the frequency domain and vice versa, which will be made use of for data 

smoothing in the next section (see Problem 3.19).

• If a signal is of finite duration and has the value of zeros outside its domain 

on the time axis, its spectrum is not discrete, but continuous along the 

frequency axis, while the spectrum of a periodic signal is discrete as can be 

seen in Fig. 3.12 or 3.13.

• The DFT values X(0) and X (N /2) represent the spectra of the dc component 

(Q0 =  0) and the virtually highest digital frequency components (QN/2 =  

N/2  x 2n /N  =  п [rad]), respectively.

Here, we have something questionable. The DFT spectrum depicted in Fig. 3.12 

shows clearly the digital frequency components ^ 200 =  2п x 200/N  and Q300 =  

2п x 300/N[rad](N =  210 =  1024) contained in the discrete-time signal

x [n] =  cos(2n x 200n/N) + 0.5sin(2n x 300n/N), N  =  210 =  1024

(3.9.3)

and so we can find the analog frequency components rnk =  Qk/T  as long as 

the sampling period T is known, while the DFT spectra depicted in Fig. 3.13 

are so unclear that we cannot discern even the prominent frequency contents. 

What’s wrong with these spectra? It is never a ‘right-or-wrong’ problem. The 

only difference is that the digital frequencies contained in the discrete-time signal 

described by Eq. (3.9.3) are multiples of the fundamental frequency ^ 0 =  2n/N , 

but the analog frequencies contained in the continuous-time signal described by 

Eq. (3.9.2) are not multiples of the fundamental frequency rn0 =  2n /N T ; in 

other words, the whole time interval [0, NT) is not a multiple of the period of 

each frequency to be detected. The phenomenon whereby the spectrum becomes
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blurred like this is said to be the ‘leakage problem’. The leakage problem occurs 

in most cases because we cannot determine the length of the whole time interval 

in such a way that it is a multiple of the period of the signal as long as we don’t 

know in advance the frequency contents of the signal. If we knew the frequency 

contents of a signal, why do we bother to find its spectrum that is already known? 

As a measure to alleviate the leakage problem, there is a windowing technique 

[O-1, Section 11.2]. Interested readers can see Problem 3.18.

Also note that the periodicity with period N  (the DFT size) of the DFT 

sequence X(k) as well as x[n], as can be manifested by substituting k + mN  

(m represents any integer) for k in Eq. (3.9.1a) and also substituting n + mN  

for n in Eq. (3.9.1b). A real-world example reminding us of the periodicity of 

DFT spectrum is the so-called stroboscopic effect whereby the wheel of a car

riage driven by a horse in the scene of a western movie looks like spinning at 

lower speed than its real speed or even in the reverse direction. The periodicity 

of x [n] is surprising, because we cannot imagine that every discrete-time signal 

is periodic with the period of N , which is the variable size of the DFT to be 

determined by us. As a matter of fact, the ‘weird’ periodicity of x[n] can be 

regarded as a kind of cost that we have to pay for computing the sampled DFT 

spectrum instead of the continuous spectrum X(rn) for a continuous-time signal 

x(t), which is originally defined as

/
TO

x(t)e—jat dt (3.9.4)

-TO

Actually, this is to blame for the blurred spectra of the two-tone signal depicted 

in Fig. 3.13.

3.9.3 Interpolation by Using DFS

function [xi,Xi] = interpolation_by_DFS(T,x,Ws,ti)
%T : sampling interval (sample period)
%x : discrete-time sequence
%Ws: normalized stop frequency (1.0=pi[rad])
%ti: interpolation time range or # of divisions for T 
i f  nargin < 4 , t i  = 5; end 
i f  nargin < 3 | Ws > 1, Ws = 1; end 
N = length(x); 
i f  leng th(ti) == 1

t i  = 0:T/ti:(N-1)*T; %subinterval divided by t i  
end
ks = ceil(Ws*N/2);
Xi = f f t(x ) ;
Xi(ks + 2:N - ks) = zeros(1,N - 2*ks - 1); %filtered spectrum
xi = zeros(1 ,length(ti)); 
for k = 2:N/2

xi = xi+Xi(k)*exp(j*2*pi*(k - 1)*ti/N/T);
end
xi = real(2*xi+Xi(1)+Xi(N/2+1)*cos(pi*ti/T))/N; %Eq.(3.9.5)
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%interpolate_by_DFS 
clear, c lf
w1 = pi; w2 = .5*pi; %two tones 
N = 32; n = [0:N - 1]; T = 0.1; t = n*T;
x = sin(w1*t)+0.5*sin(w2*t)+(rand(1,N) - 0.5); %0.2*sin(20*t); 
t i  = [0:T/5:(N - 1)*T];
subplot(411), p lo t ( t ,x , 'k . ' )  %original data sequence 
t it le ( 'o r ig in a l  sequence and interpolated s igna l')
[xi,Xi] = interpolation_by_DFS(T,x,1,ti); 
hold on, p lo t ( t i ,x i , ' r ' )  %reconstructed signal 
k = [0:N - 1];
subplot(412), s tem (k ,abs(X i),'k .') %original spectrum 
t it le ( 'o r ig in a l  spectrum')
[xi,Xi] = interpolation_by_DFS(T,x,1/2,ti); 
subplot(413), stem(k,abs(Xi) , 'r . ' )  %filtered spectrum 
t i t l e ( ' f i l t e r e d  spectrum')
subplot(414), p lo t ( t , x , ' k . ' ,  t i , x i , ' r ' )  %filtered signal 
t it le( 'f i l tered/smoothed signal ' )

We can use the DFS/DFT to interpolate a given sequence x[n] that is supposed 

to have been obtained by sampling some signal at equidistant points (instants). 

The procedure consists of two steps; to take the N -point FFT X(k) of x[n] and 

to use the formula

This formula is cast into the routine “in terpo la tion_by_dfs”, which makes 

it possible to filter out the high-frequency portion over (Ws• п ,(2-Ws)n) with 

Ws given as the third input argument. The horizontal (time) range over which 

you want to interpolate the sequence can be given as the fourth input argument 

t i .  We make the MATLAB program “interpo late_by_dfs”, which applies the 

routine to interpolate a set of data obtained by sampling at equidistant points 

along the spatial or temporal axis and run it to get Fig. 3.14. Figure 3.14a shows 

a data sequence x [n] of length N  =  32 and its interpolation (reconstruction) 

x(t) from the 32-point DFS/DFT X(k) (Fig. 3.14b), while Figs. 3.14c and 3.14d 

show the (zero-padded) DFT spectrum X'(k) with the digital frequency contents 

higher than n/2[rad](N/4 < k < 3N/4) removed and a smoothed interpolation 

(fitting curve) x'(t) obtained from X'(k), respectively. This can be viewed as the 

smoothing effect in the time domain by zero-padding in the frequency domain, 

in duality with the smoothing effect in the frequency domain by zero-padding in 

the time domain, which was observed in Fig. 3.13c.

|k|<N/2

N/2-1

Real{X(k)ej2nkt/NT} + X(N /2) cos(nt/T)} (3.9.5)

k=1
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15

10-

5 -

(a) A given data sequence x[n] and its interpolation x(t) by using DFS

(b) The original DFS/DFT spectrum X(k)

|X'(k)|

» ? Ws ■ -11 I -
zero-padding(zero-out)

(2 - Ws)pilh
8 16(p) 24

(c) The spectrum X'(k) of the filtered signal x'(t)

digital
frequency

31

(d) The filtered signal x'(t)

Figure 3.14 Interpolation/smoothing by using DFS/DFT.

PROBLEMS

3.1 Quadratic Interpolation: Lagrange Polynomial and Newton Polynomial

(a) The second-degree Lagrange polynomial matching the three points 

(x0, f 0), (x1, f 1), and (x2, f 2) can be written by substituting N  =  2

0
0
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into Eq. (3.1.3) as

h (x) =  J 2  fmL2,m(x) =  J 2  fm П  (РЗЛЛ)
m=0 m=0 k=m xm xk

Check if the zero of the derivative of this polynomial— that is, the root 

of the equation l2 (x) =  0— is found as

, , (x -  xO + (x -  x2) (x -  x2) + (x -  x0)
l2(x) =  J o ------------------- h / 1 -----------------

(x0 -  xO(x0 -  x2) (x1 -  x2)(x1 -  x0)

+ j. (X ~  Xp) + (X -  Xj)

(x2 -  Xo)(x2 -  Xl)

f0(2x -  x1 -  x2)(x2 -  x1) + f1(2x -  x2 -  x0)(x0 -  x2)

+ f2(2x -  x0 -  x1)(x1 -  x0) =  0

f 0(x2 -  x2) + f 1(x2 -  x0) + f 2(x2 -  x2)
x =  x3 =  --- 2 2--- 07 J K 0--- l—  (P3.1.2)

2{f0(x1 -  x2) + f1(x2 -  x0) + f 2(x0 -  x1)}

You can use the symbolic computation capability of MATLAB by 

typing the following statements into the MATLAB command window:

>>syms x x1 x2 x3 f0 f1 f2
>>L2 = f0*(x - x1)*(x - x2)/(x0 - x1)/(x0 - x2)+... 

f1*(x - x2)*(x - x0)/(x1 - x2)/(x1 - x0)+... 
f2*(x - x0)*(x - x1)/(x2 - x0)/(x2 - x1) 

>>pretty(solve(diff(L2)))

(b) The second-degree Newton polynomial matching the three points 

(x0, f 0), (x1, f 1), and (x2, f2) is Eq. (3.2.4).

n2(x) =  a0 + a1(x -  x0) + a2(x -  x0)(x -  x1) (P3.1.3)

where

r r.r f 1 -  f 0
ao — Jo. ai — Dfo — -----

x1 -  x0

f 2 -  f 1 f 1 -  f 0

a 2 =  D 2 f Q = D f l ~ D h  =  X 2 ~ X l  X l ~ X o  (P3.1.4) 
x2 -  x0 x2 -  x0

Find the zero of the derivative of this polynomial.

(c) From Eq. (P3.1.1) with x0 =  —1,x1 =  0, and x2 =  1, find the coeffi

cients of Lagrange coefficient polynomials L20 (x), L21 (x), and L2,2(x). 

You had better make use of the routine “lagranp() ” for this job.

2 2 N
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(d) From the third-degree Lagrange polynomial matching the four points 

(x0 , f 0), (x1, f 1), (x2 , f2 ), and (x3 , f )  with x0 =  -3,x1 =  - 2 ,x2 =  

-1, and x3 =  0, find the coefficients of Lagrange coefficient polyno

mials L3,0(x), L3,1(x), L3 2(x), and L3,3(x). You had better make use 

of the routine “lagranp()” for this job.

3.2 Error Analysis of Interpolation Polynomial

Consider the error between a true (unknown) function f(x )  and the interpo

lation polynomial PN(x) of degree N  for some (N  + 1) points of y =  f(x ), 

that is,

{(x0, У0), (x1, У1), . . . , (x n , yN)}

where f(x )  is up to (N  + 1)th-order differentiable. Noting that the error is 

also a function of x and becomes zero at the (N  + 1) points, we can write 

it as

e(x) =  f(x )  -  Pn (x ) =  (x -  x0)(x -  x ^  ••• (x -  xN)g(x) (P3.2.1) 

Technically, we define an auxiliary function w(t) with respect to t as

w(t) =  f ( t )  -  PN(t) -  (t -  x0)(t -  x1) (t -  xN)g(x) (P3.2.2)

Then, this function has the value of zero at the (N  + 2) points t =  x0, x1, . . . ,  

xN, x and the 1/2/ ■ ■ ■ /(N  + 1)th-order derivative has (N  + 1)/N/ ••• /1 

zeros, respectively. For t =  t0 such that w(N+1)(t0) =  0, we have

w(N+1)(t0) =  f (N+1)(t0) -  0 -  (N  + 1)!g(x) =  0;

^  =  W T T v / (N+1)̂  (P3-2-3)

Based on this, show that the error function can be rewritten as

e(x) =  f(x )  -  PN(x) =  (x - x 0)(x -xx)---(x -  xN) f (N+r> (t0)

! (P3.2.4)

3.3 The Approximation of a Cosine Function

In the way suggested below, find an approximate polynomial of degree 4 

for

y =  f(x )  =  cos x (P3.3.1)

(a) Find the Lagrange/Newton polynomial of degree 4 matching the fol

lowing five points and plot the resulting polynomial together with the 

true function cos x over [-n, + n].
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к 0 1 2 3 4

xk -п —п/2 0 +п/2 +п

f (x k) -1 0 1 0 -1

(b) Find the Lagrange/Newton polynomial of degree 4 matching the fol

lowing five points and plot the resulting polynomial on the same graph 

that has the result of (a).

k 0 1 2  3 4

xk п cos(9n/10) п cos(7n/10) 0 п cos(3n/10) п cos(n/10) 

f (x k) —0.9882 —0.2723 1 —0.2723 —0.9882

(c) Find the Chebyshev polynomial of degree 4 for cos x over [—п, +п] 

and plot the resulting polynomial on the same graph that has the result 

of (a) and (b).

3.4 Chebyshev Nodes

The current speed/pressure of the liquid flowing in the pipe, which has irreg

ular radius, will be different from place to place. If you are to install seven 

speed/pressure gauges through the pipe of length 4 m as depicted in Fig. 

P3.4, how would you determine the positions of the gauges so that the max

imum error of estimating the speed/pressure over the interval [0, 4] can 

be minimized?

;\ /\ zx ^  zx

I--1--- 1--1--1----- 1----- 1-- 1--1--- 1--X
0 1 2  3 4

Figure P3.4 Chebyshev nodes.

3.5 Pade Approximation

For the Laplace transform

F(s) =  e—sT (P3.5.1)

representing the delay of T[seconds], we can write its Maclaurin series 

expansion up to fifth order as

(sT)2 (sT)3 (sT)4 (sT)5 
Mc(s) =  1 - sT + -— -  - -— -  + -— -  -  -— -  (P3.5.2) 

2! 3! 4! 5!

(a) Show that we can solve Eq. (3.4.4) and use Eq. (3.4.1) to get the Pade 

approximation as

q0 + q1s 1 — (T/2)s T
F (s ) =  Pl i(s) =  4 4 = --- y-L-L- ^  е-т* (P3.5.3)

w  ^ ’ w  l + d lS l + (T/2)s
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(b) Compose a MATLAB program “nm3p05.m” that uses the routine 

“padeap()” to generate the Pade approximation of (P3.5.1) with T =  

0.2 and plots it together with the second-order Maclaurin series expan

sion and the true function (P3.5.1) for s =  [-5,10]. You also run it to 

see the result as

1 -  (T/2)s -s + 10
Pl j( j)  = --- —  = -------—  (P3.5.4)
^ ’ w  l  + (T/2)s j  + 10

3.6 Rational Function Interpolation: Bulirsch-Stoer Method [S-3]

Table P3.6 shows the Bulirsch-Stoer method, where its element in the mth 

row and the (i + 1)th column is computed by the following formula:

R i + 1 =  R i H ______________ СX  ~  x m + i ) ( R lm + 1 ~  R m + l ) ( R m + l  ~  R m )

+  {x  ~  x m ) ( R lm ~  R lm + 1 ) ~  ( x  ~  x m + i ) ( R Im + 1 -  R lm + 1 )

with R°m =  0 and R lm =  ym for i =  1 : N  and m =  1 : N  — i

(P3.6.1)

function yi = rational_interpolation(x,y,xi)
N = length(x); Ni = length(xi);

R(:,1) = У(:);
for n = 1:Ni

xn = xi(n);
for i  = 1:N - 1

for m = 1: N - i
RR1 = R(m + 1 , i ) ;  RR2 = R(m,i);
i f  i  > 1,

RR1 = RR1 - R(m + 1,???); RR2 = RR2 R(???, i 1);
end
tmp1 = (xn-x(???))*RR1;
num = tmp1*(R(???,i) - R(m,?));
den = (xn - x(?))*RR2 -tmp1;
R(m,i + 1) = R(m + 1, i)  ????????;

end
end
yi(n) = R(1,N);

end

Table P3.6 Bulirsch-Stoer Method for Rational Function Interpolation

Data i =  1 i =  2 i =  3 i =  4

(x\,y\) R\ =  У! R\ R\ R\

(X2 , У2) R 1 =  У2 R 22 R2

(Х3,У3) R3 =  У3 R2

(xm, ym)
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(a) The above routine “r a t iona l _ in te rpo la t ion (x ,y ,x i ) ” uses the 

Bulirsch-Stoer method to interpolate the set of data pairs (x,y) given 

as its first/second input arguments over a set of intermediate points 

x i given as its third input argument. Complete the routine and apply 

it to interpolate the four data points {(-1, f(- 1 )) , (-0.2, f(-0 .2 )), 

(0.1, f(0.1)), (0.8, f  (0.8))} on the graph of f(x ) =  1/(1 + 8x2) for 

x i = [-100:100]/100 and plot the interpolated curve together with the 

graph of the true function f(x ). Does it work well? How about doing 

the same job with another routine “ra t_ in te rp ( )” listed in Section 8.3 

of [F-1]? What are the values of yi([95:97]) obtained from the two 

routines? If you come across anything odd in the graphic results and/or 

the output numbers, what is your explanation?

(cf) MATLAB expresses the in-determinant 0/0 (zero-divided-by-zero) as NaN 

(Not-a-Number) and skips the value when plotting it on a graph. It may, 

therefore, be better off for the plotting purpose if we take no special 

consideration into the case of in-determinant.

(b) Apply the Pade approximation routine “padeap()” (with M = 2 & N = 

2) to generate the rational function approximating f(x ) =  1/(1 + 8x2) 

and compare the result with the true function f(x ).

(c) To compare the rational interpolation method with the Pade approx

imation scheme, apply the routines ra t iona l_ in te rpo la t i on ()  and 

padeap() (with M = 3 & N = 2) to interpolate the four data points 

{ (- 2 , f (- 2 ) ) , (-1 , f (-1 ) ) , ( 1 , f ( 1 ) ) , ( 2 , f ( 2 ) ) }  on the graph of 

f(x )  =  sin(x) for x i = [-100:100]*pi/100 and plot the interpolated 

curve together with the graph of the true function. How do you compare 

the approximation/interpolation results?

3.7 Smoothness of a Cubic Spline Function

We claim that the cubic spline interpolation function s(x) has the smooth

ness property of

for any second-order differentiable function f(x )  matching the given grid 

points and having the same first-order derivatives as s(x) at the grid points. 

This implies that the cubic spline functions are not so rugged. Prove it by 

doing the following.

(a) Check the validity of the equality

(P3.7.1)

/ f  "(x)s"(x)dx = f  (s''(x))2 dx (P3.7.2)
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where the left-hand and right-hand sides of this equation are

Г xk+1

LHS: / f " (x)s" (x) dx
■ S ' xk

f  xk

Г xk+1

=  f  '(x)s //(x)ixk+1 — I f ' (x)s "'(x)dx
k xk

=  / ,(xk+1)s"(xfc+1) — f ( x k)s"(xk) — C (f(x k+1) — f ( x )  (P3.7.3a)

r xk+1
RHS: / s"(x)s"(x) dx

xkxk

\J>=  s (xk+1)s (xk+1) — s (xk)s (xk) — C(s(xk+1) — s(xk)) (P3.7.3b)

(b) Check the validity of the following inequality:

Г xk+1
0 < I ( f  "(x) — s"(x))2 dx

xJxk

rxk+1 rxk+1 /*xk+1
I ( f  "(x))2 dx — 2 I f  "(x)s" (x) dx + I (s"(x))2 dx 

J xk x̂k x̂k

f  xk+1 r

/ ( f  "(x))2 dx —
xk xk

/г>о "7 /*xk+1 /*xk+1
* ( f  /f(x))2 dx — I (s/f (x))2 dx
xk xk 

rxk+1 /* xk+1xk+1 x 
/ ( f //(x))2 dx < (s"(x))2 dx (P3.7.4)
xk xk

3.8 MATLAB Built-in Routine for Cubic Spline

There are two MATLAB built-in routines:

>>yi = spl ine(x,y,xi);
>>yi = interp1(x ,y,xi , 'sp l ine ' ) ;

Both receive a set of data points (x ,y )  and return the values of the cubic 

spline interpolating function s(x) for the (intermediate) points x i given as 

the third input argument. Write a program that uses these MATLAB routines 

to get the interpolation for the set of data points

{(0, 0), (0.5, 2), (2, —2), (3.5, 2), (4, 0)}

and plots the results for [0, 4]. In this program, append the statements that 

do the same job by using the routine “cspline(x,y,KC)” (Section 3.5) with 

KC =  1, 2, and 3. Which one yields the same result as the MATLAB built- 

in routine? What kind of boundary condition does the MATLAB built-in 

routine assume?
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3.9 Robot Path Planning Using Cubic Spline

Every object having a mass is subject to the law of inertia and so its 
speed described by the first derivative of its displacement with respect to 
time must be continuous in any direction. In this context, the cubic spline 
having the continuous derivatives up to second order presents a good basis 
for planning the robot path/trajectory. We will determine the path of a robot 
in such a way that the following conditions are satisfied:
• At time t  =  0 s, the robot starts from its home position (0, 0) with zero 

initial velocity, passing through the intermediate point (1, 1) at t  =  1 s  
and arriving at the final point (2, 4) at t  =  2 s.

• On arriving at (2, 4), it starts the point at t  =  2 s, stopping by the 
intermediate point (3, 3) at t  =  3 s and arriving at the point (4, 2) at 
t =  4 s.

• On arriving at (4, 2), it starts the point, passing through the intermediate 
point (2,1) at t =  5 s and then returning to the home position (0, 0) at 
t =  6 s.

More specifically, what we need is
• the spline interpolation matching the three points (0, 0),(1, 1),(2, 2) and 

having zero velocity at both boundary points (0, 0) and (2, 2),
• the spline interpolation matching the three points (2, 2),(3, 3),(4, 4) and 

having zero velocity at both boundary points (2, 2) and (4, 4), and
• the spline interpolation matching the three points (4, 4), (5, 2), (6, 0) and 

having zero velocity at both boundary points (4, 4) and (6, 0) on the t x  
plane.

On the t y  plane, we need
• the spline interpolation matching the three points (0, 0),(1, 1),(2, 4) and 

having zero velocity at both boundary points (0, 0) and (2, 4),
• the spline interpolation matching the three points (2, 4),(3, 3),(4, 2) and 

having zero velocity at both boundary points (2, 4) and (4, 2), and
• the spline interpolation matching the three points (4, 2),(5, 1),(6, 0) and 

having zero velocity at both boundary points (4, 2) and (6, 0).

Supplement the following incomplete program “ ro b o t_ p a th ”, whose objec
tive is to make the required spline interpolations and plot the whole robot 
path obtained through the interpolations on the x y  plane. Run it to get the 
graph as depicted in Fig. P3.9c.

%robot_path
x1 = [0 1 2]; y1 = [0 1 4]; t1 = [0 1 2]; ti1 = [0: 0.05: 2]; 
xi1 = cspline(t1,x1,ti1); yi1 = cspline(t1,y1,ti1);

plot(xi1,yi1,'k', xi2,yi2,'b', xi3,yi3, 'k'), hold on 
plot([x1(1) x2(1) x3(1) x3(end)],[y1(1) y2(1) y3(1) y3(end)],'o') 
plot([x1 x2 x3],[y1 y2 y3],'k+'), axis([0 5 0 5])
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(a) x coordinate varying along t (b) y coordinate varying along t (c) Robot path on the xy plane 

Figure P3.9 Robot path planning using the cubic spline interpolation.

3.10 One-Dimensional Interpolation

W hat do you have to give as the fourth input argument of the MATLAB 
built-in routine “ in t e r p 1 ( ) ” in order to get the same result as that would 
be obtained by using the following one-dimensional interpolation routine 
“ i n t r p 1 ( ) ”? W hat letter would you see if you apply this routine to inter
polate the data points {(0,3), (1,0), (2,3), (3,0), (4,3)} for [0,4]?

function yi = intrp1(x,y,xi)
M = length(x); Mi = length(xi);
for mi = 1: Mi

if xi(mi) < x(1), yi(mi) = y(1) -(y(2) - y(1))/(x(2) - x(1) )*(x (1) - xi(mi));
elseif xi(mi)>x(M)

yi(mi) = y(M)+(y(M) - y(M - 1))/(x(M) - x(M-1))*(xi(mi) - x(M));
else

for m = 2:M
if xi(mi) <= x(m)

yi(mi) = y(m - 1)+(y(m) - y(m - 1))/(x(m) - x(m - 1 ))*(xi(mi) - x(m - 1));
break;

end
end

end
end

3.11 Least-Squares Curve Fitting
(a) There are several nonlinear relations listed in Table 3.5, which 

can be linearized to fit the LS algorithm. The MATLAB routine 
“c u r v e _ f i t ( ) ” implements all the schemes that use the LS method 
to find the parameters for the template relations, but the parts for the 
relations (1), (2), (7), (8), and (9) are missing. Supplement the missing 
parts to complete the routine.

(b) The program “nm3p11.m” generates the 12 sets of data pairs according to 
various types of relations (functions), applies the routines 
“c u r v e _ f i t ( ) ”/ “ l s q c u r v e f i t ( ) ” to find the parameters of the template 
relations, and plots the data pairs on the fitting curves obtained from the 
template functions with the estimated parameters. Complete and run it 
to get the graphs like Fig. P3.11. Answer the following questions.
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(i) If any, find the case(s) where the results of using the two routines 
make a great difference. For the case(s), try with another initial 
guess th0 =  [1 1] of parameters, instead of th0 =  [0 0].

(ii) If the MATLAB built-in routine “ l s q c u r v e f i t ( ) ” yields a bad 
result, does it always give you a warning message? How do you 
compare the two routines?

function [th,err,yi] = curve_fit(x,y,KC,C,xi,sig)
% implements the various LS curve-fitting schemes in Table 3.5
% KC = the # of scheme in Table 3.5
% С = optional constant (final value) for KC! = 0 (nonlinear LS)
% degree of approximate polynomial for KC = 0 (standard LS)
% sig = the inverse of weighting factor for WLS
Nx = length(x); x = x(:); y = y(:);
if nargin == 6, sig = sig(:);

elseif length(xi) == Nx, sig = xi(:); xi = x;
else sig = ones(Nx,1);

end
if nargin < 5, xi = x; end; if nargin < 4  | C < 1, C = 1; end
switch KC

case 1

case 2

case {3,4}
A(1:Nx,:) = [x./sig ones(Nx,1)./sig];
RHS = log(y)./sig; th = A\RHS;
yi = exp(th(1)*xi + th(2)); y2 = exp(th(1)*x + th(2));
if KC == 3, th = exp([th(2) th(1)]);
else th(2) = exp(th(2));

end
case 5

if nargin < 5, C = max(y) + 1; end %final value
A(1:Nx,:) = [x./sig ones(Nx,1)./sig];
y1 = y; y1(find(y > C - 0.01)) = C - 0.01;
RHS = log(C-y1)./sig; th = A\RHS;
yi = C - exp(th(1)*xi + th(2)); y2 = C - exp(th(1)*x + th(2));
th = [-th(1) exp(th(2))];

case 6
A(1:Nx,:) = [log(x)./sig ones(Nx,1)./sig];
y1 = y; y1(find(y < 0.01)) = 0.01;
RHS = log(y1)./sig; th = A\RHS;
yi = exp(th(1)*log(xi) + th(2)); y2 = exp(th(1)*log(x) + th(2));
th = [exp(th(2)) th(1)];

case 7 .................................
case 8 .................................
case 9 .................................
otherwise %standard LS with degree C

A(1:Nx,C + 1) = ones(Nx,1)./sig;
for n = C:-1:1, A(1:Nx,n) = A(1:Nx,n + 1).*x; end
RHS = y./sig; th = A\RHS;
yi = th(C+1); tmp = ones(size(xi));
y2 = th(C+1); tmp2 = ones(size(x));
for n = C:-1:1,

tmp = tmp.*xi; yi = yi + th(n)*tmp;
tmp2 = tmp2.*x; y2 = y2 + th(n)*tmp2;

end
end
th = th(:)'; err = norm(y - y2);
if nargout == 0, plot(x,y,'*', xi,yi,'k-'); end
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%nm3p11 to plot Fig.P3.11 by curve f ittin g  
clear
x = [1: 20]*2 - 0.1; Nx = length(x);
noise = rand(1,Nx) - 0.5; % 1xNx random noise generator
xi = [1:40]-0.5; %interpolation points 
figure(1), clf
a = 0.1; b = -1; c = -50; %Table 3.5(0)
y = a*x.~2 + b*x + c + 10*noise(1:Nx);
[th ,e rr,y i]  = curve_fit(x ,y ,0 ,2 ,x i); [a b c],th  
[a b c],th  %if you want parameters 
f = inline(' th(1)*x.~2 + th(2)*x+th(3) ' , lt h l , ' x l);
[th,err] = lsqcurvefit(f,[0 0 0],x,y),  yi1 = f( th ,xi ) ;  
subplot(321), p lot (x,y, '* | ,  x i , y i , ' k | ,  x i , y i1 , ' r | )  
a = 2; b = 1; y = a./x + b + 0.1*noise(1:Nx); %Table 3.5(1) 
[ th,err,yi]  = curve_fit(x,y,1,0,xi); [a b],th 
f = inl ine( ' th(1) . /x + t h ( 2 ) | , | t h | , | x | ) ;
th0 = [0 0]; [th,err] = lsqcurvefit(f , th0,x,y),  yi1 = f( th,xi ) ;  
subplot(322), p lot (x,y, '* | ,  x i , y i , ' k | ,  x i , y i1 , ' r | )  
a = -20; b = -9; y = b./(x+a) + 0.4*noise(1:Nx); %Table 3.5(2) 
[ th,err,yi]  = curve_fit(x,y,2,0,xi); [a b],th 
f = in l ine ( ' t h ( 2) . / ( x+ th (1 ) ) | , | th | , | x ' ) ;
th0 = [0 0]; [th,err] = lsqcurvefit(f , th0,x,y),  yi1 = f( th,xi ) ;  
subplot(323), p lot (x,y, '* | ,  x i , y i , ' k | ,  x i , y i1 , ' r | )  
a = 2.; b = 0.95; y = a*b.~x + 0.5*noise(1:Nx); %Table 3.5(3) 
[ th,err,yi]  = curve_fit(x,y,3,0,xi); [a b],th 
f = in l in e ( ' t h ( 1) * t h (2 ) .~x V th V x ' ) ;
th0 = [0 0]; [th,err] = lsqcurvefit(f , th0,x,y),  yi1 = f( th,xi ) ;  
subplot(324), p lot (x,y, '* | ,  x i , y i , ' k | ,  x i , y i1 , ' r | )  
a = 0.1; b = 1; y = b*exp(a*x) +2*noise(1:Nx); %Table 3.5(4) 
[ th,err,yi]  = curve_fit(x,y,4,0,xi); [a b],th 
f = inl ine( ' th(2)*exp( th(1)*x) | , | th| , |x ' ) ;
th0 = [0 0]; [th,err] = lsqcurvefit(f , th0,x,y),  yi1 = f( th,xi ) ;  
subplot(325), p lot (x,y, '* | ,  x i , y i , ' k | ,  x i , y i1 , ' r | )  
a = 0.1; b = 1; %Table 3.5(5)
y = -b*exp(-a*x); C = -min(y)+1; y = C + y + 0.1*noise(1:Nx);
[ th,err,yi]  = curve_fit(x,y,5,C,xi); [a b],th
f = inl ine( '1- th(2)*exp(-th(1)*x) | , | th | , | x ' ) ;
th0 = [0 0]; [th,err] = lsqcurvefit(f , th0,x,y),  yi1 = f( th,xi ) ;
subplot(326), p lot (x,y, '* | ,  x i , y i , ' k | ,  x i , y i1 , ' r | )
figure(2), clf
a = 0.5; b = 0.5; y = a*x.~b +0.2*noise(1:Nx); %Table 3.5(6a) 
[ th,err,yi]  = curve_fit(x,y,0,2,xi); [a b],th 
f = in l in e( ' th (1 )*x .* th (2 ) ' , ' th ' , ' x ' ) ;
th0 = [0 0]; [th,err] = lsqcurvefit(f , th0,x,y),  yi1 = f( th,xi ) ;  
subplot(321), p lot (x,y, '* | ,  x i , y i , ' k | ,  x i , y i1 , ' r | )  
a = 0.5; b = -0.5; %Table 3.5(6b)
y = a*x.~b + 0.05*noise(1:Nx);
[ th,err,yi]  = curve_fit(x,y,6,0,xi); [a b],th 
f = in l in e( ' th (1 )*x .* th (2 ) ' , ' th ' , ' x ' ) ;
th0 = [0 0]; [th,err] = lsqcurvefit(f , th0,x,y),  yi1 = f( th,xi ) ;  
subplot(322), p lot (x,y, '* | ,  x i , y i , ' k | ,  x i , y i1 , ' r | )

(cf) If there is no theoretical basis on which we can infer the physical relation 
between the variables, how do we determine the candidate function suitable 
for fitting the data pairs? We can plot the graph of data pairs and choose one 
of the graphs in Fig. P3.11 which is closest to it and choose the corresponding 
template function as the candidate fitting function.
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LS fitting curves for data pairs with various relations.Figure P3.11

3.12 Two-Dimensional Interpolation

Compose a routine “z = f i n d _ d e p t h ( x i , y i ) ” that finds the depth z of a 
geological stratum at a point ( x i , y i )  given as the input arguments, based 
on the data in Problem 1.4.

0

0

0
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(cf) If you have no idea, insert just one statement involving ‘in te r p 2 () ’ into 
the program ‘nm1p04.m’ (Problem 1.4) and fit it into the format of a MAT
LAB function.

3.13 Polynomial Curve Fitting by Least Squares and Persistent Excitation

Suppose the theoretical (true) relationship between the input x  and the 
output y  is known as

y  =  x +  2 (P3.13.1)

Charley measured the output data y  10 times for the same input value 
x =  1 by using a gauge whose measurement errors has a uniform distribu
tion U [—0.5, +0.5]. He made the following MATLAB program “nm3p13”, 
which uses the routine “p o l y f i t s ( ) ” to find a straight line fitting the data.
(a) Check the following program and modify it if needed. Then, run the 

program and see the result. Isn’t it beyond your imagination? If you use 
the MATLAB built-in function “p o l y f i t ( ) ”, does it get any better?

%nm3p13.m
tho = [1 2]; %true parameter
x = ones(1,10); %the unchanged input
y = tho(1)*x + tho(2)+(rand(size(x)) - 0.5);
th_ls = polyf i t s (x ,y ,1) ;  %uses the MATLAB routine in Sec.3.8.2 
po lyfi t (x,y,1)  %uses MATLAB bu i l t - in  function

(b) Note that substituting Eq. (3.8.2) into Eq.(3.8.3) yields

в o =
a

bo =  [ATA]—1A T y

M 2
n=0 x n£ : =  x £

M

£

M
£ „ = 0  x nyn 

M yn=0 y n
(P3.13.2)

If x n =  c(constant) Vn =  0 : M , is the matrix A TA  invertible?
(c) What conclusion can you derive based on (a) and (b), with reference to 

the identifiability condition that the input must be rich in some sense 
or persistently exciting?
(cf) This problem implies that the performance of the identification/estimation 

scheme including the curve fitting depends on the characteristic of input 
as well as the choice o f algorithm.

3.14 Scaled Curve Fitting for an Ill-Conditioned Problem [M-2]

Consider Eq. (P3.13.2), which is a typical least-squares (LS) solution. The 
matrix A TA, which must be inverted for the solution to be obtained, may 
become ill-conditioned by the widely different orders of magnitude of its 
elements, if the magnitudes of all x n ’s are too large or too small, being far

1
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from 1 (see Remark 2.3). You will realize something about this issue after 
solving this problem.
(a) Find a polynomial of degree 2 which fits four data points (106, 1), (1.1 x 

106, 2), (1.2 x  106, 5), and (1.3 x  106, 10) and plot the polynomial 
function (together with the data points) over the interval [106, 1.3 x
106] to check whether it fits the data points well. How big is the relative 
mismatch error? Does the polynomial do the fitting job well?

(b) Find a polynomial of degree 2 which fits four data points (107, 1),(1.1 x 
107 , 2), (1.2 x  107 , 5), and (1.3 x  107, 10) and plot the polynomial 
function (together with the data points) over the interval [107, 1.3 x
107] to check whether it fits the data points well. How big is the relative 
mismatch error? Does the polynomial do the fitting job well? Did you 
get any warning message on the MATLAB command window? W hat 
do you think about it?

(c) If you are not satisfied with the result obtained in (b), why don’t you 
try the scaled curve fitting scheme described below?
1. Transform the x n’s of the data point (xn, y n) ’s into the region 

[ - 2 ,  2] by the following relation.

4
x'n <----- 2 H--------- -------- (xn -  xmin) (P3.14.1)

xmax -  xmin
2. Find the LS polynomial p ( x ' )  fitting the data point (xn, yn)’s.
3. Substitute

4
X <----- 2 H------------------ (x Xmin) (P3.14.2)

xmax -  xmin
for x ! into p ( x !).

(cf) You can complete the following program “nm3p14” and run it to get the 
numeric answers.

%nm3p14.m
clear ,  c l f
format long e
x = 1e6*[1 1.1 1.2 1.3]; y = [1 2 5 10];
xi = x(1)+[0:1000]/1000*(x(end) - x(1));
[p ,e r r ,y i ]  = curve_f i t (x,y ,0 ,2 ,xi ); P, e rr
p l o t ( x , y , ' o ' , x i , y i ) ,  hold on
xmin = min(x); xmax = max(x);
x1 = -2 + 4*(x-xmin)/(xmax - xmin );
x1i = ??????????????????????????;
[p1,e rr ,yi ]  = ?????????????????????????; p1, e rr
p l o t ( x , y , ' o ' , x i , y i )
%To get the coeff ic ien ts  of the original f i t t i n g  polynomial
ps1 = poly2sym(p1);
syms x; ps0 = subs(ps1,x, - 2 + 4/(xmax - xmin)*(x - xmin));
p0 = sym2poly(ps0)
format short
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3.15 Weighted Least-Squares Curve Fitting

As in Example 3.7, we want to compare the results of applying the LS 
approach and the WLS approach for finding a function that we can believe 
will describe the relation between the input x  and the output y  as

y =  a x e bx (P3.15)

where the data pair (xm, y m)’s are given as

{(1, 3.2908), (5, 3.3264), (9,1 .1640), (13, 0.3515), (17, 0.1140)} 
from gauge A with error range ±  0.1

{(3,4.7323), (7,  2.4149), (11, 0.3814), (15, -0 .2 3 9 6 ), (19, -0 .2615)} 
from gauge B with error range ±  0.5

Noting that this corresponds to the case of Table 3.5(7), use the MATLAB 
routine “c u r v e _ f i t ( ) ” for this job and get the result as depicted in Fig. 
P3.15. Identify which one of the two lines a and b is the WLS fitting curve. 
How do you compare the results?

Figure P3.15 The LS and WLS fitting curves to  y  =  axebx.

3.16 DFT (Discrete Fourier Transform) Spectrum

Supplement the part of the MATLAB program “d o _ f f t ” (Section 3.9.2), 
which computes the DFT spectra of the two-tone analog signal described by 
Eq. (3.9.2) for the cases of zero-padding and whole interval extension and 
plots them as in Figs. 3.13c and 3.13d. Which is the clearest one among 
the four spectra depicted in Fig. 3.13? If you can generalize this, which 
would you choose among up-sampling, zero-padding, and whole interval 
extension to get a clear spectrum?
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3.17 Effect of Sampling Period, Zero-Padding, and W hole Time Interval on 
DFT Spectrum

In Section 3.9.2, we experienced the effect of zero-padding, sampling period 
reduction, and whole interval extension on the DFT spectrum of a two-tone 
signal that has two distinct frequency components. Here, we are going 
to investigate the effect o f zero-padding, sampling period reduction, and 
whole interval extension on the DFT spectrum of a triangular pulse depicted 
in Fig. P3.17.1c. Additionally, we will compare the DFT with the CtFT 
(continuous-time Fourier transform) and the DtFT (discrete-time Fourier 
transform) [O-1].
(a) The definition of CtFT that is used for getting the spectrum of a 

continuous-time finite-duration signal x ( t )  is

/TO
x ( t ) e -jMt d t  (P3.17.1)

-TO

r(t)

Figure P3.17.1 A triangular pulse as the convolution of two rectangular pulses.

The CtFT has several useful properties including the convolution 
property and the time-shifting property described as

(CtFT)
x ( t )  * y ( t )  -------> X ( m ) Y ( m ) (P3.17.2)

(CtFT )

x ( t  -  t1) -------► X ( m ) e -Jat1 (P3.17.3)

Noting that the triangular pulse is the convolution of the two rectangular 
pulse r ( t ) ’s whose CtFTs are

Z1 • , sin м
eJ d t  =  2 -------

1 м

we can use the convolution property (P3.17.2) to get the CtFT of the 
triangular pulse as

CtFTjA(t)} =  CtFT{r(t) * r ( t ) }  (P3= . 2) R ( m ) R ( m )

. 2sin м м
=  4 — —  =  4 sinc2 ! - )  (P3.17.4)

м2 \ n  /
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(a) xa[n] and its spectrum (b) Reduction o f sampling period

- f \
[  -  CtFT |Xa(w)| ' \ 10 1 — CtFT spectrum |Xb(w)| ' V

1 \  - -  DtFT |Xa(Q)| ; \ I - -  DtFT spectrum |Xb(Q)| ;

1
DFT |Xa(k)| / \

5
1 —•  DFT spectrum |Xb(k)| I

1 , . J C ' v' L 0 V N ^ - - ^ N ^ 4 .  T - f  J

0 digital frequency p 
0 analog frequency p

6 k  7

Q
w

2п 0 digital frequency п 
2p  0 analog frequency 2p

k  15

Q 2п
w 4p

(d) Double repetition

0 digital frequency p 
0 analog frequency p

k  15 0

Q 2p  0 digital frequency p  Q 2p
w 2p 0 analog frequency p  w 2p

Figure P3.17.2 Effects of sampling period, zero-padding, and whole interval on DFT spectrum.

8

4

0
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Successively, use the time shifting property (P3.17.3) to get the CtFT of

x ( t )  =  A ( t  +  2) -  A ( t  -  2) (P3.17.5)
as

X(co)  (p31.Z;3’4) т (o))e^2w — T(tx>)e~j2a) =  _/8sin(2<w) sinc2 ^

(P3.17.6)
Get the CtFT Y(rn) o f the triangular wave that is generated by repeating 
x ( t )  two times and described as below.

y ( t )  =  x ( t  +  4) +  x ( t  -  4) (P3.17.7)

Plot the spectrum X(rn)  for 0 <  rn <  2п  and check if the result is the 
same as depicted in a solid line in Fig. P3.17.2a or P3.17.2c. You can 
also plot the spectrum X(rn)  for 0 <  rn <  4п  and check if the result 
is the same as the solid line in Fig. P3.17.2b. Additionally, plot the 
spectrum Y(rn) for 0 <  rn <  2 n  and check if the result is the same as 
the solid line in Fig. P3.17.2d.

(b) The definition of DtFT, which is used for getting the spectrum of a 
discrete-time signal x[n], is

TO
X (fi)  =  x [ n ] e - jQn (P3.17.8)

n=—TO

Use this formula to compute the DtFTs of the discrete-time signals 
x a [ n ] , x b[ n ] , x c[ n ] , x d [n] and plot them to see if the results are the 
same as the dotted lines in Fig. P3.17.2a-d . W hat is the valid ana
log frequency range over which each DtFT spectrum is similar to the 
corresponding CtFT spectrum, respectively? Note that the valid analog 
frequency range is [—п / T ,  + n / T ] for the sampling period T .

(c) Use the definition (3.9.1a) of DFT to get the spectra of the discrete-time 
signals x a[ n ] , x b[n], xc[n], and x d [n] and plot them to see if the results 
are the same as the dots in Fig. P3.17.2a-d . Do they match the samples 
of the corresponding DtFTs at =  2 k n / N ?  Among the DFT spectra
(a), (b), (c), and (d), which one describes the corresponding CtFT or 
DtFT spectra for the widest range of analog frequency?

3.18 Windowing Techniques Against the Leakage of DFT Spectrum

There are several window functions ready to be used for alleviating the 
spectrum leakage problem or for other purposes. We have made a MAT- 
LAB routine “windowing()” for easy application of the various windows.



PROBLEMS 1 7 5

Applying the Hamming window function to the discrete-time signal x d [n] 
in Fig. 3.13d, get the new DFT spectrum, plot its magnitude together with 
the windowed signal, check if they are the same as depicted in Fig. P3.18b, 
and compare it with the old DFT spectrum in Fig. 3.13d or Fig. P3.18a. 
You can start with the incomplete MATLAB program “nm3p18.m” below. 
W hat is the effect of windowing on the spectrum?

2

1

0

-1

-2

20

0 2 4 t = n T  6
(b) Bartlett/triangular windowing

0
0 5 10 k 54 59

Figure P3.18 The e f f e c t  of windowing on DFT spectrum.

0

fu n c t i o n  xw = windowing(x,w)
N = l e n g t h ( x ) ;
i f  na rg in  < 2  | w == ' r t '  | i sempty(w) ,  xw = x; 

e l s e i f  w == ' b t ' ,  xw = x . * b a r t l e t t ( N ) ' ;  
e l s e i f  w == ' b k ' ,  xw = x .*b lackman(N) ' ;  
e l s e i f  w == 'hm' ,  xw = x.*hamming(N)' ;  
end

%nm3p18: windowing e f f e c t  on DFT spectrum 
w1 = 1 .5 *p i ;  w2 = 3*pi;  %two tones  
N = 64; n = 1:N; T = 0 .1 ;  t  = (n - 1)*T; 
k = 1:N; w0 = 2*pi /T;  w = (k - 1)*w0; 
xbn = s in(w1*t )  + 0 .5 * s in ( w 2 * t ) ;  
xbwn = w i n d o w i n g ( x b n , ' b t ' ) ;
Xb = f f t ( x b n ) ;  Xbw = f f t ( x b w n ) ;  
s u b p l o t ( 4 2 1 ) ,  s t e m ( t , x b n , ' . ' )  
s u b p l o t ( 4 2 3 ) ,  s t e m ( k , a b s ( X b ) , ' . ' )
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3.19 Interpolation by Using DFS: Zero-Padding on the Frequency Domain 
The fitting curve in Fig. 3.14d has been obtained by zeroing out all the 
digital frequency components higher than n /2 [rad](N/4 <  k <  3N/4) of the 
sequence x[n] in Fig. 3.14a. Plot another fitting curve obtained by removing 
all the frequency components higher than n /4 [rad](N/8 <  k <  7N /8) and 
compare it with Fig. 3.14d.

3.20 On-Line Recursive Computation of DFT

For the case where you need to compute the DFT of a block of data every 
time a new sampled data replaces the oldest one in the block, we derive 
the following recursive algorithm for DFT computation.

Defining the first data block and the m th data block as

| xq[0], xq[1], xq[N  -  1]} =  {0, 0 , . . . ,  0} (P3.20.1)

|x m[0], xm[1], . . . ,  xm[N  — 1]} =  {x[m], x [m +  1], . . . ,  x [m + N  — 1]} (P3.20.2)

the DFT for the (m +  1)th data block

|xm+1[0], xm+1 [1], . . . ,  xm + 1 [N — 1]} =  {x[m +  1], x[m +  2 ] , . . . ,  x[m +  N ]}
(P3.20.3)

can be expressed in terms of the DFT for the mth data block

N—1
X m(k)  =  ^  x m[ n] e—j2nnk/N, k  =  0 : N  — 1 (P3.20.4)

n=0

as follows:

E N — 1 о i i \j x—\N—1
xm + 1[n]e—j n / = У 2  xm[n +  1] 

n=0 i—̂n==)
N—1

- j  2nnk/N

E N —1
xm[n +  1]

n 0
—j2n(n+1)k/N J2nk/N

*n=0
N

E  xm[n]e 1 
n=1

e~j  2nnk/Nej 2nk/N

\ t n —1yt -^n=0
e—j 2nnk/N +  x  [ n  ] — x[0] ej  2nk/N

=  {Xm (k) +  x  [N  ] — x[0]}ej 2nk/N (P3.20.5)

You can compute the 128-point DFT for a block composed of 128 random 
numbers by using this RDFT algorithm and compare it with that obtained



PROBLEMS 1 7 7

by using the MATLAB built-in routine “f f t ( ) ” . You can start with the 
incomplete MATLAB program “do_RDFT.m” below.

%do_RDFT 
clear ,  c l f
N = 128; k = [0:N - 1];
x = zeros(1,N); %ini tial ize the data block 
Xr = zeros(1,N); % and i t s  DFT 
for m = 0:N

xN = rand; %new data
Xr = (Xr + xN - x(1)).*???????????????? %RDFT formula (P3.20.5) 
x = [x(2:N) xN];

end
dif  = norm(Xr-fft(x)) %difference between RDFT and FFT



4

NONLINEAR EQUATIONS

4.1 ITERATIVE METHOD TOWARD FIXED POINT

Let’s see the following theorem.

Fixed-Point Theorem : Contraction Theorem[K-2, Section51]. Suppose a function 
g ( x )  is defined and its first derivative g ' ( x )  exists continuously on some interval
I  =  [x° — r, x o +  r ] around the fixed point x o of g ( x )  such that

Then, if the absolute value of g ' ( x )  is less than or equal to a positive number a  
that is strictly less than one, that is,

g ( x o) =  x o (4.1.1)

jg 'M j  < a  <  1 (4.1.2)

the iteration starting from any point x0 e I

xk+1  =  g ( x k) with x0 e I (4.1.3)

converges to the (unique) fixed point x o of g ( x ) .

Applied Numerical Methods Using MATLAB®, by Yang, Cao, Chung, and Morris 
Copyright © 2005 John Wiley & Sons, Inc.

1 7 9
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Proof. The Mean Value Theorem (MVT) (Appendix A) says that for any two 
points x0 and x 0, there exists a point x between the two points such that

g ( x 0 ) -  g ( x 0) =  g ' ( x ) ( x 0 -  x 0); xx -  x 0 (4ЛЗ)=(4ЛЛ) g ' ( x ) ( x 0 -  x 0) (1)

Taking the absolute value of both sides of (1) and using the precondition
(4.1.2) yields

\xx -  x 0 \ <  a \x0 -  x 0 \ <  \x0 -  x 0 \ (2)

which implies that x 1 is closer to x 0 than x0 and thus still stays inside the interval
I . Applying this successively, we can get

\xk -  x 0\ <  a\xk-1 -  x 0\ < a 2\xk-2 -  x 0\ < •  • • <  a k \x0 -  x ° \ ^  0 as k (3)

which implies that the iterative sequence {xk} generated by (4.1.3) converges to x 0.

(Q) Is there any possibility that the fixed point is not unique— that is, more than one 
point satisfy Eq. (4.1.1) and so the iterative scheme may get confused among the 
several fixed points?

(A) It can never happen, because the points x 01 and x 02 satisfying Eq. (4.1.1) must 
be the same:

\x01 -  x02\ =  \g(x01) -  g(x02)\ < a\ x01 -  x 02\ (a < 1); \x01 -  x02\ =  0; x01 =  x02

In order to solve a nonlinear equation f ( x )  =  0 using the iterative method based on 
this fixed-point theorem, we must somehow arrange the equation into the form

x =  g(x)  (4.1.4)

and start the iteration (4.1.3) with an initial value x0, then continue until some stop
ping criterion is satisfied; for example, the difference \xk+1 -  xk \ between the successive 
iteration values becomes smaller than some predefined number (TolX) or the iteration 
number exceeds some predetermined number (Maxlter). This scheme is cast into the 
MATLAB routine “f i x p t ( ) ”. Note that the second output argument (err) is never the 
real error— that is, the distance to the true solution— but just the last value of \ xk+1 -  xk\ 
as an error estimate. See the following remark and examples.

R em ark  4.1. Fixed-Point Iteration. Noting that Eq. (4.1.4) is not unique for a 
given f ( x )  =  0, it would be good to have g ( x )  such that \ g' (x) \  <  1 inside 
the interval I  containing its fixed point x 0 which is the solution we are look
ing for. It may not be so easy, however, to determine whether \ g' ( x)  \ <  1 is



satisfied around the solution point if we don’t have any rough estimate of the 
solution.
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function [x,err,xx] = fixpt(g,x0,TolX,MaxIter)
% solve x = g(x) s ta r t ing  from x0 by fixed-point  i t e r a t ion .
%input : g,x0 = the function and the i n i t i a l  guess
% TolX = upperbound of incremental difference |x(n + 1) - x(n)|
% MaxIter = maximum # of i t e ra t ions
%output: x = point which the algorithm has reached
% err  = la s t  value |x(k) - x(k - 1)| achieved
% xx = history of x
i f  nargin < 4, MaxIter = 100; end
i f  nargin < 3, TolX = 1e-6; end
xx(1) = x0;
for k = 2:MaxIter

xx(k) = feval(g,xx(k - 1)); %Eq.(4.1.3)
er r  = abs(xx(k) - xx(k - 1)); i f  e rr  < TolX, break; end

end
x = xx(k); 
i f  k == MaxIter

fprint f( 'Do not rely on me, though best in %d i terat ions \n ' ,MaxI ter ) 
end

Exam ple 4.1. Fixed-Point Iteration. Consider the problem of solving the nonlin
ear equation

f 41(x)  =  x 2 -  2 =  0 (E4.1.1)

In order to apply the fixed-point iteration for solving this equation, we need 
to convert it into a form like (4.1.4). Let’s try with the following three forms and 
guess that the solution is in the interval I  =  (1 ,1 .5).

(a) How about x 2 -  2 =  0 ^  x 2 =  2 ^  x =  2 /x  =  g a ( x )? (E4.1.2)

Let’s see if the absolute value of the first derivative of g a (x)  is less than 
one for the solution interval, that is, |ga' ( x ) | =  2 /x 2 <  1 Vx e I . This 
condition does not seem to be satisfied and so we must be pessimistic 
about the possibility of reaching the solution with (E4.1.2). We don’t need 
many iterations to confirm this.

2 2 2 2 
xo =  1; x i  =  —  =  2 ; x 2 =  —  =  1; x 3 =  —  = 2 ; x 4 =  —  =  1; • • •

Xq Х1 X2 Хз
(E4.1.3)

The iteration turned out to be swaying between 1 and 2, never approaching 
the solution.

(b) How about x 2 - 2  =  0 ^ ( x - 1 ) 2 + 2 x - 3 = 0 ^ x  =  - |{ ( x  -  l ) 2 -  
3} =  gb( x) ?  (E4.1.4)

This form seems to satisfy the convergence condition

|gb'(x)| =  |x -  1| < 0 . 5  <  1 V x e I (E4.1.5)
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and so we may be optimistic about the possibility of reaching the solution 
with (E4.1.4). To confirm this, we need just a few iterations, which can 
be performed by using the routine “f i x p t ( ) ” .

> > g b = i n l i n e ( ' - ( ( x - 1 ) . A2 - 3 ) / 2 ' , ' x ' ) ;
> > [ x , e r r ,x x ]=f ix p t ( gb ,1 ,1 e -4 ,5 0 ) ;
>>xx

1.0000 1.5000 1.3750 1.4297 1.4077 . . .

The iteration is obviously converging to the true solution \ f l  =  1 .4 1 4 . . . ,  
which we already know in this case. This process is depicted in Fig. 4.1a.

(c) How about x 2 = 2 ^ x  =  ^ ^ x + x  =  ^ +  x ^ x  =  ^ ( x  +  ^) =  
gc( x) ?  X X (E4.1.6)

This form seems to satisfy the convergence condition

\gc'(x)\  =  ~ <  0.5 <  1 Vx e I (E4.1.7)
x

which guarantees that the iteration will reach the solution. Moreover, since 
this derivative becomes zero at the solution of x 2 =  2, we may expect fast 
convergence, which is confirmed by using the routine “f i x p t ( ) ”. The 
process is depicted in Fig. 4.1b.

>>gc = i n l i n e ( ' ( x + 2 . / x ) / 2 ' , ' x ' ) ;
>>[x ,e r r ,xx]  = f i x p t ( g c ,1 ,1 e - 4 ,5 0 ) ;
>>xx

1.0000 1.5000 1.4167 1.4142 1.4142 . . .

(cf) In fact, if the nonlinear equation that we must solve is a polynomial equation, 
then it is convenient to use the MATLAB built-in command “roots( )”.

y  = X
>'4 > -

' \  y  = 9c (X) !

1.0000' !
' ' 1.5000 ----

1.4167 -

1.4142 / ;
1.4142

/ ii:

X0 X2 X3 X1 X0 X2 X-,

(a) xk+ 1 = 9b (xk) = -  -2 {(xk -  1)2 -3} (b) Xk+ 1 = 9 c (xk) = j  X  + XQ

Figure 4.1 Iterative method to solve nonlinear equations based on the fixed-point theorem.
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(Q) How do we make the iteration converge to another solution x =  — of
x 2 -  2  =  0?

4.2  BISECTION METHOD

The bisection method can be applied for solving nonlinear equations like f ( x )  =
0, only in the case where we know some interval [a , b ] on which f ( x )  is contin
uous and the solution uniquely exists and, most importantly, f ( a )  and f ( b )  have 
the opposite signs. The procedure toward the solution of f ( x )  =  0 is described 
as follows and is cast into the MATLAB routine “b i s c t ( ) ” .

Step 0. Initialize the iteration number k  =  0.
Step 1. Let m =  \ ( a  +  b ) . l f  f ( m )  ~  Oor \ { b  — a)  ss 0, then stop the iteration. 
Step 2. If f  ( a ) f  (m)  >  0, then let a —  m; otherwise, let b —  m. Go back to 

step 1.

function [x,err,xx] = bisct(f ,a,b,TolX,MaxIter)
%bisct.m to solve f(x) = 0 by using the bisection method.
%input : f = f tn to be given as a s t r ing ' f ' i f  defined in an M-file
% a/b = i n i t i a l  l e f t / r i g h t  point of the solution interva l
% TolX = upperbound of er ror  |x(k) - xo|
% Maxlter = maximum # of i te ra t ions
%output: x = point which the algorithm has reached
% err  = (b - a ) /2(hal f  the la s t  interval width)
% xx = history of x
TolFun=eps; fa = f eva l ( f , a ) ;  fb = feva l ( f ,b ) ;
i f  fa*fb > 0, error('We must have f (a) f (b)<0! ' ) ; end
for k = 1: Maxlter

xx(k) = (a + b)/2;
fx = feval ( f ,xx(k) );  e rr  = (b-a)/2;

i f  abs(fx) < TolFun | abs(err)<TolX, break;
e ls e if  fx*fa > 0, a = xx(k); fa = fx;
else b = xx(k);

end
end
x = xx(k);
i f  к == Maxlter, fp r in tf ( 'The best in %d i t e r a t i o n s \ n 1, Maxlter), end

R em ark  4.2. Bisection Method Versus Fixed-Point Iteration

1. Only if the solution exists on some interval [ a , b ] ,  the distance from the 
midpoint (a +  b ) / 2  of the interval as an approximate solution to the true 
solution is at most one-half of the interval width— that is, (b -  a ) / 2 ,  which 
we take as a measure of error. Therefore, for every iteration of the bisection 
method, the upper bound of the error in the approximate solution decreases 
by half.
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2. The bisection method and the false position method appearing in the next 
section will definitely give us the solution, only if the solution exists 
uniquely in some known interval. But the convergence of the fixed- 
point iteration depends on the derivative of g ( x )  as well as the initial 
value x0.

3. The MATLAB built-in routine f z e r o ( f , x )  finds a zero of the function 
given as the first input argument, based on the interpolation and the bisec
tion method with the initial solution interval vector x =  [a b] given as 
the second input argument. The routine is supposed to work even with an 
initial guess x =  x 0 of the (scalar) solution, but it sometimes gives us a 
wrong result as illustrated in the following example. Therefore, it is safe 
to use the routine f z e r o ( )  with the initial solution interval vector [a b] as 
the second input argument.

Exam ple 4.2. Bisection Method. Consider the problem of solving the nonlinear 
equation

f 42( x ) =  tan(n  -  x)  -  x  =  0 (E4.2.1)

Noting that f 42(x) has the value of infinity at x =  n / 2  =  1 . 5 7 . . . ,  we set 
the initial solution interval to [1.6, 3] excluding the singular point and use the 
MATLAB routine “b i s c t ( ) ” as follows. The iteration seems to be converging 
to the solution as we expect (see Fig. 4.2b).

>>f42 = i n l i n e ( ' t a n ( p i  - x ) - x ' , ' x ' ) ;
>>[x ,e r r ,xx]  = b i s c t ( f 4 2 , 1 . 6 , 3 , 1 e - 4 , 5 0 ) ;
>>xx

2.3000 1.9500 2.1250 2.0375 1.9937 2.0156 . . .  2.0287

But, if we start with the initial solution interval [a, b] such that f ( a )  and f ( b )  
have the same sign, we will face the error message.

>>[x ,e r r ,xx]  = b i s c t ( f 4 2 , 1 . 5 , 3 , 1 e - 4 , 5 0 ) ;
??? Error using ==> b i sc t
We must have f (a ) f ( b)<0!

Now, let’s see how the MATLAB built-in routine f z e r o ( f , x )  works.

>> f z e r o ( f 4 2 , [1 . 6  3])
ans = 2.0287 %good job!

>> f z e r o ( f 4 2 , [1 . 5  3])
??? Error using ==> fzero
The func tion values a t  i n t e r v a l  endpoints must d i f f e r  in sign.

>> fz e ro ( f42 ,1 .8 )  %with an i n i t i a l  guess as 2nd input  argument 
ans = 1.5708 %wrong r e s u l t  with no warning message

(cf) Not all the solutions given by computers are good, especially when we are careless.
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k ak Xk bk f (Xk)

0 1.6 3.0 32.6, -2.86
1 1.6 2.3 3.0 -1.1808
2 1.6 1.95 2.3 0.5595
3 1.95 2.125 2.3 -0.5092
4 1.95 2.0375 2.125 -0.5027

(a) Process of the bisection method (b) The graph of f(X) = tan(p -  x) -  x

Figure 4.2 Bisection method for Example 4.2.

4.3  FALSE POSITION OR REGULA FALSI METHOD

Similarly to the bisection method, the false position or regula falsi method starts 
with the initial solution interval [a , b ] that is believed to contain the solution of 
f ( x )  =  0. Approximating the curve of f ( x )  on [a, b] by a straight line connecting 
the two points (a,  f ( a ) )  and (b,  f ( b ) ) ,  it guesses that the solution may be the 
point at which the straight line crosses the x axis:

f ( a )  „  л , f ( b )  n  л a f  (b) — b f  (a)
x  =  a --------------------- (b  — a)  =  b ----------------------(b — a)  = ---------------------

f ( a ) — f  (P) '  f  (P) — f  (a)  '  f  (a)  — f  (b)
(4.3.1)

function [x,err,xx] = falsp(f,a,b,TolX,MaxIter)
%bisct.m to solve f(x)=0 by using the fal se  posit ion method.
%input : f = f tn to be given as a s t r ing ' f '  i f  defined in an M-file 
% a/b = i n i t i a l  l e f t / r i g h t  point of the solution in te rva l
% TolX = upperbound of e r ro r (ma x( |x (k) -a | , | b -x(k) | ) )
% MaxIter = maximum # of i te ra t ions
%output: x = point which the algorithm has reached
% err  = m ax (x ( la s t ) - a | , | b -x ( l a s t ) | )
% xx = history of x
TolFun = eps; fa = f eva l ( f , a ) ;  fb=feval (f ,b);
i f  fa*fb > 0, error('We must have f ( a ) f (b )< 0 ! ' ) ;  end
for k = 1: MaxIter

xx(k) = (a*fb-b*fa)/ (fb-fa);  %Eq.(4.3.1) 
fx = feval ( f ,xx(k)) ;
e r r  = max(abs(xx(k) - a ),abs(b - xx(k))); 
i f  abs(fx) < TolFun | err<TolX, break; 
e ls e if  fx*fa > 0, a = xx(k); fa = fx; 
else b = xx(k); fb = fx; 

end
end
x = xx(k);
i f  k == MaxIter, fp r in tf ( 'The best in %d i te rat ions\n ' ,MaxIter ) ,  end
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(b) False position method

Figure 4.3 Solving the nonlinear equation f(x) =  tan(n —x) — x =  0.

3

For this method, we take the larger of \x — a\  and \b — x  | as the measure of error. 
This procedure to search for the solution of f ( x )  =  0 is cast into the MATLAB 
routine “f a l s p ( ) ” .

Note that although the false position method aims to improve the convergence 
speed over the bisection method, it cannot always achieve the goal, especially 
when the curve of f ( x )  on [a, b] is not well approximated by a straight line as 
depicted in Fig. 4.3. Figure 4.3b shows how the false position method approaches 
the solution, started by typing the following MATLAB statements, while Fig. 4.3a 
shows the footprints of the bisection method.

>>[x,err,xx] = falsp( f42,1.7,3,1e-4,50)  %with i n i t i a l  interva l  [1.7,3]

4.4  NEW TO N (-RA PH SO N ) METHOD

Consider the problem of finding numerically one of the solutions, x o, for a 
nonlinear equation

f ( x )  =  (x — x o)mg ( x )  =  0

where f ( x )  has (x — x o)m(m is an even number) as a factor and so its curve 
is tangential to the x -axis without crossing it at x  =  x o. In this case, the signs 
of f ( x o — e)  and f ( x o +  e)  are the same and we cannot find any interval [a, b] 
containing only x o as a solution such that f ( a ) f ( b )  <  0. Consequently, brack
eting methods such as the bisection or false position ones are not applicable to 
this problem. Neither can the MATLAB built-in routine f z e ro ( )  be applied to 
solve as simple an equation as x 2 =  0, which you would not believe until you try 
it for yourself. Then, how do we solve it? The Newton(-Raphson) method can



NEWTON(-RAPHSON) METHOD 1 8 7

be used for this kind of problem as well as general nonlinear equation problems, 
only if the first derivative of f ( x )  exists and is continuous around the solution.

The strategy behind the N ew ton(-Raphson) method is to approximate the 
curve of f ( x )  by its tangential line at some estimate x k

У -  f ( x k )  =  f  ' (xk) ( x  -  x k) (4.4.1)

and set the zero (crossing the x-axis) of the tangent line to the next estimate
xk+1.

0 -  f ( x k )  =  f  ' (xk)(xk+1 -  xk)

(Л лXk+1 = x k -  (4.4.2)
f  '(xk)

This Newton iterative formula is cast into the MATLAB routine “newton()”, 
which is designed to generate the numerical derivative (Chapter 5) in the case 
where the derivative function is not given as the second input argument.

Here, for the error analysis of the Newton method, we consider the second- 
degree Taylor polynomial (Appendix A) of f ( x )  about x =  x k:

. f " ( x k) 2
f { x )  ss f ( x k) +  f  (xk) ( x  -  x k) н-------— (x -  x k)

function [x,fx,xx] = newton(f,df,x0,TolX,MaxIter)
%newton.m to solve f(x) = 0 by using Newton method.
%input: f = f tn to be given as a st r ing ' f '  i f  defined in an M-file 
% df = df(x)/dx (If  not given, numerical derivative i s  used.)
% x0 = the i n i t i a l  guess of the solution
% TolX = the upper l imit  of |x(k) - x(k-1)|
% MaxIter = the maximum # of i t e ra t ion
%output: x = the point which the algorithm has reached
% fx = f ( x ( l a s t ) ) ,  xx = the history of x
h = 1e-4; h2 = 2*h; TolFun=eps;
i f  nargin == 4 & isnumeric(df),  MaxIter = TolX; TolX = x0; x0 = df; end 
xx(1) = x0; fx = feva l(f ,x0) ;  
for k = 1: MaxIter

i f  - isnumeric(df),  dfdx = feval(df ,xx(k) );  %derivative function 
else dfdx = (feval(f ,xx(k) + h) -feval (f ,xx(k) - h))/h2; %numerical drv 

end
dx = -fx/dfdx;
xx(k+1) = xx(k)+dx; %Eq.(4.4.2) 
fx = feval( f ,xx(k + 1));
i f  abs(fx)<TolFun | abs(dx) < TolX, break; end 

end
x = xx(k + 1);
i f  k == MaxIter, fp r in tf ( 'The best in %d i te rat ions\n ' ,MaxIter ) ,  end
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We substitute x =  x o (the solution) into this and use f ( x o) =  0 to write

f  ̂  (xis )о = f ( x°)  я» f ( x k) +  f ' { x k){x° -  xk) н------ -— (x° -  xk)2

and

- f (Xk)  ~ f ' ( x k)(x° -  xk) +  f  ^ k\ x° -  xk f

Substituting this into Eq. (4.4.2) and defining the error of the estimate x k as
ek =  x k — x o, we can get

~  о 4 , f " ( Xk) ,  О 42
Xk+l  ~  Xk +  ( x  — x k) +  7Г777— r(x — x k) >

2 f  '(xk)

\ek+l\
f"(xk)
2 f  '(xk)

ek =  A k e j  =  \Akek\\ek \ (4.4.3)

This implies that once the magnitude of initial estimation error \ e0 \ is small 
enough to make A e 0 <  l ,  the magnitudes of successive estimation errors get 
smaller very quickly so long as A k does not become large. The Newton method 
is said to be ‘quadratically convergent’ on account of the fact that the magnitude 
of the estimation error is proportional to the square of the previous estimation 
error.

Now, it is time to practice using the MATLAB routine “new ton() ” for solving 
a nonlinear equation like that dealt with in Example 4.2. We have to type the 
following statements into the MATLAB command window.

>>x0 = 1.8; TolX = 1e-5; MaxIter = 50; %with i n i t i a l  guess 1 . 8 , . . .  
>>[x ,e r r ,xx]  = newton(f42,x0,1e-5,50)  %1st order  de r iva t iv e  
>>df42 = i n l i n e ( ' - ( s e c ( p i - x ) ) . A2 - 1 ' , ' x ' ) ;  %1st order  de r iva t iv e  
>>[x,e rr ,xx1]  = newton(f42,df42 ,1.8,1e-5 ,50)

R em ark  4.3. N ew ton(-Raphson) Method

1. While bracketing methods such as the bisection method and the false posi
tion method converge in all cases, the Newton method is guaranteed to 
converge only in case where the initial value x 0 is sufficiently close to the 
solution x o and A ( x )  =  \ f  " ( x ) / 2 f  ' (x) \  is sufficiently small for x ~  x o. 
Apparently, it is good for fast convergence if we have small A ( x )— that is, 
the relative magnitude of the second-order derivative \ f " (x)  \ over \ f  ' (x)  \ is 
small. In other words, the convergence of the Newton method is endangered 
if the slope of f ( x )  is too flat or fluctuates too sharply.

2. Note two drawbacks of the N ew ton(-Raphson) method. One is the effort 
and time required to compute the derivative f  ' (xk) at each iteration; the
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(a) f42 (x) = tan (p -  x) -  x

(c) f44b (x) = ^  (X2 -  25)(x -  10) -  5 (d) f44d (x) = tan-1 (x -  2)

Figure 4.4 Solving nonlinear equations f(x) =  0 by using the Newton method.

other is the possibility of going astray, especially when f ( x )  has an abruptly 
changing slope around the solution (e.g., Fig. 4.4c or 4.4d), whereas it con
verges to the solution quickly when f ( x )  has a steady slope as illustrated 
in Figs. 4.4a and 4.4b.

4 .5  SECANT METHOD

The secant method can be regarded as a modification of the Newton method in 
the sense that the derivative is replaced by a difference approximation based on 
the successive estimates

, f ( x k) -  f ( x k_ 1)f ' ( x k) ss j  \ к (4_5Л)
xk -  xk- 1

which is expected to take less time than computing the analytical or numerical 
derivative. By this approximation, the iterative formula (4.4.2) becomes

f ( x k) ^ , f ( x k) -  f ( x k- 1)
X*+1 = Xk -  with dfdx* =  (4.5.2)dfdxk xk -  xk- 1
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function [x,fx,xx] = secant(f,x0,TolX,MaxIter,varargin)0,% solve f(x) = 0 by using the secant method.
%input : f = f tn to be given as a st r ing ' f '  i f defined in an M-file0,% x0 = the i n i t i a l  guess of the solution
0,% TolX = the upper l imit  of |x(k) - x(k - 1)|0,% MaxIter = the maximum # of i t e ra t ion
%output: x = the point which the algorithm has reached
0,% fx = f ( x ( l a s t ) ) ,  xx = the history of x
h = 1e-4; h2 = 2*h; TolFun=eps;
xx(1) = x0; fx = feva l( f ,x0,varargin{ :}) ;
for  k = 1: MaxIter

i f  k <= 1, dfdx = (feval(f ,xx(k) + h,varargin{: } ) - . . .
feval(f ,xx(k) - h,varargin{ :}))/h2;

else dfdx = (fx - fx0)/dx;
end
dx = -fx/dfdx;
xx(k + 1) = xx(k) + dx; %Eq.(4.5.2)
fx0 = fx;
fx = feval(f ,xx(k+1));
i f  abs(fx) < TolFun | abs(dx) < TolX, break; end

end
x = xx(k + 1);
i f k == MaxIter, fp r in t f( 'The  best in %d i te rat ions\n ' ,MaxI ter) end

This secant iterative formula is cast into the MATLAB routine “ s e c a n t ( ) ”, 
which never needs anything like the derivative as an input argument. We can 
use this routine “s e c a n t ( ) ” to solve a nonlinear equation like that dealt with 
in Example 4.2, by typing the following statement into the MATLAB command 
window. The process is depicted in Fig. 4.5.

>>[x ,e r r ,xx]  = se ca nt ( f42 ,2 .5 ,1 e -5 , 50 )  %with i n i t i a l  guess 1.8

Figure 4.5 Solving a nonlinear equation by the secant method.
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Note that the methods and the corresponding MATLAB routines mentioned so 
far can handle only one scalar equation with respect to one scalar variable. In 
order to see how a system of equations can be solved numerically, we rewrite 
the two equations

f l  (xi ,x 2) =  0
(4.6.1)

f2(xi ,x2) =  0

by taking the Taylor series expansion up to first-order about some estimate point
( x i k , x 2k) as

3 fi
X2) =  f l ( x i k ,  x 2k) +  —  

dxi

d f 2
f 2 { x \ ,  X2) =  f 2 ( x i k , x 2k) +  - —

dxi

(xik,x2k)
(xi  — Xl k) +  ----

dx2

d f 2
(Xl — X\k) +  - —

dx2

(x2 — x2k) =  0
(xit,x2t)

(xik,x2k)

This can be arranged into a m atrix-vector form as

(x2 — x 2k) =  0
(xik,x2k)

(4 .6 .2 )

f i (x i  , x 2) fi(xik,x2k)
+

d f i / d x i d f i / d x 2 x i  — xik
_f2(xi ,x2)_ f 2 ( x i k , x 2 k )  _ _ d f 2 / d x i d f 2 / d x2  _ (xik,x2k) x 2 — x 2k

(4.6.3)

which we solve for ( x i , x 2) to get the updated vector estimate

xi ,k+i x1k d f i / d x i  d f i / d x 2
— i

f i ( x i k ,  x 2k)
x 2,k+1 x 2k _3f2/3xi 3f 2 / dx2_ (xik,x2k) _f2( xi k , x2k)  _

Xk+i =  Xk — Jk i f(Xk) with the Jacobian Jk(m,  n)  =  [d f m/ d x n] \
(4.6.4)

This is not much different from the Newton iterative formula (4.4.2) and is cast 
into the MATLAB routine “newton s( ) ”. See Eq. (C.9) in Appendix C for the 
definition of the Jacobian.

Now, let’s use this routine to solve the following system of nonlinear equations

xj2 +  4x^ =  5 

2x2 — 2xi — 3x2 =  2.5
(4 .6 .5 )

In order to do so, we should first rewrite these equations into a form like 
Eq. (4.6.1) as

f i  (xi , x 2) =  x \  +  4x2 — 5 =  0
2 (4.6.6)

f 2(xi , x2) =  2 x 1 — 2xi — 3x2 — 2.5 =  0
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function [x,fx,xx] = newtons(f,x0,TolX,MaxIter,varargin)
%newtons.m to solve a set of nonlinear eqs f1(x)=0, f2(x)=0, . .
%input: f = 1~st-order vector f tn equivalent to a set of equations 
% x0 = the i n i t i a l  guess of the solution
% TolX = the upper l imit  of |x(k) - x(k - 1)|
% MaxIter = the maximum # of i t e r a t ion
%output: x = the point which the algorithm has reached
% fx = f ( x ( la s t ) )
% xx = the history of x
h = 1e-4; TolFun = eps; EPS = 1e-6; 
fx = feva l( f ,x0 ,varargin{ :}) ;
Nf = length(fx);  Nx = length(x0);
i f  Nf ~= Nx, error( ' Incompatible dimensions of f and x0! ' ) ;  end 
i f  nargin < 4, MaxIter = 100; end 
i f  nargin < 3, TolX = EPS; end
xx(1, :)  = x 0 ( : ) . ' ;  %Ini t ial ize the solution as the i n i t i a l  row vector 
%fx0 = norm(fx); %(1)
for  k = 1: MaxIter

dx = - jacob( f ,xx(k, : ) ,h,varargin{ :})  \fx(:); / ;%-[dfdx]"-1*fx 
%for l  = 1: 3 %damping to avoid divergence %(2)
%dx = dx/2; %(3)
xx(k + 1 ,: )  = xx(k, :)  + dx . ' ;
fx = feval( f ,xx(k + 1 , : ) ,vararg in{:}) ;  fxn = norm(fx);
% i f  fxn < fx0, break; end %(4)
%end %(5)
i f  fxn < TolFun | norm(dx) < TolX, break; end 
%fx0 = fxn; %(6)

end
x = xx(k + 1 , : ) ;
i f  k == MaxIter, fp r in tf ( 'The best in %d i te rat ions\n ' ,MaxIter ) ,  end
function g = jacob(f ,x,h,varargin) %Jacobian of f(x) 
i f  nargin < 3, h = 1e-4; end
h2 = 2*h; N = length(x);  x = x ( : ) . ' ;  I = eye(N); 
for  n = 1:N

g( : ,n)  = ( feval (f ,x  + I (n, :)*h,varargin{:})  . . .
- feval ( f ,x - I (n, : )*h,vararg in{ :}) ) ' /h2 ;

end

and convert it into a MATLAB function defined in an M-file, say, “f46.m” 
as follows.

func t ion y = f46(x
y(1) = x(1)*x(1) + 4*x(2)*x(2) - 5;
y(2) = 2*x(1)*x(1) -2*x(1)-3*x(2) - 2.5;

Then, we type the following statements into the MATLAB command window:

>>x0 = [0.8 0 .2] ;  x = newtons( ' f46 ' ,x0)  % in i t i a l  guess [ .8 .2] 
x = 2.0000 0.5000



SYMBOLIC SOLUTION FOR EQUATIONS 1 9 3

-3 -2 - 1 0  1 2 
(d) Damped Newton method with

(x1Cb x 20) =  (05, 02)
Figure 4.6 Solving the set (4.6.6) of nonlinear equations by vector Newton method.

33 2

3

Figure 4.6 shows how the vector Newton iteration may proceed depending on 
the initial guess (x10, x 2o). With (x10,x 20) =  (0.8, 0.2), it converges to (2, 0.5), 
which is one of the two roots (Fig. 4.6a) and with (x10, x20) =  ( - 1 ,  0.5), it con
verges to (-1 .2 0 6 5 , 0.9413), which is another root (Fig. 4.6b). However, with 
(x10, x20) =  (0.5, 0.2), it wanders around as depicted in Fig. 4.6c. From this figure, 
we can see that the iteration is jumping too far in the beginning and then going 
astray around the place where the curves of the two functions f 1(x)  and f 2(x)  
are close, but not crossing. One idea for alleviating this problem is to modify the 
Newton algorithm in such a way that the step size can be adjusted (decreased) to 
keep the norm of f(xt ) from increasing at each iteration. The so-called damped 
Newton method based on this idea will be implemented in the MATLAB routine 
“newtons ( ) ” if you activate the six statements numbered from 1 to 6 by deleting 
the comment mark(%) from the beginning of each line. With the same initial guess 
(x10,x 20) =  (0.5, 0.2) as in Fig. 4.6c, the damped Newton method successfully 
leads to the point (2, 0.5), which is one of the two roots (Fig. 4.6d).

MATLAB has the built-in function “f s o l v e ( f , x 0 ) ”, which can give us a 
solution for a system of nonlinear equations. Let us try it for Eq. (4.6.5) or (4.6.6), 
which was already defined in the M-file named ‘f46 .m’.

>>x = f s o l v e ( ' f 4 6 ' , x 0 , o p t i m s e t ( ' f s o l v e ' ) )  %with de fau l t  parameters 
x = 2.0000 0.5000

4.7 SYMBOLIC SOLUTION FOR EQUATIONS

MATLAB has many commands and functions that can be very helpful in dealing 
with complex analytic (symbolic) expressions and equations as well as in getting
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numerical solutions. One of them is “s o lv e ( )  ”, which can be used for obtaining the 
symbolic or numeric roots of equations. According to what we could see by typing 
‘he lp  s o l v e ’ into the MATLAB command window, its usages are as follows:

>>solve('p*sin(x) = r') %regarding x as an unknown variable and p as a parameter 
ans = asin(r/p) %sin-1 (r/p )

>>[x1,x2] = solve('x1A2 + 4*x2A2 - 5 = 0','2* x 1A2 - 2*x1 - 3*x2-2.5 = 0') 
xl = [ 2.] x2 = [ 0.500000]

[ -1.206459] [ 0.941336]
[0.603229 -0.392630*i] [-1.095668 -0.540415e-1*i]
[0.603229 +0.392630*i] [-1.095668 +0.540415e-1*i]

>>S = solve('xA3 - yA3 = 2','x = y') %returns the solution in a structure.
S = x: [3x1 sym] 

y: [3x1 sym]

>>S.x
ans = [ 1]

[ -1/2+1/2*i*3A (1/2)]
[ -1/2-1/2*i*3A (1/2)]

>>S.y
ans = [ -1]

[ 1/2 - 1/2*i*3A (1/2)]
[ 1/2 + 1/2*i*3A (1/2)]

>>[u,v] = solve('a*uA2 + v A2 = 0','u - v = 1')%regarding u,v as unknowns and a as a parameter 
u = [1/2/(a + 1)*(-2*a + 2*(-a)A (1/2)) + 1] v = [1/2/(a + 1)*(-2*a + 2*(-a)A (1/2))]

[1/2/(a + 1)*(-2*a - 2*(-a)A (1/2)) + 1] [1/2/(a + 1)*(-2*a - 2*(-a)A (1/2))]

>>[a,u] = solve('a*uA2 + v A2','u-v = 1','a,u') %regards only v as a parameter 
a = -v"2/(v"2 + 2*v + 1 )  u = v + 1

Note that in the case where the routine “s o l v e ( ) ” finds the symbols more 
than the equations in its input arguments— say, M  symbols and N  equations with 
M  >  N — it regards the N  symbols closest alphabetically to ‘x’ as variables and 
the other M  -  N  symbols as constants, giving the priority of being a variable to 
the symbol after ‘x’ than to one before ‘x’ for two symbols that are at the same 
distance from ‘x’. Consequently, the priority order of being treated as a symbolic 
variable is as follows:

x > y  > w > z  > v > u > t  > s  > r  > q > •••

Actually, we can use the MATLAB built-in function “f i n d sy m () ” to see the 
priority order.

>>syms x y z q r s t u v w  %declare 10 symbols to consider 
>>findsym(x + y + z*q*r + s + t*u - v - w,10) %symbolic var iab les ?  

ans = x , y , w , z , v , u , t , s , r , q

4.8 A REAL-WORLD PROBLEM

Let’s see the following example.

Exam ple 4.3. The Orbit of NASA’s “Wind” Satellite. One of the previous NASA 
plans is to launch a satellite, called Wind, which is to stay at a fixed position 
along a line from the earth to the sun as depicted in Fig. 4.7 so that the solar 
wind passes around the satellite on its way to earth. In order to find the distance
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G = 6.67 x 10-11 
Ms = 1.98 x 1030[kg]
Me = 5.98 x 1024[kg] 
m = the mass of satellite [kg]
R = 1.49 x 1011[m] 
g = the distance of satellite from 

sun [m]
T= 3.15576 x 107[sec] 
w = 2p/T

Figure 4.7 The orbit of a satellite.

of the satellite from earth, we set up the following equation based on the related 
physical laws as

M sm 
G — =  G

M em

(R - r )2
2 n  I M S +  mrco — G I —----- M e

r 2 ( R — r ) 2
— rrn2 =  0 (E4.3.i)

(a) This might be solved for r  by using the (nonlinear) equation solvers like 
the routine ‘ne w to n s ( ) ’ (Section 4.6) or the MATLAB built-in routine 
‘f s o l v e ( ) ’. We define this residual error function (whose zero is to be 
found) in the M-file named “phys.m” and run the statements in the fol
lowing program “nm4e03.m” as

r

x0 = 1e6; %the in i t i a l  (starting) guess
rn = newtons('phys',x0,1e-4,100) % newtons()
rfs = fsolve('phys' ,x0,optimset( ' fsolve')) % fsolve()
rfsl = fsolve('phys',x0,optimset('MaxFunEvals',1000)) %more iterations
x01 = 1e10 %with another starting guess closer to the solution
rfs2 = fsolve('phys',x01,optimset('MaxFunEvals',1000))
residual_errs = phys([rn rfs rfs1 rfs2])

which yields

rn = 1.4762e+011 <with r e s i dua l  e r ro r  of -1.8908e-016>
r f s  = 5.6811e+007 <with r e s id ua l  e r ro r  of 4.0919e+004>
rfs1 = 2.1610e+009 <with r e s i du a l  e r ro r  of 2.8280e+001>
rfs2  = 1.0000e+010 <with r e s i dua l  e r ro r  of 1.3203e+000>

It seems that, even with the increased number of function evaluations and 
another initial guess as suggested in the warning message, ‘f s o l v e ( ) ’ is 
not so successful as ‘ne w to ns ( ) ’ in this case.
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(b) Noting that Eq. (E4.3.1) may cause ‘division-by-zero’, we multiply both 
sides of the equation by r 2(R  — r ) 2 to rewrite it as

r  3(R — r f w 2 — G M S( R  — r ) 2 +  G M er 2 =  0 (E4.3.2)

We define this residual error function in the M-file named “physb.m” and 
run the following statements in the program “ nm4e03.m”:

rnb = newtons( 'physb' ,x0)
r f sb  = f s o l v e ( ' p h y s b ' , x 0 , o p t i m s e t ( ' f s o l v e ' ) )  
re s id u a l_ e r r s  = phys([rnb r f sb ] )

which yields

rnb = 1.4762e+011 <with r e s i dua l  e r ro r  of 4.3368e-018> 
r f sb  = 1.4762e+011 <with re s i du a l  e r ror  of 4.3368e-018>

Both of the two routines ‘new to ns ( ) ’ and ‘f s o l v e ( ) ’ benefited from the 
function conversion and succeeded in finding the solution.

(c) The results obtained in (a) and (b) imply that the performance of the non
linear equation solvers may depend on the shape of the (residual error) 
function whose zero they aim to find. Here, we try applying them with 
scaling. On the assumption that the solution is known to be on the order 
of 1011, we divide the unknown variable r  by 1011 to scale it down into 
the order of one. This can be done by substituting r  =  r 7 1 0 11 into the 
equations and multiplying the resulting solution by 1011. We can run the 
following statements in the program “nm4e03.m”:

sca le  = 1e11;
rns = new to ns ( 'p h y s ' ,x 0 / sca le ,1 e- 6 ,1 0 0 ,s ca le )* sca le
r f s s  = f s o l v e ( ' p h y s ' , x 0 / s c a l e , o p t i m s e t ( ' f s o l v e ' ) , s c a l e ) * s c a l e
re s id u a l_ e r r s  = phys([ rns  r f s s ] )

which yields

rns = 1.4762e+011 <with r e s i dua l  e r ro r  of -6.4185e-016> 
r f s s  = 1.4763e+011 <with re s i du a l  e r ror  of -3.3365e-006>

Compared with the results with no scaling obtained in (a), the routine 
‘f s o l v e ( ) ’ benefited from scaling and succeeded in finding the solution.
(cf) This example implies the following tips for solving nonlinear equations.

• If you have some preliminary knowledge about the approximate value of 
the true solution, scale the unknown variable up/down to around one and 
then scale the resulting solution back down/up to get the solution to the 
original equation.

• It might be better for you to apply at least two methods to solve the 
equations as a cross-check. It is suggested to use ‘newtons() ’ together with 
‘f s o lv e ( ) ’ for confirming the solution of a system of nonlinear equations.
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%nm4e03 -  astrophysics
clear, clf
global G Ms Me R T
G = 6.67e11; Ms = 1.98e30; Me = 5.98e24;
R = 1. 49 e1 1; T = 3.15576e7; w  = 2*pi/T;
x0 = 1e6 %initial guess
format short e
disp('(a)')
rn = newtons('phys',x0)
rfs = fsolve('phys',x0 ,optimset('fsolve'))
% f s o l v e ( ' p h y s ' Jx0)/fsolve('phys',x0,foptions) in MATLAB 5.x version
r f s1 =f so lv e('p h y s ',x O ,o p t i m s e t ('M a x F u n E v a l s ',1000)) %more iterations
%options([2 3 14])=[1e-4 1e-4 1000];
%fsolve('phys',x0,options) in MATLAB 5.x
x01 = 1e10; %with another starting guess closer to the solution
rfs2 = f s ol ve (' ph ys ', x0 1, op ti mse t( 'M ax Fu nE va ls 'J1000))
residual_errs = phys([rn rfs rfs1 rfs2])
disp('(b)')
rnb = newtons('physb',x0)
rfsb = fs ol v e ( ' p h y s b ' jx0,optimset('fsolve')}
residual_errs = phys([rnb rfsb])
disp('(c)')
scale = 1e11;
rns = n e wt on s( 'p hy s' ,x 0/ sc al e,1 e- 6J1 0 0 Jscale)*scale;
rfss = fs o l v e ( ' p h y s ' Jx 0 / s c a l e Jop ti ms e t ( ' f s o l v e ' } Jscale} *scale
residual_errs = phys([rns rfss])

function f = phys(x,scale);
if nargin < 2, scale = 1; end
global G Ms Me R T
w  = 2*pi/T; x = x*scale; f = G*(Ms/(x.~2 + eps) - Me./( (R - x).~2 + eps))-x*w"2;

function f = physb(x,scale);
if nargin < 2, scale = 1; end
global G Ms Me R T
w  = 2*pi/T; x = x*scale; f = (R-x).~2.*(w~2*x.~3 - G*Ms ) + G * M e * x . "2;

PROB LEMS

4.1 Fixed-Point Iterative Method

Consider the simple nonlinear equation

f ( x )  =  x 2 — 3x  + 1 =  0 (P 4 .i.i)

Knowing that this equation has two roots

=  1.5 ±  V T 25  ss 2.6180 or 0.382; x o1 «  0.382, x°2 «  2.6180
(P4 .i .2 )

investigate the practicability of the fixed-point iteration.
(a) First consider the following iterative formula:

1 2
X k + 1  =  g a ( X k )  =  ~ ( x k +  1) (P4.1.3)
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Figure P4.1 Iterative method based on the fixed-point theorem.

Noting that the first derivative of this iterative function g a (x)  is

2
g ' J x )  =  - X  (P4.1.4)

determine which solution attracts this iteration and certify it in Fig. 
P4.1a. In addition, run the MATLAB routine “f i x p t ( ) ” to perform 
the iteration (P4.1.3) with the initial points x0 =  0, x0 =  2, and x0 =  3. 
W hat does the routine yield for each initial point?

(b) Now consider the following iterative formula:

1
X k + 1  =  g b ( x k )  = 3 ------  (P4.1.5)

xk

Noting that the first derivative of this iterative function g b(x)  is

1
g'b(x)  =  - ~ 2  (P4.1.6)

determine which solution attracts this iteration and certify it in Fig. P4.1b. 
In addition, run the MATLAB routine “f i x p t ( ) ” to carry out the itera
tion (P4.1.5) with the initial points x0 =  0.2, x0 =  1, and x0 =  3. W hat 
does the routine yield for each initial point?
(cf) This illustrates that the outcome of an algorithm may depend on the start

ing point.
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4.2 Bisection Method and Fixed-Point Iteration

Consider the nonlinear equation treated in Example 4.2.

f ( x )  =  tan(^  — x )  — x =  0 (P4.2.1)

Two graphical solutions of this equation are depicted in Fig. P4.2, which 
can be obtained by typing the following statements into the MATLAB 
command window:

> > e z p l o t ( ' t a n ( p i - x ) ' , - p i / 2 , 3 * p i / 2 )
>>hold on, e z p l o t ( ' x + 0 ' , - p i / 2 , 3 * p i / 2 )

(a) In order to use the bisection method for finding the solution between
1.5 and 3, Charley typed the statements shown below. Could he get the 
right solution? If not, explain him why he failed and suggest him how 
to make it.

>>fp42 = i n l i n e ( ' t a n ( p i - x ) - x ' , ' x ' ) ;
>>TolX = 1e-4; MaxIter = 50;
>>x = b isc t ( fp42,1 .5,3 ,TolX,MaxI te r )

(b) In order to find some interval to which the bisection method is applica
ble, Jessica used the MATLAB command “f i n d ( ) ” as shown below.

>>x = [0: 0.5:  p i ] ;  y = ta n (p i -x )  - x;
>>k = f i nd( y(1 :end-1) .*y(2 :end)  < 0);
>>[x(k) x(k + 1); y(k) y(k + 1)]

ans = 1.5000 2.0000 2.0000 2.5000 
-15.6014 0.1850 0.1850 -1.7530

This shows that the sign of f ( x )  changes between x =  1.5 and 2.0 
and also between x  =  2.0 and 2.5. Noting this, Jessica thought that she 
might use the bisection method to find a solution between 1.5 and 2.0 
by typing the following command.

>>x=bisct (fp42,1.5,2,TolX,MaxIter )

Check the validity of the solution— that is, check if f ( x  ) =  0 or not— by 
typing

>>fp42(x)

If her solution is not good, explain the reason. If you are not sure about 
it, you can try plotting the graph in Fig. P4.2 by typing the following 
statements into the MATLAB command window.

>>x = [ -p i /2+0. 05 :0 .05 :3*pi /2  - 0.05] ;
> > p lo t ( x , ta n( p i  - x ) ,x ,x )
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Figure P4.2 The graphical solutions of tan (n - x) - x  =  0 o rta n (n  - x) =  x.

(cf) This helps us understand why fzero(fp42,1.8) leads to the wrong solu
tion even without any warning message as mentioned in Example 4.2.

(c) In order to find the solution around x  =  2.0 by using the fixed-point 
iteration with the initial point x0 =  2.0, Vania defined the iterative func
tion as

>>gp421 = i n l i n e ( ' t a n (p i  - x ) ' , ' x ' ) ;  % x =  gi(x) =  tan (n — x)

and typed the following statement into the MATLAB command window.

>>x = f ixpt(gp421,2,TolX,MaxIter)

Could she reach the solution near 2? Will it be better if you start the 
routine with any different initial point? W hat is wrong?

(d) Itha, seeing what Vania did, decided to try with another iterative formula

tan-1 x =  n,  x  =  g 2(x)  =  n  — tan-1 x (P4.2.2)

So she defined the iterative function as

>>gp422 = in l i n e ( 'p i - a t a n ( x ) ' ,  ' x ' ) ;  % x =  g (x) =  n  -  tan- 1(x)

and typed the following statement into the MATLAB command window:

>>x = f ixpt(gp422,2,TolX,MaxIter)

W hat could she get? Is it the right solution? Does this command work 
with different initial value, like 0 or 6, which are far from the solution 
we want to find? Describe the difference between Vania’s approach and 
Itha’s.



4.3 Recursive (Self-Calling) Routine for Bisection Method

As stated in Section 1.3, MATLAB allows us to make nested (recursive) rou
tines which call itself. Modify the MATLAB routine “b i s c t ( ) ” (in Section 
4.2) into a nested routine “b i s c t _ r ( ) ” and run it to solve Eq. (P4.2.1).

4.4 Newton Method and Secant Method

As can be seen in Fig. 4.5, the secant method introduced in Section 4.5 
was devised to remove the necessity of the derivative/gradient and improve 
the convergence. But, it sometimes turns out to be worse than the Newton 
method. Apply the routines “newton()” and “s e c a n t ( ) ” to solve

f p44(x)  =  x 3 — x 2 — x +  1 =  0 (P4.4)

starting with the initial point x0 =  —0.2 one time and x0 =  —0.3 for another 
shot.

4.5 Acceleration of A itken-Steffensen Method

A sequence converging to a limit x o can be described as

x o — Xk+i =  ek+i  ~  A e k =  A ( x o — х к)

X X k —I— 1
with lim ---------—  =  A(|A|  <  1) (P4.5.1)

k^TO x o — Xk

In order to think about how to improve the convergence speed of this 
sequence, we define a new sequence p k as

PROBLEMS 201

o o
* 0 Xk+1 ss A ss ; (x° -  x k+1) ( x°  -  xt _i) ss (x°  -  x kf

Xo — Xk Xo — Xk—1

( -v° \ 2 _ -V -V o _ -V -V o I -У -V ( -vo \ 2 _ О -V o -V I -V2(X ) — Xk+1X — Xk—1X +  Xk+1Xk—1 ~  (X ) — 2X Xk +  Xk
2

X° ss Xk+lXk- l ~  Xk =  Pk (P4.5.2)
Xk+1 — 2Xk +  Xk—1

(a) Check that the error of this sequence p k is as follows.

— p k =  Xo —
2

Xk+1Xk—1 Xk

Xk+1 — 2Xk +  Xk—1

— — XkXk—1(Xk+1 — 2Xk +  Xk—1) — Xl —1 +  2Xk—1 Xk — ■

=  Xo — Xk—1 +

=  Xo — Xk—1 +

Xk+1 — 2Xk +  Xk—1 

(Xk — Xk—1)2

Xk+1 — 2Xk +  Xk—1

( ~ ( X °  -  X k )  +  ( X °  -  X k ^ j ) 2

- ( x °  -  x k + 1) +  2 ( x ° -  X k )  -  (x° -  x k _ i )

2 o 2
=  = 0 (P4.5.3)

(—A +  2A — \ ) { x °  — х ц )

Xo

2
kXo
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Table P4.5 Comparison of Various Methods Applied for Solving Nonlinear 
Equations

Newton Secant Steffensen Schroder fzero() fsolve()

Xo =  1.6

/42

X 2.0288

f i x ) 1.19e-8 1.72e-9

Flops 158 112 273 167 986 1454

Xo =  0 

fpAA

X 1.0000

f i x )

Flops 53 30 63 31 391 364

Xo =  0 

fpAS

X 5.0000 NaN

f i x ) NaN

Flops 536 434 42 19 3683 1978

(cf) Since the flops() c o m m a n d  is no longer available in M A T L A B  6.x version, the numbers of 

floating-point operations are obtained from M A T L A B  5.x version so that the readers can compare 

the various algorithms in terms of their computational loads.

(b ) Modify the routine “newton()” into a routine “s t f n s ( ) ” that generates 
the sequence (P4.5.2) and run it to solve

f 42(x)  =  tan(V — x)  — x  =  0 (with x 0 =  1.6) (P4.5.4) 

f p44(x)  =  x 3 — x 2 — x +  1 =  0 (with x0 =  0) (P4.5.5) 

f p 4 5 (x)  =  (x — 5)4 =  0 (with x0 =  0) (P4.5.6)

Fill in Table P4.5 with the results and those obtained by using the 
routines “newton()”, “s e c a n t ( ) ” (with the error tolerance TolX =  
10—5), “f z e r o ( ) ”, and “f s o l v e ( ) ” .

4.6 Acceleration of Newton Method for Multiple Roots: Schroder Method

In order to improve the convergence speed, Schroder modifies the Newton 
iterative algorithm (4.4.2) as

f ( x k)
х к+1 = x k -  M (P4.6.1) 

f  '(xk)

with M  : the order of multiplicity of the root we want to find

Based on this idea, modify the routine “newton()” into a routine 
“ s c h r o d e r ( ) ” and run it to solve Eqs. (P4.5.4.6). Fill in the corresponding 
blanks of Table P4.5 with the results.
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4.7 Newton Method for Systems of Nonlinear Equations

Apply the routine “newton s( )” (Section 4.6) and the MATLAB 
routine “f s o l v e ( ) ” (with [x0 y0] =  [1 0.5]) to solve the following 
of equations. Fill in Table P4.7 with the results.
(a) x 2 +  y2 =  1 

x 2 — y =  0
(b) 5cos01 +  6cos(01 +  62) =  10 

5sin6)1 +  6sin(6)1 +  62) =  4
3 x 2 +  4 y 2 =  3 

x 2 + y 2 =  y / 3 / 2
(c)

(d) +  10x1 — x2 =  5 
x 1 +  x |  — 10x2 =  — 1

(e) x 2 — \ f b x y  +  2 y 2 =  10 
4x2 +  З ^ З х у  + y  =  22

(f) x 3 y  — y  — 2x3 =  —16 
x — y2 =  — 1

(g) x 2 +  4y2 =  16
x y 2 =  4

(h) x e y — x 5 +  y  =  3
x +  y  +  tan x — sin y  =  0

(i) 2 l o g y  — x =  0 
x y  — y  =  1

(j) 12xy — 6x =  - 1
60x2 — 180x2 y — 30xy =  1

built-in
systems

(P4.7.1)

(P4.7.2)

(P4.7.3)

(P4.7.4)

(P4.7.5)

(P4.7.6)

(P4.7.7)

(P4.7.8)

(P4.7.9)

(P4.7.10)

4.8 Newton Method for Systems of Nonlinear Equations

Apply the routine “newtons( )” (Section 4.6) and the MATLAB built-in 
routine “f s o l v e ( ) ” (with [x0 y0 z0] =  [1 1 1]) to solve the following 
systems of equations. Fill in Table P4.8 with the results.
(a) x y z  =  - 1

2y 2 4z 2 =  7
6z  =  72x2 +  y 3

(b) x y z  =  1
x 2 +  2y3 +  z2 =  4 
x +  2y2 — z3 =  2

(c) x 2 +  4y2 +  9z2 =  34 
x 2 +  9y2 — 5z =  40
x 2z  — y  =  7

(d) x 2 +  2 sin (y ^ /2 ) +  z2 =  0 
—2xy +  z =  3
ex+y — z2 =  0

(P4.8.1)

(P4.8.2)

(P4.8.3)

(P4.8.4)

2x



Table P4.7 Applying n e w to n s () /fs o lv e ()  for Systems of Nonlinear Equations
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newtons() fsolve()

Xo =  [1 0.5] 

(P4.7.1)

X

l l / (x ) l l

Flops 1043 1393

x0 =  [1 0.5] 

(P4.7.2)

X [0.1560 0.4111]

ll / (x ) l l 3.97e-15 (3.66e-15)

Flops 2489 3028

x0 =  [ l  0.5] 

(P4.7.3)

X

l l / (x ) l l

Flops 1476 3821

x0 =  [1 0.5] 

(P4.7.4)

X [0.5024 0.1506]

ll / (x ) l l 8 .88e-16 (1.18e-6)

Flops 1127 1932

x0 =  [ l  0.5] 

(P4.7.5)

X

l l / (x ) l l

Flops 2884 3153

x0 =  [1 0.5] 

(P4.7.6)

X [1.6922 -1.6408]

ll / (x ) l l 1.83e-15

Flops 9234 12896

x0 =  [ l  0.5] 

(P4.7.7)

X

l l / (x ) l l

Flops 2125 2378

x0 =  [ l  0.5] 

(P4.7.8)

X [0.2321 1.5067]

ll / (x ) l l 1.07 (1.07)

Flops 6516 6492

x0 =  [1 0.5] 

(P4.7.9)

X

l l / (x ) l l

Flops 1521 1680

x0 =  [ l  0.5] 

(P4.7.10)

X [0.2236 0.1273]

ll / (x ) l l 0 ( l . l le - 1 6 )

Flops 1278 2566

(cf) T he num bers o f  floating-point operations and the  residual (m ism atching) errors in the  parentheses are obtained 
from  M ATLAB 5.x version.



Table P4.8 Applying n e w to n s ()fs o lv e () for Systems of Nonlinear Equations

PROBLEMS 2 0 5

newtons() fso lve()

x0 =  [l 1 1] 

(P4.8.1)

X [1.0000 -1.0000 1.0000]

ll/(x )|| 1.1102e-16 (1.1102e-16)

Flops 8158 12964

x0 =  [l 1 1] 

(P4.8.2)

X [1 1 1]

ll/(x )|| 0

Hops 990 854

x0 =  [l 1 1] 

(P4.8.3)

X

ll/(x )||

Hops 6611 4735

x0 =  [l 1 1] 

(P4.8.4)

X [1.0000 -1.0000 1.0000]

ll/(x )|| 4.5506e-15 (4.6576e-15)

Hops 18,273 21,935

x0 =  [l 1 1] 

(P4.8.5)

X

ll/(x )||

Hops 6811 5525

x0 =  [l 1 1] 

(P4.8.6)

X [2.0000 1.0000 3.0000]

ll/(x )|| 3.4659e-8 (2.6130e-8)

Hops 6191 4884

x0 =  [l 1 1] 

(P4.8.7)

X [1.0000 3.0000 2.0000]

ll/(x )|| 1.0022e-13 (1.0437e-13)

Flops 8055 6102

(e) x 2 +  y2 +  z2 =  14
x 2 +  2y2 — z =  6 (P4.8.5)
x — 3y2 +  z2 =  - 2

(f) x 3 — 12y +  z2 =  5
3x2 +  y3 — 2z =  7 (P4.8.6)
x +  24y2 — 2 sin (^z/18 ) =  25
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(g) x 2 +  y2 — 2z =  6
x 2 — 2y +  z3 =  3 (P4.8.7)
2xz — 3y2 — z2 =  - 2 7

4.9 Newton Method for a System of Nonlinear Equations with Varying Para- 
meter(s)
In order to find the average modulation order x i for each user of an OFDM 
(orthogonal frequency division multiplex) system that has N (128) subcha
nnels to assign to each of the four users in the environment of noise power 
N0 and the bit error rate (probability of bit error) Pe, a communication 
system expert, Mi-hyun, formulated the problem into the system of five 
nonlinear equations as follows:

M x )  =  (2x‘ (Xi In 2 — 1) +  l ) y 2 ( e r f c ~ \ P e/ 2 ) ) 2 -  к  =  О (P4.9.1) 

for i =  1, 2, 3 ,4
4

f 5(x)  =  V  -  -  N  =  О (P4.9.2)
1=1 x i

where N  =  128 and a i is the data rate of each user

where erfc- 1 (x)  is the inverse function of the complementary error function

2 f t2 2 f x t2 
erfc(x) =  —  e - ‘ d t  =  1 -  —  e - ‘ d t  =  1 -  erf(x) (P4.9.3) 

s/ Л  Jx J 0

and defined as the MATLAB built-in function ‘e r f c i n v ( ) ’. She defined 
the mismatching error (vector) function as below and save it in the M-file 
named “f p _ b i t s . m ”.

func t ion y = fp _ b i t s ( x ,a ,P e )
% x ( i ) , i  = 1:4 correspond to the modulation order  of each user 
%x(5) corresponds to the Lagrange m u l t i p l i e r  (Lambda) 
i f  nargin < 3 ,  Pe = 1e-4;

i f  nargin < 2, a = [64 64 64 64]; end 
end
N = 128; N0 = 1; 
x14 = x(1 :4) ;
y = (2.*x14.*(log(2)*x14 - 1)+1)*N0/3*2*erfcinv(Pe/2) . "2 - x(5);  
y(5) = sum(a./x14) - N;

Compose a program which solves the above system of nonlinear equations 
(with N0 =  1 and Pe =  10—4) to get the modulation order x i o f each user
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for five different sets of data rates

a =  [32 32 32 32], [64 32 32 32], [128 32 32 32], [256 32 32 32], and [512 32 32 32]

and plots a 1|x 1 (the number of subchannels assigned to user 1) versus a 1 
(the data rate of user 1).

4.10 Temperature Rising from Heat Flux in a Semi-infinite Slab

Consider a semi-infinite slab whose temperature rises as a function of posi
tion x >  0 and time t  >  0 as

where the function erfc() is defined by Eq. (P4.9.3) and

Q  (heat flux) =  200 J |m 2s, к  (conductivity) =  0.015 J/m /s|°C , 

a  (diffusivity) =  2.5 x  10-5 m 2|s

In order to find the heat transfer speed, a heating system expert, Kyung- 
won, wants to solve the above equation to get the positions x ( t )  with a 
temperature rise of T  =  30 °C at t =  10:10:200 s. Compose the program 
which does this job and plots x ( t )  versus t .

4.11 Damped Newton Method for a Set of Nonlinear Equations

Consider the routine “newton s( )”, which is made for solving a system of 
equations and introduced in Section 4.6.
(a) Run the routine with the initial point (x10,x 20) =  (0.5, 0.2) to solve 

Eq. (4.6.5) and certify that it does not yield the right solution as depicted 
in Fig. 4.6c.

(b) In order to keep the step size adjusted in the case where the norm of the 
vector function f(xk+1) at iteration к +  1 is larger than that of f(xk) at 
iteration к , insert (activate) the statements numbered from 1 to 6 of the 
routine “newton s( )” (Section 4.6) by deleting the comment mark (%) at 
the beginning of each line to make a modified routine “newtonds( )”, 
which implements the damped Newton method. Run it with the initial 
point (x10, x20) =  (0.5, 0.2) to solve Eq. (4.6.5) and certify that it yields 
the right solution as depicted in Fig. 4.6d.

(c) Run the MATLAB built-in routine “f s o l v e ( ) ” with the initial point 
(x10, x20) =  (0.5, 0.2) to solve Eq. (4.6.5). Does it present you a right 
solution?
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NUMERICAL 

DIFFERENTIATION/ 
INTEGRATION

5.1 DIFFERENCE APPROXIMATION FOR FIRST DERIVATIVE

For a function f ( x )  of a variable x , its first derivative is defined as

. f ( x  +  h)  — f ( x )
f ’(x)  =  lim ^ 1 (5.1.1)

h^0 h

However, this gives our computers a headache, since they do not know how 
to take a limit. Any input number given to computers must be a definite num 
ber and can be neither too small nor too large to be understood by the com
puter. The ‘theoretically’ infinitesimal number h involved in this equation is a 
problem.

A simple approximation that computers might be happy with is the forward 
difference approximation

f ( x  +  h)  — f ( x )
D f i ( x , h )  = ----------- ------------- (h is step size) (5.1.2)

h

How far away is this approximation from the true value of (5.1.1)? In order to do 
the error analysis, we take the Taylor series expansion of f ( x  +  h)  about x as

h2 h 3
f ( x + h )  =  f ( x ) + h f ( x )  +  - f V ( x )  +  - f V ( x )  +  - - -  (5.1.3)

Applied Numerical Methods Using MATLAB®, by Yang, Cao, Chung, and Morris 
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Subtracting f ( x )  from both sides and dividing both sides by the step size h yields

D f l (x,  h)  =  / ( X + ^ ~ / (X)  =  f ' ( x )  +  ^ f i2)(x)  +  +  ■■■

=  f  ' (x)  +  O ( h )  (5.1.4)

where O ( g ( h ) ) ,  called ‘big Oh of g ( h ) ’, denotes a truncation error term propor
tional to g ( h )  for |h| -< 1. This means that the error of the forward difference 
approximation (5.1.2) of the first derivative is proportional to the step size h, or, 
equivalently, in the order of h .

Now, in order to derive another approximation formula for the first derivative 
having a smaller error, let’s remove the first-order term with respect to h from 
Eq. (5.1.4) by substituting 2h for h in the equation

f ( x  +  2h)  — f ( x )  2h (2) 4h2 (3)
D f l (x,  2  h)  =  ^ ^  J W  =  f ( x )  +  —  f i2)(x)  +  +  ■■■

and subtracting this result from two times the equation. Then, we get

f ( x  +  h)  — f ( x )  f ( x  +  2h)  — f ( x )

2 1 0  NUMERICAL DIFFERENTIATION/ INTEGRATION

2 D f i ( x ,  h)  — D f i ( x ,  2 h)  =  2-
h 2h

. 2h2 (3)
=  f ( x ) - ^ ( x ) + -

Г.  ̂ n  2 D f l ( x , h )  -  D f l ( x , 2 h )
D f 2 (x,  h)  = ---- ^ ----------------------------

=  —/ (x  +  2h)  +  4 f  (x +  h)  — 3 / (x)

2 h

=  f  ' (x)  +  O ( h 2) (5.1.5)

which can be regarded as an improvement over Eq. (5.1.4), since it has the 
truncation error of O ( h 2) for | h | ^  1.

How about the backward difference approximation?

D bi ( x , h )  =  — — =  D f i ( x ,  —h) (h is step size) (5.1.6)
h

This also has an error of O ( h )  and can be processed to yield an improved version 
having a truncation error of O ( h 2).

_ . 2 D b1 ( x , h )  — D b1 (x,  2h)  3 f  (x)  — 4 f ( x  — h)  +  f ( x  — 2h)  
D ^ x .  «  = ------------- ^ ^ ----------------------

=  f  ' (x)  +  O ( h 2) (5.1.7)

In order to derive another approximation formula for the first derivative, we 
take the Taylor series expansion of f ( x  +  h)  and f ( x  — h)  up to the fifth order
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to write
h2 h3 h4 h5 

f ( x  + h) = f ( x )  + h f ( x )  + — f (%\ x ) + — f (?\ x ) + —  f (4\ x )  + ~ ^ f (5)(x) H--

h2 h3 h4 h5 
/(x — h) = f ( x )  -  h f \ x ) + —  f (2) (x) -  —  f (?\ x ) + —  f (4\ x )  -  ~ ^ f (5)(x) H--

and divide the difference between these two equations by 2 h to get the central 
difference approximation for the first derivative as

Di2„ ,  h) = / ( * + * > - / ( * - * >  = + £  + £  } +
2h 3! 5!

=  f  ' (x)  +  O ( h 2) (5.1.8)

which has an error of O ( h 2) similarly to Eqs. (5.1.5) and (5.1.7). This can also be 
processed to yield an improved version having a truncation error of O ( h 4).

9 2 n  , ^  n  г J { x + h ) - f { x - h )  f ( x + 2 h ) - f ( x - 2 h )2 D c 2(x, /2) — D c 2(x, 2/z) — 4 -------
2h 2 ■ 2h 

12h4 (5)

n  / 2 2D C1 ( x , h )  — D C1 (x,  2h)
D c4 (x , h)  = ------------- - ---------------------

8 / (x  +  h) -  8 f i x  - h ) -  f i x  +  2 h) +  f i x - 2 h )  

~  V2h

=  f  ' (x)  +  O ( h 4) (5.1.9)

Furthermore, this procedure can be formularized into a general formula, called 
‘Richardson’s extrapolation’, for improving the difference approximation of the 
derivatives as follows:

< Richardson’s extrapolation>

2 nD f  n(x,  h)  — D f n(x,  2h)
Df , „ + i i x ,  h)  = ------- -------- -------- - -----------  in: the order of error) (5.1.10a)

2 nD bJ x , h )  -  D bJ x , 2 h )
D b,n+ i i x ,  h)  = -------------- —--------------------- (5.1.10b)2n — 1

22nD C 2n(x,  h) — D c 2n(x,  2h)
D c,2in+ I)ix,  h)  = ------- ' l 2 n _ l ' } (5.1.10c)

5 .2  APPROXIMATION ERROR OF FIRST DERIVATIVE

In the previous section, we derived some difference approximation formulas 
for the first derivative. Since their errors are proportional to some power of
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the step-size h , it seems that the errors continue to decrease as h gets smaller. 
However, this is only half of the story since we considered only the truncation 
error caused by truncating the high-order terms in the Taylor series expansion 
and did not take account of the round-off error caused by quantization.

In this section, we will discuss the round-off error as well as the truncation 
error so as to gain a better understanding of how the computer really works. For 
this purpose, suppose that the function values

f ( x  +  2h) ,  f ( x  +  h) ,  f ( x ) ,  f ( x  — h) ,  f ( x  — 2h)

are quantized (rounded-off) to

У2 =  f ( x  +  2h)  +  в2 , У1 =  f ( x  +  h)  +  e 1 

Уо =  f ( x )  +  eo (5.2.1)

У—1 =  f ( x  — h) +  e —1 , y —2 =  f ( x  — 2h)  +  e —2

where the magnitudes of the round-off (quantization) errors e2, e1, e 0, e —1, and 
e —2 are all smaller than some positive number s, that is, |e,-1 <  s. Then, the total 
error of the forward difference approximation (5.1.4) can be derived as

D f  1 ( x , h )  =
y 1 — y 0 f ( x  +  h)  +  e1 — f ( x )  — e0 (5.1-4) ,

----------  =  f  (x)  +
h h

e1 — e0 , K 1 ,----------- \------h
h 2

I Df  1 ( x , h )  — f ' (x)|  <
e 1 — e0

h

IK1I 2s IK11 (2)
+  ~ ^ h < —  +  b ^ h  w i t h ^ i  =  / (2)W  

2 h 2

Look at the right-hand side of this inequality— that is, the upper bound of error. 
It consists of two parts; the first one is due to the round-off error and in inverse 
proportion to the step-size h , while the second one is due to the truncation error 
and in direct proportion to h . Therefore, the upper bound of the total error can 
be minimized with respect to the step-size h to give the optimum step-size h o as

d  ( 2 s  | ^x |  \  2e |^x|
—  \ —  +  — h ) = — -  +  — = 0 ,  h 0 =  2  ------ (5.2.2)
d h  \  h 2  J h 2 2  V l^i l

Thetotal error of the central difference approximation (5.1.8) can also be derived 
as follows:

Dc 2 (x,  h)  =
У1 — У—1 f ( x  +  h)  +  e 1 — f ( x  — h) — e —1

2h 2h

(5 1 8 ) ,  e 1 — ^  1 K 2 n
=  / '( * )  +  +  - i h 2 

2h 6

I Dc 2 ( x , h )  — f  '(x)I <
e 1 — e —1

2h
+

|K 1 |  2 2 s  | K 2|  2 (3)
~ ^ h 2 < — +  ' - f h 2 with K 2 =  f (3\ x )  

6 2h 6
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The right-hand side of this inequality is minimized to yield the optimum step 
size h o as

Similarly, we can derive the total error of the central difference approximation 
(5.1.9) as

From what we have seen so far, we can tell that, as we make the step size h 
smaller, the round-off error may increase, while the truncation error decreases. 
This is called ‘step-size dilemma ’ . Therefore, there must be some optimal step 
size ho for the difference approximation formulas, as derived analytically in 
Eqs. (5.2.2), (5.2.3), and (5.2.4). However, these equations are only of theoretical 
value and cannot be used practically to determine ho because we usually don t 
have any information about the high-order derivatives and, consequently, we
cannot estimate K 1; K 2, ___Besides, noting that h o minimizes not the real error,
but its upper bound, we can never expect the true optimal step size to be uniform 
for all x  even with the same approximation formula.

Now, we can verify the step-size dilemma and the existence of some optimal 
step size h o by computing the numerical derivative of a function, say, f ( x )  =  
sin x , whose analytical derivatives are well known. To see how the errors of the 
difference approximation formulas (5.1.4) and (5.1.8) depend on the step size h, 
we computed their values for x =  n / 4  together with their errors as summarized 
in Tables 5.1 and 5.2. From these results, it appears that the errors of (5.1.4) and
(5.1.8) are minimized with h ~  10—8 and h ~  10—5, respectively. This may be 
justified by the following facts:

• Noting that the number of significant bits is 52, which is the number of man
tissa bits (Section 1.2.1), or, equivalently, the number of significant digits 
is about 52 x  3/10 ~  16 (since 210 & 103), and the value of f ( x )  =  sin x is 
less than or equal to one, the round-off error is roughly

(5 .2 .3)

D ^ x ^ )  — f ' (x)|  <
8 e 1 — 8e—1 — £2 +  e —2

12h

and find out the optimum step size ho as

d h  V2h 30
d_ ( 3 e  +  \ KA\hA

(5 .2 .4 )

e &  10—16/2
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Table 5.1 The Forward Difference Approximation (5.1.4) for the First Derivative of f (x) =  
sinx  and Its Error from the True Value (cos n/4 =  0.7071067812) Depending on the Step 
Size h

hk = 10—k IIк 7Q1 D 1kIx=n/4  — cos(n /4 )

hi = 0.1000000000 0.6706029729 —0.03650380828
h2 = 0.0100000000 0.7035594917 0.0329565188 —0.00354728950
h 3 = 0.0010000000 0.7067531100 0.0031936183 —0.00035367121
h4 = 0.0001000000 0.7070714247 0.0003183147 —0.00003535652
h5 = 0.0000100000 0.7071032456 0.0000318210 —0.00000353554
h6 = 0.0000010000 0.7071064277 0.0000031821 —0.00000035344
h7 = 0.0000001000 0.7071067454 0.0000003176 —0.00000003581
h 8 = 0.0000000100* 0.7071067842 0.0000000389 0.00000000305*
h9 = 0.0000000010 0.7071068175 0.0000000333* 0.00000003636
h 10 = 0.0000000001 0.7071077057 0.0000008882 0.00000092454
ho = 0.0000000168 (the optimal value of h obtained from Eq. (5.2.2))

Table 5.2 The Forward Difference Approximation (5.1.8) for the First Derivative of f (x) =  
sinx  and Its Error from the True Value (cos n/4 =  0.7071067812) Depending on the Step 
Size h

hk =  10 k D 2kIx=n/4 D 2k — D 2(k—1) D2kIx=n/4 — COS(n/4)

h: =  0.1000000000
h2 =  0.0100000000
h3 =  0.0010000000
h4 =  0.0001000000
h5 =  0.0000100000*
h6 =  0.0000010000
h7 =  0.0000001000
h8 =  0.0000000100
h9 =  0.0000000010
h 10 =  0.0000000001
ho =  0.0000059640 (the

0.7059288590 
0.7070949961 
0.7071066633 
0.7071067800 
0.7071067812 
0.7071067812 
0.7071067804 
0.7071067842 
0.7071067620 
0.7071071506 

optimal value of h

0.0011661371
0.0000116672
0.0000001167
0.0000000012
0.0000000001*

—0.0000000009
0.0000000039

—0.0000000222

—0.00117792219
—0.00001178505
—0.00000011785
—0.00000000118
—0.00000000001*

0.00000000005
—0.00000000084

0.00000000305
—0.00000001915

0.0000003886 
obtained from Eq. (5.2.3))

0.00000036942

Accordingly, Eqs. (5.2.2) and (5.2.3) give the theoretical optimal values of 
step size h as

Г Г -  I £ I 1 ( Г 16/ 2  „

ko =  2 ^ W \ = 2 ^  \ f ( x / 4 ) \  =  2 y  | -  sin (7Г/4 ) | =  L68 X 10

=  ; l  J ‘  =  j  3 X i r “ / 2  =  0 .5 9 6 4  X 1 0 - ’ 
У 1 * У  V I / ' S' W 4 ) I  V I -  C0S(JT/4)|
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10°

10-

10-

10-

10-

(a) Error bound of Eq. (5.1.4) vs. step size h (b) Error bound of Eq. (5.1.8) vs. step size h

Figure 5.1 Forward/central difference approximation error of first derivative versus step size h.

2

4

6

8

Figure 5.1a/b shows how the error bounds of the difference approximations
(5.1.4)/(5.1.8) for the first derivative vary with the step-size h, implying that there 
is some optimal value of step-size h with which the error bound of the numerical 
derivative is minimized. It seems that we might be able to get the optimal step- 
size h o by using this kind of graph or directly using Eq. (5.2.2),(5.2.3) or (5.2.4). 
But, as mentioned before, it is not possible, as long as the high-order derivatives 
are unknown (as is usually the case). Very fortunately, Tables 5.1 and 5.2 sug
gest that we might be able to guess the good value of h by watching how 
small \ Dik — D i(k—1)\ is for a given problem. On the other hand, Fig. 5.2a/b 
shows the tangential lines based on the forward/central difference approximations
(5.1.4)/(5.1.8) of the first derivative at x  =  n / 4  with the three values of step- 
size h . They imply that there is some optimal step-size ho and the numerical 
approximation error becomes larger if we make the step-size h larger or smaller 
than the value.

1

_<o 
^

V
0и

-c1 yh = 10-8
1 -

{
1

0иh

• f t f(x) = sin x Л т f(x) = sin x
0.8 j / ' ' h  = 0.5 0.8 - J h =  10-16

' r
0.6 -  /  / ’ - 0.6 - / ' /  ~

/

0.4 ' '  ' /  /' - 0.4 // * /

/ /  / ' '  ' '  /

0.2 v  /  I  1 1 i 0.2 -/ / i l l "
0 0.5 1 1.5 X 2 0 0.5 1 1.5 x 2

(a) Forward difference approximation by Eq. (5.1.4) (b) Central difference approximation by Eq. (5.1.8)

Figure 5.2 Forward/central difference approximation of first derivative of f(x) =  sinx.
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5.3  DIFFERENCE APPROXIMATION FOR SECOND 
AND HIGHER DERIVATIVE

In order to obtain an approximation formula for the second derivative, we take 
the Taylor series expansion of f ( x  +  h)  and f ( x  — h)  up to the fifth order to 
write

Adding these two equations (to remove the f  ' (x)  terms) and then subtracting 
2 f ( x )  from both sides and dividing both sides by h2 yields the central difference 
approximation for the second derivative as

which has a truncation error of O ( h 2).
Richardson’s extrapolation can be used for manipulating this equation to 

remove the h 2 term, which yields an improved version

22D® (x , h) -  D®(x, 2 h) _  - f i x  + 2 h) + 16 f i x  + h) — 30 f i x )  +  16/(x  — h) — f i x  -  2 h)

which has a truncation error of O(h4).
The difference approximation formulas for the first and second derivatives 

derived so far are summarized in Table 5.3, where the following notations are 
used:

D % ( x , h )
f ( x + h ) - 2 f ( x ) +  f ( x - h )  

h 2
h 2 2h4 

f (2)(x)  +  - f (4)(x)  +  - 7 r f (6)(x)  +  ■■■ (5.3.1) 
12 6!

22 — 1

Df 4( x ,h )  =
f i x  + 2h) + 16f i x  + h) — 30f i x )  + 16f i x  — h) — f i x  -  2h) 

12h-

f (2)(x) + O(h4) (5.3.2)

D (fNi ) / D (bN)/ D C f ) is the forward/backward/central difference approximation for 
the N th  derivative having an error of O ( h I)(h is the step size)

fk =  f ( x  +  kh)
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Now, we turn our attention to the high-order derivatives. But, instead of deriv
ing the specific formulas, let’s make an algorithm to generate whatever difference 
approximation formula we want. For instance, if we want to get the approxima
tion formula of the second derivative based on the function values f 2, f 1, f o , f —1, 
and f — 2, we write

^ (2), , 4 c2 f 2 +  c 1 f 1 +  Cof 0 +  c —1 f —1 +  C—2 f —2
D c 4 ^ ,  h ) =  ------------------------------------------------------- (5.3.3)

and take the Taylor series expansion of f 2, f 1, f — 1, and f —2 excluding f 0 on the 
right-hand side of this equation to rewrite it as

D % ( x , h )

c2 I f 0 +  2hf0 +
(2h) 2 A2) (2h f  (3) (2h)  (4)

+Ci ( fo +  hfo +  у  /о(2) +  ^7-A)(3) +  4J ^°(4) +  '

" - 1  ( fo -  A/o' +  y / o (2) -  ^ / o (3) +  ^ / o 4) -  • • •

, ( 2h) 2 (2) (2h)3 (3) (2h)4 
+ c _ 2 ( fo -  2h f '  +  ^ / 0(2) -  ^ / 0(3) +

(c2 +  c1 +  co +  c —1 +  c —2 ) fo  +  h( 2 c2 +  c1 — c—1 —

+  cof o

f (4) _  
f o ' '

2c—2)fo
22 1 1

+ A  ( —  C 2 +  - C l  +  - C _ 1  +  y C _ 2  ) /о
(2)

23 23

+/г U C 2 + 3!C l ' 3 ! C_1' 3 ! C _ 2, /o

+/г4 ( ^  +  I c +  i c _ +  ? ! c _2 ) y(4) 
4! 2 4! 1 4! —1 4! —2 o

(3) (5.3.4)

We should solve the following set of equations to determine the coefficients 
c2, c1, c o, c —1, and c —2 so as to make the expression conform to the second 
derivative f o(2) at x +  oh =  x.

1 1 1 1 1 c2 o
2 1 o —1 —2 c1 o

22/ 2! 1/2! o 1/2! 22/2! co = 1
23/3! 1/ 3! o —1/ 3! —23/3! c—1 o
24/ 4! 1/4! o 1/4! 24/4! c—2 o

(5 .3 .5 )

2



Table 5.3 The Difference Approximation Formulas for the First and Second Derivatives
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O(h)  forward difference approximation for the first derivative:

Df l (x,h)  = ^ - ^  (5.1.4)

O(h2) forward difference approximation for the first derivative:

n   ̂ 2 D f i ( x , h )  — D f i ( x , 2 h)  — / 2  +  4 / 1  — 3 / 0
D f2(x, h) =  — ------------------ -------------= -------------------------- (5.1.5)

y 2 - 1  2 h

O(h)  backward difference approximation for the first derivative:

Dbl( x , h ) =  (5.1.6)
h

O(h2) backward difference approximation for the first derivative:

n  / i \  2Dbi (x ,h )  — Db\(x,2h)  3 / 0 — 4 /_ i  + / _ 2 c
A ,2(*, h) = ------------- ----- --------------- = ------------ -------------- (5.1.7)

2 — 1 2h

O(h2) central difference approximation for the first derivative:

D c2 (x, ft) =  f l  ~ / ~ l (5.1.8)
2h

O(h4) forward difference approximation for the first derivative:

„  22Dc2( x , h ) ~  Dc2(x,2h)  - / 2  +  8 / 1  - 8 /_ i  +  / _ 2
= ------------  = --------------— -------------- (5.1.9)

O(h2) central difference approximation for the second derivative:

T~\(2) / i \ f  — 2 f 0 +  f —1 /-«114c2 (x? h) = --------- —---------  (5.3.1)

O(h4) forward difference approximation for the second derivative:

n (2)̂  22D c(2 (x, h) — D (̂ ( x ,  2h) — f 2 +  I 6/1 — 30/o +  16/_i — /_2
c4 (X’ } “  2 ^ 1  “  12Л*

(5.3.2)
O(h2) central difference approximation for the fourth derivative:

n ( 4 ^ ,  f —2 — 4 f —1 +  6 f 0 — 4 f 1 +  / 2Dc2 (x,h)  = ------------------- —------------------- (from d i f a p x ( 4 ,  [-2  2 ]) (5.3.6)
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func t ion [c ,e r r ,eoh , A,b ]  = d ifapx(N,points)
%difapx.m to  get  the d i f f e r ence  approximation fo r  the Nth de r iv a t iv e  
l  = max(points);
L = ab s(po in ts (1 ) - p o in t s (2 ) )+  1;
i f  L < N + 1, e r ror( 'More  points  are needed! ' ) ;  end 
fo r  n = 1 : L 

A(1,n) = 1;
fo r  m = 2:L + 2, A(m,n) = A(m - 1 ,n)* l / (m - 1); end %Eq.(5.3.5) 
l  = l -1 ;

end
b = zeros(L,1) ;  b(N + 1) = 1;
c = (A (1 :L , : ) \b ) ' ;  %coef f ic ien ts  of d i f f e r ence  approximation formula 
e r r  = A(L + 1 , : ) * c ' ;  eoh = L-N; %coeff ic ient  & order  of e r r o r  term 
i f  abs(e r r )  < eps, e r r  = A(L + 2 , : ) * c ' ;  eoh = L - N + 1; end 
i f  po in ts(1)  < po in ts (2 ) ,  c = f l i p l r ( c ) ;  end

The procedure of setting up this equation and solving it is cast into the 
MATLAB routine “d i f a p x ( ) ”, which can be used to generate the coefficients 
of, say, the approximation formulas (5.1.7), (5.1.9), and (5.3.2) just for prac
tice/verification/fun, whatever your purpose is.

>>format r a t  %to make a l l  numbers represented in r a t i o n a l  form 
>>difapx(1, [0 -2]) %1st d e r iv a t iv e  based on {f0, f —1, f —2} 

ans = 3/2 -2 1/2 %Eq.(5.1-7)
>>difapx(1 ,[ -2 2]) %1st d e r iv a t iv e  based on {f—2, f —1, f 0, fi,  f 2} 

ans = 1/12 -2/3 0 2/3 -1/12 %Eq.(5.1.9)
>>difapx(2, [2 -2]) %2nd d e r iv a t iv e  based on {f2, f 1, f 0, f —1, f —2} 

ans = -1/12 4/3 -5/2 4/3 -1/12 %Eq.(5.3.2)

E xam ple 5.1. Numerical/Symbolic Differentiation for Taylor Series Expansion. 
Consider how to use MATLAB to get the Taylor series expansion of a func
tion— say, e^x about x =  o — which we already know is

1 2 1 3 1 4 1 5e-* =  1 -  x +  - x 2 ------x 3 +  —x ------ x 5 +  • • • (E5.1.1)
2 3! 4! 5! v ;

As a numerical method, we can use the MATLAB routine “d i f a p x ( ) ”. On 
the other hand, we can also use the MATLAB command “t a y l o r ( ) ”, which 
is a symbolic approach. Readers may put ‘help t a y l o r ’ into the MATLAB 
command window to see its usage, which is restated below.

• t a y l o r ( f )  gives the fifth-order Maclaurin series expansion of f.
• t a y l o r ( f , n  + 1) with an integer n >  o gives the nth-order Maclaurin 

series expansion of f .
• t a y l o r ( f , a )  with a real number(a) gives the fifth-order Taylor series expan

sion of f  about a.



• t a y l o r ( f , n  + 1 ,a )  gives the n th-order Taylor series expansion of f  about 
defau ltvariab le  = a.

• t a y l o r ( f , n  + 1 , a , y )  gives the nth-order Taylor series expansion of f (y )  
about y = a.

(cf) The target function f must be a legitimate expression given directly as the first 
input argument.

(cf) Before using the command “t a y lo r ( ) ”, one should declare the arguments of the 
function as symbols by putting the statement like “syms x t ”.

(cf) In the case where the function has several arguments, it is a good practice to put the 
independent variable as the last input argument of “t a y lo r ( ) ”, though taylor ()  
takes one closest (alphabetically) to ‘x ’ as the independent variable by default only 
if it has been declared as a symbolic variable and is contained as an input argument 
of the function f .

(cf) One should use the MATLAB command “sym2poly()” if he wants to extract the 
coefficients from the Taylor series expansion obtained as a symbolic expression.
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The following MATLAB program “nm5e01” finds us the coefficients of fifth- 
order Taylor series expansion of e^x about x =  0 by using the two methods.

%nm5e01:Nth-order Taylor ser ies expansion for e*-x about xo in Ex 5.1
f = i n l i n e ( ' e x p ( - x ) ' , ' x ' ) ;
N = 5; xo = 0;
%Numerical computation method
T(1) = feval (f ,xo);
h = 0.005 %.01 or 0.001 make i t  worse
tmp = 1;
for  i  = 1:N

tmp = tmp*i*h; %i!( fac tor ial  i)*h~i
c = d i f a p x ( i , [ - i  i ] ) ;  %coefficient of numerical derivative
dix = c*feval(f ,xo + [ - i : i ] * h ) 1; %/h~i; %derivative
T(i+1) = dix/tmp; %Taylor ser ies coeff ic ient

end
format rat ,  Tn = f l ip l r (T)  %descending order
%Symbolic computation method
syms x; Ts = sym2poly(taylor(exp(-x),N + 1,xo))
%discrepancy
format short,  discrepancy=norm(Tn - Ts)

5.4 INTERPOLATING POLYNOMIAL AND NUMERICAL 
DIFFERENTIAL

The difference approximation formulas derived in the previous sections are appli
cable only when the target function f ( x )  to differentiate is somehow given. In 
this section, we think about how to get the numerical derivatives when we are
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given only the data file containing several data points. A possible measure is 
to make the interpolating function by using one of the methods explained in 
Chapter 3 and get the derivative of the interpolating function.

For simplicity, let’s reconsider the problem of finding the derivative of f ( x )  =  
sin x at x =  п /4 , where the function is given as one of the following data 
point sets:

/  п  п  \  /  п  п  \  ( 3 л  3 п \
—, sin — , —, sin — , — , sin —

\ 8  8 /  V4 4 /  V 8 8 /

/  п  п  \  /  п  п  \  3п  3п  4п  4п  
(О, sinO), sin - )  , sin - )  , sin т  j  sin т  j

2п 2п \  ( 3п 3п  \  / 4 п  4п \  ( 5п  . 5п \  ( 6п 6п
, sin —  , — , sin —  , — , sin —  , — , sin —  , — , sin

16 1 6 /  V 16 1 6 /  \  16 1 6 /  V 16 16 /  V 16 16

We make the MATLAB program “nm540”, which uses the routine “ l a g r a n p ( ) ” 
to find the interpolating polynomial, uses the routine “p o ly d e r ( )  ” to differentiate 
the polynomial, and computes the error of the resulting derivative from the true 
value. Let’s run it with x defined appropriately according to the given set of data 
points and see the results.

>>nm540
dfx( 0.78540) = 0.689072 (e r ro r :  -0.018035) %with x = [1:3]*pi /8
dfx( 0.78540) = 0.706556 (e r ro r :  -0.000550) %with x = [0:4]*pi /8
dfx( 0.78540) = 0.707072 (e r ro r :  -0.000035) %with x = [2:6]*pi /16

This illustrates that if we have more points that are distributed closer to the target 
point, we may get better result.

%nm540
% to  interpolate by Lagrange polynomial and get the derivative 
clear ,  c l f  
x0 = pi/4;
df0 = cos(x0); % True value of derivative of sin(x) at x0 = pi/4 
for m = 1:3

i f  m == 1, x = [1:3]*pi/8; 
e l s e i f  m == 2, x = [0:4]*pi/8; 
else x = [2:6]*pi/16; 

end
y = sin(x);
px = lagranp(x,y);  % Lagrange polynomial interpolat ing (x,y) 
dpx = polyder(px); % derivative of polynomial px 
dfx = polyval(dpx, x0);
f p r i n t f ( '  dfx(%6.4f) = %10.6f (error: %10.6f)\n', x0,dfx,dfx - df0); 

end

One more thing to mention before closing this section is that we have the 
MATLAB built-in routine “d i f f ( ) ”, which finds us the difference vector for a 
given vector. When the data points { (xk , f ( x k)) ,  k  =  1, 2 , . . . }  are given as an
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ASCII data file named “x y . d a t ”, we can use the routine “d i f f ( ) ” to get the 
divided difference, which is similar to the derivative of a continuous function.

>>load xy.da t  %input the conten ts  of 'x y .d a t '  as a matrix named xy 
>>dydx = d i f f ( x y ( : , 2 ) ) . / d i f f ( x y ( : , 1 ) ) ;  dydx' %divided d i f fe r ence  

dydx = 2.0000 0.50000 2.0000

k
x k

xy(:,1)
f ( x k )

xy(:,2)
xk+1 -  xk 

diff(xy(:,1))
f ( x k + 1 ) -  f ( x k )

diff(xy(:,2))
r- f ( x k + 1 ) 
Uk =

x k+1
-  f ( x k) 

- x k

1 - 1 2 1 2 2
2 0 4 2 1 1/2
3 2 5 - 1 - 2 2
4 1 3

5.5 NUMERICAL INTEGRATION AND QUADRATURE

The general form of numerical integration of a function f ( x )  over some interval 
[a,  b ] is a weighted sum of the function values at a finite number ( N  +  1) of 
sample points (nodes), referred to as ‘quadrature ’ :

/* b N
I f ( x )  d x  =  w kf ( x k) with a =  x 0 <  x 1 <  ■■■ <  x N =  b
'a k=0

(5.5.1)

Here, the sample points are equally spaced for the midpoint rule, the trapezoidal 
rule, and Simpson ’ s rule, while they are chosen to be zeros of certain polynomials 
for Gaussian quadrature.

Figure 5.3 shows the integrations over two segments by the midpoint rule, 
the trapezoidal rule, and Simpson ’ s rule, which are referred to as N ew ton-C otes 
formulas for being based on the approximate polynomial and are implemented 
by the following formulas.

r*xk+1
(midpoint rule)

(trapezoidal rule)

(Simpson ’ s rule)

f
/ f  (x)  d x  =  hfmk

J xk

with h =  xk+1 -  xk,  fmk =  f ( x mk ) ,  x mk =  

/xk

Cxk+1 h
f ( x ) d x  =  ~ { f k +  f k+ 1)

with h =  xk+1 -  xk,  fk =  f ( x k)
xx

xk

h
f  (x)  d x  =  —( f k- i  +  4 f k +  f k+ 1)

(5.5.2)

Xk +  x k+1 

2

(5.5.3)

(5.5.4)

with h =
xk+1 -  xk-1
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(c) Simpson's rule 

Figure 5.3 Various methods of numerical integration.

These three integration rules are based on approximating the target function 

(integrand) to the zeroth-, first- and second-degree polynomial, respectively. Since 

the first two integrations are obvious, we are going to derive just Simpson’s rule

(5.5.4). For simplicity, we shift the graph of f(x ) by —xk along the x axis, 

or, equivalently, make the variable substitution t =  x — xk so that the abscissas 

of the three points on the curve of f(x) change from x =  {xk — h ,xk,xk +  h} 

to t =  {—h, o, +h}. Then, in order to find the coefficients of the second-degree 

polynomial

P2(t) =  c1t2 +  c2t +  c3 (З.5 .5

matching the points (—h, fk—1), (o, fk), (+h, fk+1), we should solve the follow

ing set of equations:

P2(—h) =  c1(—h)2 +  c2(—h) +  c3 =  fk—1 

p2(o) =  c1 °  +  c2° +  c3 =  fk

P2(+ h) =  c1(+ h)2 +  c2(+ h) +  c3 =  fk+1

to determine the coefficients c1 ,c2, and c3 as

r fk+1 — fk—1 1 /  fk+1 +  fk—1 J,
C  =  f ,. C2 = -------. c, =  ^ l --- ------/,

Integrating the second-degree polynomial (5.5.5) with these coefficients from 

t =  —h to t =  h yields
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-

h 1 , 1  h
p2(t) dt =  -Cit3 H— c2t2 +  c3t 

h 3 2

2 3 
=  —c\h +  2c3h

-h 3

2h fk 1 +  fk 1 h
1 - f k  +  ЗЛ  =  - ( f k - 1 +  4 Л  +  fk+1)

3 V 2 3

This is the Simpson integration formula (5.5.4).

Now, as a preliminary work toward diagnosing the errors of the above inte

gration formulas, we take the Taylor series expansion of the integral function

g(x) =  Г  f(t)dt with g'(x) =  f(x), g(2)(x) =  f (x ) ,  g(3)(x) =  f (2)(x)
xk

(5.5.6)

about the lower bound xk of the integration interval to write

g{x) =  g{xk) +  g' (xk)(x - Xk) +  ^ g (2) (xk)(x - Xk)2 +  ^ g (3) (xk)(x - Xkf +  ■■■ 

Substituting Eq. (5.5.6) together with x =  xk+1 and xk+1 - xk =  h into this yields

f xk+1 h 2 h 3 h4 (3) h 5 ,4s
J  f  (x) dx =  0 +  hf(xk) +  — f  (xk) +  — f { \xk) +  — / ( \xk) +  — / ( Hxjc) H--

xt . . .  (5.5.7)

First, for the error analysis of the midpoint rule, we substitute xk-1 and -h =  

xk-1 - xk in place of xk+1 and h in this equation to write

f xk-1 h 2 h 3 h4 (3) h 5 (4)
J  f  (x) dx =  0 -hf(xk) +  — f  (xk) - —  f { \xk) +  — / ( \xk) - —  f { Hxjc) H--

and subtract this equation from Eq. (5.5.7) to write

Г xk+1 Г xk-1 Г xk+1 Г xk
I f(x )d x  - I  f(x )d x  =  I f (x )d x  +  I f (x )d x  

J xk J xk J xk J x̂ -1

rxk+1 2h3 2h5
=  / f(x )d x  =2hf(xk) +  —  f (2)(xk) +  —  f (4)(xk) +  --- (5.5.8) 

Jxk-i 3- 5 -

Substituting xk and xmk =  (xk +  xk+1)/2 in place of xk-1 and xk in this equation 

and noting that xk+1 - xmk =  xmk - xk =  h/2, we obtain

Г xk+1 h3
f  (x) dx =  hf(xmk) +  -— -Tf(2)(xmk)

Jxk 3 x 23

xxk

h5

H--------- T f (44 xmk) +  ' ' '
5 x 4 x 3 x 25

xk+1 h3 h5

f(x )d x  - hf(xmk) =  — f (2)(xmk) +  j ^ f (4>(xmk) +  ■■■ =  0 (h 3)

(5.5.9)



This, together with Eq. (5.5.2), implies that the error of integration over one 

segment by the midpoint rule is proportional to h3.

Second, for the error analysis of the trapezoidal rule, we subtract Eq. (5.5.3) 

from Eq. (5.5.7) to write

NUMERICAL INTEGRATION AND QUADRATURE 2 2 5

r xk

Jxt

h
f  (x) dx - ~(f(xk) +  f(xk+1 ))

h2 h3 h4 h5 
=  hf(xk) +  - f '(x k) +  -  f (2)(xk) +  - f (3)(xk) +  +

h h2 h3
- - ( f (x k) +  f(xk) +  hf'(xk) +  — f {2)(xk) +  —  f (3)(xk)

h4

+ ^ f (4)(Xk) +  "  

h3 h4 h5 
=  ~ ^ f {2)(xk) - — f (3)(xk) - — f (4)(xk) +  0(h6) =  0(h3) (5.5.10)

This implies that the error of integration over one segment by the trapezoidal 

rule is proportional to h3.

Third, for the error analysis of Simpson’s rule, we subtract the Taylor series 

expansion of Eq. (5.5.4)

h
2  ( / (Xk-1 ) +  4 / (xk) +  f  (*ifc+l))

h (  2h2 (2) 2h4 (4)
=  - if(xk)+ 4 f ( x k) +  f(xk) +  — f ( \xk) +  — f ( \xk) +  ■ 

h3 h5 

=  2hf(xk) +  - f (2)(xk) +  - / (4)fe ) +  '' '
3 36

from Eq. (5.5.8) to write

fxk+1 h h5 (4) 7 
J  f(x)dx - - ( / ( i h J + V W  +  f(xk+1)) =  - - f (4>(xk) +  0(h )

=  O (h5) (5.5.11)

This implies that the error of integration over two segments by Simpson’s rule 

is proportional to h5.

Before closing this section, let’s make use of these error equations to find 

a way of estimating the error of the numerical integral from the true integral 

without knowing the derivatives of the target (integrand) function f(x). For 

this purpose, we investigate how the error of numerical integration by Simp

son’s rule

h
Is{xk-i,xk+i,h) =  ~(f(xk- i)+4f(xk) +  f(xk+i))



will change if the segment width h is halved to h/2. Noting that, from Eq. (5.5.11),

h5
f  (x) dx - Is(xk-i,xk+i, h) ss - —  f (4\c)(c e [ * ц ,  xt+il)

h
- i,xk+i, - 

h
i,xk,~
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fxk+1k 1

Es(h) =
Jxk—\

h Г xk+1

Es(-) =
Jxk—l

r xk
x f

Jxk—l

n xk+1
/ f  (x) dx

Jxk

- Is X k+1 , - J (c e  \_xk-i,xk+i\)

(h/2)5 (4) 1 
«  —2 — —— / ( J(c) =  — E s(h )

90 16

we can express the change of the error caused by halving the segment width 

as

h
E s(h) - E s (-

h
h (x k-1 , xk+i ,h) - Is ( xk-i ,хк+ъ-

^\ Es(h )\  « 1 5  
16

E s i - (5.5.12)

This suggests the error estimate of numerical integration by Simpson’s rule as

1

24 — 1

h
h ( xk-i> xk+i> h) — Is ( xk_i,x k+i, —

Also for the trapezoidal rule, similar result can be derived:

h
E r  I-

1 h
1т(хк-\, xk+i, h) - IT ( xk-i,xk+i, -

22 - 1

5.6 TRAPEZOIDAL M E T H O D  A N D  S IM P SO N  M E T H O D

(5.5.13)

(5.5.14)

In order to get the formulas for numerical integration of a function f(x) over 

some interval [a,b], we divide the interval into N  segments of equal length 

h =  (b — a ) /N  so that the nodes (sample points) can be expressed as {x =  a +  

kh, k =  0, 1, 2 , . . . ,  N }. Then we have the numerical integration of f(x )  over 

[a, b] by the trapezoidal rule (5.5.3) as

N—1rb N_1 /*xk+1

/ f  (x) dx =  ^  f  (x) dx
J a n J xkk=0 xk 

h

=  +  /i) +  (/i +  / 2) +  • • • +  { I n - 2  +  I n -  1 ) +  ( I n - i  +  f n )}
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N-1
f ( a )  +  f (b )  x ,

IT2( a , b , h ) = h \ Jy \  ’ +  }  J ( x k)\ (5.6.1)

N-1

+  f  (xk) 1 
k=1 J

whose error is proportional to h2 as N  times the error for one segment [Eq. (5.5.10)], 

that is,

N O (h ) =  (b - a)/h  x O (h3) =  O (h2)

On the other hand, we have the numerical integration of f(x) over [a, b] by 

Simpson’s rule (5.5.4) with an even number of segments N  as

r b N/2-1 fx

/ f(x )d x  =  ^ 2
■J a a J x2m,

-b N/2-1 rx2m+2

f(x) dx

n=0 Jx2m 

h
=   ̂{(/o +  4/i +  / 2) +  ( / 2  +  4/з +  / 4) +  • • • +  (Jn - 2  +  4/jv-i +  In)}

h N/2-1 N/2-1

Ы а ,  b,h) =  - f(a) +  f(b) + 4 J 2  / ( * 2»+i) +  2 ^  f (x 2m) (5.6.2)

m=0 m=1 J

h N/2-1 N-1

=   ̂ I f ( a) +  f(b) +  2 f f  (x2m+1) +  f  ixk) \ j

whose error is proportional to h4 as N  times the error for one segment [Eq. (5.5.11)], 

that is,

(N /2 )O (h 5) =  (b - a)/2h x O (h5) =  O (hA)

These two integration formulas by the trapezoidal rule and Simpson’s rule are 

cast into the M ATLAB  routines “trpzds()” and “smpsns()”, respectively.

function INTf = trpzds(f,a,b,N)
%integral of f(x) over [a,b] by trapezoidal rule with N segments 
if abs(b - a) < eps | N <= 0, INTf = 0; return; end
h = (b - a)/N; x = a +[0:N]*h; fx = feval(f,x); values of f for all nodes 
INTf = h*((fx(1) + fx(N + 1))/2 + sum(fx(2:N))); %Eq.(5.6.1)

function INTf = smpsns(f,a,b,N,varargin)
%integral of f(x) over [a,b] by Simpson's rule with N segments 
if nargin < 4, N = 100; end
if abs(b - a)<1e-12 | N <= 0, INTf = 0; return; end 
if mod(N,2) ~= 0, N = N + 1; end %make N even
h = (b - a)/N; x = a + [0:N]*h; %the boundary nodes for N segments
fx = fevel(f,x,varargin{:}); %values of f for all nodes
fx(find(fx == inf)) = realmax; fx(find(fx == -inf)) = -realmax;
kodd = 2:2:N; keven = 3:2:N - 1; %the set of odd/even indices
INTf = h/3*(fx(1) + fx(N + 1)+4*sum(fx(kodd)) + 2*sum(fx(keven)));%Eq.(5.6.2)
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5.7 RECURSIVE RULE A N D  R O M B E R G  INTEGRATION

In this section, w e  are going to look for a recursive formula which enables us 

to use some numerical integration with the segment width h to produce another 

(hopefully better) numerical integration with half the segment width (h /2). Addi

tionally, w e  use Richardson extrapolation (Section 5.1) together with the two 

successive numerical integrations to make a Romberg table that can be used to 

improve the accuracy of the numerical integral step by step.

Let’s start with halving the segment width h to h / 2  for the trapezoidal method. 

Then, the numerical integration formula (5.6.1) can be written in the recursive 

form as

/  A\ h \ f ( a )  +  f (b )  2N-l
1т2 \а, Ъ, -\ =  -

2N-1 1

+  ^ 2  f ( Xk/2) I
k=1 J

2 2 2

N-1 N-1
I I W  + f W  +h | f{a) +  f(b) \ - \ '

-- »----- 1“ 2 f  (.xlml2) +  2 _ f  (x(2m+l)/2)
т=1 т=0

N-1

=  -= \ 1тг(а, b, h) +  ^  / ( * (2m+i)/2)(terms for inserted nodes) 1

2 т=0

(5.7.1)

Noting that the error of this formula is proportional to h2 (O (h2)), we apply a 

Richardson extrapolation [Eq. (5.1.10)] to write a higher-level integration formula 

having an error of O(h4) as

, . , 22lT2(a,b,h) - lT2(a,b, 2h) 
iT4{Cl, Ь , n )  =  ----------------

22 - 1

(5.6.1) 1 h
N-1

=  з 4-  [ / ( а ) + / ( Ь ) + 2 ^ / ( хк)

k=1

N/2-1

~ [ f ( a ) +  m +  2 f ( X2m)J j

h \ N/2  N/-1 | 
=  - \ f ( a )  +  f ( b ) + 4 j 2 f ( x 2 m- i ) + 2  Г ы

т=1 т=1

(5= } Is4(a,b ,h) (5.7.2)

which coincides with the Simpson’s integration formula. This implies that we 

don’t have to distinguish the trapezoidal rule from Simpson’s rule. Anyway,



RECURSIVE RULE AND ROMBERG INTEGRATION 2 2 9

replacing h by h/2  in this equation yields

22IT2(a ,b ,h /2) - IT2(a, b, h) 

22 —  1

which can be generalized to the following formula:

Ii,2(n+1)(a,b, 2—(k+1)h)
22п1ТЛп(а, b, 2-{k+l)h) - IT,2n(a, b, 2-kh)

2 2л -  1

for n > 1 ,k > 0 (5.7.3)

Now, it is time to introduce a systematic way, called Romberg integration, of 

improving the accuracy of the integral step by step and estimating the (trun

cation) error at each step to determine when to stop. It is implemented by 

a Romberg Table (Table 5.4), that is, a lower-triangular matrix that we con

struct one row per iteration by applying Eq. (5.7.1) in halving the segment width 

h to get the next-row element (downward in the first column), and applying 

Eq. (5.7.3) in upgrading the order of error to get the next-column elements 

(rightward in the row) based on the up-left (north-west) one and the left 

(west) one. At each iteration k, we use Eq. (5.5.14) to estimate the truncation 

error as

and stop the iteration when the estimated error becomes less than some prescribed 

tolerance. Then, the last diagonal element is taken to be ‘supposedly’ the best

function [x,R,err,N] = rmbrg(f,a,b,tol,K)
%construct Romberg table to find definite integral of f over [a,b]
h = b - a; N = 1;
if nargin < 5, K = 10; end
R(1,1) = h/2*(feval(f,a)+ feval(f,b));
for k = 2:K

h = h/2; N = N*2;
R(k,1) = R(k - 1,1)/2 + h*sum(feval(f,a +[1:2:N - 1]*h)); %Eq.(5.7.1) 
tmp = 1; 
for n = 2:k 

tmp = tmp*4;
R(k,n) = (tmp*R(k,n - 1)-R(k - 1,n - 1))/(tmp - 1); %Eq.(5.7.3)

end
err = abs(R(k,k - 1)- R(k - 1,k - 1))/(tmp - 1); %Eq.(5.7.4) 
if err < tol, break; end

end
x = R(k,k);
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estimate of the integral. This sequential procedure of Romberg integration is cast 

into the M A TLA B  routine “ rmbrg()” .

Before closing this section, we test and compare the trapezoidal method 

(“trpzds()”), Simpson method (“smpsns()”), and Romberg integration 

(“ rmbrg()”) by trying them on the following integral

4
0

400x(1 - x)e-2x dx =  100 { -2e-2xx(1 - x)
2x

4
0

+  / 2e-2x(1 - 2x)dx

=  100 { -2e-2xx(1 - x) - e-2x(1 - 2x) - 2 j  e 2x dx J

=  200x2e-2x =  3200e-8 =  1.07348040929 (5.7.5)

Here are the M A TLA B  statements for this job listed together with the run

ning results.

>>f = in l i n e ( ' 4 0 0 * x . * ( 1  - x ) . * e x p ( - 2 * x ) ' , ' x ' ) ;

>>a = 0; b = 4; N = 80;

>>format sho r t  e 

>> t rue_ I  = 3200*exp(-8)

> > I t  = t r p z d s ( f , a , b ,N ) ,  e r r t  = I t - t r u e _ I  % trapezo ida l 

I t  = 9.9071e-001, e r r t  = -8.2775e-002

>>Is = sm psns ( f ,a ,b ,N ) , e r r s  = Is - t ru e  I  %Simpson 

INTfs = 1.0731e+000, e r r o r  = -3.3223e-004

» [ IR , R , e r r , N 1  ] = rmbrg(f ,a ,b , .0005), e r rR  = IR - t r u e _ I  %Romberg 

IN T f r  = 1 .0734e+000, N1 = 32 

e r r o r  = -3.4943e-005

4

0

4 4

0 0

4

0

As expected from the fact that the errors of numerical integration by the trape

zoidal method and Simpson method are O (h2) and O(h4), respectively, the 

Simpson method presents better results (with smaller error) than the trapezoidal
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one with the same number of segments N  =  80. Moreover, Romberg integration 

with N  =  32 shows a better result than both of them.

5.8 ADAPTIVE Q U A D R A T U R E

The numerical integration methods in the previous sections divide the inte

gration interval uniformly into the segments of equal width, making the error 

nonuniform over the interval— that is, small/large for smooth/swaying portion 

of the curve of integrand f(x). In contrast, the strategy of the adaptive quadra

ture is to divide the integration interval nonuniformly into segments of (gener

ally) unequal lengths— that is, short/long segments for swaying/smooth portion 

of the curve of integrand f(x), aiming at having smaller error with fewer 

segments.

The algorithm of adaptive quadrature scheme starts with a numerical integral 

(INTf) for the whole interval and the sum of numerical integrals (INTf12 = 

INTf1 + INTf2) for the two segments of equal width. Based on the difference 

between the two successive estimates INTf and INTf12, it estimates the error of 

INTf12 by using Eq. (5.5.13)/(5.5.14) depending on the basic integration rule. 

Then, if the error estimate is within a given tolerance (tol), it terminates with 

INTf12. Otherwise, it digs into each segment by repeating the same procedure 

with half of the tolerance (to l /2 ) assigned to both segments, until the deepest 

level satisfies the error condition. This is how the adaptive scheme forms sections 

of nonuniform width, as illustrated in Fig. 5.4. In fact, this algorithm really fits 

the nested (recursive) calling structure introduced in Section 1.3 and is cast into

Figure 5.4 The subintervals (segments) and their boundary points (nodes) determined by the 

adaptive Simpson method.



the routine “adap_smpsn()”, which needs the calling routine “adapt_smpsn()” 

for start-up.
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function [INTf,nodes,err] = adap smpsn(f,a,b,INTf,tol,varargin)
%adaptive recursive Simpson method 
c = (a+b)/2;
INTf1 = smpsns(f,a,c,1,varargin{:});
INTf2 = smpsns(f,c,b,1,varargin{:});
INTf12 = INTf + INTf2;
err = abs(INTf12 - INTf)/15; % Error estimate by Eq.(5.5.13) 
if isnan(err) | err < tol | tol<eps % NaN? Satisfying error? Too deep level? 

INTf = INTf12; 
points = [a c b]; 

else
[INTf1,nodes1,err1] = adap smpsn(f,a,c,INTf1,tol/2,varargin{:});
[INTf2,nodes2,err2] = adapsmpsn(f,с,b,INTf2,tol/2,varargin{:});
INTf = INTf1 + INTf2;
nodes = [nodes1 nodes2(2:length(nodes2))]; 
err = err1 + err2; 

end

function [INTf,nodes,err] = adapt smpsn(f,a,b,tol,varargin)
%apply adaptive recursive Simpson method 
INTf = smpsns(f,a,b,1,varargin{:});
[INTf,nodes,err] = adap smpsn(f,a,b,INTf,tol,varargin{:});

We can apply these routines to get the approximate value of integration

(5.7.5) by putting the following M A TLA B  statements into the M A TLA B  com

mand window.

>>f = in l i n e ( ' 4 0 0 * x . * ( 1  - x ) . * e x p ( - 2 * x ) ' , ' x ' ) ;

>>a=0; b = 4; t o l  = 0.001;

>>format sho r t  e 

>> true_ I = 3200*exp(-8);

>>Ias = a d a p t s m p s n ( f , a , b , t o l ) , e r ra s= Ia s- t ru e _ I  

la s  = 1.0735e+000, e r ra s  = -8.9983e-006

Figure 5.4 shows the curve of the integrand f(x ) =  400x(1 — x)e—2x together 

with the 25 nodes determined by the routine “adapt_smpsn()”, which yields 

better results (having smaller error) with fewer segments than other methods 

discussed so far. From this figure, we see that the nodes are dense/sparse in the 

swaying/smooth portion of the curve of the integrand.

Here, we introduce the M ATLAB  built-in routines adopting the adaptive recur

sive integration scheme together with the illustrative example of their usage.

" q u a d ( f , a , b , t o l , t r a c e , p 1 , p 2 , . . ) "  / " q u a d l ( f , a , b , t o l , t r a c e , p 1 , p 2 , . . ) "

>>Iq = q u a d ( f , a , b , t o l ) , e r rq  = Iq  - t r u e  I 

Iq  = 1 .0735e+000, e r rq  = 4.0107e-005

> > Iq l  = q u a d l ( f , a , b , t o l ) , e r r q l  = I q l  - t r u e _ I  

I q l  = 1.0735e+000, e r r q l  = -1.2168e-008
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(cf) These routines are capable of passing the parameters (p1,p2,..) to the integrand 

(target) function and can be asked to show a list of intermediate subintervals with 

the fifth input argument trace=1.

(cf) quadl() is introduced in MATLAB 6.x version to replace another adaptive integration 

routine quad8() which is available in MATLAB 5.x version.

Additionally, note that M A TLA B  has a symbolic integration routine 

“in t (f ,a ,b )” . Readers may type “help int” into the M ATLAB  command win

dow to see its usage, which is restated below.

• int(f) gives the indefinite integral of f with respect to its independent 

variable (closest to ‘x’).

• int(f,v) gives the indefinite integral of f(v) with respect to v given as 

the second input argument.

• int(f,a ,b ) gives the definite integral of f over [a,b] with respect to its 

independent variable.

• int(f,v ,a ,b ) gives the definite integral of f(v) with respect to v over 

[a,b].

(cf) The target function f must be a legitimate expression given directly as the first 

input argument and the upper/lower bound a,b of the integration interval can be 

a symbolic scalar or a numeric.

Example 5.2. Numerical/Symbolic Integration using quad()/quadl()/int().

Consider how to make use of M A TLA B  for obtaining the continuous-time 

Fourier series (CtFS) coefficient

rP/2 rP/2

X k = /  x(t)e-jkc°0t dt =  x(t)e-j2nkt/P dt (E5.2.1)
J-P/2 J-P/2

For simplicity, let’s try to get just the 16th CtFS coefficient of a rectangular

wave
/.\ _ f 1 for - 1 < t < 1

x(‘  =  { 0 for - 2 < t < 1 or 1 < t < 2 (E5.2.2)

which is periodic in t with period P =  4. We can compute it analytically as

X 16=  Г  x(t)e-j27rl6t/4 dt =  I '  e-j8irtdt =  e-j8irt
J-2 J-1 -j 8

1 1
—  sin(87rr) 
8n

-j 8n

=  0 (E5.2.3)
1
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%nm5e02

%use quad()/quad8() and i n t ( )  to  get CtFS c o e f f ic i e n t  X16 in  Ex 5.2 

f t n  = 'e xp (- j* k *w 0 * t ) ' ;  fcos = i n l i n e ( f t n , ' t ' , ' k ' , ' w 0 ' ) ;

P = 4; k = 16; w0 = 2*p i/P ; 

a = -1; b = 1; t o l  = 0.001; t ra ce  = 0;

X16_quad = q u a d ( fc o s ,a ,b , to l , t ra c e ,k ,w 0 )

X16_quadl = q u a d l( f c o s ,a ,b , to l , t r a c e , k ,w 0 )  

syms t ;  % dec la re  symbolic v a r i a b le

Iexp = in t ( e x p ( - j * k * w 0 * t ) , t )  % symbolic i n d e f i n i t e  i n t e g r a l  

Icos = in t ( c o s ( k * w 0 * t ) , t )  % symbolic i n d e f i n i t e  i n t e g r a l  

X16_sym = in t ( c o s ( k * w 0 * t ) , t , - 1 ,1 )  % symbolic d e f i n i t e  i n t e g r a l

As  a numerical approach, w e  can use the M A T L A B  routine “quad() ”/ 

“q u a d l ()” . O n  the other hand, w e  can also use the M A T L A B  routine “ i n t ( ) ” , 

which is a symbolic approach. W e  put all the statements together to make the 

M A T L A B  program “ nm5e02” , in which the fifth input argument (trace) of 

“q u a d ()”/“q u a d l ()” is set to 1 so that w e can see their nodes and tell how  

different they are. Let’s run it and see the results.

>>nm5e02

X16_quad = 0.8150 + 0 .0000 i %betraya l of MATLAB?

X16_quadl = 7.4771e-008 %almost zero, OK!

Iexp = 1 / 8 * i / p i * e x p (- 8 * i* p i* t )  %(E5.2.3) by symbolic computation 

Icos = 1 / 8 /p i* s in ( 8 * p i* t )  %(E5.2.3) by symbolic computation 

X16_sym = 0 %exact answer by symbolic computation

W hat a surprise! It is totally unexpected that the M A T L A B  routine “q u a d ()” 

gives us a quite eccentric value (0.8150), even without any warning message. The 

routine “ q u a d ()” must be branded as a betrayer for a piecewise-linear function 

multiplied by a periodic function. This seems to imply that “q u a d l ()” is better 

than “q u a d ()” and that “ i n t ( ) ” is the best of the three commands. It should, 

however, be noted that “ i n t ( ) ” can directly accept and handle only the functions 

composed of basic mathematical functions, rejecting the functions defined in the 

form of string or by the “ i n l i n e ( ) ” command or through an m-file and besides, 

it takes a long time to execute.

(cf) What about our lovely routine “adapt_smpsn()”? Regrettably, you had better not 

count on it, since it will give the wrong answer for this problem. Actually, “quadl()” 

is much more reliable than “quad()” and “adapt_smpsn()”.

5.9 G A U S S  Q U A D R A T U R E

In this section, w e  cover several kinds of Gauss quadrature methods— that is, 

Gauss-Legendre integration, Gauss-Hermite integration, Gauss-Laguerre inte

gration and Gauss-Chebyshev I,II integration. Each tries to approximate one of



the following integrations, respectively:

л b / » / »

I f(t)dt, I e—  f(t)dt, I e—tf(t)dt,
J a J —to J 0

/
1  ̂ /*1 ,______  ^

-----f(t)dt. J  >/1 — t2f(t)dt ss E  Wif(ti)

The problem is how to fix the weight wi ’s and the (Gauss) grid points ti’s.

5.9.1 Gauss-Legendre Integration

If the integrand f(t) is a polynomial of degree < 3(=  2 N  — 1), then its inte

gration

I (—1,1) =  f f(t)dt (5.9.1)
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can exactly be obtained from just 2 (N ) points by using the following formula

I  [t1,t2] =  W1f(t1) +  W2f(t2) (5.9.2)

How marvelous it is! It is almost a magic. Do you doubt it? Then, let’s find the 

weights w 1, w2 and the grid points t1, t2 such that the approximating formula

(5.9.2) equals the integration (5.9.1) for f(t) =  1(of degree 0), t(of degree 1), 

t2(of degree 2), and t3(of degree 3). In order to do so, we should solve the 

following system of equations:

f (t )  =  1 : W 1 f (t 1 ) +  W 2 f (t 2 ) =  W 1 +  W 2 =  I 1 dt =  2 (5.9.3a)

f(t) =  t : W1f(t1) +  W2f(t2) =  W111 +  W212 =  / tdt =  0 (5.9.3b)

j :  

/:

Z
1 2

t2dt =  - (5.9.3c)

f(t) =  t3 : W1f(t1) +  W2f(t2) =  W 1 1̂  +  W2t| =  \ t3 dt =  0 (5.9.3d)11

Multiplying (5.9.3b) by tj2 and subtracting the result from (5.9.3d) yields

U)2 (tl — tft2) =  W 2 t2 (t2 + 11 )(t2 — 11) =  0 ^  t2 =  — t1, t2 =  t1 (meaningless) 

t2 =  — t1 ^  (5.9.3b), (W1 — W2)t1 =  0, 

w 1 =  w2 ^  (5.9.3a), w 1 +  w 1 =  2

2 2 2 1 
wi =  w2 =  1 — (5.9.3c), +  (—1\) = 2 > ?1 =  ~ t2 =
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so that Eq. (5.9.2) becomes

(5.9.4)

We can expect this approximating formula to give us the exact value of the 

integral (5.9.1) when the integrand f(t) is a polynomial of degree < 3.

Now, you are concerned about how to generalize this two-point Gauss-Legendre 

integration formula to an N -point case, since a system of nonlinear equation like 

Eq. (5.9.3) can be very difficult to solve as the dimension increases. But, don’t 

worry about it. The N  grid points (ti’s) of Gauss-Legendre integration formula

Iob[tl, t2, . . .  , tN] =  ^ 2  wN,if(ti) (5.9.5)

i=1

giving us the exact integral of an integrand polynomial of degree < (2N — 1) 

can be obtained as the zeros of the N th-degree Legendre polynomial [K-l, 

Section 4.3]

LN/2J

LN(t) = J 2  (—1) 
i=0

1

(2N — 2i)! .N—2i

2Ni !(N — i)!(N — 2i)!
(5.9.6a)

L N (t) =  -  ((2N  - 1 )tLN^ (t ) - ( N -  1 )L N_2(t)) (5.9.6b)

Given the N  grid point ti ’s, we can get the corresponding weight wN/ s  of the 

N -point Gauss-Legendre integration formula by solving the system of linear 

equations

1 1 1 1

t1 t2 tn

t
N

n-1
t1

1-«с*

1- -
n 

N

• • • •1-
N

1

1- 1-
Nt

n

tN—1 tN

w n ,1

w n ,2

wN,n

wN,N

2

0

(1 — (—1)n)/n  

(1 — (—1)N) /N

(5.9.7)

where the nth element of the right-hand side (RHS) vector is

1

RHS (n) =
/ 1 tn—1

dt =  —tn 
n

1 — (—1)n

1 n
(5.9.8)

This procedure of finding the N  grid point ti ’s and the weight wN i’s of the 

N -point Gauss-Legendre integration formula is cast into the M ATLAB  routine 

“Gausslp()” . We can get the two grid point ti ’s and the weight wN i’s of the two- 

point Gauss-Legendre integration formula by just putting the following statement 

into the M A TLA B  command window.

N
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function [t,w] = Gausslp(N)
if N < 0, fprintf('\nGauss-Legendre polynomial of negative order??\n');
else

t = roots(Lgndrp(N))'; %make it a row vector
A(1,:) = ones(1,N); b(1) = 2;
for n = 2:N % Eq.(5.9.7)

t;n
<IIn
<

if mod(n,2) == 0, b(n) = 0;
else b(n) = 2/n; % Eq.(5.9.8)

end
end
w = b/A';

end

function p = Lgndrp(N) %Legendre polynomial

t)nLtn2IIt)nLn%IIp

ОII<Nfi (n - 1)Ln-2(t) Eq.(5.9.6b)
elseif N == 1, p = [1 0];
else p = ((2*N - 1)*[Lgndrp(N - 1) 0]-(N - 1)*[0 0 Lgndrp(N - 2)])/N;

end

function I = Gauss_Legendre(f,a,b,N,varargin)

%Gauss_Legendre integration of f over [a,b] with N grid points
% Never try N larger than 25
[t,w] = Gausslp(N);
x = ((b - a)*t + a + b)/2; %Eq.(5.9.9)
fx = feval(f,x,varargin{:});
I = w*fx'*(b - a)/2; %Eq.(5.9.10)

>>[t,w] = Gausslp(2)

t  = 0.5774 -0.5774 w = 1 1

Even though we are happy with the N -point Gauss-Legendre integration 

formula (5.9.1) giving the exact integral of polynomials of degree < (2N — 1), 

we do not feel comfortable with the fixed integration interval [—1, +1]. But, 

we can be relieved from the stress because any arbitrary finite interval [a, b] 

can be transformed into [—1, +1] by the variable substitution known as the 

Gauss -Legendre translation

(b — a)t +  a +  b b — a
x =  ----  , dx = --- dt (5.9.9)

2 2

Then, we can write the N -point Gauss-Legendre integration formula for the 

integration interval [a, b] as

f b b — a f 1 
I[a ,b ]=  I f (x )d x  =  ---  I f(x(t))dt

N
b — a ^—\ (b — a)ti +  a +  b 

I[xi,x2, . . . ,  X N ] =  — —  2_^ WN,if(xi) with Xi =  -----------

(5.9.10)

The scheme of integrating f(x )  over the interval [a, b] by the N  -point Gauss- 

Legendre formula is cast into the M ATLAB  routine “Gauss_Legendre()” . We
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can get the integral (5.7.5) by simply putting the following statements into the 

M ATLAB  command window. The result shows that the 10-point Gauss-Legendre 

formula yields better accuracy (smaller error), even with fewer nodes/segments 

than other methods discussed so far.

>>f = inline('400*x.*(1 - x).*exp(-2*x)','x'); %Eq.(5.7.5)
>>format short e 
>>true_I = 3200*exp(-8);
>>a = 0; b = 4; N = 10; %integration interval & number of nodes(grid points) 
>>IGL = gauss_legendre(f,a,b,N), errGL = IGL-true_I 

IGL = 1.0735e+000, errGL = 1.6289e-009

5.9.2 Gauss-Hermite Integration

The Gauss-Hermite integration formula is expressed by Eq. (5.9.5) as

N

Ig H[tl, t2, ■ ■ ■ , tN] =  ^ 2  wN,if(ti) (5.9.11)

i = 1

and is supposed to give us the exact integral of the exponential e—1 multiplied 

by a polynomial f(t) of degree < (2N — 1) over (-to, +to)

f 2
I =  e—t f(t)dt (5.9.12)

J  — TO

The N  grid point ti ’s can be obtained as the zeros of the N -point Hermite 

polynomial [K-1, Section 4.8]

LN/2J (_  1)i

H N(t) =  Y  -— - N (N  - 1) • • • (N  - 2i +  1)(2 tf- 2i (5.9.13a) 
i!

i=0

HN(t) =  2tHN—1(t) — H  (t) (5.9.13b)

function [t,w] = Gausshp(N)
if N < 0

error('Gauss-Hermite polynomial of negative degree??');
end
t = roots(Hermitp(N))';
A(1,:) = ones(1,N); b(1) = sqrt(pi);
for n = 2:N

A(n,:) = A(n - 1,:).*t; %Eq.(5.9.7)
if mod(n,2) == 1, b(n) = (n - 2)/2*b(n - 2); %Eq.(5.9.14)

else b(n) = 0;
end

end
w = b/A1;

function p = Hermitp(N)
%Hn + 1(x) = 2xHn(x)-Hn'(x) from 'Advanced Engineering Math' by Kreyszig

=p

О
=<Nfi

else p = [2 0];
for n = 2:N, p = 2*[p 0]-[0 0 polyder(p)]; end %Eq.(5 9.13b)

end
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Given the N  grid point ti’s, we can get the weight wN,i’s of the N -point 

Gauss-Hermite integration formula by solving the system of linear equations 

like Eq. (5.9.7), but with the right-hand side (RHS) vector as

/
CO / /»O ЛГО

e— 2 dt =  e—x2 dx e-y2 dy

-O V J —o  J — O

/
CO ЛО / ЛО

I e—(x2+y2) dx dy =  I e-r2l n  r dr

o  J — OO V J —OO

=  (5.9.14a)
=  j - n e —r 2

0

/»O  1
я—2

/
°  2 2 1

tn~x dt =  I (—2t)e~r — tn~z dt (=  0 if n is even)

-o J—o  2
O  1 2 1

+  -(n- 2) e-‘ t"-3 dt =  -(n - 2) RHS (и - 2) 
—O 2 2

(5.9.14b)

The procedure for finding the N  grid point ti ’s and the corresponding weight 

wN,i’s of the N -point Gauss-Hermite integration formula is cast into the M A T 

LA B  routine “Gausshp()” . Note that, even though the integrand function (g(t)) 

doesn’t have e— as a multiplying factor, we can multiply it by e— el =  1 to 

fabricate it as if it were like in Eq. (5.9.12):

r °  r °  2 2 r °  2
I =  I g(t)dt =  I e t (et g(t))dt =  I e t f(t)dt (5.9.15)

- O  - O  - O

5.9.3 Gauss-Laguerre Integration

The Gauss-Laguerre integration formula is also expressed by Eq. (5.9.5) as

N

IGLa[tb h, . . . , tN] =  ^ 2  w N,if  (ti) (5.9 .16)

i=1

and is supposed to give us the exact integral of the exponential e-t multiplied 

by a polynomial f(t) of degree < (2 N  — 1) over [0, o )

л O

I =  e—tf(t)dt (5.9.17)

The N  grid point ti ’s can be obtained as the zeros of the N  th-degree Laguerre 

polynomial [K-1, Section 4.7]

N  (—1)' N l

7T 7T' <5A18)
i=0 v 7
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Given the N  grid point ti’s, we can get the corresponding weight wN,i’s of the 

N -point Gauss-Laguerre integration formula by solving the system of linear 

equations like Eq. (5.9.7), but with the right-hand side (RHS) vector as

RHS(1) =  e—t dt =  —e—t 
0

1 (5.9.19a)

RHS (n) = e-ttn-1

0

e-ttn-1 dt e-ttn-1 e-tt

0
+  (n — 1) / e—ttn—2 dt

=  (n — 1) RHS (n — 1) (5.9.19b)

5.9.4 Gauss-Chebyshev Integration

The Gauss-Chebyshev I integration formula is also expressed by Eq. (5.9.5) as

IGC1[t1, t2, . . .  ,tN] =  ^ 2  WN,if  (ti) (5.9.20)

i = 1

and is supposed to give us the exact integral of l / V l  — t2 multiplied by a 

polynomial f(t) of degree < (2N — 1) over [—1, +1]

I =
Г+1 1

J  i Tn-  t2
f  (t) dt (5.9.21)

The N  grid point ti ’s are the zeros of the N th-degree Chebyshev polynomial 

(Section 3.3)
(2i — 1)^
v ; for г =  1,2, (5.9.22)ti =  cos -

2N

and the corresponding weight wN i’s are uniformly selected as

wNi =  п /N ,  V i =  1 , . . . ,  N  (5.9.23)

The Gauss-Chebyshev II integration formula is also expressed by Eq. (5.9.5) as

IGC2[t1, ^ , . . . , tN] =  ^ 2  WN,if  (ti) (5.9.24)

i = 1

and is supposed to give us the exact integral of V l  — t2 multiplied by a polyno

mial f(t) of degree < (2N — 1) over [—1, +1]

I = /> — 12f(t) dt (5.9.25)

CO

0

CO

0

N

N
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The N  grid point ti’s and the corresponding weight wN i’s are

ti =  cos
in

N  +  1

n

WN,i =
N  +  1

sin
in

N  +  1
for i =  1 ,2 , . . . ,  N  

(5.9.26)

5.10 D O U B L E  INTEGRAL

In this section, we consider the numerical integration of a function f (x ,y )  with 

respect to two variables x and y over the integration region R =  {(x,y)\a < x < 

b, c(x) < y < d(x)} as depicted in Fig. 5.5.

I

pb f pd(x)

I  =  II f  (x ,y )  dx  dy =  \ f ( x , y ) d y \ d x  (5.10.1)
IR Ja Uc(x)

The numerical formula for this double integration over a two-dimensional region 

takes the form

M N

I (a, b, c(x), d(x)) =  E M m ^2v nf(xm,ym,n) (5.10.2)

m=1 n=1

where the weights wm, vn depend on the method of one-dimensional integration 

we choose.

hxo,'x0< y2
f,x b  y2

hx1, yi
f,x0’ yi

U

d (x )

T ------ -— *
1 1 1 

+ ! t -
i

i |
! * ■

i f ' i j

/t т + .
2

■

i

>  t
1
1

11 ! ^ ^ ^ \ ° ( x )  
!

i 1 1 
1 1 

1 1

1
1
1
1
1
1
1

a  hx i h x2 hx3
x 0 x i  x 2

hxM b  

x M

> x

Figure 5.5 A region for a double integral.
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(cf) The M A T L A B  built-in routine dblquad() can accept the boundaries of integration 

region only given as numbers. Therefore, if we want to use the routine in comput

ing a double integral for a nonrectangular region D ,  w e should define the integrand 

function f(x ,y )  for a rectangular region R э  D  (containing the actual integration 

region D )  in such a way that f(x, y) =  0 for (x, y) £ D ;  that is, the value of the 

function becomes zero outside the integration region D , which may result in more 

computations.

function INTfxy = int2s(f,a,b,c,d,M,N)
%double integral of f(x,y) over R = {(x,y)|a <= x <= b, c(x) <= y <= d(x)} 
% using Simpson's rule
if ceil(M) ~= floor(M) %fixed width of segments on x 

hx = M; M = ceil((b - a)/hx);
end
if mod(M,2) ~= 0, M = M + 1; end
hx = (b - a)/M; m = 1:M+1; x = a + (m - 1)*hx;
if isnumeric(c), cx(m) = c; %if c is given as a constant number 
else cx(m) = feval(c,x(m)); %in case c is given as a function of x 

end
if isnumeric(d), dx(m) = d; %if c is given as a constant number 
else dx(m) = feval(d,x(m)); %in case d is given as a function of x 

end
if ceil(N) ~= floor(N) %fixed width of segments on y 

hy = N; Nx(m) = ceil((dx(m)- cx(m))/hy); 
ind = find(mod(Nx(m),2) ~= 0); Nx(ind) = Nx(ind) + 1; 

else %fixed number of subintervals 
if mod(N,2) ~= 0, N = N +1; end 
Nx(m) = N; 

end
for m = 1:M + 1

sx(m) = smpsns f x y ( f , x ( m ) ,c x ( m ) ,d x ( m ) , N x ( m ) ) ; 

end
kodd = 2:2:M; keven = 3:2:M - 1; %the set of odd/even indices

INTfxy = hx/3*(sx(1) + sx(M + 1) + 4*sum(sx(kodd)) + 2*sum(sx(keven)));

function INTf = smpsns fxy(f, x, c, d, N)
%1-dimensional integration of f(x,y) for Ry = {c <= y <= d} 
if nargin < 5, N = 100; end
if abs(d - c)< eps | N <= 0, INTf = 0; return; end
if mod(N,2) ~= 0, N = N + 1; end
h = (d - c)/N; y = c+[0:N]*h; fxy = feval(f,x,y);
fxy(find(fxy == inf)) = realmax; fxy(find(fxy == -inf)) = -realmax;
kodd = 2:2:N; keven = 3:2:N - 1; %the set of odd/even indices
INTf = h/3*(fxy(1) + fxy(N + 1) + 4*sum(fxy(kodd)) + 2*sum(fxy(keven)));

%nm510: the volume of a sphere
x = [-1:0.05:1]; y = [0:0.05:1]; [X,Y] = meshgrid(x,y); 
f510 = inline('sqrt(max(1 - x.*x - y .*y,0))','x ','y ');
Z = f510(X,Y); mesh(x,y,Z);
a = -1; b = 1; c = 0; d=inline('sqrt(max(1 - x.*x,0))','x ');
Vs1 = int2s(f510,a,b,c,d,100,100) %with fixed number of segments 
error1 = Vs1 - pi/3
Vs2 = int2s(f510,a,b,c,d,0.01,0.01) %with fixed segment width 
error2 = Vs2 - pi/3
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Figure 5.6 One-fourth (1/4) of a sphere with the radius r  =  1.

1

Although the integration rules along the x axis and along the y axis do not need 

to be the same, we make a double integration routine “int2s(f,a ,b ,c ,d ,M ,N ) ” 

which uses the Simpson method in common for both integrations and calls another 

routine “smpsns_fxy()” for one-dimensional integration along the y axis. The 

left/right boundary a/b of integration region given as the second/third input argu

ment must be a number, while the lower/upper boundary c/d of integration region 

given as the fourth/fifth input argument may be either a number or a function 

of x . If the sixth/seventh input argument M/N is given as a positive integer, it 

will be accepted as the number of segments; otherwise, it will be interpreted as 

the segment width hx/h y. We also constructed a M ATLAB  program “nm510” 

in order to use the routine “ int2s()” for finding one-fourth of the volume of a 

sphere with the radius r =  1 depicted in Fig. 5.6.

/ 1 l—X2 jj,
V l  - -V2 - V2 dy dx =  - =  1.04719755 .. .  (5.10.3)

1 0 3

Interested readers are recommended to work with these routines and run the 

program “nm510.m” to see the result.

>>nm510

Vs1 = 1.0470, e r ro r1  = -1.5315e-004 

Vs2 = 1.0470, e r ro r2  = -1.9685e-004
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P R O B L E M S

5.1 Numerical Differentiation of Basic Functions

If we want to find the derivative of a polynomial/trigonometric/exponential 

function, it would be more convenient and accurate to use an analytical 

computation (by hand) than to use a numerical computation (by computer). 

But, in order to test the accuracy of the numerical derivative formulas, 

consider the three basic functions as

f 1 (x) =  x3 — 2x, f 2 (x) =  sin x, f3(x) =  ex (P5.1.1)

(a) To find the first derivatives of these functions by using the formulas

(5.1.8) and (5.1.9) listed in Table 5.3 (Section 5.3), modify the program 

“nm5p01.m”, which uses the M A TLA B  routine “difapx()” (Section 

5.3) for generating the coefficients of the numerical derivative formulas. 

Fill in the following table with the error results obtained from running 

the program.

First Derivatives h
h  - f -1 —fi +  8/i — 8/_i +  / _  2

2 h 12h

(x3 - 2x)'\x=i 

=  1.00000000

0.1 1.0000e-02

0.01 9.1038e-15

(sini)'|I=]r/3 

=  0.50000000

0.1 8.3292e-04

0.01 8.3333e-06

(exy\x= о 

=  1.00000000

0.1 3.3373e-06

0.01 1.6667e-05

%nm5p01

f  = i n l i n e ( ' x . * ( x . * x - 2 ) ' ,  ' x ' ) ;  

n = [1 -1]; x0 = 1; h = 0 .1 ; DT = 1; 

c = d i fa p x (1 ,n ) ;  i  = 1 : le n g th (c ) ;

num = c * f e v a l ( f , x 0  + (n(1) + 1 - i ) * h ) ' ;  d rv  = num/h; 

f p r i n t f ( ' w i t h  h = %6.4f, %12.6f %12.4e\n', h ,d r v ,d r v  - DT);

(b) Likewise in (a), modify the program “nm5p01.m” in such a way that 

the formulas (5.3.1) and (5.3.2) in Table 5.3 are generated and used to 

find the second numerical derivatives. Fill in the following table with 

the error results obtained from running the program.
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Second Derivatives h
/ 1  - 2/o  +  f-1 -/2 +  16/l - 30/o  + 16/_ ! - / _ 2

h2 12h2

(x3 - 2x)(2)|x=1 

=  6.0000000000

0.1 2.6654e-14

0.01 2.9470e-12

(sinx)(2)|x=jr/3 

=  -0.8660254037

0.1 9.6139e-07

0.01 7.2169e-06

(ex)(2)\x=o 

=  1.0000000000

0.1 8.3361e-04

0.01 1.1183e-10

5.2 Numerical Differentiation of a Function Given as a Set of Data Pairs

Consider the three (numerical) functions each given as a set of five data 

pairs in Table P5.2.

Table P5.2 Three Functions Each Given as a Set of Five Data Pairs

X fi(x) X h(x) X M x )

0.8000 -1.0880 0.8472 0.7494 -0.2000 1.2214

0.9000 -1.0710 0.9472 0.8118 -0.1000 1.1052

1.0000 -1.0000 1.0472 0.8660 0 1.0000

1.1000 -0.8690 1.1472 0.9116 0.1000 0.9048

1.2000 -0.6720 1.2472 0.9481 0.2000 0.8187

(a) Use the formulas (5.1.8) and (5.1.9) to find the first derivatives of the 

three numerical functions (at x =  1, 1.0472 and 0, respectively) and fill 

in the following table with the results. Also use the formulas (5.3.1) 

and (5.3.2) to find the second derivatives of the three functions (at 

x =  1, 1.0472 and 0, respectively) and fill in the following table with 

the results.

f[(x)\x=l f2 (-O lx=1 .0472 / 3  (-О lx= 0

First derivative by Eq. (5.1.8) 1.0000e-02 2.0000e-03

First derivative by Eq. (5.1.9) 2.5000e-04

/ i (2) « l x = l f2 \x)\x=\Q412 / 3(2) ( ^ ) l x = 0

Second derivative by Eq. (5.3.1) 6.0254e-03

Second derivative by Eq. (5.3.2) 2.4869e-14 8.3333e-04
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(b) Based on the Lagrange/Newton polynomial matching the three/five 

points around the target point, find the first/second derivatives of the 

three functions (at x =  1, 1.0472 and 0, respectively) and fill in the 

following table with the results.

fi(x)\x=i f 2(x )\x=\M12 /3  (■*■) lx=0

First derivative on l2(x) 1.0000e-03

First derivative on l4(x) 4.3201e-12 4.1667e-04

/i(2)C*0 L=i /г(2) (•'О L=1.0472 1з2>(х)\х=0

Second derivative on l2(x) 1.421 le-14 0.0000e+00

Second derivative on l4(x) 6.8587e-03

5.3 First Derivative and Step-size

Consider the routine “jacob()” in Section 4.6, which is used for computing 

the Jacobian— that is, the first derivative of a vector function with respect 

to a vector variable.

(a) Which one is used for computing the Jacobian in the routine “jacob() ” 

among the first derivative formulas in Section 5.1?

(b) Expecting that smaller step-size h would yield a better solution to the 

problem given in Example 4.3, Bush changed h = 1e-4 to h = 1e-5 in 

the routine “newtons() ” and then typed the following statement into the 

M A TLA B  command window. What solution could he get?

>>rn1 = new tons( 'phys',1e6,1e-4,100)

(c) What baffled him out of his expectation? Jessica diagnosed the trouble 

as caused by a singular Jacobian matrix and modified the statement ‘dx 

= -jacob() \fx(:) ’ in the routine “newtons()” as follows. What solu

tion (to the problem in Example 4.3) do you get by using the modified 

routine, that is, by typing the same statement as in (b)?

>>rn2 = new tons( 'phys ',1e6 ,1e-4 ,100), phys(rn2)

J = jacob(f,xx(k,:),h,varargin{:}); 
if rank(J) < Nx 

k = k - 1;
fprintf('Jacobian singular! det(J) = %12.6e\n',det(J)); break; 

else
dx = -J\fx(:); %-[dfdx]~-1*fx; 

end
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(d) To investigate how the accident of Jacobian singularity happened, add 

h = 1e-5 to the (tentative) solution (rn2) obtained in (c). Does the 

result differ from rn2? If not, why? (See Section 1.2.2 and Prob

lem 1.19.)

>>rn2 + 1e-5 ~= rn2

(e) Charley thought that Jessica just circumvented the Jacobian singularity 

problem. To remove the source of singularity, he modified the formula

(5.1.8) into

f ( ( l + h )x )  - f ((l- h )x )

2 hx

and implemented it in another routine “jacob1()” as follows.

fu n c t io n  g = ja c o b 1 ( f , x , h , v a r a rg in )  %Jacobian of f ( x )  

i f  narg in<3, h =.0001; end 

h2 = 2*h; N = le n g th ( x ) ;  I  = eye(N); 

f o r  n = 1:N 

i f  abs(x(n ))< .0001 , x(n ) =.0001; end 

d e l t a  = h*x (n ) ;  

tmp = I ( n , : ) * d e l t a ;  

f1 = f e v a l ( f , x  + tm p ,v a ra rg in { :} ) ;  

f2  = f e v a l ( f , x  - tm p ,v a ra rg in { :} ) ;  

f12 = (f1 - f 2 ) / 2 / d e l t a ;  g ( : , n )  = f 1 2 ( : ) ;

end

With h = 1e-5 or h = 1e-6 and jacob() replaced by jacob1() in 

the routine “newtons()”, type the same statement as in (c) to get a 

solution to the problem in Example 4.3 together with its residual error 

and check if his scheme works fine.

>>rn3 = new tons( 'phys ' ,1e6 ,1e-4 ,100), phys(rn3)

5.4 Numerical Integration of Basic Functions

Compute the following integrals by using the trapezoidal rule, the Simp

son’s rule, and Romberg method and fill in the following table with the 

resulting errors.

f 2 3 Г /2 f 1
(i) / (x3 — 2 x )d x  ( ii)  I sin x dx  ( iii)  I e x dx

J0 J0 J0
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N

Trapezoidal

Rule

Simpson

Rule

Romberg 

(tol =  0.0005)

f  (x3 — 2x) dx =  0 
Jo

4 0.0000e+0

8 6.2500e-l

Г n/2
I sin x dx =  1 

Jo

4 1.2884e-2 8.4345e-6

8 8.2955e-6

j  e~x dx =  0.63212055883 
Jo

4 1.3616e-5

8 8.2286e-4

5.5 Adaptive Quadrature and Gaussian Quadrature for Improper Integral 

Consider the following two integrals.

(i) I — d x =  2x1/2
/X

f 1 1
( 0  -7 = 

J0 Vx

f 1 1 
(ii) - 7

i - W x

=  2
0

(P5.5.1)

[ 0 1 f 1 1
( ii)  I —=. dx =  I —=  dx +  I —=. dx =  2 — 2i

J-1 V х J-1 \ A  jo V х

(a) Type the following statements into the M ATLAB  command window to 

use the integration routines for the above integral. What did you get? 

If something is wrong, what do you think caused it?

(P5.5.2)

1

>>f = inline('1./sqrt(x)','x'); % define the integrand function 
>>smpsns(f,0,1,100) % integral over [0,1] with 100 segments 
>>rmbrg(f,0,1,1e-4) % with error tolerance = 0.0001 
>>adapt_smpsn(f,0,1,1e-4) % with error tolerance = 0.0001 
>>gauss_legendre(f,0,1,20) %Gauss-Legendre with N = 20 grid points 
>>quad(f,0,1) % MATLAB built-in routine 
>>quad8(f,0,1) % MATLAB 5.x built-in routine 
>>adapt_smpsn(f,-1,1,1e-4) %integral over [-1,1]
>>quad(f,-1,1) % MATLAB built-in routine 
>>quadl(f,-1,1) % MATLAB built-in routine

(b) Itha decided to retry the routine “smpsns()”, but with the singular point 

excluded from the integration interval. In order to do that, she replaced 

the singular point (0) which is the lower bound of the integration inter

val [0,1] by 10-4 or 10-5, and typed the following statements into the 

M A TLA B  command window.

>>smpsns(f

>>smpsns(f

>>smpsns(f

>>smpsns(f

>>smpsns(f

1e-4,1,100)

1e-5,1,100)

1e-5,1,1e4)

1e-4,1,1e3)

1e-4,1,1e4)
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What are the results? Will it be better if you make the lower-bound of 

the integration interval closer to zero (0), without increasing the number 

of segments or (equivalently) decreasing the segment width? How about 

increasing the number of segments without making the lower bound 

of the integration interval closer to the original lower-bound which is 

zero (0)?

(c) For the purpose of improving the performance of “adap_smpsn()”, 

Vania would put the following statements into both of the routines 

“ smpsns()” and “adap_smpsn()” . Supplement the routines and check 

whether her idea works or not.

EPS = 1e-12; fa = feval(f,a,varargin{:});
if isnan(fa) |abs(fa) == inf, a = a + max(abs(a)*EPS,EPS); end 
fb = feval(f,b,varargin{:});
?? ??????????????? ?? ????? ? ?? ? ? ???????????????????? ???

5.6 Various Numerical Integration Methods and Improper Integral 

Consider the following integrals.

100 sin x
■ dx =  — =  I -- dx (P5.6.1)

0 x 2 0 x

f0 ' 2 1
e x dx =  -Vjt (P5.6.2)

Note that the true values of these integrals can be obtained by using the 

symbolic computation command “int()” as below.

>>syms x, i n t ( s i n ( x ) / x , 0 , i n f )

> > in t (e xp (- xA2 ) , 0 , i n f )

(cf) D o n ’t you believe it without seeing it? Blessed are those who have not seen 

and yet believe.

(a) To apply the routines like “smpsns()”, “adapt_smpsn()”, “Gauss_ 

Legendre()” and “quadl()” for evaluating the integral (P5.6.1), do 

the following.

(i) Note that the integration interval [0, to) can be changed into a 

finite interval as below.

sinx Г1 sin x f  ____
I -- dx =  I --- dx +  I ---dx

J0 x J0 x Л  x

f 1 sin x f

=  ~ dx +0 x 1 

1 sin x 1 si 

=  ~ d x +  ~0 x 0

x  Л  1 /y  \ y

sin x Г1 sin(1/y)
dx +  — -—  dy (P5.6.3)

y
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( ii)  Add the block of statements in P5.5(c) into the routines “smp- 

sns()” and “adap_smpsn()” to make them cope with the cases 

of NaN (Not-a-Number) and Inf (Infinity).

( iii)  Supplement the program “nm5p06a.m” so that the various routines 

are applied for computing the integrals (P5.6.1) and (P5.6.3), where 

the parameters like the number of segments (N  =  200), the error 

tolerance (tol =  1e-4), and the number of grid points (M G L  =  20) 

are supposed to be used as they are in the program. Noting that 

the second integrand function in (P5.6.3) oscillates like crazy with 

higher frequency and larger amplitude as y gets closer to zero (0), 

set the lower bound of the integration interval to a2 = 0.001 .

(iv ) Run the supplemented program and fill in Table P5.6 with the 

absolute errors of the results.

%nm5p06a
warning off MATLAB:divideByZero
fp56a = inline('sin(x)./x','x'); fp56a2 = inline('sin(1./y)./y','y');
IT = pi/2; % True value of the integral
a = 0; b = 100; N = 200; tol = 1e-4; MGL = 20; a1 = 0; b1 = 1; a2 = 0.001; b2 = 1; 
format short e
e_s = smpsns(fp56a,a,b,N)-IT
e_as = adapt_smpsn(fp56a,a,b,tol)-IT

e_ql = quadl(fp56a,a,b,tol)-IT
e_GL = Gauss_Legendre(fp56a,a,b,MGL)-IT
e_ss = smpsns(fp56a,a1,b1,N) + smpsns(fp56a2,a2,b2,N)-IT
e_Iasas = adapt_smpsn(fp56a,a1,b1,tol)+ ...

???????????????????????????? -IT 
e_Iqq = quad(fp56a,a1,b1,tol)+??????????????????????????? -IT 
warning on MATLAB:divideByZero

%nm5p06b

warning o f f  MATLAB:div ideByZero

fp56b = i n l i n e ( ' e x p ( - x . * x ) ' , ' x ' ) ;

fp56b1 = i n l i n e ( ' o n e s ( s i z e ( x ) ) ' , ' x ' ) ;

fp56b2 = i n l i n e ( ' e x p ( - 1 . / y . / y ) . / y . / y ' , ' y ' ) ;

a = 0; b = 200; N = 200; t o l  = 1e-4; IT  = s q r t ( p i ) / 2 ;

a1 = 0 ;  b1 = 1 ;  a2 = 0; b2 = 1; MGH = 2;

e_s = smpsns(fp56b,a,b,N)-IT

e_as = adap t_sm psn (fp56b ,a ,b , to l)- IT

e_q = q ua d ( fp 5 6b ,a ,b , to l )- IT

e_GH = Gauss_Hermite(fp56b1,MGH)/2-IT

e_ss = smpsns(fp56b,a1,b1,N) + smpsns(fp56b2,a2,b2,N)-IT 

Iasas = adapt_smpsn(fp56b,a1 ,b1 ,to l)+  . . .

+????????????????????????????? -IT  

e_qq = quad(fp56b,a1,b1,to l)+????????????????????????? -IT 

warn ing o f f  MATLAB:div ideByZero
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Table P5.6 Results of Applying Various Numerical Integration Methods for 

Improper Integrals

Simpson adaptive quad Gauss S & S a&a q&q

(P5.6.1) 8.5740e-3 1.9135e-l 1.1969e+0 2.4830e-l

(P5.6.2) 6.6730e-6 0.0000e+0 3.3546e-5

(b) To apply the routines like “smpsns()”, “adapt_smpsn()”, “quad()”, and

“Gauss_Hermite() ” for evaluating the integral (P5.6.2), do the following.

(i) Note that the integration interval [0, то) can be changed into a 

finite interval as below.

f TO _ 2 f 1 _ 2 f TO _ 2 
/ e x dx =  e x dx +  I e x dx

Jo Jo J1

=  [ ^ d x  +  [ e ~ ' b ' { - 7 ‘ ) d y

f 1 2 f 1 e-Vy2 
=  e-x d x +  — —  dy (P5.6.4) 

Jo Jo У2

( ii) Compose the incomplete routine “Gauss_Hermite” like “Gauss_ 

Legendre”, which performs the Gauss-Hermite integration intro

duced in Section 5.9.2.

( iii)  Supplement the program “nm5p06b.m” so that the various routines 

are applied for computing the integrals (P5.6.2) and (P5.6.4), where 

the parameters like the number of segments (N  =  200), the error 

tolerance (tol =  1e-4) and the number of grid points (M G H  =  2) 

are supposed to be used as they are in the program. Note that the 

integration interval is not (—то, то) like that of Eq. (5.9.12), but 

[0, то) and so you should cut the result of “Gauss_Hermite()” by 

half to get the right answer for the integral (P5.6.2).

( iv ) Run the supplemented program and fill in Table P5.6 with the

absolute errors of the results.

(c) Based on the results listed in Table P5.6, answer the following questions:

(i) Among the routines “smpsns()”, “adapt_smpsn()”, “quad()”,

and “Gauss()”, choose the best two ones for (P5.6.1) and (P5.6.2),

respectively.

( ii)  The routine “Gauss-Legendre()” works (badly, perfectly) even 

with as many as 20 grid points for (P5.6.1), while the routine
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“Gauss_Herm ite()” works (perfectly, badly) just with two grid 

points for (P5.6.2). It is because the integrand function of (P5.6.1)

is (far from, just like) a polynomial, while (P5.6.2) matches
2

Eq. (5.9.11) and the part of it excluding e-x is (just like, far 

from) a polynomial.

fu n c t io n  I  = G auss_H e rm ite ( f ,N ,va ra rg in )

[t,w]=???????(N);

f t  = f e v a l ( f , t , v a r a r g i n { : } ) ;

I  = w * f t ' ;

( iii)  Run the following program “ nm5p06c.m” to see the shapes of the 

integrand functions of (P5.6.1) and (P5.6.2) and the second inte

gral of (P5.6.3). You can zoom in/out the graphs by clicking the 

Tools/Zoom in  menu and then clicking any point on the graphs 

with the left/right mouse button in the M A T L A B  graphic win

dow. W hich  one is oscillating furiously? W hich  one is oscillating 

moderately? W hich  one is just changing abruptly?

%nm5p06c
clf
fp56a = inline('sin(x)./xl,'x l); 
fp56a2 = inline('sin(1./y)./y|,'y|); 
fp56b = inline('exp(-x.*x)','x'); 
x0 = [eps:2000]/20; x = [eps:100]/100; 
subplot(221), plot(x0,fp56a(x0)) 
subplot(223), plot(x0,fp56b(x0))
subplot(222), y = logspace(-3,0,2000); loglog(y,abs(fp56a2(y))) 
subplot(224), y = logspace(-6,-3,2000); loglog(y,abs(fp56a2(y)))

(iv ) The adaptive integration routines like “ adapt smpsn ( ) ” and 

“ q u a d ()” work (badly, fine) for (P5.6.1), but (fine, badly) for 

(P5.6.2). From this fact, w e  might conjecture that the adaptive 

integration routines may be (ineffective, effective) for the integrand 

functions which have many oscillations, while they may be 

(effective, ineffective) for the integrand functions which have 

abruptly changing slope. To support this conjecture, run the 

following program “ nm5p06d” , which uses the “q u a d ()” routine 

for the integrals

with b =  1 0 0 ,1 0 0 0 ,1 0 0 0 0 . . . .  (P5.6.5a)

with a =  0 .001, 0 .0001, 0 .0 0 0 0 1 ,. .  .(P5.6.5b)
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%nm5p06d

fp56a = inline('sin(x)./x','x');

fp56a2 = inline('sin(1./y)./y','y' );

syms x

IT2 = pi/2 - double(int(sin(x)/x,0 1)) %true value of the integral

disp('Change of upper limit of the integration interval')

a = 1; b = [100 1e3 1e4 1e7]; tol = 1e-4;

for i = 1:length(b)

Iq2 = quad(fp56a,a,b(i),tol);

fprintf('With b = %12.4e, err_Iq = %12.4e\n', b(i),Iq 2 -IT2);

end

disp('Change of lower limit of the integration interval')

a2 = [1e-3 1e-4 1e-5 1e-6 0]; b2 = 1; tol = 1e- 4;
for i = 1:5

Iq2 = quad(fp56a2,a2(i),b2,tol);

fprintf('With a2=%12.4e, err_Iq=%12.4e\n', a2 (i),Iq2-IT2);

end

Does the “q u a d ()” routine work stably for (P5.6.5a) with the 

changing value of the upper-bound of the integration interval? 

Does it work stably for (P5.6.5b) with the changing value of the 

lower-bound of the integration interval? D o  the results support or 

defy the conjecture?

(cf) This problem warns us that it may be not good to use only one routine 

for a computational work and suggests us to use more than one method 

for cross check.

5.7 Gauss-Hermite Integration Method 

Consider the following integral:

f e~x2 c o s x d x  = — e-1/4 (P5.7.1)
Jo 2

Select a Gauss quadrature suitable for this integral and apply it with 

the number of grid points N = 4 as well as the routines “ sm psns()” , 

“ adapt_sm psn()” , “q u a d ()” , and “q u a d l ()” to evaluate the integral. In 

order to compare the number of floating-point operations required to achieve 

almost the same level of accuracy, set the number of segments for Simpson 

method to N =  700  and the error tolerance for all other routines to tol =  

10-5. Fill in Table P5.7 with the error results.

Table P5.7 The Results of Applying Various Numerical Integration Methods

Simpson
(N = 700)

adaptive 
(tol = 1(T5) Gauss

quad 
(tol = 10“5)

quadl 
(tol = 1(Г5)

(P5.7.1)
|error| 1.0001e-3 1.0000e-3

flops 4930 5457 1484 11837 52590 (with quad8)

(P5.8.1)
| error | 1.3771e-2 0 4.9967e-7

flops 5024 7757 131 28369 75822
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5.8 Gauss-Laguerre Integration Method

(a) As in Section 5.9.1, Section 5.9.2, and Problem 5.6(b), compose the 

M A TLA B  routines: “Laguerp()”, which generates the Laguerre poly

nomial (5.9.18); “Gausslgp()”, which finds the grid point t ’s and the 

coefficient u n / s for Gauss-Laguerre integration formula (5.9.16); and 

“Gauss_Laguerre(f,N)”, which uses these two routines to carry out 

the Gauss-Laguerre integration method.

(b) Consider the following integral:

fJ0
t dt =  — e t + fJ0

dt =  —e =  1 (P5.8.1)

Noting that, since this integral matches Eq. (5.9.17) with f(t) =  

t, Gauss-Laguerre method is the right choice, apply the routine 

“Gauss_Lagueme(f,N)” (manufactured in (a)) with N =  2 as well as 

the routines “smpsns()”, “adapt_smpsn()”, “quad()”, and “quadl()” 

for evaluating the integral and fill in Table P5.7 with the error results. 

Which turns out to be the best? Is the performance of “quad()” 

improved by lowering the error tolerance?

(cf) This illustrates that the routine “adapt_smpsn()” sometimes outperforms the 

M A T L A B  built-in routine “quad()” with fewer computations. O n  the other 

hand, Table P5.7 shows that it is most desirable to apply the Gauss quadrature 

schemes only if one of them is applicable to the integration problem.

5.9 Numerical Integrals

Consider the following integrals.

dx =  1

(1) / 0п/2 x sin x dx =  1 

№  /„' ’

(5 ) fo
y x (i  +  x)

yfjt

10 

f1
x(l -Inx)2

1 п
л ----dx =  —
0 v ^ ( l  + X )  2

(2) /J  xln(sinx) dx =  — -7Г2ln2

(4) / Г  

(6) / Г

1

x(1 +  ln x)
dx 1

1 п
---dx =  —
+  x)  2

(7) /о л/b
1

V  (8) /о° dx

1

, /In — dx =
;o л/ x 2

(9) / 0°°х2е~х cos xdx  =  — ̂

(a) Apply the integration routines “smpsns()” (with N  =  104), “adapt_ 

smpsn()”, “quad()” , “quadl()” (tol =  10—6) and “Gauss_leg- 

endne()” (Section 5.9.1) or “Gauss_Lagueme()” (Problem 5.8) (with 

N =  15) to compute the above integrals and fill in Table P5.9 with the 

relative errors. Use the upper/lower bounds of the integration interval in 

Table P5.9 if they are specified in the table.

(b) Based on the results listed in Table P5.9, answer the following questions 

or circle the right answer.

CO CO

e e
0 0
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(i) From the fact that the Gauss-Legendre integration scheme worked 

best only for (1), it is implied that the scheme is (recommendable, 

not recommendable) for the case where the integrand function is 

far from being approximated by a polynomial.

( ii)  From the fact that the Gauss-Laguerre integration scheme worked 

best only for (9), it is implied that the scheme is (recommendable, 

not recommendable) for the case where the integrand function 

excluding the multiplying term e— is far from being approximated 

by a polynomial.

( iii)  Note the following:

• The integrals (3) and (4) can be converted into each other by a 

variable substitution of x =  u—1, dx =  —u—2 du. The integrals 

(5) and (6) have the same relationship.

• The integrals (7) and (8) can be converted into each other by a 

variable substitution of u =  e—x, dx =  —u—1du.

From the results for (3)-(8), it can be conjectured that the numerical integra

tion may work (better, worse) if the integration interval is changed from [1, to) 

into (0,1] through the substitution of variable like

x =  u^n, dx =  —nu~(n+V)du or u =  e~nx, dx =  —(nu)—1 du (P5.9.1)

Table P5.9 The Relative E rror Results of Applying Various Numerical 

Integration Methods

Simpson 
(N = 104)

Adaptive 
(tol = 1(Г6)

Gauss 
(N = 10)

quad 
(tol = 10-6)

quadl 
(tol = 10“6)

(1) 1.9984e-15 0.0000e+00 7.5719e-ll

(2) 2.8955e-08 1.5343e-06

(3) 9.7850e-02 (a = 1(Г4) 1.2713e-01 2.2352e-02

<3- II о 9.7940e-02 9.7939e-02

(5) 1.2702e-02 (a = 1(Г4) 3.5782e-02 2.6443e-07

<3- II © 4.0250e-02 4.0250e-02

(7) 6.8678e-05 5.1077e-04 3.1781e-07

3 <3- II о 1.6951e-04 1.7392e-04

<3- II о 7.8276e-04 2.9237e-07 7.8276e-04

5.10 The BER (Bit Error Rate) Curve of Communication with Multidimensional 

Signaling

For a communication system with multidimensional (orthogonal) signaling, 

the B E R — that is, the probability of bit error— is derived as

2&- 1 /  \  f  со \

ре,ь =  ( в М - Ч - ^ 2 у  - ^ И Ш ) ) е - У 2 dyj

(P5.10.1)
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where b is the number of bits, M  =  2b is the number of orthogonal wave

forms, SNR is the signal-to-noise-ratio, and Q(-) is the error function 

defined by
1 2

Q(x) =  - =  e-y /2dy (P5.10.2)
\fbz Jx

We want to plot the BER curves for SNR =  0:10[dB] and b =  1:4.

(a) Consider the following program “nm5p10.m”, whose objective is to 

compute the values of Pe,b(SNR,b) for SNR =  0:10[dB] and b =  1:4 

by using the routine “Gauss_Hermite()” (Problem 5.6) and also by 

using the M A TLA B  built-in routine “quad()” and to plot them versus 

SNR[dB] =  10log10SNR. Complete the incomplete part which com

putes the integral in (P5.10.1) over [-1000, 1000] and run the program 

to obtain the BER  curves like Fig. P5.10.

(b) Of the two routines, which one is faster and which one presents us with 

more reliable values of the integral in (P5.10.1)?

%nm5p10.m: plots the probability of bit error versus SNRbdB 
fs ='Q(-sqrt(2)*x - sqrt(b*SNR)).~(2~b - 1)';
Q = inline('erfc(x/sqrt(2))/2','x'); 
f = inline(fs,'x','SNR','b');
fex2 = inline([fs '.*exp(-x.*x)'],'x','SNR','b');
SNRdB = 0:10; tol = 1e-4; % SNR[dB] and tolerance used for 'quad' 
for b = 1:4

tmp = 2~(b - 1)/(2~b - 1); spi = sqrt(pi); 
for i = 1:length(SNRdB),

SNR = 10~(SNRdB(i)/10);
Pe(i) = tmp*(1-Gauss_Hermite(f,10,SNR,b)/spi);
Pe1(i) = tmp*(1-quad(fex2,-10,10,tol,[],SNR,b)/spi);
Pe2(i) = tmp*(1-?????????????????????????????????)/spi); 

end
semilogy(SNRdB,Pe,'ko',SNRdB,Pe1,'b+:',SNRdB,Pe2,'r.-'), hold on 

end
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5.11 Length of Curve/Arc: Superb Harmony of Numerical Derivative/Integral.

The graph of a function y =  f ( x )  of a variable x is generally a curve and 

its length over the interval [a, b] on the x-axis can be described by a line 

integral as

r-Ъ pb __________  pb ______________

/  =  / dl =  I л/dx2 +  dy2 =  I s/l +  (dy/dx)2 dx
a a a

p b

=  V l  +  {f'(x))2dx (P5.11.1)
a

For example, the length of the half-circumference of a circle with the radius 

of unit length can be obtained from this line integral with

у =  f(x )  =  V l  - x 2, a =  -1, b =  1 (P5.11.2)

Starting from the program “ nm5p11.m” , make a program that uses the 

numerical integration routines “ sm psns()” , “ adapt_sm psn()” , “q u a d ()” , 

“q u a d l ()” , and “Gauss_Legendre()” to evaluate the integral (P5.11.1,2) 

with the first derivative approximated by Eq. (5.1.8), where the parame

ters like the number of segments (N), the error tolerance (tol), and the 

number of grid points (M) are supposed to be as they are in the pro

gram. Run the program with the step size h =  0 .001, 0.0001, and 0.00001 

in the numerical derivative and fill in Table P5.11 with the errors of the 

results, noting that the true value of the half-circumference of a unit circle 

is n .

%nm5p11

a = -1; b = 1; % the lower/upper bounds of the integration interval 

N = 1000 % the number of segments for the Simpson method 

tol = 1e-6 % the error tolerance

M = 20 % the number of grid points for Gauss-Legendre integration 

IT = pi; h = 1e-3 % true integral and step size for numerical derivative 

flength = inline('sqrt(1 + dfp511(x,h).~2)','x','h');%integrand P5.11.1) 
Is = smpsns(flength,a,bJN Jh);

[Ias,points,err] = adapt_smpsn(flength,a,bJto l Jh);

Iq = quad(flength,aJb,tolJ[]Jh);

Iql = quadl(flength,aJb Jt o l J[]Jh);

IGL = Gauss_Legendre(flength,a,bJM Jh);

function df = dfp511(x,h) % numerical derivative of (P5.11.2) 

if nargin < 2 ,  h = 0.001; end

df = (fp511(x + h)-fp511(x - h))/2/h; %Eq.(5.1.8)

function y = fp511(x)

y = sqrt(max(1-x.*x,0)); % the function (P5.11.2)
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Table P5.11 Results of Applying Various Numerical Integration Methods for 

P5.11.1,2)/(P5.12.1,2)

Step-size h Simpson Adaptive quad quadl Gauss

(P5.ll.1,2)

0.001 4.6212e-2 2.9822e-2 8.4103e-2

0.0001 9.4278e-3 9.4277e-3

0.00001 2.1853e-l 2.9858e-3 8.4937e-2

(Р5.12.1Д)

0.001 1.2393e-5 1.3545e-5

0.0001 8.3626e-3 5.0315e-6 6.4849e-6

0.00001 1.3846e-9 8.8255e-7

(P5.13.1) N /A 8.8818e-16 0 8.8818e-16

5.12 Surface Area of Revolutionary 3-D (Cubic) Object

The upper/lower surface area of a 3-D structure formed by one revolution of 

a graph (curve) of a function y =  f(x) around the x-axis over the interval 

[a ,b ] can be described by the following integral:

pb pb

I = 2 n  j y d l = 2 n i  / 0 ) У  1 +  (f'{x))2dx (P5.12.1)
a a

For example, the surface area of a sphere with the radius of unit length can 

be obtained from this equation with

У =  f(x) =  V l  — x2, a =  -1, b =  1 (P5.12.2)

Starting from the program “nm5p11.m”, make a program “nm5p12.m” that 

uses the numerical integration routines “smpsns()” (with the number of 

segments N = 1000), “adapt_smpsn()”, “quad()”, “quadl()” (with the 

error tolerance tol = 10-6) and “Gauss_Legendre()” (with the number 

of grid points M = 20) to evaluate the integral (P5.12.1,2) with the first 

derivative approximated by Eq. (5.1.8), where the parameters like the num

ber of segments (N), the error tolerance (tol), and the number of grid points 

(M) are supposed to be as they are in the program. Run the program with 

the step size h =  0.001, 0.0001, and 0.00001 in the numerical derivative 

and fill in Table P5.11 with the errors of the results, noting that the true 

value of the surface area of a unit sphere is 4n .

5.13 Volume of Revolutionary 3-D (Cubic) Object

The volume of a 3-D structure formed by one revolution of a graph (curve) 

of a function y =  f(x ) around the x-axis over the interval [a, b] can be 

described by the following integral:

I =  n f  f  2(x) dx (P5.13.1)
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For example, the volume of a sphere with the radius of unit length (Fig. 

P5.13) can be obtained from this equation with Eq. (P5.12.2). Starting from 

the program “nm5p11.m”, make a program “nm5p13.m” that uses the numer

ical integration routines “smpsns()” (with the number of segments N = 

100), “adapt_smpsn()”, “quad()”, “quadl()” (with the error tolerance 

tol = 10-6), and “Gauss_Legendre()” (with the number of grid points 

M = 2) to evaluate the integral (P5.13.1). Run the program and fill in 

Table P5.11 with the errors of the results, noting that the volume of a 

unit sphere is 4п/3.

Figure P5.13 The surface and the volume of a unit sphere.

5.14 Double Integral

(a) Consider the following double integral

П
п p2 p 2 ^

y sin xdxdy  =  -y cos x ̂  dy =  2y dy =  y2|0 =  4 
0 0

(P5.14.1)

Use the routine “int2s()” (Section 5.10) with M = N = 20, M = N = 

50 and M = N = 100 and the M A TLA B  built-in routine “dblquad()” 

to compute this double integral. Fill in Table P5.14.1 with the results 

and the times measured by using the commands tic/toc to be taken 

for carrying out each computation. Based on the results listed in 

Table P5.14.1, can we say that the numerical error becomes smaller 

as we increase the numbers (M,N) of segments along the x-axis and 

y-axis for the routine “int2s()”?
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(b ) Consider the following double integral:

f 1 f 1 1 n 2
1 =  ---- dx dy =  —  (P5.14.2)

Jo Jo 1 — xy 6

Noting that the integrand function is singular at (x, y) =  (1,1), use 

the routine “int2s()” and the M ATLAB  built-in routine “dblquad()” 

with the upper limit (d) of the integration interval along the y-axis d 

= 0.999, d = 0.9999, d = 0.99999 and d = 0.999999 to compute this 

double integral. Fill in Tables P5.14.2 and P5.14.3 with the results and 

the times measured by using the commands tic/toc to be taken for 

carrying out each computation.

Table P5.14.1 Results of Running “i n t 2 s ( ) ’’ and “db lquad () ’’ for (P5.14.1)

in t2s (),

M = N = 20

in t2s (),

M = N = 100

in t2s (),

M = N = 200 dblquad()

|error | 2.1649 x 1СГ8 1.3250 x 1СГ8

time

Table P5.14.2 Results of Running ‘‘i n t 2 s ( )  ’’ and ‘‘db lquad() ’’ for (P5.14.2)

a = 0, b = 1 
с = 0, 

d = 1-10 3

a = 0, b = 1 
с = 0, 

d = 1-10 4

a = 0, b = 1 
с = 0, 

d =1-10 5

a = 0, b = 1 
с = 0, 

d = 1-10 6

int2s()
M - 2000 
N = 2000

| error | 0.0079 0.0024

time

dblquad | error | 0.0004 0.0006

time

Table P5.14.3 Results of Running the Double Integral Routine ‘‘i n t 2 s ( ) ’’ for

P5.14.2)

M = 1000, 

N = 1000

M = 2000, 

N = 2000

M = 5000, 

N = 5000

IО

II 
II 

-Q 
"О

(ЛО 
О

 
C\J
-H 

II 
II 

с■H 
со 

о

|error| 0.0003

time

Based on the results listed in Tables P5.14.2 and P5.14.3, answer the 

following questions.

(i) Can we say that the numerical error becomes smaller as we set the 

upper limit (d) of the integration interval along the y-axis closer to 

the true limit 1?
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(ii) Can we say that the numerical error becomes smaller as we increase 

the numbers (M,N) of segments along the x-axis and y-axis for the 

routine “int2s()”? If this is contrary to the case of (a), can you 

blame the weird shape of the integrand function in Eq. (P5.14.2) 

for such a mess-up?

(cf) Note that the computation times to be listed in Tables P5.14.1 to P5.14.3 

may vary with the speed of C P U  as well as the computational jobs which 

are concurrently processed by the C P U . Therefore, the time measured by the 

‘t ic /to c ’ commands cannot be an exact estimate of the computational load 

taken by each routine.

5.15 Area of a Triangle

Consider how to find the area between the graph (curve) of a function f(x) 

and the x-axis. For example, let f(x ) =  x for 0 < x < 1 in order to find 

the area of a right-angled triangle with two equal sides of unit length. We 

might use either the 1-D integration or the 2-D integration— that is, the 

double integral for this job.

(a) Use any integration method that you like best to evaluate the integral

(b) Use any double integration routine that you like best to evaluate the 

integral

You may get puzzled with some problem when applying the routine 

“int2s()” if you define the integrand function as

>>fp515b = i n l i n e ( ' 1 ' , ' x ' , ' y ' ) ;

It is because this function, being called inside the routine 

“smpsns_fxy()”, yields just a scalar output even for the vector-valued 

input argument. There are two remedies for this problem. One is to 

define the integrand function in such a way that it can generate the 

output of the same dimension as the input.

>>fp515b = i n l i n e ( ' 1 + 0 * ( x + y ) ' , ' x ' , ' y ' ) ;

But, this will cause a waste of computation time due to the dead multi

plication for each element of the input arguments x and y. The other is 

to modify the routine “smpsns_fxy()” in such a way that it can avoid 

the vector operation. More specifically, you can replace some part of 

the routine with the following. But, this remedy also increases the com

putation time due to the abandonment of vector operation taking less 

time than scalar operation (see Section 1.3).

(P5.15.1)

I2 =  1 dy dx =  1 dydx (P5.15.2)
0 0 0 0
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function INTf = smpsns_fxy(f,x,c d,N)

sum odd = f(x,y(2)); sum even = 0;
for n = 4:2:N

sum_odd = sum_odd + f(x,y(n)) sum_even = sum_even + f(x,y(n - 1));
end
INTf = (f(x,y(1)) + f(x,y(N + 1) + 4*sum_odd + 2*sum_ even)*h/3;

(cf) This problem illustrates that w e must be provident to use the vector operation, 

especially in defining a M A T L A B  function.

5.16 Volume of a Cone

Likewise in Section 5.10, modify the program “ nm510.m” so that it uses 

the routines “ in t 2 s ( ) ” and “d b lqu ad ()” to compute the volume of a cone 

that has a unit circle as its base side and a unit height, and run it to obtain 

the values of the volume up to four digits below the decimal point.)
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ORDINARY DIFFERENTIAL 
EQUATIONS

Differential equations are mathematical descriptions of how the variables and 

their derivatives (rates of change) with respect to one or more independent 

variable affect each other in a dynamical way. Their solutions show us how 

the dependent variable(s) will change with the independent variable(s). Many 

problems in natural sciences and engineering fields are formulated into a scalar 

differential equation or a vector differential equation— that is, a system of dif

ferential equations.

In this chapter, we look into several methods of obtaining the numerical solu

tions to ordinary differential equations (ODEs) in which all dependent variables 

(x) depend on a single independent variable (t). First, the initial value problems 

(IVPs) will be handled with several methods including Runge-Kutta method and 

predictor-corrector methods in Sections 6.1 to 6.5. The final section (Section 6.6) 

will introduce the shooting method and the finite difference method for solving 

the two-point boundary value problem (BVP). ODEs are called an IVP if the 

values x(t0) of dependent variables are given at the initial point t0 of the inde

pendent variable, while they are called a BVP if the values x(t0)/ x(tf) are given 

at the initial/final points t0 and tf.

6.1 E U LE R ’S  M E T H O D

When talking about the numerical solutions to ODEs, everyone starts with the 

Euler’s method, since it is easy to understand and simple to program. Even though 

its low accuracy keeps it from being widely used for solving ODEs, it gives us a

Applied Numerical Methods Using MATLAB®, by Yang, Cao, Chung, and Morris 

Copyright © 2005 John Wiley &  Sons, Inc., ISBN 0-471-69833-4

2 6 3
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clue to the basic concept of numerical solution for a differential equation simply 

and clearly. Let’s consider a first-order differential equation:

y'(t) +  a y(t) =  r with y(0) =  yo (6.1.1)

It has the following form of analytical solution:

y(t) =  (yo- - )e- at+  - (6.1.2)
a a

which can be obtained by using a conventional method or the Laplace trans

form technique [K-1, Chapter 5]. However, such a nice analytical solution does 

not exist for every differential equation; even if it exists, it is not easy to 

find even by using a computer equipped with the capability of symbolic com

putation. That is why we should study the numerical solutions to differential 

equations.

Then, how do we translate the differential equation into a form that can eas

ily be handled by computer? First of all, we have to replace the derivative 

y'(t) =  dy/dt in the differential equation by a numerical derivative (introduced in 

Chapter 5), where the step-size h is determined based on the accuracy require

ments and the computation time constraints. Euler’s method approximates the 

derivative in Eq. (6.1.1) with Eq. (5.1.2) as

y(t +  h)- y(t)
---- ------ |- a у (?) =  r

h

y(t +  h) =  (1 — ah)y(t) +  hr with y(0) =  y0 (6.1.3)

and solves this difference equation step-by-step with increasing t by h each time 

from t =  0.

y(h) =  (1 — ah)y(0) +  hr =  (1 — ah)y0 +  hr 

y(2h) =  (1 — ah)y(h) +  hr =  (1 — ah)2y0 +  (1 — ah)hr +  hr (6.1.4) 

y(3h) =  (1 — ah)y(2h) +  hr =  (1 — ah)3y0 +  J21=0(1 — ah)mhr

This is a numeric sequence |y(^h)j, which we call a numerical solution of 

Eq. (6.1.1).

To be specific, let the parameters and the initial value of Eq. (6.1.1) be a =  1, 

r =  1, and y0 =  0. Then, the analytical solution (6.1.2) becomes

y(t) =  1 — e^at (6.1.5)
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%nm610: Euler method to solve a 1st-order differential equation
clear, clf
a = 1 ; r = 1 ; y 0 = 0 ;  t f= 2 ;
t = [0:0.01:tf]; yt = 1 - exp(-a*t) ; %Eq. (6.1.5): true analytical solution
plot(t,yt,'k'), hold on
klasts = [ 8 4 2 ] ;  hs = tf./klasts;

y(1) = y0;
for itr = 1:3 %with various step size h = 1/8,1/4,1/2

klast = klasts(itr); h = hs(itr) ; y(1) =y0;
for k = 1:klast

y(k + 1) = (1 - a*h)*y(k) +h*r; %Eq.(6.1.3):
plot([k - 1 k]*h,[y(k) y(k+1) ],'b', k*h,y(k+1),' Г О  1 )

if k < 4, pause; end
end

end

and the numerical solution (6.1.4) with the step-size h =  0.5 and h =  0.25 are 

as listed in Table 6.1 and depicted in Fig. 6.1. We make a M A TLA B  program 

“nm610.m”, which uses Euler’s method for the differential equation (6.1.1), actu

ally solving the difference equation (6.1.3) and plots the graphs of the numerical 

solutions in Fig. 6.1. The graphs seem to tell us that a small step-size helps 

reduce the error so as to make the numerical solution closer to the (true) ana

lytical solution. But, as will be investigated thoroughly in Section 6.2, it is only 

partially true. In fact, a too small step-size not only makes the computation time 

longer (proportional as 1/h), but also results in rather larger errors due to the 

accumulated round-off effect. This is why we should look for other methods to 

decrease the errors rather than simply reduce the step-size.

Euler’s method can also be applied for solving a first-order vector differential 

equation

y'(t) =  f(t, y) with y(to) =  У0 (6.1.6)

which is equivalent to a high-order scalar differential equation. The algorithm 

can be described by

Ук+1 =  Ук +  hf(tk, yk) with y(to) =  yo (6.1.7)

Table 6.1 A Numerical Solution of the Differential Equation (6.1.1) Obtained by the 

Euler’s Method

t h =  0.5 h =  0.25

0.25 y(0.25) =  (1 - ah)y0 +  hr =  1/4 =  0.25

0.50 y(0.50) =  (1 - ah)y0 +  hr =  1/2 =  0.5 y(0.50) =  (3/4)y(0.25) +  1/4 =  0.4375

0.75 y(0.75) =  (3/4)y(0.50) +  1/4 =  0.5781

1.00 y(1.00) =  (l/2)y(0.5) +  1/2 =  3/4 =  0.75 у (1.00) =  (3/4)y(0.75) +  1/4 =  0.6836

1.25 y(1.25) =  (3/4) у (1.00) +  1/4 =  0.7627

1.50 y(1.50) =  (l/2)y(1.0) +  1/2 =  7/8 =  0.875 y(1.50) =  (3/4)y(1.25) +  1/4 =  0.8220
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Figure 6.1 Examples of numerical solution obtained by using the Euler’s method. 

and is cast into the M ATLAB  routine “ode_Euler()” .

function [t,y] = ode_Euler(f,tspan,y0,N)
%Euler's method to solve vector differential equation y'(t) = f(t,y(t)) 
% for tspan = [t0,tf] and with the initial value y0 and N time steps 
if nargin<4 | N <= 0, N = 100; end 
if nargin<3, y0 = 0; end 
h = (tspan(2) - tspan(1))/N; %stepsize 
t = tspan(1)+[0:N]'*h; %time vector
y(1,:) = y0(:)'; %always make the initial value a row vector 
for k = 1:N

y(k + 1,:) = y(k,:) +h*feval(f,t(k),y(k,:)); %Eq.(6.1.7)
end

6.2 H E U N ’S  M E T H O D : TRAPEZOIDAL M E T H O D

Another method of solving a first-order vector differential equation like Eq. (6.1.6) 

comes from integrating both sides of the equation.

f tk+1

y'(t) =  f(t, y), y(t)|tk+1 =  y(tk+i) - y(tk) =  f(t, y) dt
Jtk

Г tk+1

y(tk+i) =  y(tk) +  / f(t, y) dt with y(to) =  yo (6.2.1)
tk

If we assume that the value of the (derivative) function f(t,y) is constant 

as f(tk,y(tk)) within one time step [tk,tk+1), this becomes Eq. (6.1.7) (with h =  

tk+1 — tk), amounting to Euler’s method. If we use the trapezoidal rule (5.5.3), it 

becomes
h

У*+1 =  У* +  Ук) +  ffe+ь y*+i)} (6.2.2)
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fu n c t io n  [ t,y]  = ode_Heun(f,tspan,y0,N)

%Heun method to  so lve  vec to r  d i f f e r e n t i a l  equation y ' ( t )  = f ( t , y ( t ) )  

% f o r  tspan = [ t 0 , t f ]  and w i th  the i n i t i a l  va lue  y0 and N time steps 

i f  narg in<4 | N <= 0, N = 100; end 

i f  narg in<3, y0 = 0; end 

h = ( tspan(2) - tspan (1 ) ) /N ;  %stepsize 

t  = tspan (1 )+[0 :N ] '*h ; %time vec to r

y ( 1 , : )  = y 0 ( : ) ' ;  %always make the i n i t i a l  va lue  a row vec to r  

f o r  k = 1:N

f k  = f e v a l ( f , t ( k ) , y ( k , : ) ) ;  y ( k + 1 , : )  = y ( k , : ) + h * f k ;  %Eq.(6.2.3) 

y ( k + 1 , : )  = y ( k , : )  +h /2* ( fk  + f e v a l ( f , t ( k + 1 ) , y ( k + 1 , : ) ) ) ;  %Eq.(6.2.4) 

end

But, the right-hand side (RHS) of this equation has yk+1, which is unknown at 

tk. To resolve this problem, we replace the yk+1 on the RHS by the following 

approximation:

yk+1 =  yk +  hf(tk, yk) (6.2.3)

so that it becomes

h
Уаг+i =  У* +  у*) +  ffe+ь У к +  hf(tk, У * ))}  (6.2.4)

This is Heun’s method, which is implemented in the M ATLAB  routine 

“ode_Heun()” . It is a kind of predictor-and-corrector method in that it predicts 

the value of yk+1 by Eq. (6.2.3) at tk and then corrects the predicted value by 

Eq. (6.2.4) at tk+1. The truncation error of Heun’s method is O (h2) (proportional 

to h2) as shown in Eq. (5.6.1), while the error of Euler’s method is O(h).

6.3 RU N GE- KU TTA  M E T H O D

Although Heun’s method is a little better than the Euler’s method, it is still not 

accurate enough for most real-world problems. The fourth-order Runge-Kutta 

(RK4) method having a truncation error of O(h4) is one of the most widely used 

methods for solving differential equations. Its algorithm is described below.

h
У*+1 =  У* +  T(f*i +  2fk2 +  2fk3 +  iu) (6.3.1)

6

where

fk1 =  f(tk, yk) (6.3.2a)

fk2 =  f(tk +  h/2, yk +  fk1h/2) (6.3.2b)

fk3 =  f(tk +  h/2, yk +  fk2h/2) (6.3.2c)

fk4 =  f(tk +  h, yk +  fk3h) (6.3.2d)
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function [t,y] = ode_RK4(f,tspan,y0,N,varargin)
%Runge-Kutta method to solve vector differential eqn y'(t) = f(t,y(t))
% for tspan = [t0,tf] and with the initial value y0 and N time steps
if nargin <4 | N <= 0, N = 100; end
if nargin <3, y0 = 0; end
y(1,:) = y0(:)'; %make it a row vector
h = (tspan(2) - tspan(1))/N; t = tspan(1)+[0:N]'*h;
for k = 1:N

f1 = h*feval(f,t(k),y(k,:),varargin{:}); f1 = f1(:)'; %(6.3.2a) 
f2 = h*feval(f,t(k) + h/2,y(k,:) + f1/2,varargin{:}); f2 = f2(:)';%(6.3.2b) 
f3 = h*feval(f,t(k) + h/2,y(k,:) + f2/2,varargin{:}); f3 = f3(:)';%(6.3.2c) 
f4 = h*feval(f,t(k) + h,y(k,:) + f3,varargin{:}); f4 = f4(:)'; %(6.3.2d) 
y(k + 1,:) = y(k,:) + (f1 + 2*(f2 + f3) + f4)/6; %Eq.(6.3.1) 

end

%nm630: Heun/Euer/RK4 method to solve a differential equation (d.e.) 
clear, clf 
tspan = [0 2];
t = tspan(1)+[0:100]*(tspan(2) - tspan(1))/100; 
a = 1; yt = 1 - exp(-a*t); %Eq.(6.1.5): true analytical solution 
plot(t,yt,'k'), hold on
df61 = inline('-y + 1 ','t ', 'y ') ; %Eq.(6.1.1): d.e. to be solved 
y0 = 0; N = 4;
[t1,ye] = oed_Euler(df61,tspan,y0,N);
[t1,yh] = ode_Heun(df61,tspan,y0,N);
[t1,yr] = ode_RK4(df61,tspan,y0,N); 
plot(t,yt,'k', t1,ye,'b:', t1,yh,'b:', t1,yr,'r:') 
plot(t1,ye,'bo', t1,yh,'b+', t1,yr,'r*')
N = 1e3; %to estimate the time for N iterations 
tic, [t1,ye] = ode_Euler(df61,tspan,y0,N); time_Euler = toc 
tic, [t1,yh] = ode_Heun(df61,tspan,y0,N); time_Heun = toc 
tic, [t1,yr] = ode_RK4(df61,tspan,y0,N); time_RK4 = toc

Equation (6.3.1) is the core of R K 4  method, which may be obtained by sub

stituting Simpson’s rule (5.5.4)

f tk+1 h' . Xk+1 — xk h
J  f(x ) dx =  — (fk +  4fk+1/2 +  fk+1) w ith h =  k+12 k =  -

‘k (6.3.3)

into the integral form (6.2.1) of differential equation and replacing fk+1/2 with 

the average of the successive function values (fk2 +  fk3)/2. Accordingly, the 

R K 4  method has a truncation error of O(h4) as Eq. (5.6.2) and thus is expected 

to work better than the previous two methods.

The fourth-order Runge-Kutta (R K 4 ) method is cast into the M A T L A B  rou

tine “ode_R K 4()” . The program “ nm630.m” uses this routine to solve Eq. (6.1.1) 

with the step size h =  (tf — t0) /N  =  2 /4  =  0.5 and plots the numerical result 

together with the (true) analytical solution. Comparison of this result with those of 

Euler’s method (“o d e _E u le r ()” ) and H eun ’s method (“ode_Heun()” ) is given in 

Fig. 6.2, which shows that the R K 4  method is better than H eun ’s method, while 

Euler’s method is the worst in terms of accuracy with the same step-size. But,



PREDICTOR-CORRECTOR METHOD 2 6 9

in terms of computational load, the order is reversed, because Euler’s method, 

Heun’s method, and the RK4 method need 1, 2, and 4 function evaluations (calls) 

per iteration, respectively.

(cf) Note that a function call takes much more time than a multiplication and thus the 

number of function calls should be a criterion in estimating and comparing compu

tational time.

The M A TLA B  built-in routines “ode23()” and “ode45()” implement the 

Runge-Kutta method with an adaptive step-size adjustment, which uses a 

large/small step-size depending on whether f(t) is smooth or rough. In 

Section 6.4.3, we will try applying these routines together with our routines to 

solve a differential equation for practice rather than for comparison.

6.4 P R E D IC T O R - C O R R E C T O R  M E T H O D

6.4.1 Adams-Bashforth-Moulton Method

The Adams-Bashforth-Moulton (ABM ) method consists of two steps. The first 

step is to approximate f(t,y) by the (Lagrange) polynomial of degree 4 matching 

the four points

{(tk-3, fk-з), (tk-2, fk-2), (tk-1, fk-l), (tk, fk)}

and substitute the polynomial into the integral form (6.2.1) of differential equation 

to get a predicted estimate of yk+1.

Гh h
Pk+i =Ук +  I hit) dt =  yk +  '9fjt-3 +  37fk_2 — 59fk_i +  55fk)

0 (6.4.1a)



The second step is to repeat the same work with the updated four points

{(tk—2, fk—2), (tk—1, fk—1), (tk, fk), (tk+1, fk+1)} (fk+1 =  f(tk+1, Pk+1))

to get a corrected estimate of yk+1.

rh h
c*+i =  У* +  J  I'sit) dt =  yk +  ^ ( f k - 2  — +  19ft +  9fjt+i) (6.4.1b)

The coefficients of Eqs. (6.4.1a) and (6.4.1b) can be obtained by using the 

M ATLAB  routines “lagranp()” and “polyint()”, each of which generates 

Lagrange (coefficient) polynomials and integrates a polynomial, respectively. 

Let’s try running the program “ABMc.m”.

>>abmc

cAP = -3/8 37/24 -59/24 55/24 

cAC = 1/24 -5/24 19/24 3/8
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%ABMc.m
% Predictor/Corrector coefficients in Adams-Bashforth-Moulton method
clear
format rat
[l,L] = lagranp([-3 -2 -1 0],[0 0 0 0]); %only coefficient polynomial L 
for m = 1:4

iL = polyint(L(m,:)); %indefinite integral of polynomial
cAP(m) = polyval(iL,1)-polyval(iL,0); %definite integral over [0,1]

end
cAP %Predictor coefficients
[l,L] = lagranp([-2 -1 0 1],[0 0 0 0]); %only coefficient polynomial L 
for m = 1:4

iL = polyint(L(m,:)); %indefinite integral of polynomial
cAC(m) = polyval(iL,1) - polyval(iL,0); %definite integral over [0,1]

end
cAC %Corrector coefficients 
format short

Alternatively, we write the Taylor series expansion of yk+1 about tk and that 

of yk about tk+1 as

h 2 h 3 (2) h 4 (3) h 5 (4)
У*+1 =  У* +  hfk +  — fk +  —  fk +  — fk +  —  fk H--  (6.4.2a)

v - v  ht +h2f h\ (2) +  А%<3> h\ iA) +
Ук -  У*+1 - H\k+i +  yijfc+1 - ^ 7 1*+1 +  4 [  *+! “  5!" *+1 --

h 2 h 3 (2) h 4 (3) h 5 (4)
У*+1 =  У* +  hfk+i - y 4 +i +  ^7f*+i “  ^  k+1 +  ^7f*+ i---(6.4.2b)

and replace the first, second, and third derivatives by their difference approxi

mations.
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, j. h  (  — \^k—3 “t“ 2 — 3ft—1 ^ f t  . 1 / 3^(4) ,
У*+1 =  Уk+hik +  —  [ 3 k 3 ^  2 k 2---k 1 ^  6 k +  - h %  > +  ■

2 V h 4

, ffc-3 +  4fjfc_2 — 5ft-1 +  2ft | l l , 2 f ( 4 )  ,

зТ \ *2 + Тг * +

, h4 f-ik-з +  3fk_2 - 3ffc_i +  ft 3 (4) ^ h5 (4) 

+  4 Т ( ------- » ------- +  2 M ‘ ) 120

5f (4)=  y* +  —  (—9ft-3 +  37f*_2 -  59ft_! +  55ft) +  —  h=f,

(6.4.1a) 251 s (4)
~ Pk+i +  f{k ] (6.4.3a)

i / f   ̂ (  —\^k—2 “t“ 1 — 3f  ̂ -)- ^ft+1 i  ̂ / 3̂ (4) i \  
У*+1 =  У* +  h fk + 1 - у  ( 3 k 2-- * ± ± ---*-- 6-±ti +  -A3f*Vi +  • • • )

, A3 f*-2 +  4ft-1 — 5ft +  2ft+i | ll,2f(4) ,

+  3! V  h2 1 2  t + 1  +

h4 f —tk- 2  +  3ft-i - 3ft +ft+i 3 (4) ^ /г5 (4)

“ 4 ! ( ------ h>------ +  2 МШ +-■ j  +  l20fw  + --

=  У* +  “  f̂t-l +  +  9ft+l) - 1 “!--

(6.4.1b) 19 < (4)
~ c*+i “  fk+1 (6.4.3b)

These derivations are supported by running the M A TLA B  program “ABMc1.m”.

%ABMc1.m
%another way to get the ABM coefficients together with the error term 
clear, format rat
for i = 1:3, [ci,erri] = difapx(i,[-3 0]); c(i,:) = ci; err(i) = erri; 

end
cAP = [ 0 0 0  1]+[1/2 1/6 1/24]*c, errp = -[1/2 1/6 1/24]*err' + 1/120 
cAC = [ 0 0 0  1]+[-1/2 1/6 -1/24]*c, errc = -[-1/2 1/6 -1/24]*err' + 1/120 
format short

From these equations and under the assumption that fk(+)1 =  fk(4) =  K , we can

write the predictor/corrector errors as

251 251

Ep,k+1 =  y*+i - Pt+i ~ 7 2 0 ^ 5̂ (4) ^  7 2 0 KflS (6.4.4a)

Ec,k+1 =  yt+i -  ct+i «  “ ^ + 1  =  ~ ^ Kh5 (6A4b)
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W e  still cannot use these formulas to estimate the predictor/corrector errors, since 

K  is unknown. But, from the difference between these two formulas

F F — с n - 270 O 5 -  270 F  -  270 F
Zp,k+1 - &с,к+ 1 — Cfc+1 - Pfc+i =  й =  251 +1 =  ~~[g c ’k+1

(6.4.5)

w e can get the practical formulas for estimating the errors as

251
Ep,k+1 =  y*+i — Pt+i =  — P*+i) (6.4.6a)

~  19
E c,k+1 =  y*+i — c*+i =  —270 Ĉ*+1 _  (6.4 .6b)

These formulas give us rough estimates of how  close the predicted/corrected 

values are to the true value and so can be used to improve them as well as to 

adjust the step-size.

251

Pit+i ~► Pt+i +  2 7 0 ^°* — ^  ^  m 'fc+ 1 (6.4.7a)

19

Cjt+i - Cjt+i — 27 o ĉ*+1 — P*+i) ^  У*+! (6.4.7b)

These modification formulas are expected to reward our efforts that w e have 

made to derive them.

The Adams-Bashforth-Moulton (A B M )  method with the modification formu

las can be described by Eqs. (6.4.1a), (6.4.1b), and (6.4.7a), (6.4.7b) summarized 

below and is cast into the M A T L A B  routine “ode_ABM()” . This scheme needs 

only two function evaluations (calls) per iteration, while having a truncation 

error of O (h5) and thus is expected to work better than the methods discussed so 

far. It is implemented by the M A T L A B  built-in routine “o de 11 3 ( ) ” with many 

additional sophisticated techniques.

(Adams-Bashforth-Moulton method with modification formulas) 

h

Predictor: p t+i =  y* +  з +  37f*_2 - 59f*_i +  55ft) (6.4.8a)

251
Modifier: mt+i =  pt+i +  ^ ( c *  - p*)

h
Corrector: ck+i =  уk +  ~  5f*_i +  19f* +  9f(tk+x, m k+1)) (6.4.8c)

» + . = c 1+1- J ^ c 1+,- p ,+1)
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function [t,y] = ode_ABM(f,tspan,y0,N,KC,varargin)
%Adams-Bashforth-Moulton method to solve vector d.e. y'(t) = f(t,y(t))
% for tspan = [t0,tf] and with the initial value y0 and N time steps 
% using the modifier based on the error estimate depending on KC = 1/0 
if nargin <5, KC = 1; end %with modifier by default
if nargin < 4 | N < = 0, N = 100; end %default maximum number of iterations 
y0 = y0(:)'; %make it a row vector 
h = (tspan(2) - tspan(1))/N; %step size 
tspan0 = tspan(1)+[0 3]*h;
[t,y] = rk4(f,tspan0,y0,3,varargin{:}); %initialize by Runge-Kutta 
t = [t(1:3)' t(4):h:tspan(2)]';
for k = 1:4, F(k,:) = feval(f,t(k),y(k,:),varargin{:}); end 
p = y(4,:); c = y(4,:); KC22 = KC*251/270; KC12 = KC*19/270; 
h24 = h/24; h241 = h24*[1 -5 19 9]; h249 = h24*[-9 37 -59 55]; 
for k = 4:N

p1 = y(k,:) +h249*F; %Eq.(6.4.8a) 
m1 = pk1 + KC22*(c-p); %Eq.(6.4.8b) 
c1 = y(k,:)+ ...

h241*[F(2:4,:); feval(f,t(k + 1),m1,varargin{:})]; %Eq.(6.4.8c) 
y(k + 1,:) = c1 - KC12*(c1 - p1); %Eq.(6.4.8d) 
p = p1; c = c1; %update the predicted/corrected values 
F = [F(2:4,:); feval(f,t(k + 1),y(k + 1,:),varargin{:})];

End

6.4.2 Hamming Method

function [t,y] = ode_Ham(f,tspan,y0,N,KC,varargin)
% Hamming method to solve vector d.e. y'(t) = f(t,y(t))
% for tspan = [t0,tf] and with the initial value y0 and N time steps 
% using the modifier based on the error estimate depending on KC = 1/0 
if nargin <5, KC = 1; end %with modifier by default
if nargin < 4 | N <= 0, N = 100; end %default maximum number of iterations 
if nargin <3, y0 = 0; end %default initial value 
y0 = y0(:)'; end %make it a row vector 
h = (tspan(2)-tspan(1))/N; %step size 
tspan0 = tspan(1)+[0 3]*h;
[t,y] = ode_RK4(f,tspan0,y0,3,varargin{:}); %Initialize by Runge-Kutta 
t = [t(1:3)' t(4):h:tspan(2)]';
for k = 2:4, F(k - 1,:) = feval(f,t(k),y(k,:),varargin{:}); end 
p = y(4,:); c = y(4,:); h34 = h/3*4; KC11 = KC*112/121; KC91 = KC*9/121; 
h312 = 3*h*[-1 2 1]; 
for k = 4:N

p1 = y(k - 3,:) + h34*(2*(F(1,:) + F(3,:)) - F(2,:)); %Eq.(6.4.9a) 
m1 = p1 + KC11*(c - p); %Eq.(6.4.9b)
c1 = (-y(k - 2,:) + 9*y(k,:) +...

h312*[F(2:3,:); feval(f,t(k + 1),m1,varargin{:})]l/8; %Eq. (6.4.9c) 
y(k+1,:) = с1 - KC91*(c1 - p1); %Eq.(6.4.9d)
p = p1; c = c1; %update the predicted/corrected values 
F = [F(2:3,:); feval(f,t(k + 1),y(k + 1,:),varargin{:})];

end
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In this section, we introduce just the algorithm of the Hamming method [H-1] 

summarized in the box above and the corresponding routine “ode_Ham() ”, which 

is another multistep predictor-corrector method like the Adams-Bashforth- 

Moulton (ABM ) method.

This scheme also needs only two function evaluations (calls) per iteration, 

while having the error of O(h5) and so is comparable with the A B M  method 

discussed in the previous section.

6.4.3 Comparison of Methods

The major factors to be considered in evaluating/comparing different numeri

cal methods are the accuracy of the numerical solution and its computation 

time. In this section, we will compare the routines “ode_RK4()”, “ode_ABM()”, 

“ode_Ham()”, “ode23()” , “ode45()”, and “ode113()” by trying them out on 

the same differential equations, hopefully to make some conjectures about their 

performances. It is important to note that the evaluation/comparison of numer

ical methods is not so simple because their performances may depend on the 

characteristic of the problem at hand. It should also be noted that there are other 

factors to be considered, such as stability, versatility, proof against run-time 

error, and so on. These points are being considered in most of the M ATLAB  

built-in routines.

The first thing we are going to do is to validate the effectiveness of the mod

ifiers (Eqs. (6.4.8b,d) and (6.4.9b,d)) in the A B M  (Adams-Bashforth-Moulton) 

method and the Hamming method. For this job, we write and run the program 

“nm643_1.m” to get the results depicted in Fig. 6.3 for the differential equation

y'(t) =  -y(t) +  1 with y(0) =  0 (6.4.10)

which was given at the beginning of this chapter. Fig. 6.3 shows us an interesting 

fact that, although the A B M  method and the Hamming method, even without 

modifiers, are theoretically expected to have better accuracy than the RK4 (fourth- 

order Runge-Kutta) method, they turn out to work better than RK4 only with 

modifiers. Of course, it is not always the case, as illustrated in Fig. 6.4, which
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Figure 6.3 Numerical solutions and their errors for the differential equation y ’(t) = -y(t) +  1.
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(b3) Their relative errors

Figure 6.4 Numerical solutions and their errors for the differential equation y'(t) = y(t) +  1.



we obtained by applying the same routines to solve another differential equation

y'(t) =  y(t) +  1 with y(0) =  0 (6.4.11)

where the true analytical solution is

y(t) =  et — 1 (6.4.12)
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%nm643_1: RK4/Adams/Hamming method to  so lve  a d i f f e r e n t i a l  eq 

c le a r ,  c l f

t0  = 0; t f  = 10; y0 = 0; % s t a r t i n g / f i n a l  t ime, i n i t i a l  va lue 

N = 50; %number of segments

df643 = i n l i n e ( ' - y + 1 l , l t l , l y l ); % d i f f e r e n t i a l  equation to  so lve 

f643 = i n l i n e ( l 1 - e x p ( - t ) l , l t l ) ;  %true a n a l y t i c a l  s o lu t io n  

f o r  KC = 0:1

t i c ,  [t1,yR] = ode_RK4(df643,[t0 t f ] , y 0 ,N ) ;  tR = toc 

t i c ,  [t1,yA] = ode_ABM(df643,[t0 t f ] , y 0 ,N ,K C ) ;  tA  = toc 

t i c ,  [t1,yH] = ode_Ham(df643,[t0 t f ] , y 0 ,N ,K C ) ;  tH = toc 

yt1 = f 6 4 3 ( t1 ) ;  %true a n a l y t i c a l  s o lu t io n  to  p lo t  

subplot(221 + KC*2) % plot a n a ly t ic a l / n u m e r ic a l  s o lu t io n s  

p l o t ( t 1 , y t 1 , l k l ,  t 1 , y R , l k l ,  t 1 , y A , l k - - l ,  t 1 , y H , l k : l )  

tmp = abs(yt1)+eps; l _ t 1  = l e n g th ( t1 ) ;  

eR = abs(yR - y t1 ) . / tm p ;  e_R=norm(eR)/lt1 

eA = abs(yA - y t1 ) . / tm p ;  e_A=norm(eA)/ lt1 

eH = abs(yH - y t1 ) . / tm p ;  e_H=norm(eH)/lt1 

subp lo t(222 + KC*2) % plot r e l a t i v e  e r ro r s  

p l o t ( t 1 , e R , l k l ,  t 1 , e A , l k - - l ,  t1 ,  e H , l k : l )

end

%nm643_2: ode23()/ode45()/ode113() to solve a differential eq 
clear, clf
t0 = 0; tf = 10; y0 = 0; N = 50; %starting/final time, initial value 
df643 = inline(ly + V / t ' / y i ) ;  %differential equation to solve 
f643 = inline('exp(t) - 1 ', 't ') ;  %true analytical solution 
tic, [t1,yR] = ode_RK4(df643,[t0 tf],y0,N); time(1) = toc; 
tic, [t1,yA] = ode_ABM(df643,[t0 tf],y0,N); time(2) = toc; 
yt1 = f643(t1);
tmp = abs(yt1)+ eps; l_t1 = length(t1);
eR = abs(yR-yt1)./tmp; err(1) = norm(eR)/l_t1;
eA = abs(yA-yt1)./tmp; err(2) = norm(eA)/l_t1;
options = odeset('RelTol',1e-4); %set the tolerance of relative error 
tic, [t23,yode23] = ode23(df643,[t0 tf],y0,options); time(3) = toc; 
tic, [t45,yode45] = ode45(df643,[t0 tf],y0,options); time(4) = toc; 
tic, [t113,yode113] = ode113(df643,[t0 tf],y0,options); time(5) = toc; 
yt23 = f643(t23); tmp = abs(yt23) + eps;
eode23 = abs(yode23-yt23)./tmp; err(3) = norm(eode23)/length(t23); 
yt45 = f643(t45); tmp = abs(yt45) + eps;
eode45 = abs(yode45 - yt45)./tmp; err(4) = norm(eode45)/length(t45); 
yt113 = f643(t113); tmp = abs(yt113) + eps;
eode113 = abs(yode113 - yt113)./tmp; err(5) = norm(eode113)/length(t113); 
subplot(221), plot(t23,yode23,'k', t45,yode45,'b', t113,yode113,'r') 
subplot(222), plot(t23,eode23,'k', t45,eode45,'b--', t113,eode113,'r:') 
err, time
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Table 6.2 Results of Applying Several Routines to solve a Simple Differential Equation

od e _ R K 4 () od e _ A B M ( ) o d e _ H a m ( ) o d e 2 3 ( ) o d e 4 5 ( ) o d e 1 1 3 ( )

Relative error 

Computing time

0.0925 x  i0-4 

0.05 sec

0.0203 x i0-4 

0.03 sec

0.0i79 x i0-4 

0.03 sec

0.4770 x i0-4 

0.07 sec

0.0422 x  i0-4 

0.05 sec

0.i249 x  i0-4 

0.05 sec

Readers are invited to supplement the program “nm643_2.m” in such a way 

that “ode_Ham()” is also used to solve Eq. (6.4.11). Running the program yields 

the results depicted in Fig. 6.4 and listed in Table 6.2. From Fig. 6.4, it is note

worthy that, without the modifiers, the A B M  method seems to be better than the 

Hamming method; however, with the modifiers, it is the other way around or at 

least they run a neck-and-neck race. Anyone will see that the predictor-corrector 

methods such as the A B M  method (ode_ABM()) and the Hamming method 

(ode_Ham()) give us a better numerical solution with less error and shorter com

putation time than the M A TLA B  built-in routines “ode23()”, “ode45()”, and 

“ode113()” as well as the RK4 method (ode_RK4()), as listed in Table 6.2. But, 

a general conclusion should not be deduced just from one example.

6.5 V E C T O R  DIFFERENTIAL EQ U ATION S

6.5.1 State Equation

Although we have tried using the M ATLAB  routines only for scalar differential 

equations, all the routines made by us or built inside M ATLAB  are ready to 

entertain first-order vector differential equations, called state equations, as below.

xi(t) =  fi(t,xi(t),x2 (t),...)  with xi (to) =  xio 

x2(t) =  f 2 (t,xi(t),x2 (t), . . .) with x2 (to) =  x20

x'(t) =  f(t, x(t)) with x(t0) =  x0 (6.5.i)

For example, we can define the system of first-order differential equations

xi'(t) =  x2(t) with xi(0) =  i
(6.5.2)

x2 (t) =  —x2(t) +  i with x2(0) =  -1

in a file named “df651.m” and solve it by running the M ATLAB  program 

“nm651_1.m”, which uses the routines “ode_Ham()”/“ode45()” to get the 

numerical solutions and plots the results as depicted in Fig. 6.5. Note that the 

function given as the first input argument of “ode45()” must be fabricated to 

generate its value in a column vector or at least, in the same form of vector as 

the input argument ‘x’ so long as it is a vector-valued function.
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%nm651_1 to solve a system of differential eqs., i.e., state equation 
df = 'df651';
t0 = 0; tf = 2; x0 = [1 -1]; %start/final time and initial value 
N = 45; [tH,xH] = ode_Ham(df,[t0 tf],x0,N); %with N = number of segments 
[t45,x45] = ode45(df,[t0 tf],x0); 
plot(tH,xH), hold on, pause, plot(t45,x45)

function dx = df651(t,x)
dx = zeros(size(x)); %row/column vector depending on the shape of x 
dx(1) = x(2); dx(2) = -x(2) + 1;

Especially for the state equations having only constant coefficients like Eq.

(6.5.2), we can change it into a matrix-vector form as

with

xKt)

xi(t)

X1(0)

X2(0)

0 1

0 —1

X1(t)

X2(t)
+ Us(t) (6.5.3)

—1
and us(t) =  1 V t > 0

x'(t) =  Ax(t) +  Bu(t) with the initial state x(0) and the input u(t) (6.5.4)

which is called a linear time-invariant (LTI) state equation, and then try to find 

the analytical solution. For this purpose, we take the Laplace transform of both 

sides to write

sX(s) — x(0) =  AX(s) +  BU(s) with X(s) =  L{x(t)}, U(s) =  L{u(t)}

[sI — A]X(s) =  x(0) +  BU(s), X(s) =  [sI — A]—1x(0) +  [sI — A]—1BU(s)

(6.5.5)

where L{x(t)} and L —1{X(s)} denote the Laplace transform of x(t) and the 

inverse Laplace transform of X(s), respectively. Note that

[sI — A]—1 =  s—1[I — As—1]—1 =  s—1 [I +  As—1 +  A 2s—2

ф(Г) =  L —1 {[sI — A]—1}

A 2 a3

=  I +  At +  — t2 +  — t3
2 3!

(6.5.6)

with ф(0) =  I

By applying the convolution property of Laplace transform (Table D.2(4) in 

Appendix D)

L —1{[sI — A]—1BU(s)} =  L —1{[sI — A]—1} * L —1{BU(s)} =  ф(Г) * Bu(t)

— J —c

. , , „ , , T u(r)=0 for t<0 or T>t . чтлхчт
ф (  — x )B u (x )d x  =  I ф (  — x )B u (x )d x  (6.5.7)

t t

0

1
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we can take the inverse Laplace transform of Eq. (6.5.5) to write

7'J0
x(t) =  ф ( ) ( 0 )  +  ф ( )  * Bu(t) =  ф (')х (0) +  I ф(t — x)Bu(x)dx  (6.5.8) 

For Eq. (6.5.3), we use Eq. (6.5.6) to find

ф(') =  L —1[[sI — A]-i} 

=  L —i

=  L —i 

=  L —i

s 0 10

1 о s 1 11—01

=  L —i
s — i 

0 s + 1

i

s(s +  1)

s +  1 1

0 s

'1 /s  1/s — 1/(s +  1)" '1 1 — e—t"

_ 0 1/(s +  1)
=

0 e—t
(6.5.9)

and use Eqs. (6.5.8), (6.5.9), and u(t) =  us(t) =  1 V t > 0 to obtain

x(t) =
1 1 — e"

+

1 t 1 1 — e—(t—T)" 0

—1 +  l 0 e—(t—т) 1
1 dr

т — e—(t—T)

e — (t—т)

t — 1 +  2e—t 

1 — 2e—t
(6.5.10)

Alternatively, we can directly take the inverse transform of Eq. (6.5.5) to get 

X(s) =  [sI — A]—1{x(0) +  [sI — A]—1BU(s)}

1 s +  1 1 1 1
+

0

s(s +  1) 0 s 1—1 1

s2 +  1

1 "s + 1  1" s 1 s2 +  1

s2(s +  1) 0 s . —s +  1 s2(s +  1) s(1 — s)
(6.5.11)

1 1 2 t
x i(s) =  -̂ 7-- 7T =  -T - - + -- 7 ’ x1( t ) = t - l +  2e (6.5.12a)

X 2 (s) =

s2(s +  1) s2 s ’ s +  1

1 — s 1 2

s(s +  1) s s +  1
X2 (t) — 1 — 2e (6.5.12b)

which conforms with Eq. (6.5.10).

The M ATLAB  program “nm651_2.m” uses a symbolic computation routine 

“ilaplace()” to get the inverse Laplace transform, uses “eval()” to evaluate

1

0

te
te

0
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Figure 6.5 Numerical/analytical solutions of the continuous-time state equation (6.5.2)/(6.5.3).

it, and plots the result as depicted in Fig. 6.5, which supports this derivation pro
cedure. Additionally, it uses another symbolic computation routine “d s o lv e ( )” 
to get the analytical solution directly.

>>nm651_2
Solution of Differential Equation based on Laplace transform 
Xs = [ 1/s + 1/s/(s + 1)*(-1 + 1/s) ]

[ 1/(s + 1)*(-1 + 1/s) ]
xt = [ -1 + t + 2*exp(-t) ]

[ -2*exp(-t) + 1 ]

Analytical solution
xt1 = -1 + t + 2*exp(-t) 
xt2 = -2*exp(-t) + 1

%nm651_2: A nalytica l solution for s ta te  eq. x '( t )  = Ax(t) + B u (t)(6 .5 .3 ) 
c le a r
syms s t  %declare s , t  as symbolic variab les 
A = [0 1;0 -1 ]; B = [0 1 ] ';  %Eq.(6.5.3) 
x0 = [1 - 1 ] ' ;  % in it ia l value
d isp ('So lu tion  of D ifferen tia l Eq based on Laplace transform ') 
d isp('Lap lace transformed solution X (s)')
Xs = (s*eye(size(A )) - A)~-1*(x0 + B/s) %Eq.(6.5.5)
d isp ('Inverse Laplace transformed solution x ( t ) ' )
xt = ilap lace(X s) %inverse Laplace transform %Eq.(6.5.12)
t0 = 0; t f  = 2; N = 45; % in it ia l/ f in a l time
t = t0 + [0 :N ]'* (tf  - t0)/N; %time vector
x tt = e v a l(x t :) ;  %evaluate the inverse Laplace transform
p lo t ( t ,x t t )
d isp ('A n a ly tic a l so lu tio n ')
xt = dsolve('Dx1 = x2, Dx2 = -x2 + 1 ', 'x1(0) = 1, x2(0) = -1 ') ;  
xt1 = x t.x1 , xt2 = xt.x2 %Eq.(6.5.10)



6 .5 .2  D iscre tizatio n  of LTI S ta te  E quation

In this section, we consider a discretization method of converting a continuous
time LTI (linear time-invariant) state equation

x'(t) =  Ax(t) +  Bu(t) with the initial state x(0) and the input u(t) (6.5.13) 

into an equivalent discrete-time LTI state equation with the sampling period T 

x[n + 1] = Ad x[n] + Bdu[n] (6.5.14)

with the initial state x[0] and the input u[n] = u(nT)  for nT < t < (n + 1)T

which can be solved easily by an iterative scheme mobilizing just simple multi
plications and additions.

For this purpose, we rewrite the solution (6.5.8) of the continuous-time LTI 
state equation with the initial time t0 as

VECTOR DIFFERENTIAL EQUATIONS 2 8 1

x(t) =  ф (  — t0)x(t0) + f  ф (  — x)Bu(x)dx  (6.5.15)
Л)

Under the assumption that the input is constant as the initial value within each 
sampling interval— that is, u[n] = u(nT) for nT < t < (n + 1)T — we substitute 
t0 = nT  and t =  (n + 1)T into this equation to write the discrete-time LTI state 
equation as

f  (n+1)T
x((n + 1)T) = Ф(T)x(nT) + ф((n + 1)T — T)Bu(nT) dx

nT 
r (n + 1)T

x[n + 1] = Ф ^ ^ п] +  I ф(nT + T — x)dxBu[n]
nT

x[n +  1] = Ad x[n] + Bdu[n] (6.5.16)

where the discretized system matrices are

Ad = Ф(Г) = eAT (6.5.17a)
p (n+1)T p 0 p T

Bd = Ф П  + T — x ) d x B a=nT= T—T — Ф(^) d a B  = Ф(т) dxB
nT T 0

(6.5.17b)
Here, let us consider another way of computing these system matrices, which 

is to the taste of digital computers. It comes from making use of the definition 
of a matrix exponential function in Eq. (6.5.6) to rewrite Eq. (6.5.17) as

^  AmTm ^  AmTm
A d = eAT=  У " ---------= I + A T j " --------------= I +  А ГФ  (6.5.18a)

^  m l  ^ ( m  + 1) !m=0 m=0
pT pT °° Am -̂ m °° AmTm+1

Bd = ф(х) dxB =  V -------- dxB =  V ------------- В =  ФТВ (6.5.18b)
j 0  J0 n m! ^  (m + 1)!m=0 m=0
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where

* - E
m— 0

Amjm

(m +  1)!

AT
!  + ~n

for N > 1

(6.5.19)
Now, we apply these discretization formulas for the continuous-time state 

equation (6.5.3)

*1 (t)

with

_*2 (t)

*1(0)
*2(0)

0 1 
0 - 1

*1(t)
*2(t) +

1
1

Us(t)

and us(t) — 1 V t > 0 

to get the discretized system matrices and the discretized state equation as 

ф({) — L - 1 {[sI -  A ]-1} — L -11
1

11 1

6 5.. ) '  1 1 -  е-  "
0 s + 1 — 1

T
е01

(6.5.17a) (6.5.20a) 1 1 -  е
n , , - t

-T
(6.5.20a)

(6.5.20b)

(6.5.17b)

(6.5.20a)

T0

/ T0

Ф(т) dTB

1 1 1 е 1 0 "T -  1 + е- Т ~

1 0 е 1

1

Td 1 —
1 -  е-Т

+  1] (65=16) A dx[n] + Bdu[n]

* 1[n +  1]
* 2[n + 1]

1 1 -  е
0

-T
-T

* 1[n]
*2[n ] +

T -  1 + е 
1 -  е-Т

-T

(6 .5 .20c)

u[n] (6.5.21)

We don’t need any special algorithm other than an iterative scheme to solve 
this discrete-time state equation. The formulas (6.5.18a,b) for computing the 
discretized system matrices are cast into the routine “c 2 d _ s te q ()”. The pro
gram “nm652.m” discretizes the continuous-time state equation (6.5.3) by using 
the routine and alternatively, the MATLAB built-in routine “c 2 d ( )”. It solves 
the discretized state equation and plots the results as in Fig. 6.6. As long as 
the assumption that u[n] — u(nT) for nT < t < (n + 1)T is valid, the solution 
(* [n ]) of the discretized state equation is expected to match that (*(t)) of
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Figure 6.6 The solution of the discretized state equation (6.5.21).

the continuous-time state equation at every sampling instant t =  nT and also 
becomes closer to x(t) V t as the sampling interval T gets shorter (see Fig. 6.6).

%nm652.m
% discretize a state eqn x'(t) = Ax(t) + Bu(t) to x n + 1] = Ad*x[n] + Bd*u[n]
clear, clf
A = [0 1;0 -1]; B = [0;1]; %Eq.(6.5.3)
xO = [1 -1]; to = 0; tf = 2; %initial value and time span
T = 0.2; %sampling interval(period)
eT = exp(-T);
AD = [1 1 - eT; 0 eT]%discretized system matrices obtained analytically
BD = [T + eT - 1; 1 - eT] %Eq.(6.5.21)
[Ad,Bd] = c2d_steq(A,B,T,100) %continuous-to-discrete conversion
[Ad1,Bd1] = c2d(A,B,T) %by the built-in routine
t(1) = 0; xd(1,:) = x0; %initial time and initial value
for k = 1:(tf - t0)/T %solve the discretized state equation

t(k + 1) = k*T; xd(k + 1,:) = xd(k,:)*Ad' + Bd';
end
stairs([0; t'],[x0; xd]), hold on %stairstep graph
N = 100; t = t0 + [0:N]'*(tf - t0)/N; %time (column vector
x(:,1) = t-1 + 2*exp(-t); %analytical solution
x(:,2) = 1-2*exp(-t); %Eq.(6.5-12)
plot(t,x)

function [Ad,Bd] = c2d_steq(A,B,T,N)
if nargin < 4, N = 100; end
I = eye(size(A,2)); PSI = I;
for m = N:-1:1, PSI = I + A*PSI*T/(m + 1); end %Eq. 6.5.19)
Ad = I + A*PSI*T; Bd = PSI*T*B; %Eq.(6.5.18)

6 .5 .3  H igh-O rder D ifferential E quation to  S ta te  E quation

Suppose we are given an Nth-order scalar differential equation together with the 
initial values of the variable and its derivatives of up to order N — 1, which is
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called an IVP (Initial Value Problem):

[IVP]N : * (N)(t) — f ( t , * ( t ) , *  \ t ) , * (2)( t ) , . . . , * (N-1)(t)) 

with the initial values *(t0) — * 10, * '(t0) — *20, . . . ,  * (N-1 )(t0) — * N0

Defining the state vector and the initial state as

(6.5.22)

* 1 —* * 10
* 2 — *' * 20

x (t) — *3 — * (2) , x(t0) — * 30

* N — *(N-1) * N0

(6 .5 .23)

we can rewrite Eq. (6.5.22) in the form of a first-order vector differential 
equation— that is, a state equation— as

* 1  (t) *2(t) ~

*2 (t) *3(t)
*3 (t) — *4 (t)

_*N (t) _ _ f ( t , * ( t ) , *  ' ( t ) , * (2)( t ) , . . . , * (N-1)(t))_

x'(t) — f(t, x(t)) with x(t0) — x0 (6.5.24)

For example, we can convert a third-order scalar differential equation 

* (3)(t) +  a2* (1)(t) + a 1 *'(t) + a0*(t) — u(t) 

into a state equation of the form

1 0 * 1(t) 0
u(t) (6.5.25a)

(6.5.25b)

*1 (t) 0 1 0 *1(t) 0
*2 (t) — 0 0 1 * 2(t) + 0 u(t)
*3 (t) _ -  a0 -  a 1 -  a 2 * 3(t) 1

c(t) — [1  0 0 ]
*1 (t) 
*2(t) 
*3(t)

6 .5 .4  S tiff E quation

Suppose that we are given a vector differential equation involving more than one 
dependent variable with respect to the independent variable t . If the magnitudes 
of the derivatives of the dependent variables with respect to t (corresponding
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to their changing rates) are significantly different, such a differential equation is 
said to be stiff because it is difficult to be solved numerically. For such a stiff 
differential equation, we should be very careful in choosing the step-size in order 
to avoid numerical instability problem and get a reasonably accurate solution 
within a reasonable computation time. W hy? Because we should use a small 
step-size to grasp rapidly changing variables, and it requires a lot of computation 
to cover slowly changing variables for such a long time as it lasts.

Actually, there is no clear distinction between stiff and non-stiff differential 
equations, since stiffness of a differential equation is a matter of degree. Then, is 
there any w ay to estimate the degree of stiffness for a given differential equation? 
The answer is yes, if  the differential equation can be arranged into an LTI state 
equation like Eq. (6.5.4), the solution of which consists of components having 
the time constants (modes) equal to the eigenvalues of the system matrix A. For 
example, the system matrix of Eq. (6.5.3) has the eigenvalues

\sI — A| = 0 , det s —1 
0 s +  1 = s(s +  1) = 0, s = 0 and s = —1

which can be observed as the time constants of two terms 1 = e0t and e—t in 
the solution (6.5.12). In this context, a measure of stiffness is the ratio of the 
maximum over the minimum among the absolute values of (negative) real parts 
of the eigenvalues of the system matrix A:

n(A) =
Max{|Re(A.;)|} 

Min{|Re(A,-)| ^ 0 }
(6 .5 .26)

This can be thought of as the degree of unbalance between the fast mode and 
the slow mode.

Now, what we must know is how to handle stiff differential equations. For
tunately, MATLAB has several built-in routines like “o d e1 5 s ()”, “o d e2 3 s ()”, 
“o d e 2 3 t()”, and “o d e2 3 tb ()”, which are fabricated to deal with stiff differen
tial equations efficiently. One may use the help  command to see their detailed 
usages. Let’ s apply them for a Van der Pol equation

d2y(t)  2 dy(t)
n ; - M i - y 2( 0 ) 4 z + y ( 0 = 0dt2 dt 

which can be written in the form of a state equation as

dy(t)
with y(0) = 2, = 0

dt
(6.5.27a)

x1 (t) X2(t) with x 1(0 ) 2
_x2 (t) _ _ i ( 1  — x 22 (t))x2 (t) — x 1 (t) _ _x2(0) _ 0 (6 .5 .27b)

For this job, we defined this equation in an M-file named “df_van.m” and made 
the MATLAB program “nm654.m”, where we declared the parameter i  (mu) as
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X 10297

(a) ode_Ham() with N  = 8700

0 50 100
(b) ode_Ham() with N  = 9000

100

0

-100

-200

-300

m = 200

Since the range of x1 (t) is
much smaller than that of
x2(t), x1(t) is invisibly
dwarfed by x2(t).

0
(c) Result obtained by ode45( )

Figure 6.7 Numerical solutions of Van der Pol equation obtained by various routines.

50 100 150 
(d) Results obtained by ode23( ), ode23s( ), 

ode23t( ), ode23tb( ) and ode15s( )

200

a global variable so that it could be passed on to any related routines/functions 
as w ell as “df_van.m”. In the beginning of the program, we set the global 
parameter i  to 25 and applied “ode_Ham()” with the number of segments 
N — 8700 and 9000. The results are depicted in Figs. 6.7a and 6.7b, which 
show how crucial the choice of step-size is for a stiff equation. Next, we 
applied “o d e4 5 ()” to obtain the solution depicted in Fig. 6.7c, which is almost 
the same as Fig. 6.7b, but with the computation time less than one fourth 
of that taken by “ode_Ham()”. This reveals the merit of the MATLAB built- 
in routines that may save the computation time as well as spare our trouble 
to choose the step-size, because the step-size is adaptively determined inside 
the routines. Then, setting i  — 200, we applied the MATLAB built-in routines 
“o d e45 ()”/“o d e2 3 ()”/“o d e1 5 s ()”/“o d e2 3 s ()”/“o d e 2 3 t()”/“o d e2 3 tb ()” to get 
the results that are little different as depicted in Fig. 6.7d, each taking the 
computation time as

time = 24.9530 14.9690 0.1880 0.2650 0.2500 0.2820

The computation time-efficiency of “o d e1 5 s ()”/“o d e2 3 s ()”/“o d e 2 3 t()”/ 
“o d e2 3 tb ()” (designed deliberately for handling stiff differential equations) over 
“o d e45 ()”/“o d e2 3 ()” becomes prominent as the value of parameter i  (mu) gets 
large, reflecting high stiffness.
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%nm654.m
% to solve a s t i f f  d if fe re n t ia l eqn ca lled  Van der Pol equation 
global mu
mu=25, t0=0; t f  = 100; tspan = [t0 t f ] ;  xo = [2 0];
[tH1,xH1] = ode_Ham('df_van',tspan,x0,8700); 
subplot(221), plot(tH1,xH1)
tic,[tH 2,xH2] = ode_Ham('df_van',tspan,x0,9000); time_Ham = toc 
t ic ,[t4 5 ,x 4 5 ] = ode45('df_van ',tspan,x0); time_o45 = toc 
subplot(222), plot(tH2,xH2), subplot(223), p lot(t45,x45) 
mu = 200; t f  = 200; tspan = [t0 t f ] ;
t ic ,[t4 5 ,x 4 5 ] = ode45('df_van ',tspan,x0); time(1) = toc; 
t ic ,[t2 3 ,x 2 3 ] = ode23('df_van ',tspan,x0); time(2) = toc; 
t ic ,[t1 5 s ,x 1 5 s ] = ode15s('df_van ',tspan ,x0); time(3) = toc; 
t ic ,[t2 3 s ,x 2 3 s ] = ode23s('df_van ',tspan ,x0); time(4) = toc; 
t ic ,[ t2 3 t ,x 2 3 t ]  = ode23t('df_van ',tspan ,x0); time(5) = toc; 
t ic ,[t2 3 tb ,x 2 3 tb ] = ode23tb('df_van ',tspan,x0); time(6) = toc; 
p lo t(t45,x45, t23,x23, t15s,x15s, t23s,x23s, t23 t,x23 t, t23tb,x23tb) 
d isp (' ode23 ode15s ode23s ode23t ode23tb') 
time

function dx = df_van(t,x)
%Van der Pol d if fe re n t ia l equation (6.5.27)
global mu
dx= zeros(size(x));
dx(1) = x (2 ); dx(2) = mu*(1-x(1).~2).*x(2) - x (1 );

6 .6  BOUNDARY VALUE PROBLEM (BVP)

A boundary value problem (BVP) is an Nth-order differential equation with some 
of the values of dependent variable x(t)  and its derivative specified at the initial 
time t0 and others specified at the final time t f .

[BVP]N : x (N)(t) =  f ( t , x ( t ) , x ' ( t ) , x (2)( t ) , . . . , x (N—1)(t))

with the boundary values x(t1) =  x 10, x '(t2) =  x21, . . . ,  x (N—1)(tN) = x N N—1
(6.6.1)

In some cases, some relations between the in itial values and the final values may 
be given as a mixed-boundary condition instead of the initial/final values spec
ified. This section covers the shooting method and the finite difference method 
that can be used to solve a second-order BVP as

[BVP]2 : x "(t) =  f ( t , x ( t ) ,  x'(t)) with x (t0) = x0, x( tf)  =  x f  (6.6.2)

6.6.1 S h o o tin g  M ethod

The idea of this method is to assume the value of x '(t0), then solve the differential 
equation (IVP) with the initial condition [x (t0) x '(t0)] and keep adjusting the value
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of * '(t0) and solving the IVP repetitively until the final value *( tf )  of the solution 
matches the given boundary value *f  with enough accuracy. It is sim ilar to 
adjusting the angle of firing a cannon so that the shell w ill eventually hit the target 
and that’ s why this method is named the shooting method. This can be viewed 
as a nonlinear equation problem, if we regard * '(t0) as an independent variable 
and the difference between the resulting final value *(tf )  and the desired one * f  
as a (mismatching) function of *'(t0). So the solution scheme can be systemized 
by using the secant method (Section 4.5) and is cast into the MATLAB routine 
“bvp2_shoot()”.

(cf) We might have to adjust the shooting position with the angle fixed, instead of adjust
ing the shooting angle with the position fixed or deal with the mixed-boundary 
conditions. See Problems 6 .6 , 6.7, and 6 .8 .

For example, let’ s consider a BVP consisting of the second-order differential 
equation

Л . )  = 2 Л . )  + 4Г x (, w m  w ifll.v(0) = i , . v ( l ,  = i  ,6 .6 3 )

function [t ,x ] = bvp2_shoot(f,t0,tf,x0,xf,N,tol,kmax)
%To solve BVP2: [x1,x2]' = f(t,x1 ,x2) with x1(t0) = x0, x1(tf) = xf 
i f  nargin < 8, kmax = 10; end 
i f  nargin < 7, to l = 1e-8; end 
i f  nargin < 6, N = 100; end
dx0(1) = (xf - x0)/ (tf-t0); % the in i t ia l  guess of x '(t0 )
[t ,x ] = ode_RK4(f,[t0 tf ] ,[x 0  dx0(1)],N); % start up with RK4 
p lo t ( t ,x ( :,1 ) ) ,  hold on
e(1) = x(end,1) - xf; % x(tf) - xf: the 1st mismatching (deviation) 
dx0(2) = dx0(1) - 0 .1*sign(e(1)); 
for k = 2: kmax-1

[t ,x ] = ode_RK4(f,[t0 tf ] ,[x 0  dx0(k)],N); 
p lo t(t ,x ( :,1 ))
%difference between the resulting f in a l value and the target one 
e(k) = x(end,1) - xf; % x (tf)- xf
ddx = dx0(k) - dx0(k - 1); % difference between successive derivatives 
i f  abs(e(k))< to l | abs(ddx)< to l, break; end
deddx = (e(k) - e(k - 1))/ddx; % the gradient of mismatching error 
dx0(k + 1) = dx0(k) - e(k)/deddx; %move by secant method

end

%do_shoot to solve BVP2 by the shooting method
t0 = 0; tf  = 1; x0 = 1/4; xf = 1/3; % initial/final times and positions 
N = 100; to l = 1e-8; kmax = 10;
[t ,x ] = bvp2_shoot('df661',t0,tf,x0,xf,N,tol,kmax); 
xo = 1./(4 - t .* t ) ;  err = norm(x(:,1) - xo)/(N + 1) 
p lo t ( t ,x ( : ,1 ) , 'b ',  t ,x o , 'r ')  %compare with true solution (6.6.4)

function dx = df661(t,x) %Eq.(6.6.5)
dx(1) = x(2); dx(2) = (2*x(1) + 4*t*x(2))*x(1);
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The solution x(t) and its derivative x'(t) are known as

x(t) =
4 -  t2

and x'(t) =
2t

(4 -  t2)2
= 2t x (t) (6.6.4)

Note that this second-order differential equation can be written in the form of 
state equation as

"x1 (t)~ x2(t) with x1(0) x0 = 1/4

x  (t) . 2x2(t) + 4t x 1(t)x2(t) _x2(1)_ _xf  =  1/3
(6.6.5)

In order to apply the shooting method, we set the initial guess of x2(0) =
x '(0) to

dx0[1] =  x2(0) =
X f  -  Xo 

tf  -  t0
(6 .6 .6)

and solve the state equation with the initial condition [xx(0) x2(0) = dx0[1]]. 
Then, depending on the sign of the difference e (1 ) between the final value x 1(1) 
of the solution and the target final value x f , we make the next guess dx0[2] 
larger/smaller than the initial guess dx0[1] and solve the state equation again 
with the initial condition [x1(0) dx0[2]]. We can start up the secant method 
with the two initial values dx0[1] and d x 0[2] and repeat the iteration until the 
difference (error) e (k ) becomes sufficiently small. For this job, we compose 
the MATLAB program “do_shoot.m”, which uses the routine “bvp2_shoot()” 
to get the numerical solution and compares it with the true analytical solution. 
Figure 6.8 shows that the numerical solution gets closer to the true analytical 
solution after each round of adjustment.

(Q) W hy don’t we use the Newton method (Section 4.4)?
(A) Because, in order to use the Newton method in the shooting method, we need IVP 

solutions instead of function evaluations to find the numerical Jacobian at every 
iteration, which w ill require much longer computation time.

0.45

0.4

0.35

0.3

0.25'

0.2

- у /  -

- x[n] for k = 1--'M rue analytical Z 
solution

' X[n] for k = 3
1/4

i

x[n] for k =

i i

2

i

1/3

0 0.2 0.4 0.6 0.8 t 1

Figure 6.8 The solution of a BVP obtained by using the shooting method.

1
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6 .6 .2  Finite D ifference M ethod

The idea of this method is to divide the whole interval [t0, tf  ] into N segments 
of width h = (tf — t0)/N and approximate the first & second derivatives in the 
differential equations for each grid point by the central difference formulas. This 
leads to a tridiagonal system of equations with respect to (N — 1) variables {xi = 
x (t0 + ih ) , i  =  1 , . . . ,  N — 1}. However, in order for this system of equations to 
be solved easily, it should be linear, implying that its coefficients may not contain 
any term of x .

For example, let’ s consider a BVP consisting of the second-order linear dif
ferential equation

x"(t) +  a 1(t)x'(t) +  a0(t)x(t) =  u(t) with x (t0) = x0,x ( t f )  =  Xf (6.6.7)

According to the finite difference method, we divide the solution interval 
[t0, t f  ] into N segments and convert the differential equation for each grid point 
ti =  t0 + ih into a difference equation as

xi+1 — 2xi + xi—1 xi+1 — xi—1
-----------Го------------- b a i i ------—--------- \-a0iXi = щh2 2h

(2 — han)xi—1 +  (—4 + 2h2aoi)xi +  (2 + han)xi+1 =  2h2Ui (6.6.8)

Then, taking account of the boundary condition that x0 = x(t0) and xN = x( t f  ), 
we collect a ll of the (N — 1) equations to construct a tridiagonal system of 
equations as

—4 + 2h2a01 2 + ha11 0 0 0 0
2 — ha12 —4 + 2h2a02 2 + ha\2 0 0 0

0 2 1 h 1 —4 + 2h2 a03 0 0 0
• • • • • •

0 0 0 —4 + 2h2 a0,N—3 2 + ha\,N—3 0
0 0 0 2 — ha\,N-i —4 + 2h2a0,N—2 2 + ha\,N—2
0 0 0 0 2 — ha\,N—1 —4 + 2h2a0,N—1

x1 2h2?1 — (2 — han)x0
x2 2h2?2
x2 2 2 u

• = •
xN —3 2h2 ?n—з
xN—2 2h2 ?n—2— 

1— Nx 2h2 un—1 — (2 — ha\,N—i)xN

This can be solved efficiently by using the MATLAB routine “t r i d ( ) ”, which 
is dedicated to a tridiagonal system of linear equations.
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The whole procedure of the finite difference method for solving a second-order 
linear differential equation with boundary conditions is cast into the MATLAB 
routine “b v p 2 _ fd f()”. This routine is designed to accept the two coefficients 
a 1 and a0 and the right-hand-side input u of Eq. (6.6.7) as its first three input 
arguments, where any of those three input arguments can be given as the function 
name in case the corresponding term is not a numeric value, but a function 
of time t . We make the program “do_fdf” to use this routine for solving the 
second-order BVP

2 2
x"(t) +  -x ' ( t )  -  - x ( t )  = 0 with x ( l )  =  5 ,x(2)  =  3 (6.6.10)t t2

function [ t ,x ]  = bvp2_fdf(a1 ,a0 ,u ,t0 ,tf,x0 ,xf,N )
% solve BVP2: x" + a1*x' + a0*x = u with x(t0) = xO, x ( tf )  = xf
% by the f in it e  d ifference method
h = (t f  - t0)/N; h2 = 2*h*h;
t  = t0+[0:N]'*h;
i f  - isn um eric (a l), a1 = a1 (t(2 :N )); %if a1 = name of a function of t
e ls e if  length(a1) == 1, a1 = a1*ones(N - 1 ,1 );

end
i f  ~isnumeric(a0), a0 = a0 (t(2 :N )); %if a0 = name of a function of t
e ls e if  length(a0) ==1, a0 = a0*ones(N - 1 ,1 );

end
i f  -isnum eric(u), u = u (t(2 :N )); %if u = name of a function of t
e ls e if  length(u) ==1, u = u*ones(N-1,1);
e lse  u = u ( :) ;

end
A = zeros(N - 1,N - 1); b = h2*u;
ha = h*a1(1); A (1,1:2) = [-4 + h2*a0(1) 2 + ha];
b(1) = b(1)+(ha - 2)*x0;
for m = 2:N - 2 %Eq.(6.6.9)

ha = h*a1(m); A(m,m - 1:m + 1) = [2-ha -4 + h2*a0(m) 2 + h a ];
end
ha = h*a1(N - 1); A(N - 1,N - 2:N - 1) = [2 - ha -4 + h2*aO(N - 1 )];
b(N - 1) = b(N-1)-(ha+2)*xf;
x = [ xO t rid (A, b) 1 xf ] 1 ;

function x = trid (A ,b )
% solve tr id iago n al system of equations
N = size(A ,2 );
for m = 2:N % Upper T riangularization

tmp = A(m,m - 1)/A(m - 1,m - 1);
A(m,m) = A(m,m) -A(m - 1,m)*tmp; A(m,m - 1) = 0;
b(m,:) = b(m,:) -b(m - 1,:)*tm p;

end
x(N ,:) = b(N,:)/A(N,N);
for m = N - 1: -1: 1 % Back Substitution

x(m ,:) = (b(m ,:) -A(m,m + 1)*x(m + 1))/A(m,m);
end
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%do_fdf to solve BVP2 by the f in it e  d ifference method 
c le a r , c lf
t0 = 1; x0 = 5; t f  = 2; xf = 3; N = 100;
a1 = i n l i n e ( '2 ./ t ' , ' t ' ) ;  a0 = i n l i n e ( ' - 2 ./ t . / t ' , ' t ' ) ;  u = 0; %Eq.(6.6.10) 
[ t t ,x ]  = b vp2_fd f(a1 ,a0 ,u ,t0 ,tf,x0 ,x f,N );
%use the MATLAB b u ilt- in  command 'bvp4c()'
df = in l in e ( '[x (2 ) ;  2 ./ t .* (x (1 ) ./ t - x ( 2 ) ) ] ' , ' t ' , ' x ' ) ;
fbc = in lin e ( '[x 0 (1 )  - 5; xf(1) - 3 ] ' , ' x 0 ' , ' x f ' ) ;
s o lin it  = b v p in it( lin sp ac e (t0 ,tf ,5 ) ,[1  10]); % in itia l solution in te rv a l 
sol = b vp 4c(d f,fb c ,so lin it ,b vp se t('R e lT o l',1 e -4 )); 
x_bvp = d e v a l(s o l,t t ) ;  xbv = x_ b vp (1 ,:) ';
%use the symbolic computation command 'd so lv e ()'
xo = dsolve('D2x + 2*(Dx - x/ t)/ t= 0 ','x (1 ) = 5, x(2) = 3 ')
xot = s u b s (x o , 't ' , t t ) ;  %xot=4./tt./tt +tt; %true an a ly t ic a l solution
err_fd = norm(x - xot)/(N+1) %error between num erical/analytical solution
err_bvp = norm(xbv - xot)/(N + 1)
p lo t ( t t , x , 'b ' , t t , x b v , ' r ' , t t , x o t , 'k ' )  %compare with an a ly t ic a l solution

We run it to get the result depicted in Fig. 6.9 and, additionally, use the 
symbolic computation command “d s o lv e ( )” and “su b s ( )” to get the analytical 
solution

4
x(t)  =  t +  — (6.6.11)

and substitute the time vector into the analytical solution to obtain its numeric 
values for check.

Note the following things about the shooting method and the finite differ
ence method:

• W hile the shooting method is applicable to linear/nonlinear BVPs, the finite 
difference method is suitable for linear BVPs. However, we can also apply 
the finite difference method in an iterative manner to solve nonlinear BVPs 
(see Problem 6.10).

Figure 6.9 A solution of a BVP obtained by using the finite difference method.
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• Both methods can be modified to solve BVPs with mixed-boundary condi
tions (see Problems 6.7 and 6.8).

• In MATLAB 6.x, the “bvp 4c()” command is available for solv
ing linear/nonlinear BVPs with mixed-boundary conditions (see Prob
lems 6 .7 -6 .10 ).

• The symbolic computation command “d s o lv e ( )” introduced in Section
6.5.1 can be used to solve a BVP so long as the differential equation is lin
ear, that is, its coefficients may depend on time t , but not on the (unknown) 
dependent variable x(t).

• The usages of “b vp 4c()” and “d s o lv e ( )” are illustrated in the program 
“do_fdf”, where another symbolic computation command “su b s ( )” is used 
to evaluate a symbolic expression at certain value(s) of the variable.

PROBLEMS

6.0 MATLAB Commands q u iv e r ( )  and q u iv e r3 ( )  and Differential Equation
(a) Usage of q u iv e r ( )

Type ‘help  q u iv e r ’ into the MATLAB command window, and then you 
w ill see the following program showing you how to use the q u iv e r ( )  
command for plotting gradient vectors. You can also get Fig. P6.0.1 by 
running the block of statements in the box below. Try it and note that 
the size of the gradient vector at each point is proportional to the slope at 
the point.

-2  -1 .5  -1 -0 .5  0 0.5 1 1.5 2

Figure P6.0.1 Graphs obtained by using g r a d i e n t ( ) ,  c o n t o u r ( ) ,  q u i v e r ( ) .



2 9 4  ORDINARY DIFFERENTIAL EQUATIONS

(b) Usage of q u iv e r3 ( )
You can obtain Fig. P6.0.2 by running the block of statements that you 
see after typing ‘help  q u iv e r3 ’ into the MATLAB command w in
dow. Note that the “su rfn o rm ()” command generates normal vectors 
at points specified by (x, y, z) on the surface drawn by “s u r f ( ) ” and 
the “q u iv e r3 ( )” command plots the normal vectors.

%do_quiver3 
clear, clf
[x,y] = meshgrid(-2:.5:2,-1:.25:1); 
z = x.*exp(-x.^2 - y.^2); 
surf(x,y,z), hold on 
[u,v,w] = surfnorm(x,y,z); 
quiver3(x,y,z,u,v,w);

(c) Gradient Vectors and One-Variable Differential Equation
We might get the meaning of the solution of a differential equation 
by using the “q u iv e r ( ) ” command, which is used in the following 
program “do_ode.m” for drawing the time derivatives at grid points as 
defined by the differential equation

dy(t)
—-----= — y(t) +  1 with the initial condition v(0) = О (P6.0.1)
dt

The slope/direction field together with the numerical solution in 
Fig. P6.0.3a is obtained by running the program and it can be regarded 
as a set of possible solution curve segments. Starting from the initial 
point and moving along the slope vectors, you can get the solution 
curve. Modify the program and run it to plot the slope/direction
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0.6
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0.8 еГ? —Ъ __ 9̂
S ’ ^  ■*

/’/</' >>> s  s  s  s  s  S'г> / л >  s s s s s’ s / . / />> / / /  / /  / /  / 

i>-/?//7V7?,77?
0.5 1 1.5 2

(a) The graph of dy vs. dt for 
y'(t) = -Xt) + 1 
and its solution for y(0) = 0

(b) The graph of dx2 vs. dx1 for IV(t) = *2(t)
W (t,'(t) = -x2(t) + 1 

and its solution for the initial condition
[x1 (0) x2(0)] = [1 -  1] or [1.5 -  0.5]

Figure P6.0.3 Possible solutions of differential equation and slope/direction field.

field (x2(t) versus x i( t ) )  and the numerical solution for the following 
differential equation as depicted in Fig. P6.0.3b.

x1 (t) =  x2(t)
x'2 (t) =  - x 2 (t) +  1 with x1(0) 1 ' 1.5 '

_x2(0)_ —1 or —0.5 (P6 .0 .2)

%do_ode.m
% This uses quiver() to plot possible solution curve segments 
% ca lled  the slope/directional f ie ld  for y ' ( t )  + y = 1 
c le a r , c lf
t0 = 0; t f  = 2; tspan = [t0  t f ] ;  x0 = 0;
[ t ,y ]  = m eshgrid (t0 :(tf - t0 )/ 1 0 :t f ,0 :.1 :1 ) ;
pt = o n e s (s iz e (t )) ; py = (1 - y ) .*p t ; %dy = (1 - y)dt
q u iv e r(t ,y ,p t ,p y ) %y(displacement) vs. t(tim e)
a x is ( [ t0  t f  + .2 0 1 .05 ]), hold on
dy= in lin e('-y  + 1 ' , ' t ' , ' y ' ) ;
[tR,yR] = ode_RK4(dy,tspan,x0,40);
for k = 1 :length (tR ), p lo t (tR (k ) ,y R (k ) , 'rx ') , pause(0.001); end

6.1 A System of Linear Time-Invariant Differential Equations: An LTI State 
Equation

Consider the following state equation:

x1 (t) 
x2 (t)

0 1
—2 —3

x1(t)
x2(t)

+ us(t) with x1 (0)
x2 (0)

(P6.1.1)
(a) Check the procedure and the result of obtaining the analytical solution 

by using the Laplace transform technique.
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X(s)  =  [ s i  -  A ]-1 {x(0) + BU(s)}

1 s + 3 1 I 1
+

1
s(s + 3) + 2 - 2  s 1 0 0

1 s +  3 + 1/s 
- 2  + 1(s + 1)(s + 2)

(s2 + 3s + 1)/s(s +  1)(s + 2)'

X 1 (s) 

X 2 (s)

1/2
s
- 1

+

— 1/(s + 1)(s + 2) 

1 1/2

s
+

s + 1 
1

s + 2 ’
1 t 1 2t Х1(1) =  -  +  е - ‘ ~ - e - 2t (P6.1.2a)

+ 1 s + 2
X2 (t) =  - e  t + e~ (P6.1.2b)

(b) Find the numerical solution of the above state equation by using the 
routine “ode_RK4()” (with the number of segments N =  50) and the 
MATLAB built-in routine “o d e4 5 ()”. Compare their execution time 
(by using t i c  and to c) and closeness to the analytical solution.

6.2 A Second-Order Linear Time-Invariant Differential Equation 

Consider the following second-order differential equation

x"(t) +  3x'(t) +  2x(t) =  1 with x(0) = 1 , x '(0) =  0 (P6.2.1)

(a) Check the procedure and the result of obtaining the analytical solution 
by using the Laplace transform technique.

2 1
s X(s) -  x (0) -  sx(0) + 3 (sX(s) -  x(0)) +  2X(s) = -

s

X ( S) = s 2 + 3 s  + 1 , x(t) = I + -  I e - 2‘ (P6.2.2)
s(s +  1)(J  +  2) 2 2

(b) Define the differential equation (P6.2.1) in an M-file so that it can be 
passed to the MATLAB routines like “ode_RK4()” or “o d e4 5 ()” as 
their input argument (see Section 6.5.1).

6.3 Ordinary Differential Equation and State Equation
(a) Van der Pol Equation

Consider a nonlinear differential equation

d 2 d
-  м(1 -  У (t)) —  y(t)  +  y(t)  =  0 with jx =  2  (P6.3.1)d t2 dt

Compose a program to solve this equation with the initial condition 
[y (0 ) y '(0 )] = [0.5 0] and [ - 1  2] for the time interval [0, 20] and plot 
y'(t) versus y(t)  as well as y(t)  and y'(t) along the t -axis.
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(b) Lorenz Equation: Turbulent Flow and Chaos 
Consider a nonlinear state equation.

x1 (t) =  a ( x 2(t) -  x 1(t)) a  =  10
x2(t) =  (1 + к -  x3(t))x1(t) -  x2(t) with к =  20 ~ 100 (P6.3.2)
x3(t) =  x1(t)x2(t) -  yx3(t) y =  2

Compose a program to solve this equation with к =  20 and 100 for the 
time interval [0,10] and plot x3(t) versus x 1(t). Let the initial condition 
be [x1(0) x2(0) x3(0)] = [ - 8  - 1 6  80].

(c) Chemical Reactor
Consider a nonlinear state equation describing the concentrations of 
two reactants and one product in the chemical process.

x1 (t) =  a(u1 -  x 1(t)) -  bx1 (t)x2(t) a =  5
x2(t) =  a(u2 -  x2(t)) -  bx1 (t)x2(t) with b =  2 (P6.3.3)
x3 (t) =  —ax3(t) +  bx1 (t)x2(t) u1 = 3 , u 2 =  5

Compose a program to solve this equation for the time interval 
[0, 1] and plot x 1(t), x2(t), and x3(t). Let the initial condition be 
[x1(0) x2(0) x3(0)] = [1 2  3].

(d) Cantilever Beam: A Differential Equation w.r.t a Spatial Variable 
Consider a nonlinear state equation describing the vertical deflection of 
a beam due to its own weight

jeS="*(i+!H 4 -§ )+t | <p634>
where JE  = 2000 kg ■ m3/s2, p =  10 kg/m, g =  9.8 m/s2, L =  2 m. 
Write a program to solve this equation for the interval [0, L] and plot 
y(t). Let the initial condition be [y (0 ) y '(0 )] = [0 0]. Note that the 
physical meaning of the independent variable for which we usually use 
the symbol ‘t’ in writing the differential function is not a time, but 
the x-coordinate of the cantilever beam along the horizontal axis in 
this problem.

(e) Phase-Locked Loop (PLL)
Consider a nonlinear state equation describing the behavior of a PLL 
circuit depicted in Fig. P6.3.1.

. au(t) cos(x2(t)) -  x 1 (t) a =  1500
x ,1(t) =  — ------ ^  with T =  0.002 (P6.3.5a)

T u(t) =  sin (a)ot)

x2 (t) =  x1(t) +  0)c

y(t) =  x 1 (t) +  Mc (P6.3.5b)
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Figure P6.3.1 The block diagram of PLL circuit.

where wo =  2100n [rad/s] and rnc =  2000n [rad/s]. Compose a pro
gram to solve this equation for the time interval [0,0.03] and plot y(t) 
and rno. Let the initial condition be [x1(0) x 2(0)] = [0 0]. Is the output 
y(t) tracking the frequency rno of the input u(t)?

(f) DC Motor
Consider a linear differential equation describing the behavior of a DC 
motor system (Fig. P6.3.2)

d 2d(t) dQ(t)
J  — Y -  + В ~7~ = T(t) =  K Ti(t)

dt dt  (P6.3.6)
di(t) d0(t)

L ~ t ~  + Ri(t) +  K b—j —~ = v(t) dt dt

Convert this system of equations into a first-order vector differential 
equation— that is, a state equation with respect to the state vector
[6(t) e'(t) i( t ) ] .

(g) RC Circuit: A Stiff System
Consider a two-mesh RC circuit depicted in Fig. P6.3.3. We can write 
the mesh equation with respect to the two mesh currents i1(t) and 
i2(t) as

angular
d isp lacem ent

e(t)

back e.m.f. vb(t) = Kb w (t) = Kb ff(t) 

torque T(t) = K T i(t)

Figure P6.3.2 A DC motor system.
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R1 = 1 0 0 [Q ] Cf = 1 0 [m F ]

1 f t^ i* i( 0  + ~pr ч( г)  dx + R2(ii(t) -  I2(t)) =  v(t) =  t 
C1 J  -&

1 f  ‘Ri(h(t)  — h(t)) +  —  I i2( r ) d r = 0
C2 J-<x

(P6.3.7a)

In order to convert this system of differential equations into a state 
equation, we differentiate both sides and rearrange them to get

du ( t )  di2(t) 1 dv(t)
(Rx +  R2) —^ — -  R2— ^ — +  — h(t)  =  — — 

dt dt  Ci dt

di-t(t) di2(t) 1 
—R2——— + R2 ——— +  — i2(t) =  0

2 dt  2 dt  c 2

= 1

R1 + R2 - R 2 " i '1 (t)~ '1  -  i1(t)/Ci
- R 2 R2 y 2 (t ) _ _ - i i ( t ) / C 2 _

(P6.3.7b)

(P6.3.7c)

" i[ (t)~ R1 + R2 - R 2 '
-1

'1  -  i1 (t)/C1
J 2  (t) _ - R 2 R2 _ - i i ( t ) / C 2 with Gi =  1/Ri

' - G 1/C1 - G 1/C2 h(t) + G 1
- G 1/C1 - ( G 1 +  G 2)/C2 _ J2( t )  . G 1

Us(t)

(P6.3.7d)
where us (t) denotes the unit step function whose value is 1 (one) V 
t > 0.
(i) After constructing an M-file function “df6p03g.m” which defines 

Eq. (P6.3.7d) with R 1 = 100 [^ ], C 1 = 1 0 [^ F ], R2 = 1[kQ], C2 =  
1 0 [^ F ], use the MATLAB built-in routines “o d e45 ()” and 
“o d e2 3 s ()” to solve the state equation with the zero initial con
dition i 1(0) = i2(0) = 0 and plot the numerical solution i2 (t) for
0 < t < 0.05 s. For possible change of parameters, you may declare 
R1, C1, R2, C2 as global variables both in the function and in the 
main program named, say, “nm6p03g.m”. Do you see any symptom 
of stiffness from the results?
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(ii) If we apply the Laplace transform technique to solve this equation 
with zero initial condition i(0) = 0, we can get

h (s )
I2(s)

(6.5.5)
=  [ s i  — A]—1Bu(s)

' s  + G1/C1 G 1/C2
—1

G 1
G 1/C2 s + (G 1 +  G 2)/C2 _ G 1

h(s)  =
Gi

s2 + (Gi/Ci + (Gi + G 2 )/C2 )s + G 1G 2 /C1C2

1/100
s2 + 2100s + 100000 

1/100
(s + 2051.25) (s + 48 .75 )

1 / 1 1

l2(t) =

200250 \s + 48.75 s + 2051.25

1 /„-48 .75? _  e -2051 .25гч

200250( )
(P6.3.7e)

where Л1 = —2051.25 and k2 =  —48.75 are actually the eigenval
ues of the system matrix A in Eq. (P6.3.7d). Find the measure of 
stiffness defined by Eq. (6.5.26).

(iii) Using the MATLAB symbolic computation command “d s o lv e ( )”, 
find the analytical solution of the differential equation (P6.3.7b) and 
plot i2(t) together with (P6.3.7e) for 0 < t < 0.05 s. Which of the 
two numerical solutions obtained in (i) is better? You may refer to 
the following code:

sym s R1 R2 C1 C2
i = dsolve ('(R1+R2) *Di1 - R2*Di2 + i1/C1 = 1',...

'-R2 *Di1 + R2 *Di2 + i2/C2' ,'i1(0) = 0','i2(0) = 0 ' ) ; % ( P6.3.7b)
R1 = 100; R2 = 1000 ; C1 = 1e-5; e-

112C 5;
t0 = 0; tf = 0.05; t = 0 0 0 0 0 0 0

i2t = eval 0
 

1—
1 
Q_CM•H•H t,i2t,'m' )

6.4 Physical Meaning of a Solution for Differential Equation and Its Animation

Suppose we are going to simulate how a vehicle vibrates when it moves 
with a constant speed on a rugged way, as depicted in Fig. P6.4a. Based on 
Newton’s second law, the situation is modeled by the differential equation 
(P6.4.1).

d2 d 
M —2 y(t) + B - ( y ( t )  -  u(t)) + K(y( t)  -  u(t)) =  0

with y(0 ) = 0, y '(0) = 0

(P6.4.1)
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%do_MBK
clf
t0 = 0 ;  tf = 10; x0 = [0 0];
[t1,x] = ode_Ham('f_MBK',[t0 tf],x0); 
dt = t1(2) - t1(1); 
for n = 1:length(t1) 

u(n) = udu_MBK(t1(n)); 
end
figure(1), clf 
animation = 1; 
if animation 

figure(2), clf 
draw_MBK(5,1,x(1,2),u(1)) 
axis([-2 2 -1 14]), axis('equal') 
pause
for n = 1:length(t1)

clf, draw_MBK(5,1,x(n,2),u(n),'b') 
axis([-2 2 -1 14]), axis('equal') 
pause(dt) 
figure(1)
plot(t1(n),u(n),'r.', t1(n),x(n,2),'b.') 
axis([0 tf -0.2 1.2]), hold on 
figure(2) 

end
draw_MBK(5,1,x(n,2),u(n)) 
axis([-2 2 -1 14]), axis('equal') 

end

function [u,du] = udu_MBK(t)
i = fix(t);
if mod(i,2) == 0 ,  u = t-i; du = 1;
else u = 1  - t + i; du = -1; 

end

function draw_MBK(n,w,y,u,color)
%n: the # of spring windings
%w: the width of each object
%y: displacement of the top of MBK
%u: displacement of the bottom of MBK
if nargin < 5, color = 'k'; end
p1 = [-w u + 4]; p2 = [-w 9 + y];
xm = 0; ym = (p1(2) + p2(2))/2;
xM = xm + w*1.2*[-1 -1 1 1-1];
yM = p2(2) + w*[1 3 3 1 1];
plot(xM,yM,color), hold on %Mass
spring(n,p1,p2,w,color) %Spring
damper(xm + w,p1(2),p2(2),w,color) %Damper
wheel_my(xm,p1(2)- 3*w,w,color) %Wheel

function dx = f_MBK(t,x)
M = 1; B = 0.1; K = 0.1;
[u,du] = udu_MBK(t);
dx = x * [0  1; -B/M - K/M]1+[0 (K*u + B*du)/M];
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function spring(n,p1,p2,w,color)
%draw a spring of n windings, width w from pi to p2 
if nargin < 5, color = 'k'; end 
c = (p2(1) - p1(1))/2; d = (p2(2) - p1(2))/2; 
f = (p2(1) + p1(1))/2; g = (p2(2) + p1(2))/2; 
y = -1:0.01:1; t = (y+1)*pi*(n + 0.5); 
x = -0.5*w*sin(t); y = y+0.15*(1 - cos(t)); 
a = y(1); b=y(length(x)); 
y = 2*(y - a)/(b - a)-1;
yyS = d*y - c*x + g; xxS = x+f; xxS1 = [f f]; 
yyS1 = yyS(length(yyS))+[0 w]; yyS2 = yyS(1)-[0 w]; 
plot(xxS,yyS,color, xxS1,yyS1,color, xxS1,yyS2,color)

function damper(xm,y1,y2,w,color)
%draws a damper in (xm-0.5 xm + 0.5 y1 y2) 
if nargin < 5, color = 'k'; end 
ym = (y1 + y2)/2;
xD1 = xm + w*[0.3*[0 0 -1 1]]; yD1 = [y2 + w ym ym ym]; 
xD2 = xm + w*[0.5*[-1 -1 1 1]]; yD2 = ym + w*[1 -1 -1 
1];
xD3 = xm + [0 0]; yD3 = [y1 ym] - w; 
plot(xD1,yD1,color, xD2,yD2,color, xD3,yD3,color)

function wheel_my(xm,ym,w,color)
%draws a wheel of size w at center (xm,ym) 
if nargin < 5, color = 'k'; end 
xW1 = xm + w*1.2*[-1 1]; yW1 = ym + w*[2 2]; 
xW2 = xm*[1 1]; yW2 = ym + w*[2 0]; 
plot(xW1,yW1,color, xW2,yW2,color)
th = [0:100]/50*pi; plot(xm + j*ym+w*exp(j*th),color)

(a) The block diagram

Figure P6.4 A m ass-sp ring-dam per system.
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where the values of the mass, the viscous friction coefficient, and the spring 
constant are given as M  =  1 kg, B =  0.1 N s/m, and K  =  0.1 N/m, respec
tively. The input to this system is the movement u(t) of the wheel part 
causing the movement y(t)  of the body as the output of the system and is 
approximated to a triangular wave of height 1 m, duration 1 s, and period
2 s as depicted in Fig. P6.4b. After converting this equation into a state 
equation as

"x1 (t)' 0 1 x 1 (t) +
0

x2 (t) _ - K / M - B / M x ( t )  _ (B/M)u'(t) +  (K/M)u(t)
(P6.4.2)

x1(0) 0
_x2(0) _ 0

we can use such routines as ode_Ham(), o d e 4 5 ( ) , . . .  to solve this state 
equation and use some graphic functions to draw not only the graphs of 
y(t)  and u(t), but also the animated simulation diagram. You can run 
the above MATLAB program “do_MBK.m” to see the results. Does the 
suspension system made of a spring and a damper as depicted in Fig. 
P6.4a absorb effectively the shock caused by the rolling wheel so that the 
amplitude of vehicle body oscillation is less than 1/5 times that of wheel 
oscillation?
(cf) If one is interested in graphic visualization with MATLAB, he/she can refer to 

[N-1].

6.5 A Nonlinear Differential Equation for an Orbit of a Satellite

Consider the problem of an orbit of a satellite, whose position and velocity 
are obtained as the solution of the following state equation:

*1 (t) =  x3(t) 

x2 (t) =  x4(t)

*3 (t) =  -GMEX1(t)/(x2 (t) +  x2(t))3/2 (P6.5.1)

*4 (t) =  -G MEX 2 (t)/(x\(t) +  x| (t))3/2

where G =  6.672 x  10-11 N m2/kg2 is the gravitational constant, and 
ME =  5.97 x  1024 kg is the mass of the earth. Note that (x1, x2) and (x3 ,x 4) 
denote the position and velocity, respectively, of the satellite on the plane 
having the earth at its origin. This state equation is defined in the M-file 
‘d f_ sa t.m ’ below.
(a) Supplement the following program “nm6p05.m” which uses the three 

routines ode_RK4(), ode45(), and ode23() to find the paths of the 
satellite with the following initial positions/velocities for one day.
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function dx = df_sat(t,x) 
global G Me Re 
dx = zeros(size(x)); 
r = sqrt(sum(x(1:2).~2));
i f  r <= Re, return; end % when colliding against the earth surface 
GMr3 = G*Me/r~3;
dx(1) = x(3); dx(2) = x(4); dx(3) = -GMr3*x(1); dx(4) = -GMr3*x(2);

%nm6p05.m to solve a nonlinear d.e. on the orbit of a s a te l li te  
c lear, c lf 
global G Me Re
G = 6.67e-11; Me = 5.97e24; Re = 64e5; 
f = 'd f_sat'; ;
t0 = 0; T = 24*60*60; t f  = T; N = 2000;
R = 4.223e7;
v20s = [3071 3500 2000]; 
for ite r  = 1:length(v20s)

x10 = R; x20 = 0; v10 = 0; v20 = v20s(iter); 
x0 = [x10 x20 v10 v20]; to l = 1e-6;
[tR,xR] = ode_RK4(f,[t0 tf],x0,N );
[t45,x45] = ode45(????????????);
[t23s,x23s] = ode23s(f,[t0 tf ],x 0 ) ;
p lo t(x R (:,1 ),x R (:,2 ),'b ', x 4 5 ( :,1 ) ,x 4 5 ( :,2 ) , 'k . ',  ????????????) 
[t45,x45] = ode45(f,[t0 tf ],x0 ,od eset( 'R e lT o l',to l)); 
[t23s,x23s] = ode23s(?????????????????????????????????); 
p lo t(x R (:,1 ),x R (:,2 ),'b ', x 4 5 ( :,1 ) ,x 4 5 ( :,2 ) , 'k . ',  ????????????) 

end

(i) (X10, * 20) = (4.223 x  107, 0)[m] and (X30, X40) = (vw , V20) =
(0, 3071)[m/s].

(ii) (X10, X20) = (4.223 x  107, 0)[m] and (X30, X40) = (vw , V20) =
(0, 3500)[m/s].

(iii) (X10, X20) = (4.223 x  107, 0)[m] and (X30, X40) = (V10, V20) =
(0 , 2 0 0 0 ) [m/s].

Run the program and check if  the plotting results are as depicted in 
Fig. P6.5.

(b) In Fig. P6.5, we see that the “o d e2 3 s ()” solution path differs from 
the others for case (ii) and the “o d e4 5 ()” and “o d e2 3 s ()” paths differ 
from the “ode_RK4()” path for case (iii). But, we do not know which 
one is more accurate. In order to find which one is the closest to the 
true solution, apply the two routines “o d e4 5 ()” and “o d e2 3 s ()” with 
smaller relative error tolerance of t o l  = 1 e- 6  to find the paths for the 
three cases. Which one do you think is the closest to the true solution 
among the paths obtained in (a)?

(cf) The purpose of this problem is not to compare the several MATLAB routines, 
but to warn the users of the danger of abusing them. With smaller number 
of steps (N) (i.e., larger step size), the routine “ode_RK4()” will also deviate 
much from the true solution. The MATLAB built-in routines have too many 
good features to be mentioned here. Note that setting the parameters such as
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x 107

Figure P6.5 The paths of a satellite with the same initial position and different initial velocities.

the relative error tolerance (RelTol) is sometimes very important for obtaining 
a reasonably accurate solution.

6.6 Shooting Method for BVP with Adjustable Position and Fixed Angle 

Suppose the boundary condition for a second-order BVP is given as

x'(to) = X20, X (tf)  = Xif  (P6.6.1)

Consider how to modify the MATLAB routines “bvp2_shoot()” and 
“b vp 2_ fd f()” so that they can accommodate this kind of problem.
(a) As for “bvp2_shootp()” that you should make, the variable quantity 

to adjust for improving the approximate solution is not the derivative 
x'(t0), but the position x(t0) and what should be made close to zero is 
still f ( x ( t 0)) = x ( t f  ) — X f . Modify the routine in such a w ay that x(t0) 
is adjusted to make this quantity close to zero and make its declaration 
part have the initial derivative (dx0) instead of the initial position (x0) 
as the fourth input argument as follows.

function [t,x] = bvp2_shootp(f,t0,tf,dx0,xf,N,tol,kmax)
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Noting that the initial derivative of the true solution for Eq. (6.6.3) is 
zero, apply this routine to solve the BVP by inserting the following 
statement into the program “do_shoot.m”.

[t,x1] = bvp2_shootp('df661',t0,tf,0,xf,N,tol,kmax);

and plot the result to check if  it conforms with that (Fig. 6.8) obtained 
by “bvp2_shoot()”.

(b) As for “bvp 2_fd fp ()” implementing the finite difference method, you 
have to approximate the boundary condition as

x 1 — x —1
X (fo) = *20 -----  = * 20, * -1  = Xl -  2hx20, (P6.6.2)

2h

substitute this into the finite difference equation corresponding to the 
initial time as

x i  — 2 x o  +  x - i  x i - x - i  „ 
---------h2----------- ai° — 2h---------aooX° = И° (P6.6.3)

x i — 2x0 + xi — 2hx20
-------------- —-----------------h &10x20 + ^00x0 — u0h2

(a00h2 — 2)x0 +  2x1 = h2u0 + h(2 — ha10)x20 (P6.6.4)

and augment the m atrix-vector equation with this equation. Also, make 
its declaration part have the initial derivative (dx0) instead of the initial 
position (x0) as the sixth input argument as follows:

function [t,x] = bvp2_fdfp(a1,a0,u,t0,tf,dx0,xf,N)

Noting that the initial derivative of the true solution for Eq. (6.6.10) 
is —7, apply this routine to solve the BVP by inserting the following 
statement into the program “do_fdf.m ”.

[t,x1] = bvp2_fdfp(a1,a0,u,t0,tf,-7,xf,N);

and plot the result to check if  it conforms with that obtained by using 
“b vp 2 _ fd f()” and depicted in Fig. 6.9.

6.7 BVP with Mixed-Boundary Conditions I

Suppose the boundary condition for a second-order BVP is given as

x(t0 ) =  x 10, C1x( t f)  +  C2x'(tf) =  C3 (P6.7.1)

Consider how to modify the MATLAB routines “bvp2_shoot()” and 
“b v p 2 _ fd f()” so that they can accommodate this kind of problem.
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(a) As for “bvp2_shoot()” that you should modify, the variable quantity 
to adjust for improving the approximate solution is still the derivative 
x ( 0), but what should be made close to zero is

f  (x '(t0)) = c1x(tf ) + c2X'(tf ) — c3 (P6.7 .2)

If you don’t know where to begin, modify the routine 
“bvp2_shoot()” in such a way that x '(t0) is adjusted to make this 
quantity close to zero. Regarding the quantity (P6.7.2) as a function of 
x (t0), you may feel as if  you were going to solve a nonlinear equation 
f (x ' ( t 0)) = 0. Here are a few hints for this job:

Make the declaration part have the boundary coefficient vector c f  
= [ c 1  c 2 c 3 ]  instead of the final position (x f) as the fifth input 
argument as follows.

function [t,x] = bvp2m_shoot(f,t0,tf,x0,cf,N,tol,kmax)

• Pick up the first two guesses of x '(t0) arbitrarily.
• You may need to replace a couple of statements in “bvp2_shoot() ” by

e(1) = cf*[x(end,:)';-1]; 
e(k) = cf*[x(end,:)';-1];

Now that you have the routine “bvp2m_shoot()” of your own mak
ing, don’t hesitate to try using the weapon to attack the following 
problem:

x"{t) — 4 t x(t)x'(t) +  2x 2(t) =  0 with x (0 ) = 2x{\) — 3x'{\) =  0
(P6.7.3)

For this job, you only have to modify one statement of the program 
“do_shoot” (Section 6.6.1) into

[t,x] = bvp2m_shoot('df661',t0,tf,x0,[2 -3 0],N,tol,kmax);

If you run it to obtain the same solution as depicted in Fig. 6.8, you 
deserve to be proud of yourself having this book as well as MATLAB; 
otherwise, just keep trying until you succeed.

(b) As for “b v p 2 _ fd f()” that you should modify, you have only to aug
ment the m atrix-vector equation with one row corresponding to the 
approximate version of the boundary condition c1 x( tf )  + c2x'(tf) = c3, 
that is,

XN — XN—1
с ixN + c2-------;-------  = c3; —c2xN- i  + (c\h + c2)xN = c3h (P6.7.4)

h
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Needless to say, you should increase the dimension of the matrix A 
to N and move the xN term on the right-hand side of the (N — 1)th row 
back to the left-hand side by incorporating the corresponding statement 
into the fo r  loop. What you have to do with “bvp2m _fdf()” for this 
job is as follows:
• Make the declaration part have the boundary coefficient vector c f = 

[c1 c2 c3] instead of the final position (x f) as the seventh input 
argument.

function [t,x] = bvp2m_fdf(a1,a0,u,t0,tf,x0,cf,N)

• Replace some statement by A = zeros(N ,N ).
• Increase the last index of the fo r  loop to N-1.
• Replace the statements corresponding to the (N — 1)th row 

equation by

A(N,N-1:N) = [-cf(2) cf(1)*h + cf(2)]; b(N) = cf(3)*h;

which implements Eq. (P6.7.4).
• Modify the last statement arranging the solution as

x = [x0 trid(A,b)']';

Now that you have the routine “bvp2m _fdf()” of your own making, 
don’t hesitate to try it on the following problem:

2 2
x (t) +  - x  ( t ) ---- ~x(t) =  0 with x ( l )  =  5, x(2) + x (2) = 3t t2

(P6.7.5)
For this job, you only have to modify one statement of the program 
“do_fdf.m” (Section 6.6.2) into

[t,x] = bvp2m_fdf(a1,a0,u,t0,tf,x0,[1 1 3],N);

You might need to increase the number of segments N to improve the 
accuracy of the numerical solution. If you run it to obtain the same 
solution as depicted in Fig. 6.9, be happy with it.

6.8 BVP with Mixed-Boundary Conditions II

Suppose the boundary condition for a second-order BVP is given as

C01x (t0) +  C02x'(t0 ) =  C03 (P6.8.1a)

Cf  1x(tf ) +  Cf  2x '(tf ) =  Cf  3 (P6.8.1b)

Consider how to modify the MATLAB routines “bvp2m_shoot()” and 
“bvp2m _fdf()” so that they can accommodate this kind of problems.
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(a) As for “bvp2mm_shoot()” that you should make, the variable quantity 
to be adjusted for improving the approximate solution is x'(t0) or x(t0) 
depending on whether or not C01 =  0, while the quantity to be made 
close to zero is still

f  (x(t0) , x  '(t0)) =  Cf  1 x(tf ) +  Cf  2x ,(tf )  — Cf3 (P6.8.2)

If you don’t have your own idea, modify the routine “bvp2m_shoot()” 
in such a w ay that x '(t0) or x (t0) is adjusted to make this quantity 
close to zero and x (t0) or x'(t0) is set by (P6.8.1a), making its decla
ration as

function [t,x] = bvp2mm_shoot(f,t0,tf,c0,cf,N,tol,kmax)

where the boundary coefficient vectors c0 = [c01 c02 c03] and c f = 
[cf1  cf2  c f3 ] are supposed to be given as the fourth and fifth input 
arguments, respectively.

Now that you get the routine “bvp2mm_shoot()” of your own mak
ing, try it on the following problem:

2t 2 2 
*  W  -  {t) + = r + 1 (p 6 -8-3) t2 +  1 t2 + 1

with x (0 ) + 6x '(0 ) = 0, x (1 ) + x '(1 ) = 0

(b) As for “b v p 2_ fd f()” implementing the finite difference method, you 
only have to augment the m atrix-vector equation with two rows 
corresponding to the approximate versions of the boundary conditions
C01x(t0) + C02x '(t0) =  C03 and Cf  1x(tf ) + Cf2x '(tf ) =  Cf 3, that is, 

x 1 — x0
c0l*0 + c02----^----  = c03> (Coih —  CQ2)X 0 + CQ2X 1 = c03 h

(P6.8.4a)

c f l x N  +  C / 2 ----- -------  =  С /з ; — C f 2 x N - \  +  ( C f l h  +  C f 2 ) x N  =  C f 3h
(P6.8.4b)

Now that you have the routine “bvp2mm_fdf() ” of your own making, 
try it on the problem described by Eq. (P6.8.3).

(c) Overall, you w ill need to make the main programs like “nm6p08a.m” 
and “nm6p08b.m” that apply the routines “bvp2mm_shoot()” and 
“bvp2mm_fdf()” to get the numerical solutions of Eq. (P6.8.3) and 
plot them. Additionally, use the MATLAB routine “b vp 4c()” to get 
another solution and plot it together for cross-check.

6.9 Shooting Method and Finite Difference Method for Linear BVPs

Apply the routines “bvp2_shoot()”, “b v p 2_ fd f()”, and “bvp 4c()” to 
solve the following BVPs.
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%nm6p08a.m: to solve BVP2 with mixed boundary conditions
%x" = (2t/tA2 + 1)*x' -2/(tA2+1)*x +t~2+1
%  with x(0)+6x'(0) = 0, x'(1) + x(1) = 0
%shooting method
f = inline('[x(2); 2*(t*x(2) - x(1))./(t.~2 + 1)+(t.~2 + 1)] ' , ' f  , 'X') ;
t0 = 0; tf = 1; N = 100; tol = 1e-8; kmax = 10;
c0 = [1 6 0]; cf = [1 1 0]; %coefficient vectors of boundary condition
[tt,x_sh] = bvp2mm_shoot(f,t0,tf,c0,cf,N,tol,kmax);
pl o t ( t t , x _ s h ( :,1),1b 1)

%nm6p08b.m: finite difference method
a1 = inline('-2*t./(t.~2+1)','t'); a0 = inline('2./(t.~2+1) V  t 1);
u = inline('t.~2+1','t');
t0 = 0; tf = 1; N = 500;
c0 = [1 6 0]; cf = [1 1 0]; %coefficient vectors of boundary condition
[tt,x_fd] = bvp2mm_fdf(a1,a0,u,t0,tf,c0,cf,N);
p l o t ( t t , x _ f d , 'г 1)

У"(X) =  f ( y ' ( x ) , y ( x ) , u ( x ) )  with y ( x 0 ) =  y 0 , y ( x f )  =  y f  (P6.9.0a)

Plot the solutions and fill in Table P6.9 with the mismatching errors (of the
numerical solutions) that are defined as

function err = err_of_sol_de(df,t,x,varargin)
% evaluate the error of solutions of differential equation
[Nt,Nx] = size(x); if Nt < Nx, x = x.'; [Nt,Nx] = size(x); end
n1 = 2:Nt - 1; t=t(:); h2s = t(n1 + 1)-t(n1-1);
dx = (x(n1 + 1,:) - x(n1 - 1,:))./(h2s*ones(1,Nx));
num = x(n1 + 1,:)-2*x(n1,:) + x(n1 - 1,:); den = (h2s/2).~2*ones( 1,Nx);
d2x = num./den;
for m = 1:Nx

for n = n1(1):n1(end)
dfx = feval(df,t(n),[x(n,m) dx(n - 1,m)],varargin{:});
errm(n - 1,m) = d2x(n - 1,m) - dfx(end);

end
end
err=sum(errm.~2)/ (Nt - 2);

%nm6p09_1.m
%y"-y'+y = 3*e"2t-2sin(t) with y(0) = 5 & y(2)=-10
t0 = 0; tf = 2; y0 = 5 ;  yf = -10; N = 100; tol = 1e-6; kmax = 10;
df = inline('[y(2); y(2) - y(1)+3*exp(2*t)-2*sin(t)]','t','y');
a1 = -1; a0 = 1; u = inline('3*exp(2*t) - 2*sin(t)','t');
solinit = bvpinit(linspace(t0,tf,5),[-10 5]); %[1 9]
fbc = inline('[y0(1) - 5; yf(1) + 10]','y0','yf');
% Shooting method
tic, [tt,y_sh] = bvp2_shoot(df,t0,tf,y0,yf,N,tol,kmax); times(1) = toc;
% Finite difference method
tic, [tt,y_fd] = bvp2_fdf(a1,a0,u,t0,tf,y0,yf,N); times(2) = toc;
% MATLAB built-in function bvp4c
sol = bvp4c(df,fbc,solinit,bvpset('RelTol',1e-6));
tic, y_bvp = deval(sol,tt); times(3) = toc
% Eror evaluation
ys=[y_sh(:,1) y_fd y_bvp(1,:)']; plot(tt,ys)
err=err_of_sol_de(d f ,t t ,y s )
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Table P6.9 Comparison of the BVP Solver Routines bvp2_shoot ( )/bvp2_fdf ()

BVP Routine
Mismatching Error 

(P6.9.0b) Times

(P6.9.1)
N = 100, tol = 1e-6, 
kmax = 10

bvp2 shoot() 1.5 x 10-6

bvp2_fdf()

bvp4c() 2.9 x 1(Гб

(P6.9.2)
N = 100, tol = 1e-6, 
kmax = 10

bvp2 shoot()

bvp2_fdf() 1.6 x 1(Г23

bvp4c()

(P6.9.3)
N = 100, tol = 1e-6, 
kmax = 10

bvp2_shoot() 1.7 x 10-17

bvp2 fd f ()

bvp4c() 7.8 x 1(Г14

(P6.9.4)
N = 100, tol = 1e-6, 
kmax = 10

bvp2 shoot()

bvp2 fd f() 4.4 x 10-27

bvp4c()

(P6.9.5)
N = 100, tol = 1e-6, 
kmax = 10

bvp2 shoot() 8.9 x 10-9

bvp2_fdf()

bvp4c() 8.9 x 1(Г7

(P6.9.6)
N = 100, tol =1e-6, 
kmax =10

bvp2_shoot()

bvp2 fdf() 4.4 x 10-25

bvp4c()

1 N—1
err = { D (2)y ( x )  — f  (Dy(xi) ,  y(xi) ,  u(xi ))}2 (P6.9.0b)

N — i=1

with

D (2) ,  \ =  y ( x i + l )  -  2 y ( X j )  +  y ( X i ^ )  =  y ( x i + 1 ) -  y ( X i ^ )
УК г) h 2 , УК г) 2 h

(P6.9.0c)
Xi = х0 + ih, h =  ̂ —-  (P6.9.0d)

and can be computed by using the following routine “e r r_ o f_ so l_ d e ()”.
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Overall, which routine works the best for linear BVPs among the three 
routines?
(a) y"(x) = y'(x) — y(x)  + 3e2x — 2 s in x  with y (0 ) = 5, y (2 ) = —10

(P6.9.1)
(b) y"(x) = - 4 y ( x )  with y (0 ) = 5, y (1 ) = - 5  (P6.9.2)
(c) y"(t) = 10—6y (t) + 10—7(t2 — 50t) with y (0 ) = 0, y(50) = 0 (P6.9.3)
(d) y"(t) = —2y(t) + sin t with y (0 ) = 0, y (1 ) = 0 (P6.9.4)
(e) y"(x) = y'(x) + y(x)  + eX(1 — 2x) with y (0 ) = 1, y(1 ) = 3e (P6.9.5) 

d 2y(r)  1 dy(r)
(f) — +  — —  = 0 with y ( l )  = In 1, у (2) = 1п2 (P6.9.6)

d r 2 r  dr

6.10 Shooting Method and Finite Difference Method for Nonlinear BVPs
(a) Consider a nonlinear boundary value problem of solving

d2T
— -  = 1 .9 x  1(П9(Г 4 -  r 4), Ta = 400 (P6.10.1)
dx2

with the boundary condition T(x0) = T0, T(xf)  = Tf

to find the temperature distribution T (x) [°K] in a rod 4 m long, where 
[x 0 ,x f  ] = [0 ,4 ].

Apply the routines “bvp2_shoot()”, “b v p 2 _ fd f()”, and “b vp 4c()” 
to solve this differential equation for the two sets of boundary conditions 
{T(0) = 500, T(4) = 300} and {T(0) = 550, T (4) = 300} as listed in 
Table P6.10. F ill in the table with the mismatching errors defined by 
Eq. (P6.9.0b) for the three numerical solutions

%nm6p10a
clear, clf
K = 1.9e-9; Ta = 400; Ta4 = Ta"4;
df = inline('[T(2); 1.9e-9*(T(1).A4-256e8)]','t', ■t ');
x0 = 0; xf = 4; T0 = 500; Tf = 300; N = 500; tol = 1е-5; kmax = 10;
% Shooting method
[xx,T_sh] = bvp2_shoot(df,x0,xf,T0,Tf,N,tol,kmax) ;
% Iterative finite difference method
a1 = 0 ;  a0 = 0; u = T0 + [1:N - 1]*(Tf - T0)/N;
for i = 1:100

[xx,T_fd] = bvp2_fdf(a1,a0,u,x0,xf,T0,Tf,N);
u = K*(T_fd(2:N)."4 - Ta4); %RHS of (P6.10.1)
if i > 1 & norm(T_fd - T_fd0)/norm(T_fd0) < tol , i, break; end
T_fd0 = T_fd;

end
% MATLAB built-in function bvp4c
solinit = bvpinit(linspace(x0,xf,5),[Tf T0]);
fbc = inline('[Ta(1)-500; Tb(1)-300]','Ta','Tb');
tic, sol = bvp4c(df,fbe,solinit,bvpset(' R e l T o l 1e-6));
T_bvp = deval(sol,xx); time_bvp = toc;
% The set of three solutions
Ts = [T_sh(:,1) T_fd T_bvp(1,:)'];
% Evaluates the errors and plot the graphs of the solutions
err = err_of_sol_de(df,xx,ys)
subplot(321), plot(xx,Ts)
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Table P6.10 Comparison o f the BVP routines b v p 2 _ s h o o t( ) /b v p 2 _ fd f ( )

Boundary Condition Routine
Mismatching 

Error (P6.9.0b)
Time

(seconds)

(P6.10.1) with Ta =  400  

T(0) =  500, T (4) =  300

bvp2 shoot()

bvp2_fdf() 3.6 x  1 0 - 6

bvp4c ()

(P6.10.1) with Ta =  400  

T(0) =  550, T(4) =  300

bvp2 shoot() NaN (divergent) N/A

bvp2_fdf()

bvp4c() 30 x  1 0 - 5

(P6.10.2) with 

y(0) =  0 , y ( l)  =  0

bvp2_shoot()

bvp2 fdf() 3.2 x  1 0 - 13

bvp4c()

(P6.10.3) with 

y ( l)  =  4, y(2) = 8

bvp2 shoot() NaN (divergent) N/A

bvp2 fdf()

bvp4c() 3.5 x  1 0 - 6

(P6.10.4) with

y ( l )  =  1/3, y ( 4 ) =  20/3

bvp2 shoot()

bvp4c() 3.4 x  1 0 - 10

bvp2 fdf(c)

(P6.10.5) with

y(0) =  jt/2, y(2) =  ж/4

bvp2_shoot() 3.7 x  1 0 - 14

bvp2 fdf()

bvp4c() 2.2 x  1 0 - 9

(P6.10-6) with 

y(2) = 2,/(8) =  1/4

bvp2_shoot()

bvp2 fdf() 5.0 x  1 0 - 14

bvp4c()

{T(xi), i =  0 : N} (xi = x0 + ih = x0 + i  ̂ —-  with N =  500

Note that the routine “b vp 2_ fd f()” should be applied in an iterative 
way to solve a nonlinear BVP, because it has been fabricated to accom
modate only linear BVPs. You may start with the following program 
“nm6p10a.m”. Which routine works the best for the first case and the 
second case, respectively?
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(b) Apply the routines “bvp2_shoot()”, “b vp 2 _ fd f()”, and “bvp 4c()” to 
solve the following BVPs. F ill in Table P6.10 with the mismatching 
errors defined by Eq. (P6.9.0b) for the three numerical solutions and 
plot the solution graphs if  they are reasonable solutions.

(i) y" — ey = 0 with y (0 ) = 0, y (1 ) = 0
1 2

(ii) y" -  -y> -  - ( y ' f  = 0 with y( l )  =  4, у (2) = 8
t y

2 1 20
r = °  with y ( l )  = - , y ( 4 )  = —

y + 1  3 3

(iv) y" = t(y')2 with y (0 ) = n/2, y(2) = n/4

(v) у" + \ y '  =  о With у (2) = 2, y'(8) = 1/4y 2

(P6.10.2)

(P6.10.3)

(P6.10.4)

(P6.10.5)

(P6.10.6)

Especially for the BVP (P6.10.6), the routine “bvp2m_shoot()” 
or “bvp2mm_shoot()” developed in Problems 6.7 and 6.8 should be 
used instead of “bvp2_shoot()”, since it has a mixed-boundary con
dition I.

(cf) Originally, the shooting method was developed for solving nonlinear BVPs, 
while the finite difference method is designed as a one-shot method for solv
ing linear BVPs. But the finite difference method can also be applied in an 
iterative way to handle nonlinear BVPs, producing more accurate solutions in 
less computation time.

6.11 Eigenvalue BVPs
(a) A Homogeneous Second-Order BVP to an Eigenvalue Problem 

Consider an eigenvalue boundary value problem of solving

y" (x) + rn2y = 0 (P6.11.1)

with C01y(X0) + C02y'(X0) = 0, Cf 1y(Xf) + Cf2 y'(Xf) = 0

to find y(x)  for x e  [x0, x f  ] with the (possible) angular frequency w.
In order to use the finite difference method, we divide the solu

tion interval [x0, x f ] into N subintervals to have the grid points xt = 
x0 + ih = x0 + i (x f  — x0)/N and then, replace the derivatives in the 
differential equation and the boundary conditions by their finite differ
ence approximations (5.3.1) and (5.1.8) to write

yi- 1 — 2 yi +  yi + l 
h2

+ w yi = 0

y i—1 — (2 — X)yi + y i+1 = 0 with к = h2 w2 (P6.11.2)



with
y 1 — y 1 C01 

coi ô + c02— zr—  = 0 — y~i = 2h— y0 + yi (P6.11.3a) 
2 C02

. yN+1 — yN — 1 n r\ j Cf  1
C f i y N  +  c f 2 ----------— -----------  =  0  — y w + 1  =  y N - 1 — 2 h ------У м

2 Cf 2
(P6.11.3b)

Substituting the discretized boundary condition (P6.11.3) into (P6.11.2) 
yields

(P6.11.3a)
y —1 — 2 y0 + y 1 = -A y 0 ---------- >
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2 — 2h  —  ) y o  — 2 y i  — k y o
C02

(P6.11.4a)

yi — 1 — 2 y i +  yi + 1 =  ~ kyi ^  ~ y i — 1 +  2y i — yi + 1 =  k yVi+

for i =  1 : N — 1 (P6.11.4b)
(P6.11.3b)

yN—1 — 2 y N +  yN+1 = ~ kyN ---------- ►

— 2 y N-i +  [ 2  +  2h-^— ) y?f — kyN (P6.11.4c)

which can be formulated in a compact form as

2 — 2h C01/C02 —2 0 0 0 y0
—1 2 —1 0 0 y 1

0 —1 2 —1 0
0 0 —1 2 —1 yN—1
0 0 0 —2 2 + 2hCf 1 /Cf2 _ yN

= к

y0
y 1

yN—1
yN

Ay  =  ky; [A — kI  ]y  = 0 (P6.11.5)

For this equation to have a nontrivial solution y  =  0, к must be one of 
the eigenvalues of the matrix A and the corresponding eigenvectors are 
possible solutions.
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function [x,Y,ws,eigvals] = bvp2_eig(x0,xf,c0,cf,N)
% use the finite difference method to solve an eigenvalue BVP4:
% y"+w~2*y = 0 with c01y(x0) + c02y'(x0) = 0, cf1y(xf) + cf2y'(xf) = 0 
%input: x0/xf = the initial/final boundaries
% c0/cf = the initial/final boundary condition coefficients
% N - 1 = the number of internal grid points.
%output: x = the vector of grid points
% Y = the matrix composed of the eigenvector solutions
% ws = angular frequencies corresponding to eigenvalues
% eigvals = the eigenvalues 
if nargin < 5|N < 3 ,  N = 3; end 
h = (xf - x0)/N; h2 = h*h; x = x0+[0:N]*h;
N1 = N + 1 ;
if abs(c0(2)) < eps, N1 = N1 - 1; A(1,1:2) = [2 -1]; 
else A(1,1:2) = [2*(1-c0(1)/c0(2)*h) -2]; %(P6.11.4a)

end
if abs(cf(2)) < eps, N1 = N1 - 1; A(N1,N1 - 1:N1) = [-1 2];
else A(N1,N1 - 1:N1) = [-2 2*(1 + cf(1)/cf(2)*h)]; %(P6.11.4c) 

end
if N1 > 2

for m = 2:ceil(N1/2), A(m,m - 1:m + 1) = [-1 2 -1]; end %(P6.11.4b) 
end
for m=ceil(N1/2) + 1:N1 - 1, A(m,:) = fliplr(A(N1 + 1 - m,:)); end 
[V,LAMBDA] = eig(A); eigvals = diag(LAMBDA)';
[eigvals,I] = sort(eigvals); % sorting in the ascending order
V = V(:,I);
ws = sqrt(eigvals)/h;
if abs(c0(2)) < eps, Y = zeros(1,N1); else Y = []; end
Y = [Y; V];
if abs(cf(2)) < eps, Y = [Y; zeros(1,N1)]; end

Note the following things:
• The angular frequency corresponding to the eigenvalue к can be 

obtained as ____
ft) = y/k/ао/h (P6.11.6)

• The eigenvalues and the eigenvectors of a matrix A can be obtained 
by using the MATLAB command ‘ [V,D] = e ig (A ) ’ .

• The above routine “b v p 2 _ e ig ()” implements the above-mentioned 
scheme to solve the second-order eigenvalue problem (P6.11.1).

• In particular, a second-order eigenvalue BVP

y"(x) + M2y =  0 with y (x 0) =  0 , y ( x f )  =  0 (P6.11.7)

corresponds to (P6.11.1) with c0 =  [c01 c02] =  [1 0] and cf =  
[Cf 1 Cf2] =  [1 0] and has the following analytical solutions:

kn
y{x) = asma)x  with со = -----------,£  = 1 , 2 , . . .  (P6.11.8)

x f  — x0
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Figure P6.11 The eigenvector solutions of homogeneous second-order and fourth-order BVPs.

Now, use the routine “b v p 2 _ e ig ()” with the number of grid points 
N = 256 to solve the BVP2 (P6.11.7) with x0 = 0 and Xf = 2, find 
the lowest three angular frequencies (wi ’ s) and plot the corresponding 
eigenvector solutions as depicted in Fig. P6.11a.

(b) A Homogeneous Fourth-Order BVP to an Eigenvalue Problem 
Consider an eigenvalue boundary value problem of solving

d 4 y  4 n  

d ^ - “ y = 0
(P6.11.9)

d2y d2y 
with y(xo) = 0, ^ ( xo) =  °> y(x f )  = °> (x f )  = 0

to find y(x)  for x e [x0, x f  ] with the (possible) angular frequency w.
In order to use the finite difference method, we divide the solu

tion interval [x0, x f ] into N subintervals to have the grid points xi = 
x0 + ih = x0 + i (x f  — x0)/N and then, replace the derivatives in the 
differential equation and the boundary conditions by their finite differ
ence approximations to write

y i—2 — 4yi —1 + 6yi — 4yi + 1 + y i+2 4
h4

— w4 yi = 0

y i—2 — 4 y i—1 + 6yi — 4yi+1 + y i+2 = kyi(k = h4w4) (P6.11.10)

with
n y —1 — 2y0 + y 1 „

Уо =  о, -------—-------=  0 ^  У - !  =  - y  1h2

„ yN—1 — 2yN + yN+1 „
Ум =  0, ------------ p ------------ = 0 yN+1 =

(P6.11.11a)

~yN—1 
(P6.11.11b)



3 1 8

Substituting the discretized boundary condition (P6.11.11) into (P6.11.10) 
yields

(P6.11.11a)
y —1 — 4 y0 + 6 y 1 — 4 y 2 + Уз = ky1 -----------

5y1 — 4y2 + уз = k y 1

(P6.11.11a)
У0 — 4у1 + 6 у2 — 4уз + У4 = к у 2 ----------- >

— 4 у 1 + 6 у2 — 4уз + У4 = ку2 

yi — 4 y i+1 + 6 yi+2 — 4 y i+3 + y i+4 = kyi+2

for i =  1 :  N — 5 (P6.11.12)
(P6.11.11b)

yN —4 — 4 yN—3 + 6yN—2 — 4 yN—1 + yN = kyN—2 ------------►

yN—4 — 4 yN—3 + 6 yN—2 — 4 y N—1 = kyN—2
(P6.11.11b)

yN—3 — 4 yN—2 + 6yN—1 — 4yN + yN+1 = kyN—1 ------------►

yN—3 — 4yN—2 + 5yN — 1 = kyN—1 

which can be formulated in a compact form as

ORDINARY DIFFERENTIAL EQUATIONS

5 — 4 1 0 0 0 0 y 1 y 1
— 4 6 — 4 1 0 0 0 y2 y2
1 — 4 6 — 4 1 0 0 y3 y3
0 0 = к
0 0 1 — 4 6 — 4 1 yN—3 yN—3
0 0 0 1 — 4 6 — 4 yN—2 yN—2
0 0 0 0 1 — 4 5 _ yN — 1 _ _ yN—1 _

A y = ky, [A —k l  ]y = 0 (P6.11.

For this equation to have a nontrivial solution y = 0, к must be one 
of the eigenvalues of the matrix A and the corresponding eigenvectors 
are possible solutions. Note that the angular frequency corresponding 
to the eigenvalue к can be obtained as

(o=ZJi/h (P6.ll.14)

(i) C o m p o s e  a routine “bvp4_eig()” which implements the above

mentioned scheme to solve the fourth-order eigenvalue problem 
(P6.11.9).

function [x,Y,ws,eigvals] = bvp4_eig(x0,xf,N)
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(ii) Use the routine “b v p 4 _ e ig ()” with the number of grid points N =  
256 to solve the BVP4 (P6.11.9) with x0 = 0 and x f  =  2, find the 
lowest three angular frequencies (w  ’ s) and plot the corresponding 
eigenvector solutions as depicted in Fig. P6.11b.

(c) The Sturm -L iouville Equation
Consider an eigenvalue boundary value problem of solving

d
^ ( / ( * ) У  ) + r (x)y  = kq(x)y  with y(x0) =  0, y(xf ) =  0 

x (P6.11.15)
to find y(x)  for x e [x0, x f  ] with the (possible) angular frequency w.

In order to use the finite difference method, we divide the solu
tion interval [x0, x f ] into N subintervals to have the grid points xi =  
x0 + ih = x0 + i (x f  — x0)/N, and then we replace the derivatives in 
the differential equation and the boundary conditions by their finite 
difference approximations (with the step size h/2) to write

/(xi +fc/2)/(xi +fc/2)-/(xi -fc/2)/(xi -fc/2) , / ч ч 4
-------------- h r{X i)yi =  Xq(Xi)y(Xi)2(h/2)

1
h

f ( x i + h\ y j ± ^ y L _ f  Xi_ h \ * ~ y ^ + r(xi)yi  =  kq(xi)y(xi)

aiyi—1 + b y  + ciyi+1 = kyi for i = 1, 2 , . . . , N — 1 (P6.11.16)

with

/  (xi — h/2) f  (xi +  h/2) r(xi) 
a; = ----- ------------, Cj = ------------------, and bj = ----------- at — с,•

h q(xi) h2q{xi) q(xi)
(P6.11.17)

(i) Compose a routine “s tu rm ()” which implements the above
mentioned scheme to solve the Sturm -L iouville BVP (P6.11.15).

function [x,Y,ws,eigvals] = sturm(f,r,q,x0,xf,N)

(ii) Use the routine “stu rm () ” with the number of grid points N =  256 
to solve the following BVP2:

((1 + x 2)y') =  - 2 ky with y(x0) =  0, y(xf ) =  0
x (P6.11.18)

Plot the eigenvector solutions corresponding to the lowest three 
angular frequencies (w  ’ s).
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OPTIMIZATION

Optimization involves finding the minimum/maximum of an objective function 
f ( x )  subject to some constraint x  e  S. If there is no constraint for x  to sat
is fy— or, equivalently, S  is the universe— then it is called an unconstrained 
optimization; otherwise, it is a constrained optimization. In this chapter, we 
w ill cover several unconstrained optimization techniques such as the golden 
search method, the quadratic approximation method, the N elder-M ead method, 
the steepest descent method, the Newton method, the simulated-annealing (SA) 
method, and the genetic algorithm (GA). As for constrained optimization, we 
w ill only introduce the MATLAB built-in routines together with the routines for 
unconstrained optimization. Note that we don’ t have to distinguish maximization 
and minimization because maximizing f ( x )  is equivalent to minimizing - f ( x )  
and so, without loss of generality, we deal only with the minimization problems.

7.1 UNCONSTRAINED OPTIMIZATION [L-2, CHAPTER 7]

7.1.1 G olden S e a r c h  M ethod

This method is applicable to an unconstrained minimization problem such that 
the solution interval [a , b] is known and the objective function f ( x )  is unimodal 
within the interval; that is, the sign of its derivative f  '(x) changes at most once in 
[a ,b ]  so that f ( x )  decreases/increases monotonically for [a ,x ° ]/ [x ° , b], where 
x o is the solution that we are looking for. The so-called golden search procedure is 
summarized below and is cast into the routine “o p t_ g s ()”. We made a MATLAB
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program “nm711.m”, which uses this routine to find the minimum point of the 
objective function

f ( x )  =  (x2 -  4 )2/8 -  1 (7.1.1)

3 2 2  OPTIMIZATION

GOLDEN SEARCH PROCEDURE
Step 1. Pick up the two points с = a +  (1 — r)h and d = a + rh  inside the 

interval [a , b\, where r  = (V 5 — l)/ 2  and h = b — a.
Step 2. If the values of f ( x )  at the two points are almost equal [i.e., f ( a )  & 

f (b)]  and the width of the interval is sufficiently small (i.e., h & 0), 
then stop the iteration to exit the loop and declare x o = c or x o = d 
depending on whether f ( c )  < f ( d )  or not. Otherwise, go to Step 3.

Step 3. If f ( c )  < f ( d ) ,  let the new upper bound of the interval b — d ; oth
erwise, let the new lower bound of the interval a — c. Then, go to 
Step 1.

function [xo,fo] = opt_gs(f,a,b,r,TolX,TolFun,k) 
h = b - a; rh = r*h; c = b - rh; d = a + rh; 
fc = fev a l(f ,c ) ; fd = fev a l(f ,d ); 
i f  k <= 0 | (abs(h) < TolX & abs(fc - fd) < TolFun) 

i f  fc <= fd, xo = c; fo = fc; 
else xo = d; fo = fd; 

end
if  k == 0, fp r in tf( 'Ju s t the best in given # of ite ra tio n s ') , end 

else
if  fc < fd, [xo,fo] = opt_gs(f,a,d,r,TolX,TolFun,k - 1); 
else [xo,fo] = opt_gs(f,c,b,r,TolX,TolFun,k - 1); 

end 
end

%nm711.m to perform the golden search method 
f711 = in lin e ('(x .*x -4 ).~ 2/ 8 -1 ','x ') ;
a = 0; b = 3; r =(sqrt(5)-1)/2; TolX = 1e-4; TolFun = 1e-4; Maxlter = 100; 
[xo,fo] = opt_gs(f711,a,b,r,TolX,TolFun,MaxIter)

Figure 7.1 shows how the routine “o p t_ g s ()” proceeds toward the minimum 
point step by step.

Note the following points about the golden search procedure.

• At every iteration, the new interval width is

b — c =  b — (a +  (1 — r )(b  — a)) =  rh  or d — a =  a +  rh  — a =  rh
(7.1.2)

so that it becomes r  times the old interval width (b — a =  h).
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The golden ratio r  is fixed so that a point c1 = b1 — r h 1 = b — r 2h in the 
new interval [c , b] conforms with d = a + rh = b — (1 — r)h, that is,

о о - l + v T + 4  - 1  + V5 
r 2 = 1 -  r, r 2 + r -  1 = 0 ,  r  = -----  = ----- (7.1.3)

7 .1 .2  Q u ad ra tic  A pprox im ation  M ethod

The idea of this method is to (a) approximate the objective function f ( x )  by a 
quadratic function p 2(x) matching the previous three (estimated solution) points 
and (b) keep updating the three points by replacing one of them with the minimum 
point of p 2(x). More specifically, for the three points

{(xo, fo), (X1, f 1), (X2 , f2)} with Xo < X1 < X2

we find the interpolation polynomial p 2(x) of degree 2 to fit them and replace 
one of them with the zero of the derivative— that is, the root of p2 (x) = 0 [see 
Eq. (P3.1.2) in Problem 3.1]:

„ „ M A  ~ x2) + h ( xl  -  x 2) + f 2(x2 - x 2) ^  1 ^
X — X3 — -------------------------------------------------------------  y!

2{fo(X1 — X2 ) + f 1(X2 — Xo) + f 2 (Xo — X1)}

In particular, if the previous estimated solution points are equidistant with an 
equal distance h (i.e., x2 — x 1 = x 1 — xo = h), then this formula becomes

fo(x2 -  X2) +  /1 (x2 -  X2) + f 2(x2 -  X2)
Хз =

2{fo (X1 — X2) + f 1 (X2 — Xo) +  fz(xo — X1)} X1 =x +h
X2 =X1+h

, , 3/o -  4 / i  +  /2 =  xn +  h --------------------------- (7.1.5)
2 (—/о + 2Л  -  /2) '  '
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We keep updating the three points this way until \x2 — x0\ «  0 and/or \f(x2) — 
f ( x 0)\ « 0 ,  when we stop the iteration and declare x3 as the minimum point. 
The rule for updating the three points is as follows.

1. In case x0 < x3 < x i, we take {x0, x3, x i } or {x3, x i, x2} as the new set of 
three points depending on whether f ( x 3) < f ( x 1) or not.

2. In case x 1 < x3 < x2, we take {x1, x3,x 2} or {x0, x 1, x3} as the new set of 
three points depending on whether f ( x 3) < f ( x 1) or not.

This procedure, called the quadratic approximation method, is cast into the 
MATLAB routine “o p t_ quad ()”, which has the nested (recursive call) structure. 
We made the MATLAB program “nm712.m”, which uses this routine to find the 
minimum point of the objective function (7.1.1) and also uses the MATLAB 
built-in routine “fm inbnd()” to find it for cross-check. Figure 7.2 shows how 
the routine “op t_quad ()” proceeds toward the minimum point step by step.
(cf) The MATLAB built-in routine “fminbnd()” corresponds to “fmin()” in the MAT

LAB of version.5.x.

function [xo,fo] = opt_quad(f,x0,TolX,TolFun,MaxIter)
%search for the minimum of f(x ) by quadratic approximation method 
i f  length(x0) > 2, x012 = x0(1 :3 ); 
e lse

i f  length(x0) == 2, a = x0(1); b = x0(2); 
e lse  a = x0 - 10; b = x0 + 10; 

end
x012 = [a (a + b)/2 b];

end
f012 = f(x012);
[xo,fo] = opt_quad0(f,x012,f012,TolX,TolFun,MaxIter);

function [xo,fo] = opt_quad0(f,x012,f012,TolX,TolFun,k) 
x0 = x012(1); x1 = x012(2); x2 = x012(3); 
f0 = f012(1); f1 = f012(2); f2 = f012(3);
nd = [f0 - f2 f1 - f0 f2 - f1]*[x1*x1 x2*x2 x0*x0; x1 x2 x 0 ] ';  
x3 = nd(1)/2/nd(2); f3 = fe v a l( f ,x 3 ) ; %Eq.(7.1.4) 
i f  k <= 0 \ abs(x3 - x1) < TolX \ abs(f3 - f1) < TolFun 

xo = x3; fo = f3;
i f  k == 0, fp r in tf ( 'Ju s t  the best in given # of i t e r a t io n s ') ,  end 

e lse  
i f  x3 < x1

i f  f3 < f1 , x012 = [x0 x3 x1]; f012 = [f0 f3 f1 ];
e lse  x012 = [x3 x1 x2]; f012 = [f3 f1 f2 ]; 

end 
e lse

i f  f3 <= f1, x012 = [x1 x3 x2]; f012 = [f1 f3 f2 ] ;
e lse  x012 = [x0 x1 x3]; f012 = [f0 f1 f3 ]; 

end 
end
[xo,fo] = opt_quad0(f,x012,f012,TolX,TolFun,k - 1); 

end
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Figure 7.2 Process of searching for the minimum by the quadratic approximation method.

%nm712.m to perform the quadratic approximation method 
clear, clf
f711 = inline('(x.*x - 4).A2/8-1', 'x');
a = 0; b = 3; TolX = 1e-5; TolFun = 1e-8; MaxIter = 100;
[xoq,foq] = opt_quad(f711,[a b],TolX,TolFun,MaxIter)
%minimum point and its function value
[xob,fob] = fminbnd(f711,a,b) %MATLAB built-in function

7 .1 .3  N e ld e r-M e ad  M ethod [W -8]

The N elder-M ead method is applicable to the minimization of a multivariable 
objective function, for which neither the golden search method nor the quadratic 
approximation method can be applied. The algorithm of the N elder-M ead method 
summarized in the box below is cast into the MATLAB routine “N e ld e r0 ()”. 
Note that in the N -dimensional case (N > 2), this algorithm should be repeated 
for each subplane as implemented in the outer routine “o p t_ N eld e r()”.

We made the MATLAB program “nm713.m” to minimize a two-variable objec
tive function

f(Xi,X2) = x l  -  XlX2 -  4xi +  x2; -  X2 (7.1.6)

whose minimum can be found in an analytical w ay— that is, by setting the partial 
derivatives of f  (x1 , x2) with respect to x 1 and x2 to zero as

d
- — f i x I , x 2) =  2*1 - x 2 - 4  =  0 
dxi

d
---- f i x  l , x 2) = 2x2 -  X! -  1 =  0
dX2

Xo = (Xi0,X2o) = (3, 2)
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NELDER-MEAD ALGORITHM
Step 1. Let the initial three estimated solution points be a, b and c, where 

f ( a )  < f ( b )  < f (c) .
Step 2. If the three points or their function values are sufficiently close to each 

other, then declare a to be the minimum and terminate the procedure.
Step 3. Otherwise, expecting that the minimum we are looking for may be at 

the opposite side of the worst point с over the line ab (see Fig. 7.3), 
take

e = m + 2(m — c), where m = (a + b)/2

and if  f ( e )  < f (b) ,  take e as the new c; otherwise, take

r  =  (m + e)/2 = 2m — c 

and if  f ( r )  < f ( c ) ,  take r  as the new c; if  f ( r )  > f (b) ,  take

 ̂ = (c + m)/2

and if f ( s )  < f (c ) ,  take s as the new c; otherwise, give up the two points 
b,c and take m and c1 = (a + c)/2 as the new b and c, reflecting our 
expectation that the minimum would be around a .

Step 4. Go back to Step 1.

m  = (a + b)/2 

r = m  + (m - c) 

e = m  + 2(m - c)

s.] = (c + m)/2 

s2 = (m + r)/2 

(c + a)/2 

c2 = (r + a) /2

Figure 7.3 Notation used in the Nelder-M ead method.

a

e
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function [xo,fo] = Nelder0(f,abc,fabc,TolX,TolFun,k)
[fabc,I] = sort(fabc); a = ab c (I (1 ) ,:) ; b = ab c (I (2 ) ,:) ; с = abc(I(3), :) ;
fa = fabc(1); fb = fabc(2); fc = fabc(3); fba = fb - fa; fcb = fc - fb;
i f  к <= 0 | abs(fba) + abs(fcb) < TolFun | abs(b - a) + abs(c - b) < TolX

xo = a; fo = fa;
i f  k == 0, fp r in tf( 'Ju s t best in given # of iterations ), end

else
m = (a + b)/2; e = 3*m - 2*c; fe = fev a l(f ,e ) ;
i f  fe < fb, c = e; fc = fe;
else

r = (m+e)/2; fr = fe v a l( f ,r ) ;
i f  fr  < fc, c = r; fc = f r ; end
if  fr  >= fb

s = (c + m)/2; fs = fe v a l( f ,s ) ;
i f  fs < fc, c = s; fc = fs ;
else b = m; c = (a + c)/2; fb = fev a l(f ,b ); fc = fe v a l( f ,c ) ;

end
end

end
[xo,fo] = N elder0(f,[a ;b ;c],[fa  fb fc],TolX,TolFun,k - 1);

end

function [xo,fo] = opt_Nelder(f,x0,TolX,TolFun,MaxIter)
N = length(x0);
i f  N == 1 %for 1-dimensional case

[xo,fo] = opt_quad(f,x0,TolX,TolFun); return
end
S = eye(N);
for i  = 1:N %repeat the procedure for each subplane

i1 = i  + 1; if  i1 > N, i1 =1; end
abc = [xO; xO + S ( i , : ) ;  xO + S ( i1 , : ) ] ;  %each directional subplane
fabc = [fev a l(f ,ab c (1 ,:)) ; fe v a l(f ,a b c (2 ,:) ) ; feva l(f, abc(3, : ) ) ] ;
[x0,fo] = Nelder0(f,abc,fabc,TolX,TolFun,MaxIter);
i f  N < 3, break; end %No repetition needed for a 2-dimensional case

end
xo = x0;

%nm713.m: do Nelder
f713 = in line('x (1 )*(x(1 )-4 -x(2)) + x (2 )* (x (2 )-1 )','x ');
x0 = [0 0], TolX = 1e-4; TolFun = 1e-9; MaxIter = 100;
[xon,fon] = opt_Nelder(f713,x0,TolX,TolFun,MaxIter)
%minimum point and i t s  function value
[xos,fos] = fminsearch(f713,x0) %use the MATLAB built-in function

This program also applies the MATLAB built-in routine “fm in se a rc h ()” to min
imize the same objective function for practice and confirmation. The minimization 
process is illustrated in Fig. 7.4.

(cf) The MATLAB built-in routine “fminsearch( )” uses the Nelder-M ead algorithm 
to minimize a multivariable objective function. It corresponds to “fmins( )” in the 
MATLAB of version.5.x.
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7 .1 .4  S te e p e s t  D escen t M ethod

This method searches for the minimum of an N -dimensional objective function 
in the direction of a negative gradient

- g ( x )  = — V f  (x) = -
Эf i x )  Эf j x )  

dx1 dx2
Э f i x )
dxN

(7.1.7)

with the step-size a k (at iteration k) adjusted so that the function value is 
minimized along the direction by a (one-dimensional) line search technique 
like the quadratic approximation method. The algorithm of the steepest descent 
method is summarized in the following box and cast into the MATLAB routine 
“o p t_ s te e p ( )” .

We made the MATLAB program “nm714.m” to minimize the objective func
tion (7.1.6) by using the steepest descent method. The minimization process is 
illustrated in Fig. 7.5.

STEEPEST DESCENT ALGORITHM

Step 0. With the iteration number k =  0, find the function value f 0 = f  (x0) 
for the initial point x0 .

Step 1. Increment the iteration number k by one, find the step-size a k—1 along 
the direction of the negative gradient —gk—1 by a (one-dimensional) line
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search like the quadratic approximation method.

ak—1 = A rgM inaf (Xk—1 — agk—1/|| gk—1 11) (7.1.8)

Step 2. Move the approximate minimum by the step-size ak—1 along the direc
tion of the negative gradient —gk—1 to get the next point

Xk = Xk—1 — ak—1gk—1/11 gk—1 1 I (7.1.9)

Step 3. If xk & xk—1 and f ( x k) & f  (xk—1), then declare xk to be the minimum 
and terminate the procedure. Otherwise, go back to step 1.

function [xo,fo] = opt_steep(f,x0,TolX,TolFun,alpha0,MaxIter)
% minimize the ftn f by the steepest descent method.
%input: f = ftn to be given as a string 'f '
% x0 = the in i t ia l  guess of the solution
%output: x0 = the minimum point reached
% f0 = f(x(0))
i f  nargin < 6, MaxIter = 100; end %maximum # of iteration
if  nargin < 5, alpha0 = 10; end % initial step size
if  nargin < 4, TolFun = 1e-8; end %|f(x)| < TolFun wanted
if  nargin < 3, TolX = 1e-6; end %|x(k)- x(k - 1)|<TolX wanted
x = x0; fx0 = feva l(f,x0 ); fx = fx0;
alpha = alpha0; kmax1 = 25;
warning = 0; %the # of vain wanderings to find the optimum step size
for k = 1: MaxIter

g = grad(f,x); g = g/norm(g); %gradient as a row vector
alpha = alpha*2; %for t r ia l  move in negative gradient direction
fx1 = fev a l(f ,x  - alpha*2*g);
for k1 = 1:kmax1 %find the optimum step size(alpha) by line search

fx2 = fx1; fx1 = feval(f,x-alpha*g);
i f  fx0 > fx1+TolFun & fx1 < fx2 - TolFun %fx0 > fx1 < fx2

den = 4*fx1 - 2*fx0 - 2*fx2; num = den - fx0 + fx2; %Eq.(7 .1 .5)
alpha = alpha*num/den;
x = x - alpha*g; fx = fev a l(f ,x ); %Eq.(7.1.9)
break;

else alpha = alpha/2;
end

end
if  k1 >= kmaxl, warning = warning + 1; %failed to find optimum step size
else warning = 0;

end
if  warning >= 2|(norm(x - x0) < TolX&abs(fx - fx0) < TolFun), break; end
x0 = x; fx0 = fx;

end
xo = x; fo = fx;
i f  k == MaxIter, fp r in tf( 'Ju s t best in %d iterations',M axIter), end

%nm714
f713 = in line('x (1 )*(x(1 ) - 4 - x(2)) + x(2)*(x(2)- 1 ) ' , 'x ' ) ;
xO = [0 0], TolX = 1e-4; TolFun = 1e-9; alphaO = 1; MaxIter = 100;
[xo,fo] = opt_steep(f713,x0,TolX,TolFun,alpha0,MaxIter)
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7 .1 .5  N ewton M ethod

Like the steepest descent method, this method also uses the gradient to search for 
the minimum point of an objective function. Such gradient-based optimization 
methods are supposed to reach a point at which the gradient is (close to) zero. 
In this context, the optimization of an objective function f  (x) is equivalent to 
finding a zero of its gradient g(x), which in general is a vector-valued function 
of a vector-valued independent variable x. Therefore, if  we have the gradient 
function g(x) of the objective function f  (x), we can solve the system of nonlinear 
equations g(x) = 0 to get the minimum of f  (x) by using the Newton method 
explained in Section 4.4.

The backgrounds of this method as w ell as the steepest descent method can 
be shown by taking the Taylor series of, say, a two-variable objective function 
f (x1 ,x2) :

f ( x b x2) = f(x1k,x2k) +

+ -  [ X1 — x lk x2 — x2k ]

x 1 -  x 1k

(x1k,x2k) x2 -  x2k
JV  Э Г
dx1 dx2

‘d2f / ‘dx\ 92f/ 9 x 19x2 
d 2f/dx2dx1 d 2f/ d x 2

1
(x1k,x2k)

x 1 -  x 1k
x2 -  x2k

f ( x )  = f ( x k) +  V / (x )r |Xt[x -  xk] + - [ x  -  xk]TV 2f ( x )|Xt[x -  xk]

/ (x ) = f { x k) +  g [ [x  -  Xk\ +  ~[x -  xkf  Hk[x -  xk] (7.1.10)

with the gradient vector gk = V f ( x ) ^ k and the Hessian matrix Hk = V 2f  (x)|xk. 
In the light of this equation, we can see that the value of the objective function at 
point xk+1 updated by the steepest descent algorithm described by 
Eq. (7.1.9)

xk+1 (7.̂ .9) xk — akgk/||gk|| 
is most likely smaller than that at the old point xk, with the third term in 
Eq. (7.1.10) neglected.

f  (xk+1) = f(xk)  + g [  [xk+1 — xk ] = f(xk)  — ak gT gk/|| gk|| 

f  (xk+1) — f(xk)  = — akgTgk/||gk|| < 0 ^  f  (xk+1) < f(xk)
(7 .1.11)

Slightly different from this strategy of the steepest descent algorithm, the Newton 
method tries to go straight to the zero of the gradient of the approximate objective 
function (7.1.10)

gk + Hk [x — xk ] = 0, 

by the updating rule

x = xk — Hk 1gk

xk+1 = xk — Hk l gk

(7.1.12)

(7.1.13)

with the gradient vector gk = V f ( x ) ^ k and the Hessian matrix Hk = V 2f  (x) 
(Appendix C).

xk
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This algorithm is essentially to find the zero of the gradient function g(x) of the 
objective function and consequently, it can be implemented by using any vector 
nonlinear equation solver. What we have to do is just to define the gradient 
function g(x) and put the function name as an input argument of any routine 
like “n ew tons()” or “f s o lv e ( ) ” for solving a system of nonlinear equations 
(see Section 4.6).

Now, we make a MATLAB program “nm715.m”, which actually solves 
g(x) = 0 for the gradient function

g(x) = V / (x ) = = [ 2xi — X2 — 4 2x2 — x i — 1 J (7.1.14)'JV  Э Г
dx1 dx2 

of the objective function (7.1.6)

/(x) = / (x 1 , x 2 ) =  x 2 — x 1 x 2 — 4x1 + x2 — x2

Figure 7.5 illustrates the process of searching for the minimum point by the New
ton algorithm (7.1.13) as well as the steepest descent algorithm (7.1.9), where the 
steepest descent algorithm proceeds in the negative gradient direction until the 
minimum point in the line is reached, while the Newton algorithm approaches 
the minimum point almost straightly and reaches it in a few iterations.

>>nm715
xo = [3.0000 2.0000], ans = -7

%nm715 to minimize an objective ftn f(x) by the Newton method. 
clear, clf
f713 = inline('x(1).A2 - 4*x(1) - x(1).*x(2) + x(2).A2 - x(2)','xl); 
g713 = inline('[2*x(1) - x(2) - 4 2*x(2) - x(1) - 1]','x'); 
x0 = [0 0], TolX = 1e-4; TolFun = 1e-6; MaxIter = 50;
[xo,go,xx] = newtons(g713,x0,TolX,MaxIter);
xo, f713(xo) %an extremum point reached and its function value

Figure 7.5 Process for the steepest descent method and Newton method (‘‘nm714.m’’ and 
‘‘nm715.m’’).
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R em ark  7.1. Weak Point of Newton Method.
The Newton method is usually more efficient than the steepest descent method 

if  only it works as illustrated above, but it is not guaranteed to reach the minimum 
point. The decisive weak point of the Newton method is that it may approach one 
of the extrema having zero gradient, which is not necessarily a (local) minimum, 
but possibly a maximum or a saddle point (see Fig. 7.13).

7 .1 .6  C o n ju g a te  G rad ien t M ethod

Like the steepest descent method or Newton method, this method also uses the 
gradient to search for the minimum point of an objective function, but in a 
different way. It has two versions— the Po lak-R ib iere (PR) method and the 
Fletcher-Reeves (FR) method— that are slightly different only in the search 
direction vector. This algorithm, summarized in the following box, is cast into 
the MATLAB routine “o p t_ co n jg ()”, which implements PR or FR depending 
on the last input argument KC = 1 or 2. The quasi-Newton algorithm used in 
the MATLAB built-in routine “fm in un c()” is similar to the conjugate gradi
ent method.

This method borrows the framework of the steepest descent method and needs 
a bit more effort for computing the search direction vector s(n). It takes at most N 
iterations to reach the minimum point in case the objective function is quadratic 
with a positive-definite Hessian matrix H as

/ (x ) = ^ х г Я х  + b r x + c where x: an N -dimensional vector (7.1.15)

CONJUGATE GRADIENT ALGORITHM
Step 0. With the iteration number k  = 0, find the objective function value 

f 0 = f  (x0) for the initial point x0.
Step 1. Initialize the inside loop index, the temporary solution and the search 

direction vector to n = 0, x(n) = xk and s(n) = —gk = —g(xk), respec
tively, where g(x) is the gradient of the objective function f  (x).

Step 2 . For n = 0 to N — 1, repeat the following things:
Find the (optimal) step-size

a n = ArgMina f  (x(n) + as(n)) (7.1.16)

and update the temporary solution point to

x(n + 1) = x(n) + a ns(n) (7.1.17)

and the search direction vector to

s(n + 1) = — gn+1 + e ns(n) (7Л Л 8)
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with

j0„ = [gn+1 ~ ёя] gn+1 (FR) or g"+i gn+1 (PR) (7.1.19)
gTn gn gn gn

Step 3. Update the approximate solution point to xk+1 = x(N), which is the 
last temporary one.

Step 4. If xk & xk—1 and /(xk) & /(xk—1), then declare xk to be the minimum 
and terminate the procedure. Otherwise, increment k by one and go back 
to Step 1.

function [xo,fo] = opt_conjg(f,x0,TolX,TolFun,alphaO,Maxiter,KC)
%KC = 1: Polak-Ribiere Conjugate Gradient method
%KC = 2: Fletcher-Reeves Conjugate Gradient method
if nargin < 7 ,  KC = 0; end
if nargin < 6, MaxIter = 100; end
if nargin < 5, alpha0 = 10; end
if nargin < 4, TolFun = 1e-8; end
if nargin < 3, TolX = 1e-6; end
N = length(x0); nmax1 = 20; warning = 0; h = 1e-4; %dimension of variable
x = x0; fx = feval(f,x0); fx0 = fx;
for k = 1: MaxIter

xk0 = x; fk0 = fx; alpha = alpha0;
g = grad(f,x,h); s = -g;
for n = 1:N

alpha = alpha0;
fx1 = feval(f,x + alpha*2*s); %trial move in search direction
for n1 = 1:nmax1 %To find the optimum step size by line search

fx2 = fx1; fx1 = feval(f,x+alpha*s);
if fx0 > fx1 + TolFun & fx1 < fx2 - TolFun %fx0 > fx1 < fx2

den = 4*fx1 - 2*fx0 - 2*fx2; num = den-fxO + fx2; %Eq.(7.1.5)
alpha = alpha*num/den;
x = x+alpha*s; fx = feval(f,x);
break;

elseif n1 == nmax1/2
alpha = -alpha0; fx1 = feval(f,x + alpha*2*s);

else
alpha = alpha/2;

end
end
x0 = x; fx0 = fx;
if n < N

g1 = grad(f,x,h);
if KC <= 1, s = - g1 +(g1 - g)*g17(g*g'+ 1e-5)*s; %(7.1.19a)
else s = -g1 + g1*g1'/(g*g'+ 1e-5)*s; %(7.1.19b)

end
g = g1;

end
if n1 >= nmax1, warning = warning+1; %can't find optimum step size
else warning = 0;

end
end
if warning >= 2|(norm(x - xk0)<TolX&abs(fx - fk0)< TolFun), break; end

end
xo = x; fo = fx;
if k == MaxIter, fprintf('Just best in %d iterations',MaxIter ), end

%nm716 to minimize f(x) by the conjugate gradient method.
f713 = inline('x(1).A2 - 4*x(1) - x(1).*x(2) + x(2).A2 - x(2) 'x');
x0 =[0 0], TolX = 1e-4; TolFun = 1e-4; alpha0 = 10; MaxIter = 100;
[xo,fo] = opt_conjg(f713,x0,TolX,TolFun,alpha0,MaxIter,1)
[xo,fo] = opt_conjg(f713,x0,TolX,TolFun,alpha0,MaxIter,2)
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Based on the fact that minimizing this quadratic objective function is equivalent 
to solving the linear equation

g(x) = V f  (x) = H x + b = 0 (7.1.20)

MATLAB has several built-in routines such as “c g s ( ) ”,“p c g ( )”, and “b ic g ( ) ”, 
which use the conjugate gradient method to solve a set of linear equations.

We make the MATLAB program “nm716.m” to minimize the objective func
tion (7.1.6) by the conjugate gradient method and the minimization process is 
illustrated in Fig. 7.6.

7 .1 .7  S im u la te d  A n n ealin g  M ethod [W -7]

A ll of the optimization methods discussed so far may be more or less efficient 
in finding the minimum point if  only they start from the initial point sufficiently 
close to it. But, the point they reach may be one of several local minima and we 
often cannot be sure that it is the global minimum. How about repeating the pro
cedure to search for all local minima starting from many different initial guesses 
and taking the best one as the global minimum? This would be a computation
a lly  formidable task, since there is no systematic w ay to determine a suitable 
sequence of initial guesses, each of which leads to its own (local) minimum so 
that all the local minima can be exhaustively found to compete with each other 
for the global minimum.

An interesting alternative is based on the analogy between annealing and min
imization. Annealing is the physical process of heating up a solid metal above its 
melting point and then cooling it down so slowly that the highly excited atoms 
can settle into a (global) minimum energy state, yielding a single crystal with 
a regular structure. Fast cooling by rapid quenching may result in widespread
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irregularities and defects in the crystal structure, analogous to being too hasty 
to find the global minimum. The simulated annealing process can be imple
mented using the Boltzmann probability distribution of an energy level £ (> 0) 
at temperature T described by

p(E)  = a  e x p ( - E/KT)  with the Boltzmann constant K  and a  = 1/KT

Note that at high temperature the probability distribution curve is almost flat over 
a wide range of E , implying that the system can be in a high energy state as 
equally well as in a low energy state, while at low temperature the probability 
distribution curve gets higher/lower for lower/higher E , implying that the system 
w ill most probably be in a low energy state, but still have a slim chance to be 
in a high energy state so that it can escape from a local minimum energy state.

The idea of simulated annealing is summarized in the box below and cast 
into the MATLAB routine “s im _ a n l()”. This routine has two parts that vary 
with the iteration number as the temperature falls down. One is the size of step 
A x from the previous guess to the next guess, which is made by generating a 
random vector y  having uniform distribution U [—1, +1] and the same dimension 
as the variable x and multiplying i —1 (y) (in a termwise manner) by the difference 
vector (u — l) between the upper bound u and the lower bound l of the domain 
of x. The i — 1-law

implemented in the routine “m u_inv()” has the parameter \x that is increased 
according to a rule

as the iteration number k increases, reaching i  = 10100 at the last iteration k = 
kmax. Note the following:

• The quenching factor q > 0 is made small/large for slow/fast quenching.
• The value of i —1-law function becomes small for ^  | < 1 as i  increases 

(see Fig. 7.7a).

The other is the probability of taking a step A x that would result in change 
A f  > 0 of the objective function value f  (x). S im ilarly to Eq. (7.1.21), this is 
determined by

(7 .1.21)

(1 + i ) ^  — 1 
Cy) = ------------------- sign (y) for |y| < 1 (7.1.22)

i  = 10100 (k/kmax)q with q > 0: the quenching factor (7.1.23)

p(taking the step Ax) = exp (7.1.24)
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(a) The mu-law inverse function g~1(y) (b) The exponential function for
randomness control

Figure 7.7 Illustrative functions used for controlling the random ness-temperature in SA.

SIMULATED ANNEALING
Step 0. Pick the initial guess x0, the lower bound l, the upper bound u, the 

maximum number of iterations kmax > 0, the quenching factor q > 0 (to 
be made small/large for slow/fast quenching), and the relative tolerance 
Sf  of function value fluctuation.

Step 1. Let x = x0, x° = x, f o = f  (x).

Step 2. For k = 1 to kmax, do

{Generate an N x  1 uniform random vector of U [—1, +1] and transform 
it by the inverse i  law  (with i  = 10100 (k/kmax)q) to make A x and then 
take x 1 — x + Ax, confining the next guess inside the admissible region 
{x|l < x < u} as needed.

If A f  = f  (x1) -  f  (x) < 0,

{set x — x1 and if  f  (x) < f o, set xo — x and f o — f ( x o).}

Otherwise,

{generate a uniform random number z of U[0,1] and set x — x1 only in case 

z < ^(taking the step Ax)  (7=24) exp(-(k/kmax)qA f / |f(x)|/sf)

}
}

Step 3. Regarding xo as close to the minimum point that we are looking for, 
we may set xo as the initial value and apply any (local) optimization 
algorithm to search for the minimum point of f  (x).
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function [xo,fo] = sim_anl(f,x0,l,u,kmax,q,TolFun)
% simulated annealing method to minimize f(x) s . t .  l  <= x <I u
N = length(xO);
x = xO; fx = fev a l(f ,x );
xo = x; fo = fx;
if  nargin < 7, TolFun = 1e-8; end
if  nargin <6, q = 1; end %quenching factor
if  nargin < 5, kmax = 100; end %maximum iteration number
for k = 0:kmax

Ti = (k/kmax)~q; %inverse of temperature from 0 to 1
mu = 10~(Ti*100); % Eq.(7.1.23)
dx = mu_inv(2*rand(size(x))- 1,mu).*(u - l ) ;
x1 = x + dx; %next guess

x1 II x1 < l l +( l < II x1 x1 < II u x1 +( u < x1 u

%confine i t  inside the admissible region bounded by l and u.
fx1 = fev a l(f,x1 ); df = fx1- fx;
i f  df < 0|rand < exp(-Ti*df/(abs(fx) + eps)/TolFun) Eq. (7. 1.24)

x = x1; fx = fx1;
end
if  fx < fo, xo = x; fo = fx1; end

end

function x = mu_inv(y,mu) % inverse of mu-law Eq.(7.1.22)
x = (((1+mu).~abs(y)- 1)/mu).*sign(y);

%nm717 to minimize an objective function f(x) by various methods.
c lear, c lf
f = in lin e('x (1 )M  - 16*x(1)~2 - 5*x(1) + x(2)M - 16*x(2) л2 - 5*x(2)' 'x ') ;
l  = [-5 -5]; u = [5 5]; %lower/upperbound
x0 = [0 0]
[xo_nd,fo] = opt_Nelder(f,x0)
[xos,fos] = fminsearch(f,x0) %cross-check by MATLAB built- in routines
[xou,fou] = fminunc(f,x0)
kmax = 500; q = 1; TolFun = 1e-9;
[xo_sa,fo_sa] = sim_anl(f,x0,l,u,kmax,q,TolFun)

which remains as big as e—1 for |Д///(x)| =  S/ at the last iteration k =  kmax, 
meaning that the probability of taking a step hopefully to escape from a local 
minimum and find the global minimum at the risk of increasing the value of 
objective function by the amount Д/  =  l/(x)ls/ is still that high. The shapes of 
the two functions related to the temperature are depicted in Fig. 7.7.

We make the MATLAB program “nm717.m”, which uses the routine “sim_ 
a n l ( ) ” to minimize a function

f ( x )  =  x f  — 16x^ — 5x1 + — 16x| — 5x2 (7.1.25)

and tries other routines such as “op t_Nelder ( )”, “fm in s e a r c h ( ) ”, and “fmi- 
nunc( )” for cross-checking. The results of running the program are summa
rized in Table 7.1, which shows that the routine “s im _ a n l ( ) ” may give us the 
global minimum even when some other routines fail to find it. But, even this 
routine based on the idea of simulated annealing cannot always succeed and its 
success/failure depends partially on the initial guess and partially on luck, while 
the success/failure of the other routines depends solely on the initial guess.



3 3 8  OPTIMIZATION

Table 7.1 Results of Running Several Optimization Routines with Various Initial Values

xq opt_Nelder() fminsearch() fminunc() s i m a n l ()

[0, 0] [2.9035, 2.9035] [2.9035, 2.9036] [2.9036, 2.9036] [2.8966, 2.9036]

(fo =  -156.66) ( f  =  -156.66) (fo =  -156.66) (fo =  -156.66)

[-0.5,-1.0] [2.9035, -2.7468] [-2.7468, -2.7468] [-2.7468, -2.7468] [2.9029, 2.9028]

(fo =  -128.39) (fo =  -100.12) (fo =  -100.12) (fo =  -156.66)

7.1.8 Genetic Algorithm [W-7]

Genetic algorithm (G A) is a directed random search technique that is mod

eled on the natural evolution/selection process toward the survival of the fittest. 

The genetic operators deal with the individuals in a population over several 

generations to improve their fitness gradually. Individuals standing for possi

ble solutions are often compared to chromosomes and represented by strings of 

binary numbers. Like the simulated annealing method, G A  is also expected to 

find the global minimum solution even in the case where the objective func

tion has several extrema, including local maxima, saddle points as well as local 

minima.

A  so-called hybrid genetic algorithm [P-2] consists of initialization, evalu

ation, reproduction (selection), crossover, and mutation as depicted in Fig. 7.8

Figure 7.8 Flowchart for a genetic algorithm.



UNCONSTRAINED OPTIMIZATION 3 3 9

Np=  8, N  = 2, N b=  [8 8]
pool P

01100110 01100110
01001111 10101011
11110110 01101000
01110111 11101111
10101101 10110011
11011011 11110110
11011000 00000001
10011100 00011110

population X fx

decode 
--- ►

random pairing 

a1 01111100 01111110 a2 

b1 010Ц0111 -| г 1010101|1 b2 

c1 11000010 - y  10011100 c2 

d1 10010011 11001111 d2 encode 

e1 10101101 10110011 e2 ^
f1 110|00010 ^ L 1101001|0 f2

g1 1010|1101 — — 101100|11 g2 

h1 10100001 01001010 h2 

crossover/mutuation ^

01111110 a2 

10101010 b2' 

10011111 c2'

a1 01111100 

b1' 01000010 

c1' 11001101 

d1 10010011 

e1 10101101 

f1' 11010111 

g1' 10100010 

h1 10100001

11001111 d2 decode
10110011 e2 ----------►

11010011 f2' 

10110000 g2' 

01001010 h2

1.0000 -1.0000 - 10.00

-1.9020 -1.7059 -40.95
4.6471 -0.9216 44.67

0.3333

1.7843
4 3725 evaluate 
2.0196 ^

18.84

-54.22

3.5882 4.6471 19.71

3.4706 -4.9608 85.84

1.1176 -3.8235 - 12.54

^  reproduction

0.1209 -0.0466 0.28

1.5527 1.7356 -36.40

2.6259 1.1550 -  50.62

0.7713 3.1452 -  44.58

1.7843 2.0196 -  54.22

2.6360 3.2601 (-7 4 .7 3 )

1.7843 2.0196 -  54.22

1.3160 -2.0846 -  35.76

0.1373 -  0.0588 0.31

2.4118 1.6667 -  46.12

3.0392 1.2353 -  52.96

0.7647 3.1176 -  44.73

1.7843 2.0196 -  54.22

3.4314 3.2745 -  69.94

1.3529 1.9020 -  43.50

1.3137 -  2.0980 -  35.88

Figure 7.9 Reproduction/crossover mutation in one iteration of genetic algorithm.

and is summarized in the box below. The reproduction/crossover process is illus

trated in Fig 7.9. This algorithm is cast into the routine “genetic()” and we 

append the following statements to the M A T L A B  program “nm717.m” in order 

to apply the routine for minimizing the function defined by Eq. (7.1.25). Inter

ested readers are welcome to run the program with these statements appended 

and compare the result with those of using other routines. Note that like the 

simulated annealing, the routine based on the idea of G A  cannot always suc

ceed and its success/failure depends partially on the initial guess and partially 

on luck.
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Np = 30 ; %population size

Nb = [12 1 2 ]; %the numbers of bits for representing each variable

Pc = 0 .5 ; Pm = 0 .0 1 ;  %Probability  of crossover/m utation

eta = 1 ; kmax = 100 ; % learning rate and the maximum # of iterations

1
ОX

gen, fo_gen] = g e n e t ic (f ,x 0 ,l ,u ,N p ,N b ,P c ,P m ,e t a ,k m a x )

H Y B R I D  G E N E T I C  A L G O R I T H M

Step 0. Pick the initial guess x0 =  [x01.. . x0N](N : the dimension of the vari

able), the lower bound l =  [l1 ... lN], the upper bound u =  [u1 .. .  uN], 

the population size N p, the vector N b =  [Nb1.. .  N bN] consisting of the 

numbers of bits assigned for the representation of each variable xi, the 

probability of crossover Pc, the probability of mutation Pm, the learn

ing rate n(0 < n < 1, to be made small/large for slow/fast learning), 

and the maximum number of iterations kmax > 0. Note that the dimen

sions of x0, u, and l are all the same as N , which is the dimension 

of the variable x to be found and the population size Np can not be 

greater than 2Nb in order to avoid duplicated chromosomes and should 

be an even integer for constituting the mating pool in the crossover 

stage.

Step 1. Random Generation of Initial Population

Set x° =  x0, f o =  f (x o) and construct in a random way the initial pop

ulation array X 1 that consists of N p states (in the admissible region 

bounded by u and l) including the initial state x0, by setting

X1(1) =  xo and X 1 (k) =  l +  rand.(u - l) for k =  2 :  Np  (7.1.26)

where rand is a random vector of the same dimension N  as x0, u, 

and l. Then, encode each number of this population array into a binary 

string by

E
m —1 x—\m
. , N M : V '  N bi) 
i=1 ^^i=1

=  binary representation of X 1(n,m) with N bm bits

=  {2Nbm _  ^ ( 4 , 1 1 1 ) -l(m) 
u(m) — l(m)

for n =  1 : N p and m =  1 : N  (7.1.27)

so that the whole population array becomes a pool array, each row of 

which is a chromosome represented by a binary string of N=1 N bi bits.
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Step 2. For k =  1 to kmax, do the following:

1. Decode each number in the pool into a (decimal) number by

X k(n,m) =  decimal representation of

—\m — 1 ^—\m \
n, 1 + 2 ^  i=1 Nbi : 2 _ i=1 N bi \ with N bm bits 

=  P^ n >') 2Nbm_ l + ^

for n =  1 : N p and m =  1 : N  (7.1.28)

and evaluate the value f(n) of function for every row X k(n ,:) =  x(n) 

corresponding to each chromosome and find the minimum fmin =  f (n b) 

corresponding to X k(nb, :) =  x(nb).

2. If fmin =  f (n b) < f o, then set f o =  f (n b) and xo =  x(nb).

3. Convert the function values into the values of fitness by

h(n ) =  MaxN= 1 {/(n)} — f(n) (7.1.29)

which is nonnegative V n =  1 : N p and is large for a good chromosome.
N

4. If Maxn=1 { /1(n)} « 0 ,  then terminate this procedure, declaring xo as 

the best.

Otherwise, in order to make more chromosomes around the best point 

x(nb) in the next generation, use the reproduction rule

x(n) \(n) +  Г]̂ пъ] { 1<П\ х(иь) - х(я)) (7.1.30)
h(nb)

to get a new population X k+1 with X k+1(n ,:) =  x(n) and encode it to 

reconstruct a new pool array Pk+1 by Eq. (7.1.27).

5. Shuffle the row indices of the pool array for random mating of the chro

mosomes.

6. With the crossover probability Pc, exchange the tail part starting from 

some random bit of the numbers in two randomly paired chromosomes 

(rows of Pk+1) with each other’s to get a new pool array Pk+1.

7. With the mutation probability Pm, reverse a random bit of each number 

represented by chromosomes (rows of Pk+1) to make a new pool array 

Pk + 1. k
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function [xo,fo] = genetic(f,x0,l,u,Np,Nb,Pc,Pm,eta,kmax)
% Genetic Algorithm to minimize f(x) s.t. l <= x <= u
N = length(xO);
if nargin < 10, kmax = 100; end %# of iterations(generations)
if nargin < 9|eta > 11eta <= 0, eta = 1; end %learning rate(0 < eta < 1)
if nargin < 8 , Pm = 0.01; end %probability of mutation
if nargin < 7 ,  Pc = 0.5; end %probability of crossover
if nargin < 6 , Nb = 8*ones(1,N); end %# of genes(bits) for each variable
if nargin < 5, Np = 10; end %population size(number of chromosomes)
%Initialize the population pool
NNb = sum(Nb);
xo = x0 (:)'; l = l(:)'; u = u(:)';
fo = feval(f,xo);

o;xiiX(

for n = 2:Np, X(n,:) = l + rand(size(x0)).*(u - l); end %Eq.(7 .1.26)
P = gen_encode(X,Nb,l,u); %Eq.(7.1.27)
for k = 1 :kmax

X = gen_decode(P,Nb,l,u); %Eq.(7.1.28)
for n = 1:Np, fX(n) = feval(f,X(n,:)); end
[fxb,nb] = min(fX); %Selection of the fittest
if fxb < fo, fo = fxb; xo = X(nb,:); end
fX1 = max(fxs) - fX; %make the nonnegative fitness vector by Eq.(7.1.29)
fXm = fX1(nb);
if fXm < eps, return; end %terminate if all the chromosomes are equal
%Reproduction of next generation
for n = 1:Np

X(n,:) = X(n,:) + eta*(fXm - fX1(n))/fXm*(X(nb,:) - X(n,:) ); % E q .(7.1.30)
end
P = gen_encode(X,Nb,l,u);
%Mating/Crossover
is = shuffle([1:Np]);
for n = 1:2:Np - 1

if rand < Pc, P(is(n:n + 1),:) = crossover(P(is(n:n + 1),:) ,N b ); end
end
%Mutation
P = mutation(P,Nb,Pm);

end

function P = gen_encode(X,Nb,l,u)
% encode a population(X) of state into an array(P) of binary strings
Np=size(X,1); %population size
N = length(Nb); %dimension of the variable(state)
for n = 1:Np

b2 = 0 ;
for m = 1:N

b1 = b2+1; b2 = b2 + Nb(m);
Xnm =(2"Nb(m)- 1)*(X(n,m) - l(m))/(u(m) - l(m)); %Eq.(7.1 . 2 7 )

P(n,b1:b2) = dec2bin(Xnm,Nb(m)); %encoding to binary strings
end

end

function X = gen_decode(P,Nb,l,u)
% decode an array of binary strings(P) into a population(X) of state
Np = size(P,1); %population size
N = length(Nb); %dimension of the variable(state)
for n = 1:Np

b2 = 0 ;
for m = 1:N

b1 = b2 + 1; b2 = b1 + Nb(m) - 1; %Eq.(7.1.28)
X(n,m) = bin2dec(P(n,b1:b2))*(u(m) - l(m))/(2ANb(m) - 1) + 1 ( m );

end
end



CONSTRAINED OPTIMIZATION 3 4 3

function chrms2 = crossover(chrms2,Nb)
% crossover between two chromosomes 
Nbb = length(Nb); 
b2 = 0 ; 
for m = 1:Nbb

b1 = b2 + 1; bi = b1 + mod(floor(rand*Nb(m)),Nb(m)); b2 
tmp = chrms2 (1 ,bi:b2 ); 
chrms2 (1 ,bi:b2 ) = chrms2 (2 ,bi:b2 ); 
chrms2 (2 ,bi:b2 ) = tmp;

end

= b2 + Nb(m);

function P = mutation(P,Nb,Pm) % mutation
Nbb = length(Nb);
for n = 1:size(P,1)

b2 = 0 ;
for m = 1:Nbb

if rand < Pm
b1 = b2 + 1; bi = b1 + mod(floor(rand*Nb(m)),Nb(m)) ; b2 = b2 + Nb (m);
P(n,bi) = ~P(n,bi);

end
end

end

function is = shuffle(is) % shuffle
N = length(is);
for n = N:-1:2

in = ceil(rand*(n - 1 )); tmp = is(in);
is(in) = is(n); is(n) = tmp; %swap the n-th element with the in-th one

end

7.2 C O N STR A IN E D  OPTIMIZATION [L-2, CHAPTER 10]

In this section, only the concept of constrained optimization is introduced. The 

explanation for the usage of the corresponding M ATLAB  routines is postponed 

until the next section.

7.2.1 Lagrange Multiplier Method

A  class of common optimization problems subject to equality constraints may 

be nicely handled by the Lagrange multiplier method. Consider an optimization 

problem with M  equality constraints.

Min f(x) 

s.t. h(x) =

hi(x)

hi(x)

Hm (x )

(7.2.1a)

(7.2.1b)0

According to the Lagrange multiplier method, this problem can be converted 

to the following unconstrained optimization problem:

M

Min l(x, X) =  f  (x) +  XTh(x) =  f  (x) +  ^ 2  Xmhm(x) (7.2.2)

m=1
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The solution of this problem, if it exists, can be obtained by setting the derivatives 

of this new objective function l(x, X) with respect to x and X to zero:

д д T д M
— l(x,X) =  — /(x ) + X T—  h(x) =  V /(x )  + y / XmV h m(x) =  0 (7.2.3a) 
д x д x д x

m=1

д
— l(x,X) =  h (x ) =  0  (7.2.3b)
д X

Note that the solutions for this system of equations are the extrema of the objec

tive function. We may know if they are minima/maxima, from the positive/nega- 

tive-definiteness of the second derivative (Hessian matrix) of l(x, X) with respect 

to x. Let us see the following examples.

Remark 7.2. Inequality Constraints with the Lagrange Multiplier Method.

Even though the optimization problem involves inequality constraints like 

gj (x) < 0, we can convert them to equality constraints by introducing the (non

negative) slack variables yj as

gj(x) +  y2 =  0 (7.2.4)

Then, we can use the Lagrange multiplier method to handle it like an equality- 

constrained problem.

E x a m p le  7 .1 . Minimization by the Lagrange Multiplier Method.

Consider the following minimization problem subject to a single equality con

straint:

Min f  (x) =  x2 +  x| (E7.1.1a)

s.t. h(x) =  x1 +  x2 — 2 =  0 (E7.1.1b)

We can substitute the equality constraint x2 =  2 — x1 into the objective func

tion (E7.1.1a) so that this problem becomes an unconstrained optimization prob

lem as

Min f(xi) =  xj2 +  (2 — x1)2 =  2x2 — 4x1 +  4 (E7.1.2)

which can be easily solved by setting the derivative of this new objective function 

with respect to x1 to zero.

—  f (x 1) = 4 x 1 - 4  =  0, Xl =  l, x2 (E7= lb)2 - x 1 =  l (E7.1.3) 
дx1

Alternatively, we can apply the Lagrange multiplier method as follows:

Min l(x, X) (7= 2) x'2 +  x| +  k(x1 +  x2 — 2) (E7.1.4)
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-5  -5

(a) A mesh-shaped graph (b) A contour-shaped graph

Figure 7.10 The objective function with constraint for Example 7.1.

— /(x, k) (7'= a) 2xi +  A. =  0, xi =  —A/2 
9x1

— /(x, k) (7'= a) 2xo + k  =  0, xo =  —A/2 
9x2

9 . .  (7.2.3b)
— /(x, A,) — Xi H- -̂ 2 — 2 — 0 
dk

(E7.1.5a)

(E7.1.5b)

(E7.1.5c)

x1 +  x2 (E7= 5c) 2 — k/2 — k/2 =  -k =  2, к =  -2 (E7.1.6)

x1 (E7='5a) —k/2 =  1, x2 (E7= 5b) —k/2 =  1 (Fig. 7.10) (E7.1.7)

In this example, the substitution of (linear) equality constraints is more con

venient than the Lagrange multiplier method. However, it is not always the case, 

as illustrated by the next example.

E x a m p le  7 .2 . Minimization by the Lagrange Multiplier Method.

Consider the following minimization problem subject to a single nonlinear 

equality constraint:

Min /(x ) =  x1 +  x2 

s.t. h(x) =  xj2 +  x| — 2 =  0

(E7.2.1a)

(E7 .2 .1b)

Noting that it is absurd to substitute the equality constraint (E7.2.1b) into 

the objective function (E7.2.1a), we apply the Lagrange multiplier method as 

below.

(7 .2 .2)
Min l(x,k) ("=2) x1 +  x2 +  k(x2 +  x|) (E7.2.3)

5
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-,--"f(x) = x1 + x2---.

-2  -2

Figure 7.11 The objective function with constraint for Example 7.2.

+  x

d
— I(\,k)
dxi

(7.2.3a)
1 +  2kxi - 0 , xi = —l/2k (E7.2.4a)

d
— K\,k)
dX2

(7.2.3a)
1 +  2kX2 = 0 , X2 = — l/2k (E7.2.4b)

d

~х1пл>

(7.2.3b)
x2 +  x2 — 2 = 0 (E7.2.4c)

2 (E7.2.4c) 2 (E7.2.4a,b) 
'2 =  2 ^ (—1/2к)2 +  (■

2
к)2

T-H— = 2, к == ± l/2 (E7.2.5)

(E7.2.4a) 1 (E7.2.4b) 1 /0 0 .
xi =  — l/2k =  ^1 , x2 =  — l/2k =  ^1  (E7.2.6)

Now, in order to tell whether each of these is a minimum or a maximum, 

we should determine the positive/negative-definiteness of the second derivative 

(Hessian matrix) of l(x, X) with respect to x.

d 2

1

l x d 2l/dx2dx2

1
2 >-
>

0
1

d 2l/dx2dx2 d2l/dx2 1к201

(E7 .2 .7)

This matrix is positive/negative-definite if the sign of к is positive/negative. 

Therefore, the solution (xi,x 2) =  (—1, —1) corresponding to к =  1/2 is a (local) 

minimum that we want to get, while the solution (xi ,x2) =  (1,1) corresponding 

to к =  —1/2 is a (local) maximum (see Fig. 7.11).

7.2.2 Penalty Function Method

2

This method is practically very useful for dealing with the general constrained 

optimization problems involving equality/inequality constraints. It is really
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attractive for optimization problems with fuzzy or loose constraints that are not 

so strict with zero tolerance.

Consider the following problem.

Min f(x)

h1(x) ' " g 1(x)

s.t. h (x) = =  0, g(x) =

x ()(Mh _ gL (x) _

0

(7.2.5a)

(7.2.5b)

The penalty function method consists of two steps. The first step is to construct 

a new objective function

M L

Min l(x) =  f(x) +  ^  wmh2m(x) +  ^  vmf (g m(x)) (7.2.6)

m=1 m=1

by including the constraint terms in such a way that violating the constraints 

would be penalized through the large value of the constraint terms in the objective 

function, while satisfying the constraints would not affect the objective function. 

The second step is to minimize the new objective function with no constraints 

by using the method that is applicable to unconstrained optimization problems, 

but a non-gradient-based approach like the Nelder method. W h y  don’t we use 

a gradient-based optimization method? Because the inequality constraint terms 

vmf m(gm(x)) attached to the objective function are often determined to be zero as 

long as x stays inside the (permissible) region satisfying the corresponding con

straint (gm(x) <  0) and to increase very steeply (like f m(gm(x)) =  exp(emgm(x)) 

as x goes out of the region; consequently, the gradient of the new objective func

tion may not carry useful information about the direction along which the value 

of the objective function decreases.

From an application point of view, it might be a good feature of this method 

that we can make the weighting coefficient (wm,vm, and em) on each penalizing 

constraint term either large or small depending on how strictly it should be 

satisfied.

Let us see the following example.

E x a m p le  7 .3 . Minimization by the Penalty Function Method.

Consider the following minimization problem subject to several nonlinear 

inequality constraints:

Min f  (x) =  |(xi +  1.5)2 +  5(x2 - 1.7)2}{(xi - 1.4)2 +  0 . 6 X  - 0.5)2}

(E7.3.1a)
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s.t. g (x) =

—xi 0

— x2 0

3x2 — x2x2 +  4x2 — 7 < 0

2xi +  x2 — 3 0

3x2 — 4x| — 4x2 0

(E7.3.lb)

According to the penalty function method, we construct a new objective func

tion (7.2.6) as

Min l(x) =  {(xi +  l.5)2 +  5(x2 — l.7)2}{(xi — l.4)2 +  0.6(x2 — 0.5)2}

+  ^   ̂vm$'m(gm('x)) 

m=l

where

Vm =  l, fm(gm(x)) =

(E7.3.2a)

0 if gm (x) < 0 (constraint satisfied)

exp(emgm(x)) if gm(x) >  0 (constraint violated)

em =  l V m =  l , . . . ,  5 (E7.3.2b)

5

%nm722 for Ex.7.3

% to solve a constrained optimization problem by penalty ftn method. 

clear, clf 

f ='f722p'; 

x0=[0.4 0.5]

TolX = 1e-4; TolFun = 1e-9; alphaO = 1;

[xo_Nelder,fo_Nelder] = opt_Nelder(f,x0) %Nelder method 

[fc_Nelder,fo_Nelder,co_Nelder] = f722p(xo_Nelder) %its results 

[xo_s,fo_s] = fminsearch(f,x0) %MATLAB built-in fminsearch() 

[fc_s,fo_s,co_s] = f722p(xo_s) %its results 

% including how the constraints are satisfied or violated 

xo_steep = opt_steep(f,x0,TolX,TolFun,alpha0) %steepest descent method 

[fc_steep,fo_steep,co_steep] = f722p(xo_steep) %its results 

[xo_u,fo_u] = fminunc(f,x0); % MATLAB built-in fminunc() 

[fc_u,fo_u,co_u] = f722p(xo_u) %its results

function [fc,f,c] = f722p(x)

f=((x(1)+ 1.5)~2 + 5*(x(2)- 1.7)~2)*((x(1)- 1.4)~2 + .6*(x(2)-.5)~2); 

c=[-x(1); -x(2); 3*x(1) - x(1)*x(2) + 4*x(2) - 7;

2*x(1)+ x(2) - 3; 3*x(1) - 4*x(2)"2 - 4*x(2)]; %constraint vector 

v=[1 1 1 1 1]; e = [1 1 1 1 1]'; %weighting coefficient vector 

fc = f +v*((c > 0).*exp(e.*c)); %new objective function
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»  ПШ722

xo_Nelder = 1.2118 0.5765 xo_steep = 1 2768 0.5989
fo_Nelder = 0.5322 %min value fo_steep = 0 2899 %not a minimum
co_Nelder = -1 .2118 co_steep = -1 2768

-0.5765 -0 5989
-1.7573 %high margin -1 5386
-0.0000 %no margin 0 .1525 %violating
-0.0000 %no margin -0 .0001

xo_s = 1.2118 0.5765 Warning: . . Gradient must be provided
fo_s = 0.5322 %min value

Maximum # of function evaluations
exceeded 

xo_u = 1 .
;
2843 0.6015

fo_u = 0 .2696 %not a minium

Note that the shape of the penalty function as well as the values of the 

weighting coefficients is set by the users to cope with their own problems. Then, 

we apply an unconstrained optimization technique like the Nelder-Mead method, 

which is not a gradient-based approach. Here, we make the program “nm722.m”, 

which applies not only the routine “opt_Nelder()” and the M ATLAB  built-in 

routine “fminsearch()” for cross-check, but also the routine “opt_steep()” and 

the M A TLA B  built-in routine “fminunc()” in order to show that the gradient- 

based methods do not work well. To our expectation, the running results listed 

above and depicted in Fig. 7.12 show that, for the objective function (E7.3.2a) 

augmented with the penalized constraint terms, the gradient-based routines 

“opt_steep()” and “fminunc()” are not so effective as the non-gradient- 

based routines “opt_Nelder()” and “fminsearch()” in finding the constrained

Figure 7.12 The contours for the objective function (E7.3.1a) and the admissible region 
satisfying the inequality constraints.
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minimum, which is on the intersection of the two boundary curves corresponding 

to the fourth and fifth constraints of (E7.3.1b).

7.3 M ATLAB  BUILT-IN ROUTINES FOR  OPTIMIZATION

In this section, we apply several M ATLAB  built-in unconstrained optimization rou

tines including “fminsearch()” and “fminunc()” to the same problem, expecting 

that their nuances will be clarified. Our intention is not to compare or evaluate the 

performances of these sophisticated routines, but rather to give the readers some 

feelings for their functional differences. We also introduce the routine “ linprog() ” 

implementing Linear Programming (LP) scheme and “fmincon()” designed for 

attacking the (most challenging) constrained optimization problems. Interested 

readers are encouraged to run the tutorial routines “optdemo” or “tutdemo”, which 

demonstrate the usages and performances of the representative built-in optimiza

tion routines such as “fminunc()” and “fmincon()” .

7.3.1 Unconstrained Optimization

In order to try applying the unconstrained optimization routines introduced 

in Section 7.1 and see how they work, we made the M ATLAB  program 

“nm731_1.m”, which uses those routines for solving the problem

Min f(x) =  (xx - 0.5)2(X1 +  1)2 +  (X2 +  1)2(X2 - 1)2 (7.3.1)

where the contours and the (local) maximum/minimum/saddle points of this 

objective function are depicted in Fig. 7.13.

Figure 7.13 The contours, minima, maxima, and saddle points of the objective function (7.3.1).
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%nm731_1
% to minimize an objective function f(x) by various methods. 
clear, clf
% An objective function and its gradient function
f = inline('(x(1) - 0.5).л2.*(х(1) + 1).~2 + (x(2)+1).~2.*(x(2) - 1).~2','x'); 
g0 = '[2*(x(1)- 0.5)*(x(1)+ 1)*(2*x(1)+ 0.5) 4*(x(2)~2 - 1).*x(2)]'; 
g = inline(g0,'x'); 
x0 = [0 0.5] %initial guess
[xon,fon] = opt_Nelder(f,x0) %min point, its ftn value by opt_Nelder 
[xos,fos] = fminsearch(f,x0) %min point, its ftn value by fminsearch() 
[xost,fost] = opt_steep(f,x0) %min point, its ftn value by opt_steep()
TolX = 1e-4; MaxIter = 100; 
xont = Newtons(g,x0,TolX,MaxIter);
xont,f(xont) %minimum point and its function value by Newtons()
[xocg,focg] = opt_conjg(f,x0) %min point, its ftn value by opt_conjg() 
[xou,fou] = fminunc(f,x0) %min point, its ftn value by fminunc()

Noting that it depends mainly on the initial value x0 whether each routine 

succeeds in finding a minimum point, we summarize the results of running those 

routines with various initial values in Table 7.2. It can be seen from this table 

that the gradient-based optimization routines like “opt_steep()”, “Newtons()”, 

“opt_conj()”, and “fminunc()” sometimes get to a saddle point or even a 

maximum point (Remark 7.1) and that the routines do not always approach the 

extremum that is closest to the initial point. It is interesting to note that even 

the non-gradient-based M ATLAB  built-in routine “fminsearch()” may get lost, 

while our routine “opt_Nelder()” works well for this case. We cannot, how

ever, conclude that this routine is better than that one based on only one trial, 

because there may be some problems for which the M ATLAB  built-in routine 

works well, but our routine does not. What we can state over this happening is 

that no human work is free from defect.

Now, we will see a M A TLA B  built-in routine “lsqnonlin(f,x0,l,u, 

options,p1,..)”, which presents a nonlinear least-squares (NLLS) solution to

Table 7.2 Results of Running Several Unconstrained Optimization Routines with 

Various Initial Values

Xo opt-Nelder fminsearch opt-steep Newtons opt-conjg fminunc

[0 , 0 ] [- 1 , 1] [0.5, 1] [0.5, 0] [-0.25, 0] [0.5, 0] [0.5, 0]

(minimum) (minimum) (saddle) (maximum) (saddle) (saddle)

[0, 0.5] [0.5, 1] [0 .0 2 , 1] [0.5, 1] [-0.25, -1] [0.5, 1] [0.5, 1]

(minimum) (lost) (minimum) (saddle) (minimum) (minimum)

[0.4, 0.5] [0.5, 1] [0.5, 1] [0.5, 1] [0.5, -1] [0.5, 1] [0.5, 1]

(minimum) (minimum) (minimum) (minimum) (minimum) (minimum)

[-0.5, 0.5] [0.5, 1] [- 1 , 1] [- 1 , 1] [-0.25, -1] [- 1 , 1] [- 1 , 1]

(minimum) (minimum) (minimum) (saddle) (minimum) (minimum)

[-0.8, 0.5] [- 1 , 1] [- 1 , 1] [- 1 , 1] [- 1 , - 1] [- 1 , 1] [- 1 , 1]

(minimum) (minimum) (minimum) (minimum) (minimum) (minimum)
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the minimization problem
N

Min £  f2(x) (7.3.2)

п=1

The routine needs at least the vector or matrix function f(x) and the initial guess 

x0 as its first and second input arguments, where the components of f(x) =  

[f1(x) ■ ■ ■ fN (x)]r are squared, summed, and then minimized over x. In order to 

learn the usage and function of this routine, we made the M ATLAB  program 

“nm731_2.m”, which uses it to find a second-degree polynomial approximating 

the function
1

=  T T a ?  1 1 3 3 1

For verification, the result of using the NLLS routine “lsqnonlin()” is compared 

with that obtained from directly applying the routine “polyfits()” introduced 

in Section 3.8.2.

>> nm731_2
ao_lsq = [-0.1631 -0.0000 0.4653], ao_fit = [-0.1631 -0.0000 0.4653]

%nm731_2 try using lsqnonlin() for a vector-valued objective ftn F(x) 
clear, clf
N = 3; a0 = zeros(1,N); %the initial guess of polynomial coefficient vector 
ao_lsq = lsqnonlin('f731_2',a0) %parameter estimate by lsqnonlin() 
xx = -2+[0:400]/50; fx = 1./(1+8*xx.*xx);
ao_fit = polyfits(xx,fx,N - 1) %parameter estimate by polyfits()

function F = f731_2(a)
%error between the polynomial a(x) and f(x) = 1/(1+8x~2) 
xx = -2 +[0:200]/50; F = polyval(a,xx) - 1./(1+8*xx.*xx);

7.3.2 Constrained Optimization

Generally, constrained optimization is very complicated and difficult to deal with. 

So we will not cover the topic in details here and instead, will just introduce the 

powerful M A TLA B  built-in routine “fmincon()”, which makes us relieved from 

a big headache.

This routine is well-designed for attacking the optimization problems subject 

to some constraints:

function [c,ceq] = f722c(x)
c = [-x(1); -x(2); 3*x(1) - x(1)*x(2) + 4*x(2)- 7;

2*x(1)+ x(2)- 3; 3*x(1)- 4*x(2)~2 - 4*x(2)]; %inequality constraints 
ceq = []; %equality constraints
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(Usage of the M ATLAB  6.x built-in function “fmincon(;

[xo,fo,.] = fmincon('ftn',x0,A,b,Aeq,beq,l,u,'nlcon',options,p1,p2,.)

Input Arguments (at least four input arguments 'ftn ',x0 ,A  and b required)

'ftn' : an objective function f(x) to be minimized, usually defined in an 

M-file, but can be defined as an inline function, which will 

remove the necessity of quotes(''). 

x0 : an initial guess x0 of the solution

A,b : a linear inequality constraints Ax < b; to be given as [] if not 

applied.

Aeq,beq: a linear equality constraints A eqx =  beq; to be given as [] if not 

applied.

l,u : lower/upper bound vectors such that l < x < u; to be given as [] 

if not applied, set l(i) = -inf/u(i) = inf if x(i) is not 

bounded below/above.

'nlcon': a nonlinear constraint function defined in an M-file, supposed to 

return the two output arguments for a given x; the first one being 

the LHS (vector) of inequality constraints c(x) < 0 and the 

second one being the LHS (vector) of equality constraints 

ceq (x) =  0; to be given as [] if not applied. 

options: used for setting the display parameter, the tolerances for xo and 

f(x o), and so on; to be given as [] if not applied. For details, 

type ‘help optimset’ into the M ATLAB  command window. 

p1,p2,.: the problem-dependent parameters to be passed to the objective 

function f(x) and the nonlinear constraint functions c(x), ceq(x).

• Output Arguments

xo : the minimum point (xo) reached in the permissible region 

satisfying the constraints 

fo : the minimized function value f  (xo)

%nm732_1 to solve a constrained optimization problem by fmincon() 
clear, clf
ftn='((x(1) + 1 .5)л2 + 5*(x(2) - 1 .7)л2)*((х(1)-1.4)л2 + .6*(x(2)-.5)~2)'; 
f722o = inline(ftn,'x'); 
x0 = [0 0.5] %initial guess
A  = []; B = []; Aeq = []; Beq = []; %no linear constraints 
l = -inf*ones(size(x0 )); u = inf*ones(size(x0 )); %  no lower/upperbound 
options = optimset('LargeScale','off'); %just [] is OK.
[xo_con,fo_con] = fmincon(f722o,x0,A,B,Aeq,Beq,l,u,'f722c',options) 
[co,ceqo] = f722c(xo_con) %  to see how constraints are.
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Min f(x )  (7.3.4)

s.t. A x  < b, A eqx =  beq, c(x) < 0, ceq(x) =  0 and l < x < u (7.3.5)

A  part of its usage can be seen by typing ‘help fmincon’ into the M A T L A B  

command window as summarized in the above box. W e  make the M A T L A B  

program “nm732_1.m” , which uses the routine “fmincon() ” to solve the problem 

presented in Example 7.3. Interested readers are welcomed to run it and observe 

the result to check if it agrees with that of Example 7.3.

There are two more M A T L A B  built-in routines to be introduced in this section. 

One is

" f m i n i m a x ( 'f t n ' ,x 0 ,A ,b ,A e q ,b e q ,l ,u , 'n l c o n ' ,o p t i o n s ,p 1 , . . ) " ,

which is focused on minimizing the maximum among several components of 

the vector/matrix-valued objective function f(x) =  [f1(x) ■ ■ ■ f v (x)]r subject to 

some constraints as described below. Its usage is almost the same as that of 

“fmincon()” .

Min{Max{fn(x)}} (7.3.6)
x n

s.t. Ax  < b, A eqx =  beq, c(x) < 0, ceq(x) =  0, and l < x < u (7.3.7) 

The other is the constrained linear least-squares (LLS) routine 

" l s q l i n ( C ,d ,A ,b ,A e q ,b e q ,l ,u ,x 0 ,o p t i o n s ,p 1 , . . ) " ,  

whose job is to solve the problem

Min ||Cx - d||2 (7.3.8)
x

s.t. A x  < b, A eqx =  beq and l < x < u (7.3.9)

In order to learn the usage and function of this routine, we make the M A T L A B  

program “nm732_2.m” , which uses both “fminimax()” and “ lsq lin ()” to find 

a second-degree polynomial approximating the function (7.3.3) and compares 

the results with that of applying the routine “ lsqnonlin()” introduced in the 

previous section for verification. From the plotting result depicted in Fig. 7.14, 

note the following.

• W e  attached no constraints to the “fminimax()” routine, so it yielded the 

approximate polynomial curve minimizing the maximum deviation from

f(x ).

• W e  attached no constraints to the constrained linear least-squares routine 

“ lsq lin ()” either, so it yielded the approximate polynomial curve 

minimizing the sum (integral) of squared deviation from f(x ),  which is
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Figure 7.14 Approximation of a curve by a second-degree polynomial function based on the 
minimax, least-squares, and Chebyshev methods.

the same as the (unconstrained) least squares solution obtained by using the 

routine “lsqnonlin()” .

• Another M A TLA B  built-in routine “lsqnonneg()” gives us a nonnegative 

LS (NLS) solution to the problem (7.3.8).

%nm732_2: uses fminimax() for a vector-valued objective ftn f(x) 
clear, clf
f = inline('1 ./(1+8 *x.*x)','x');
f73221 = inline('abs(polyval(a,x) - fx)','a','x','fx'); 
f73222 = inline('polyval(a,x) - fx','a','x','fx');
N = 2; %  the degree of approximating polynomial
a0 = zeros(1,N + 1); %initial guess of polynomial coefficients
xx = -2+[0:200]'/50; %intermediate points
fx = feval(f,xx); %  and their function values f(xx)
ao_m = fminimax(f73221,a0,[],[],[],[],[],[],[],[],xx,fx) %fminimax sol
for n = 1:N+1, C(:,n) = xx.~(N + 1 - n); end
ao_ll = lsqlin(C,fx) %linear LS to minimize (Ca - fx)~2 with no constraint 
ao_ln = lsqnonlin(f73222,a0,[],[],[],xx,fx) %nonlinear LS 
c2 = cheby(f,N,-2,2) %Chebyshev polynomial over [-2,2] 
plot(xx,fx,':', xx,polyval(ao_m,xx),'m', xx,polyval(ao_ll,xx),'r') 
hold on, plot(xx,polyval(ao_ln,xx),'b', xx,polyval(c2 ,xx),'--') 
axis([-2 2 -0.4 1.1])

7.3.3 Linear Programming (LP)

The linear programming (LP) scheme implemented by the M ATLAB  built-in 

routine

"[x o ,fo ]  = l i n p r o g ( f ,A ,b ,A e q ,B e q ,l ,u ,x 0 ,o p t i o n s ) "

is designed to solve an LP problem, which is a constrained minimization problem 

as follows.

Min f(x) =  fTx (7.3.10a)

subject to Ax < b, A eqx =  beq, and l < x < u (7.3.10b)
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%nm733 to solve a Linear Programming problem.
% Min f*x=-3*x(1)-2*x(2) s.t. Ax <= b, Aeq = beq and l <= x <= u 
x0 = [0 0 ]; %initial point
f = [-3 -2]; %the coefficient vector of the objective function 
A = [3 4; 2 1]; b = [7; 3]; %the inequality constraint Ax <= b 
Aeq = [-3 2]; beq = 2; %the equality constraint Aeq*x = beq 
l = [0 0 ]; u = [10 10]; %lower/upper bound l <= x <= u 
[xo_lp,fo_lp] = linprog(f,A,b,Aeq,beq,l,u)
cons_satisfied = [A; Aeq]*xo_lp-[b; beq] %how constraints are satisfied 
f733o=inline('-3*x(1)-2*x(2)', 'x');
[xo_con,fo_con] = fmincon(f733o,x0JA Jb JA e q Jbeq,lJu)

It produces the solution (column) vector xo and the minimized value of the 

objective function / ( x o) as its first and second output arguments xo and fo, 

where the objective function and the constraints excluding the constant term are 

linear in terms of the independent (decision) variables. It works for such linear 

optimization problems as (7.3.10) more efficiently than the general constrained 

optimization routine “fmincon()” .

The usage of the routine “linprog()” is exemplified by the M ATLAB  pro

gram “nm733.m”, which uses the routine for solving an LP problem described as

Min /(x ) =  fTx =  [-3 — 2][x1 x2]T =  — 3x1 — 2x2 (7.3.11a)

s.t.

—3 2 r = 2

Ax = 3 4
x 1 < 7

2 1
x2 < 3

=  b  and

x
x 1

x2

10

10
(7.3.11b)l u

Figure 7.15 The objective function, constraints, and solutions of an LP problem.
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Table 7.3 The Names of MATLAB Built-In Minimization Routines in M ATLAB 5.x/6.x

Unconstrained Minimization Constrained Minimization

Minimization Non-Gradient- Gradient- Linear Nonlinear

Methods Bracketing Based Based Linear Nonlinear LS LS Minimax

MATLAB 5.x fmin fmins fminu lp constr leastsq conls minimax

MATLAB 6.x fminbnd fminsearch fminunc linprog fmincon lsqnonlin lsqlin fminimax

Th e  program also applies the general constrained minimization routine “fmin- 

c o n ( ) ”  to solve the same problem for cross-check. Readers are w elcom e to run 

the program and see the results.

>> nm733

xo_lp  = [0 .3 3 3 3  1 .5 0 0 0 ] , fo _lp  = -4.0000 

c o n s_sa tisfied  = -0.0000 % <= 0 (ineq uality )

- 0.8333 % <= 0 (in e q u ality )

-0.0000 % = 0 (equality ) 

xo_con = [0 .3 3 3 3  1 .5 0 0 0 ] , fo_con = -4.0000

In this result, the solutions obtained by using the two routines “ l i n p r o g ( ) ”  and 

“ f m in c o n ( )”  agree with each other, satisfying the inequality/equality constraints 

and it can be assured by Fig. 7 .15 .

In Table 7 .3 , the nam es of M A T L A B  built-in minimization routines in M AT-  

L A B  version 5 .x  and 6.x are listed.

P R O B L E M S

7.1 Modification of Golden Search M ethod

In fact, the golden search m ethod explained in Section 7.1 requires only 

one function evaluation per iteration, since one point of a n e w  interval 

coincides with a point of the previous interval so that only one trial point 

is updated. In spite of this fact, the M A T L A B  routine “ o p t _ g s ( ) ”  imple

menting the m ethod performs the function evaluations twice per iteration. 

A n  improvement m ay  be initiated by modifying the declaration type as

[xo ,fo] = o p t _ g s 1 ( f ,a ,e ,f e ,r 1 ,b ,r ,T o l X ,T o l F u n ,k )

so that anyone could use the n e w  routine as in the following program, 

where its input argument list contains another point (e) as well as the n e w  

end point (b) of the next interval, its function value (fe ), and a parameter 

(r1 ) specifying if the point is the left one or the right one. Based  on this 

idea, h o w  do you revise the routine “ o p t _ g s ( ) ”  to cut d o w n  the num ber 

of function evaluations?
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%nm7p01.m to perform the revised golden search method
f701 = inline('x.*(x-2)', 'x');
a = 0; b = 3; r = (sqrt(5)-1)/2;
TolX = 1e-4; TolFun = 1e-4; MaxIter=100;
h = b - a; rh = r*h;
c = b - rh; d = a + rh;
fc = f701(c); fd = f701(d);
if fc < fd, [xo,fo] = opt_gs1(f701,a,c,fc,1 - r d ,г ,T o l X , T o l F u n ,Maxiter)
else [xo,fo] = opt_gs1(f701,c,d,fd,r,b,r, TolX TolFun,MaxIter)

end

7 .2  Nelder-Mead, Steepest Descent, Newton, SA, G A  and fminunc(), fmin- 

search()

Consider a two-variable objective function

f(x)  =  x f  — 12x^ — 4 x 1 +  x\ — 16x^ — 5 x 2 (P 7 .2 .1 )

— 2 0  cos(x1 — 2 .5 )  cos(x2 — 2 .9 )

whose gradient vector function is

4x? — 24x1 — 4  +  2 0  sin(x1 — 2 .5 ) cos(x2 — 2 .9 ) 

g(x) = V f  (x) =  1
4 x |  — 3 2 x 2 — 5 +  2 0 c o s (x 1 — 2 .5 ) sin(x2 — 2 .9 )

(P 7 .2 .2 )

You  have the M A T L A B  functions f7p02() , g7p02() defining the objective 

function f  (x) and its gradient function g(x). You  also have a part of the 

M A T L A B  program which plots a mesh/contour-type graphs for f (x). Note 

that this gradient function has nine zeros as listed in Table P 7 .2 .1 .

Table P7.2.1 Extrema (Maxima/Minima) and Saddle Points of the Function (P7.2.1)

Points Signs of d2f /d x f Points Signs of d2f /d x f

(1) [0.6965 —0.1423] - M (6) [-1.6926 -0.1183]

(2) [2.5463 —0.1896] (7) [-2.6573 -2.8219] + , + m

(3) [2.5209 2.9027] + , + G (8) [-0.3227 -2.4257]

(4) [—0.3865 2.9049] (9) [2.5216 -2.8946] + , + m

(5) [—2.6964 2.9031]

(a) From  the graphs (including Fig. P 7 .2 )  which  you get by running the 

(unfinished) program, determine the characteristic of each of the nine 

points, that is, whether it is a local m ax im u m (M )/m in im u m (m ), the 

global m in im u m (G ) or a saddle point(S) which is a m in im u m  with 

respect to one variable and a m a x im u m  with respect to another variable. 

Support your judgm ent by  telling the signs of the second derivatives of 

f  (x) with respect to x 1 and x 2.
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Figure P7.2 The contour, extrema and saddle points of the objective function (P7.2.1).

%nm7p02 to minimize an objective ftn f(x) by the Newton method 
f = 'f7p02'; g = 'g7p02'; 
l = [-4 -4 ]; u = [4 4];
x1 = l(1):.25:u(1); x2 = l(2):.25:u(2); [X1,X2] = meshgrid(x1,x2); 
for m = 1 :length(x1)

for n = 1:length(x2), F(n,m) = feval(f,[x1(m) x2(n)]); end
end
figure(1), clf, mesh(X1,X2,F) 
figure(2 ), clf,
contour(x1,x2,F,[-125 -100 -75 -50 -40 -30 -25 -20 0 50])

function y = f7p02(x)
y = x(1)A4 - 12*x(1)A2 - 4*x(1) + x(2)A4 - 16*x(2)A2 - 5*x(2)... 

-20*cos(x(1) - 2.5)*cos(x(2) - 2.9);

function [df,d2f] = g7p02(x) % the 1st/2nd derivatives
df(1) = 4*x(1)A3 - 24*x(1) - 4 + 20*sin(x(1) - 2.5)*cos(x(2) - 2.9);%(P7.2.2) 
df(2) = 4*x(2)A3 - 32*x(2)-5 + 20*cos(x(1) - 2.5)*sin(x(2) - 2.9);%(P7.2.2) 
d2f(1) = 12*x(1)A2 - 24 + 20*cos(x(1) - 2.5)*cos(x(2) - 2.9); %(P7.2.3) 
d2f(2) = 12*x(2)A2 - 32 + 20*cos(x(1) - 2.5)*cos(x(2) - 2.9); %(P7.2.3)

d2/ /  dx2 =  12x? — 24 +  20cos(x1 — 2.5) cos(x2 — 2.9)
(P7.2.3)

d2 //d x 2 =  12x2 — 32 +  20cos(x1 — 2.5) cos(x2 — 2.9)

(b ) Apply the Nelder-Mead method, the steepest descent method, the New

ton method, the simulated annealing (SA), genetic algorithm (GA), and 

the M A TLA B  built-in routines fminunc(), fminsearch() to minimize 

the objective function (P7.2.1) and fill in Table P7.2.2 with the number 

and character of the point reached by each method.
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Table P7.2.2 Points Reached by Several Optimization Routines

Initial Point 

Xo

Reached Point

Nelder Steepest Newton fminunc fminsearch SA GA

(0, 0) (5)/m

(1,0) (3)/G

(1, 1) (9)/m

(0, 1) (3)/G

(-1, 1) (5)/m

(-1,0) *(3)/G

(-1, -1) (3)/G

(0, -1) (9)/m

(1, -1) (9)/m

(2, 2) (3)/G

(-2, -2) (7)/m

(c) Overall, the point reached by each minimization algorithm depends on 

the starting point— that is, the initial value of the independent variable 

as well as the characteristic of the algorithm. Fill in the blanks in 

the following sentences. Most algorithms succeed to find the global 

minimum if only they start from the initial point ( , ), ( , ), ( , ), or ( , ). 

An  algorithm most possibly goes to the closest local minimum (5) if 

launched from ( , ) or ( , ), and it may go to the closest local minimum 

(7) if launched from ( , ) or ( , ). If launched from ( , ), it may go to 

one of the two closest local minima (7) and (9) and if launched from 

( , ), it most possibly goes to the closest local minimum (9). But, the 

global optimization techniques S A  and G A  seem to work fine almost 

regardless of the starting point, although not always.

7.3 Minimization of an Objective Function Having Many Local Minima/ 

Maxima

Consider the problem of minimizing the following objective function

Min f (x )  =  sin(1/x)/((x — 0.2)2 +  0.1) (P7.3.1)

which is depicted in Fig. P7.3. The graph shows that this function has 

infinitely many local minima/maxima around x =  0 and the global mini

mum about x =  0 .2.

(a) Find the solution by using the M A T L A B  built-in routine “fminbnd()” . 

Is it plausible?

(b ) With nine different values of the initial guess x0 =  0.1, 0 .2 , . . . ,  0.9, use 

the four M A T L A B  routines “opt_Nelder()” , “opt_steep()” , “fmin- 

unc()” , and “fminsearch()” to solve the problem. Among those 36 

tryouts, how many times have you got the right solution?
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Figure P7.3 The graph of f(x) =  sin(1 /x)/((x -  0.2)2 +  0.1) having many localminima/maxima.

(c) With the values of the parameters set to l =  0, u =  1, q =  1, Sf =  10-9, 

kmax =  1000 and the initial guess x0 =  0.1, 0 . 2 , . . . ,  0.9, use the SA  

(simulated annealing) routine “ sim_anl()” to solve the problem. You 

can test the performance of the routine and your luck by running the 

routine four times for the same problem and finding the probability of 

getting the right solution.

(d ) With the values of the parameters set to l =  0, u =  1, N p =  30, N b =  

12, Pc =  0.5, Pm =  0.01, n =  1, kmax =  1000 and the initial guess x0 =

0.1, 0 . 2 , . . . ,  0.9, use the G A  (genetic algorithm) routine “genetic()” 

to solve the problem. As in (c), you can run the routine four times for 

the same problem and find the probability of getting the right solution 

in order to test the performance of the routine and your luck.

7.4 Linear Programming Method

Consider the problem of maximizing a linear objective function

M ax f (x ) =  fTx =  [3 2 - 1][x1 x2 x3 ]T (P7.4.1a)

subject to the constraints

3 -2 0 x 1 = -2

A x  = -3 -4 0 x2 > -7 =  b  and

-2 -1 0 x3 > -3

0 x1 10

l = 0 <  x  = x2 < 10 =  u

0 _x3 _ 10

(P7.4.1b)

Jessica is puzzled with this problem, which is not a minimization but a 

maximization. H ow  do you suggest her to solve it? Make the program that 

uses the M A T L A B  built-in routines “ linprog()” and “fmincon()” to solve 

this problem and run it to get the solutions.
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7.5 Constrained Optimization and Penalty Method

Consider the problem of minimizing a nonlinear objective function

Minxf  (x) — —3x1 — 2x2 +  M(3x1  — 2x2 +  2)2 

(M  : a large positive number)

(P7.5.1a)

subject to the constraints

3 4 x1 < 7

—2 —1 x2 > —3
and l = <  x  =

x1

x2
<

10

10

(P7.5.1b)

(a) With the two values of the weighting factor M  =  20 and 10,000 in 

the objective function (P7.5.1a), apply the M A TLA B  built-in routine 

“fmincon()” to find the solutions to the above constrained minimiza

tion problem. In order to do this job, you might have to make the vari

able parameter M  passed to the objective function (defined in an M-file) 

either through “fmincon()” or directly by declaring the parameter as 

global both in the main program and in the M-file defining (P7.5.1a). In 

case you are going to have the parameter passed through “fmincon()” 

to the objective function, you should have the parameter included in 

the input argument list of the objective function as

u

function f=f7p05M (x ,M )

f = - 3 * x (1 )- 2 * x (2 )+ M * (3 * x (1 )- 2 * x (2 )+ 2 ) ."2 ;

Additionally, you should give empty matrices ([]) as the ninth input 

argument (for a nonlinear inequality/equality constraint function ‘nonl- 

con’) as well as the 10th one (for ‘options’) and the value of M  as 

the 11th one of the routine “fmincon()” .

xo = f m i n c o n ( 'f 7 p 0 5 M ' ,x 0 ,A ,b , [ ] , [ ] , l ,u , [ ] , [ ] ,M )

For reference, type ‘help fmincon’ into the M ATLAB  command 

window.

(b ) Noting that the third (squared) term of the objective function (P7.5.1a) 

has its minimum value of zero for 3x1 — 2x2 +  2 =  0 and, thus, it actu

ally represents the penalty (Section 7.2.2) imposed for not satisfying the 

equality constraint

3x1 — 2x2 +  2 =  0 (P7.5.2)

tell which of the solutions obtained in (a) is more likely to satisfy this 

constraint and support your answer by comparing the values of the 

left-hand side of this equality for the two solutions.
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(c) Removing the third term from the objective function and splitting the 

equality constraint into two reversed inequality constraints, we can 

modify the problem as follows:

Minx f(x) =  — 3x1 - 2x2 

subject to the constraints

3 4 '

—2 —1 

3 —2 

3 —2

x1

X2

l < x =
x1

x2

< 7

> -3

< -2

> -2

<

and

(P7.5.3a)

(P7.5.3b)

10

10

Noting that this fits the linear programming, apply the routine “lin- 

prog()” to solve this problem.

(d) Treating the equality constraint separately from the inequality con

straints, we can modify the problem as follows:

Minx f(x) =  - 3x1 - 2x2 

subject to the constraints

3 21

3 4

2 11

x1

x2

=  -2 

< 7  

> -3

and l = < x =
x1

x2
<

(P7.5.4a)

10

10

(P7.5.4b)

Apply the two routines “linpnog()” and “fmincon()” to solve this 

problem and see if the solutions agree with the solution obtained in (c).

(cf) Note that, in comparison with the routine “fmincon() ” , which can solve a gen

eral nonlinear optimization problem, the routine “linprog()” is made solely 

for dealing with a class of optimization problems having a linear objective 

function with linear constraints.

7.6 Nonnegative Constrained LS and Constrained Optimization

Consider the problem of minimizing a nonlinear objective function

Minx IICx - d||2 =  [Cx - d f  [Cx - d]

subject to the constraints

x =
x1 >

0

x2 0

where
1 2 5.1"

C = 3 4 , d = 10.8

5 1 6.8

(P7.6.1a)

(P7.6.1b)

(P7.6.1c)

u

u

l
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(a) Noting that this problem has no other constraints than the lower bound, 

apply the constrained linear least-squares routine “ lsqlin () ” to find 

the solution.

(b ) Noting that the lower bounds for all the variables are zeros, apply the 

M A T L A B  built-in routine “ lsqnonneg()” to find the solution.

(c) Apply the general-purpose constrained optimization routine “fmincon() ” 

to find the solution.

7.7 Constrained Optimization Problems

Solve the following constrained optimization problems by using the MAT-

L A B  built-in routine “fmincon()” .

(a) Minx xj3 - 5x2 +  6x1 +  x^ - 2x2 +  x3 (P7.7.1a)

subject to the constraints

x2 - x3 
22 2

x3 < 5

< 0 x1 0

> 6 and x = x2 > 0

x3 0

=  l (P7.7.1b)

x

x

Try the routine “fmincon()” with the initial guesses listed in 

Table P7.7.

Table P7.7 The Results of Applying “ fm incon() ’’ with Different Initial Guess

Initial Guess 

Xo

Lower
Bound /(s°) Remark (warning ?)

(a)

[0 0 0] 0 No feasible solution (w)

[1 1 5] 0 Not a minimum

[0 0 5] 0 Minimum

[1 0 2] 0 [1.29 0.57 2] 2.74

(bl)
[0 0 0] 0 [0 0 0] 0

[10 10 10] 0 Maximum (good)

(b2)

[0 0 0] 0 No feasible solution (w)

[10 10 10] 0 Not a minimum, but the max

[0.1 0.1 3] 0 One of many minima (w)

(cl)

[0 0 0] 0

[0.1 0.1 0.1] 0 [1 1 1] 3 Maximum (good)

[0 1 2] 0

(c2)

[0 0 0] 0 [1 1 1] 3 Not a minimum, but the max

[0.1 0.1 0.1] 0

[0 1 2] 0 One of many minima

(d)

[1.0 0.5] 0 Weird (warning)

[0.2 0.3] 0 [10.25 0] OO

[2 5] 0 [5.77 8.17] 25.98

[100 10] 0 Minimum
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(b1) M axx x1 x2x3

subject to the constraints

x1 0

x1x2 +  x2x3 +  x3x1 =  3 and x = x2 > 0

_x3_ 0

(P7.7.2a)

(P7.7.2b)

Try the routine “fmincon()” with the initial guesses listed in 

Table P7.7.

(b2) Minx x1x2x3 (P7.7.3a)

subject to the constraints (P7.7.2b).

Try the routine “fmincon()” with the initial guesses listed in 

Table P7.7.

(c1) M axx x1x2 +  x2x3 +  x3x1 

subject to the constraints

(P7.7.4a)

(P7.7.4b)

Try the routine “fmincon()” with the initial guesses listed in 

Table P7.7.

x1 0

x1 +  x2 +  x3 =  3 and x = x2 > 0

_x3_ 0

(c2) Minx x1 x2 +  x2x3 +  x3x1 (P7.7.5a)

subject to the constraints (P7.7.4b).

Try the routine “fmincon()” with the initial guesses listed in 

Table P7.7.

(d) Min
10000

x 2~~ x 1x2

subject to the constraints

x 2 +  x2 =  100 and x =
x1

x2

(P7.7.6a)

(P7.7.6b)

Try the routine “fmincon()” with the initial guesses listed in 

Table P7.7.

(e) Does the routine work well with all the initial guesses? If not, does it 

matter whether the starting point is inside the admissible region?

(cf) Note that, in order to solve the maximization problem by “fmincon()” , we 

have to reverse the sign of the objective function. Note also that the objective 

functions (P7.7.3a) and (P7.7.5a) have infinitely many minima having the value 

f  (x) =  0 in the admissible region satisfying the constraints.

>
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(cf) One might be disappointed with the reliability of the M A T L A B  optimization 

routines to see that they may fail to find the optimal solution depending on the 

initial guess. But, how can a human work be perfect in this world? It implies 

the difficulty of nonlinear constrained optimization problems and can never 

impair the celebrity and reliability of M A T L A B . Actually, it demonstrates the 

importance of studying some numerical stuff in addition to just getting used 

to the various M A T L A B  commands and routines.

Here is a tip for the usage of “fmincon()” : it might be better to use with 

an initial guess that is not at the origin, but in the admissible region satisfying 

the constraints, even though it does not guarantee the success of the routine. 

It might also be helpful to apply the routine with several values of the initial 

guess and then choose the best result.

7.8 Constrained Optimization and Penalty Method

Consider again the constrained minimization problem having the objective 

function (E7.3.1a) and the constraints (E7.3.1b).

Min f(x) =  {(x1 + 1.5)2 + 5(x2 - 1.7)2}{(x1 - 1.4)2 + 0.6(x2 - 0.5)2} (P7.8.1a)

s.t. g(x) =

-x 1 0

-x2 0

3x1 - x1x2 +  4x2 - 7 < 0

2x1 +  x2 - 3 0

12x4
-


2

2x4-x131 0

(P7.8.1b)

In Example 7.3, we made the M A TLA B  program “nm722.m” to solve the 

problem and defined the objective function (E7.3.2a) having the penalized 

constraint terms in the file named “f722p.m”.

Min l(x) =  {(x1 +  1.5)2 +  5(x2 - 1.7)2}{(x1 - 1.4)2 +  0.6(x2 - 0.5)2}

E
5

, Vmfm(gm(x)) (P7.8.2a)
m=1

where

0 if gm(x) < 0 (constraint satisfied)

exp(emgm(x)) if gm(x) > 0 (constraint viloated) 

with em =  1 Vm =  1 , . . . ,  5 (P7.8.2b)

(a) What is the weighting coefficient vector v in the file named “f722p.m”? Do 

the points reached by the routines “fminseanch()”/“opt_ 

steep()”/“fminunc()” satisfy all the constraints so that they are in the 

admissible region? If not, specify the constraint(s) violated by the points.

(b) Suppose the fourth constraint was violated by the point in (a). Then, 

how would you modify the weighting coefficient vector v so that the 

violated constraint can be paid more respect? Choose one of the fol

lowing two weighting coefficient vectors:
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(i) v = [1 1 1 1 / 31]

(ii) v = [1 1 1 3 1]

and modify the file “f722p.m” with this coefficient vector. Then, run 

the program “nm722.m”, fill in the 22 blanks of Table P7.8 with the 

results and see if the fourth constraint is still violated by the points 

reached by the optimization routines?

(c) Instead of the penalty method, apply the intrinsically constrained opti

mization routine “fmincon()” with the initial guesses x0 =  [0.4 0.5] 

and [0.2 4] to solve the problem described by Eq. (E7.3.1) or (P7.8.1) 

and fill in Table P7.8 with the results concerning the reached point and 

the corresponding values of the objective/constraint functions.

(d ) Based on the results listed in Table P7.8, circle the right word in each 

of the parentheses in the following sentences:

• For penalty methods, the non-gradient-based minimization routines like 

“Nelder()”/“fminsearch()” may work (better, worse) than the gradient- 

based minimization routines like “opt_steep()”/“fminunc()” .

• If some constraint is violated, you had better (increase, decrease) the 

corresponding weight coefficient.

(cf) Besides, unconstrained optimization with the penalized constraints in the 

objective function sometimes works better than the constrained optimization 

routine “fmincon()”.

Table P7.8 The Results of Penalty Methods Depending on the Initial Guess and

Weighting Factor

The Starting Point xq = [0.4 0.5] Xq = [0.2 4]

V Nelder fminsearch steep fminunc fmincon Nelder fminsearch steep fminunc fmincon

1 x °
1.21

0.58

1.34

0.62

1.34

0.62

1.34

0.62

1 f ° 0.53 0.17 0.17 0.17

1 - 1.21 -1.34 -1.34 -1.38 - 1.21 -1.34 -1.34 -1.34 1.26 0.00

1/3
-0.58 -0.62 -0.62 -0.63 -0.58 -0.62 -0.62 -0.62 -1.70 -1.59

c ° -1.76 -1.34 -1.34 -1.19 -1.76 -1.34 -1.34 -1.33 -1.84 -0.65

1 -0.00

-0.00 -0.00 -0.00 -0.00

0.00

0.00

0.29

-0.00 -0.00 -0.00

-3.82

- 22.1

-1.41

-16.4

1.21 1.21 1.12 1.18 — 1.21 1.21 1.15 -1.26 —

1
x u

0.58 0.58 0.76 0.64 — 0.58 0.58 0.71 1.70 —

1
0.53 0.53 1.36 0.79 — 0.53 0.53 1.08 0.46 —

- 1.21 - 1.21 - 1.12 -1.18 - 1.21 - 1.21 -1.15 1.26

1 -0.58 -0.58 -0.76 -0.64 -0.58 -0.58 -0.71 -1.70

3 -1.76 -1.76 -1.44 -1.65 — -1.76 -1.76 -1.54 -1.84 —

1
-0.00

-0.00 -0.00 -2.04 -0.70

-0.00

-0.00 -0.00 -1.39

-3.82

- 22.1
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7.9 A  Constrained Optimization on Location

A  company has three factories that are located at the points (-16,4), (6,5), 

and (3,-9), respectively, in the x1x2-plane, and the numbers of deliveries 

to those factories are 5, 6, and 10 per month, respectively (Fig. P7.9). The 

company has a plan to build a new warehouse in its site bounded by

|*1 - 1| +  |X2 - 1|< 2 (P7.9.1)

and is trying to minimize the monthly mileage of delivery trucks in deter

mining the location of a new warehouse on the assumption that the distance 

between two points represents the driving distance.

(a) What is the objective function that must be defined in the program 

“nm7p09.m”?

(b) What is the statement defining the inequality constraint (P7.9.1)?

(c) Complete and run the program “nm7p09.m” to get the optimum location 

of the new warehouse.

function [C,Ceq] = fp_warehouse_c(x) 
C = sum(abs(x - [1 1])) - 2;
Ceq = []; %  No equality constraint

%nm7p09.m to solve the warehouse location problem
f = 'sqrt([sum((x - [-16 4])."2) sum((x - [6 5])."2) sum((????????).A2)])'; 
fp_warehouse = inline([f '*[?;?;?]'],'x');
x0 = [1 1]; A = []; b = []; Aeq = []; beq = []; l = []; u = []; 
xo = fmincon(fp_warehouse,x0,A,b,Aeq,beq,l,u,'fp_warehouse_c')

Figure P7.9 The site of a new warehouse and the locations of the factories.

7.10 A  Constrained Optimization on Ray Refraction

A  light ray follows the path that takes the shortest time when it travels in 

the space. We want to find the three angles в1,в2, and в3 (measured between 

the array and the normal to the material surface) of a ray traveling from 

P =  (0, 0) to Q  =  (L, -(d1 +  d2 +  d3)) through a transparent material of 

thickness d2 and index of refraction n as depicted in Fig. P7.10. Note the 

following things.
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• Since the speed of light in the transparent material is v =  c/n (c is the 

speed of light in the free space), the traveling time to be minimized 

can be expressed as

di nd2 d3
Min / (0,d, n, L ) = -- 1—  + ---2—  + -- (P7.10.1)

c cos 01 c cos 02 c cos 03

• The sum of the three horizontal distances traveled by the light ray must 

be L:

E3
di tan 0i — L  =  0 (P7.10.2)

i=1

• The horizontal distance L  and the index of refraction n are addition

ally included in the input argument lists of both the objective function 

f ( 0 , d ,n ,L )  and the constraint function g (0 , d ,n ,L )  regardless of 

whether or not they are used in each function. It is because the objective 

function and the constraint function of the M A T L A B  routine “fmin- 

con()” must have the same input arguments.

(a) Compose a program “nm7p10a.m” that solves the above constrained 

minimization problem to find the three angles 01, 02, and 03 for n =  

1.52, d1 =  d2 =  d3 =  1[cm], and different values of L  =  0.6:0.3:6 and 

plots sin(01)/sin(02) and sin(03)/sin(02) versus L.

(b ) Compose a program “nm7p10b.m” that finds the three angles 01,02, 

and 03 for L  =  3 cm, d1 =  d2 =  d3 =  1 cm, and different values of 

n =  1:0.01:1.6 and plots sin(01)/sin(02) and sin(03)/sin(02) versus n.

~ r

d 1

I

\ P

a light ray speed of light = c 
air

t

d 2

1
к

speed of light = c /n 
transparent material 
with refraction index n

t

d 3 е з

air

\ Q
4 L -H

Figure P7.10 Refraction of a light ray at an air-glass interface.

7.11 A  Constrained Optimization on O F D M  System

In order to find the average modulation order xi for each user of an O F D M  

(orthogonal frequency division multiplex) system that has N (128) subchan

nels to assign to each of the four users in the environment of noise power
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N 0 and the bit error rate (probability of bit error) Pe, Seung-hee, a c o m m u 

nication system expert, formulated the following constrained minimization 

problem:

E4 N 0 1 9 ai
n*< -l)J±2(zxfc-l(Pe/Z))2^  (P 7 .1 1 .1 ) 

i=1 3 xi

subject to

E4 ai
. — — N  =  О (P7.11.2)
i=1 xi

with N  =  128, and ai: the data rate of each user

where erfc- 1 (x) is the inverse function of the complementary error function 

defined by Eq . (P 4 .9 .3 ) and is installed as the M A T L A B  built-in function 

‘e r f c i n v ( ) ’ . H e  defined the objective function and the constraint func

tion as below  and save them in the M-files n am ed  “ f p _ b i t s 1 .m” and 

“ f p _ b i t s _ c .m ” .

function y = f p _ b i t s 1 (x ,a ,N ,P e )

N0 = 1; y = s u m ( (2 . " x - 1 ) * N 0 /3 * 2 * e r f c i n v (P e /2 ) . " 2 .* a . /x ) ;

function [C,Ceq] = f p _ b i t s _ c (x ,a ,N ,P e )

C = [] ; Ceq = s u m (a ./x )  - N;

Com pose  a program that solves the above constrained minimization problem 

(with N 0 =  1 and Pe =  1 0 —4) to get the modulation order xi of each user 

for five different sets of data rates

a =  [32 32 32 32], [64 32 32 32], [128 32 32 32], [256 32 32 32], and [512 32 32 32]

and plots a 1/x 1(the num ber of subchannels assigned to user 1 ) versus a 1 
(the data rate of user 1). If you feel uneasy about the results obtained with 

your initial guesses, try with the initial guesses as follows for each set of 

data rates, respectively:

x 0 =  [0.5 0 .5  0 .5  0 .5], [1 1 1 1 ] ,  [ 1 1 1  1], [2 2  2  2], and [4 4  4  4]



8
MATRICES AND 

EIGENVALUES

In this chapter, we will look at the eigenvalue or characteristic value X and its 

corresponding eigenvector or characteristic vector v of a matrix.

8.1 EIGENVALUES A N D  EIGEN V ECTORS

The eigenvalue or characteristic value and its corresponding eigenvector or char

acteristic vector of an N  x N  matrix A  are defined as a scalar X and a nonzero 

vector v satisfying

Av =  Xv ^  (A - XI) v =  0 (v =  0) (8.1.1)

where (X, v) is called an eigenpair and there are N  eigenpairs for the N  x N  

matrix A .

H o w  do we get them? Noting that

• in order for the above equation to hold for any nonzero vector v, the matrix 

[A — X I] should be singular— that is, its determinant should be zero (|A — 

X I  | =  0)—  and

• the determinant of the matrix [A — X I] is a polynomial of degree N  in terms 

of X ,

we first must find the eigenvalue Xi’s by solving the so-called characteristic 

equation

|A — X I  | =  XN +  aN—1XN 1 +  • • • +  a\X +  ag =  0 (8.1.2)

Applied Numerical Methods Using MATLAB®, by Yang, Cao, Chung, and Morris 
Copyright © 2005 John Wiley &  Sons, Inc., ISBN 0-471-69833-4
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and then substitute the kt ’s, one by one, into Eq. (8.1.1) to solve it for the 

eigenvector v ’s. This is, however, not always so simple, especially if some root 

(eigenvalue) of Eq. (8.1.2) has multiplicity k >  1, since we have to generate k 

independent eigenvectors satisfying Eq. (8.1.1) for such an eigenvalue. Still, we 

do not have to worry about this, thanks to the M A T L A B  built-in routine “e ig ( ) ” , 

which finds us all the eigenvalues and their corresponding eigenvectors for a given 

matrix. H ow  do we use it? All we need to do is to define the matrix, say A, and 

type a single statement into the M A T L A B  command window as follows.

>>[V,Lambda] = e ig (A ) %e = e ig (A ) just for eigenvalues

Let us take a look at the following example.

Example 8.1. Eigenvalues/Eigenvectors of a Matrix.

Let us find the eigenvalues/eigenvectors of the matrix

A
0 1

0 -1
(E8.1.1)

First, we find its eigenvalues as

| A  - kl  | =
-k 1

0 -1 - k
=  X2 +  k =  0

k(k +  1) =  0, k1 =  0, k2 =  -1 (E8.1.2)

and then, get the corresponding eigenvectors as

[A - k1l]V1 =

v21 =  0 ,

[A - k2l]V2 =

V12 =  —V22,

'0  1 v11 v21 0

0 -1 v21 -v21 0

V1 =
v11

v21
=

'1 "

0

' 1 1" v12 v12 +  v22 ' 0 '

0 0 v22 0 0

V2 =
v12 ' 1 / V 2 '

v22

(E8.1.3a)

(E8.1.3b)

where we have chosen v11, v12, and v22 so that the norms of the eigenvectors 

become one.

Alternatively, we can use the M ATLAB  command “eig(A)” for finding eigen

values/eigenvectors or “roots(poly(A)) ” just for finding eigenvalues as the 

roots of the characteristic equation as illustrated by the program “nm811.m”.
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%nm811 to get the eigenvalues &  eigenvectors of a matrix A. 

clear

A = [ 0  1 ; 0  -1];

[V ,L] = e ig (A ) %V = modal matrix composed of eigenvectors 

% L = diagonal matrix with eigenvalues on its  diagonal 

e = e ig (A ) ,  roo ts (p o ly (A )) %just for eigenvalues 

L = V* - 1*A*V %diagonalize  through sim ilarity  transformation

% into a diagonal matrix having the eigenvalues on d iagonal.

8.2 SIMILARITY TR A N SF O R M A TIO N  A N D  DIAGONALIZATION

Premultiplying a matrix A  by P  1 and post-multiplying it by P  makes a similarity 

transformation

A ^  P —1A P  (8.2.1)

Remark 8.1 tells us how a similarity transformation affects the eigenval

ues/eigenvectors.

Remark 8.1. Effect of Similarity Transformation on Eigenvalues/Eigenvectors

1. The eigenvalues are not changed by a similarity transformation.

|P—1A P  — XI | =  P —1A P  — P —1X IP  | =  P —1|| A — XI|| P | =  |A — XI |

(8.2 .2)

2. Substituting v =  P w into Eq. (8.1.1) yields

Av =  Xv, A P  w  =  XP  w  =  PXw, [P—1A P  ]w =  Xw

This implies that the matrix P —1A P  obtained by a similarity transformation 

has w  =  P —1v as its eigenvector if v is an eigenvector of the matrix A .

In order to understand the diagonalization of a matrix into a diagonal matrix 

(having its eigenvalues on the main diagonal) through a similarity transformation, 

we have to know the following theorem:

Theorem 8.1. Distinct Eigenvalues and Independent Eigenvectors.

If the eigenvalues of a matrix A  are all distinct— that is, different from each 

other— then the corresponding eigenvectors are independent of each other and, 

consequently, the modal matrix composed of the eigenvectors as columns is 

nonsingular.

Now, for an N  x N  matrix A  whose eigenvalues are all distinct, let us put all 

of the equations (8.1.1) for each eigenvalue-eigenvector pair together to write

A[v1 v2 ••• vn] =  [v1 v2 v N ]

X1 0 • 0

0 X2 • 0
, A V  =  V A

0 0 • XN

(8.2.3)
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Then, noting that the modal matrix V  is nonsingular and invertible by Theo

rem 8.1, we can premultiply the above equation by the inverse modal matrix 

V -1 to get

V -1A V  =  V -1V A  =  Л (8.2.4)

This implies that the modal matrix composed of the eigenvectors of a matrix A 

is the similarity transformation matrix that can be used for converting the matrix 

A  into a diagonal matrix having its eigenvalues on the main diagonal. Here is an 

example to illustrate the diagonalization.

E x a m p le  8 .2 . Diagonalization Using the Modal Matrix.

Consider the matrix given in the previous example.

A =
0 1 

0 -1
(E8.2.1)

We can use the eigenvectors (E8.1.3) (obtained in Example 8.1) to construct 

the modal matrix as

'i l / v T
V  =  [V1 V2] =

О - 1Д /2
(E8 .2 .2)

and use this matrix to make a similarity transformation of the matrix A  as

-1

V -1A V
1 1 / V 2

0 - 1/ V 2

1 1 0

0 —4/2 0

0 1 

0 -1

- 1Д /2 '

1/V2.

1 / 4/2 '

- 1 / V 2 .

0 0 

0 -1
(E8.2.3)

which is a diagonal matrix having the eigenvalues on its main diagonal.

This job can be performed by the last statement of the M ATLAB  program 

“nm811.m” .

This diagonalization technique can be used to decouple an N -dimensional 

vector differential equation so that it can be as easy to solve as N  independent 

scalar differential equations. Here is an illustration.

E x a m p le  8 .3 . Decoupling of a Vector Equation Through Diagonalization

(a) For the linear time-invariant (LTI) state equation (6.5.3)

x\(t)

x2(t)

0 1 

0 -1

X1(t)

X2(t)
+ Us(t) (E8.3.1)

with
x1(0) 1

_X2(0) _ -1

x'(t) =  Ax(t) +  Bu(t)

and us(t) =  1 V t > 0 

with the initial state x(0) and the input u(t)
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we use the modal matrix obtained as (E8.2.2) in Example 8.2 to make a substi

tution of variable

x(t) =  V w(t),
X1(t)

_X2(t) _

1 1/V2
0 -1 /V 2 .

W1(t)

W2(t)
(E8.3.2)

which converts Eq. (E8.3.1) into

Vw'(t) =  A V  w(t) +  Bus(t) (E8.3.3)

We premultiply (E8.3.3) by V —1 to write it in a decoupled form as

w'(t) =  V *A V w (t) +  V 1Bus(t) =  Aw(t) +  V  1 Bus(t) with w (0) =  V  1 x(0);

1 1 1 f °
0 -V2  1

w\(t)

w2(t)

0 0 

0 —1

w 1 (t) 

W 2 (t)
+ us(t) =

us(t)

— 102(0 —  \ //2ms(0 
(E8.3.4)

with
wi(0) 1 1 1 0

_ W2(0) _ 0 -4~2_ -1 . V 2 .

where there is no correlation between the variables w 1(t) and w2(t). Then we 

can solve these two equations separately to have

w 1'(t) =  us(t) with w 1 (0) =  0;

1 1
j№ j(i) — wx(0) =  ^ ( j )  =  w\(t) =  t us(t) (E8.3.5a) 

s s2

w 2 (t) =  —w 2(t) — \flus{t) with w 2(0) =  \/2;

V 2
sW 2(s) - w2(0) =  - W 2(s) - — ■

s

W2(s) =
ш2(0) V2 V2 | 2V2
j + 1  ф  +  1) _  j + ,  +  l ’

w2{t) — +  2e t)us{t)

and substitute this into Eq. (E8.3.2) to get

(E8.3.5b)

X1(t) 1 1 / V 2 ' W1 (t) 1 1 Д / 2 ' t

X2(t) 0 - 1 Д / 2 . _W2 (t)_ 0 -1 /V 2 _ . ^ ( - 1 + 2 0 .

t — 1 +  2e—t 

1 — 2e—t
us(t)

us(t)

(E8.3.6)

This is the same result as Eq. (6.5.10) obtained in Section 6.5.1.
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(b) Suppose Eq. (E8.3.1) has no input term and so we can expect only the 

natural response resulting from the initial state, but no forced response 

caused by the input.

Xl(t) 0 1 X1(t)
with

X1(0) 1

_Xl(t) . 0 -1 X2(t) _X2(0)_ 1
(E8.3.7)

We apply the diagonalization/decoupling method for this equation to get

Wi(t) A.1 0 W1(t) 0 0 W1(t)

_W l(t) _ 0 T2 _ _W2(t) _ 0 -1 _W2(t) _

with w(0) =  V  1x(0),
W1(0) 1 1 1 2

_W2(0)_ 0 - V 2 . 1 V 2 .

W1(t)

<-<
e0()W1 ' 2

W2(t) w2(0)eT2t —л/2е~‘

x(t) (E= ' 2) Vw(t) =  [V1 V2]
w 1(0)eT1t

w2(0)eT2t

1 1 u 2 2 1 e t
%

1
101 1

1 съ t
1 1

-
te1

(E8.3.8)

=  W1(0)eht V1 +  W2(0)el2t V2

(E8.3.9)

As time goes by, this solution converges and so the continuous-time sys

tem turns out to be stable, thanks to the fact that all of the eigenvalues 

(0, -1) are distinct and not positive.

Example 8.4. Decoupling of a Vector Equation Through Diagonalization. 

Consider a discrete-time LTI state equation

X1[n +  1] 

X2[n +  1]

0 1 

0.2 0.1

X1[n]

X2[n]
+

0

2.2361
Us [n]

with
X1[0] 1

X2[0] -1
and us[n] =  1 V n > 0 (E8.4.1)

In order to diagonalize this equation into a form similar to Eq. (E8.3.4), we use 

M ATLAB  to find the eigenvalues/eigenvectors and the modal matrix composed 

of the eigenvectors and finally, do the similarity transformation.

A = [0 1;0.2 0.1]; B = [0; 2.2361]; % Eq.(E8.4.1)
[V,L] = eig(A) % V = modal matrix composed of eigenvectors (E8.4.2)
% L = diagonal matrix with eigenvalues on its diagonal 
Ap = V~-1*A*V %diagonalize through similarity transformation (E8.4.3) 

% into a diagonal matrix having the eigenvalues on the diagonal 
Bp = V~-1*B % (E8.4.3)
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Then, we get

>- 0

1 0 12
«■<L  =

A p =  V -1A V

-0.4 0 

0 0.5

-0.4 0 

0 0.5

V  =  [V1 V2] =

and Bp =  V B

-0.9285

0.3714

2.6759

-2.7778

-0.8944 

-0.4472 

(E8.4.2)

(E8.4.3)

so that we can write the diagonalized state equation as

w1[n +  1]

w2[n +  1]

-0.4 0 

0 0.5

w 1[n]

w2[n]
+

2.6759

-2.7778
us [n]

-0.4w1[n] +  2.6759

0.5w2[n] - 2.7778
(E8.4.4)

Without the input term on the right-hand side of Eq. (E8.4.1), we would have 

obtained

w1[n +  1] A.1 0 w 1[n] 'X1+1 w1[0]"

w2[n +  1] 0 ^2 _
w2[n] 1 ю 

a 1

w2[0] _

x[n] =  V  w[n] =  [v1 v2]
w 1[0]^n

w 2[0]An

with w[0] =  V  1x[0] 

(E8.4.5)

=  w1[0]^Jv1 +  w2[0]^nv2 (E8.4.6)

As time goes by (i.e., as n increases), this solution converges and so the discrete

time system turns out to be stable, thanks to the fact that the magnitude of every 

eigenvalue (-0.4, 0.5) is less than one.

R e m a r k  8 .2 . Physical Meaning of Eigenvalues and Eigenvectors

1. As illustrated by the above examples, we can use the modal matrix to 

decouple a set of differential equations so that they can be solved one 

by one as a scalar differential equation in terms of a single variable and 

then put together to make the solution for the original vector differential 

equation.

2. Through the above examples, we can feel the physical significance of the 

eigenvalues/eigenvectors of the system matrix A  in the state equation on its 

solution. That is, the state of a linear time-invariant (LTI) system described 

by an N -dimensional continuous-time (differential) state equation has N  

modes [eXiг; i =  1, . . . ,  N }, each of which converges/diverges if the sign of 

the corresponding eigenvalue is negative/positive and proceeds slowly as
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the magnitude of the eigenvalue is close to zero. In the case of a discrete

time LTI system described by an N -dimensional difference state equation, 

its state has N  modes [ Ц ; i =  1, . . . ,  N }, each of which converges/diverges 

if the magnitude of the corresponding eigenvalue is less/greater than one 

and proceeds slowly as the magnitude of the eigenvalue is close to one. 

To summarize, the convergence property of a state x or the stability of a 

linear-time invariant (LTI) system is determined by the eigenvalues of the 

system matrix A. As illustrated by (E8.3.9) and (E8.4.6), the corresponding 

eigenvector determines the direction in which each mode proceeds in the 

N -dimensional state space.

8.3 P O W E R  M E T H O D

In this section, we will introduce the scaled power method, the inverse power 

method and the shifted inverse power method, to find the eigenvalues of a 

given matrix.

8.3.1 Scaled Power Method

This method is used to find the eigenvalue of largest magnitude and is summarized 

in the following box.

SCALED POWER METHOD
Suppose all of the eigenvalues of an N  x N  matrix A  are distinct with the 

magnitudes

l^ll > 1̂ 21 > 1̂ 31 > ' ' ' > IM
Then, the dominant eigenvalue k\ with the largest magnitude and its corre

sponding eigenvector Vi can be obtained by starting with an initial vector x0 

that has some nonzero component in the direction of Vi and by repeating the 

following procedure:

Divide the previous vector xk by its largest component (in absolute value) 

for normalization (scaling) and premultiply the normalized vector by the 

matrix A.

х*+1 = А — ^ -- > AiVi with ЦхЦоо =  Max {\xn\} (8.3.1)
H a l l o o
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Proof. According to Theorem 8.1, the eigenvectors [vn; n =  1 : N } of an N  x N  

matrix A  whose eigenvalues are distinct are independent and thus can constitute 

a basis for an N -dimensional linear space. Consequently, any initial vector x0 

can be expressed as a linear combination of the eigenvectors:

x0 =  »1V1 +  « 2^2 +  ■ ■ ■ +  aN Vn (8.3.2)

Noting that Avn =  Anvn, we premultiply both sides of this equation by A  

to get

Ax0 =  a1^1 V1 +  a2^2V2 +  ■ ■ ■ +  aN^N  Vn

/  A 2 AN
=  X i  I aiVi +  a 2— V2 +  • • • +  a#-—

V ^1 ^1

and repeat this multiplication over and over again to obtain

xk =  A k x0

k k  
Ao \ An

=  X\ jaivi + a 2 v2 H--- h aN J vw | -* AfciVi (8.3.3)

which will converge to an eigenvector v1 as long as a 1 =  0. Since we keep 

scaling before multiplying at every iteration, the largest component of the limit 

vector of the sequence generated by Eq. (8.3.1) must be A1.

д xk i v1 (8.1.1̂  v1
Xk+i — A- - >• A- - — Ai-^—̂  (8.3.4)

11 xk ||то ||v1̂ TO

Note that the scaling prevents the overflow or underflow that would result from 

|A11 > 1 or |A1| < 1.

R e m a r k  8 .3 . Convergence of Power Method

1. In the light of Eq. (8.3.3), the convergence speed of the power method 

depends on how small the magnitude ratio (|A2|/|A1|) of the second largest 

eigenvalue A2 over the largest eigenvalue A1 is.

2. We often use x0 =  [1 1 ■ 1 ] as the initial vector. Note that 

if it has no component in the direction of the eigenvector (v1) 

corresponding to the dominant eigenvalue A1 — that is, a 1 =  x0•v1/||v11|2 =

0 in Eq. (8.3.2)— the iteration of the scaled power method leads to the limit 

showing the second largest magnitude eigenvalue A2 and its corresponding 

eigenvector v2. But, if there is more than one largest (dominant) eigenvalue 

of equal magnitude, it does not converge to either of them.
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8.3.2 Inverse Power Method

The objective of this method is to find the (uniquely) smallest (magnitude) eigen

value XN by applying the scaled power method to the inverse matrix A -1 and 

taking the inverse of the largest component of the limit. It works only in cases 

where the matrix A  is nonsingular and thus has no zero eigenvalue. Its idea is 

based on the equation

A v  =  Xv ^  A —1v =  X —1v (8.3.5)

obtained from multiplying both sides of Eq. (8.1.1) by X —1A —1. This implies 

that the inverse matrix A -1 has the eigenvalues that are the reciprocals of the 

eigenvalues of the original matrix A , still having the same eigenvectors.

1
k N = -------------------- r (8.3.6)

the largest eigenvalue of A -1

8.3.3 Shifted Inverse Power Method

In order to develop a method for finding the eigenvalue that is not necessarily 

of the largest or smallest magnitude, w e  subtract s v (s : a number that does not 

happen to equal any eigenvalue) from both sides of Eq. (8.1.1) to write

A v  =  Xv ^  [A — s I ]v =  (X — s)v (8.3.7)

Since this implies that (X — s) is the eigenvalue of [A — s I ], w e  apply the inverse 

power method for [A — s I ] to get its smallest magnitude eigenvalue (Xk — s) with 

min{| Xi — s|, i =  1 : N } and add s to it to obtain the eigenvalue of the original 

matrix A  which is closest to the number s .

1
= ------------------------- - -)- s (8.3.8)

the largest eigenvalue of [A  -  s I ]-1

The prospect of this method is supported by Gerschgorin’s disk theorem, 

which is summarized in the box below. But, this method is not applicable to the 

matrix that has more than one eigenvalue of the same magnitude.

Theorem 8.2. Gerschgorin’s Disk Theorem.

Every eigenvalue of a square matrix A  belongs to at least one of the disks 

(in the complex plane) with center amm (one of the diagonal elements of A )  and 

radius

rm =  ^  | amn | (the sum of all the elements in the row except the diagonal element)

n=m
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Moreover, each of the disks contains at least one eigenvalue of the 

matrix A.

The power method introduced in Section 8.3.1 is cast into the routine 

“eig_power()” . The M A TLA B  program “nm831.m” uses it to perform the power 

method, the inverse power method and the shifted inverse power method for 

finding the eigenvalues of a matrix and compares the results with that of the 

M ATLAB  built-in routine “eig() ” for cross-check.

function [lambda,v] = eig_power(A,x,EPS,MaxIter)
%  The power method to find the largest eigenvalue (lambda) and 
%  the corresponding eigenvector (v) of a matrix A. 
if nargin < 4, MaxIter = 100; end %  maximum number of iterations 
if nargin < 3, EPS = 1e-8; end %  difference between successive values 
N = size(A,2);
if nargin < 2, x = [1:N]; end %  the initial vector

x = x(:);
lambda = 0 ;
for k = 1:MaxIter

x 1 = x; lambda1 = lambda; 
x = A*x/norm(x,inf); %Eq.(8.3.4)
[xm,m] = max(abs(x));
lambda = x(m); %  the component with largest magnitude(absolute value) 
if norm(x1 - x) < EPS &  abs(lambda1-lambda) < EPS, break; end 

end
if k == MaxIter, disp('Warning: you may have to increase MaxIter'); end 
v = x/ n o r m ( x ) ;

%nm831
%Apply the power method to find the largest/smallest/medium eigenvalue 
clear
A  = [2 0 1;0 -2 0;1 0 2];
x = [1 2 3]'; %x = [1 1 1]'; %  with different initial vector 
EPS = 1e-8; MaxIter = 100;
%the largest eigenvalue and its corresponding eigenvector 
[lambda_max,v] = eig_power(A,x,EPS,MaxIter)
%the smallest eigenvalue and its corresponding eigenvector 
[lambda,v] = eig_power(A~ - 1,x,EPS,MaxIter); 
lambda_min = 1/lambda, v %Eq.(8.3.6)
%eigenvalue nearest to a number and its corresponding eigenvector 
s = -3; AsI = (A - s*eye(size(A)))~ - 1;
[lambda,v] = eig_power(AsI,x,EPS,MaxIter); 
lambda = 1/lambda+s %Eq.(8.3.8)
fprintf('Eigenvalue closest to %4.2f = %8.4f\nwith eigenvector',s,lambda) 
v
[V,LAMBDA] = eig(A) %modal matrix composed of eigenvectors

8.4 JACOBI M E T H O D

This method finds us all the eigenvalues of a real symmetric matrix. Its idea is 

based on the following theorem.
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Theorem 8.3. Symmetric Diagonalization Theorem.

All of the eigenvalues of an N  x  N  symmetric matrix A  are of real value and 

its eigenvectors form an orthonormal basis of an N -dimensional linear space. 

Consequently, we can make an orthonormal modal matrix V  composed of the 

eigenvectors such that V TV  =  I ; V —1 =  V T and use the modal matrix to make 

the similarity transformation of A , which yields a diagonal matrix having the 

eigenvalues on its main diagonal:

V T A V  =  V —1A V  =  Л (8.4.1)

Now, in order to understand the Jacobi method, we define the pq -rotation 

matrix as

p th column qtn columnth

Rpq(O) =

1 0 • 0 • 0 • 0

0 1 • 0 • 0 • 0

0 0 • cos в — sin в • 0

0 0 • sin в • cos в • 0

0 0 • 0 • 0 • 1

p th row

qth row

(8.4.2)

Since this is an orthonormal matrix whose row/column vectors are orthogonal 

and normalized

>T =  0 —1 (8.4.3)RlqRpq =  I RPq =  R—q

premultiplying/postmultiplying a matrix A  by Rpq/ R pq makes a similarity trans-

formation

A (1) =  R L A  Rpq pq (8 .4 .4 )

Noting that the similarity transformation does not change the eigenvalues (Re

mark 8.1), any matrix resulting from repeating the same operations successively

A (k+1) =  R (k)A (k)R (k) =  R (k)RTk—1) • ' ' R T A R  ' ' ' R (k—1)R (k) (8.4 .5)

has the same eigenvalues. Moreover, if it is a diagonal matrix, it will have all 

the eigenvalues on its main diagonal, and the matrix multiplied on the right of 

the matrix A  is the modal matrix V

V  =  R  • • • R(k—1)R(k) (8.4.6)

as manifested by matching this equation with Eq. (8.4.1).
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function [LAMBDA,V,ermsg] = eig_Jacobi(A,EPS,MaxIter)
%Jacobi method finds the eigenvalues/eigenvectors of symmetric matrix A
if nargin < 3, MaxIter = 100; end
if nargin < 2, EPS = 1e-8; end
N = size(A,2);
LAMBDA =[]; V = [];
for m = 1:N

if norm(A(m:N,m) - A(m,m:N)') > EPS
error('asymmetric matrix!');

end
end
V = eye(N);
for k = 1:MaxIter

for m = 1:N - 1
[Am(m),Q(m)] = max(abs(A(m,m + 1:N)));

end
[Amm,p] = max(Am); q = p + Q(p);
if Amm < EPS*sum(abs(diag(LAMBDA))), break; end
if abs(A(p,p)-A(q,q))<EPS

s2 = 1 ; s = 1 /sqrt(2 ); c = s;
cc = c*c; ss = s*s;

else
t2 = 2*A(p,q)/(A(p,p)- A(q,q)); %Eq.(8.4.9a)
c2 = 1/sqrt(1 + t2*t2); s2 = t2*c2; %Eq.(8.4.9b, c)
c = sqrt((1 + c 2 ) / 2 ) ; s = s2/2/c; %Eq.(8.4.9d, e)
cc = c*c; ss = s*s;

end
LAMBDA = A;
LAMBDA(p,:) = A(p,:)*c + A(q,:)*s; %Eq.(8.4.7b)
LAMBDA(:,p) = LAMBDA(p,:)';
LAMBDA(q,:) = -A(p,:)*s + A(q,:)*c; %Eq.(8.4.7c)
LAMBDA(:,q) = LAMBDA(q,:)';
LAMBDA(p,q) = 0; LAMBDA(q,p) = 0; %Eq.(8.4.7a)
LAMBDA(p,p) = A(p,p)*cc +A(q,q)*ss + A(p,q)*s2; %Eq. (8.4. 7d)
LAMBDA(q,q) = A(p,p)*ss +A(q,q)*cc - A(p,q)*s2; %Eq. (8.4. 7e)
A  = LAMBDA;
V(:,[p q]) = V(:,[p q])*[c -s;s c];

end
LAMBDA = diag(diag(LAMBDA)); %for purification

%nm841 applies the Jacobi method
%  to find all the eigenvalues/eigenvectors of a symmetric matrix A.
clear
A  = [2 0 1;0 -2 0;1 0 2];
EPS = 1e-8; MaxIter =100;
[L,V] = eig_Jacobi(A,EPS,MaxIter)
disp('Using eig()')
[V,LAMBDA] = eig(A) %modal matrix composed of eigenvectors

What is left for us to think about is how to make this matrix (8.4.5) diag

onal. Noting that the similarity transformation (8.4.4) changes only the pth 

rows/columns and the qth rows/columns as

vpq =  vqp =  aqp(c s ) +  (aqq app)sc

1
=  aqp cos 2<9 +  - (aqq - app) sin 2<9 (8.4.7a)
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vpn =  vnp =  apnc +  aqns for the p th row/column with n =  p ,q  (8.4.7b)

vqn =  vnp =  —apns +  aqnc for the qth row/column with n =  p ,q  (8.4.7c)

vpp — appc +  aqqs +  2apqsc — appc +  aqqs +  apq sin 20 (8.4 .7d)

vqq — apps +  aqqc 2apqsc — apps +  aqqc apq sin 20 (8.4 .7e)

(c =  cos 0, s =  sin0) 

we make the (p ,q )  element vpq and the (q, p) element vqp zero

Vpq =  Vqp =  0 (8 .4 .8)

by choosing the angle 0 of the rotation matrix Rpq(0) in such a way that

tan 20 =
sin 20 2apq

cos 20 app — aqq 

sin 20 =  tan 20 cos 20

cos 20 =
sec 29 V l  +  tan2 20 ’

(8.4.9)

cos 0 =  V  cos2 0 =  У (1  +  cos20)/2, sin 0 =
sin 20 

2cos0

and computing the other associated elements according to Eqs. (8.4.7b-e).

There are a couple of things to note. First, in order to make the matrix closer 

to a diagonal one at each iteration, we should identify the row number and the 

column number of the largest off-diagonal element as p  and q , respectively, and 

zero-out the (p, q) element. Second, we can hope that the magnitudes of the 

other elements in the pth,qth row/column affected by this transformation process 

don’t get larger, since Eqs. (8.4.7b) and (8.4.7c) implies

vpn +  van =  (apnc +  aqns) +  (—apns +  aqnc) =  apn +  a, (8.4.10)

This so-called Jacobi method is cast into the routine “eig_Jacobi()” . The 

M ATLAB  program “nm841.m” uses it to find the eigenvalues/eigenvectors of a 

matrix and compares the result with that of using the M ATLAB  built-in routine 

“eig()” for cross-check. The result we may expect is as follows. Interested 

readers are welcome to run the program “nm841.m”.

' 2 0 1 '3 0 0

A = 0 —2 0 ^  R[3ARi3 = 0 —2 0

1 0 2 0 0 1

=  Л

with R 13 =

1Д/2 0 —1Д/2'
0 1 0 

1Д/2 0 1/V2 .
=  V

1 1
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According to Theorem 8.3 (Symmetric Diagonalization Theorem), introduced in 

the previous section, the eigenvectors {vn,n =  1 : N } of an N  x N  symmetric 

matrix A  constitute an orthonormal basis for an N -dimensional linear space.
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7T \j _ j , 7 ^  _ я _ f 1 for m n
0 for m =  n

V TV  =  I, vivn =  Smn =  !A  (8.5.1)

Consequently, any N -dimensional vector x can be expressed as a linear combi

nation of these eigenvectors.

N

=  a 1v1 +  a2v2 +  ••' +  a NvN =  anvn (8.5.2)nn

n=1

Thus, the eigenvectors are called the principal axes of matrix A , and the squared 

norm of a vector is the sum of the squares of the components (an’s) along the 

principal axis.

( N \ T /  N \ N N N

^ 2  “ mvm 1 1  ^  anvn) = ^ ^ 2  ^
m=1 / \n=1 / m=1n=1 n=1

(8.5 .3)

Premultiplying Eq. (8.5.2) by the matrix A  and using Eq. (8.1.1) yields

N

Ax =  Л1 » 1V1 +  ^ 2a2V2 +  ' ' ' +  ^NaNVn =  У ] ̂ nanVn (8.5.4)

n=1

This shows that premultiplying a vector x by matrix A  has the same effect as 

multiplying each principal component an of x along the direction of eigenvector 

vn by the associated eigenvalue Xn. Therefore, the solution of a homogeneous 

discrete-time state equation

x(k +  1) =  Ax(k) with x(0) =  ^  anvn (8.5.5)

can be written as

N

an T n

n=1

N

x(k) = ^ 2  ^knanVn (8.5.6)

n=1

which was illustrated by Eq. (E8.4.6) in Example 8.4. On the other hand, as illus

trated by (E8.3.9) in Example 8.3(b), the solution of a homogeneous continuous

time state equation

N

x'(t) =  Ax(t) with x(0) =  ^ 2  anvn (8.5.7)

n=1

x
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can be written as

x(t) = Y ^  eKtanvn

n=1
(8.5.8)

Equations (8.5.6) and (8.5.8) imply that the eigenvalues of the system matrix 

characterize the principal modes of the system described by the state equations. 

That is, the eigenvalues determine not only whether the system is stable or 

not— that is, whether the system state converges to an equilibrium state or 

diverges— but also how fast the system state proceeds along the direction of 

each eigenvector. More specifically, in the case of a discrete-time system, the 

absolute values of all the eigenvalues must be less than one for stability and 

the smaller the absolute value of an eigenvalue (less than one) is, the faster the 

corresponding mode converges. In the case of a continuous-time system, the real 

parts of all the eigenvalues must be negative for stability and the smaller a neg

ative eigenvalue is, the faster the corresponding mode converges. The difference 

among the eigenvalues determines how stiff the system is (see Section 6.5.4). 

This meaning of eigenvalues/eigenvectors is very important in dynamic systems.

Now, in order to figure out the meaning of eigenvalues/eigenvectors in static 

systems, we define the mean vector and the covariance matrix of the vectors 

{x(1), x(2), . . . ,  x(K)} representing K  points in a two-dimensional space called the 

x1x2 plane as

1
m x

(k)

k=1

1

- m -][xW - m v|7 (8.5.9)

k=1

where the mean vector represents the center of the points and the covariance 

matrix describes how dispersedly the points are distributed. Let us think about 

the geometrical meaning of diagonalizing the covariance matrix Cx. As a simple 

example, suppose we have four points

x (1)

1 
1

1
о

 
i 

i

,  x(2) = " - Г

0
, x(3) =

2

3

x
(

=

3

2
(8.5.10)

for which the mean vector m x, the covariance matrix Cx, and its modal matrix 

are

(8.5.11)

1 2.5 2 1 1 Г
m x =

1
, Cx =

2 2.5
, V =  [vi v2] =

V 2 -1 1

Then, we can diagonalize the covariance matrix as

1 1 -1 22. 1 " 1 1 "

1 1 2 2.5 V 2 -1 1

0.5 0 A.1 0

0 4.5. 0 A 2 _
=  Л (8.5.12)

N

K K

x
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which has the eigenvalues on its m ain diagonal. O n  the other hand, if w e  trans

form the four point vectors by using the m odal matrix as

y =  V T (x  -  mx) (8 .5 .1 3 )

then the n e w  four point vectors are

y (1) =
'  1 / V 2 ' y (2) _ 1 Д / 2 ' ,  y (3) 1 Д / 2 ' ,  y (4) ' 1 / V 2 '

. - З Д / 2 .
,  y  =

3 /V 2 .
,  y  =

.  З Д / 2  .

,  y  =

_3 /V2_

for which the m ean  vector m x and the covariance matrix Cx are

(8 .5 .14 )

my =  V T(mx - mx) = Cy =  V T C x V  =
0 .5

0
0

4 .5
=  Л

(8 .5 .1 5 )

T h e  original four points and the n e w  points corresponding to them are depicted 

in Fig. 8 .1 , which  shows that the eigenvectors of the covariance matrix for a set of 

point vectors represents the principal axes of the distribution and its eigenvalues 

are related with the lengths of the distribution along the principal axes. The  

difference am ong the eigenvalues determines h o w  oblong the overall shape of 

the distribution is.

Before closing this section, w e  m ay  think about the m eaning of the deter

minant of a matrix com posed of two two-dimensional vectors and three three

dimensional vectors.

-4 -2 0 2 4

Figure 8.1 Eigenvalues/eigenvectors of a covariance matrix.
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First, let us consider a 2 x 2 matrix composed of two two-dimensional vectors 

x(1) and x(2). ^

x 11 x12
X  =  [ x(1) x (2) ] =

x21 x22

Conclusively, the absolute value of the determinant of this matrix

(8.5.16)

det(X) =  |X| =  x 11 x22 - x 12x21 (8.5.17)

equals the area of the parallelogram having the two vectors as its two neighboring 

sides. In order to certify this fact, let us make a clockwise rotation of the two 

vectors by the phase angle of x (1)

—6\ =  — tan 1 ( —  
x11

(8 .5 .18)

so that the new vector y(1) corresponding to x(1) becomes aligned with the x1-axis 

(see Fig. 8.2). For this purpose, we multiply our matrix X  by the rotation matrix 

defined by Eq. (8.4.2)

R(-01) =
cos 01 - sin(-01) 

sin(-01) cos 01

1

x 11 \ xr21

x 11 x21 

x21 x11
(8.5.19)

to get

Y  =  R (- 01)X  =

[ y (1) y (2) ] =

x121 \ x 221

x121 \ x 2

x11 x21 

-x21 x 11

11 21

x 11 x12 

x21 x22

x11x12 +  x21x22 

-x12x21 +  x11x22
21

(8.5.20a)

(8.5.20b)

The parallelograms having the original vectors and the new vectors as their two 

neighboring sides are depicted in Fig. 8.2, where the areas of the parallelograms 

turn out to be equal to the absolute values of the determinants of the matrices X  

and Y  as follows:

Area of the parallelograms

=  Length of the bottom side x Height of the parallelogram 

=  (x1 component of y(1)) x (x2 component of y(2)) =  y11 y22 =  det(Y)

x21 +  x21 -x12x21 +  xn x22 , , v .
x ---, —  =  det(X)

x121 \ x221 x121 \ x 2

(8.5.21)

21

1

1
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Figure 8.2 Geometrical meaning of a determinant.

O n  extension of this result into a three-dimensional situation, the absolute 

value of the determinant of a 3  x 3  matrix com posed of three three-dimensional 

vectors x (1), x (2), and x (3) equals the volum e of the parallelepiped having the 

three vectors as its three edges.

x11 x12 x 13

d et(X ) =  | X  | =  | x (1) x (2) x (3) | = x21 x22 x23 =  x (1) x

x31 x32 x33

(8 .5 .2 2 )

8.6 EIGENVALUE EQ U ATION S

In this section, w e  consider a system of ordinary differential equations that can 

be formulated as an eigenvalue problem.

For the undam ped  mass-spring system depicted in Fig. 8 .3 , the displacements 

x1(t) and x2(t) of the two masses m 1 and m2 are described by the following 

system of differential equations:

'x1' ( t ) (k1 +  k2)/m1 -k2/m1 x1(t)

_x2(t)- -k2/m2 k2/m2 _ x ( t )

with

x"(t) =  -Ax(t)

x 1 (0)

x2(0)
and

x2(0

with x (0) and x' (0)

x1 (0)

x2 (0)

(8.6.1)

Let the eigenpairs (eigenvalue-eigenvectors) of the matrix A  be (kn =  v n) with

A v „  =  ® nVn (8 .6 .2)
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spring 
constant

k

И м Ч
x1(t)

m1

spring 
constant

k 2
x2tt)

m2
Lo-cv

Figure 8.3 An undamped mass-spring system.

Noting that the solution of Eq. (8.5.7) can be written as Eq. (8.5.8) in terms of 

the eigenvectors of the system matrix, we write the solution of Eq. (8.6.1) as

(t) Wn(t)Vn =  [ V1 V2 ]
W1(t)

W2(t)
=  V  w(t)

and substitute this into Eq. (8.6.1) to have

(8.6.3)

^2w'n(t)Vn =  - A j2w n (t )V n  (8= 2) - ^  Wn(t)Wn(t)Mn Vn

Wn(t) =  -rnn Wn(t)

The solution of this equation is

n=1

for n =  1, 2

(8.6.4)

(8.6.5)

и/  (0) /—  
wn(t) =  wn{0) cos{a)nt) H---- sin(cont) with con =  ^/kn for n =  1, 2

(8.6 .6)

where the initial value of w(t) =  [w1(t) w2(t]r can be obtained via Eq. (8.6.3) 

from that of x(t) as

w(0) (8.=3) V -1x(0) ^  V Tx(0), w'(0) =  V Tx'(0)
(8.4.1)

(8.6.7)

Finally, we substitute Eq. (8.6.6) into Eq. (8.6.3) to obtain the solution of 

Eq. (8.6.1).

x

2 2 2

P R O B L E M S

8.1 Symmetric Tridiagonal Toeplitz Matrix

Consider the following N  x N  symmetric tridiagonal Toeplitz matrix as

a b 0 ■ 0 0

b a b ■ 0 0

0 b a ■ 0 0

0 0 0 ■ a b

0 0 0 ■ b a
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(a) Verify that the eigenvalues and eigenvectors of this matrix are as follows, 

with N  =  3 for convenience.

kn =  a +  2b cos

Vn =
2

N  +  1

nn 

N  +  1

nn
sin

N  +  1

for n =  1 to N  

2nn
sin

N  +  1
■ sin

N nn  

N  +  1

(P8.1.2)

(P8.1.3)

(b ) Letting N  =  3, a =  2, and b =  1, find the eigenvalues/eigenvectors of 

the above matrix by using (P8.1.2,3) and by using the M A TLA B  routine 

“eig_Jacobi()” or “eig()” for cross-check.

8.2 Circulant Matrix

Consider the following N  x N  circulant matrix as

(P8.2.1)

(a ) Vertify that the eigenvalues and eigenvectors of this matrix are as follows, 

with N  =  4 for convenience.

Xn =  h(0) +  h (N  - 1)ej2nn/N +  h (N  - 2)ej2n2n/N (P8.2.2) 

+  ---+h(1)ej 2n(N-1)n/N

- h(0) h(N  - 1) h(N  - 2) ■ h(1)-

h(1) h(0) h (N  - 1) ■ h(2)

h(2) h(1) h(0) ■ h(3)

_h (N  - 1) h(N  - 2) h(N  - 3) ■ h(0)_

vn =  [1 ej2nn/N ej2n2n/N ■ ■

for n =  0 to N  - 1

e (P8.2.3)

(b ) Letting N  =  4, h(0) =  2, h(3) =  h(1) =  1, and h(2) =  0, find the eigen

values/eigenvectors of the above matrix by using (P8.2.2,3) and by using 

the M ATLAB  routine “eig_Jacobi()” or “eig()” . Do they agree? Do 

they satisfy Eq. (8.1.1)?

8 .3  Solving a Vector Differential Equation by Decoupling: Diagonalization. 

Consider the following two-dimensional vector differential equation (state 

equation) as

x K t )

xi(t)

0 1

-2 -3

with

X1(t)

X2(t)
+

X1(0) 1

_X2(0) _ 0

us(t) (P8.3.1)

and us(t) =  1 V t > 0
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which was solved by using Laplace transform in Problem P6.1. In this prob

lem, we solve it again by the decoupling method through diagonalization of 

the system matrix.

(a) Show that the eigenvalues and eigenvectors of the system matrix are as 

follows.

Ai — —1, A2 — —2;
1 1

v1 —
-1

, v2 —
-2

(P8.3.2)

(b) Show that the diagonalization of the above vector differential equation 

using the modal matrix V  — [ v1 v2] yields the following equation:

wi'(t)

W2(t)

-1 0 

0 -2

W1 (t)

W2 (t)
+

1

1
us(t) (P8.3.3)

-W1(t) +  Us(t)

-2w2(t) - Us(t)
with

W1(0) 2

_W2(0)_ -1

(c) Show that these equations can be solved individually by using Laplace 

transform technique to yield the following solution, which is the same 

as Eq. (P6.1.2) obtained in Problem P6.1(a).

1 1
Wi(s) =  - +

s s +  1
W 1 (t) — (1 +  e t)us(t) (P8.3.4a)

W2(s) —
-1/2  1/2

w2(t) =  - - (l+e- 2t)us(t) (P8.3.4b)
s +  2

X1(t) ' 1 / 2  +  e-t -  ( 1 / 2 )e -2t"

_X2(t) _ 1 - Ob t

+ e
1 t

1

us(t) (P8.3.5)

s

8.4 Householder Method and Q R  Factorization

This method can zero-out several elements in a column vector at each iter

ation and make any N  x N  matrix a (lower) triangular matrix in (N  - 1) 

iterations.

(a) Householder Reflection (Fig. P8.4)

Show that the transformation matrix by which we can multiply a vector 

x to generate another vector y having the same norm is

H  — [I - 2wwT] 

x - y 1
With w  =  ---- - =  -(x - у), с =  ||x - y||2, ||x|| =  ||y|| (P8.4.1)

IIx - y ||2 с

and that this is an orthonormal symmetric matrix such that H TH  — 

HH  — I ; H -1 — H . Note the following facts.
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x - У

II x - УII

llxll =  1У II

Figure P8.4 Householder reflection.

x - y = cw w = С (x - y) =

\  □
m

x ^ y

(i)
, 4 (P8.4.1)

y =  x - (x - y) =  x - cw (P8.4.2a)

(ii)

(iii)

w Tw =. 1 and ||x|| =  ||y|| 

m  =  (x +  y)/2 =  x - (c/2)w

(P8.4.2b)

(P8.4.2c)

(iV) The mean vector m  of x and y is orthogonal to the difference vector

w =  (x - y)/c.

Thus we have

w T(x - (c/2)w) =  0; w Tx - (c/2)wTw =  w Tx - (c/2) =  0

(P8.4.3)

This gives an expression for c =  ||x - y||2 as

c =  l|x - y ||2 =  2wTx (P8.4.4)

We can substitute this into (P8.4.2a) to get the desired result.

y =  x - cw =  x - 2w w Tx =  [I - 2w w T]x =  H x (P8.4.5)

On the other hand, the Householder transform matrix is an orthog

onal matrix, since

H TH  =  HH  =  [I - 2wwT][I - 2w w T]

=  I - 4w w T +  4w w Tw w T

=  I - 4w w T +  4w w T =  I (P8.4.6)

(b ) Householder Transform

In order to show that the Householder matrix can be used to zero-out 

some part of a vector, let us find the kth Householder matrix H k trans

forming any vector

x =  [*1 ■■■ x k - 1  xk xk + 1 ■■■ Xn] (P8.4.7)
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into

y — [X1 ■ ■ ■ Xk- 1  -gk 0 ■ ■ ■ 0] (P8.4.8)

where gk is fixed in such a way that the norms of these two vectors are 

the same: _______

N

gk — хП (P8.4.9)

\ n—k

First, we find the difference vector of unit norm as

1
W* =  - ( X  -  y)

с

=  - [0 ••• 0 xk + g k xk+1 ■■■ xN ] (P8.4.10)
с

with

c =  I I х  —  y l b  =  -J  (xk +  gk)2 +  x \ + l  +  ■ ■ ■ +  x j j  (P8.4.11)

Then, one more thing we should do is to substitute this difference vector 

into Eq. (P8.4.1).

Hk — [I - 2wkwT] (P8.4.12)

Complete the following routine “Householder()” by permuting the 

statements and try it with k — 1, 2, 3, and 4 for a four-dimensional 

vector generated by the M ATLAB  command rand(5,1) to check if it 

works fine.

>> x = r a n d (5 ,1 ) ,  for k = 1 :4 ,  h o u se h o ld e r (x ,k )*x , end

function H = Householder(x,k)
%Householder transform to zero out tail part starting from k + 1 
H = eye(N) - 2*w*w'; %Householder matrix 
N = length(x); 
w = zeros(N,1);
w(k) =(x(k) + g)/c; w(k + 1:N) = x(k + 1:N)/c; %Eq.(P8.4.10) 
tmp = sum(x(k + 1:N).^ 2); 
c = sqrt((x(k) + g)~2 + tmp); %Eq.(P8.4.11) 
g = sqrt(x(k)~2 + tmp); %Eq.(P8.4.9)

(c) Q R  Factorization Using Householder Transform

We can use Householder transform to zero out the part under the main 

diagonal of each column of an N  x N  matrix A  successively and then 

make it a lower triangular matrix R in (N  - 1) iterations. The necessary 

operations are collectively written as

H n -1 Hn-2 ■ ■ ■ H 1A  — R (P8.4.13)



which implies that

A — [Hn -1 H n -2 ■ ■ ■ H 1]-1R — H -1 ■ ■ ■ H N l_2H N\ R  

— H 1 ■ ■ ■ Hn-2Hn-1R — Q R  (P8.4.14)

where the product of all the Householder matrices

Q  — H 1 ■ ■ ■ H n -2 H n -1 (P8.4.15)

turns out to be not only symmetric, but also orthogonal like each H k: 

Q TQ  — [H1 ■ ■ ■ H n -2H n -1]tH  ■ ■ ■ H n -2H n -1

— H T -1 HN -2 ■ ■ ■ H T H 1 ■ ■ ■ Hn-2HN -1 — I

This suggests a Q R  factorization method that is cast into the following 

routine “qr_my()” . You can try it for a nonsingular 3 x 3 matrix gener

ated by the M A TLA B  command rand(3) and compare the result with 

that of the M A TLA B  built-in routine “qr()” .
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function [Q,R] = qr_my(A)
%QR factorization 
N = size(A,1); R = A; Q = eye(N); 
for k = 1:N - 1

H = Householder(R(:,k),k);
R = H*R; %Eq.(P8.4.13)
Q = Q*H; %Eq.(P8.4.15)

end

8.5 Hessenberg Form Using Householder Transform

function [Hs,HH] = Hessenberg(A)
%Transform into an almost upper triangular matrix 
% having only zeros below lower subdiagonal 
N = size(A,1); Hs = A; HH = eye(N); %HH*A*HH' = Hs 
for k = 1:N - 2

H = Householder(Hs(:,k), );
Hs = H*Hs*H; HH = H*HH;

end

We can make use of Householder transform (introduced in Problem 8.4) to 

zero-out the elements below the lower subdiagonal of a matrix so that it 

becomes an upper Hessenberg form which is almost upper-triangular matrix. 

Complete the above routine “Hessenberg()” by filling in the second input 

argument of the routine “Householder()” and try it for a 5 x 5 matrix 

generated by the M ATLAB  command rand(5) to check if it works.
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8.6 Q R  Factorization of Hessenberg Form Using the Givens Rotation

We can make use of the Givens rotation to get the QR  factorization of Hessen- 

berg form by the procedure implemented in the following routine 

“qr_Hessenberg()”, where each element on the lower subdiagonal is zeroed 

out at each iteration. Generate a 4 x 4 random matrix A by the M ATLAB  com

mand rand(4), transform it into a Hessenberg form Hs by using the routine 

“Hessenberg()” and try this routine “qr_Hessenberg()” for the matrix of 

Hessenberg form. Check the validity by seeing if norm(Hs-Q*R) ^  0 or not.

8.7 Diagonalization by Using Q R  Factorization to Find Eigenvalues

You will see that a real symmetric matrix A can be diagonalized into a 

diagonal matrix having the eigenvalues on its diagonal if we repeat the 

similarity transformation by using the orthogonal matrix Q obtained from the 

Q R  factorization. For this purpose, take the following steps.

function [eigs,A] = eig_QR(A,kmax)
%Find eigenvalues by using QR factorization 
if nargin < 2, kmax = 200; end 
for k = 1:kmax

[Q,R] = qr(A); %A = Q*R; R =Q'*A =Q"-1*A 
A = R*Q; %A = Q" - 1*A*Q

end
eigs = diag(A);__________________________________________________

function [eigs,A] = eig_QR_Hs(A,kmax)
%Find eigenvalues by using QR factorization via Hesenberg 
if nargin < 2, kmax = 200; end 
Hs = hessenberg(A); 
for k = 1:kmax

[Q,R] = qr_hessenberg(Hs); %Hs = Q*R; R = Q'*Hs = Q" - 1*Hs 
Hs = R*Q; %Hs = Q" - 1*Hs*Q

end
eigs = diag(Hs);
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(a) Make the above routine “eig_QR()” that uses the M A T L A B  built-in 

routine “qr() ” and then apply it to a 4 x 4 random symmetric matrix A 

generated by the following M A T L A B  statements.

>> A = rand(4); A = A + A';

(b) Make the above routine “eig_QR_Hs()” that transforms a given matrix 

into a Hessenberg form by using the routine “Hessenberg()” (appeared 

in Problem 8.5) and then repetitively makes the Q R  factorization by 

using the routine “qr_Hessenberg()” (appeared in Problem 8.6) and 

the similarity transformation by the orthogonal matrix Q  until the matrix 

becomes diagonal. Apply it to the 4 x 4 random symmetric matrix A 

generated in (a) and compare the result with those obtained in (a) and 

by using the M A T L A B  built-in routine “e ig ()” for cross-check.

8.8 Differential/Difference Equation, State Equation, and Eigenvalue

As mentioned in Section 6.5.3, a high-order scalar differential equation such

as

x (3̂ (t) +  a2x (2'>(t) +  a1x'(t) +  a0x(t) — u(t) (P8.8.1)

can be transformed into a first-order vector differential equation, called a 

state equation, as

x K t ) 0 1 0 x1(t) 0

x2(t) — 0 0 1 x2(t) + 0 u(t)

_x3(t) _ -a0 - a1 -a2 _x3(t) 1

x(t) — [1 0 0]

x1(t)

x2(t)

x3(t)

(P8.8.2b)

The characteristic equation of the differential equation (P8.8.1) is

(P8.8.3)

and its roots are called the characteristic roots.

(a) What is the relationship between these characteristic roots and the eigen

values of the system matrix A  of the above state equation (P8.8.2)? To 

answer this question, write the equation \XI - A| — 0 to solve for the 

eigenvalues of A, and show that it is equivalent to Eq. (P8.8.3). To extend 

your experience or just for practice, you can try the symbolic computation 

of M A T L A B  by running the following program “ nm8p08a.m” .
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%nm8p08a 
syms a0 a1 a2 s
A =[0 1 0;0 0 1;-a0 -a1 -a2]; % (P8.8.2a) 
d e t(s* e y e (siz e (A ))- A) % characteristic polynom ial 
ch_eq = poly(A) %or, eq u iva len tly

(b) Let the input u(t) in the state equation (P8.8.2) be dependent on the state 

as

u(t) =  K  x(t) =  [ K 0x 1(t) K 1x2(t) K 2x3(t) ] (P8.8.4)

Then, the state equation can be written as

x1  (t)

x2 (t) =

_x 3  (t)_

0 1 0

0 0 1

K 0 - a0 K 1 - a. 1 K 2  - a.2

X1(t)

X2(t)

x3(t)

(P8.8.5)

If the parameters of the original system matrix are a0 =  1, a1 =  —2, and 

a2 =  3, what are the values of the gain matrix K  =  [K 0 K 1 K 2] you 

will fix so that the virtual system matrix in the state equation (P8.8.5) 

has the eigenvalues of к =  -1, -2, and -3? Note that the character

istic equation of the system whose behavior is described by the state 

equation (P8.8.5) is

s'3 +  (a2 — K 2)s2 +  (a1 — K 1 )s +  a0 — K 0 =  0 (P8.8.6)

and the equation having the roots of к =  -1, -2, and -3 is

(s +  1 )(s +  2)(s +  3) =  s3 +  6s2 +  11s +  6 =  0 (P8.8.7)

8.9 A  Homogeneous Differential Equation— An Eigenvalue Equation

Consider the undamped mass-spring system depicted in Fig. 8.3, where the 

masses and the spring constants are rn1 =  1, m 2 =  1[kg] and k1 =  5, k2 =  10 

[N/m], respectively. Complete the following program “nm8p09.m” whose 

objective is to solve the second-order differential equation (8.6.1) with the 

initial conditions [x1(0),x2(0),x1 (0),x2(0)] =  [1, -0.5, 0, 0] for the time 

interval [0,10] in two ways— that is, by using the ODE-solver “ode45()” 

(Section 6.5.1) and by using the eigenvalue method (Section 8.6) and plot 

the two solutions. Run the completed program to obtain the solution graphs 

for x1(t) and x2(t).

(cf) Note that the second-order vector differential equation (8.6.1) can be written as 

the following state equation:

'x '(t)' ' о  Г x(t)

_x"(t)_ -A  O . x'(t).
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%nm8p09.m solve a set of differential eqs. (a state equation)

clear, clf

global A

df = 'df861';

k1 = 5 ;  k2 = 10; m1 = 1; m2 = 1; %  the spring constants and the masses 

A  = [(k1 + k2)/m1 -k2/m1; -k2/m2 k2/m2]; NA = size(A,2); 

t0 = 0; tf =??; x0 =[? ???? ? ?]; %  initial/final time, initial values 

[t4,x4] = ode45(df,[t0 tf],x0);

[V,LAMBDA] = eig(A); %  modal matrix composed of eigenvectors 

w0 = x0(1:NA)*V; w10 = x0(NA+1:end)*V; %  Eq.(8.6.8) 

omega = ??????????????????; 

for n = 1:NA %  Eq.(8.6-7) 

omegan=omega(n);

w(:,n) = [cos(omega n;*t4) sin(omega n*t4)]*[w0(n);w10(n)/omega n]; 

end

xE = w*V.'; %  Eq.(8.6.3) 

for n = 1:NA

subplot(311 + n), plot(t4,x4(:,n),'b', t4,xE(:,n),'r') 

end

function dx = df861(t,x)

global A

NA = size(A,2);

if length(x) ~= 2*NA, error('Some dimension problem'); end 

dx = [zeros(NA) eye(NA); -A zeros(NA)]*x(:); 

if size(x,2) > 1 ,  dx = dx.'; end



9
PARTIAL DIFFERENTIAL 

EQUATIONS

What is a partial differential equation (PDE)? It is a class of differential equations 

involving more than one independent variable. In this chapter, we consider a gen

eral second-order P D E  in two independent variables x and y , which is written as

d2u d2u d2u (  du du\
M x ,  y )—  +  B (x , y)-—  +  C (x , y )—  =  f  [x , y, u, — , —  (9.0.1) 

dx2 dxdy dy2 \ dx dy J

for x0 < x < x f ,y 0 < y < yf 

with the boundary conditions given by

(9.0.2)
u (x ,y 0) =  by0 (x), u (x ,y f) =  byf(x), 

u(x0 , y) =  bx0 (y), and u(xf, y) =  bxf(y)

These PDEs are classified into three groups:

Elliptic PDE: if B 2 - 4 A C  < 0 

Parabolic PD E : if B 2 - 4 A C  =  0 

Hyperbolic PDE: if B 2 - 4 A C  > 0

These three types of P D E  are associated with equilibrium states, diffusion states, 

and oscillating systems, respectively. W e  will study some numerical methods for 

solving these PDEs, since their analytical solutions are usually difficult to find.

Applied Numerical Methods Using MATLAB®, by Yang, Cao, Chung, and Morris 
Copyright © 2005 John Wiley &  Sons, Inc., ISBN 0-471-69833-4
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As an example, we will deal with a special type of elliptic equation called 

Helmholtz’s equation, which is written as

V 2u(x, y) +  g(x, y)u(x, y) =  

d 2u (x ,y ) d 2u (x ,y )

— ^ 2—  + — ~dy2— + ̂ x ŷ)u(x ŷ) = f(x ŷ) (9Л Л )

over a domain D  =  {(x, y)|x0 < x < x f ,y 0 < y < y f} with some boundary con

ditions of

u(xo, y) =  bxo(y), u (xf,y ) =  bxf(y), (9 1 2)
(9 . 1 . 2 )

u(x, yo) =  byo(x), and u(x, yf) =  byf(x)

(cf) Equation (9.1.1) is called Poisson’s equation if g(x, y) =  0 and it is called Laplace’s 

equation if g(x, y) =  0 and f(x , y) =  0.

To apply the difference method, we divide the domain into M x sections, each 

of length A x  =  (xf — x0) /M x along the x-axis and into M y sections, each of 

length Ay =  (yf — y0) /M y along the y-axis, respectively, and then replace the 

second derivatives by the three-point central difference approximation (5.3.1)

d2u(x, y)

dx2

ui j_i_ 1 — 2u,- j “h ui /_ 1 
’J ’J withx;- = x 0 + jA x ,y i  = y 0 +  iAy

A x 2
xj,yi

d2u(x, y)

dy2

^  ui + l,j — 2liij +  Ui-ij

A y 2xj,yi

(9.1.3a)

with ui,j =  u(xj, yi) (9.1.3b)

so that, for every interior point (xj, yi) with 1 < i < M y — 1 and 1 < j < M x — 1, 

we obtain the finite difference equation

ui j+ 1 — 2ui j +  ui j—1 ui, 1 j — 2ui j +  ui—1 j

' ---—  +  J ---—  + * u » < J  =  A i  <9.1.4)

where

ui,j =  u(xj,yi), fij =  f (x j,y i), and gi,j =  g(xj, yi)

These equations can somehow be arranged into a system of simultaneous 

equations with respect to the (M y — 1)(M x — 1) variables {u11, u12, . . . ,  u1Mx—1, 

u2,1, ■ ■ ■ ,u2,Mx—1 ,.. . ,u M y —1,1,uMy—1,2 ,...,uM y—1,Mx—1 }, but it seems to be 

messy to work with and we may be really in trouble as M x and M y become 

large. A  simpler way is to use the iterative methods introduced in Section 2.5. 

To do so, we first need to shape the equations and the boundary conditions into 

the following form:

ui,j =  ry(ui,j + 1 +  ui,j —1) +  rx(ui + 1,j +  ui — 1,j) +  rxy(gijuij f i,j) (9.L 5a)



Ui,0 =  bX0(yt), Ui,Mx =  bxf(yi), U0,j =  by0 (xj), UMy,j =  byf(xj) (9.1.5b) 

where

A y 2 Д х 2 A x 2A y 2
--------- =  У --------- == у --------- == у (Q 1
2 (Д х 2 +  Д у2) y' 2 (Д х 2 +  Ду2) 2 (Д х 2 +  Ду2) ху

H ow  do we initialize this algorithm? If we have no priori knowledge about the 

solution, it is reasonable to take the average value of the boundary values as the 

initial values of ui,j.

The objective of the M A T L A B  routine “poisson.m” is to solve the above 

equation.

ELLIPTIC PDE 4 0 3

function [u,x,y] = poisson(f,g,bxO,bxf,byO,byf,D,Mx,My,tol,MaxIter)
%solve u_xx + u_yy + g(x,y)u = f(x,y)
% over the region D = [x0,xf,y0,yf] = {(x,y) |x0 <= x <= xf, yO <= у <= yf}
% with the boundary Conditions:

% u(x0,y) = bx0(y), u(xf,y) = bxf(y)
% u(x,y0) = by0(x), u(x,yf) = byf(x)
% Mx = # of subintervals along x axis
% My = # of subintervals along y axis
% tol : error tolerance

% MaxIter: the maximum # of iterations
x0 = D(1); xf = D(2); y0 = D(3); yf = D(4);
dx = (xf - x0)/Mx; x = x0 + [0:Mx]*dx;

dy = (yf - y0)/My; y = y0 + [0:My]'*dy;
Mx1 = Mx + 1; My1 = My + 1;
%Boundary conditions
for m = 1:My1, u (m ,[1 Mx1])=[bxO(y(m)) bxf(y(m))]; end %left/right side
for n = 1:Mx1, u ([1 My1],n) = [byO(x(n)); byf(x(n))]; end %bottom/top
%initialize as the average of boundary values
sum_of_bv = sum(sum([u(2:My,[1 Mx1]) u([1 My1],2: Mx)']));
u(2:My,2:Mx) = sum_of_bv/(2*(Mx + My - 2));
for i = 1:My

for j = 1:Mx

F (i,j) = f(x(j),y(i)); G(i,j) = g(x(j),y(i));
end

end
dx2 = dx*dx; dy2 = dy*dy; dxy2 = 2*(dx2 + dy2);
rx = dx2/dxy2; ry = dy2/dxy2; rxy = rx*dy2;
for itr = 1:MaxIter
for j = 2:Mx
for i = 2:My

u(i,j) = ry*(u(i,j + 1)+u(i,j - 1)) + rx*(u(i + 1,j)+u(i - 1,j))...
+ rxy*(G(i,j)*u(i,j)- F(i,j)); %Eq . (9.1.5a)

end
end
if itr > 1 & max(max(abs(u - u0))) < tol, break; end

ii0u

end

%solve_poisson in Example 9.1
f = inline('0','x','y'); g = inline('0','x','y') ;
x0 = 0; xf = 4; Mx = 20; y0 = 0; yf = 4; My = 20 ;
bx0 = inline('exp(y) - cos(y)','y'); %(E9.1.2a)
bxf = inline('exp(y)*cos(4) - exp(4)*cos(y)','y') ; %(E9.1.2b)
by0 = inline('cos(x) - exp(x)','x'); %(E9.1.3a)
byf = inline('exp(4)*cos(x) - exp(x)*cos(4)','x') ; %(E9.1.3b)

D = [x0 xf y0 yf]; MaxIter = 500; tol = 1e-4;
[U ,x ,у] = poisson(f,g,bx0,bxf,by0,byf,D,Mx,My,tol,MaxIter);
clf, mesh(x,y,U), axis([0 4 0 4 -100 100])



4 0 4 PARTIAL DIFFERENTIAL EQUATIONS

Example 9.1. Laplace’s Equation— Steady-State Temperature Distribution. 

Consider Laplace’s equation

V 2u(x, y) =
d 2u (x ,y ) d 2 u(x ,y )

dx2
+

dy2
=  0 for0 < x < 4, 0 < y < 4

(E9.1.1)

with the boundary conditions

u(0 ,y ) =  ey — cos y, u (4 ,y ) =  ey cos4 — e cos y (E9.1.2) 

u(x, 0) =  cosx — ex, u(x, 4) =  e4 cosx — ex cos4 (E9.1.3)

What we will get from solving this equation is u(x ,y ), which supposedly 

describes the temperature distribution over a square plate having each side 4 

units long (Fig. 9.1). W e  made the M A T L A B  program “ solve_poisson.m” in 

order to use the routine “poisson()” to solve Laplace’s equation given above 

and run this program to obtain the result shown in Fig. 9.2.

Now, let us consider the so-called Neumann boundary conditions described as

du(x, y)

dx
=  bxn(y) for x =  x0 (the left-side boundary) (9.1.7)

y My
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Figure 9.1 The grid for elliptic equations with Dirichlet/Neumann-type boundary condition.
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u(x, y)

100 - г -

0 0

Figure 9.2 Temperature distribution over a plate — Example 9.1.

Replacing the first derivative on the left-side boundary (x =  x0) by its three-point 

central difference approximation (5.1.8)

u i 1 u i _1 , ,
' 9Дл.~—  ~ V-V/). ~ “  2bX0(yi)Ax for i =  1, 2 .......M y-  I

2Ax  0 0 (9.1.8) 

and then substituting this constraint into Eq. (9.1.5a) at the boundary points, we 

have

ui,0 =  ry(ui,1 +  ui, — 1) +  rx(ui + 1,0 +  ui — 1,0) +  rxy(gi,0ui,0 — fi,0)

=  ry(ui,1 +  ui,1 — 2b'x 0 (yi)Ax) +  rx(ui + 1,0 +  ui — 1,0) +  rxy(gi,0ui,0 — fi,0)

=  2ryui,1 +  Tx(ui+1,0 +  ui—1,0 ) +  Txy(gi,0m,0 — fi,0 — 2b'x 0 (yi)/Ax)

for i =  1, 2 , . . . , M y — 1 (9.1.9)

If the boundary condition on the lower side boundary (y =  y0) is also of 

Neumann type, then we need to write similar equations for j =  1, 2 , . . .  ,M x — 1

u0 ,j =  ry(u0 ,j+ 1  +  u0 ,j—1 ) +  2rxu1,j +  rxy(g0ju 0 ,j — f 0 ,j — 2b'y 0 (xj)/Ay)

(9.1.10)

and additionally for the left-lower corner point (x0, y0),

u0,0 =  2(ryu0,1 +  rxu1,0 ) +  rxy(g0,0 u0,0 — f0,0 — 2(b'x0 (y0 ) /A x  +  2b'y0 x ) /A y ) )

(9.1.11)
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9.2 PAR ABOLIC  PDE

An example of a parabolic P D E  is a one-dimensional heat equation describing 

the temperature distribution u(x,t) (x is position, t is time) as

d 2u(x,t) du(x,t)
A -- for 0 < x < x f , 0 < t < T  (9.2.1)

dx2 dt

In order for this equation to be solvable, the boundary conditions u(0,t) =  

b0(t) &  u(xf, t) =  bxf(t) as well as the initial condition u(x, 0) =  i0(x) should 

be provided.

9.2.1 The Explicit Forward Euler Method

To apply the finite difference method, we divide the spatial domain [0, xf ] into 

M  sections, each of length Ax =  x f /M , and divide the time domain [0, T] into 

N  segments, each of duration At =  T /N ,  and then replace the second partial 

derivative on the left-hand side and the first partial derivative on the right-hand 

side of the above equation (9.2.1) by the central difference approximation (5.3.1) 

and the forward difference approximation (5.1.4), respectively, so that we have

uk+1 — 2uk +  u  1 uk+1 — uk A^+i-- ,--,-i = _j--- L (9Z2
A x 2 At

This can be cast into the following algorithm, called the explicit forward Euler 

method, which is to be solved iteratively:

=  r(«f+1 + u ki_ l) +  (1 - 2r)uk withr =  A —  (9.2.3)
k At

|- (1 — 2r)u1 with r =  A

for i =  1, 2 , . . . , M  — 1 

To find the stability condition of this algorithm, we substitute a trial solution

uk =  kkejl7T/P(P  is any nonzero integer) (9.2.4)

into Eq. (9.2.3) to get

к =  r(ejn/P +  e—jn/P) +  (1 — 2r) =  1 — 2r(1 — cos(n/P)) (9.2.5)

Since we must have |к|< 1 for nondivergence, the stability condition turns out 

to be
At  1

r <  -  (9.2.6,
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function [u,x,t] = heat_exp(a,xf,T,it0,bx0,bxf,M,N)
%solve a u_xx = u_t for 0 <= x <= xf, 0 <= t <= T 
% Initial Condition: u(x,0) = it0(x)
% Boundary Condition: u(0,t) = bx0(t), u(xf,t) = bxf(t)
% M = # of subintervals along x axis
% N = # of subintervals along t axis
dx = xf/M; x = [0:M]'*dx;
dt = T/N; t = [0:N]*dt;
for i = 1:M + 1, u(i,1) = it0(x(i)); end
for n = 1:N + 1, u([1 M + 1],n) = [bx0(t(n)); bxf(t(n))]; end 
r = a*dt/dx/dx, r1 = 1 - 2*r; 
for k = 1:N 

for i = 2:M
u(i,k+1) = r*(u(i + 1,k) + u(i-1,k)) + r1*u(i,k); %Eq.(9.2.3)

end
end

This implies that as we decrease the spatial interval A x  for better accuracy, we 

must also decrease the time step At  at the cost of more computations in order 

not to lose the stability.

The M A T L A B  routine “heat_exp()” has been composed to implement this 

algorithm.

9.2.2 The Implicit Backward Euler Method

In this section, we consider another algorithm called the implicit backward Euler 

method, which comes out from substituting the backward difference approxima

tion (5.1.6) for the first partial derivative on the right-hand side of Eq. (9.2.1) as

uk, 
A  l+

1 — 2uk +  uki—1 uki — u
k— 1

A x 2 At

—ruk—1 +  (1 +  2r)uk — ruk+ 1  =  uk 1

for i =  1, 2 , . . . , M  — 1

with r =  A
At

A x 2

(9.2.7)

(9.2.8)

If the values of u0 and ukM at both end points are given from the Dirichlet 

type of boundary condition, then the above equation will be cast into a system 

of simultaneous equations:

1 +  2 r -r 0 0 0

-r 1 +  2 r —r 0 0

0 -r 1 +  2r 0 0

0 0 0 1 +  2 r -r

0 0 0 —r 1 +  2 r

1

u2

u3

к
M —2 
к
M —1 •

.k—1 ru

.k—1

.k—1

u -1
uM-2

tk~lM-1 ru M

2

к

( 9 . 2 . 9 )
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How about the case where the values of 9u/9x\x=0 =  b'0(t) at one end are 

given? In that case, we approximate this Neumann type of boundary condition by

uk - u k

2Ax
(9.2.10)

and mix it up with one more equation associated with the unknown variable uk0

-ruk_ 1 +  (1 +  2r)uk0 — ru1 =  u0-1

to get

(1 +  2r)u0 — 2ru1 =  u0—1 — 2rb0 (k)Ax 

We augment Eq. (9.2.9) with this to write

(9.2.11)

(9.2.12)

+  2r —2r 0 0 0

—r 1 +  2r —r 0 0

0 —r 1 +  2r —r 0

0 0 —r 1 +  2r 0

0 0 0 1 +  2r

0 0 0 —r 1 +  2r

u0

uk1

uk12

uk3 =

uk
uM—2

-uM—1 -

— 2rb'0 (k)Ax

uM—2

uM—1 +  ruM

(9.2.13)

Equations such as Eq. (9.2.9) or (9.2.13) are really nice in the sense that they 

can be solved very efficiently by exploiting their tridiagonal structures and are 

guaranteed to be stable owing to their diagonal dominancy. The unconditional 

stability of Eq. (9.2.9) can be shown by substituting Eq. (9.2.4) into Eq. (9.2.8):

—re~jn/P +  (1 +  2r) — rejn/P =  1/Х, X =
1

\X\ < 1
1 +  2r(1 — cos(n/P)) ’

(9.2.14)

The following routine “heat_imp()” implements this algorithm to solve the 

PDE (9.2.1) with the ordinary (Dirichlet type of) boundary condition via Eq. (9.2.9).

- ..k-1
u0

k 1
u

k 1
u2

k 1
u3

function [u,x,t] = heat_imp(a,xf,T,it0,bx0, bxf , M, N)
%solve a u_xx = u_t for 0 <= x <= xf, 0 <= t <= T
% Initial Condition: u(x,0) = it0(x)
% Boundary Condition: u(0,t) = bx0(t), u(xf ,t) = bxf(t)
% M = # of subintervals along x axis
% N = # of subintervals along t axis
dx = xf/M; x = [0:M]'*dx;
dt = T/N; t = [0:N]*dt;
for i = 1:M + 1, u(i,1) = it0(x(i)); end
for n = 1:N + 1, u([1 M + 1],n) = [bx0(t(n) ); bxf(t(n))]; end
r = a*dt/dx/dx; r2 = 1 + 2*r;

MIIirof

A(i,i) = r2; %Eq.(9.2.9)

IIii,r

II•î

i

Л
ifi -r; end

end
for k = 2:N + 1

b = [r*u(1,k); zeros(M - 3,1); r*u(M + 1,k) ] + u(2:M,к - 1); %Eq.(9.2.9)
u(2:M,k) = trid(A,b);

end
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9.2.3 The Crank-Nicholson Method

Here, let us go back to see Eq. (9.2.7) and try to improve the implicit backward 

Euler method. The difference approximation on the left-hand side is taken at 

time point , while the difference approximation on the right-hand side is taken 

at the midpoint between time and -  1, if we regard it as the central differ

ence approximation with time step At/2. Doesn’t this seem to be inconsistent? 

H ow  about taking the difference approximation of both sides at the same time 

point— say, the midpoint between k +  1 and k— for balance? In order to do so, 

we take the average of the central difference approximations of the left-hand side 

at the two points k +  1 and k, yielding

A  I u ^ 1 — 2uk+1 +  uk+11 uk+1 — 2uk +  u  Д  uk+ 1 — uk
__  I z +  1__________ i____________i —  1 I z +  1_________ i________ i — i  1 __  __ i____________i_ / л  л i r \

2 \  A x 2 A x 2 J  ~ At ( '

which leads to the so-called Crank-Nicholson method:

—ruk+l +  2(1 +  r)uk+ 1 — ruk+\ =  ruk+1 +  2(1 — r)uk +  ruk—1 (9.2.16)

At
with r =  A ---

A x 2

With the Dirichlet/Neumann type of boundary condition on x0/x M , respec

tively, this can be cast into the following tridiagonal system of equations.

- 2(1 +  r) -r 0 0 0 " u + 1 "

—r 2(1 +  r) -r 0 0 u2+1

0 -r 2(1 +  r) 0 0 u3+1

0 0 0 2(1 +  r) —r uku—i
0 0 0 —2r 2(1 +  r)

-  uM+ -

2(1 — r) r 0 ■ 0 0 u1 r(u0+1 + u0)

r 2(1 — r) r ■ 0 0 u2 0

0 r 2(1 — r) ■ 0 0 u3
+

0

0 0 0 ■ 2(1 — r) r u M —1 0

0 0 0 ■ 2r 2(1 — r) - uM - _2r(b'M (k + 1) +  bM (k))_

(9.2.17)

This system of equations can also be solved very efficiently, and its uncondi

tional stability can be shown by substituting Eq. (9.2.4) into Eq. (9.2.16):

2Ц 1  +  r(1 — cos(n/P))) =  2(1 — r(1 — cos(n/P))), 

1 — r(1 — cos(n/P))
X = W < 1

1 +  r(1 — cos(n/P))

This algorithm is cast into the following M A T L A B  routine “ heat_CN()” .

(9 .2 .18)
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function [u, x,t] = heat_CN(a, xf,T, it0, bx0,bxf ,M,N)
%solve a u_xx = u_t for 0 <= x <= xf, 0 <= t <= T
% Initial Condition: u(x,0) = it0( x)
% Boundary Condition: u(0,t) = bx0 (t), u(xf ,t ) = bxf(t)
% M = # of subintervals along x axis
% N = # of subintervals along t axis
dx = xf/M; x = [0:M]'*dx;
dt = T/N; t = [0:N]*dt;
for i = 1:M + 1, u(i,1) = it0 (x(i) ); end
for n = 1:N + 1, u([1 M + 1], n) = [bx0 (t(n) ); bxf(t(n)) ]; end
r = a*dt/dx/dx;
r1 = 2*(1 - r); r2 = 2*(1 + r);
for i = 1:M - 1

A(i,i) = r1; %Eq.(9.2.17)
if i > 1, A(i - 1,i) = -r; A(i, i- 1) = -r; end

end
for k = 2: N + 1

b = [r*u (1,k); zeros(M - 3,1); r*u (M + 1, k)] ...
+ r*(u(1:M - 1,k - 1) + u(3 : M + 1, k - 1)) + r2*u(2:M,k 1);

u(2:M,k) = trid(A,b); %Eq .(9.2 .17)
end

Example 9.2. One-Dimensional Parabolic PD E : Heat Flow Equation. 

Consider the parabolic P D E

d u(x, t) du(x, t)
for 0 < x < 1, 0 < t <  0.1 (E9.2.1)

dx2 dt

with the initial condition and the boundary conditions

u(x, 0) =  sin n x , u(0,t) =  0, u(1,t) =  0 (E9.2.2)

W e  made the M A T L A B  program “ solve_heat.m” in order to use the routines 

“heat_exp()” , “heat_imp()” , and “heat_CN()” in solving this equation and ran 

this program to obtain the results shown in Fig. 9.3. Note that with the spatial 

interval A x  =  x f / M  =  1/20 and the time step At =  T / N  =  0 .1/100 =  0.001, 

we have

r =  A b L  ™ 01 „ 4  (E 9 2 3 )

Д х 2 (1/20)2

which satisfies the stability condition (r < 1/2) (9.2.6) and all of the three meth

ods lead to reasonably fair results with a relative error of about 0.013. But, 

if we decrease the spatial interval to A x  =  1/25 for better resolution, we have 

r =  0.625, violating the stability condition and the explicit forward Euler method 

(“heat_exp()”) blows up because of instability as shown in Fig. 9.3a, while 

the implicit backward Euler method (“heat_imp()”) and the Crank-Nicholson 

method (“heat_CN()”) work quite well as shown in Figs. 9.3b,c. Now, with the 

spatial interval A x  =  1/25 and the time step At =  0.1/120, the explicit method 

as well as the other ones works well with a relative error less than 0.001 in return
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(c) The Crank-Nicholson method 
Figure 9.3 Results of various algorithms for a one-dimensional parabolic PDE: heat equation.

for somewhat (30% ) more computations, despite that r =  0.5208 doesn’t strictly 

satisfy the stability condition.

This implies that the condition (r < 1/2) for stability of the explicit forward 

Euler method is not a necessary one, but only a sufficient one. Besides, if it 

converges, its accuracy may be better than that of the implicit backward Euler 

method, but generally no better than that of the Crank-Nicholson method.

%solve_heat

a = 1; %the parameter of (E9.2.1)

it0 = inline('sin(pi*x)','x'); %initial condition

bx0 = inline('O'); bxf = inline('O'); %boundary condition

xf = 1; M = 25; T = 0.1; N = 100; %r = 0.625

%analytical solution

uo = inline('sin(pi*x)*exp(-pi*pi*t)','x','t');

[u1,x,t] = heat_exp(a,xf,T,it0,bx0,bxf,M,N); 

figure(1), clf, mesh(t,x,u1)

[u2,x,t] = heat_imp(a,xf,T,it0,bx0,bxf,M,N); %converge unconditionally 

figure(2), clf, mesh(t,x,u2)

[u3,x,t] = heat_CN(a,xf,T,it0,bx0,bxf,M,N); %converge unconditionally 

figure(3), clf, mesh(t,x,u3)

MN = M*N;

Uo = uo(x,t); aUo = abs(Uo)+eps; %values of true analytical solution

% H o w  far from the analytical solution?

err1 = norm((u1-Uo)./aUo)/MN

err2 = norm((u2-Uo)./aUo)/MN

err3 = norm((u3-Uo)./aUo)/MN



9.2.4 Two-Dimensional Parabolic PDE

Another example of a parabolic PDE is a two-dimensional heat equation describ

ing the temperature distribution u(x,y, t)((x, y) is position, t is time) as

/ Э2u(x,y,t) d2u (x ,y ,t)\ du(x,y,t) /'Q 9 1 Q\

V dx2 dy2 ) ~  dt 1 ' ' ’

for Xo < x < Xf,yo < y < yf, 0 < t < T

In order for this equation to be solvable, we should be provided with the boundary 

conditions

u(xo, y, t) =  bxo(y, t), u(Xf, y, t) =  bxf(y, t), 

u(x,y0,t) =  by0(x,t), and u(x,yf,t) =  byf(x,t)

as well as the initial condition u(x,y, 0) =  i0(x,y).

We replace the first-order time derivative on the right-hand side by the three- 

point central difference at the midpoint (tk+1 +  tk)/2 just as with the Crank- 

Nicholson method. We also replace one of the second-order derivatives, uxx and 

uyy, by the three-point central difference approximation (5.3.1) at time tk and the 

other at time tk+1, yielding

\ A x 2 Ay2 At

(9.2.20)

which seems to be attractive, since it can be formulated into a tridiagonal system 

of equations with respect to uk+11]-, uk+\ and uk+11]-. But, why do we treat uxx 

and uyy with discrimination— that is, evaluate one at time tk and the other at time 

tk+1 in a fixed manner? In an alternate manner, we write the difference equation 

for the next time point tk+1 as

у A x 2 Ay2 J At

(9 .2 .21)

This formulation, proposed by Peaceman and Rachford [P-1], is referred to as the 

alternating direction implicit (ADI) method and can be cast into the following 

algorithm:

-ry(uk-1,] +  uk+l, j) +  (1 +  2ry)uki]]1 =  rx(uki,]-1 +  uki,] + 1) +  (1 - 2rx)uki,]

for 1 < j < M x - 1 (9.2.22a)

~rx(ukj - 1  +  uk+j + 1) +  (1 +  2rx)uktj 2 =  ry(uk+1,j +  uk+lj) +  (1 - 2ry)ukJ 1

for 1 < i < My - 1 (9.2.22b)
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with

rx =  A A t /A x 2, ry =  A A t /A y 2,

A x  =  (xf — x0 )/M x , Ay  =  (yf — y0 )/M y , At =  T / N

The objective of the following M A T L A B  routine “heat2_ADI()” is to imple

ment this algorithm for solving a two-dimensional heat equation (9.2.19).

PARABOLIC PDE 4 1 3

function [u,x,y,t] = heat2_ADI(a,D,T,ixy0,bxyt,Mx,My,N)

%solve u_t = c(u_xx + u_yy) for D(1) <= x <= D(2), D(3) <= у <= D(4), 0 <= t <= T

% Initial Condition: u(x,y,0) = ixy0(x,y)

% Boundary Condition: u(x,y,t) = bxyt(x,y,t) for (x,y)cB

% Mx/My = # of subintervals along x/y axis

% N = # of subintervals along t axis

dx = (D(2) - D(1))/Mx; x = D(1)+[0:Mx]*dx;

dy = (D(4) - D(3))/My; y = D(3)+[0:My]'*dy;

dt = T/N; t = [0:N]*dt;

%Initialization

for j = 1 :Mx + 1

for i = 1:My + 1

u(i,j) = ixy0(x(j),y(i));

end

end

rx = a*dt/(dx*dx); rx1 = 1 + 2*rx; rx2 = 1 - 2*rx;

ry = a*dt/(dy*dy); ry1 = 1 + 2*ry; ry2 = 1 - 2*ry;

for j = 1:Mx - 1 %Eq.(9.2.22a)

Ay(j,j) = ry1;

if j > 1, Ay(j - 1,j) = -ry; Ay(j,j-1) = -ry; end

end

for i = 1:My - 1 %Eq.(9.2.22b)

Ax(i,i) = rx1;

if i > 1, Ax(i - 1,i) = -rx; Ax(i,i - 1) = -rx; end

end
for k = 1:N

u_1 = u; t = k*dt;

for i = 1:My + 1 %Boundary condition

u(i,1) = feval(bxyt,x(1),y(i),t);

u(i,Mx+1) = feval(bxyt,x(Mx+1),y(i),t);

end

for j = 1:Mx + 1

u(1,j) = feval(bxyt,x(j),y(1),t);

u(My+1,j) = feval(bxyt,x(j),y(My + 1),t);

end

if mod(k,2) == 0

for i = 2:My

jj = 2:Mx;

bx = [ry*u(i,1) zeros(1,Mx - 3) ry*u(i,My + 1)] ...

+rx*(u_1(i-1,jj)+ u_1(i + 1,jj)) + rx2*u_1(i,j j );

u(i,jj) = trid(Ay,bx')'; %Eq.(9.2.22a)

end

else

for j = 2:Mx

ii = 2:My;

by = [rx*u(1,j); zeros(My-3,1); rx*u(Mx + 1,j)] ...

+ ry*(u_1(ii,j-1) + u_1(ii,j + 1)) + ry2*u_1(ii,j);

u(ii,j) = trid(Ax,by); %Eq.(9.2.22b)

end

end

end
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Figure 9.4 A solution for a two dimensional parabolic PDE obtained using “ hea t2_A D I ( )  ”  
(Example 9.3).

Example 9.3. A  Parabolic PDE: Two-Dimensional Temperature Diffusion. 

Consider a two-dimensional parabolic PDE

u(x, y, t) =  ey cosx — ex cos y for x =  0, x =  4, y =  0, y =  4 (E9.3.2b)

We made the following M ATLAB  program “solve_heat2.m” in order to use 

the routine “heat2_ADI()” to solve this equation and ran this program to get the 

result shown in Fig. 9.4 at the final time.

%solve_heat2 
clear, clf 
a = 1e-4;
it0 = inline('0','x','y'); %(E9.3.2a)
bxyt = inline('exp(y)*cos(x)-exp(x)*cos(y)','x','y','t'); %(E9.3.2b) 
D = [ 0 4 0 4 ] ;  T = 5000; Mx = 40; My = 40; N = 50;
[u,x,y,t] = heat2_ADI(a,D,T,it0,bxyt,Mx,My,N); 
mesh(x,y,u)

9.3 HYPER BOLIC  PDE

An example of a hyperbolic PDE is a one-dimensional wave equation for the 

amplitude function u(x, t)(x is position, t is time) as

(E9.3.1)

for 0 < x < 4, 0 < y < 4, 0 < t < 5000 

with the initial conditions and boundary conditions

u(x, y, 0) =  0 for t =  0 (E9.3.2a)

for 0 < x < xf, 0 < t < T (9.3.1)
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In order for this equation to be solvable, the boundary conditions u(0, t) =  

b0(t) and u(xf,t) =  bxf(t) as well as the initial conditions u(x, 0) =  i0(x) and 

du/dt\t=0(x, 0) =  i'0(x) should be provided.

9.3.1 The Explicit Central Difference Method

In the same way as with the parabolic PDEs, we replace the second derivatives 

on both sides of Eq. (9.3.1) by their three-point central difference approximation

(5.3.1) as

uki+1 — 2uk +  uk 1 uk+1 — 2uk +  uk—1 xf Tд ^+ 1--- «-- г-l =  ----- , T  , =  =  _

A x 2 At2 M  N  J

which leads to the explicit central difference method:

At2
< +1 = r ( u Ki+l + u Ki_ l) + 2 ( 1  -r)u\ - И р 1 with r =  A —  (9.3.3)

Since u—1 =  u(xi, — At) is not given, we cannot get u- directly from this 

formula (9.i3.3) with k =  0: i

u1 =  r(u 0+ 1  +  u0—1 ) +  2(1 — r)u°> — u— 1 (9.3.4)

Therefore, we approximate the initial condition on the derivative by the central 

difference as
u1 -  u-1

- ^ д Г -  =  ‘o(^) (9-3-5)

and make use of this to remove ui-1 from Eq. (9.3.3):

u1 =  r(u 0+ 1  +  u0—1 ) +  2(1 — r)u0 — (u1 — 2-0 (x-)At)

»' = +  ««_,)+ ( ! - , ) « ?  + i iu ,  1ДГ (9.3.6)

W e  use Eq. (9.3.6) together with the initial conditions to get uj and then go 

on with Eq. (9.3.3) for k =  1, 2 , ___Note the following facts:

• W e  must have r < 1 to guarantee the stability.

• The accuracy of the solution gets better as r becomes larger so that A x  

decreases.

It is therefore reasonable to select r =  1.

The stability condition can be obtained by substituting Eq. (9.2.4) into 

Eq. (9.3.3) and applying the Jury test [P-3]:

X =  2r cos(n/P) +  2(1 — r) — X 1, X2 +  2(r(1 — cos(n/P)) — 1)A +  1 =  0



W e  need the solution of this equation to be inside the unit circle for stability, 

which requires

1 At2
r < --------- , r =  A — - < 1  (9.3.7)

1 — cos(7r/P) A x 2

The objective of the following M A T L A B  routine “wave()” is to implement 

this algorithm for solving a one-dimensional wave equation.

Example 9.4. A  Hyperbolic PDE : One-Dimensional Wave (Vibration). Consider 

a one-dimensional hyperbolic P D E

d 2 u(x,t) du2 (x,t)
-- for 0 < x < 2, 0 < у < 2, and 0 < t <  2 (E9.4.1)

dx2 dt2

with the initial conditions and boundary conditions

u(x, 0) =  x(1 — x), du/dt(x, 0) =  0 for t =  0 (E9.4.2a) 

u(0,t) =  0 for x =  0, u(1,t) =  0 for x =  1 (E9.4.2b)

W e  made the following M A T L A B  program “ solve_wave.m” in order to use 

the routine “wave()” to solve this equation and ran this program to get the result 

shown in Fig. 9.5 and see a dynamic picture.

4 1 6  PARTIAL DIFFERENTIAL EQUATIONS

function [u,x,t] = wave(a,xf,T ,it0,i1t0,bx0,bxf ,M,N)

%solve a u_xx = u_tt for 0<=x<=xf, 0<=t<=T

% Initial Condition: u(x,0) = it0(x), u_t(x,0) = i1t0(x)

% Boundary Condition: u(0,t)= bx0(t), u(xf,t) = bxf(t)

% M = # of subintervals along x axis

% N = # of subintervals along t axis

dx = xf/M; x = [ о M] d X

dt = T/N; t = [0 :N]*dt;

for i = 1:M + 1, u(i,1) = it0( x(i)); end

for k = 1:N + 1

u([1 M + 1],k) = [bx0(t(k)) ; bxf(t(k))];

end
r = a * (dt/dxp 2; r1 = r/2; r2 = 2*(1 - r);
u(2:M,2) = r1*u(1 :M - 1,1) + (1 - r)*u(2:M,1) + r1*u(3:M + 1 1) . . .

+ dt*i1t0(x(2 :M)); %Eq.(9.3.6)

for k = 3:N + 1

u(2:M,k) = r*u( 1:M - 1,k - 1) + r2*u(2:M,k-1) + r*u(3:M + , к - 1)...

- u(2:M,k - 2 ); %Eq.(9.3.3)

end

%solve_wave

a = 1;

it0 = inline('x.* (1-x)','x'); i1t0 = inline('0' a)29E%(

bx0t = inline('0' ); bxft = inline('0'); %(E9.4 .2b)

xf = 1; M = 20; T = 2; N = 50 ;

[u,x,t] = wave(a, xf,T,it0,i1t0 b X о b f M, N

figure(1), clf

mesh(t,x,u)

figure(2), clf

for n = 1:N %dynamic picture

plot(x,u(:,n)), axis([0 xf - esuap3]

о
3

о

0.2)

end
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Figure 9.5 A solution for a 1-D hyperbolic PDE obtained by using ‘‘wave() ’’ (Example 9.4).

9.3.2 Two-Dimensional Hyperbolic PDE

In this section, we consider a two-dimensional wave equation for the amplitude 

function u (x ,y ,t ) ((x, y) is position, t is time) as

л1'д2u(x,y,t) | 32u(x,y,t)\ d2u(x, t) 
A  I ; - h

dx2 dy2 J  dt2

for 0 < x < xf, 0 < y < yf, 0 < t < T

(9.3.8)

In order for this equation to be solvable, we should be provided with the boundary 

conditions

u(0, y, t) =  bx0 (y, t), u(xf, y, t) =  bxf(y, t), 

u(x, 0,t) =  by0(x,t), and u (x ,y f,t )  =  byf(x ,t)

as well as the initial condition u (x ,y , 0) =  i0(x ,y ) and du/dt\t=0(x ,y , 0) =

-0(x, y).

In the same way as with the one-dimensional case, we replace the sec

ond derivatives on both sides by their three-point central difference approxi

mation (5.3.1) as

A  ( 4 j +1 ~ 2l4,j +  4 j -1 +  "z i. / - 2ui,j + ukj 1 — 2ui; +  uk—1

A x 2

xf
with A x  =

Mx

A y 2

' N y

At2

T
At =  —  

N

(9 .3 .9)

which leads to the explicit central difference method:

k+1
•i,j =  rx(ui,j + 1 +  ui,j —1) +  2(1 — rx — ry)ui,j +  ry(ui + 1,j +  ui — 1,j) — ui,

k—1

(9.3.10)

with rx =  A
At2

A x 2
ry =  A

At2

a 72
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Since u— j =  u(xj, y*, — At) is not given, we cannot get u\ j directly from this 

formula (9. 3.10) with k =  0:

u\, j =  rx(ui j + 1 +  u°i, j — 1 ) +  2(1 — rx — ry)ul j +  ry(u<0+1, j +  u0—1, j) — u—j

(9.3.11)

Therefore, we approximate the initial condition on the derivative by the central 

difference as

u,1 ; — u—1

2A  t (9'ЗЛ2)

and make use of this to remove ui—,j1 from Eq. (9.3.11) to have

ujj =  j{rx(ulj+1 +  k?; _j) +  ry(u°i+lj +  U ^ j ) }

+  2(1 — rx — ry)u0j +  *0(xj, yi)At (9.3.13)

We use this Eq. (9.3.13) together with the initial conditions to get u- j and then

go on using Eq. (9.3.10) for k =  1, 2 ,___A  sufficient condition for stability [S-1,

Section 9.6] is

4AAt2
r  =  Д 2 , A 2 ^  1 (9.3.1 4 )A x 2 +  Ay2

The objective of the M ATLAB  routine “wave2()” is to implement this algo

rithm for solving a two-dimensional wave equation.

Example 9.5. A  Hyperbolic PDE: Two-Dimensional Wave (Vibration) Over a 

Square Membrane. Consider a two-dimensional hyperbolic PDE

1 ( d2u(x, y, t) d2u(x, y, t)\ du2(x, y, t)

4 \ dx2 dy2 J dt2

for 0 < x < 2, 0 < y < 2 and 0 < t < 2 (E9.5.1)

with the zero boundary conditions and the initial conditions

u(0,y,t) =  0, u(2,y,t) =  0, u(x, 0,t) =  0, u(x, 2,t) =  0 (E9.5.2) 

u(x,y, 0) =  0.1sin(^x) sin(^y/2), du/dt(x,y, 0) =  0 for t =  0 (E9.5.3)

We made the following M ATLAB  program “solve_wave2.m” in order to use 

the routine “wave2()” for solving this equation and ran this program to get the 

result shown in Fig. 9.6 and see a dynamic picture. Note that we can be sure of 

stability, since we have

4AAt2 4(1/4)(2/20)2 1
r = ____________= ____ w  ’ '___:___=  - < 1 П39 5 4s)

Дх2 +  Ду2 (2/20)2 +  (2/20)2 2 ~ ' '
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function [u,x,y,t] = wave2(a,D,T,it0,i1t0,bxyt,Mx,My,N)
%solve a(u_xx + u_yy) = u_tt for D(1) <= x <= D(2), D(3) <= y <= D(4), 0 <= t <= T 

% Initial Condition: u(x,y,0) = it0(x,y), u_t(x,y,0) = i1t0(x,y)
% Boundary Condition: u(x,y,t) = bxyt(x,y,t) for (x,y) on Boundary
% Mx/My = # of subintervals along x/y axis
% N = # of subintervals along t axis
dx = (D(2)- D(1))/Mx; x = D(1)+[0:Mx]*dx;

dy = (D(4)- D(3))/My; y = D(3)+[0:My]'*dy;
dt = T/N; t = [0:N]*dt;
%Initialization

u = zeros(My+1,Mx +1); ut = zeros(My + 1,Mx +1); 
for j = 2:Mx 

for i = 2:My

u(i,j) = it0(x(j),y(i)); ut(i,j) = i1t0(x(j),y(i)); 
end 

end
adt2 = a*dt*dt; rx = adt2/(dx*dx); ry = adt2/(dy*dy); 
rxy1 = 1- rx - ry; rxy2 = rxy1*2; 

u_1 = u; 
for k = 0:N 

t = k*dt;
for i = 1:My + 1 %Boundary condition

u(i,[1 Mx + 1]) = [bxyt(x(1),y(i),t) bxyt(x(Mx + 1),y(i),t)]; 

end
for j = 1:Mx + 1

u([1 My + 1],j) = [bxyt(x(j),y(1),t); bxyt(x(j),y(My + 1),t)]; 
end 
if k = = 0 

for i = 2:My
for j = 2:Mx %Eq.(9.3.13)

u(i,j) = 0.5*(rx*(u_1(i,j - 1) + u_1(i,j + 1))...
+ ry*(u_1(i - 1,j)+u_1(i + 1,j))) + rxy1*u(i,j) + dt*ut(i,j);

end 
end 

else 
for i = 2:My

for j = 2:Mx %Eq.(<eqnr>9.3.10)</eqnr>

u(i,j) = rx*(u_1(i,j - 1)+ u_1(i,j + 1))...
+ ry*(u_1(i - 1,j) + u_1(i + 1,j)) + rxy2*u(i,j) -u_2(i,j);

end
end

end
u_2 = u_1; u_1 = u; %update the buffer memory 
mesh(x,y,u), axis([0 2 0 2 -.1 .1]), pause 

end

%solve_wave2

it0 = inline('0.1*sin(pi*x)*sin(pi*y/2)','x','y'); %(E9.5.3)
i1t0 = inline('0','x','y'); bxyt = inline('0','x','y','t'); %(E9.5.2)
a = .25; D = [0 2 0 2]; T = 2; Mx = 40; My =40; N = 40;
[u,x,y,t] = wave2(a,xf,T,it0,i1t0,bxyt,Mx,My,N);

(a) At t = 0.1 (b) At t = 1.8

Figure 9.6 The solution of a two-dimensional hyperbolic PDE: vibration of a square membrane 
(Example 9.5).
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The F E M  method is another procedure used in finding approximate numerical 

solutions to BVPs/PDEs. It can handle irregular boundaries in the same way as 

regular boundaries [R-1, S-2, Z-1]. It consists of the following steps to solve the 

elliptic PDE:

d 2u(x,y) d 2u(x,y)
— ^ 2—  + — ^ 2— +  s(x,y)u(x,y) =  f (x ,y )  (9.4.1)

for the domain D  enclosed by the boundary B on which the boundary condition 

is given as

u(x, y) =  b(x, y) on the boundary B  (9.4.2)

1. Discretize the (two-dimensional) domain D  into, say, N s subregions 

{Sb S2, . . . ,  SNs} such as triangular elements, neither necessarily of the 

same size nor necessarily covering the entire domain completely and 

exactly.

2. Specify the positions of N n nodes and number them starting from the 

boundary nodes, say, n =  1 ,...  ,N b, and then the interior nodes, say, n =  

Nb +  1 ,.. . ,N n .

3. Define the basis/shape/interpolation functions

Фп(x, y) =  №n,s, for s =  1 , . . . , N S } V  (x, y) e D  (9.4.3a) 

<Pn,S(x, y) =  Pn,s(1) +  Pn,s(2)x +  Pn,s(3)y

for each subregion Ss (9.4.3b)

collectively for all subregions s =  1 : N s and for each node n =  1 : N n, so 

that фп is 1 only at node n, and 0 at all other nodes. Then, the approxi

mate solution of the P D E  is a linear combination of basis functions

Фп(x, y) as

Nn Nb Nn

u(x,y) =  CTv(x ,y )  =  ^  СпФп^ ,У )  =  ^  СпФп +  ^  СпФп =  cf Щ  +  c[ ^ 2
n=1 n=1 n=Nb+1

(9.4.4)

where

Vt =  [ Ф1 Ф2 • ФNb ]T , C1 =  [ с: C2 • CNb ]T (9.4.5a)

V2 =  [ фNb+ 1 ФЩ +2 • фNn ]T, c2 =  [ CNb+ 1 CNb+2 • CNn ]T
(9.4.5b)
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For each subregion s =  1 , ,  N s, this solution can be written as

Nn Nn

Ф5(^,У) =  ^  СпФп^(х,у) =  ^  Cn(Pn,s(1) +  Pn,s(2)X +  Pn,s(3)y)

n=1 n=1
(9.4.6)

4. Set the values of the boundary node coefficients in ct to the boundary 

values according to the boundary condition.

5. Determine the values of the interior node coefficients in c2 by solving the 

system of equations

A 2 C2 =  d (9.4.7)

where

*  =  E

■ d ' d
T

■ d ' d
7r<P2,s
dx dx

+ 7~<P2,S
.dy

7-<Pl,S
.dy

- g(Xs, ys)V2,s

Vl,s =  [ 'pis 02,s

(9.4.8)

,Y

3

dx

3

dy

Vl,s =  [ Pl,s(2) P2,s(2) • PNb,s(2) ] 

Vl,s =  [ Pl,s(3) P2,s(3) • PNb,s(3) ]T

*2  =  £
dx

d
7~<P2,S
dx

+
' d
7~<P2,S
dy

d
7~<P2,S
dy

V2,s =  [ !pNb+1,s !pNb+2,s ]Tn,s J

- g(xs, ys)V2,s<P2 s j  &Ss

(9.4.9)

7“  4>2,s =  [PNb+\,s{2) <pNb+2,s(2) • Фып.Л 2)] 
dx

—  ̂ 2,s — [ PNb+\,s(̂ ) ФыЬ+2,s (3) • <?W,s(3)] 
dy

d =  -Aici - ^ 2  f(xs, ys)V2,sAS

s = 1

(xs, ys): the centroid (gravity center) of the sth subregion Ss

(9.4.10)

The F E M  is based on the variational principle that a solution to Eq. (9.4.1) 

can be obtained by minimizing the functional

-  g(x,y)u (x,y)  +  2 f ( x , y ) u ( x , y ) \ d x d y  ( 9 . 4 .1 1 )

N

N
d

N

2
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which, with u (x ,y ) =  cT<(x, y), can be written as

I I . (•T д д T T д д T 

/ =  11 |c T S T S  c + c b v b v c

- g(x, y)cT < <  c +  2 f (x , y)cT < } d xdy  (9.4.12)

The condition for this functional to be minimized with respect to c is

d ff  [ д д T д д T

t t

- g(x, y)<2< Tc +  f(x , y ) < 2  J dxdy =  0 (9.4.13)

Ns

~ A1c1 +  A2c2 +  ^ 2  f  (xs’ ys)<2,sASs =  0 (9.4 .14)

s=1

See [R-1] for details.

The objectives of the M A T L A B  routines “fem _basis_ftn()” and 

“fem_coef()” are to construct the basis function Ф п ^ ^ ^ ) ^  for each node 

n =  1 ,. . .  ,N n and each subregion s =  1 ,. . .  ,N s and to get the coefficient vector 

c of the solution (9.4.4) via Eq. (9.4.7) and the solution polynomial фs(x, y)’s 

via Eq. (9.4.6) for each subregion s =  1 , . . . ,  Ns, respectively.

Before going into a specific example of applying the F E M  method to solve 

a PD E , let us take a look at the basis (shape) function фп (x, y) for each node 

n =  1 ,. . .  ,N n, which is defined collectively for all of the (triangular) subregions 

so that фп is 1 only at node n, and 0 at all other nodes and can be generated by 

the routine “fem _basis_ftn()” .

function p = fem_basis_ftn(N,S)
%p(i,s,1:3): coefficients of each basis ftn phi_i 
% for s-th subregion(triangle)
%N(n,1:2) : x & y coordinates of the n-th node 
%S(s,1:3) : the node #s of the s-th subregion(triangle)
N_n = size(N,1); % the total number of nodes 
N_s = size(S,1); % the total number of subregions(triangles) 
for n = 1:N_n 

for s = 1:N_s 
for i = 1:3

A(i,1:3) = [1 N(S(s,i),1:2)];
b(i) = (S(s,i) == n); %The nth basis ftn is 1 only at node n. 

end
pnt=A\b';
for i=1:3, p(n,s,i) = pnt(i); end 

end 
end
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function [U,c] = fem_coef(f,g,p,c,N,S,N_i)
%p(i,s,1:3): coefficients of basis ftn phi_i for the s-th subregion 
%c = [ .11 . 0 0 . ]  with value for boundary and 0 for interior nodes 
%N(n,1:2) : x & y coordinates of the n-th node 
%S(s,1:3) : the node #s of the s-th subregion(triangle)
%N_i : the number of the interior nodes
%U(s,1:3) : the coefficients of p1 + p2(s)x + p3(s)y for each subregion 
N_n = size(N,1); % the total number of nodes = N_b + N_i 
N_s = size(S,1); % the total number of subregions(triangles) 
d=zeros(N_i,1);
N_b = N_n-N_i; 
for i = N_b+1:N_n 

for n = 1:N_n 
for s = 1:N_s

xy = (N(S(s,1),:) + N(S(s,2),:) + N(S(s,3),:))/3; %gravity center 
%phi_i,x*phi_n,x + phi_i,y*phi_n,y - g(x,y)*phi_i*phi_n 

p_vctr = [p([i n],s,1) p([i n],s,2) p([i n],s,3)]; 
tmpg(s) = sum(p(i,s,2:3).*p(n,s,2:3))...

-g(xy(1),xy(2))*p_vctr(1,:)*[1 xy]'*p_vctr(2,:)*[1 xy]'; 
dS(s) = det([N(S(s,1),:) 1; N(S(s,2),:) 1;N(S(s,3),:) 1])/2;
%area of triangular subregion

if n == 1, tmpf(s) = -f(xy(1),xy(2))*p_vctr(1,:)*[1 xy]'; end 
end
A12(i - N_b,n) = tmpg*abs(dS)'; %Eqs. (9.4.8),(9.4.9) 

end
d(i-N_b) = tmpf*abs(dS)'; %Eq.(9.4.10) 

end
d = d - A12(1:N_i,1:N_b)*c(1:N_b)'; %Eq.(9.4.10) 
c(N_b + 1:N_n) = A12(1:N_i,N_b+1:N_n)\d; %Eq.(9.4.7) 
for s = 1:N_s

for j = 1:3, U(s,j) = c*p(:,s,j); end %Eq.(9.4.6) 
end

Actually, we will plot the basis (shape) functions for the region divided into four 

triangular subregions as depicted in Fig. 9.7 in two ways. First, we generate the 

basis functions by using the routine “fem _basis_ftn()” and plot one of them 

for node 1 by using the M A T L A B  command mesh(), as depicted in Fig. 9.8a. 

Second, without generating the basis functions, we use the M A T L A B  command 

“trimesh()” to plot the shape functions for nodes n =  2, 3, 4, and 5 as depicted 

in Figs. 9.8b-e, each of which is 1 only at the corresponding node n and is 

0 at all other nodes. Figure 9.8f is the graph of a linear combination of basis 

functions
Nn

u(x, y) =  CTф (x, y) =  ^  СпФп (x , y) (9.4.15)

n=1

having the given value cn at each node n. This can obtained by using the M A T 

L A B  command “trimesh()” as

>>trimesh(S,N(:,1),N(:,2),c)

where the first input argument S has the node numbers for each subregion, the 

second/third input argument N has the x/y coordinates for each node, and the
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coordinates of 
nodes 

N = [-1 1;
1 1;
1 -1; 

-1 -1; 
0.2 0.5]

node numbers 
of subregions
S = [1 2 5:

2 3 5
3 4 5:
1 4 5]

Figure 9.7 A region (domain) divided into four triangular subregions.

fourth input argument c has the function values at each node as follows:

S

1 2 5

2 3 5

3 4 5 

1 4 5

N

1 1 0

1 1 1

1 -1 , c = 2

1 -1 3

0.2 0 .5 . 0

(9.4.16)

For this job, we make the following program “ show_basis.m” and run it to 

get Figs. 9.7 and 9.8 together with the coefficients of each basis function as

--3/10 0 0 - 1/8

- 7/10 - 7/16 0 0

P(:, :, 1) = 0 3/16 1/10 0

0 0 7/30 7/24

2 5 /4 2/3 5 /6

- 1/2 0 0 - 5/8

1/2 15/16 0 0

P(:, :, 2 ) = 0 5/16 1/2 0

0 0 - 1/2 - 5/24

0 - 5/4 0 5 /6

4 /5 0 0 1 /21

6/5 1/2 0 0

P(:, :, 3) = 0 - 1/2 2 /5 0

0 0 -4/15 1/2

-2 0 2/3 0

(9.4.17)

The meaning of this N n (the number of nodes:5) x N s (the number of subre- 

gions:4) x  3 array p  is that, say, the second rows of the three sub-arrays constitute
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0 .5 -

0 0
-1 -1
(a) fi(x, y)

Figure 9.8 The basis (shape) functions for nodes in Fig. 9.7 and a composite function.

0

the coefficient vectors of the basis function for node 2 as

Ф2 (x, y) =

- 7/10 +  (1/2)x  +  (6/5)y  

- 7/16 +  (15/16)x +  (1/2)y 

0 +  0 ■ x +  0 ■ y 

0 +  0 ■ x +  0 ■ y

for subregion St 

for subregion S2 

for subregion S3 

for subregion S4

(9 .4 .18)

which turns out to be 1 only at node 2 [i.e., (1,1)] and 0 at all other nodes and on 

the subregions that do not have node 2 as their vertex, as depicted in Fig. 9.8b.
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With the program “ show_basis.m” in your computer, type the following com

mands into the M A T L A B  command window and see the graphical/textual output.

>>show_basis
>>p

Now, let us see the following example.

%show_basis
clear
N = [-1 1;1 1;1 -1;-1 -1;0.2 0.5]; %the list of nodes in Fig.9.7
N_n = size(N,1); % the number of nodes
S = [1 2 5;2 3 5;3 4 5;1 4 5]; %the list of subregions in Fig.9.7
N_s = size(S,1); % the number of subregions
figure(1), clf
for s = 1:N_s

nodes = [S(s,:) S(s,1)];
for i = 1:3

plot([N(nodes(i),1) N(nodes(i + 1),1)], ...
[N(nodes(i),2) N(nodes(i+1),2)]), hold on

end
end

%basis/shape function
p = fem_basis_ftn(N,S);
x0 = -1; xf = 1; y0 = -1; yf = 1; %graphic region
figure(2), clf
Mx = 50; My = 50;
dx = (xf - x0)/Mx; dy = (yf - y0)/My;
xi = x0 + [0:Mx]*dx; yi = y0 + [0:My]*dy;
i_ns = [1 2 3 4 5]; %the list of node numbers whose basis ftn to plot
for itr = 1:5

i_n = i_ns(itr);
if itr == 1

for i = 1:length(xi)
for j = 1:length(yi)

0;

IIi)

N

for s = 1:N_s
if inpolygon(xi(i),yi(j), N (S(s,:),1),N(S(s,:), 2)) > 0

Z(j,i) = p(i_n,s,1) + p(i_n,s,2)*xi(i) + p(i_ n,s,3)*yi(j);
break;

end
end

end
end
subplot(321), mesh(xi,yi,Z) %basis function for node 1

else
c1 = zeros(size(c)); c1(i_n) = 1;
subplot(320 + itr)
trimesh(S,N(:,1),N(:,2),c1) %basis function for node 2-5

end
end

c = [0 1 2 3 0]; %the values for all nodes
subplot(326)
trimesh(S,N(1),N(:,2 ) ,c) %Fig.9.8f: a composite function
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Example 9.6. Laplace’s Equation: Electric Potential Over a Plate with Point 

Charge. Consider the following Laplace’s equation:

V 2u(x, y) =
d2u(x, y) d2u(x, y)

dx2
+

dy2
=  f (x ,y )

for - 1 < x < + 1 ,  -1 < y < + 1

(E9.6.1)

where

f (x ,y )  =

-1 for (x ,y )  =  (0.5, 0.5)

+  1 for (x ,y ) =  (-0.5, -0.5)

0 elsewhere

(E 9 .6 .2)

and the boundary condition is u(x, y) =  0 for all boundaries of the rectangu

lar domain.

In order to solve this equation by using the FE M , we locate 12 boundary 

points and 19 interior points, number them, and divide the domain into 36 tri

angular subregions as depicted in Fig. 9.9. Note that we have made the size of 

the subregions small and their density high around the points (+0.5, +0.5) and

Figure 9.9 An example of triangular subregions for FEM.
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(-0.5, -0.5), since they are only two points at which the value of the right-hand 

side of Eq. (9.6.1) is not zero, and consequently the value of the solution u(x ,y )  

is expected to change sensitively around them.

W e  made the following M A T L A B  program “do_fem.m” in order to use the 

routines “fem _basis_ftn()” and “fem_coef()” for solving this equation. For 

comparison, we have added the statements to solve the same equation by using the 

routine “ poisson()” (Section 9.1). The results obtained by running this program 

are depicted in Fig. 9.10a-c.

Figure 9.10 Results of Example 9.6.
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%do_fem
% for Example 9.6
clear
N = [-1 0;-1 -1;-1/2 -1;0 -1;1/2 -1; 1 -1;1 0;1 1;1/2 1; 0 1;

-1/2 1;-1 1; -1/2 -1/4; -5/8 -7/16;-3/4 -5/8;-1/2 -5/8;
-1/4 -5/8;-3/8 -7/16; 0 0; 1/2 1/4;5/8 7/16;3/4 5/8;
1/2 5/8;1/4 5/8;3/8 7/16;-9/16 -17/32;-7/16 -17/32;

-1/2 -7/16;9/16 17/32;7/16 17/32;1/2 7/16]; %nodes
N_b = 12; %the number of boundary nodes
S = [1 11 12;1 11 19;10 11 19;4 5 19;5 7 19; 5 6 7;1 2 15; 2 3 15;

3 15 17;3 4 17;4 17 19;13 17 19;1 13 19;1 13 15;7 8 22;8 9 22;
9 22 24;9 10 24; 10 19 24; 19 20 24;7 19 20; 7 20 22;13 14 18;
14 15 16;16 17 18;20 21 25;21 22 23;23 24 25;14 26 28;
16 26 27;18 27 28; 21 29 31;23 29 30;25 30 31;
26 27 28; 29 30 31]; %triangular subregions

f962 = '(norm([x y]+[0.5 0.5])<0.01)-(norm([x y]-[0.5 0.5]) < 0.01)';
f=inline(f962,'x','y'); %(E9.6.2)
g=inline('0 ','x ','y ');

N_n = size(N,1); %the total number of nodes
N_i = N_n - N_b; %the number of interior nodes
c = zeros(1,N_n); %boundary value or 0 for boundary/interior nodes
p = fem_basis_ftn(N,S);
[U,c] = fem_coef(f,g,p,c,N,S,N_i);
%Output through the triangular mesh-type graph
figure(1), clf, trimesh(S,N(:,1),N(:,2),c)

%Output through the rectangular mesh-type graph
N_s = size(S,1); %the total number of subregions(triangles)

x 0 II x 1 y 0 1 y Hi I

Mx = 16; dx = (xf - x0)/Mx; xi = x0+[0:Mx]*dx;
My = 16; dy = (yf - y0)/My; yi = y0+[0:My]*dy;
for i = 1:length(xi)

for j = 1:length(yi)
for s = 1:N_s %which subregion the point belongs to

if inpolygon(xi(i),yi(j), N (S(s,:),1),N(S(s,:),2)) > 0
Z(i,j) = U(s,:)*[1 xi(i) yi(j)]'; %Eq.(9.4.5b)
break;

end
end

end
end
figure(2), clf, mesh(xi,yi,Z)

%For comparison
bx0 = inline('0'); bxf = inline('0');
by0 = inline('0'); byf = inline('0');
[U,x,y] = poisson(f,g,bx0,bxf,by0,byf,[x0 xf y0 yf],Mx,My);
figure(3), clf, mesh(x,y,U)

9.5 GUI OF  M ATLAB FOR  SOLVING  PDES: P D E T O O L

In this section, we will see what problems can be solved by using the G U I (graphic 

user interface) tool of M A T L A B  for PDEs and then apply the tool to solve the 

elliptic/parabolic/hyperbolic equations dealt with in Examples 9.1/9.3/9.5 and 9.6.



9.5.1 Basic P D E s  Solvable by P D E T O O L

Basically, the P D E  toolbox can be used for the following kinds of PDE.
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1. Elliptic P D E

—V  ■ (cVu) +  au =  f  over a domain Q  (9.5.1)

with some boundary conditions like

hu =  r (Dirichlet condition)

(9 .5 .2 )

or n ■ cVu +  qu =  g (generalized Neumann condition)

on the boundary dQ, where n is the outward unit normal vector to the boundary.

Note that, in case u is a scalar-valued function on a rectangular domain as 

depicted in Fig. 9.1, Eq. (9.5.1) becomes

(д  2u (x ,y ) д 2u (x ,y )\
-c ( dx;  У) +  ^  ’ y J ) +  au(x, y) =  f (x , y) (9.5.3)

and if the boundary condition for the left-side boundary segment is of Neumann 

type like Eq. (9.1.7), Eq. (9.5.2) can be written as

(d u (x ,y ) .  d u (x ,y )\
- 1 • С I — — — i +  — — — j I +  qu(x, y)

du(x, y)
= -с— -----v qu(x ,y ) =  g (x ,y )  (9.5.4)

dx

since the outward unit normal vector to the left-side boundary is n =  i, where i 

and j are the unit vectors along the x axis and y-axis, respectively.

2. Parabolic P D E

du
—V  • (cVm) +  au +  d —  =  /  (9.5.5)

dt

over a domain Q  and for a time range 0 < t < T

with boundary conditions like Eq. (9.5.2) and, additionally, the initial condition

u(to).

3. Hyperbolic P D E

д 2u
—V  • (cVu) +  au +  d — — =  f  (9.5.6)

dt2

over a domain Q  and for a time range 0 < t < T
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with boundary conditions like Eq. (9.5.2) and, additionally, the initial conditions

u(t0)/u'(t0).

4. Eigenmode P D E

—V  ■ (cVu) +  au =  Xdu 

over a domain Q  and for an unknown eigenvalue X

with some boundary conditions like Eq. (9.5.2).

The P D E  toolbox can also deal with a system of PDEs like

(9.5.7)

—V  ■ (ciiVui) — V  ■ (C1 2 V u2) +  a^ux +  ai2u2 =  / 1  

—V  ■ (C2 1 Vui) — V  ■ (C2 2V u2 ) +  a2 iui +  a2 2u2 =  / 2

with Dirichlet boundary conditions like

hii hi2 ui ri

_h-2i h22 u2 J 2 _

over a domain Q

(9.5.8)

(9 .5 .9)

or generalized Neumann boundary conditions like

П ■ (ciiV u i) +  П ■ (c12V u 2) +  q11u1 +  q12u2 =  g1 

П ■ (C2 1 V u i ) +  П ■ (C2 2 V u 2 ) +  q2 iui +  q22u2 =  g2

or mixed boundary conditions, where

h =

cii ci2
, a =

a ii

c21 c22 _ a21

h ii h i2 ri

h2i h22
, r =

r2

/  =
/ i

/ 2

q =
qii qi2 

q2i q22

(9.5.10)

ui

u2

gi

g2

9.5.2 The Usage of P D E T O O L

The PDEtool in M A T L A B  solves PDEs by using the F E M  (finite element method).

W e  should take the following steps to use it.

0. Type ‘pdetool ’ into the M A T L A B  command window to have the P D E  

toolbox window on the screen as depicted in Fig. 9.11. You can tog

gle on/off the grid by clicking ‘Grid’ in the Options pull-down menu 

(Fig. 9.12a). You can also adjust the ranges of the x axis and the y axis 

in the box window opened by clicking ‘Axes Limits’ in the Options pull

down menu. If you want the rectangles to be aligned with the grid lines, 

click ‘Snap(-to-grid)’ in the Options pull-down menu (Fig. 9.12a). If you

c
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PDE To o lb o x -  [U n t it le d ] | l - l a M
1 File | Edit | Options | Draw | Boundary | PDE | Mesh | Solve | Plot | Window | Help

□  ЕВ О  Ш >  da  pde Д A  -  ^  ^ | Generic Scalar |'r | X: 0.7367 Y: 0.Э447

Set formula: ((R1-R2)+E1)-E2

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

-1

С  чV E1‘
\  у

R1

r ■\

\ E2 J
v _  . t s-

;

i
-1.5 -0.5 0.5 1.5

Info: Select the type of PDE application from this pop-up menu. En!t

Figure 9.11 The GUI (graphical user interface) w indow of the MATLAB PDEtool.

want to have the x axis and the у axis of equal scale so that a circle/square 

may not look like an ellipse/rectangle, click ‘AxesEqual’ in the Options 

pull-down menu. You can choose the type of P D E  problem you want to 

solve in the submenu popped out by clicking ‘Application’ in the Options 

pull-down menu (Fig. 9.12a).

(cf) In order to be able to specify the boundary condition for a boundary segment 

by clicking it, the segment must be inside in the graphic region of PDEtool.

1. In Draw mode, you can create the two-dimensional geometry of domain Q  

by using the constructive solid geometry (CSG) paradigm, which enables 

us to make a set of solid objects such as rectangles, circles/ellipses, and 

polygons. In order to do so, click the object that you want to draw in 

the Draw pull-down menu (Fig. 9.12b) or click the button with the cor

responding icon ( □ , ЕВ, О 1, Ф ,  I 1 ) in the tool-bar just below the top 

menu-bar (Fig. 9.11). Then, you can click-and-drag to create/move the 

object of any size at any position as you like. Once an object is drawn, 

it can be selected by clicking on it. Note that the selected object becomes 

surrounded by a black solid line and can be deleted by pressing Delete or 

AR(Ctrl-R) key. The created object is automatically labeled, but it can be 

relabeled and resized (numerically) through the Object dialog box opened
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| Options
1/  Grid

Grid Spacing,,, 
Snap

^Axes Limit

Axes Limits,,. И —* 
Axes Equal

Turn off Toolbar Help

Zoom

nn
X-aKis range: П  Auto 

| [-1.51.51

Y-axis range: □ Auto

I ИИ

Apply Close

Draw
Draw Mode
Rectangle/square
Rectangle/square (centered)
Ellipse/circle
Ellipse/circle (centered)
Polygon

Rotate,,,

Export '.jeom etry , bet Formula, Labels

Refresh

✓ Generic Scalar
| (b) The Draw pull-down menu

Generic System IBoundaryl

Structural Mechanics, Plane Stress Boundary Mode Ctrl+B
Structural Mechanics, Plane Strain Specify Boundary Conditions...
Electrostatics Show Edge Labels
Magnetostatics Show Subdomain Labels
AC Power Electromagnetics 
Conductive Media DC 
Heat Transfer

Remove Subdomain Border 
Remove All Subdomain Borders

Diffusion Export Geometry, Boundary Cond's...

(a) Sub-menus ofthe Option pull-down menu (c) The boundary pull-down menu

JroTL Mesh Solve
PDE Mode
Show Subdomain Labels 
PDE Specification..,

Export PDE Coefficients..,

(d) PDE pull-down menu

Mesh Mode
Initialize Mesh Ctrl+I
Refine Mesh Ctrl+M
Jiggle Mesh
Undo Mesh Change
Display Triangle Quality
Show Node Labels
Show Triangle Labels
Parameters...

Export Mesh...

Solve PDE Ctrl+E
Parameters...
Export Solution...

(f) Solve pull-down menu

[pioTl
Plot Solution 
Parameters.,,

Ctrl+P

Export Movie

(e) Mesh pull-down menu (g) Plot pull-down menu

-  П x

Plot type: 

0  Color

□ Contour

□ Arrows

□ Deformed mesh 

0  Height p-D plot] [u

□ Animation Г"

Property:

u M

abs[grad(u))
abs(cKgradfu))
user entry

-grad(u] M

User entry: Plot style:

| interpolated shad. | ж |

| proportional

continuous

Options..

□  Plot in н-у grid
□  Show mesh

Contour plot levels: 20 

Colormap: |Cool
0  Plot solution automatically

Plot Done Cancel

(h) The box window popped out by clicking Parameters in the Plot pull-down menu 

Figure 9.12 Pull-down menu from  the top  menu and its submenu o fth e  MATLAB PDEtool.
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by double-clicking the object and even rotated (numerically) through the 

box opened by clicking ‘Rotate’ in the Draw pull-down menu. After cre

ating and positioning the objects, you can make a C S G  model by editing 

the set formula appropriately in the set formula field of the second line 

below the top menu-bar to take the union (by default), the intersection, 

and the set difference of the objects to form the shape of the domain Q  

(Fig. 9.11). If you want to see the overall shape of the domain you created, 

click ‘Boundary mode’ in the Boundary pull-down menu.

2. In Boundary mode, you can remove the subdomain borders that are 

induced by the intersections of the solid objects, but are not between 

different materials and also specify the boundary condition for each 

boundary segment. First, click the dQ  button in the tool-bar (Fig. 9.11) 

or ‘Boundary_mode(AB )’ in the Boundary pull-down menu (Fig. 9.12c), 

which will make the boundary segments appear with red/blue/green colors 

(indicating Dirichlet(default)/Neumann/mixed type of boundary condition) 

and arrows toward its end (for the case where the boundary condition 

is parameterized along the boundary). When you want to remove all 

the subdomain borders, click ‘Remove_All_Subdomain_Borders’ in the 

Boundary pull-down menu. You can set the parameters h ,r  or g ,q  

in Eq. (9.5.2) to a constant or a function of x and y specifying the 

boundary condition, through the box window opened by double-clicking 

each boundary segment. In case you want to specify/change the boundary 

condition for multiple segments at a time, you had better use shift-click 

the segments to select all of them (which will be colored black) and click 

again on one of them to get the boundary condition dialog box.

3. In P D E  mode, you can specify the type of P D E  (Elliptic/Parabolic/Hyper

bolic/Eigenmode) and its parameters. In order to do so, open the P D E  

specification dialog box by clicking the P D E  button in the tool-bar or 

‘P D E  Specification’ in the P D E  pull-down menu (Fig. 9.12d), check the 

type of PDE , and set its parameters in Eq. (9.5.1)/(9.5.5)/(9.5.6)/(9.5.7).

4. In Mesh mode, you can create the triangular mesh for the domain 

drawn in Draw mode by just clicking the Д  button in the tool-bar or 

Tnitialize_Mesh( I)' in the Mesh pull-down menu (Fig. 9.12e). To improve 

the accuracy of the solution, you can refine successively the mesh by 

clicking the A  button in the tool-bar or 'Refme_Mesh( M )' in the Mesh 

pull-down menu. You can jiggle the mesh by clicking ‘Jiggle Mesh’ in 

expectation of better accuracy. You can also undo any refinement by 

clicking ‘Undo_Mesh_Change’ in the Mesh pull-down menu.

5. In Solve mode, you can solve the P D E  and plot the result by just clicking 

the =  button in the tool-bar or ‘Solve_PDE(AE )’ in the Solve pull-down 

(Fig. 9.12f). But, in the case of parabolic or hyperbolic PDE , you must 

click ‘Parameters’ in the Solve pull-down menu (Fig. 9.12f) to set up the 

initial conditions and the time range before solving the PDE.
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6. In Plot mode, you can change the plot option in the Plot selection dialog

box opened by clicking the ^  button in the tool-bar or ‘Parameters’ in 

the Plot pull-down menu (Fig. 9.12g). In the Plot selection dialog box 

(Fig. 9.12h), you can set the plot type to, say, Color/Height(3-D) and set 

the plot style to, say, interpolated shading and continuous (interpolated) 

height. If you want the mesh to be shown in the solution graph, check 

the box of Show mesh. In case you want to plot the graph of a known 

function, change the option(s) of the Property into ‘user entry’, type in the 

M A T L A B  expression describing the function and click the Plot button. You 

can save the plot parameters as the current default by clicking the Done 

button. You can also change the color map in the second line from the 

bottom of the dialog box.

(cf) W e  can extract the parameters involved in the domain geometry by clicking ‘Export..’ 

in the Draw  pull-down menu, the parameters specifying the boundary by clicking 

‘Export..’ in the Boundary pull-down menu, the parameters specifying the P D E  by 

clicking ‘Export..’ in the P D E  pull-down menu, the parameters specifying the mesh 

by clicking ‘Export..’ in the Mesh pull-down menu, the parameters related to the 

solution by clicking ‘Export..’ in the Solve pull-down menu, and the parameters 

related to the graph by clicking ‘Export.. ’ in the Plot pull-down menu. Whenever 

you want to save what you have worked in PDEtool, you may select File/Save in 

the top menu-bar.

(cf) Visit the website “http://www.mathworks.com/access/helpdesk/help/helpdesk. 

html” for more details.

9.5.3 Examples of Using P D E T O O L  to Solve PDEs

In this section, we will make use of PDEtool to solve some P D E  problems that 

were dealt with in the previous sections.

Example 9.7. Laplace’s Equation: Steady-State Temperature Distribution Over 

a Plate. Consider the Laplace’s equation (Example 9.1)

9 d2u(x, y) d2u(x, у)
V  u(x, y) = -- + -------- y -  =  0 for 0 < x < 4, 0 < у < 4

dx2 dy2

(E9.7.1)

with the following boundary conditions.

u(0,y) =  ey — cos y, u(4, y) =  ey cos4 — e4 cos у (E9.7.2) 

u(x, 0) =  cosx — ex, u(x, 4) =  e4 cosx — ex cos4 (E9.7.3)

The procedure for using PDEtool to solve this problem is as follows:

0. Type ‘pdetool’ into the M A T L A B  command window to have the P D E  

toolbox window on the screen. Then, adjust the ranges of the x -axis and

http://www.mathworks.com/access/helpdesk/help/helpdesk
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the y-axis to [0 5] and [0 5], respectively, in the dialog box opened by 

clicking ‘AxesLimits’ in the Options pull-down menu. You can also click 

‘AxesEqual’ in the Options pull-down menu to have the x axis and 

the y axis of equal scale so that a circle/square may not look like an 

ellipse/rectangle.

1. Click the □  button in the tool-bar and click-and-drag on the graphic 

region to create a rectangle of domain. Then, in the Object dialog box 

opened by double-clicking the rectangle, set the Left/Bottom/Width/Height 

to 0/0/4/4. In this case, you don’t have to construct a C S G  model by 

editing the set formula, because the domain consists of a single object: 

a rectangle.

2. Click the 6 0  button in the tool-bar and double-click each boundary seg

ment to specify the boundary condition as Eqs. (E9.7.2,3) in the boundary 

condition dialog box (see Fig. 9.13a).

3. Open the P D E  specification dialog box by clicking the P D E  button in the 

tool-bar, check the box on the left of Elliptic as the type of PDE, and set 

its parameters in Eq. (E9.7.1) as depicted in Fig. 9.13b.

4. Click the Д  button in the tool-bar to divide the domain into a number of 

triangular subdomains to get the triangular mesh as depicted in Fig. 9.13c. 

You can click the A  button in the tool-bar to refine the mesh successively 

for better accuracy.

5. Click the =  button in the tool-bar to plot the solution in the form of two

dimensional graph with the value of u (x ,y )  shown in color.

6. If you want to plot the solution in the form of a three-dimensional graph 

with the value of u (x ,y )  shown in height as well as color, check the box 

before Height on the far-left side of the Plot selection dialog box opened

by clicking the ^  button in the tool-bar. If you want the mesh shown in 

the solution plot as Fig. 9.13d, check the box before Show mesh on the 

far-left and low side and click the Plot button at the bottom of the Plot 

selection dialog box (Fig. 9.12h). You can compare the result with that of 

Example 9.3 depicted in Fig. 9.4.

7. If you have the true analytical solution

u(x ,y ) =  ey cosx — ex cos y (E9.7.4)

and you want to plot the difference between the PDEtool (FEM ) solution 

and the true analytical solution, change the entry ‘u’ into ‘user entry’ in the 

Color/Contour row and the Height row of the Property column and write 

‘u-(exp(y) .*cos(x)-exp(x) .*cos(y)) ’ into the corresponding fields in 

the User entry column of the Plot selection dialog box opened by clicking

the ^  button in the tool-bar and click the Plot button at the bottom of the 

dialog box.



GUI OF MATLAB FOR SOLVING PDES: PDETOOL 4 3 7

0 1 2  3 
(a) Boundary condition for the domain of the PDE
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(d) The mesh plot of solution

Figure 9.13 Procedure and results of using PDEtool for Example 9.1/9.7.
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Example 9.8. A  Parabolic PDE: Two-Dimensional Temperature Diffusion Over 

a Plate. Consider a two-dimensional parabolic P D E

3 2u (x ,y ,t )  3 2u (x ,y ,t )\  du(x ,y ,t) 

dx2 dy2 )  31

for 0 < x < 4, 0 < y < 4 &  0 < t <  5000 (E9.8.1)

with the initial conditions and boundary conditions

u(x, y, 0) =  0 for t =  0 (E9.8.2a)

u (x ,y ,t ) =  ey cosx — ex cos y for x =  0, x =  4, y =  0, y =  4 (E9.8.2b)

The procedure for using the PDEtool to solve this problem is as follows.

0-2. Do  exactly the same things as steps 0-2 for the case of an elliptic P D E  

in Example 9.7.

3. Open the P D E  specification dialog box by clicking the P D E  button, 

check the box on the left of ‘Parabolic' as the type of P D E  and set its 

parameters in Eq. (E9.8.1) as depicted in Fig. 9.14a.

4. Exactly as in step 4 (for the case of elliptic PDE) in Example 9.7, click 

the Д  button to get the triangular mesh. You can click the A  button to 

refine the mesh successively for better accuracy.

5. Unlike the case of an elliptic PDE, you must click ‘Parameters’ in 

the Solve pull-down menu (Fig. 9.12f) to set the time range, say, as 

0:100:5000 and the initial conditions as Eq. (E9.8.2a) before clicking 

the =  button to solve the PDE. (See Fig. 9.14b.)

6. As in step 6 of Example 9.7, you can check the box before Height in

the Plot selection dialog box opened by clicking the ^  button, check 

the box before Show mesh, and click the Plot button. If you want to 

plot the solution graph at a time other than the final time, select the time 

for plot from

{0,100, 2 0 0 , . . . ,  500}

in the far-right field of the Plot selection dialog box and click the Plot 

button again. If you want to see a movie-like dynamic picture of the 

solution graph, check the box before Animation, click Options right after 

Animation, fill in the fields of animation rate in fps (i.e., the number of 

frames per second and the number of repeats in the Animation Options 

dialog box), click the O K  button, and then click the Plot button in the 

Plot selection dialog box.

(cf) If the dynamic picture is too oblong, you can scale up/down the solution by chang

ing the Property of the Height row from ‘u ’ into ‘user entry’ and filling in the 

corresponding field of User_entry with, say, ‘u/25’ in the Plot selection dialog box.
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(a) PDE specification dialog window (b) Solve parameters dialog window

(c) The box window popped out by clicking Parameters in the Plot pull-down menu

Time = 5000, Color: u, Height: u

100
u(x, y) 

50

0 0
(d) The mesh plot of solution at t = 5000

Figure 9.14 Procedure and results of using PDEtool for Example 9.3/9.8.

4
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According to your selection, you will see a movie-like dynamic picture or 

the (final) solution graph like Fig. 9.14d, which is the steady-state solution 

for Eq. (E9.8.1) with du(x, y, t)/dt =  0, virtually the same as the elliptic P D E  

(E9.7.1) whose solution is depicted in Fig. 9.13d.

Before closing this example, let us have an experience of exporting the values 

of some parameters. For example, we extract the mesh data {p, e, t} by clicking 

‘ExportMesh’ in the Mesh pull-down menu and then clicking the O K  button 

in the Export dialog box. Among the mesh data, the matrix p contains the x 

and у coordinates in the first and second rows, respectively. W e  also extract 

the solution u by clicking ‘Export_Solution’ in the Solve pull-down menu and 

then clicking the O K  button in the Export dialog box. Now, we can estimate 

how far the graphical/numerical solution deviates from the true steady-state solu

tion u ( x ^ )  =  ey cos x — ex cos у by typing the following statements into the 

M A T L A B  command window.

>>x = p(1.:)'; y = p(2.: )'; %x.y coordinates of nodes in column vector 

>>err = exp(y).*cos(x) - exp(x).*cos(y) - u(:.end); %deviation from true sol 

>>err_max = max(abs(err)) %maximum absolute error

Note that the dimension of the solution matrix u is 177 x 51 and the solution 

at the final stage is stored in its last column u(:,en d ) , where 177 is the number 

of nodes in the triangular mesh and 51 =  5000/100 +  1 is the number of frames 

or time stages.

Example 9.9. A  Hyperbolic PDE: Two-Dimensional Wave (Vibration) Over a 

Square Membrane. Consider a two-dimensional hyperbolic P D E

1 /  d2u(x ,y ,t )  3 2u(x ,y ,t )\  du2(x ,y ,t)

4 \ dx2 dy2 )  dt2

for 0 < x < 2, 0 < у < 2, and 0 < t <  2 (E9.9.1)

with the zero boundary conditions and the initial conditions

u ( 0 ,у ,^  =  0, u (2 ^ ,t )  =  0, u(x, 0,t) =  0, u(x, 2,t) =  0 (E9.9.2)

u(x ,у , 0) =  0.1sin(^x) s i ^ ^ ^ ) ,  du/dt(x,у , 0) =  0 for t =  0 (E9.9.3)

The procedure for using the PDEtool to solve this problem is as follows:

0-2. Do  the same things as steps 0-2 for the case of elliptic P D E  in Example 9.7,

except for the following.

• Set the ranges of the x axis-and the у-axis to [0 3] and [0 3].

• Set the Left/Bottom/Width/Height to 0/0/2/2 in the Object dialog box 

opened by double-clicking the rectangle.

• Set the boundary condition to zero as specified by Eqs. (E9.9.2) in 

the boundary condition dialog box opened by clicking the dQ  button 

in the tool-bar, shift-clicking the four boundary segments and double

clicking one of the boundary segments.
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1 1 — 1 □  1 x

Equation: dxu"*div(c*grad(u])+a*u=f

Type of PDE: Coefficient V^lue

О  Elliptic с 11M I

О  Parabolic a I 0.0 |

®  Hyperbolic f I o.o I

О  Eigenrnode d | 1.0 |

| OK 1 Cancel |

(a) PDE specification dialog window

(b) Solve parameters dialog window

(c) The box window popped out by clicking Parameters in the Plot pull-down menu

Figure 9.15 Procedure and results of using PDEtool fo r Example 9.5/9.9.

3. Open the P D E  specification dialog box by clicking the P D E  button, 

check the box on the left of ‘Hyperbolic' as the type of PD E , and set 

its parameters in Eq. (E9.9.1) as depicted in Fig. 9.15a.

4. Do  the same thing as step 4 for the case of elliptic P D E  in Example 9.8.

5. Similarly to the case of a parabolic PDE, you must click ‘Parameters’ 

in the Solve pull-down menu (Fig. 9.12f) to set the time range, say, as
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0:0.1:2 and the initial conditions as Eq. (E9.9.3) before clicking the =  

button to solve the PDE. (See Fig. 9.15b.)

6. Do  almost the same thing as step 6 for the case of parabolic P D E  in 

Example 9.8.

Finally, you could see the solution graphs like Figs. 9.15(d1)&(d2), that are 

similar to Figs. 9.6(a)&(c).

Example 9.10. Laplace’s Equation: Electric Potential Over a Plate with Point 

Charge. Consider the Laplace’s equation (dealt with in Example 9.6)

and the boundary condition is u ( x ^ )  =  0 for all boundaries of the rectangu

lar domain.

The procedure for using the PDEtool to solve this problem is as follows.

0-2. Do  the same thing as step 0-2 for the case of elliptic P D E  in Example 9.7, 

except for the following.

• Set the Left/Bottom/Width/Height to —1/—1/2/2 in the Object dialog 

box opened by double-clicking the rectangle.

• Set the boundary condition to zero in the boundary condition dialog box 

opened by clicking the dQ  button in the tool-bar, shift-clicking the four 

boundary segments, and double-clicking one of the boundary segments.

3. Open the P D E  specification dialog box by clicking the P D E  button, check 

the box on the left of ‘Elliptic’ as the type of PD E , and set its parameters 

in Eq. (E9.10.1,2) as depicted in Fig. 9.16a.

4. Click the Д  button to initialize the triangular mesh.

5. Click the ^  button to open the Plot selection dialog box, check the box 

before ‘Height’, and check the box before ‘Show mesh’ in the dialog box.

6. Click the Plot button to get the solution graph as depicted in Fig. 9.16c.

7. Click ‘Parameters’ in the Solve pull-down menu to open the ‘Solve Param

eters’ dialog box depicted in Fig. 9.16b, check the box on the left of 

‘Adaptive mode’, and click the O K  button in order to activate the adaptive 

mesh mode.

8. Click the =  button to get a solution graph with the adaptive mesh.

for —1 < x < + 1 , —1 < у < + 1 (E9.10.1)

where

— 1 for (x, у) =  (0.5, 0.5) 

f (x , у) = | + 1  for (x, у) =  (—0.5, —0.5) 

0 elsewhere

(E9.10.2)
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(a) PDE specification dialog window
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(b) Solve parameters dialog window

(c) The mesh plot of the solution with Initialize mesh

Figure 9.16 Procedure and results of using PDEtool for Example 9.6/9.10.
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9. Noting that the solution is not the right one for the point charge distribution 

given by (E9.10.2), reopen the P D E  specification dialog box by clicking 

the P D E  button and rewrite f as below.

f |(-(((x + 0.5),A2 + (у + 0.5),л2 < 0.00064) + (((x - 0.5),л2 + (у - 0.5),л2) < 0.00064))|

10. Noting that the mesh has already been refined in the adaptive way to 

yield smaller meshes in the region where the slope of the solution is 

steeper, click ‘Parameters’ in the Solve pull-down menu to open the ‘Solve 

Parameters' dialog box, uncheck the box on the left of ‘Adaptive mode', 

and click the O K  button in the dialog box in order to inactivate the 

adaptive mesh mode.

11. Click the =  button to get the solution graph as depicted in Fig. 9.16d.

12. You can click 'Refme_Mesh( M )' in the Mesh pull-down menu and click 

the =  button to get a more refined solution graph (with higher resolution) 

as many times as you want.

P R O B L E M S

9.1 Elliptic PDEs: Poisson Equations

Use the routine “poisson()” (in Section 9.1) to solve the following PDEs 

and plot the solutions by using the M A T L A B  command “mesh()” .

0 d2u(x, y) d2u(x, y)
(a) V  m(x, y) =  gKJ =  x + у (P9.1.1)

for0 < x < 1, 0 < y <  1 

with the boundary conditions

u(0, y) =  y2, u(1, y) =  1, 

u(x, 0) =  x 2, u(x, 1) =  1 (P9.1.2)

Divide the solution region (domain) into M x x M y =  5 x 10 sections.

d 2u (x ,y) d 2u (x ,y) 2  , 4 

— dx2------ dy2---

=  - 25n2 cos cos for 0 < x, у < 0.4 (P9.1.3)

with the boundary conditions

u(0, y) =  cos ( f y )  , и(0.4, у) =  - cos (P9.1.4)

u{x, 0) =  cos ( ~ ^ x j > u (x, 0.4) =  — cos ( ~ ^ x j (P9.1.5)
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Divide the solution region into M x x M y =  40 x 40 sections.

d2u(x, y) d2u(x, y) i i
(C) дх ду2 +47Г(х2 + у 2)и(х,у)

=  4n  cos(n(x2 +  y2)) for 0 < x < 1, 0 < y < 1 (P9.1.6)

with the boundary conditions

u(0, y) =  sin (ny2), u (1 , y) =  sin (n(y2 +  1)) (P9.1.7) 

u(x, 0) =  sin(nx2), u(x, 1) =  sin(n(x2 +  1)) (P9.1.8)

Divide the solution region into Mx x My =  40 x 40 sections.

(d) 9 и(х ’ У) +  9 u (x ’ У) =  ioe2x+y for 0 < x < 1, 0 < у < 2 (P9.1.9) 
dx2 dy2

with the boundary conditions

u(0 ,y ) =  2ey, u(1 ,y )  =  2e2x+y,

u(x, 0) =  2e2x, u(x, 2) =  2e2x+2 (P9.1.10)

Divide the solution region into M x x M y =  20 x 40 sections.

d 2u (x ,y ) d 2u (x ,y )
( e ) — ^ r Z  +  — for 0 < x < 1, 0 < у < n /2  (P9.1.11) 

dx2 dy2

with the boundary conditions

u(0, y) =  4cos(3y), u(1, y) =  4e-3 cos(3y),

u(x, 0) =  4e-3x, u (x ,n /2 )  =  0 (P9.1.12)

Divide the solution region into M x x M y =  20 x 20 sections.

9.2 More General P D E  Having Nonunity Coefficients

Consider the following P D E  having nonunity coefficients.

d 2u(x ,y ) d 2u (x ,y ) d 2u(x ,y )
A  ,V ’ У) +  В  Д  +  С  V ’ y) +  g(x, y)u(x, y) =  f (x , y) 

dx2 dxdy dy2

(P9.2.1)

Modify the routine “poisson()” so that it can solve this kind of PDEs and 

declare it as

function [u,x,y] = poisson_abc(ABC,f,g,bx0,bxf,by0,...,Mx,My,tol,imax)
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where the first input argument A B C  is supposed to carry the vector containing 

three coefficients A ,B ,  and C . Use the routine to solve the following PDEs 

and plot the solutions by using the M A T L A B  command “mesh()” .

d 2u(x ,y ) d 2u(x ,y )
(a)  +  2 -------- f2̂ - =  10 for 0 < x < l , 0 < y < l  (P9.2.2)

dx2 dy2

with the boundary conditions

u(0 ,y )  =  y2, u(1,y)  =  (y +  2)2,

2 2 (P9.2.3)
u(x, 0) =  4x , u(1, y) =  (2x +  1)

Divide the solution region (domain) into Mx x My =  20 x 40 sections.

д2и(х,у) д2и(х,у) д2и{х,у)
(b)  ----h 3-------h 2 --- -—  =  0 for 0 < д: < 1, 0 < у < 1

Эх2 ЗхЗу Эу2

(P9 .2 .4 )

with the boundary conditions

u(0 ,y )  =  ey +  cos y, u (1 ,y ) =  ey-1 +  cos(y — 2) (P9.2.5)

u(x, 0) =  e—x +  cos(—2x), u(x, 1) =  e1—x +  cos(1 — 2x) (P9.2.6)

Divide the solution region into M x x M y =  40 x 40 sections.

32и(х, у) 32и(х, у) Э2и(х, у) .

(c) — ^~2—  +  --+  2 — —  =  х sin у

у dy (P9 .2 .7)
for 0 < x < 2, 0 < y < n

with the boundary conditions

u(0,y) =  (3/4) cos y, u(2 ,y ) =  — sin(y) +  (3/4) cos y (P9.2.8) 

u(x, 0) =  3/4, u(x, n )  =  - 3/4  (P9.2.9)

Divide the solution region into M x x M y =  20 x 40 sections.

d 2u(x ,y ) d 2u (x ,y ) d 2u (x ,y )

(d> 4 a 2 - 4  a a +  a 2 = 0  f o r 0 < x < l , 0 < y < l
dx2 dxdy dy2

(P9.2.10)

with the boundary conditions

u(0,y) =  ye2y, u(1 ,y ) =  (1 +  y)e1+2y,

u(x, 0) =  xex , u(x, 1) =  (x +  1)ex+2 

Divide the solution region into Mx x My =  40 x 40 sections.

PARTIAL DIFFERENTIAL EQUATIONS

( P 9 .2 .1 1 )
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function [u,x,y] = poisson_Neuman(f,g,bx0,bxf,by0,byf,x0,xf,y0,yf ,... )

Neum = zeros(1,4); %Not Neumann, but Dirichlet condition by default

if length(x0) > 1, Neum(1) = x0(2); x0 = x0(1); end

if length(xf) > 1, Neum(2) = xf(2); xf = xf(1); end

if length(y0) > 1, Neum(3) = y0(2); y0 = y0(1); end

if length(yf) > 1, Neum(4) = yf(2); yf = yf(1); end

dx_2 = dx*dx; dy_2 = dy*dy; dxy2=2*(dx_2 + dy_2);

rx = dx_2/dxy2; ry = dy_2/dxy2; rxy = rx*dy_2; rx = rx;

dx2 = dx*2; dy2 = dy*2; rydx = ry*dx2; rxdy = rx*dy2;

u(1:My1,1:Mx1) = zeros(My1,Mx1);

sum_of_bv = 0; num = 0;

if Neum(1) == 0 %Dirichlet boundary condition

for m = 1:My1, u(m,1) = bx0(y(m)); end %side a

else %Neumann boundary condition

for m = 1:My1, duxa(m) = bx0(y(m)); end %du/dx(x0,y)

end

if Neum(2) == 0 %Dirichlet boundary condition

end

if Neum(3) == 0 %Dirichlet boundary condition

x1MмM1nмn

if Neum(1) == 0, u(1,1)=(u(1,1) + by0(x(1)))/2; n1 = 2; end

if Neum(2) == 0, u(1,Mx1)=(u(1,Mx1) + by0(x(Mx1)))/2; nM1 = Mx; end

for n = n1:nM1, u(1,n) = by0(x(n)); end %side c

else %Neumann boundary condition

for n = 1:Mx1, duyc(n) = by0(x(n)); end %du/dy(x,y0)

end

if Neum(4) == 0 %Dirichlet boundary condition

end

for itr = 1:imax

if Neum(1) %Neumann boundary condition

for i = 2:My

u(i,1) = 2*ry*u(i,2) + rx*(u(i + 1,1) + u(i-1,1)) ...

+ rxy*(G(i,1)*u(i,1) - F(i,1)) - rydx*duxa(i); %(9 1.9)

end

if Neum(3), u(1,1) = 2*(ry*u(1,2) +rx*u(2,1)) ...

+ rxy*(G(1,1)*u(1,1) - F(1,1)) - rydx*duxa(1) - rxdy*duyc(1) ;%(9 1 .11)

end

if Neum(4), u(My1,1) = 2*(ry*u(My1,2) +rx*u(My,1)) ...

+ rxy*(G(My1,1)*u(My1,1)- F(My1,1))+rxdy*duyd(1)- rydx*duxa(My1)

end

end

if Neum(2) %Neumann boundary condition

end

if Neum(3) %Neumann boundary condition

xM2:мrof

u(1,j) = 2*rx*u(2,j)+ry*(u(1,j+1) + u(1,j-1)) ...

+rxy*(G(1,j)*u(1,j) - F(1,j)) - rxdy*duyc(j); % (9.1 10)

end

end

if Neum(4) %Neumann boundary condition

end

end
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9.3 Elliptic PDEs with Neumann Boundary Condition 

Consider the P D E  (E9.1.1) (dealt with in Example 9.1)

d2u(x, y) d2u(x, y)
-- =  0 for 0 < x < 4, 0 < у < 4 (Р9.3.1)

dx2 dy2

with different boundary conditions of Neumann type, which was discussed 

in Section 9.1. Modify the routine “poisson()” so that it can deal with the 

Neumann boundary condition and declare it as

function [u,x,y] = poisson_Neuman(f,g,bx0,bxf,by0,byf,x0,xf,y0,yf,...)

where the third/fourth/fifth/sixth input arguments are supposed to carry the 

functions of

u(x0 , y )/u (xf, y)/u(x, y0 )/u (x , yf)

or

du(x, y)/dx  |x=xq/du(x, y) /  dx \ x=xf /  du (x, y)/dy |y=y0/du(x, y)/dy\y=yf

and the seventh/eighth/ninth/tenth input arguments are to carry x0/xf/y0/yf 

or [x0 1]/[xf 1]/[y0 ]/[yf 1] depending on whether each boundary condition 

is of Dirichlet or Neumann type. Use it to solve the P D E  with the 

following boundary conditions and plot the solutions by using the M A T L A B  

command “mesh()” . Divide the solution region (domain) into M x x M y =  

20 x 20 sections.

(cf) You may refer to the related part of the program in the previous page.

(a) du(x,y)/dx|x=0 =  — cos y, u(4,y) =  ey cos4 — e4 cos y (P9.3.2) 

du(x,y)/dy|y=0 =  cosx, u(x, 4) =  e4 cosx — ex cos4 (P9.3.3)

(b) u(0,y) =  ey — cosy, du(x, y)/dx\x=4 =  —ey sin4 — e4 cosy (P9.3.4) 

u(x, 0) =  cosx — ex, du(x,y)/dy\y=4 =  e4 cosx +  ex sin4 (P9.3.5)

(c) du(x,y)/dx|x=0 =  — cos y, u(4,y) =  ey cos4 — e4 cos y (P9.3.6) 

u(x, 0) =  cosx — ex, du(x,y)/dy\y=4 =  e4 cosx +  ex sin4 (P9.3.7)

(d) u(0,y) =  ey — cosy, du(x,y)/dx|x 4 =  —ey sin4 — e4 cosy (P9.3.8) 

du(x,y)/dy\y=0 =  cosx, u(x, 4) =  e4 cosx — ex cos4 (P9.3.9)
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(e) du(x,y)/dx  | = —cos y, du(x,y)/dx\x_A =  —ey sin4 — e4 cos y

(P9.3.10)

du(x,y)/dy  | 0 =  cosx, u(x, 4) =  e4 cosx — ex cos4 (P9.3.11)

(f) d u (x ,y ) /d x |x 0 =  — cos y, u(4, y) =  ey cos4 — e4 cos y(P9.3.12)

d u (x ,y )/d y | =  cosx, du(x, y )/d y | =  e4 cosx +  ex sin4

^  ^  (P9.3.13)

(g) u(0, y) =  ey — cosy, du(x, y ) /d x |x 4 =  —ey sin4 — e4 cosy(P9.3.14)

du(x, y)/дy|y=0 =  cosx, du(x, y)/дy|y=4 =  e4 cosx +  ex sin4

(P9.3.15)

(h) du(x ,y )/dx  | = — cos y, дu(x ,y)/дx|x_ 4 =  —ey sin4 — e4 cos y

x x (P9.3.16)

du(x, y )/d y | =  cosx, du(x, y)/дy|y=4 =  e4 cosx +  ex sin4

(P9.3.17)

9.4 Parabolic PDEs: Heat Equations

Modify the program “solve_heat.m” (in Section 9.2.3) so that it can solve 

the following PDEs by using the explicit forward Euler method, the implicit 

backward Euler method, and the Crank-Nicholson method.

d2u(x, t) du(x, t)
(a)  J for 0 < x < 1, 0 < t < 0.1 (P9.4.1)

dx2 dt

with the initial/boundary conditions

u(x, 0) =  x4, u(0,t) =  0, u(1,t) =  1 (P9.4.2)

(i) With the solution region divided into M  x N  =  10 x 20 sections, 

does the explicit forward Euler method converge? What is the value 

of r =  A A t /(A x )2?

(ii) If you increase M  and N  to make M  x N  =  20 x 40 for better 

accuracy, does the explicit forward Euler method still converge? 

What is the value of r =  A A t /(A x )2?

(iii) What is the number N  of subintervals along the t axis that we should 

choose in order to keep the same value of r for M  =  20? With that 

value of r, does the explicit forward Euler method converge?
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5 d2u(x, t) du(x, t)
(b) 10 5-- f o r 0 < x  < 1 , 0  < t  < 6000 (P9.4.3)

dx2 dt

with the initial/boundary conditions

u(x, 0) =  2x +  sin(2nx), u(0,t) =  0, u(1,t) =  2 (P9.4.4)

(i) With the solution region divided into M  x N  =  20 x 40 sections, 

does the explicit forward Euler method converge? What is the value 

of r =  A A t /(A x )2? Does the numerical stability condition (9.2.6) 

seem to be so demanding?

(ii) If you increase M  and N  to make M  x  N  =  40 x 160 for better 

accuracy, does the explicit forward Euler method still converge? 

What is the value of r =  A A t /(A x )2? Does the numerical stability 

condition (9.2.6) seem to be so demanding?

(iii) With the solution region divided into M  x N  =  40 x 200 sections, 

does the explicit forward Euler method converge? What is the value 

of r =  A A t / (A x )2?

d 2u(x,t) du(x,t)
(c) 2 -- for 0 < X < 7Г, 0 < t < 0.2 (P9.4.5)

dx2 dt

with the initial/boundary conditions

u(x, 0) =  sin(2x), u(0, t) =  0, u(n, t) =  0 (P9.4.6)

(i) By substituting

u(x, t) =  sin(2x)e—8t (P9.4.7)

into the above equation (P9.4.5), verify that this is a solution to 

the PDE.

(ii) With the solution region divided into M  x N  =  40 x 100 sections, 

does the explicit forward Euler method converge? What is the value 

of r =  A A t / (A x )2?

(iii) If you increase N  (the number of subintervals along the t-axis) to 

125 for improving the numerical stability, does the explicit forward 

Euler method converge? What is the value of r =  A A t /(A x )2? Use 

the M A T L A B  statements in the following box to find the maximum 

absolute errors of the numerical solutions obtained by the three 

methods. Which method yields the smallest error?

uo = inline('sin(2*x)*exp(-8*t)' ,'x','t') ; %true analytical solution

Uo = uo(x,t);

err = max(max(abs(u1 - Uo)))



PROBLEMS 4 5 1

(iv) If you increase N  to 200, what is the value of r =  A A t /(A x )2? Find 

the maximum absolute errors of the numerical solutions obtained 

by the three methods as in (iii). Which method yields the small

est error?

d 2u(x,t) du(x,t)
(d)  ; for 0 < x < 1, 0 < t < 0.1 (P9.4.8)

dx2 dt

with the initial/boundary conditions

u(x, 0) =  sin(nx) +  sin(3nx), u(0,t) =  0, u(1,t) =  0 (P9.4.9)

(i) By substituting

u(x,t) =  sin (nx)e^7t'21 +  sin(3nx)e—(3n)21 (P9.4.10)

into Eq. (P9.4.5), verify that this is a solution to the PDE.

(ii) With the solution region divided into M  x N  =  25 x 80 sections, 

does the explicit forward Euler method converge? What is the value 

of r =  A A t /(A x )2?

(iii) If you increase N  (the number of subintervals along the t axis) to 

100 for improving the numerical stability, does the explicit forward 

Euler method converge? What is the value of r =  A A t /(A x )2? Find 

the maximum absolute errors of the numerical solutions obtained by 

the three methods as in (c)(iii).

(iv) If you increase N  to 200, what is the value of r =  A A t /(A x )2? Find 

the maximum absolute errors of the numerical solutions obtained by 

the three methods as in (c)(iii). Which one gained the accuracy the 

most of the three methods through increasing N ?

9.5 Parabolic PDEs with Neumann Boundary Conditions

Let us modify the routines “heat_exp()”, “heat_imp()”, and “heat_cn()” 

(in Section 9.2) so that they can accommodate the heat equation (9.2.1) with 

Neumann boundary conditions

du(x,t)/dx\x=x0 =  bx0 (t), du(x,t)/dx\x=xf =  bxf (t) (P9.5.1)

(a) Consider the explicit forward Euler algorithm described by Eq. (9.2.3) 

uk+1 =  r(uk+1 +  uk—1) +  (1 — 2r)uk

At
for i =  1, 2 , . . . ,  M  - 1 with r =  A --- (P9.5.2)

A x 2
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In the case of Dirichlet boundary condition, we don’t need to get u0+1 

and ukA+1, because they are already given. But, in the case of the Neu

mann boundary condition, we must get them by using this equation for

i =  0 and M  as

u0+1 =  r(uk1 +  u \ ) +  (1 — 2r)u0 (P9.5.3a)

ukM l =  r(ukM+1 +  ukM—1 ) +  (1 — 2r)ukM (P9.5.3b) 

and the boundary conditions approximated as

uk uk
1 =  b'0(k), u\  = u \ -  2b'0(k)Ax (P9,5.4a)

uM + 1 — uM—1

2A x
=  bM (k), uM+1 =  uM —1 +  2bM (k)Ax  (P9.5.4b)

Substituting Eqs. (P9.5.4a,b) into Eq. (P9.5.3) yields

u0+1 =  2r(u\ — b0 (k)Ax) +  (1 — 2r)u0 (P9.5.5a)

uM+1 =  2r(ukM —1 +  bM (k)Ax) +  (1 — 2r)ukM (P9.5.5b)

Modify the routine “heat_exp()” so that it can use this scheme to deal 

with the Neumann boundary conditions for solving the heat equation and 

declare it as

function [u,x,t] = heat_exp_Neuman(a,xfn,T,it0,bx0,bxf,M,N)

where the second input argument xfn and the fifth and sixth input argu

ments bx0,bxf are supposed to carry [xf 0 1] and bx0(t), b'Xf (t), respec

tively, if the boundary condition at x0/x f  is of Dirichlet/Neumann type and 

they are also supposed to carry [xf 1 1] and bXo(t), b'x (t), respectively, 

if both of the boundary conditions at x0/x f  are of Neumann type.

(b) Consider the implicit backward Euler algorithm described by Eq. (9.2.13), 

which deals with the Neumann boundary condition at the one end for 

solving the heat equation (9.2.1). With reference to Eq. (9.2.13), modify 

the routine “heat_imp()” so that it can solve the heat equation with the 

Neumann boundary conditions at two end points x0 and xf  and declare 

it as

function [u,x,t] = heat_imp_Neuman(a,xfn,T,it0,bx0,bxf,M,N)

(c) Consider the Crank-Nicholson algorithm described by Eq. (9.2.17), which 

deals with the Neumann boundary condition at the one end for solving the 

heat equation (9.2.1). With reference to Eq. (9.2.17), modify the routine 

“heat_cn()” so that it can solve the heat equation with the Neumann 

boundary conditions at two end points x0 and xf and declare it as

function [u,x,t] = heat_cn_Neuman(a,xfn,T,it0,bx0,bxf,M,N)



(d) Solve the following heat equation with three different boundary condi

tions by using the three modified routines in (a), (b), (c) with M = 20,N 

= 100 and find the maximum absolute errors of the three solutions as in 

Problem 9.4(c)(iii).

d 2u(x,t) du(x,t)
-- 4 —  =  — forO < x  < 1, 0 < t  < 0 .1  (P9.5.6)

dx2 dt
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lx=0 ’  ̂ ’ ' Ix=1

(P9.5.7)

with the initial/boundary conditions

(i) u(x, 0) =  sin (nx), du(x, t)/dx

(ii) u(x, 0) =  sin(nx), u( x, )

x II О
(iii) u(x, 0) =  sin (nx), du(x, t)/ dx

du(x, t)/dx\ л =  —тг e~
x=1

x=0

2

(P9.5.8)

(P9.5.9)

Note that the true analytical solution is

u(x, t) =  sin(nx)e—n21 (P9.5.10)

9.6 Hyperbolic PDEs: Wave Equations

Modify the program “ solve_wave.m” (in Section 9.3) so that it can solve 

the following PDEs by using the explicit forward Euler method, the implicit 

backward Euler method, and the Crank-Nicholson method.

d 2u(x,t) d 2u(x,t)
(a) 4 -- for 0 < x < 1, 0 < t < 1 (P9.6.1)

dx2 dt2

with the initial/boundary conditions

u(x, 0) =  0, du(x, t)/dt\ =  5 sin(nx),

u(0,t) =  0, u(1,t) =  0 (P9.6.2)

Note that the true analytical solution is

2.5
u(x, t) =  —  sin(tzx) sm(2nt) (P9.6.3)

ж

(i) With the solution region divided into M  x N  =  20 x 50 sections, 

what is the value of r =  A(At)2/(A x )2? Use the M A T L A B  state

ments in Problem 9.4(c)(iii) to find the maximum absolute error of 

the solution obtained by using the routine “wave()” .

2nt

—nt

2n~t
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(ii) With the solution region divided into M  x  N  =  40 x 100 sections, 

what is the value of r ? Find the maximum absolute error of the 

numerical solution.

(iii) If we increase M  (the number of subintervals along the x axis) to

50 for better accuracy, what is the value of r? Find the maximum 

absolute error of the numerical solution and determine whether it 

has been improved.

(iv) If we increase the number M  to 52, what is the value of r ? Can 

we expect better accuracy in the light of the numerical stability 

condition (9.3.7)? Find the maximum absolute error of the numerical 

solution and determine whether it has been improved or not.

(v) What do you think the best value of r is?

d 2u(x,t) d 2u(x,t)
(b) 6.25-- for 0 < x < тг, 0 < t < 0.4ТГ (P9.6.4)

dx2 dt2

with the initial/boundary conditions

u(x, 0) =  sin(2x), du(x, t)/dt\t_ 0 =  0,

u(0,t) =  0, u(1,t) =  0 (P9.6.5)

Note that the true analytical solution is

u(x, t) =  sin(2x) cos(5t) (P9.6.6)

(i) With the solution region divided into M  x  N  =  50 x 50 sections, 

what is the value of r =  A (A t )2/ ( A x )2? Find the maximum absolute 

error of the solution obtained by using the routine “wave()” .

(ii) With the solution region divided into M  x  N  =  50 x 49 sections, 

what is the value of r? Find the maximum absolute error of the 

numerical solution.

(iii) If we increase N  (the number of subintervals along the t axis) to

51 for better accuracy, what is the value of r? Find the maximum 

absolute error of the numerical solution.

(iv) What do you think the best value of r is?

d 2u(x,t) d 2u(x,t)
(c)  for 0 < X < 10, 0 < t < 10 (P9.6.7)

dx2 dt2

with the initial/boundary conditions

u(x. 0) =  { 0x — 2)(3 — x) ^  5  3 (P9.6.8)

du(x,t)/dt  |t=0 =  0, u(0,t) =  0, u(10,t) =  0 (P9.6.9)
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(i) With the solution region divided into M  x N  =  100 x 100 sections, 

what is the value of r =  A(At)2/(A x )2?

(ii) Noting that the initial condition (P9.6.8) can be implemented by the 

M ATLAB  statement as

>>it0 = in lin e ('(x -2 ) .* (3 -x ) .* (2 < x & x < 3 )' ,'x ') ;
solve the PDE (P9.6.7) in the same way as in “solve_wave.m” and 

make a dynamic picture out of the numerical solution, with the current 

time printed on screen. Estimate the time when one of the two separated 

pulses propagating leftwards is reflected and reversed. How about the 

time when the two separated pulses are reunited?

9.7 FEM  (Finite Element Method)

In expectation of better accuracy/resolution, modify the program 

“do_fem.m” (in Section 9.6) by appending the following lines

;-17/32 -31/64; -1 /2  -17 /32;-15/32  -31/64  ;17/32 31/64; 1/2 17/32; 15/32 31/64
to the last part of the Node array N and replacing the last line of the subregion 

array S with

26 32 33; 27 33 34; 28 32 34; 29 35 36;
30 36 37; 31 35 37; 32 33 34; 35 36 37
This is equivalent to refining the triangular mesh in the subregions nearest 

to the point charges at (0.5, 0.5) and (-0.5, -0.5) as depicted in Fig. P9.7. 

Plot the new solution obtained by running the modified program. You may 

have to change a statement of the program as follows.

f962 ='(norm([x y]+[0.5 0.5])<1e-3)-(norm([x y]-[0.5 0.5])<1e-3)';

Figure P9.7 Refined triangular meshes.
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9.8 PDEtool: G U I (Graphical User Interface) of M A T L A B  for Solving PDEs

(a) Consider the P D E

J 2u(x,y) J 2u(x,y) , d2u(x ,y )
4 --;----- 4 --;-;--- 1------- =  0 f O r 0 < X < l , 0 < y < l

dx2 dxdy dy2

with the boundary conditions

u(0,y) =  ye2y, u(1,y) =  (1 +  y)e1+2y, 

u(x, 0) =  xex, u(x, 1) =  (x +  1)ex+2 

Noting that the field of coefficient c should be filled in as 

Elliptic \\ c

(P9.8.1)

(P9.8.2)

О -2 -2 1 4 -2 1

in the P D E  specification dialog box and the true analytical solution is

u(x ,y ) =  (x +  y)ex+2y (P9.8.3)

use the PDEtool to solve this P D E  and fill in Table P9.8.1 with the 

maximum absolute error and the number of nodes together with those of 

Problem 9.2(d) for comparison.

You can refer to Example 9.8 for the procedure to get the numerical 

value of the maximum absolute error. Notice that the number of nodes is 

the number of columns of p, which is obtained by clicking ‘ExportMesh’ 

in the Mesh pull-down menu and then, clicking the O K  button in the 

Export dialog box. You can also refer to Example 9.10 for the usage 

of ‘Adaptive Mesh’, but in this case you only have to check the box 

on the left of ‘Adaptive Mode’ and click the O K  button in the ‘Solve 

Parameters’ dialog box opened by clicking ‘Parameters’ in the Solve 

pull-down menu, and then the mesh is adaptively refined every time you 

click the =  button in the tool-bar to get the solution. With the box on the 

left of ‘Adaptive Mode’ unchecked in the ‘Solve Parameters’ dialog box,

Table P9.8.1 The Maximum Absolute Error and the Number of Nodes

The M axim um  

Absolute Error

The Number 

of Nodes

poisson() 1.9256 41 x  41

PDEtool with Initialize Mesh 0.1914 177

PDEtool with Refine Mesh

PDEtool with second Refine Mesh

PDEtool with Adaptive Mesh

PDEtool with second Adaptive Mesh



the mesh is nonadaptively refined every time you click ‘Refine Mesh’ 

in the Mesh pull-down menu. You can restore the previous mesh by 

clicking ‘Undo Mesh Change’ in the Mesh pull-down menu.

(b) Consider the P D E

d 2u (x ,y ) d 2u (x ,y )
-- =  0 for 0 < x < 4, 0 < у < 4 (Р9.8.4)

dx2 dy2

with the Dirichlet/Neumann boundary conditions

u(0 ,y ) =  ey — cosy, d u (x ,y ) /d x |x=4 =  —ey sin4 — e4 cosy (P9.8.5) 

du(x,y)/dy\y=0 =  cosx, du(x,y)/dyly=4 =  e4 cosx +  ex sin4 (P9.8.6)

Noting that the true analytical solution is

u(x ,y ) =  ey cosx — ex cos y (P9.8.7)

use the PDEtool to solve this P D E  and fill in Table P9.8.2 with the 

maximum absolute error and the number of nodes together with those of 

Problem 9.3(g) for comparison.

(c) Consider the P D E

d 2u(x,t) du(x,t)
2 -- for 0 < X < 7Г, 0 < t < 0.2 (P9.8.8)

dx2 dt

with the initial/boundary conditions

u(x, 0) =  sin(2x), u(0,t) =  0, u(n,t) =  0 (P9.8.9) 

Noting that the true analytical solution is

u(x, t) =  sin(2x)e—8t (P9.8.10)

PROBLEMS 4 5 7

Table P9.8.2 The Maximum Absolute Error and the Number of Nodes

The M axim um  

Absolute Error

The Number 

of Nodes

poisson() 0.2005 21 x  21

PDEtool with Initialize Mesh 0.5702 177

PDEtool with Refine Mesh

PDEtool with second Refine Mesh

PDEtool with Adaptive Mesh

PDEtool with second Adaptive Mesh
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Table P9.8.3 The Maximum Absolute Error and the Number of Nodes

The Maximum 
Absolute Error

The Number 
of Nodes

poisson() 7.5462 x 10—4 41 x 101
PDEtool with Initialize Mesh
PDEtool with Refine Mesh
PDEtool with second Refine Mesh

use the PDEtool to solve this PDE and fill in Table P9.8.3 with the 

maximum absolute error and the number of nodes together with those 

obtained with the M A TLA B  routine ‘heat_CN()’ in Problem 9.4(c) for 

comparison. In order to do this job, take the following steps.

(1) Click the □  button in the tool-bar and click-and-drag on the 

graphic region to create a rectangular domain. Then, double

click the rectangle to open the Object dialog box and set 

the Left/Bottom/Width/Height to 0/0/pi/0.01 to make a long 

rectangular domain.

(cf) Even if the PDEtool is originally designed to deal with only 2-D PDEs, 
we can use it to solve 1-D PDEs like (P9.8.8) by proceeding in this way.

(2) Click the dQ button in the tool-bar, double-click the upper/lower 

boundary segments to set the homogeneous Neumann boundary con

dition (g =  0 , q =  0) and double-click the left/right boundary seg

ments to set the Dirichlet boundary condition (h =  1, r =  0) as given 

by Eq. (P9.8.9).

(3) Open the PDE specification dialog box by clicking the PDE button, 

check the box on the left of ‘Parabolic’ as the type of PDE, and set 

its parameters in Eq. (9.5.5) as c =  2, a =  0, f =  0 and d =  1, which 

corresponds to Eq. (P9.8.8).

(4) Click ‘Parameters’ in the Solve pull-down menu to set the time range, 

say, as 0:0.002:0.2 and to set the initial conditions as Eq. (P9.8.9).

(5) In the Plot selection dialog box opened by clicking the ^  but

ton, check the box before Height and click the Plot button. If you 

want to plot the solution graph at a time other than the final time, 

select the time for plot from {0, 0.002, 0 .004 ,..., 0.2} in the far- 

right field of the Plot selection dialog box and click the Plot but

ton again.

(6) If you want to see a movie-like dynamic picture of the solution graph, 

check the box before Animation and then click the Plot button in the 

Plot selection dialog box.

(7) Click ‘Export Mesh’ in the Mesh pull-down menu, and then click the 

O K  button in the Export dialog box to extract the mesh data {p ,e ,t }.
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Also click ‘ExportSolution’ in the Solve pull-down menu, and then 

click the O K  button in the Export dialog box to extract the solution 

u. Now, you can estimate how far the graphical/numerical solution 

deviates from the true solution (P9.8.10) by typing the following 

statements into the M A T L A B  command window:

>>x = p (1 ,:) '; y = p(2,: ) ';  %x,y coordinates of nodes in columns 
>>tt = 0:0.01:0.2; %time vector in row
>>err = sin(2*x)*exp(-8*tt)-u; %deviation from true sol.(P9.8-10) 
>>err_max = max(abs(err)) %maximum absolute error

(d) Consider the P D E

d 2u(x,t) d 2u(x,t)
-- - ^  = -- for 0 < x < 10, 0 < f < 10 (P9.8.11)

dx2 dt2

with the initial/boundary conditions

0 ( m i 2 )

u(0, t) =  0, u(10, t) =  0 (P9.8.13)

Use the PDEtool to make a dynamic picture out of the solution for 

this P D E  and see if the result is about the same as that obtained in 

Problem 9.6(c) in terms of the time when one of the two separated pulses 

propagating leftward is reflected and reversed and the time when the two 

separated pulses are reunited.

(cf) Even if the PDEtool is originally designed to solve only 2-D PDEs, w e can 

solve 1-D P D E  like (P9.8.11) by proceeding as follows:

(0) In the P D E  toolbox window, adjust the ranges of the x axis and the 

y axis to [—0.5 10.5] and [—0.01 +0.01], respectively, in the box 

opened by clicking ‘AxesLimits’ in the Options pull-down menu.

(1) Click the □  button in the tool-bar and click-and-drag on the graphic 

region to create a long rectangle of domain ranging from x0 =  0 to 

xf =  10. Then, double-click the rectangle to open the Object dialog 

box and set the Left/Bottom/Width/Height to 0/—0.01/10/0.02.

(2) Click the dQ  button in the tool-bar, double-click the upper/lower 

boundary segments to set the homogeneous Neumann boundary con

dition (g =  0 , q =  0) and double-click the left/right boundary seg

ments to set the Dirichlet boundary condition (h =  1 , r =  0) as given 

by Eq. (P9.8.13).

(3) Open the P D E  specification dialog box by clicking the P D E  button, 

check the box on the left of ‘Hyperbolic’ as the type of PD E , and 

set its parameters in Eq. (P9.8.11) asc =  1, a =  0, f =  0 and d =  1. 

(See Fig. 9.15a.)
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(4) Click ‘Parameters’ in the Solve pull-down menu to set the time range 

to, say, as 0:0.2:10, the boundary condition as (P9.8.13) and the ini

tial conditions as (P9.8.12). (See Fig. 9.15b and Problem 9.6(c)(ii).)

(5) In the Plot selection dialog box opened by clicking the ^  button, 

check the box before ‘Height’ and the box before ‘Animation’ and 

then click the Plot button in the Plot selection dialog box to see a 

movie-like dynamic picture of the solution graph.

(6) If you want to have better resolution in the solution graph, click Mesh 

in the top menu bar and click ‘Refine Mesh’ in the Mesh pull-down 

menu. Then, select Plot in the top menu bar or type C T R L  +  P(AP) 

on the keyboard and click ‘PlotSolution’ in the Plot pull-down menu 

to see a smoother animation graph.

(7) In order to estimate the time when one of the two separated pulses 

propagating leftward is reflected and reversed and the time when 

the two separated pulses are reunited, count the flickering frame 

numbers, noting that one flickering corresponds to 0.2 s according 

to the time range set in step (4).

(8) If you want to save the PDEtool program, click File in the top menu 

bar, click ‘Save As’ in the File pull-down menu, and input the file 

name of your choice.



APPENDIX

MEAN VALUE THEOREM

Theorem A.1. M ean  Value Theorem1. Let a function f (x )  be continuous on 

the interval [a , b] and differentiable over (a,b). Then, there exists at least one 

point % between a and b at which

f(b ) - f(a )
f ( M ) =  ! , f (b ) =  f (a )  +  f '£ ) ( b - a )  (A .l)

b - a

In other words, the curve of a continuous function f (x )  has the same slope as 

the straight line connecting the two end points (a, f (a ))  and (b, f(b )) of the 

curve at some point % e [a, b], as in Fig. A.1.

Figure A.1 Mean value theorem.

1 See the website @ http://www.maths.abdn.ac.uk/~igc/testing/tch/ma2001/notes/notes.html
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Theorem A.2. Taylor Series Theorem1. If a function f (x )  is continuous and 

its derivatives up to order (K  +  1) are also continuous on an open interval D  

containing some point a, then the value of the function f (x )  at any point x e D  

can be represented by

K  f k(a) k 
f ( x ) = J 2 ^ T ( x - a ')‘ + R k + i (x ) (A.2)

k=0 !

where the first term of the right-hand side is called the K  th-degree Taylor poly

nomial, and the second term called the remainder (error) term is

f(K  + 1)(^)

R k + i (x ) =  ^  2 ) 1  ~ a )K+1 о̂г some £ between a and x (A.3)

Moreover, if the function f (x )  has continuous derivatives of all orders on D , 

then the above representation becomes

fk(a )

f ( x ) = J 2 l j r ( x - a ')k (A.4)
k=0 k!

which is called the (infinite) Taylor series expansion of f (x )  about a.



APPENDIX B
MATRIX 

OPERATIONS/PROPERTIES

B.1 ADDITION A N D  SU BTR ACTION

with

an a12 ■ a1N b11 ^12

—

1N

A  +  B —
®21 a22 ■ a2N

+
b21 b22 b2N

aM1 aM2 ■ aMN 1 bM2 bMN

C11 C12 ■ C1N

—
C21 C22 ■ C2N

— C

cM 1 CM 2 ■ CMN

amn +  bmn — Cmn

(B .1.1)

(B.1.2)

B.2 MULTIPLICATION

A B  —

a11 a12 a1K

a21 a22 a2K

aM 1 aM2 aMK

C11 C12 C1N

C21 C22 C2N

CM 1 CM2 CMN

b11 b12 b1N

b21 b22 b2N

bK 1 bK2 bKN

— C (B.2.1)
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with

amkbkn (B.2.2)

k=1

(cf) For this multiplication to be done, the number of columns of A  must equal the 
number of rows of B.

(cf) Note that the commutative law does not hold for the matrix multiplication, that is, 
A B  =  BA.

B.3 DETERM INANT

The determinant of a K  x K  (square) matrix A =  [amn] is defined by

K K

det(A) =  |A| =  J2akn(-1)k+nMkn or £ amk(-1)m+kMmk (B.3.1) 

k=0 k=0

for any fixed 1 < n < K  or1 < m < K

where the minor M kn is the determinant of the (K  — 1) x (K  — 1) (minor) 

matrix formed by removing the kth row and the nth column from A  and A kn =  

(—1)k+nM kn is called the cofactor of akn.

In particular, the determinants of a 2 x 2 matrix A 2x2 and a 3 x 3 matrix

A 3x3 are
2

=  akn( — 1)k+nMkn =  a11a22 — a12a21 (B.3.2)det(A2x2) =
a11

a21

2
2

1
2

a
a

=  ^

k

a11 a12 a13

det(A3x3) = a21 a22 a23

a31 a32 a33

a22 a23 a21 a23
+  a13

a21 a22
=  an — a12

a32 a33 a31 a33 a31 a32

=  a11(a22a33 — a23a32) — a12(a21a33 — a23a31) +  a13(a21a32 — a22a31)

(B.3.3)

Note the following properties.

K

cmn

• If the determinant of a matrix is zero, the matrix is singular.

• The determinant of a matrix equals the product of the eigenvalues of a 

matrix.

• If A  is upper/lower triangular having only zeros below/above the diag

onal in each column, its determinant is the product of the diagonal ele

ments.

• det(Ar) =  det(A); det(AB) =  det(A)det(B); det(A—1) =  1/det(A)
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The eigenvalue or characteristic value and its corresponding eigenvector or char

acteristic vector of an N  x N  matrix A  are defined to be a scalar X and a nonzero 

vector v satisfying

Av =  Xv ^  (A - XI)v =  0 (v =  0) (B.4.1)

where (X, v) is called an eigenpair and there are N  eigenpairs for an N  x N  

matrix A .

The eigenvalues of a matrix can be computed as the roots of the characteristic 

equation

|A - XI | = 0  (B.4.2)

and the eigenvector corresponding to an eigenvalue Xi can be obtained by sub

stituting Xi into Eq. (B.4.1) and solve it for v.

Note the following properties.

If A  is symmetric, all the eigenvalues are real-valued.

• If A  is symmetric and positive definite, all the eigenvalues are real and 

positive.

• If v is an eigenvector of A, so is cv for any nonzero scalar c.

B.5 INVERSE MATRIX

The inverse matrix of a K  x K  (square) matrix A =  [amn] is denoted by A -1 

and defined to be a matrix which is premultiplied/postmultiplied by A  to form 

an identity matrix— that is, satisfies

A x A -1 =  A -1 x A =  I (B.5.1)

An element of the inverse matrix A -1 =  [amn] can be computed as

amn =  - 1- ~ Amn =  т ^ (- 1  )m+nM mn (B.5.2)
det(A) |A |

where M kn is the minor of akn and A kn =  (-1)k+nM kn is the cofactor

of akn.

2 See the website @ http://www.sosmath.com/index.html or http://www.psc.edu/~burkardt/papers/ 

linear_glossary.html.)

http://www.sosmath.com/index.html
http://www.psc.edu/~burkardt/papers/
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Note that a square matrix A  is invertible/nonsingular if and only if

• No  eigenvalue of A  is zero, or equivalently,

• The rows (and the columns) of A  are linearly independent, or equivalently,

• The determinant of A  is nonzero.

B.6 SYM M ETRIC /H ERM ITIAN  MATRIX

A  square matrix A  is said to be symmetric if it is equal to its transpose, that is,

A T =  A  (B.6.1)

A  complex-valued matrix is said to be Hermitian if it is equal to its complex 

conjugate transpose, that is,

A  =  A *T where * means the conjugate. (B.6.2)

Note the following properties of a symmetric/Hermitian matrix.

• All the eigenvalues are real.

• If all the eigenvalues are distinct, the eigenvectors can form an orthogo

nal/unitary matrix U .

B.7 O R T H O G O N A L /U N IT A R Y  MATRIX

A  nonsingular (square) matrix A  is said to be orthogonal if its transpose is equal 

to its inverse, that is,

A TA  =  I, A T =  A -1 (B.7.1)

A  complex-valued (square) matrix is said to be unitary if its conjugate transpose 

is equal to its inverse, that is,

A *T A  =  I, A *T =  A -1 (B.7.2)

Note the following properties of an orthogonal/unitary matrix.

• The magnitude (absolute value) of every eigenvalue is one.

• The product of two orthogonal matrices is also orthogonal; (A B )*T (A B )  =  

B *T(A*TA )B  =  I .
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A  matrix P  having only one nonzero element of value 1 in each row and column 

is called a permutation matrix and has the following properties.

• Premultiplication/postmultiplication of a matrix A  by a permutation matrix 

P  (i.e., P A  or A P ) yields the row/column change of the matrix A, respec

tively.

• A  permutation matrix A  is orthogonal, that is, A TA  =  I .

B.9 R A N K

The rank of an M  x N  matrix is the number of linearly independent 

rows/columns and if it equals min(M , N ), then the matrix is said to be of 

maximal or full rank; otherwise, the matrix is said to be rank-deficient or to 

have rank-deficiency.

B.10 R O W  SP A C E  A N D  NULL SPA C E

The row space of an M  x N  matrix A, denoted by R (A ) ,  is the space spanned 

by the row vectors— that is, the set of all possible linear combinations of row 

vectors of A  that can be expressed by A Ta  with an M -dimensional column vector 

a. On  the other hand, the null space of the matrix A, denoted by N (A ) ,  is the 

space orthogonal (perpendicular) to the row space— that is, the set of all possible 

linear combinations of the N -dimensional vectors satisfying A x  =  0.

B.11 R O W  E C H E LO N  FO R M

A  matrix is said to be of row echelon form if

• Each nonzero row having at least one nonzero element has a 1 as its first 

nonzero element.

• The leading 1 in a row is in a column to the right of the leading 1 in the 

upper row.

• All-zero rows are below the rows that have at least one nonzero element.

A  matrix is said to be of reduced row echelon form if it satisfies the above 

conditions and, additionally, each column containing a leading 1 has no other 

nonzero elements.
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Any matrix, singular or rectangular, can be transformed into this form through 

the Gaussian elimination procedure (i.e., a series of elementary row operations) 

or, equivalently, by using the M A T L A B  built-in routine “ rref()” . For example, 

we have

A =

0 0 1 3 "
row

2 4 0 -8

2 4 0 -8 ---- > 0 0 1 3

1 2 1 -1
change

1 2 1 -1

row
division

row
subtraction

1 2 0 -4
row

1 2 0 -4

0 0 1 3 0 0 1 3

0 0 1 3
subtraction

0 0 0 0

=  rref(A)

Once this form is obtained, it is easy to compute the rank, the determinant and 

the inverse of the matrix, if only the matrix is invertible.

B.12 POSITIVE DEFINITENESS

A  square matrix A  is said to be positive definite if

x*T A x  >  0 for any nonzero vector x (B.12.1)

A  square matrix A  is said to be positive semidefinite if

x*TA x  >  0 for any nonzero vector x (B.12.2)

Note the following properties of a positive definite matrix A .

A  is nonsingular and all of its eigenvalues are positive.

The inverse of A  is also positive definite.

There are similar definitions for negative definiteness and negative semidefinite

ness.

Note the following property, which can be used to determine if a matrix 

is positive (semi-) definite or not. A  square matrix is positive definite if and 

only if:

(i) Every diagonal element is positive.

(ii) Every leading principal minor matrix has positive determinant.

On  the other hand, a square matrix is positive semidefinite if and only if:

(i) Every diagonal element is nonnegative.

(ii) Every principal minor matrix has nonnegative determinant.
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Note also that the principal minor matrices are the submatrices taking the diagonal 

elements from the diagonal of the matrix A  and, say for a 3 x 3 matrix, the 

principal minor matrices are

a11, ^ , a33,
an  a12 

a21 a22

a22 a23 

a32 a33

a11 a13 

a31 a33

a11 a12 a13

a21 a22 a23

a31 a32 a33

among which the leading ones are

a11,
a11 a12 

a21 a22

a11 a12 a13

a21 a22 a23

a31 a32 a33

B.13 SC A LA R  (DOT) P R O D U C T  A N D  V E C T O R  (CROSS) P R O D U C T

A  scalar product of two N -dimensional vectors x and y is denoted by x ■ y and 

is defined by

У =  Щ  ХпУп =  xTy (B.13.1)

An  outer product of two three-dimensional column vectors x =  [x1 x2 x3]T and 

У =  [y1 y2 y3]T is denoted by x x y and is defined by

x x y =

X2y3 — X3 y2 

X3y1 — X1 y3 

X1y2 — X2 y1

(B.13.2)

B.14 MATRIX INVERSION L E M M A

Matrix Inversion Lem m a. Let A , C, and [C 1 +  D A  1B ] be well-defined with 

nonsingularity as well as compatible dimensions. Then we have

[A +  B C D ]-1 =  A —1 — A —1B [C—1 +  D A —1B ]—1D A —1 (B.14.1)

Proof. W e  will show that postmultiplying Eq. (B.14.1) by [A +  B C D ]  yields an 

identity matrix.

[A—1 — A —1B [C—1 +  D A —1B ]—1D A —1][A +  B C D ]

=  I  +  A —1B C D  — A —1B [C—1 +  D A —1B ]—1D  

— A —1B [C—1 +  D A —1B ]—1D A —1B C D

x



=  I  +  A —1B C D  — A —1B [C—1 +  D A —1B ]—1C —1 C D

— A —1B [C—1 +  D A —1B ]—1D A —1B C D  

=  I  +  A —1B C D  — A —1B [C—1 +  D A —1B ]—1[C—1 +  D A —1B ]C D  

=  I  +  A —1B C D  — A —1B C D  =  I

4 7 0  MATRIX OPERATIONS/PROPERTIES



APPENDIX C
DIFFERENTIATION WITH 
RESPECT TO A VECTOR

The first derivative of a scalar-valued function f(x )  with respect to a vector 

x =  [xi x2]T is called the gradient of f(x )  and defined as

d
V / ( x )  =  — f(x ) =  

d x

df/dx i 

d f ! ‘dx 2
(C.l)

Based on this definition, we can write the following equation.

d T d T д
T-x у =  — у X =  —  (Х1У1 + Х 2 У2 ) =
д X д X д X

У1

У2
=  y

д д
— x x =  — (x i +  x 9) =  2
Эх Эх 1 2;

xi

x2
=  2x

(C.2)

(C.3)

Also with an M  x N  matrix A, we have

д t д t t
— x Ay =  — у A  x =  AyA  4/ r \  4/ 4/
д X д X

д t д t t t
— у Ax =  — x А у =  A уГ \ 4/ A » »
д X д X

(C.4a)

(C.4b)

where
M N

n=i n—i

(C.5)
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Especially for a square, symmetric matrix A  with M  =  N , we have

4 7 2  DIFFERENTIATION WITH RESPECT TO A VECTOR

д T T 
— xTA x =  (A +  A ' ) x
д X

if A is symmetric
2Ax (C.6)

The second derivative of a scalar function f(x )  with respect to a vector x =  

[x1 x2]T is called the Hessian of f (x )  and is defined as

2 d2 
H (x )  =  V  / (x) =  — /(x )  =

д2f/dx2 д2f /d x 1dx2 

д2 f /d x 2dx1 д2f/dx2
(C.7)

Based on this definition, we can write the following equation:

d2 if A is symmetric
— xTA x  =  A  +  A T -------- > 2A
dx2

(C.8)

On the other hand, the first derivative of a vector-valued function f(x) with 

respect to a vector x =  [x1 x2]T is called the Jacobian of f (x )  and is defined as

d
J(x) =  — f(x) =  

dx

Bf1 /дxl дfl/дx2

дf2/дXl дf2/дX2
(C.9)



APPENDIX

LAPLACE TRANSFORM

Table D.1 Laplace Transforms of Basic Functions

x(t) X(s) x(t) X(s) x(t) X(s)

(1) S(t) 1 (5) e-atus(t)
1

(9) e^at sin ot us (t)
O

s +  a (s +  a)2 +  o)2

(2) S(t - ti) e~tis (6) tme-atus(t)
m !

(10) e-at cos ot us(t)
s +  a

(s +  a)m+1 (s +  a)2 +  a)2

(3) Us(t)
i

s
(7) sin ot us(t)

O

S2 +  O 2

(4) tmus(t)
m!

sm+1
(8) cos ot us(t)

s

S2 +  (I)2
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Table D.2 Properties of Laplace Transform

4 7 4  LAPLACE TRANSFORM

(0) Definition

(1) Linearity

(2) Time shifting

(3) Frequency shifting

(4) Real convolution

(5) Time derivative

(6) Time integral

f 0
X(s) =  L{x(t)}=  I x(t)e stdt 

J0

ax(t) +  fix(t) —  aX(s) +  fiY(s) 

x(t — t\)us(t — t1), t1 > 0 —— e st1 X(s) +  f  x(r)e—sT dT

j—h

es1tx(t) —  X(s — s0  
g(t) * x(t) —  G(s)X(s)  

x '(t) —  sX(s) — x(0)

Гt 1 1 Г0
I x ( t )  d r  — —X ( s )  H—  I x ( r ) d r  

s s

pOQ+O
(7) Complex derivative t x(t) —> ---X ’(s)

ds

1 [ 0
(8) Complex convolution x(t)y(t) —*■ -- г X(v)Y(s — v) dv

2nj J0 0 —0

(9) Initial value theorem x(0) —  lim sX(s)

(10) Final value theorem x(co) — lim sX(s)
s —— 0

s



APPENDIX E

FOURIER TRANSFORM

Table E.1 Properties of CtFT (Continuous-Time Fourier Transform)

(0) Definition

(1) Linearity

(2) Symmetry

(3) Time shifting

(4) Frequency shifting

(5) Real convolution

(6) Time derivative

(7) Time integral

(8) Complex derivative

(9) Complex convolution

(10) Scaling

(11) Duality

(12) Parseval’s relation

t
X(o) =  F  {x(t)} =  x(t)e—j0  dt

J  —C

ax(t) +  f)x(t) ^  aX(a>) +  f)Y(o)

x(t) =  xe(t) +  xo(t): real ^  X(o) =  X *(—o)

xe(t): real and even ^  X e(o) =  Re{X(o)}

xo(t): real and odd ^  X o(a>) =  j Im{X(o)}

x(—t) ^  X (—o)

x(t — t1) ^  e—j°h X(o)

ejoitx(t) ^  X (o  — o 1)

/
<C

g(r)x(t — T)dT ^  G (o )X (o )

C

x'(t) ^  jo X (o )

—tC

—C

1
x(r) dr —>■ — X(co) +  Jt X  (0)8 (со) 

jo  

d
t x(t) -* j —  X(co) 

do

1
x{t)y{t) -* - X M  * Y{(0)

1
x(at) -* — X(co/d)

|a|

g(t) ^  f(o ) &  f(t) -* 2ng(o)

/ с  1 fC
\x(t)\2 dt -* —  I \x(co)\2 dco

-с 2n J—с
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Table E.2 Properties of DtFT (Discrete-Time Fourier Transform)

4 7 6  FOURIER TRANSFORM

(0) Definition
(1) Linearity
(2) Symmetry

(3) Time shifting
(4) Frequency shifting
(5) Real convolution

(6) Complex derivative
(7) Complex convolution

(8) Scaling

(9) Parseval’s relation

X ( i )  =  J 2  x[n]e

ax[n] +  fix[n] ^  a X ( i )  +  fiY( i )
x [n] =  xe[n] +  xo[n]: real ^  X ( i )  =  X*(—i )
xe[n]: real and even ^  X e(i )  =  R e |X (i)}
xo[n]: real and odd ^  Xo( i )  =  jIm |X (i)}
x [-n ] ^  X ( - i )
x[n -  ni] ^  e-janiX ( i )

ejainx[n] ^  X ( i  - i 1)
TO

g[n] * x[n] =  g[m]x[n — m] ^  G(fi)X(fi)
m=—TO

d
n x[n] -* j — X(£i) 

d i

x[n]y[n\ —> —  X(£2) * 7(£2) (periodic/circular convolution) 2n
x[n/M ] if n =  m M ( m  : an integer)
0[ ' ] otherwise ( g ) ^  X ( M i )

T  \x[n]\2 =  J -  [  \ x m 2 dil 
2П J2nn-- ---,V1 *

n



APPENDIX

USEFUL FORMULAS

Formulas for Summation of Finite Number of Terms

N  n 1 - aN+1 N  n 1 - (N +  1)aN +  N a N+1 
! > - - 3 7 -  lRn I >  —  a - n :----  |R2)
n=0 n=0 v y

N N
^  N ( N  +  1) /T_  ^  2 N ( N  +  1)(2JV +  1) _

2 ^ n =  — 2—  = ------------------------6------------------------ (  )
n=0 n=0

N
^  , , , л N ( N  +  l)(iV +  2) ^  
2_^n(n +  1) = ----- ------- (F.5)

N

(a +  b f  =  V N C naN-nbn with JVCn =  N C N_n =  ^  =  N \ (F.6)
n! (N — n)!n!

n=0

Formulas for Summation of Infinite Number of Terms

to 1 to

5 > ” =  — > W < 1 ( F . 7 )  ! > * "  =  n - x)2 ’ |x |< 1  (R g )
n=0 1 - x n=0 (1 - x)

TO 'dk 
у " A "  =  lim(—l)fc— -
^  a^o dak

|x| < 1 (F.9)

■TO (—1)n 1 1 1  1
/  ---------------  =  1 —  — — —  — - ) - • • • = — 7Г
^  2n +  1 3 5 7 4

(F.1 0 )

(continued overleaf)

x

ax — e
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^ 1 , 1 1 1  1 2

n2 22 32 42 6
n=0

X ^  1 n , 1 1 2 1 3

e - J 2 ~ \ X “ 1 +  TTX +  ^TX +  TTX + '"
n=0

TO
aX =  £

(lna)“ n , , In a ' (ln a)2 2 (lna)3 3
-xn =  H --- x +
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Trigonometric Formulas

sin(A ± 5 )  =  sin A  cos 5  ± cos A  sin B  (F.19) tan(A ± B) =

cos(A ± B) =  cos A  cos B ^  sin A  sin B  (F.20)

1
sin A  sin 5  =  -{cos(A — B) — cos (A  +  5 )}

1
sin A  cos В =  -{sin(A +  B) +  sin(A — 5)}

cos A  sin 5  =  -{sin(A +  B) — sin(A — 5)}

cos A  cos В =  -{cos(A +  5 )  +  cos(A — 5)}

( A  +  B\  / A  - B 
sin A  +  sin В =  2 sin I — -—  I cos

( A  +  B\ ( A  - B 
cos A  +  cos 5  =  2 cos ----  cos

V 2 /

( cos A  — b sin A  =  -Ja2 +  b2 cos(A +  в), в =  tan 1

i sin A  +  bcos A  =  a2 +  b2 sin(A +  0), 0 =  tan 4 -

tan A  ± tan B 

1 tan A  tan В

2 1
sin A  =  -(1 — cos2A)

1
(F.30) cos2 A  =  -(1 + c o s 2 A )

(F 11) 

(F.12) 

(F.13) 

(F.14) 

(F.15) 

(F.16) 

(F.17) 

(F18)

(F.21)

(F.22)

(F.23)

(F.24)

(F.25)

(F.26)

(F.27)

(F.28)

(F.29)

(F.31)

2
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3 1
sin A =  -(3 sin A  — sin ЗА) (F.32) cos3 ,

sin2A =  2sinA  cos A  (F.34) sin 3a 

cos 2A  =  cos2 A — sin2 A =  1 — 2 sin2 A =  2 cos2 A — 1 

cos 3 A  =  4 cos3 A — 3sin A

a b c  . . .
---  =  ---  =  ---  (F.38) e ^ e
sin A  sin B  sin C

a2 =  b2 +  c2 — 2bc cos A  (F.39a) sin в

b2 =  c2 +  a2 — 2ca cos B (F.39b) cos в

c2 =  a2 +  b2 — 2ab cos C  (F.39c) tan в

=  - (3 cos A  +  cos ЗА) (F.33)

=  3sin A — 4 sin3 A (F.35)

(F.36)

(F.37)

■ cos в ± j sin в (F.40)

-- —  (eie - e-ie) 
j 2

(F.41a)

= \ (eJe +  e-ie) (F.41b)

1 e>6 - e~>6 

j eie +  e~ie
(F.41c)



APPENDIX

SYMBOLIC COMPUTATION

G.1 H O W  TO  D ECLAR E  SY M B O LIC  VARIABLES A N D  H AN DLE  

S Y M B O LIC  E XPR ESSION S

To declare any variable(s) as a symbolic variable, you should use the sym or 

syms command as below.

>>a = sym ('a'); t  = sy m ('t');  x = sym ('x');
>>syms a x y t  %or, equivalently  and more e f f ic ie n t ly

Once the variables have been declared as symbolic, they can be used in expres

sions and as arguments to many functions without being evaluated as numeric.

> >f = x~2/(1 + t a n ( x ) ~ 2 ) ;

> > e z p l o t ( f , - p i , p i )

> > s i m p l i f y ( c o s ( x ) ~ 2 + s i n ( x ) ~ 2 )  % s i m p l i f y  an e x p r e s s i o n  

a ns = 1

> > s i m p l i f y ( c o s ( x ) ~ 2  - s i n ( x ) ~ 2 )  % s i m p l i f y  an e x p r e s s i o n  

a ns = 2 * c o s ( x ) ~ 2 - 1  

> > s i m p l e ( c o s ( x ) ~ 2  - s i n ( x ) ~ 2 )  % s i m p l e  e x p r e s s i o n  

a ns = c o s ( 2 * x )

> > s i m p l e ( c o s ( x )  + i * s i n ( x ) )  % s i m p l e  e x p r e s s i o n  

a ns = e x p ( i * x )

>>eq1 = e x p a n d ( ( x  + y ) ~ 3  - (x + y)~2) % e x p a n d

eq1 = x " 3  + 3 * x " 2 * y  + 3 * x * y " 2  + y ~ 3  - x " 2  - 2 * x * y  - y ~2 

> > c o l l e c t ( e q 1 , y )  % c o l l e c t  s i m i l a r  t e r m s  in d e s c e n d i n g  o r d e r  w i t h  r e s p e c t  to y 

a ns = y " 3  + (3*x - 1 ) * y " 2  + ( 3 *x~2 - 2 * x ) * y  + x ~ 3  - x "2

Applied Numerical Methods Using MATLAB®, by Yang, Cao, Chung, and M orris
Copyright © 2005 John W iley  &  Sons, Inc., IS B N  0-471-69833-4
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> > f a c t o r ( e q 1 )  % f a c t o r i z e

a ns = (x + y - 1 ) * ( x  + y ) ~ 2  

> > h o r n e r ( e q 1 )  % n e s t e d  m u l t i p l i c a t i o n  f o r m

a ns = (-1 + y ) * y " 2  + ((- 2 + 3 * y ) * y  + (-1 + 3 * y  + x ) * x ) * x  

> > p r e t t y ( a n s )  % p r e t t y  f o r m

2

(-1 + y) y + ((-2 + 3 y) y + (-1 + 3 y + x) x) x

If you need to substitute numeric values or other expressions for some sym

bolic variables in an expression, you can use the subs function as below.

>>subs(eq1,x,0) %substitute numeric value 
ans = -yA2 + yA3 

> > su b s(eq 1 ,{x ,y},{0 ,x  - 1}) %substitute numeric values 
ans = (x - 1 )A3 - (x - 1 )A2

The sym command allows you to declare symbolic real variables by using the 

‘real’ option as illustrated below.

>>x = sy m ('x ' ,'r e a l' ) ;  y = sy m ('y ','r e a l' ) ;>>syms x y real %or, equivalently
>>z = x + i*y; %declare z as a symbolic complex variable  
>>conj(z) %complex conjugate 

ans = x - i*y  
>>abs(z)

ans = (xA2 + yA2 )A(1/2) %equivalently

The sym function can be used to convert numeric values into their symbolic 

expressions.

>>sym(1/2) + 0 .2
ans = 7/10 %symbolic expression

On  the other hand, the double command converts symbolic expressions into 

their numeric (double-precision floating-point) values and the vpa command finds 

the variable-precision arithmetic (VPA) expression (as a symbolic representation) 

of a numeric or symbolic expression with d significant decimal digits, where d 

is the current setting of DIGITS that can be set by the digits command. Note 

that the output of the vpa command is a symbolic expression even if it may look 

like a numeric value. Let us see some examples.

>>f = sy m ('ex p (i* p i/4 )')  
f  = exp (i*p i/4 )

>>double(f)
ans = 0.7071 + 0 .7071i %numeric value 

>>vpa(ans,2)
ans = .71 + .71*i %symbolic expression with 2 s ig n if ic a n t d ig it s



CALCULUS 4 8 3

G.2 C A LC U LU S  

G.2.1 Symbolic Summation

W e  can use the symsum() function to obtain the sum of an indefinite/definite 

series as below.

>>syms x n N %declare x,n,N as symbolic variables 
>>simple(symsum(n,0,N))

,n _ N (N +  1)
ns = 1/2*N*(N + 1) N=0 n =

2

>>simple(symsum(nA2,0,N))
-̂̂ n 2 N (N +  1)(2N +  1)

ans = 1/6*N*(N + 1)*(2*N + 1) %En=on = ----  -----
6

>>symsum(1/n~2,1,inf))

■^N 1 ж 2 
ans = l/6*pi*2 %En=o =  у

>>symsum(x~n,n,0,inf))

ans = -1 / (-1 + x) %En=o x" = ---  under the assumption that |x| <1
1 — X

G.2.2 Limits

W e  can use the limit() function to get the (two-sided) limit and the right/left

sided limits of a function as below.

>>syms h n x
sin X

»limit(sin(x)/x,x,0) % lim--  = 1
X ̂ 0  X

ans = 1

X
»limit(x/abs(x) ,x,0, 1 right1) % Um - = 1

X^0+ | X |
ans = 1

X
»limit(x/abs(x) ,x,0, 1 left1) % lim —  = —1

X^0- |X |
ans = -1

X
»limit(x/abs(x) ,x,0) % Um—  =?

X^0  |X |
ans = NaN %Not a Number

cos(X +  h) — cos(X) d
»limit ((cos (x+h)-cos(x)) /h, h, 0) % lim----- ;------ = — cosx = —sinx

h^0 h dX
ans = -sin(x)

/  x \n
»limit((1 + x/n) ~n, n, inf) % Um 1 + — = 6 *

п^от V n /
ans = exp(x)

G.2.3 Differentiation

The diff() function differentiates a symbolic expression w.r.t. the variable given 

as one of its 2nd or 3rd input arguments or its free variable which might be 

determined by using the findsym function.
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>>syms a b x n t 

>>diff(xAn))

ans = xAn*n/x 

>>simplify(ans)

ans = xA(n - 1)*n 

>>f = exp(a*x)*cos(b*t)

>>diff(f) %equivalently diff(f,x)
d d

ans = a*exp(a*x)*cos(b*t) %— f =  — eaxcos(bt) =  аеж со8(М)
dx dx

>>diff(f,t)
d d

ans = -exp(a*x)*sin(b*t)*b %— f =  — еж со8(М) =  — Ьеж sin (bt)
dt dt

>>diff(f,2) %equivalently diff(f,x,2)
d 2

ans = aA2*exp(a*x)*cos(b*t) %— -f =  а2еж со8(М)
dx2

>>diff(f,t,2) d2
ans = -exp(a*x)*cos(b*t)*bA2 %—-f =  —еж со8(М)Ь2

dt2
>>g = [cos(x)*cos(t) cos(x)*sin(t)];

>>jacob_g = jacobian(g,[x t])

jacobg = [ -sin(x)*cos(t), -cos(x)*sin(t)]

[ -sin(x)*sin(t), cos(x)*cos(t)]

Note that the jacobian() function finds the jacobian defined by (C.9)— that is, 

the derivative of a vector function [g1 g2]T with respect to a vector variable

[x t ]T — as 

dgi/dx dgi/dt 

dg2/dx dg2/dt
J  = (G.1)

G.2.4 Integration

The int() function returns the indefinite/definite integral (anti-derivative) of a 

function or an expression with respect to the variable given as its second input 

argument or its free variable which might be determined by using the findsym 

function.

>>syms a x y t 

>>int(x~n)

ans = хл(п + 1) / (n + 1) % f x n dx =  ------- x n + 1
J n +  1

>>int(1/(1 + x A2))

ans = atan(x) % /  -— - dx =  tan- *x

>>int(a~x) %equivalently diff(f,x,2)

ans = 1/1од(а)*алх % f a x dx =  ----- a x
log a

> > i n t ( s i n ( a * t ) JQ Jpi) %equivalently i n t ( s i n ( a * t ) Jt JQ Jpi)

ans  = - c o s ( p i * a ) / a  + 1/a %/07T sin  (at) dt =  — — cos (at)
п

1 1
=  —  —  cos (Э7Г ) +  —

a a0
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>>int(exp(-(x - a)~2),a,inf) %equivalently int(exp(-(x - a)*2),x,0,inf) 

ans = 1 /2* p i A (1/2) %  e _ (x _ 3)2 dx =  e _ x2 dx =

G.2.5 Taylor Series Expansion

W e  can use the taylor() function to find the Taylor series expansion of a 

function or an expression with respect to the variable given as its second or 

third input argument or its free variable that might be determined by using the 

findsym function. 

One may put ‘help taylor’ into the M A T L A B  command window to see its 

usage, which is restated below. Let us try applying it.

>>syms x t; N = 3;

» T x O  = taylor (exp (- x), N + 1) %f(x) =  = 0 — f <n)(0)xn 

Tx0 = 1-x + 1/2*x"2 - 1/6*x"3 '

>>sym2poly(Tx0) %extract the coefficients of Taylor series polynomial 

ans = -0.1667 0.5000 -1.0000 1.0000

» x o  = 1; Tx1 = taylor(exp(-x) ,N + 1,xo) % f ( x ) =  = 0 — yf(n)(Xo) (x -  x0)n

Tx1 = exp(-1) - exp(-1)*(x - 1) + 1/2*exp(-1)*(x - 1)~2 - 1/6*exp(-1)*(x - 1)~3

>>pretty(Tx1)

2 3

exp(-1) -exp(-1)(x - 1) +1/2 exp(-1)(x - 1) -1/6 exp(-1)(x - 1)

>>f =  exp(-x)*sin(t);

» T t  = taylor(f,N + 1,t) %f (x) =  = о - ^ f (n)(0)tn 

Tt = exp(-x)*t - 1/6*exp(-x)*t~3

• taylor(f) gives the fifth-order Maclaurin series expansion of f.

• taylor(f,n+1) with an integer n > 0 gives the nth-order Maclaurin series 

expansion of f.

• taylor(f,a) with a real number (a) gives the fifth-order Taylor series 

expansion of f about a.

• taylor(f,n + 1,a) gives the nth-order Taylor series expansion of f about 

default_variable=a.

• taylor(f,n + 1,a,y) gives the nth-order Taylor series expansion of f(y) 

about y = a.

(cf) The target function f must be a legitimate expression given directly as the first 

input argument.

(cf) Before using the command “taylor()”, one should declare the arguments of the 

function as symbols by putting, say, “syms x t”.

(cf) In case the function has several arguments, it is a good practice to put the inde

pendent variable as the last input argument of “taylor()”, though taylor() takes
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one closest (alphabetically) to ‘x’ as the independent variable by default only if 

it has been declared as a symbolic variable and is contained as an input argument 

of the function f .

(cf) One should use the M A T L A B  command “sym2poly()” if he wants to extract the 

coefficients from the Taylor series expansion obtained as a symbolic expression.

G.3 LINEAR A LG E B R A

Several M A T L A B  commands and functions can be used to manipulate the vec

tors or matrices consisting of symbolic expressions as well as those consisting 

of numerics.

>>syms a11 a12 a21 a22 

>>A = [a11 a12; a21 a22];

>>det(A)

ans = a11*a22 - a12*a21 

>>AI = A" - 1

AI = [ a22/(a11*a22 - a12*a21), -a12/(a11*a22 - a12*a21)]

[ -a21/(a11*a22 - a12*a21), a11/(a11*a22 - a12*a21)]

>>A*AI

ans = [ a11*a22/(a11*a22 - a12*a21)-a12*a21/(a11*a22 - a12*a21), 0]

[ 0, a11*a22/(a11*a22 - a12*a21) - a12*a21/(a11*a22 - a12*a21)]

>>simplify(ans) %simplify an expression 

ans = [ 1, 0]

[ 0, 1]
>>syms x t;

>>G = [cos(t) sin(t); -sin(t) cos(t)] %The Givens transformation matrix 

G = [ cos(t), sin(t)]

[ -sin(t), cos(t)]

>>det(G), simple(ans)

ans = cos(t)"2 + sin(t)"2 

ans = 1 

>>G2 = G"2, simple(G2)

G2 = [ cos(t)"2 - sin(t)"2, 2*cos(t)*sin(t)]

[ -2*cos(t)*sin(t), cos(t)"2 - sin(t)"2] 

ans = [ cos(2*t), sin(2*t)]

[ -sin(2*t), cos(2*t)]

>>GTG = G.'*G, simple(GTG)

GTG = [ cos(t)"2 + sin(t)"2, 0]

[ 0, cos(t)"2 + sin(t)"2]

ans = [ 1 , 0 ]

[ 0, 1]
>>simple(G" - 1) %inv(G) for the inverse of Givens transformation matrix 

G = [ cos(t), -sin(t)]

[ sin(t), cos(t)]

>>syms b  c

>>A = [0 1; -c -b];

>>[V,E] = eig(A)

V = [ -(1/2*b + 1/2*(b"2 - 4*c)"(1/2))/c, -(1/2*b - 1/2*(b"2 - 4*c)"(1/2))/c]

[ 1, 1  
E = [ -1/2*b + 1/2*(b"2 - 4*c)"(1/2), 0]

[ 0, -1/2*b - 1/2*(b"2 - 4*c)"(1/2)]

>> solve(poly(A))%another w ay to get eigenvalues(characteristic roots) 

ans = [ -1/2*b+1/2*(b"2 - 4*c)"(1/2)]

[ -1/2*b-1/2*(b"2 - 4*c)"(1/2)]
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Besides, other M A T L A B  functions such as jordan(A) and svd(A) can be 

used to get the Jordan canonical form together with the corresponding similarity 

transformation matrix and the singular value decomposition of a symbolic matrix.

G.4 SOLVING  ALGEBRAIC  EQ U ATION S

W e  can use the backslash (\) operator to solve a set of linear equations written 

in a matrix-vector form.

>>syms R11 R12 R21 R22 b1 b2
>>R = [R11 R12; R21 R22]; b = [b1; b2];
>>x = R\b

x = [ (R12*b2 - b1*R22)/(-R11*R22 + R21*R12)]
[ (-R11*b2 + R21*b1)/(-R11*R22 + R21*R12)]

W e  can also use the M A T L A B  function solve() to solve symbolic algebraic 

equations.

>>syms a b c x 

>>fx = a*x~2+b*x+c;

>>solve(fx) %formula for roots of 2 nd-order polynomial eq 

ans = [ 1/2/a*(-b + (b"2 - 4 * a * c ) A (1/2))]

[ 1/2/a*(-b - (b"2 - 4*a*c)"(1/2))]

>>syms x1 x2 b1 b2

>>fx1 = x1 + x2 - b1; fx2 = x1 + 2*x2 - b2; %a system of simultaneous algebraic eq. 

>>[x1o,x2o] = solve(fx1,fx2) % 

x1o = 2*b1 - b2 

x2o = -b1 + b2

G.5 SOLVING  DIFFERENTIAL EQ U ATION S

W e  can use the M A T L A B  function dsolve() to solve symbolic differential 

equations.

>>syms a b c x

>>xo = dsolve('Dx + a*x = 0') %  a differential eq.(d.e.) w/o initial condition 

xo = exp(-a*t)*C1 %  a solution with undetermined constant 

>>xo = dsolve('Dx + a*x = 0','x(0) = 2 ' )  %  a d.e. with initial condition 

xo = 2*exp(-a*t) %  a solution with undetermined constant 

>>xo = dsolve('Dx=1+x~2') %  a differential eq. w/o initial condition 

xo = tan(t - C1) %  a solution with undetermined constant 

>>xo = dsolve('Dx = 1 + x~2','x(0) = 1') %  with the initial condition 

xo = tan(t + 1/4*pi) %  a solution with determined constant 

>>yo = dsolve('D2u = -u','t') %  a 2 nd-order d.e. without initial condition 

yo = C1*sin(t) + C2*cos(t)

>>xo = dsolve('D2u = -u','u(0) = 1,Du(0) = 0','t') %  with the initial condition 

xo = cos(t))

>>yo = d s o l v e ( ' ( D y p 2  + y~2 = 1','y(0) = 0','x') % a  1st-order nonlinear d.e.(nlde) 

yo = [ sin(x)] %two solutions 

[ -sin(x)]

>>yo = dsolve('D2y = cos(2*x) - y','y(0) = 1,Dy(0) = 0','x') % a  2md-order nlde 

yo = 4/3*cos(x) - 2 / 3 * c o s ( x p 2  + 1/3 

>>S = dsolve('Df=3*f + 4*g','Dg=-4*f + 3*g');
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>>f = S.f, g = S.g
f = exp(3*t)*(C1*sin(4*t) + C2*cos(4*t)) 
g = exp(3*t)*(C1*cos(4*t) - C2*sin(4*t))

>>[f,g] = dsolve('Df = 3*f + 4*g,Dg = -4*f + 3*g','f(0) = 0,g(0) = 1') 
f = exp(3*t)*sin(4*t) 
g = exp(3*t)*cos(4*t)



APPENDIX

SPARSE MATRICES

A  matrix is said to be sparse if it has a large portion of zero elements. M ATLAB  

has some built-in functions/routines that enable us to exploit the sparsity of a 

matrix for computational efficiency.

The M ATLAB  routine sparse() can be used to convert a (regular) matrix 

into a sparse form by squeezing out any zero elements and to generate a sparse 

matrix having the elements of a vector given together with the row/column index 

vectors. On the other hand, the M ATLAB  routine full() can be used to convert 

a matrix of sparse form into a regular one.

> > r o w _ i n d e x  = [ 1 1 2 3 4 ] ;  c o l _ i n d e x  = [1 2 2 3 4 ] ;  e l e m e n t s  = [1 2 3 4 5 ] ;

> >m = 4 ;  n = 4; A s  = s p a r s e ( r o w _ i n d e x , c o l _ i n d e x , e l e m e n t s , m , n )

A s  = (1,1) 1

(1,2) 2

(2.2) 3

(3.3) 4

(4.4) 5 

> > A f  = f u l l ( A s )

A f  = 1 2 0 0 

0 3 0 0 

0 0 4 0

0 0 0 5

We can use the M ATLAB  routine sprandn(m,n,nzd) to generate an m x n 

sparse matrix having the given non-zero density nzd. Let us see how efficient 

the operations can be on the matrices in sparse forms.

>>As = sprandn(10,10,0.2); %a sparse matrix and 
>>Af = fu ll(A s );  i t s  f u l l  version

Applied Numerical Methods Using MATLAB®, by Yang, Cao, Chung, and M orris
Copyright © 2005 John W iley  &  Sons, Inc., IS B N  0-471-69833-4

4 8 9



4 9 0  SPARSE MATRICES

> >flop s(0 ), AsA = As*As; flo p s %in sparse forms 
ans = 50

> >flop s(0 ), AfA = Af*Af; flo p s %in fu ll(r e g u la r ) forms 
ans = 2000

>>b = ones(10 ,1); f lo p s (0 ) ,  x = As\b; flop s  
ans = 160 

> >flop s(0 ), x = Af\b; flop s  
ans = 592 

> >flop s(0 ), inv(A s); flop s  
ans = 207 

> >flop s(0 ), inv(A f); flop s  
ans = 592 

> >flop s(0 ), [L,U,P] = lu(A s); flop s  
ans = 53

> >flop s(0 ), [L,U,P] = lu(A f); flop s  
ans = 92

Additionally, the M ATLAB  routine speye(n) is used to generate an n x n 

identity matrix and the M ATLAB  routine spy(n) is used to visualize the sparsity 

pattern. The computational efficiency of L U  factorization can be upgraded if 

one pre-orders the sparse matrix by the symmetric minimum degree permutation, 

which is cast into the M A TLA B  routine symmmd().

Interest readers are welcome to run the following program “do_sparse” to 

figure out the functions of several sparsity-related M A TLA B  routines.

%do_sparse 
clear, clf
%create a sparse mxn random matrix 
m = 4; n = 5; A1 = sprandn(m,n,.2)
%create a sparse symmetric nxn random matrix with non-zero density nzd 
nzd = 0.2; A2 = sprandsym(n,nzd)
%create a sparse symmetric random nxn matrix with condition number r 
r = 0.1; A3 = sprandsym(n,nzd,r)
%a sparse symmetric random nxn matrix with the set of eigenvalues eigs
eigs = [0.1 0.2 .3 .4 .5]; A4=sprandsym(n,nzd,eigs)
eig(A4)
tic, A1A = A1*A1', time_sparse = toc
A1f = full(A1); tic, A1Af = A1f*A1f'; time_full = toc
spy(A1A), full(A1A), A1Af
sparse(A1Af)
n = 10; A5 = sprandsym(n,nzd)
tic, [L,U,P] = lu(A5); time_lu = toc
tic, [L,U,P] = lu(full(A5)); time_full = toc
mdo = symmmd(A5); %symmetric minimum degree permutation
tic, [L,U,P] = lu(A5(mdo,mdo)); time_md=toc

(cf) The command ‘flops’ is not available in M A T L A B  of version 6.x and that is why we 

use ‘tic’ and ‘toc’ to count the process time instead of the number of floating-point 

operations.
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MATLAB

First of all, the following should be noted: 

1. The index of an array in M A T L A B  starts from 1, not 0.

2. A  dot(.) must be put before an operator to make a termwise (element-by- 

element) operation. 

Some of useful M A T L A B  commands are listed in Table I.1.

Table I.1 Commonly Used Commands and Functions in MATLAB

General Commands

break to exit from a for or while loop

fprintf fprintf(‘\n x (% d ) =  % 6 .4 f  \a’,ind,x(ind))

keyboard stop execution until the user types any key

return terminate a routine and go back to the calling routine

load ** *  x y read the values of x and y from the M A T L A B  file

***.mat

load x.dat read the value(s) of x from the A S C II  file x.dat

save * * *  x y save the values of x and y into the M A T L A B  file

***.mat

save x.dat x save the value(s) of x into the A S C II  file x.dat

clear remove all or some variables/functions from memory

Two-Dimensional Graphic Commands

bar(x,y),plot(x,y),stairs(x,y) plot the values of y versus x in a bar\continuous 

stem(x,y),loglog(x,y) \stairs\discrete\xy-log\x-log\y-log graph

semilogx(x,y),semilogy(x,y)
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Table I.1 Commonly Used Commands and Functions in MATLAB

plot(y) (y: read-valued) 

plot(y) (y: complex-valued)

bar(y, SiS2S3) 

plot(y, SiS2S3)

stairs(y, sjs2s3) 

stem(y, sjs2s3) 

loglog(y, Si S2S3) 

semilogx(y, sjs2s3) 

semilogy(y, s ^ 3) 

plot(y1 , SiS2S3, y2 , Si S2S3)

polar(theta,r)

plot the valueS of vector\array over the index

plot the imaginary part verSUS the real part: 

plot(real(y),imag(y))

The String of three characterS s1s2s3, given aS one of the 

input argumentS to theSe graphic commandS SpecifieS the 

color, the Symbol, and the line typeS:

Si(color): y(ellow), m(agenta), c(yan), r(ed), g(reen), 

b(lue), w(hite), (blac)k 

S2(Symbol):.(point), o ,x ,+ ,*, S(quare: □), d(iamond:0), 

v(v), "(A), < (< ), >([>), p(entagram:^), h(exagram) 

S3(line Symbol): -(Solid, default), :(dotted),

-.(daShdot),- (daShed)

(ex) plot(x,'b+:') plotS x(n) with the +  SymbolS on 

a blue dotted line

plot the graph in polar form with the phaSe theta and 

magnitude r

Auxiliary Graphic Commands

axiS([xmin xmax ymin ymax]) Specify the rangeS of graph on horizontal/vertical axeS

clf(clear figure)

grid on/off

hold on/off

Subplot(ijk)

text(x,y,plot(y,‘***’)

title(‘** ’), xlabel(‘**’),

ylabel(‘** ’)

meSh(X,Y, Z)

meSh(x, y, Z)

meSh(Z), Surf(), plot3(), 

contour()

clear the exiStent graph(S)

draw/remove the grid lineS

keep/remove the exiStent graph(S)

divide the Screen into i x j SectionS and uSe the kth one

print the String ‘***’ in the poSition (x,y) on the graph

print the String ‘** ’ into the top/low/left Side of graph

Three-Dimensional Graphic Commands

connect the pointS of height Z  at pointS (X,Y) where 

X ,Y  and Z are the matriceS of the Same dimenSion

connect the pointS of height Z(j, i) at pointS Specified by 

the two vectorS (x(i),y(j))

connect the pointS of height Z(j, i) at pointS Specified by 

(i, j)

Once you inStalled M A T L A B , you can click the icon like the one in the left Side 

to run M A T L A B . Then you will See the M A T L A B  command window 

on your monitor aS depicted in Fig. I.i, where a curSor appearS 

(moSt likely blinking) to the right of the prompt like ‘> > ’ or 

‘?’ waiting for you to type in a command. If you are running 

M A T L A B  of verSion 6.x, the main window haS not only the command window, 

but alSo the workSpace box and the command hiStory box on the left-up/down 

Side of the command window, in which you can See the contentS of M A T L A B
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Figure I.1 The MATLAB command w indow with the workspace box and the command box.

memory and the commands you have typed into the Command window up to 

the present time, respectively. You might clear the boxes by clicking the cor

responding submenu under the ‘Edit’ menu and even remove/restore them by 

un-checking/checking the corresponding submenu under the ‘View’ menu.

H ow  do we work with the M A T L A B  command window?

• By clicking ‘File’ on the top menu and then ‘N ew ’/ ‘Open’ in the File pull

down menu, you can create/edit any file with the M A T L A B  editor.

• By clicking ‘File’ on the top menu and then ‘Set Path’ in the File pull-down 

menu, you can make the M A T L A B  search path include/exclude the paths 

containing the files you want to be run.

• If you are a beginner in M A T L A B , then it may be worthwhile to click ‘Help’ 

on the top menu, click ‘Demos’ in the Help pull-down menu, (double-)click 

any topic that you want to learn, and watch the visual explanation about it.

• By typing any M A T L A B  commands/statements in the M A T L A B  command 

window, you can use various powerful mathematic/graphic functions 

of M A T L A B .

• If you have an m-file that contains a series of commands/statements com

posed for performing your job, you can type in the file name (without the 

extension ‘.m ’) to make it run.

It is helpful to know the procedure of debugging in M A T L A B , which is 

summarized below.

1. With the program (you want to edit) loaded into the M A T L A B  Editor/ 

Debugger window, set breakpoint(s) at any statement(s) which you think
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Figure I.2 The MATLAB file editor/debugger window.

iS (are) SuSpiciouS to be the Source(S) of error, by clicking the pertinent 

Statement line of the program with the left mouSe button and preSSing the 

Fi2  key or clicking ‘Set/Clear Breakpoint’ in the ‘BreakpointS’ pull-down 

menu of the Editor/Debugger window. Then, you will See a Small red diSk 

in front of every Statement at which you Set the breakpoint.

2. Going to the M A T L A B  Command window, type in the name of the file 

containing the main program to try running the program. Then, go back to 

the Editor/Debugger window and you will See the curSor blinking juSt after 

a green arrow between the red diSk and the firSt Statement line at which 

you Set the breakpoint.

3. Determining which variable to look into, go to the Command window 

and type in the variable name(S) (juSt after the prompt ‘K>>’) or whatever 

Statement you want to run for debugging.

4. If you want to proceed to the next Statement line in the program, go back 

to the Editor/Debugger window and press the F I0 (single step) key or the 

FI 1 (step in) key to dig into a called routine. If you want to jump to the 

next breakpoint, preSS F5 or click ‘Run (Continue)’ in the Debug pull-down 

menu of the Editor/Debugger window. If you want to run the program until 

juSt before a Statement, move the curSor to the line and click ‘Go Until 

CurSor’ in the Debug pull-down menu (See Fig. I.2).

5. If you have figure out what iS wrong, edit the pertinent part of the program, 

Save the edited program in the Editor/Debugger window, and then go to the 

Command window, typing the name of the file containing the main program 

to try running the program for teSt. If the reSult SeemS to reflect that the 

program Still haS a bug, go back to Step i  and reStart the whole procedure.
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If you uSe the M A T L A B  of verSion 5.x, you can refer to the uSage of the 

conStrained minimization routine ‘constn()’, which iS Summarized in the box 

below.

U S A G E  O F  T H E  M A T L A B  5 .X  BUILT-IN F U N C T I O N  “ CONSTR()” 

F O R  C O N S T R A I N E D  O P T I M I Z A T I O N

[x,options] = constr('ftn',x0,options,l,u)

• Input argumentS (only ‘ftn’ and x0 required, the otherS optional)

‘ftn’

x0 : 

options:

l,u

uSually defined in an m-file and Should return two output 

argumentS, one of which iS a Scalar value ( f  (x)) of the 

function (ftn) to be minimized and the other iS a vector 

(g(x)) of conStraintS Such that g(x) < 0. 

the initial gueSS of Solution

iS uSed for Setting the termination tolerance on x, f(x), and 

conStraint violation through optionS(2)/(3)/(4), the number of 

the (leading) equality conStraintS among g(x) < 0 through 

optionS (13), etc.

(For more detailS, type ‘help foptions’ into the M ATLAB  

command window)

lower/upper bound vectorS Such that l < x < u.

Output argumentS

x : minimum point reached in the permiSSible region SatiSfying

the conStraintS.

options: outputS Some information about the Search proceSS and the 

reSult like the function value at the minimum point (x) 

reached through optionS (8).
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A

Absolute error, 33 

Acceleration of Aitken, 201 

Adams-Bashforth-Moulton (A B M ) method, 

269

Adaptive input argument, 46 

Adaptive quadrature, 231 

Alignment, 30

alternating direction imp1icit (ADI) method, 

417

Animation, 302, 438 

Apostrophe, 15

Approximation, 124, 209, 212, 323 

B

backslash, 19, 59, 60, 76, 109, 110

backward difference approximation, 210

backward substitution, 82

basis function, 420

bilinear interpolation, 142

bisection method, 183

Boltzmann, 335

boundary condition, 134, 401, 404, 420, 

430-432 

Boundary mode, 434 

boundary node, 420

boundary value problem (BVP), 287, 305-319 

bracketing method, 188 

breakpoint, 493 

Bulirsch-Stoer, 161

C

case, 24

catastrophic cancellation, 32

central difference approximation, 211, 212

characteristic equation, 371, 465

characteristic value, 371, 465 

characteristic vector, 371, 465 

Chebyshev coefficient polynomial, 126 

Chebyshev node, 125, 160 

Chebyshev polynomial, 124, 127, 240 

chemical reactor, 297

Cholesky decomposition (factorization), 97 

circulant matrix, 391 

conjugate gradient, 332 

constrained linear least squares (LLS), 354 

constrained optimization, 343, 350, 352 

constructive solid geometry (CSG), 432 

contour, 11, 295, 345, 349 

convergence, 103, 378-379 

covariance matrix, 386 

Crank-Nicholson method, 409, 452 

CtFT, 68, 475 

cubic spline, 133, 162-164 

curve fitting, 143, 147, 165, 167

D

damped Newton method, 193 

data file, 47 

dat-file, 2 

dc motor, 298 

debugging, 493 

decoupling, 374, 376 

determinant, 464 

DFT , 151-156, 171-175 

diagonalization, 374-376 

difference approximation, 209, 211, 216, 218 

differential equation, 263, 487 

Dirichlet boundary condition, 404, 430, 434, 

452

discretization, 281 

distinct eigenvalues, 373 

divided difference, 120-122
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double integral/integration, 241, 259 

Draw mode, 432

DtFT (Discrete-time Fourier Transform), 476 

E

eigenmode PD E , 431 

eigenpair, 371

eigenvalue, 371, 377, 385, 389, 465 

eigenvalue problem, 314, 389 

eigenvector, 371, 377, 385, 465 

electric potential, 427, 442 

element-by-element operation, 15, 52 

elliptic PDE, 401, 402, 420, 430 

eps, 13

error, 31, 33, 35, 40, 213, 226, 274

error analysis, 159, 225

error estimate, 226

error magnification, 31

error propagation, 33

errorbar, 148

Euler’s method, 263

explicit central difference method, 415, 417 

explicit forward Euler method, 406, 410 

exponent field, 28

F

factoriaL, 40 

false position, 185 

FFT (Fast Fourier Transform), 151 

finite difference method (FDM ), 290 

finite element method (FEM ), 420, 431, 455 

fixed-point, 99, 179, 197 

Fletcher-Reeves (FR), 332, 333 

forward difference approximation, 209, 218, 

406

Fourier series/transform, 150, 475 

full pivoting, 85

G

Gauss elimination, 79 

Gauss quadrature, 234 

Gauss-Chebyshev, 240 

Gauss-Hermite, 238, 251, 253 

Gauss-Jordan elimination, 89, 106 

Gauss-Laguerre, 239, 254, 255 

Gauss-Legendre, 235, 251, 255 

Gauss-Seidel iteration, 100, 103, 115 

Gaussian distribution, 24 

genetic algorithm, 338, 340 

Gerschgorin’s Disk Theorem, 380 

golden search, 321, 322 

gradient, 294, 328, 330, 471 

graphic command, 491

H

Hamming method, 273 

heat equation, 406, 412 

heat flow equation, 410 

Helmholtz’s equation, 402 

Hermite interpolating polynomial l39,

Hermite polynomial, 66, 238

Hermitian, 466

Hessenberg form, 395-397

Hessian, 330, 472

Heun’s method, 266

hidden bit, 28

Hilbert matrix, 88

histogram, 23

Householder, 392-395

hyperbolic PDE, 401, 414, 430, 440, 453

I

IDFT, 151

IEEE  64-bit floating-point number, 28 

ilaplace, 280 

ill-condition, 88

implicit backward Euler method, 407, 452 

improper integral, 248, 249 

inconsistency, 83, 85 

independent eigenvectors, 373 

input, 2,4 

interior node, 425

interpolation, 117, 119, 133, 141, 161 

2-dimensional 141 

interpolation by using DFS, 155 

interpolation function, 420 

inverse matrix, 92, 465 

inverse power method, 380, 381 

IVP  (initial value problem), 263, 284

J

Jacobi iteration, 98 

Jacobi method, 381 -384 

Jacobian, 191, 472, 484

K

keyboard input, 2 

L

Lagrange coefficient polynomial, 118 

Lagrange multiplier method, 74, 343, 344 

Lagrange polynomial, 117, 118 

Laguerre polynomial, 239 

Laplace transform, 278, 280, 473 

Laplace’s Equation, 402, 404, 427, 435, 442 

largest number in M A T L A B , 27 

leakage, 155, 174

least squares (LS), 144, 165, 169, 171, 351, 354
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Legendre polynomial, 236 

length of arc/curve, 257 

limit, 483

linear equation, 71, 79 

linear programming (LP), 355, 361 

logical operator, 25 

loop, 26

loop iteration, 39

Lorenz equation, 297

loss of significance, 31, 32

L S E  (least squares error), 75

L U  decomposition (factorization), 92

M

mantissa field, 28 

mat-file, 2

mathematical functions, 10 

matrix, 15, 463

matrix inversion lemma, 78, 469

mean value theorem, 461

mesh, 11, 48, 49, 431-444

midpoint rule, 222

minimum-norm solution, 73

mixed boundary condition, 287, 306, 308

modal matrix, 373-376

mode, 285, 377-378, 386, 432, 434

modification formula, 272, 274

mu law, mu-inverse law, 53, 335

N

negligible addition, 31 

Nelder-Mead Algorithm, 325 

nested computing, 38, 121 

nested (calling) routine, 40 

Neumann boundary condition, 404, 431, 447, 

448, 451

Newton method, 186, 188, 191, 330, 332 

Newton polynomial, 119 

nonlinear BV P , 312 

nonlinear least squares (NLLS), 352 

nonnegative least squares (NLS), 355 

norm, 58

normal (Gaussian) distribution, 24 

normalized range, 29 

null space, 73, 467 

numerical differentiation, 209, 244 

numerical integration, 222, 247, 249

O

on-line recursive computation of DFT , 176 

orthogonal, 382, 395, 466 

orthonormal, 382, 385 

over-determined, 75 

overflow, 34, 64

P

Pade approximation, 129, 160 

parabolic PD E , 406, 410, 412, 414, 430, 438,

449

two-dimensional PD E , 412 

parallelepiped, 389 

parallelogram, 388

parameter passing through V A R A R G IN , 45 

parameter sharing via G L O B A L , 44 

partial differential equation (PDE), 401 

partial pivoting, 81,85,105 

path, 1

P D E  mode, 434 

PDEtool, 429-431, 435, 456 

penalty, 346-349, 362, 366 

permutation, 94, 467 

persistent excitation, 169 

physical meaning of eigenvalues and 

eigenvectors, 385 

pivoting, 85-88, 105-106 

plot, 6-11 

Plot mode, 440

Polak-Ribiere (PR) method, 332, 333 

polynomial approximation, 124 

polynomial curve fitting by least squares, 146, 

169

polynomial wiggle, 124 

positive definite, 468 

predictor/corrector errors, 272 

projection operator, 74 

pseudo (generalized) inverse, 17, 73, 76

Q

Q R  decomposition (factorization), 97, 392-396

quadratic approximation method, 323-325

quadratic interpo1ation, 157

quadratically convergent, 188

quadrature, 222, 231, 234

quantization error, 63, 212

quenching factor, 335

R

rank, 467

recursive, 40, 66, 176, 201, 228, 231 

recursive least square estimation (RLSE), 76, 

104

redundancy, 83, 85

regula falsi, 185

relational operators, 25

relative error, 33

relaxation, 104, 115

reserved constants/variables, 13

Richardson’s extrapolation, 211, 216

R L S E  (Recursive Least Squares Estimation), 76
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robot path planning, 164 

Romberg integration, 228-230 

rotation matrix, 382, 384 

round-off error, 31, 35, 212, 213 

row echelon form, 467 

row space, 467 

row switching, 91, 105 

Runge Phenomenon, 124 

Runge-Kutta (RK4), 267 

runtime error, 40

S

saddle point, 358 

sampling period, 151, 153, 172 

scalar product, 469 

scaled partial pivoting, 85, 105 

scaled power method, 378-379 

Schroder method, 202 

secant method, 189, 201 

self-calling, 201

shifted inverse power method, 380 

shooting method, 287, 305, 309, 312 

shooting position, 288, 307 

similarity transformation, 373 

Simpson’s rule, 222, 226 

simulated annealing, 334, 336 

sinc function, 41, 51 

single_step, 494

smallest positive number in M A T L A B ,

27

Solve mode, 434

S O R  (successive over-relaxation), 104 

sparse, 489

stability, 378, 386, 406-410, 415-416, 418,

450

state equation, 277, 281, 283, 295, 299 

steepest descent, 328, 330 

Steffensen method, 201 

step-size, 212-215, 264-265, 269, 286, 328, 

332

step-size dilemma, 213 

step_in, 494

stiff, 284-286, 298-299, 386 

Sturm-Liouville (BVP) equation, 319 

surface area of revolutionary object, 258 

S V D  (singular value decomposition), 98, 112 

symbolic, 193, 233, 280, 481 

symbolic variable, 194, 481 

symmetric matrix, 381 -382, 466 

Symmetric Diagonalization Theorem, 382

T

Taylor series theorem, 462, 485 

temperature, 404, 406, 412, 435, 438 

term-wise operation, 15, 52 

Toeplitz matrix, 390 

trapezoidal rule, 222, 225 , 226 

tri-diagonal, 107, 108 

truncation error, 31, 212, 213 

two-dimensional interpolation, 141, 168

U

unconstrained optimization, 321, 350 

unconstrained least squares, 355 

underdetermined, 72 

underflow, 34, 64

uniform probabilistic distribution, 22 

unitary, 466

un-normalized range, 29

V

Van der Pol equation, 285, 296 

vector, 15, 469

vector differential equation, 277, 284 

vector operation, 39 

vector product, 469 

vibration, 416, 418, 440 

volume, 243, 258

W

wave equation, 414, 416-418, 453 

weight least-squares (W LS ), 145, 147, 171

X

zero-padding, 151
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ROUTINES

(cf) A/C/E/P/S/T  stand for Appendix/Chapter/Example/Problems/Section/Table, respectively, 

(cf) The routines whose name starts with a capital letter are constructed in this book.

(cf) A  program named “nmijkm” can be found in Section i.j-k.

Name Place Description

abmc S6.4-1 Predictor/Corrector coefficients in Adams-Bashforth- 

Moulton O D E  solver

adapt Smpsn() S5.8 ntegration by the adaptive Simpson method

a d d  () P I .10 A D  conversion

adc2() P I .10 A D  conversion

axis() S I .1-4 specify axis limits or appearance

backslash(\) P I .14 left matrix division

backsubst() S2.4-1 backward substitution for lower-triangular matrix 

equation

bar()/barh() S I .1-4 a vertical/horizontal bar chart

bisct() S4.2 bisection method to solve a nonlinear equation

break S I .1-9 terminate execution of a for loop or while loop

bvp2_eig() P6.ll solve an eigenvalue B V P 2

bvp2_fdf() S6.6-2 F D M  (Finite difference method) for a B V P

bvp2_fdfp() P6.6 F D M  for a B V P  with initial derivative fixed

bvp2_ shoot() S6.6-1 Shooting method for a B V P  (boundary value problem)

bvp2_ shootp() P6.6 Shooting method for a B V P  with initial derivative fixed

bvp2_fdf() S6.6-2 F D M  (Finite difference method) for a B V P

bvp2_fdfp() P6.6 F D M  for a B V P  with initial derivative fixed

bvp2m shootp() P6.7 Shooting method for B V P  with mixed boundary 

condition I

bvp2m_fdfp() P6.7 F D M  for a B V P  with mixed boundary condition I

bvp2mm_ shootp() P6.8 Shooting method for B V P  with mixed boundary 

condition II

bvp2mm_fdfp() P6.8 F D M  for a B V P  with mixed boundary condition II

bvp2_fdfp() P6.6 Finite difference method for a B V P  with initial 

derivative

bvp4c() S6.6-2, fixed

P6.7~10 B V P  solver

ceil() S I .1-5 (T1.3) round toward infinity

cheby() S3.3 Chebyshev polynomial approximation

chol() S2.4-2 Cholesky factorization
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clear S I .1-2 remove items from workspace, freeing up system 

memory

clf S I .1-4 clear current figure window

compare_ D F T  FFT S3.9-1 compare D F T  with FFT

cond() S2.2-2 condition number

constr() A H constrained minimization (in M A T L A B  5.x)

contour() S I .1-5 2-D contour plot of a scalar-valued function of 2-D 

variable

conv() S I .1-6 convolution of two sequences

or multiplication of two polynomials

cspline() S3.5 cubic spline interpolation

CtFTl () PI.26 Inverse Continuous-time Fourier Transform

curve fit() P3.9 weighted least-squares curve fitting

c2d_ steq() S6.5-2 continuous-time state equation to discrete-time one

dblquad() S I .1-7 2-D (double) integral

diag() S5.3 construct a diagonal matrix or get diagonals of a matrix

difapx() S5.4, AG2-3 difference approximation for numerical derivatives

diff() S5.10, P5.14 differences between neighboring elements in an array

dispO S I .1-3 display text or array onto the (monitor) screen

docheby S3.3 approximate by Chebyshev polynomial

do condition S2.2-2 condition numbers for ill-conditioned matrices

docsplines S3.5 interpolate by cubic splines

d o F F T S3.9-1 do FFT (Fast Fourier Transform)

do gauss S2.2-1 do Gauss elimination

dohermit S3.6 do Hermite polynomial interpolation

do interp2 S3.7 do 2-dimensional interpolation

dolagranp S3.1 do Lagrange polynomial interpolation

dolagnewch S3.3 try Lagrange/Newton/Chebyshev polynomial

do lu dcmp S2.4-1 do L U  decomposition (factorization)

d o _M B K P6.4 simulate a mass-damper-spring system

do newtonp S3.2 do Newton polynomial interpolation

donewtonpl S3.2 do Newton polynomial interpolation

do_pade() S3.4 do Pade (rational polynomial) approximation

do_polyfits() S3.8-2 do polynomial curve fitting

do R D F T P3.20 do recursive DF T

do quiver P6.0 use quiver() to plot the gradient vectors

dorlse S2.1-4 do recursive least-squares estimation

do wise S3.8-2 do weighted least-squares curve fitting

double() A G 1 convert to double-precision

d r a w M B K P6.4 simulate a mass-damper-spring system

dsolve() S6.6-2,

P6.3, A G 5

symbolic differential equation solver

eig() S8.1 eigenvalues and eigenvectors of a matrix

eig_Jacobi() S8.4 find the eigenvalues/eigenvectors of a symmetric matrix

eig power() S8.3 find the largest eigenvalue &  the corresponding 

eigenvector

eig_QR() P8.7 find eigenvalues using Q R  factorization

eig_QR_Hs() P8.7 find eigenvalues using Q R  factorization via Hessenberg

else S I .1-9 for conditional execution of statements

elseif S I .1-9 for conditional execution of statements

end S I .1-9 terminate for/while,/witch/try/if statements or last index

err_of_sol_de() P6.9 evaluate the error of solution of differential eq.

eval() S I .1-5 (T1.3) evaluate a string containing a M A T L A B  expression
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eye() S I .1-7 identity matrix (having 1/0 on/off its diagonal)

ezplot() S I .3-6 easy plot

falsp() S4.3 false position method to solve a nonlinear equation

fem_basis_ftn() S9.4 coefficients of each basis function for subregions

fem coef() S9.4 coefficients for subregions

feval(): S I .1-6 evaluation of a function defined by inline() or in an 

M-file

find() P I .10 find indices of nonzero (true) elements

findsym() S4.7 find the symbolic variables in a symbolic expression

fixO S I .1-5 (T1.3) round towards zero

fixptO S4.1 fixed-point iteration to solve a nonlinear equation

ffiplr() S I .1-7 flip the elements of a matrix left-right

ffipud() S I .1-7 flip the elements of a matrix up-down

floor() S I .1-5 (T1.3) round to— infinity

fminbnd() S7.1-2 unconstrained minimization of one-variable function

fmincon() S7.3-2 constrained minimization

fminimax() S7.3-2 minimize the maximum of vector/matrix-valued function

fminsearch() S7.2-2, 7.3-1 unconstrained nonlinear minimization (Nelder-Mead)

fminunc() SI.2-2, 7.3-1 unconstrained nonlinear minimization (gradient-based)

for S I .1-9 repeat statements a specific number of times

format S I .1-3 control display format for numbers

forsubst() S2.4-1 forward substitution for lower-triangular matrix equation

fprintf() S I .1-3, P I .2 write formatted data to screen or file

fsolve() S4.6,4.7,E4.3 solve nonlinear equations by a least squares method

gauseid() S2.5-2 Gauss-Seidel method to solve a system of linear 

equations

gauss() S2.2-2 Gauss elimination to solve a system of linear equations

gauss_legendre() S5.9-1 Gauss-Legendre integration

gausslp() S5.9-1 grid points of Gauss-Legendre integration formula

gausshp() S5.9-2 grid points of Gauss-Hermite integration formula

genetic() S7.1-8 optimization by the genetic algorithm (G A )

ginputO S I .1-4 input the x- &  у-coordinates of point(s) clicked by 

mouse

global S I .3-5 declare global variables

gradient() P6.0 numerical gradient

grid on/off S I .1-4 grid lines for 2-D or 3-D graphs

gtextO S I .1-4 mouse placement of text in a 2-D graph

heat_exp() S9.2-1 explicit forward Euler method for parabolic P D E  (heat 

eq)

heat_imp() S9.2-2 implicit backward Euler method for parabolic P D E  (heat 

eq)

heat_CN() S9.2-3 Crank-Nicholson method for parabolic P D E  (heat eq)

heat2_ADI() S9.2-4 A D I  method for parabolic P D E  (2-D heat equation)

help S I .1-1 display help comments for M A T L A B  routines

hermitO S3.6 Hermite polynomial interpolation

hermitpO S5.9-2 Hermite polynomial

hermitsO S3.6 multiple Hermite polynomial interpolations

hessenberg() P8.5 transform a matrix into almost upper-triangular one

histO S I .1-4, 1.1-8 plot a histogram

hold on/off S I .1-4 hold on/off current graph in the figure

housholder() P8.4 Householder matrix to zero-out the tail part of a vector

ICtFTl() PI. 26 Inverse Continuous-time Fourier Transform

if S I .1-9 for conditional execution of statements
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inline() S I .1-6 define a function inside the program

inpolygon() S9.4 is the point inside an polygonal region?

input() S I .1-3 request and get user input

int() S5.8, A G 2 numerical/symbolic integration

interpl() S3.5 1-D interpolation

interp2() S3.7 2-D interpolation

intrpl() P3.10 1-D interpolation

intrp2() S3.7 2-D interpolation

interpolate by DFS S3.9-3 interpolation using DFS

int2s() S5.10, P5.14 2-D (double) integral

inv() S I .1-7 the inverse of a matrix

isempty() P I .10 is it empty (no value)?

isnumeric() P I .10 has it a numeric value?

jacob() S4.6 Jacobian matrix of a given function

jacobl() P5.3 Jacobian matrix of a given function

jacobi() S2.5-1 Jacobi iteration to solve a equation

Jkb() PI.21 1st kind of £-th order Bessel function

lagranp() S3.1 Laaranae polynomial interpolation

lgndrp() S5.9-1 Legendre polynomial

length() S I .1-7 the length of a vector (sequence)

limit() AG2-2 limit of a symbolic expression

lin_eq() S2.1-3 solve linear equation(s)

linprog() S7.3-3 solve a linear programming (LP) problem

load S I .1-2,4 read variable(s) from file

loglog() S I .1-4 plot data as logarithmic scales for the x-axis and y-axis

lookfor S I .1-1 search for string in the first comment line in all M-files

lscov() S3.8-1 weighted least-squares with known (error) covariance

lsqcurvefit() S3.8-3 weiahted nonlinear least-squares curve fittina

lsqlin() S7.3-1 solve a linear least squares (LLS) problem

lsqnonlin() S7.3-1 solve a non-linear least squares (NLLS ) problem

lsqnonneg() S7.3-2 find a non-negative least squares (N N LS) solution

lu() S2.4-1 L U  decomposition (factorization)

lu dcmpO S2.4-1 L U  decomposition (factorization)

max() S I .1-7 find the maximum element(s) of an array

mesh() S I .1-5, 3.7 plot a mesh-type graph of f(x, y)

meshgrid() S I .1-5, 3.7 grid points for plotting a mesh-type graph

min() S I .1-7 find the minimum element(s) of an array

mkpp() P I .11 make a piece-wise polynomial

mod() S I .1-5 (T1.3) remainder after division

mulaw() P I.9 /1,-law

mu inv() S7.1-7 /к,-1 law

multiply _  matrix () P I .12 matrix multiplication

newton() S4.4 Newton method to solve a nonlinear equation

newtonp() S3.2 Newton polynomial interpolation

newtons() S4.6 Newton method to solve a system of nonlinear equation

norm() P I .13 norm of vector/matrix

o de_ABM () S6.4-1 solve a state equation by Adams-Bashforth-Moulton 

solver

ode Euler() S6.1 solve a state equation by Euler’s method

ode_Ham() S6.4-2 solve a state equation by Hamming O D E  solver

ode Heun() S6.2 solve a state equation by Heun’s method

ode_RK4() S6.3 solve a state equation by Runge-Kutta method

ode23()/ode45() S6.4-3 O D E  solver
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/odell3()

odel5s()/ode23s() S6.5-4 solve (stiff) O DE s

/ode23t()/ode23tb()

ones() S I .1-7 constructs an array of ones

opt_gs() S7.1-1 optimization by Golden search

opt_quad() S7.1-2 optimization by quadratic approximation

opt Nelder() S7.1-3 optimization by Nelder-Mead method

opt_ steep() S7.1-4 optimization by steepest descent

opt_conjg() S7.1-6 optimization by Conjugate gradient method

padeap() S3.4 Pade approximation

pdetool S9.4 start the P D E  toolbox G U I (graphical user interface)

pinv() S I .1-7, 2.1 pseudo-inverse (generalized inverse)

plot() S I .1-4,5 linear 2-D plot

plot3() S I .1-5 linear 3-D plot

poisson() S9.1 central difference method for elliptic P D E  (Poisson’s eq)

polar() S I .1-4 plot polar coordinates in a Cartesian plane with polar 

grid

Poly_der() P I .11 derivative of polynomial

polyder() P I .11 derivative of polynomial

polyfit() P3.13 polynomial curve fitting

Polyfits() S3.8-2 polynomial curve fitting

polyint() P I .11 integral of polynomial

polyval() S I .1-6, 3.8-2 evaluate a polynomial

ppval() P I .11 evaluate a set of piece-wise polynomials

pretty() P3.1, A G 2 print symbolic expression like in type-set form

prod() S I .1-7 product of array elements

qrO S2.4-2 Q R  factorization

qr_hessenberg() P8.6 Q R  factorization of Hessenberg form by Givens rotation

quad() S5.8 numerical integration

quadl() S5.8 numerical integration

quiver() P6.0 plot gradient vectors

quiver3() P6.0 plot normal vectors on a surface

rand() S I .1-8 uniform random number generator

randn() S I .1-8 Gaussian random number generator

rational_ interpolation() P3.6 rational polynomial interpolation

repetition() P I .14 repetition of subsequences

reshape() S I .1-7 a matrix into one with given numbers of row/columns

residue() P I .11 partial fraction expansion of Laplace-transformed 

function

residuez() P I .11 partial fraction expansion of z-transformed rational 

function

rise online() S2.1-4 on-line Recursive Least-Squares Estimation

rmbrg() S5.7 Integration by Romberg method

robot path P3.9 determine a path of robot using cubic splines

roots() P I .11 roots of a polynomial equation

round() S I .1-5 (T1.3) round to nearest integer

rot90() S I .1-7 rotate a matrix by 90 degrees

save S I .1-2 save variable(s) into a file

secant() S4.5 secant method to solve a nonlinear equation

semilogx() S I .1-4 plot data as logarithmic scales for the x-axis

semilogy() S I .1-4 plot data as logarithmic scales for the y-axis

size() S I .1-7 the numbers of rows/columns of a 1-D/2-D/3-D array

sim_anl() S7.1-7 optimization by simulated annealing (SA)
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simple () AG2-3 simplest form of symbolic expression

simplify() AG2-3 simplify symbolic expression

smpsns() S5.6 Integration by Simpson rule

smpsns_fxy() S5.10, P5.15 1-D integration of a function fix, у) along у

solve() P3.1, S4.7, 

A G 4

symbolic solution of algebraic equations

sort() S I .1-4 arranges the elements of an array in ascending order

spline() S3.5 cubic spline

sprintf() S I .1-4 make formatted data to a string

stairs() S I .1-4 stair-step plot of zero-hold signal of sampled data 

systems

stem() S I .1-4 plot discrete sequence data

subplot() S I .1-4, 1.1-7 divide the current figure into rectangular panes

subs() A G 1 substitute

sum() S I .1-7 sum of elements of an array

surface() P6.0 plot a surface-type graph of fix, y)

surfnorm() P6.0 generate vectors normal to a surface

svd() S2.4-2 singular value decomposition

switch S I .1-9 switch among several cases

syms P3.1, S4.7, 

A G

declare symbolic variable(s)

sym2poly() S5.3, A G 2 extract the coefficients of symbolic polynomial 

expression

taylor() S5.3, A G 2 Taylor series expansion

textO S I .1-4 add a text at the specified location on the graph

title () S I .1-4 add title to current axes

tridO S6.6-2 solve a tri-diagonal system of linear equations

trimesh() S9.4 plot a triangular-mesh-type graph

trpzds() S5.6 Integration by trapezoidal rule

varargin() S I .3-6 variable length input argument list

view() S I .1-5, P I.4 3-D graph viewpoint specification

vpa() A G evaluate double array by variable precision arithmetic

wave() S9.3-1 central difference method for hyperbolic P D E  (wave eq)

wave2() S9.3-2 central difference method for hyperbolic P D E  (2-D 

wave eq)

while S I .1-9 repeat statements an indefinite number of times

windowing() P3.18 multiply a sequence by the specified window sequence

xlabel()/ylabel() S I .1-4 label the x-axis/y-axis

zeros() S I .1-7 construct an array of zeros

zeroing() P I .15 cross out every (kM-m)th element to zero
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Table number Place Description

Table 1.1 S I .1-3 Conversion type specifiers &  special characters in fprintf()

Table 1.2 S I .1-4 Graphic line specifications used in the plot() command

Table 1.3 S I .1-6 Functions and variables inside M A T L A B :

Table 1.4 S I .1-4 Relational operators and logical operators

Table 2.1 S2.4-1 Residual error and the number of floating-point operations of various 

solutions

Table 3.1 S I .1-3 Divided difference table

Table 3.2 S I .1-4 Divided differences

Table 3.3 S I .1-6 Chebyshev coefficient polynomial

Table 3.4 S I .1-4 Boundary conditions for cubic spline

Table 3.5 S3.8-3 Linearization of nonlinear functions by parameter/data transformation

Table 5.1-1 S5.2 The forward difference approximation (5.1-4) for the 1st derivative 

and its error depending on the step-size

Table 5.1-2 S5.2 The forward difference approximation (5.1-8) for the 1st derivative 

and its error depending on the step-size

Table 5.2 S5.3 The difference approximation formulas for the 1st and 2nd derivatives

Table 5.3 S5.7 Romberg table

Table 6.1 S6.1 A  numerical solution of the differential equation (6.1-1) obtained by 

the Euler’s method

Table 6.2 S6.4 Results of applying several routines for solving a simple differential 

equation

Table 7.1 S7.1-7 Results of running several unconstrained optimization routines with 

various initial values

Table 7.2 S7.3 Results of running several unconstrained optimization routines with 

various initial values

Table 7.3 S7.3 The names of the M A T L A B  built-in minimization routines in 

M A T L A B  5.X/6.X

(cf) A : Appendix, P: Problem, S: Section, T: Table
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