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Preface

This book is the fourth in a series based on my online algorithms
courses that have been running regularly since 2012, which in turn
are based on an undergraduate course that I taught many times at
Stanford University. Part 4 assumes at least some familiarity with
asymptotic analysis and big-O notation, graph search and shortest-
path algorithms, greedy algorithms, and dynamic programming (all
covered in Parts 1–3).

What We’ll Cover in This Book

Algorithms Illuminated, Part 4 is all about NP-hard problems and
what to do about them.

Algorithmic tools for tackling NP-hard problems. Many real-
world problems are “NP-hard” and appear unsolvable by the types
of always-correct and always-fast algorithms that have starred in
the first three parts of this book series. When an NP-hard problem
shows up in your own work, you must compromise on either correct-
ness or speed. We’ll see techniques old (like greedy algorithms) and
new (like local search) for devising fast heuristic algorithms that are
“approximately correct,” with applications to scheduling, influence
maximization in social networks, and the traveling salesman problem.
We’ll also cover techniques old (like dynamic programming) and new
(like MIP and SAT solvers) for developing correct algorithms that
improve dramatically on exhaustive search; applications here include
the traveling salesman problem (again), finding signaling pathways in
biological networks, and television station repacking in a recent and
high-stakes spectrum auction in the United States.

Recognizing NP-hard problems. This book will also train you
to quickly recognize an NP-hard problem so that you don’t inadver-
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vi Preface

tently waste time trying to design a too-good-to-be-true algorithm for
it. You’ll acquire familiarity with many famous and basic NP-hard
problems, ranging from satisfiability to graph coloring to the Hamil-
tonian path problem. Through practice, you’ll learn the tricks of the
trade in proving problems NP-hard via reductions.

For a more detailed look into the book’s contents, check out the
“Upshot” sections that conclude each chapter and highlight the most
important points. The “Field Guide to Algorithm Design” on page 236
provides a bird’s-eye view of how the topics of this book fit into the
bigger algorithmic picture.

The starred sections of the book are the most advanced ones. The
time-constrained reader can skip these sections on a first reading
without any loss of continuity.

Topics covered in the first three parts. Algorithms Illumi-
nated, Part 1 covers asymptotic notation (big-O notation and its
close cousins), divide-and-conquer algorithms and the master method,
randomized QuickSort and its analysis, and linear-time selection algo-
rithms. Part 2 is about data structures (heaps, balanced search trees,
hash tables, bloom filters), graph primitives (breadth- and depth-first
search, connectivity, shortest paths), and their applications (rang-
ing from deduplication to social network analysis). Part 3 focuses
on greedy algorithms (scheduling, minimum spanning trees, cluster-
ing, Huffman codes) and dynamic programming (knapsack, sequence
alignment, shortest paths, optimal search trees).

Skills You’ll Learn From This Book Series

Mastering algorithms takes time and effort. Why bother?

Become a better programmer. You’ll learn several blazingly
fast subroutines for processing data as well as several useful data
structures for organizing data that you can deploy directly in your own
programs. Implementing and using these algorithms will stretch and
improve your programming skills. You’ll also learn general algorithm
design paradigms that are relevant to many different problems across
different domains, as well as tools for predicting the performance of
such algorithms. These “algorithmic design patterns” can help you
come up with new algorithms for problems that arise in your own
work.
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Sharpen your analytical skills. You’ll get lots of practice describ-
ing and reasoning about algorithms. Through mathematical analysis,
you’ll gain a deep understanding of the specific algorithms and data
structures that these books cover. You’ll acquire facility with sev-
eral mathematical techniques that are broadly useful for analyzing
algorithms.

Think algorithmically. After you learn about algorithms, you’ll
start seeing them everywhere, whether you’re riding an elevator,
watching a flock of birds, managing your investment portfolio, or even
watching an infant learn. Algorithmic thinking is increasingly useful
and prevalent in disciplines outside of computer science, including
biology, statistics, and economics.

Literacy with computer science’s greatest hits. Studying al-
gorithms can feel like watching a highlight reel of many of the greatest
hits from the last sixty years of computer science. No longer will you
feel excluded at that computer science cocktail party when someone
cracks a joke about Dijkstra’s algorithm. After reading these books,
you’ll know exactly what they mean.

Ace your technical interviews. Over the years, countless stu-
dents have regaled me with stories about how mastering the concepts
in these books enabled them to ace every technical interview question
they were ever asked.

How These Books Are Different

This series of books has only one goal: to teach the basics of algorithms
in the most accessible way possible. Think of them as a transcript
of what an expert algorithms tutor would say to you over a series of
one-on-one lessons.

There are a number of excellent more traditional and encyclopedic
textbooks about algorithms, any of which usefully complement this
book series with additional details, problems, and topics. I encourage
you to explore and find your own favorites. There are also several
books that, unlike these books, cater to programmers looking for
ready-made algorithm implementations in a specific programming
language. Many such implementations are freely available on the Web
as well.
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Who Are You?

The whole point of these books and the online courses upon which
they are based is to be as widely and easily accessible as possible.
People of all ages, backgrounds, and walks of life are well represented
in my online courses, and there are large numbers of students (high-
school, college, etc.), software engineers (both current and aspiring),
scientists, and professionals hailing from all corners of the world.

This book is not an introduction to programming, and ideally
you’ve acquired basic programming skills in a standard language (like
Java, Python, C, Scala, Haskell, etc.). If you need to beef up your
programming skills, there are several outstanding free online courses
that teach basic programming.

We also use mathematical analysis as needed to understand how
and why algorithms really work. The freely available book Mathe-
matics for Computer Science, by Eric Lehman, F. Thomson Leighton,
and Albert R. Meyer, is an excellent and entertaining refresher on
mathematical notation (like

P
and 8), the basics of proofs (induction,

contradiction, etc.), discrete probability, and much more.

Additional Resources

These books are based on online courses that are currently running
on the Coursera and EdX platforms. I’ve made several resources
available to help you replicate as much of the online course experience
as you like.

Videos. If you’re more in the mood to watch and listen than
to read, check out the YouTube video playlists available at www.

algorithmsilluminated.org. These videos cover all the topics in
this book series, as well as additional advanced topics. I hope they
exude a contagious enthusiasm for algorithms that, alas, is impossible
to replicate fully on the printed page.

Quizzes. How can you know if you’re truly absorbing the concepts
in this book? Quizzes with solutions and explanations are scattered
throughout the text; when you encounter one, I encourage you to
pause and think about the answer before reading on.

End-of-chapter problems. At the end of each chapter, you’ll find
several relatively straightforward questions that test your understand-
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ing, followed by harder and more open-ended challenge problems.
Hints or solutions to all of these problems (as indicated by an “(H)” or
“(S),” respectively) are included at the end of the book. Readers can
interact with me and each other about the end-of-chapter problems
through the book’s discussion forum (see below).

Programming problems. Several of the chapters conclude with
suggested programming projects whose goal is to help you develop a
detailed understanding of an algorithm by creating your own working
implementation of it. Data sets, along with test cases and their
solutions, can be found at www.algorithmsilluminated.org.

Discussion forums. A big reason for the success of online courses
is the opportunities they provide for participants to help each other
understand the course material and debug programs through discus-
sion forums. Readers of these books have the same opportunity via
the forums available at www.algorithmsilluminated.org.

Acknowledgments

These books would not exist without the passion and hunger supplied
by the hundreds of thousands of participants in my algorithms courses
over the years. I am particularly grateful to those who supplied
detailed feedback on an earlier draft of this book: Tonya Blust, Yuan
Cao, Leslie Damon, Tyler Dae Devlin, Roman Gafiteanu, Blanca
Huergo, Jim Humelsine, Tim Kearns, Vladimir Kokshenev, Bayram
Kuliyev, Clayton Wong, Lexin Ye, and Daniel Zingaro. Thanks also to
several experts who provided technical advice: Amir Abboud, Vincent
Conitzer, Christian Kroer, Aviad Rubinstein, and Ilya Segal.

I always appreciate suggestions and corrections from readers.
These are best communicated through the discussion forums men-
tioned above.

Tim Roughgarden
New York, NY
June 2020





Chapter 19

What Is NP-Hardness?

Introductory books on algorithms, including Parts 1–3 of this series,
suffer from selection bias. They focus on computational problems that
are solvable by clever, fast algorithms—after all, what’s more fun and
empowering to learn than an ingenious algorithmic short-cut? The
good news is that many fundamental and practically relevant problems
fall into this category: sorting, graph search, shortest paths, Huffman
codes, minimum spanning trees, sequence alignment, and so on. But
it would be fraudulent to teach you only this cherry-picked collection
of problems while ignoring the spectre of computational intractability
that haunts the serious algorithm designer or programmer. Sadly,
there are many important computational problems, including ones
likely to show up in your own projects, for which no fast algorithms
are known. Even worse, we can’t expect any future algorithmic
breakthroughs for these problems, as they are widely believed to be
intrinsically difficult and unsolvable by any fast algorithm.

Newly aware of this stark reality, two questions immediately come
to mind. First, how can you recognize such hard problems when they
appear in your own work, so that you can adjust your expectations
accordingly and avoid wasting time looking for a too-good-to-be-true
algorithm? Second, when such a problem is important to your appli-
cation, how should you revise your ambitions, and what algorithmic
tools can you apply to achieve them? This book will equip you with
thorough answers to both questions.

19.1 MST vs. TSP: An Algorithmic Mystery

Hard computational problems can look a lot like easy ones, and telling
them apart requires a trained eye. To set the stage, let’s rendezvous
with a familiar friend (the minimum spanning tree problem) and meet
its more demanding cousin (the traveling salesman problem).

1



2 What Is NP-Hardness?

19.1.1 The Minimum Spanning Tree Problem

One famous computational problem solvable by a blazingly fast al-
gorithm is the minimum spanning tree (MST) problem (covered in
Chapter 15 of Part 3).1

Problem: Minimum Spanning Tree (MST)

Input: A connected undirected graph G = (V,E) and a
real-valued cost ce for each edge e 2 E.

Output: A spanning tree T ✓ E of G with the minimum-
possible sum

P
e2T ce of edge costs.

Recall that a graph G = (V,E) is connected if, for every pair v, w 2 V
of vertices, the graph contains a path from v to w. A spanning tree
of G is a subset T ✓ E of edges such that the subgraph (V, T ) is both
connected and acyclic. For example, in the graph

1

2
3

4

5

a b

c d

the minimum spanning tree comprises the edges (a, b), (b, d), and
(a, c), for an overall cost of 7.

A graph can have an exponential number of spanning trees, so
exhaustive search is out of the question for all but the smallest
graphs.2 But the MST problem can be solved by clever fast algorithms,

1To review, a graph G = (V,E) has two ingredients: a set V of vertices and
a set E of edges. In an undirected graph, each edge e 2 E corresponds to an
unordered pair {v, w} of vertices (written as e = (v, w) or e = (w, v)). In a directed
graph, each edge (v, w) is an ordered pair, with the edge directed from v to w.
The numbers |V | and |E| of vertices and edges are usually denoted by n and m,
respectively.

2For example, Cayley’s formula is a famous result from combinatorics stating
that the n-vertex complete graph (in which all the

�

n

2

�

possible edges are present)
has exactly nn�2 different spanning trees. This is bigger than the estimated
number of atoms in the known universe when n � 50.
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such as Prim’s and Kruskal’s algorithms. Deploying appropriate
data structures (heaps and union-find, respectively), both algorithms
have blazingly fast implementations, with a running time of O((m+
n) log n), where m and n are the number of edges and vertices of the
input graph, respectively.

19.1.2 The Traveling Salesman Problem

Another famous problem, absent from Parts 1–3 but prominent in
this book, is the traveling salesman problem (TSP). Its definition is
almost the same as that of the MST problem, except with tours—
simple cycles that span all vertices—playing the role of spanning
trees.

Problem: Traveling Salesman Problem (TSP)

Input: A complete undirected graph G = (V,E) and a
real-valued cost ce for each edge e 2 E.3

Output: A tour T ✓ E of G with the minimum-possible
sum

P
e2T ce of edge costs.

Formally, a tour is a cycle that visits every vertex exactly once (with
two edges incident to each vertex).

Quiz 19.1

In an instance G = (V,E) of the TSP with n � 3 vertices,
how many distinct tours T ✓ E are there? (In the answers
below, n! = n · (n� 1) · (n� 2) · · · 2 · 1 denotes the factorial
function.)

a) 2n

b) 1
2(n� 1)!

3In a complete graph, all
�

n

2

�

possible edges are present. The assumption that
the graph is complete is without loss of generality, as an arbitrary input graph
can be harmlessly turned into a complete graph by adding in all the missing edges
and giving them very high costs.
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c) (n� 1)!

d) n!

(See Section 19.1.4 for the solution and discussion.)

If all else fails, the TSP can be solved by exhaustively enumerating
all of the (finitely many) tours and remembering the best one. Try
exhaustive search out on a small example.

Quiz 19.2

What is the minimum sum of edge costs of a tour of the
following graph? (Each edge is labeled with its cost.)

b

c

1

2

3

4

6

a

d

5

a) 12

b) 13

c) 14

d) 15

(See Section 19.1.4 for the solution and discussion.)

The TSP can be feasibly solved by exhaustive search for only the
smallest of instances. Can we do better? Could there be, analogous
to the MST problem, an algorithm that magically homes in on the
minimum-cost needle in the exponential-size haystack of traveling
salesman tours? Despite the superficial similarity of the statements of
the two problems, the TSP appears to be far more difficult to solve
than the MST problem.
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19.1.3 Trying and Failing to Solve the TSP

I could tell you a cheesy story about, um, a traveling salesman, but this
would do a disservice to the TSP, which is actually quite fundamental.
Whenever you have a bunch of tasks to complete in a sequence, with
the cost or time for carrying out a task dependent on the preceding
task, you’re talking about the TSP in disguise.

For example, tasks could represent cars to be assembled in a
factory, with the time required to assemble a car equal to a fixed cost
(for assembly) plus a setup cost that depends on how different the
factory configurations are for this and the previous car. Assembling
all the cars as quickly as possible boils down to minimizing the sum
of the setup costs, which is exactly the TSP.

For a very different application, imagine that you’ve collected a
bunch of overlapping fragments of a genome and would like to reverse
engineer their most plausible ordering. Given a “plausibility measure”
that assigns a cost to each fragment pair (for example, derived from
the length of their longest common substring), this ordering problem
also boils down to the TSP.4

Seduced by the practical applications and aesthetic appeal of
the TSP, many of the greatest minds in optimization have, since at
least the early 1950s, devoted a tremendous amount of effort and
computation to solving large-scale instances of the TSP.5 Despite the
decades and intellectual firepower involved:

Fact

As of this writing (in 2020), there is no known fast algorithm
for the TSP.

What do we mean by a “fast” algorithm? Back in Part 1, we agreed
that:

4Both applications are arguably better modeled as traveling salesman path
problems, in which the goal is to compute a minimum-cost cycle-free path that
visits every vertex (without going back to the starting vertex). Any algorithm
solving the TSP can be easily converted into one solving the path version of the
problem, and vice versa (Problem 19.7).

5Readers curious about the history or additional applications of the TSP
should check out the first four chapters of the book The Traveling Salesman
Problem: A Computational Study, by David L. Applegate, Robert E. Bixby, Vašek
Chvátal, and William J. Cook (Princeton University Press, 2006).
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A “fast algorithm” is an algorithm whose worst-case
running time grows slowly with the input size.

And what do we mean by “grows slowly”? For much of this book series,
the holy grail has been algorithms that run in linear or almost-linear
time. Forget about such blazingly fast algorithms—for the TSP, no
one even knows of an algorithm that always runs in O(n100) time on
n-vertex instances, or even O(n10000) time.

There are two competing explanations for the dismal state-of-the-
art: (i) there is a fast algorithm for the TSP but no one’s been smart
enough to find it yet; or (ii) no such algorithm exists. We do not
know which explanation is correct, though most experts believe in
the second one.

Speculation

No fast algorithm for the TSP exists.

As early as 1967, Jack Edmonds wrote:

I conjecture that there is no good algorithm for the trav-
eling saleman [sic] problem. My reasons are the same as
for any mathematical conjecture: (1) It is a legitimate
mathematical possibility, and (2) I do not know.6

Unfortunately, the curse of intractability is not confined to the
TSP. We’ll see that many other practically relevant problems are
similarly afflicted.

19.1.4 Solutions to Quizzes 19.1–19.2

Solution to Quiz 19.1

Correct answer: (b). There is an intuitive correspondence between
vertex orderings (of which there are n!) and tours (which visit the
vertices once each, in some order), so answer (d) is a natural guess.
However, this correspondence counts each tour in 2n different ways:

6From the paper “Optimum Branchings,” by Jack Edmonds (Journal of
Research of the National Bureau of Standards, Series B, 1967). By a “good”
algorithm, Edmonds means an algorithm with a running time bounded above by
some polynomial function of the input size.
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once for each of the n choices of the initial vertex and once for each of
the two directions of traversing the tour. Thus, the total number of
tours is n!/2n = 1

2(n� 1)!. For example, with n = 4, there are three
distinct tours:

b

c

a

d

b

c

a

d

b

c

a

d

Solution to Quiz 19.2

Correct answer: (b). We can enumerate tours by starting with
the vertex a and trying all six possible orderings of the other three
vertices, with the understanding that the tour finishes by traveling
from the last vertex back to a. (Actually, this enumeration counts
each tour twice, once in each direction.) The results:

Vertex Ordering Cost of Corresponding Tour
a, b, c, d or a, d, c, b 15
a, b, d, c or a, c, d, b 13
a, c, b, d or a, d, b, c 14

The shortest tour is the second one, with a total cost of 13.

19.2 Possible Levels of Expertise

Some computational problems are easier than others. The point of
the theory of NP-hardness is to classify, in a precise sense, problems
as either “computationally easy” (like the MST problem) or “computa-
tionally difficult” (like the TSP). This book is aimed both at readers
looking for a white-belt primer on the topic and at those pursuing
black-belt expertise. This section offers guidance on how to approach
the rest of the book, as a function of your goals and constraints.

What are your current and desired levels of expertise in recognizing
and tackling NP-hard problems?7

7What’s up with the term “NP”? See Section 19.6.
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Level 0: “What’s an NP-hard problem?”

Level 0 is total ignorance—you’ve never heard of NP-hardness and
are unaware that many practically relevant computational problems
are widely believed to be unsolvable by any fast algorithm. If I’ve
done my job, this book should be accessible even to level-0 readers.

Level 1: “Oh, the problem is NP-hard? I guess we should either
reformulate the problem, scale down our ambitions, or invest a lot
more resources into solving it.”

Level 1 represents cocktail-party-level awareness and at least an
informal understanding of what NP-hardness means.8 For example,
are you managing a software project with an algorithmic or optimiza-
tion component? If so, you should acquire at least level-1 knowledge,
in case one of your team members bumps into an NP-hard problem
and wants to discuss the possible next steps. To raise your level to 1,
study Sections 19.3, 19.4, and 19.6.

Level 2: “Oh, the problem is NP-hard? Give me a chance to apply
my algorithmic expertise and see how far I can get.”

The biggest marginal empowerment for software engineers comes
from reaching level 2, and acquiring a rich toolbox for develop-
ing practically useful algorithms for solving or approximating NP-
hard problems. Serious programmers should shoot for this level (or
above). Happily, all the algorithmic paradigms that we developed
for polynomial-time solvable problems in Parts 1–3 are also useful
for making headway on NP-hard problems. The goal of Chapters 20
and 21 is to bring you up to level 2; see also Section 19.4 for an
overview and Chapter 24 for a detailed case study of the level-2
toolbox in action in a high-stakes application.

Level 3: “Tell me about your computational problem. [. . . listens
carefully . . . ] My condolences, your problem is NP-hard.”

At level 3, you can quickly recognize NP-hard problems when they
arise in practice (at which point you can switch to applying your
level-2 skills). You know several famous NP-hard problems and also

8Speaking, as always, about sufficiently nerdy cocktail parties!
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how to prove that additional problems are NP-hard. Specialists in
algorithms should master these skills. For example, I frequently draw
on level-3 knowledge when advising colleagues, students, or engineers
in industry on algorithmic problems. Chapter 22 provides a boot
camp for upping your game to level 3; see also Section 19.5 for an
overview.

Level 4: “Allow me to explain the P 6= NP conjecture to you on this
whiteboard.”

Level 4, the most advanced level, is for budding theoreticians
and anyone seeking a rigorous mathematical understanding of NP-
hardness and the P vs. NP question. If that qualifier doesn’t scare
you off, the optional Chapter 23 is for you.

19.3 Easy and Hard Problems

An oversimplification of the “easy vs. hard” dichotomy proposed by
the theory of NP-hardness is:

easy $ can be solved with a polynomial-time algorithm;
hard $ requires exponential time in the worst case.

This summary of NP-hardness overlooks several important subtleties
(see Section 19.3.9). But ten years from now, if you remember only a
few words about the meaning of NP-hardness, these are good ones.

19.3.1 Polynomial-Time Algorithms

To segue into the definition of an “easy” problem, let’s recap the
running times of some famous algorithms that you may have seen (for
example, in Parts 1–3):

Problem Algorithm Running Time
Sorting MergeSort O(n log n)

Strong Components Kosaraju O(m+ n)
Shortest Paths Dijkstra O((m+ n) log n)

MST Kruskal O((m+ n) log n)
Sequence Alignment NW O(mn)

All-Pairs Shortest Paths Floyd-Warshall O(n3)
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The exact meaning of n and m is problem-specific, but in all cases
they are closely related to the input size.9 The key takeaway from
this table is that, while the running times of these algorithms vary, all
of them are bounded above by some polynomial function of the input
size. In general:

Polynomial-Time Algorithms

A polynomial-time algorithm is an algorithm with worst-case
running time O(nd), where n denotes the input size and d
is a constant (independent of n).

The six algorithms listed at the beginning of this section are all
polynomial-time algorithms (with reasonably small exponents d).10

Do all natural algorithms run in polynomial time? No. For example,
for many problems, exhaustive search runs in time exponential in the
input size (as noted in footnote 2 for the MST problem). There’s
something special about the clever polynomial-time algorithms that
we’ve studied so far.

19.3.2 Polynomial vs. Exponential Time

Don’t forget that any exponential function eventually grows much
faster than any polynomial function. There’s a huge difference between
typical polynomial and exponential running times, even for very small
instances. The plot at the top of the next page (of the polynomial
function 100n2 versus the exponential function 2n) is representative.

Moore’s law asserts that the computing power available for a given
price doubles every 1–2 years. Does this mean that the difference be-
tween polynomial-time and exponential-time algorithms will disappear
over time? Actually, the exact opposite is true! Our computational
ambitions grow with our computational power, and as time goes on
we consider increasingly large input sizes and suffer an increasingly
big gulf between polynomial and exponential running times.

9In sorting, n denotes the length of the input array; in the four graph problems,
n and m denote the number of vertices and edges, respectively; and in the sequence
alignment problem, n and m denote the lengths of the two input strings.

10Remember that a logarithmic factor can be bounded above (sloppily) by a
linear factor; for example, if T (n) = O(n log n), then T (n) = O(n2) as well.
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Imagine that you have a fixed time budget, like an hour or a day.
How does the solvable input size scale with additional computing
power? With a polynomial-time algorithm, it increases by a constant
factor (such as from 1,000,000 to 1,414,213) with every doubling of
your computing power.11 With an algorithm that runs in time pro-
portional to 2n, where n is the input size, each doubling of computing
power increases the solvable input size by only one (such as from
1,000,000 to 1,000,001)!

19.3.3 Easy Problems

The theory of NP-hardness defines “easy” problems as those solvable
by a polynomial-time algorithm, or equivalently by an algorithm
for which the solvable input size (for a fixed time budget) scales
multiplicatively with increasing computational power:12

Polynomial-Time Solvable Problems

A computational problem is polynomial-time solvable if there
is a polynomial-time algorithm that solves it correctly for
every input.

11With a linear-time algorithm, you could solve problems that are twice as
big; with a quadratic-time algorithm,

p
2 ⇡ 1.414 times as big; with a cubic-time

algorithm, 3
p
2 ⇡ 1.26 as big; and so on.

12This definition was proposed independently by Alan Cobham and Jack
Edmonds (see footnote 6) in the mid-1960s.
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For example, the six problems listed at the beginning of this section
are all polynomial-time solvable.

Technically, a (useless-in-practice) algorithm that runs in O(n100)
time on size-n inputs counts as a polynomial-time algorithm, and
a problem solved by such an algorithm qualifies as polynomial-time
solvable. Turning this statement around, if a problem like the TSP
is not polynomial-time solvable, there is not even an O(n100)-time or
O(n10000)-time algorithm that solves it (!).

Courage, Definitions, and Edge Cases

The identification of “easy” with “polynomial-time
solvable” is imperfect; a problem might be solved in
theory (by an algorithm that technically runs in poly-
nomial time) but not in reality (by an empirically
fast algorithm), or vice versa. Anyone with the guts
to write down a precise mathematical definition (like
polynomial-time solvability) to express a messy real-
world concept (like “easy to solve via computer in the
physical world”) must be ready for friction between
the binary nature of the definition and the fuzziness
of reality. The definition will inevitably include or
exclude some edge cases that you wish had gone the
other way, but this is no excuse to ignore or dismiss
a good definition. Polynomial-time solvability has
been unreasonably effective at classifying problems as
“easy” or “hard” in a way that accords with empirical
experience. With a half-century of evidence behind us,
we can confidently say that natural polynomial-time
solvable problems typically can be solved with prac-
tical general-purpose algorithms, and that problems
believed to not be polynomial-time solvable typically
require significantly more work and domain expertise.

19.3.4 Relative Intractability

Suppose we suspected that a problem like the TSP is “not easy,”
meaning unsolvable by any polynomial-time algorithm (no matter
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how large the polynomial). How would we amass evidence that this is,
in fact, the case? The most convincing argument, of course, would be
an airtight mathematical proof. But the status of the TSP remains
in limbo to this day: No one has found a polynomial-time algorithm
that solves it, nor has anyone found a proof that no such algorithm
exists.

How can we develop a theory that usefully differentiates “tractable”
and “intractable” problems despite our deficient understanding of what
algorithms can do? The brilliant conceit behind the theory of NP-
hardness is to classify problems based on their relative (rather than
absolute) difficulty and to declare a problem as “hard” if it is “at least
as hard as” an overwhelming number of other unsolved problems.

19.3.5 Hard Problems

The many failed attempts at solving the TSP (Section 19.1.3) provide
circumstantial evidence that the problem may not be polynomial-time
solvable.

Weak Evidence of Hardness

A polynomial-time algorithm for the TSP would solve a
problem that has resisted the efforts of hundreds (if not
thousands) of brilliant minds over many decades.

Can we do better, meaning build a more compelling case of in-
tractability? This is where the magic and power of NP-hardness comes
in. The big idea is to show that a problem like the TSP is at least as
hard as a vast array of unsolved problems from many different scien-
tific fields—in fact, all problems for which you quickly know a solution
when you see one. Such an argument would imply that a hypothetical
polynomial-time algorithm for the TSP would automatically solve all
these other unsolved problems, as well!

Strong Evidence of Hardness

A polynomial-time algorithm for the TSP would solve thou-
sands of problems that have resisted the efforts of tens (if
not hundreds) of thousands of brilliant minds over many
decades.
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In effect, the theory of NP-hardness shows that thousands of com-
putational problems (including the TSP) are variations of the same
problem in disguise, all destined to suffer identical computational
fates. If you’re trying to devise a polynomial-time algorithm for an
NP-hard problem like the TSP, you’re inadvertently attempting to
also come up with such algorithms for these thousands of related
problems.13

We call a problem NP-hard if there is strong evidence of intractabil-
ity in the sense above:

NP-Hardness (Main Idea)

A problem is NP-hard if it is at least as difficult as every
problem with easily recognized solutions.

This idea will be made 100% precise in Section 23.3.4; until then, we’ll
work with a provisional definition of NP-hardness that is phrased in
terms of a famous mathematical conjecture, the “P 6= NP conjecture.”

19.3.6 The P 6= NP Conjecture

Perhaps you’ve heard of the P 6= NP conjecture. What is it, exactly?
Section 23.4 provides the precise mathematical statement; for now,
we’ll settle for an informal version that should resonate with anyone
who’s had to grade student homework:

The P 6= NP Conjecture (Informal Version)

Checking an alleged solution to a problem can be fundamen-
tally easier than coming up with your own solution from
scratch.

13Playing devil’s advocate, hundreds (if not thousands) of brilliant minds
have likewise failed to prove the other direction, that the TSP is not polynomial-
time solvable. Symmetrically, doesn’t this suggest that perhaps no such proof
exists? The difference is that we seem far better at proving solvability (with
fast algorithms known for countless problems) than unsolvability. Thus, if the
TSP were polynomial-time solvable, it would be odd that we haven’t yet found a
polynomial-time algorithm for it; if not, no surprise that we haven’t yet figured
out how to prove it.
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The “P” and “NP” in the conjecture refer to problems that can be
solved from scratch in polynomial time and those whose solutions can
be checked in polynomial time, respectively; for formal definitions,
see Chapter 23.

For example, checking someone’s proposed solution to a Sudoku
or KenKen puzzle sure seems easier than working it out yourself. Or,
in the context of the TSP, it’s easy to verify that someone’s proposed
traveling salesman tour is good (with a total cost of, say, at most 1000)
by adding up the costs of its edges; it’s not so clear how you would
quickly come up with your own such tour from scratch. Thus, intuition
strongly suggests that the P 6= NP conjecture is true.14,15

19.3.7 Provisional Definition of NP-Hardness

Provisionally, we’ll call a problem NP-hard if, assuming that the
P 6= NP conjecture is true, it cannot be solved by any polynomial-
time algorithm.

NP-Hard Problem (Provisional Definition)

A computational problem is NP-hard if a polynomial-time
algorithm solving it would refute the P 6= NP conjecture.

Thus, any polynomial-time algorithm for any NP-hard problem (such
as the TSP) would automatically imply that the P 6= NP conjecture
is false and trigger an algorithmic bounty that seems too good to
be true: a polynomial-time algorithm for every single problem for
which solutions can be recognized in polynomial time. In the likely
event that the P 6= NP conjecture is true, no NP-hard problem
is polynomial-time solvable, not even with an algorithm that runs
in O(n100) or O(n10000) time on size-n inputs.

14We’ll see in Problem 23.2 that the P 6= NP conjecture is equivalent to
Edmonds’s conjecture (page 6) stating that the TSP cannot be solved in polynomial
time.

15Why isn’t it “obvious” that the P 6= NP conjecture is true? Because the
space of polynomial-time algorithms is unfathomably rich, with many ingenious
inhabitants. (Perhaps you’ve come across Strassen’s mind-blowing subcubic
matrix multiplication algorithm, for example in Chapter 3 of Part 1?) Proving
that none of the infinitely many candidate algorithms solve the TSP seems pretty
intimidating!
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19.3.8 Randomized and Quantum Algorithms

Our definition of polynomial-time solvability on page 11 contemplates
only deterministic algorithms. As we know, randomization can be
a powerful tool in algorithm design (for example, in the QuickSort
algorithm). Can randomized algorithms escape the binds of NP-
hardness?

More generally, what about much-hyped quantum algorithms? (As
it turns out, randomized algorithms can be viewed as a special case
of quantum algorithms.) It’s true that large-scale, general-purpose
quantum computers (if realized) would be a game-changer for a
handful of problems, including the extremely important problem of
factoring large integers. However, the factoring problem is not known
or believed to be NP-hard, and experts conjecture that even quantum
computers cannot solve NP-hard problems in polynomial time. The
challenges posed by NP-hardness are not going away anytime soon.16

19.3.9 Subtleties

The oversimplified discussion at the beginning of this section (page 9)
suggested that a “hard” problem would require exponential time to
solve in the worst case. Our provisional definition in Section 19.3.7
says something different: An NP-hard problem is one that, assuming
the P 6= NP conjecture, cannot be solved by any polynomial-time
algorithm.

The first discrepancy between the two definitions is that NP-
hardness rules out polynomial-time solvability only if the P 6= NP
conjecture is true (and this remains an open question). If the conjec-
ture is false, almost all the NP-hard problems discussed in this book
are, in fact, polynomial-time solvable.

The second discrepancy is that, even in the likely event that the
P 6= NP conjecture is true, NP-hardness implies only that super-

16A majority of experts believe that every polynomial-time randomized al-
gorithm can be derandomized and turned into an equivalent polynomial-time
deterministic algorithm (perhaps with a larger polynomial in the running time
bound). If true, the P 6= NP conjecture would automatically apply to randomized
algorithms as well.

By contrast, a majority of experts believe that quantum algorithms are fun-
damentally more powerful than classical algorithms (but not powerful enough to
solve NP-hard problems in polynomial time). Isn’t it amazing—and exciting—how
much we still don’t know?
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polynomial (as opposed to exponential) time is required in the worst
case to solve the problem.17 However, for most natural NP-hard
problems, including all those studied in this book, experts generally
believe that exponential time is indeed required in the worst case.
This belief is formalized by the “Exponential Time Hypothesis,” a
stronger form of the P 6= NP conjecture (see Section 23.5).18

Finally, while 99% of the problems that you’ll come across will
be either “easy” (polynomial-time solvable) or “hard” (NP-hard), a
few rare examples appear to lie in between. Thus, our “dichotomy”
between easy and hard problems covers most, but not all, practically
relevant computational problems.19

19.4 Algorithmic Strategies for NP-Hard Problems

Suppose you’ve identified a computational problem on which the
success of your project rests. Perhaps you’ve spent the last sev-
eral weeks throwing the kitchen sink at it—all the algorithm design
paradigms you know, every data structure in the book, all the for-free
primitives—but nothing works. Finally, you realize that the issue
is not a deficiency of ingenuity on your part, it’s the fact that the
problem is NP-hard. Now you have an explanation of why your weeks
of effort have come to naught, but that doesn’t diminish the problem’s
significance to your project. What should you do?

19.4.1 General, Correct, Fast (Pick Two)

The bad news is that NP-hard problems are ubiquitous; right now,
one might well be lurking in your latest project. The good news is that
NP-hardness is not a death sentence. NP-hard problems can often

17Examples of running time bounds that are super-polynomial but subexpo-
nential in the input size n include nlog2 n and 2

p
n.

18None of the computational problems studied in this book series require more
than exponential time to solve, but other problems do. One famous example is
the “halting problem,” which can’t be solved in any finite (let alone exponential)
amount of time; see also Section 23.1.2.

19Two important problems that are believed to be neither polynomial-time
solvable nor NP-hard are factoring (finding a non-trivial factor of an integer or
determining that none exist) and the graph isomorphism problem (determining
whether two graphs are identical up to a renaming of the vertices). Subexponential-
time (but not polynomial-time) algorithms are known for both problems.
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(but not always) be solved in practice, at least approximately, through
sufficient investment of resources and algorithmic sophistication.

NP-hardness throws down the gauntlet to the algorithm designer
and tells you where to set your expectations. You should not expect
a general-purpose and always-fast algorithm for an NP-hard problem,
akin to those we’ve seen for problems such as sorting, shortest paths, or
sequence alignment. Unless you’re lucky enough to face only unusually
small or well-structured inputs, you’re going to have to work pretty
hard to solve the problem, and possibly also make some compromises.

What kinds of compromises? NP-hardness rules out algorithms
with the following three desirable properties (assuming the P 6= NP
conjecture):

Three Properties (You Can’t Have Them All)

1. General-purpose. The algorithm accommodates all
possible inputs of the computational problem.

2. Correct. For every input, the algorithm correctly
solves the problem.

3. Fast. For every input, the algorithm runs in polyno-
mial time.

Accordingly, you can choose from among three types of compromises:
compromising on generality, compromising on correctness, and com-
promising on speed. All three strategies are useful and common in
practice.

The rest of this section elaborates on these three algorithmic
strategies; Chapters 20 and 21 are deep dives into the latter two.
As always, our focus is on powerful and flexible algorithm design
principles that apply to a wide range of problems. You should take
these principles as a starting point and run with them, guided by
whatever domain expertise you have for the specific problem that you
need to solve.

19.4.2 Compromising on Generality

One strategy for making progress on an NP-hard problem is to give
up on general-purpose algorithms and focus instead on special cases
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of the problem relevant to your application. In the best-case scenario,
you can identify domain-specific constraints on inputs and design an
algorithm that is always correct and always fast on this subset of
inputs. Graduates of the dynamic programming boot camp in Part 3
have already seen two examples of this strategy.

Weighted independent set. In this problem, the input is an
undirected graph G = (V,E) and a nonnegative weight wv for each
vertex v 2 V ; the goal is to compute an independent set S ✓ V
with the maximum-possible sum

P
v2S wv of vertex weights, where

an independent set is a subset S ✓ V of mutually non-adjacent ver-
tices (with (v, w) /2 E for every v, w 2 S). For example, if edges
represent conflicts (between people, courses, etc.), independent sets
correspond to conflict-free subsets. This problem is NP-hard in gen-
eral, as we’ll see in Section 22.5. The special case of the problem
in which G is a path graph (with vertices v1, v2, . . . , vn and edges
(v1, v2), (v2, v3), . . . , (vn�1, vn)) can be solved in linear time using a
dynamic programming algorithm. This algorithm can be extended to
accommodate all acyclic graphs (see Problem 16.3 of Part 3).

Knapsack. In this problem, the input is specified by 2n+ 1 posi-
tive integers: n item values v1, v2, . . . , vn, n item sizes s1, s2, . . . , sn,
and a knapsack capacity C. The goal is to compute a subset
S ✓ {1, 2, . . . , n} of items with the maximum-possible sum

P
i2S vi of

values, subject to having total size
P

i2S si at most C. In other words,
the objective is to make use of a scarce resource in the most valuable
way possible.20 This problem is NP-hard, as we’ll see in Section 22.8
and Problem 22.7. There is an O(nC)-time dynamic programming
algorithm for the problem; this is a polynomial-time algorithm in the
special case in which C is bounded by a polynomial function of n.

A Polynomial-Time Algorithm for Knapsack?

Why doesn’t the O(nC)-time algorithm for the knap-
sack problem refute the P 6= NP conjecture? Because
this is not a polynomial-time algorithm. The input

20For example, on which goods and services should you spend your paycheck
to get the most value? Or, given an operating budget and a set of job candidates
with differing productivity levels and requested salaries, whom should you hire?
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size—the number of keystrokes needed to specify the
input to a computer—scales with the number of dig-
its in a number, not the magnitude of a number. It
doesn’t take a million keystrokes to communicate the
number “1,000,000”—only 7 (or 20 if you’re working
base-2). For example, in an instance with n items,
knapsack capacity 2n, and all item values and sizes
at most 2n, the input size is O(n2)—O(n) numbers
with O(n) digits each—while the running time of
the dynamic programming algorithm is exponentially
larger (proportional to n · 2n).

The algorithmic strategy of designing fast and correct algorithms
(for special cases) uses the entire algorithmic toolbox that we de-
veloped in Parts 1–3. For this reason, no chapter of this book is
dedicated to this strategy. We will, however, encounter along the way
further examples of polynomial-time solvable special cases of NP-hard
problems, including the traveling salesman, satisfiability, and graph
coloring problems (see Problems 19.8 and 21.12).

19.4.3 Compromising on Correctness

The second algorithmic strategy, which is particularly popular in
time-critical applications, is to insist on generality and speed at the
expense of correctness. Algorithms that are not always correct are
sometimes called heuristic algorithms.21

Ideally, a heuristic algorithm is “mostly correct.” This could mean
one or both of two things:

Relaxations of Correctness

1. The algorithm is correct on “most” inputs.22

2. The algorithm is “almost correct” on every input.

21In Parts 1–3, there is exactly one example of a mostly-but-not-always-correct
solution: bloom filters, a small-space data structure that supports super-fast
insertions and lookups, at the expense of occasional false positives.

22For example, one typical implementation of a bloom filter has a 2% false
positive rate, with 98% of lookups answered correctly.
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The second property is easiest to interpret for optimization problems,
in which the goal is to compute a feasible solution (like a traveling
salesman tour) with the best objective function value (like the min-
imum total cost). “Almost correct” then means that the algorithm
outputs a feasible solution with objective function value close to the
best possible, like a traveling salesman tour with total cost not much
more than that of an optimal tour.

Your existing algorithmic toolbox for designing fast exact algo-
rithms is directly useful for designing fast heuristic algorithms. For
example, Sections 20.1–20.3 describe greedy heuristics for problems
ranging from scheduling to influence maximization in social networks.
These heuristic algorithms come with proofs of “approximate correct-
ness” guaranteeing that, for every input, the objective function value
of the algorithm’s output is within a modest constant factor of the
best-possible objective function value.23

Sections 20.4–20.5 augment your toolbox with the local search
algorithm design paradigm. Local search and its generalizations are
unreasonably effective in practice at tackling many NP-hard problems,
including the TSP, even though local search algorithms rarely possess
compelling approximate correctness guarantees.

19.4.4 Compromising on Worst-Case Running Time

The final strategy is appropriate for applications in which you cannot
afford to compromise on correctness and are therefore unwilling to
consider heuristic algorithms. Every correct algorithm for an NP-
hard problem must run in super-polynomial time on some inputs
(assuming the P 6= NP conjecture). The goal, therefore, is to design
an algorithm that is as fast as possible—at a minimum, one that
improves dramatically on naive exhaustive search. This could mean
one or both of two things:

Relaxations of Polynomial Running Time

1. The algorithm typically runs quickly (for example, in
polynomial time) on the inputs that are relevant to

23Some authors call such algorithms “approximation algorithms” while reserving
the term “heuristic algorithms” for algorithms that lack such proofs of approximate
correctness.
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your application.

2. The algorithm is faster than exhaustive search on every
input.

In the second case, we should still expect the algorithm to run in
exponential time on some inputs—after all, the problem is NP-hard.
For example, Section 21.1 employs dynamic programming to beat
exhaustive search for the TSP, reducing the running time from O(n!)
to O(n2 · 2n), where n is the number of vertices. Section 21.2 com-
bines randomization with dynamic programming to beat exhaustive
search for the problem of finding long paths in graphs (with running
time O((2e)k · m) rather than O(nk), where n and m denote the
number of vertices and edges in the input graph, k the target path
length, and e = 2.718 . . .).

Making progress on relatively large instances of NP-hard prob-
lems typically requires additional tools that do not possess better-
than-exhaustive-search running time guarantees but are unreasonably
effective in many applications. Sections 21.3–21.5 outline how to
stand on the shoulders of experts who, over several decades, have
developed remarkably potent solvers for mixed integer programming
(“MIP”) and satisfiability (“SAT”) problems. Many NP-hard optimiza-
tion problems (such as the TSP) can be encoded as mixed integer
programming problems. Many NP-hard feasibility-checking problems
(such as checking for a conflict-free assignment of classes to classrooms)
are easily expressed as satisfiability problems. Whenever you face
an NP-hard problem that can be easily specified as a MIP or SAT
problem, try applying the latest and greatest solvers to it. There’s
no guarantee that a MIP or SAT solver will solve your particular
instance in a reasonable amount of time—the problem is NP-hard,
after all—but they constitute cutting-edge technology for tackling
NP-hard problems in practice.

19.4.5 Key Takeaways

If you’re shooting for level-1 knowledge of NP-hardness (Section 19.2),
the most important things to remember are:
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Three Facts About NP-Hard Problems

1. Ubiquity: Practically relevant NP-hard problems are
everywhere.

2. Intractability: Under a widely believed mathematical
conjecture, no NP-hard problem can be solved by any
algorithm that is always correct and always runs in
polynomial time.

3. Not a death sentence: NP-hard problems can often
(but not always) be solved in practice, at least approx-
imately, through sufficient investment of resources and
algorithmic sophistication.

19.5 Proving NP-Hardness: A Simple Recipe

How can you recognize NP-hard problems when they arise in your
own work, so that you can adjust your ambitions accordingly and
abandon the search for an algorithm that is general-purpose, correct,
and fast? Nobody wins if you spend weeks or months of your life
inadvertently trying to refute the P 6= NP conjecture.

First, know a collection of simple and common NP-hard problems
(like the 19 problems in Chapter 22); in the simplest scenario, your
application will literally boil down to one of these problems. Second,
sharpen your ability to spot reductions between computational prob-
lems. Reducing one problem to another can spread computational
tractability from the latter to the former. Turning this statement on
its head, such a reduction can also spread computational intractability
in the opposite direction, from the former problem to the latter. Thus,
to show that a computational problem that you care about is NP-hard,
all you need to do is reduce a known NP-hard problem to it.

The rest of this section elaborates on these points and provides
one simple example; for a deep dive, see Chapter 22.

19.5.1 Reductions

Any problem B that is at least as hard as an NP-hard problem A is
itself NP-hard. The phrase “at least as hard as” can be formalized
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using reductions.

Reductions

A problem A reduces to another problem B if an algorithm
that solves B can be easily translated into one that solves A
(Figure 19.1).

When discussing NP-hard problems, “easily translate” means that
problem A can be solved using at most a polynomial (in the input
size) number of invocations of a subroutine that solves problem B,
along with a polynomial amount of additional work (outside of the
subroutine calls).

subroutine for B

algorithm for A

input (problem A)
inputs (problem B) solutions (problem B) 

solution (problem A)

Figure 19.1: If the problem A reduces to the problem B, then A can be
solved using a polynomial (in the input size) number of calls to a subroutine
for B, plus a polynomial amount of additional work.

19.5.2 Using Reductions to Design Fast Algorithms

Seasoned algorithm designers are always on the lookout for reductions—
why solve a problem from scratch if you don’t have to? Examples
from Parts 1–3 related to the problems listed in Section 19.3.1 in-
clude:

Familiar Examples of Reductions

1. Finding the median of an array of integers reduces to
the problem of sorting the array. (After sorting the
array, return the middle element.)

2. The all-pairs shortest path problem reduces to the
single-source shortest path problem. (Invoke a single-
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source shortest-path algorithm once with each possible
choice of a starting vertex in the input graph.)

3. The longest common subsequence problem reduces to
the sequence alignment problem. (Invoke a sequence
alignment algorithm with the two input strings, a
penalty of 1 per inserted gap, and a very large penalty
for each mismatch of two different symbols.)24

These reductions take after the light side of the force and serve the
honorable mission of creating new fast algorithms from old ones,
thereby advancing the frontier of computational tractability. For
example, the first reduction translates the MergeSort algorithm into
an O(n log n)-time median-finding algorithm or, more generally, any
T (n)-time sorting algorithm into an O(T (n))-time median-finding
algorithm, where n is the array length. The second reduction trans-
lates any T (m,n)-time algorithm for the single-source shortest path
problem into an O(n · T (m,n))-time algorithm for the all-pairs short-
est path problem, where m and n denote the number of edges and
vertices, respectively; and the third a T (m,n)-time algorithm for the
sequence alignment problem into an O(T (m,n))-time algorithm for
the longest common subsequence problem, where m and n denote the
lengths of the two input strings.

Quiz 19.3

Suppose that a problem A can be solved by invoking a sub-
routine for a problem B at most T1(n) times and performing
at most T2(n) additional work (outside of the subroutine
calls), where n denotes the input size. Provided with a
subroutine that solves problem B in time at most T3(n) on
size-n inputs, how much time do you need to solve prob-
lem A? (Choose the strongest true statement. Assume
that a program must use at least s primitive operations to
construct a size-s input to a subroutine call.)

24Recall that an instance of the sequence alignment problem is specified by two
strings over some alphabet Σ (like {A,C,G, T}), a penalty ↵xy for each symbol
pair x, y 2 Σ, and a nonnegative gap penalty ↵gap. The goal is to compute an
alignment of the input strings with the minimum-possible total penalty.
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a) T1(n) + T2(n) + T3(n)

b) T1(n) · T2(n) + T3(n)

c) T1(n) · T3(n) + T2(n)

d) T1(n) · T3(T2(n)) + T2(n)

(See Section 19.5.5 for the solution and discussion.)

Quiz 19.3 shows that whenever a problem A reduces to another
problem B, any polynomial-time algorithm for B can be translated
into one for A:25

Reductions Spread Tractability

If problem A reduces to problem B and B can be solved by
a polynomial-time algorithm, then A can also be solved by
a polynomial-time algorithm (Figure 19.2).

problem A problem B

reduction

tractability

Figure 19.2: Spreading tractability from B to A: If problem A reduces to
problem B and B is computationally tractable, then A is also computation-
ally tractable.

19.5.3 Using Reductions to Spread NP-Hardness

The theory of NP-hardness follows the dark side of the force, ne-
fariously using reductions to spread the curse of computational in-
tractability (in the opposite direction of Figure 19.2). Let’s turn the

25If the functions T1(n), T2(n), and T3(n) in Quiz 19.3 are each bounded by
a polynomial function of n, so are their sums, products, and compositions. For
example, if T1(n)  a1n

d1 and T2(n)  a2n
d2 , where a1, a2, d1, and d2 are

positive constants (independent of n), then T1(n) · T2(n)  (a1a2)n
(d1+d2) and

T1(T2(n))  (a1a
d1
2 )n(d1d2).
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preceding boxed statement on its head. Suppose that a problem A
reduces to another problem B. Suppose further that A is NP-hard,
meaning that a polynomial-time algorithm for A would refute the
P 6= NP conjecture. Well, a polynomial-time algorithm for B would
automatically lead to one for A (because A reduces to B); this, in
turn, would refute the P 6= NP conjecture. In other words, B is also
NP-hard!

Reductions Spread Intractability

If problem A reduces to problem B and A is NP-hard,
then B is also NP-hard (Figure 19.3).

problem A problem B

reduction

intractability

Figure 19.3: Spreading intractability in the opposite direction, from
A to B: If problem A reduces to problem B and A is computationally
intractable, then B is also computationally intractable.

We therefore have a remarkably simple two-step recipe for proving
that a problem is NP-hard:

How to Prove a Problem Is NP-Hard

To prove that a problem B is NP-hard:

1. Choose an NP-hard problem A.

2. Prove that A reduces to B.

Carrying out the first step requires knowledge of some known NP-hard
problems; Chapter 22 will get you started. The second step builds on
your already-developed skills in finding reductions between problems;
these will be honed further through practice in Chapter 22. Let’s
get the gist of how this recipe works by revisiting a familiar problem:
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the single-source shortest path problem, with negative edge lengths
allowed.

19.5.4 NP-Hardness of Cycle-Free Shortest Paths

In the single-source shortest path problem, the input consists of a
directed graph G = (V,E), a real-valued length `e for each edge e 2 E,
and a starting vertex s 2 V . The length of a path is the sum of the
lengths of its edges. The goal is to compute, for every possible
destination v 2 V , the minimum length dist(s, v) of a directed path
in G from s to v. (If no such path exists, dist(s, v) is defined as +1.)
Importantly, negative edge lengths are allowed.26,27 For example, the
shortest-path distances from s in the graph

s 

v 

t 

1 

-2 

-5 

are dist(s, s) = 0, dist(s, v) = 1, and dist(s, t) = �4.

Negative Cycles

How should we define shortest-path distances in a graph like the
following?
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v 

u 

10 

-4 

w 
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3 

4 -5 

26Remember that paths in a graph might represent abstract sequences of
decisions rather than something physically realizable. For example, if you want to
compute a profitable sequence of financial transactions involving both buying and
selling, you’re looking for a shortest path in a graph with edge lengths that are
both positive and negative.

27In graphs with only nonnegative edge lengths, the single-source shortest
path problem can be solved in blazingly fast fashion by Dijkstra’s algorithm (see
Chapter 9 of Part 2).
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This graph has a negative cycle, meaning a directed cycle for which the
sum of the edge lengths is negative. There is a one-hop s-v path with
length 10. Tacking a cycle traversal at the end produces a five-hop s-v
path with total length 8. Adding a second traversal decreases the
overall length to 6, and so on. If we allow paths with cycles, then this
graph has no shortest s-v path.

The Cycle-Free Shortest Path Problem

An obvious alternative is to forbid paths with cycles, insisting that
every vertex is visited at most once.

Problem: Cycle-Free Shortest Paths (CFSP)

Input: A directed graph G = (V,E), a starting vertex
s 2 V , and a real-valued length `e for each edge e 2 E.

Output: For every v 2 V , the minimum length of a cycle-
free s-v path in G (or +1, if there is no s-v path in G).

Unfortunately, this version of the problem is NP-hard.28

Theorem 19.1 (NP-Hardness of Cycle-Free Shortest Paths)
The cycle-free shortest path problem is NP-hard.

On Lemmas, Theorems, and the Like

In mathematical writing, the most important tech-
nical statements are labeled theorems. A lemma is
a technical statement that assists with the proof of
a theorem (much as a subroutine assists with the
implementation of a larger program). A corollary is a
statement that follows immediately from an already-

28This explains why the Bellman-Ford algorithm (see Chapter 18 of Part 3)—
along with every other polynomial-time shortest-path algorithm—solves only
a special case of the problem (input graphs without negative cycles, in which
shortest paths are automatically cycle-free). Theorem 19.1 shows that, assuming
the P 6= NP conjecture, no such algorithm can compute correct cycle-free shortest-
path distances in general.
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proven result, such as a special case of a theorem.
We use the term proposition for stand-alone techni-
cal statements that are not particularly important in
their own right.

The Directed Hamiltonian Path Problem

We can prove Theorem 19.1 by following the two-step recipe in Sec-
tion 19.5.3. For the first step, we’ll use a famous NP-hard problem
known as the directed Hamiltonian path problem.

Problem: Directed Hamiltonian Path (DHP)

Input: A directed graph G = (V,E), a starting vertex
s 2 V , and an ending vertex t 2 V .

Output: “Yes” if G contains an s-t path visiting every
vertex v 2 V exactly once (called an s-t Hamiltonian path),
and “no” otherwise.

For example, of the two directed graphs

s

t

s

t

the first has an s-t Hamiltonian path (the dashed edges) while the
second does not.

Proof of Theorem 19.1

Section 22.6 proves that the directed Hamiltonian path problem is
NP-hard (again using the two-step recipe in Section 19.5.3). For now,
we’ll take its NP-hardness on faith and move on to the second step
of the recipe, in which we reduce a known NP-hard problem (in this
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case, directed Hamiltonian path) to the problem of interest (cycle-free
shortest paths).

Lemma 19.2 (Reduction from DHP to CFSP) The directed
Hamiltonian path problem reduces to the cycle-free shortest path
problem.

Proof: How can we use a subroutine for the cycle-free shortest path
problem to solve the directed Hamiltonian path problem (recall Fig-
ure 19.1)? Suppose we’re given an instance of the latter problem,
specified by a directed graph G = (V,E), a starting vertex s 2 V ,
and an ending vertex t 2 V . The assumed cycle-free shortest path
subroutine is awaiting a graph (and we have one to offer, our own
input graph G) and a starting vertex s (ditto). It’s not prepared for
an ending vertex, but we can keep mum about t. The subroutine
is expecting to receive real-valued edge lengths, however, so we’ll
have to make some up. We can trick the subroutine into thinking
that long paths (like an s-t Hamiltonian path) are actually short by
giving each edge a negative length. Summarizing, the reduction is
(Figure 19.4):

1. Assign every edge e 2 E a length `e = �1.

2. Compute cycle-free shortest paths using the assumed
subroutine, reusing the same input graph G and start-
ing vertex s.

3. If the length of a shortest cycle-free path from s to t
is �(|V |� 1), return “yes.” Otherwise, return “no.”

To prove that this reduction is correct, we must show that it
returns “yes” whenever the input graph G contains an s-t Hamiltonian
path, and “no” otherwise. In the constructed cycle-free shortest paths
instance, the minimum length of a cycle-free s-t path equals �1 times
the maximum number of hops in a cycle-free s-t path of the original
input graph G. A cycle-free s-t path uses |V |� 1 hops if it’s an s-t
Hamiltonian path (to visit all |V | vertices), and fewer otherwise. So,
if G has an s-t Hamiltonian path, the cycle-free shortest-path distance
from s to t in the constructed instance is �(|V |� 1); otherwise, it is
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Figure 19.4: Example of the reduction in the proof of Lemma 19.2. The
s-t Hamiltonian path in the first graph translates to a cycle-free s-t path
with length �8. The second graph has no s-t Hamiltonian path, and the
minimum length of a cycle-free s-t path is �6.

bigger (that is, less negative). Either way, the reduction returns the
correct answer. QE D29

By the two-step recipe, Lemma 19.2 and the NP-hardness of the
directed Hamiltonian path problem prove Theorem 19.1. Chapter 22
presents many more examples of this recipe in action.

19.5.5 Solution to Quiz 19.3

Correct answer: (d). At first blush, the answer seems to be (c):
Each of the at most T1(n) calls to the subroutine performs at
most T3(n) operations; beyond these calls, the algorithm performs
at most T2(n) operations, for an overall running time of at most
T1(n) · T3(n) + T2(n).

This reasoning is correct for most natural reductions between
problems, including the three examples in Section 19.5.2. Technically,
however, a reduction might, given a size-n input, invoke a subroutine
for B on inputs larger than n. For example, imagine a reduction that
takes as input a graph and, for whatever reason, adds some additional
vertices or edges to it before invoking the subroutine for B. What’s
the worst that could happen? Because the reduction performs at
most T2(n) operations outside of the subroutine calls, it has time only

29“Q.e.d.” is an abbreviation for quod erat demonstrandum and means “that
which was to be demonstrated.” In mathematical writing, it is used at the end of
a proof to mark its completion.
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to write down inputs of problem B of size at most T2(n). Thus, each
of the T1(n) invocations of B requires at most T3(T2(n)) operations,
for an overall running time of T1(n) · T3(T2(n)) + T2(n).

19.6 Rookie Mistakes and Acceptable Inaccuracies

NP-hardness is a pretty technical topic but, at the same time, highly
relevant for practicing algorithm designers and serious programmers.
Outside of textbooks and research papers, computer scientists often
take liberties with the precise mathematical definitions in the interest
of easier communication. Some types of inaccuracies will mark you as
a clueless newbie, while others are culturally acceptable. How would
you ever know which is which? Because I’m going to tell you, right
now.

Rookie Mistake #1

Thinking that “NP” stands for “not polynomial.”

You don’t need to remember what “NP” actually stands for as long
as you avoid this rookie mistake.30

Rookie Mistake #2

Saying that a problem is “an NP problem” or “in NP” instead
of “NP-hard.”

Readers who persevere through Section 23.3 will learn that being “an
NP problem” or “in NP” is actually a good thing, not a bad thing.31

So don’t forget the “-hard” after the “NP.”

Rookie Mistake #3

Thinking that NP-hardness doesn’t matter because NP-hard
problems can generally be solved in practice.

30So, what does it stand for? Section 23.3 provides the historical context, but
in case the suspense is killing you. . . “nondeterministic polynomial time.”

31Specifically, it means that if someone handed you a solution on a silver platter
(like a completed Sudoku puzzle), you could verify its validity in polynomial time.



34 What Is NP-Hardness?

It’s true that NP-hardness is not a death sentence and that NP-hard
problems have been tamed, using sufficient human and computational
investment, in many practical applications; see Chapter 24 for an
in-depth case study. But there are plenty of other applications in
which computational problems have been modified or even abandoned
because of the challenges posed by NP-hardness. (Naturally, people
report their successes in tackling NP-hard problems much more eagerly
than their failures!) If it really were true that no problems are hard
in practice, why would heuristic algorithms be so common? For that
matter, how could modern ecommerce even exist?32

Rookie Mistake #4

Thinking that advances in computer technology will rescue
us from NP-hardness.

Moore’s Law and correspondingly larger input sizes only exacerbate
the issue, with an increasingly big gulf between running times that
are polynomial and those that are not (Section 19.3.2). Quantum
computers enable algorithms that improve on exhaustive search but
appear inadequate for solving any NP-hard problem in polynomial
time (Section 19.3.8).

Rookie Mistake #5

Devising a reduction in the wrong direction.

A reduction from one problem A to another problem B spreads NP-
hardness from A to B, not the other way around (compare Figures 19.2
and 19.3). Because we’re so accustomed to designing reductions
that spread tractability rather than intractability, this is the hardest
mistake to avoid. Whenever you think you’ve proved that a problem
is NP-hard, go back and triple-check that your reduction goes in the
correct direction—the same direction in which you’re attempting to
spread intractability.

32Ecommerce relies on cryptosystems like RSA, the security of which depends
on the computational intractability of factoring large integers. A polynomial-time
algorithm for any NP-hard problem would, via reductions, immediately lead to a
polynomial-time factoring algorithm.
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Acceptable Inaccuracies

Next are three statements that are culturally acceptable despite being
unproven or technically incorrect. None of these will shake anyone’s
confidence in your understanding of NP-hardness.

Acceptable Inaccuracy #1

Assuming that the P 6= NP conjecture is true.

The status of the P 6= NP conjecture remains open, though most
experts are believers. While we wait for our mathematical under-
standing to catch up to our intuition, many treat the conjecture as a
law of nature.

Acceptable Inaccuracy #2

Using the terms “NP-hard” and “NP-complete” interchange-
ably.

“NP-completeness” is a specific type of NP-hardness; the details are
technical and deferred to Section 23.3. The algorithmic implications
are the same either way: Whether NP-complete or NP-hard, the
problem is not polynomial-time solvable (assuming the P 6= NP
conjecture).

Acceptable Inaccuracy #3

Conflating NP-hardness with requiring exponential time in
the worst case.

This is the oversimplified interpretation of NP-hardness from the
beginning of Section 19.3. This conflation is technically inaccurate
(see Section 19.3.9) but faithful to how most experts think about
NP-hardness; no one will bat an eye if you make it yourself.

The Upshot

P A polynomial-time algorithm is one with worst-
case running time O(nd), where n denotes the
input size and d is a constant.
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P A computational problem is polynomial-time
solvable if there is a polynomial-time algorithm
that solves it correctly for every input.

P The theory of NP-hardness equates “easy” with
polynomial-time solvable. Oversimplifying, a
“hard” problem is one requiring exponential time
to solve in the worst case.

P Informally, the P 6= NP conjecture asserts that
checking a solution to a problem can be easier
than coming up with your own from scratch.

P Provisionally, a computational problem is NP-
hard if a polynomial-time algorithm solving it
would refute the P 6= NP conjecture.

P A polynomial-time algorithm for any NP-hard
problem would automatically solve thousands
of problems that have resisted the efforts of
countless brilliant minds over many decades.

P NP-hard problems are ubiquitous.

P To make progress on an NP-hard problem, the
algorithm designer must compromise on gener-
ality, correctness, or speed.

P Fast heuristic algorithms run quickly but are
not always correct. The greedy and local search
paradigms are particularly useful for designing
such algorithms.

P Dynamic programming can improve on exhaus-
tive search for several NP-hard problems.

P Mixed integer programming and satisfiability
solvers constitute cutting-edge technology for
tackling NP-hard problems in practice.
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P Problem A reduces to problem B if A can be
solved using a polynomial number of calls to a
subroutine solving B and a polynomial amount
of additional work.

P Reductions spread tractability: If problem A
reduces to problem B and B can be solved by
a polynomial-time algorithm, then A can also
be solved by a polynomial-time algorithm.

P Reductions spread intractability, in the opposite
direction: If problem A reduces to problem B
and A is NP-hard, then B is also NP-hard.

P To prove that a problem B is NP-hard: (i)
choose an NP-hard problem A; (ii) prove that A
reduces to B.

Test Your Understanding

Problem 19.1 (S) Suppose that a computational problem B that
you care about is NP-hard. Which of the following are true? (Choose
all that apply.)

a) NP-hardness is a “death sentence”; you shouldn’t bother trying
to solve the instances of B that are relevant for your application.

b) If your boss criticizes you for failing to find a polynomial-time
algorithm for B, you can legitimately respond that thousands
of brilliant minds have likewise tried and failed to solve B.

c) You should not try to design an algorithm that is guaranteed
to solve B correctly and in polynomial time for every possible
instance of the problem (unless you’re explicitly trying to refute
the P 6= NP conjecture).

d) Because the dynamic programming paradigm is useful only for
designing exact algorithms, there’s no point in trying to apply
it to problem B.
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Problem 19.2 (S) Which of the following statements are true?
(Choose all that apply.)

a) The MST problem is computationally tractable because the num-
ber of spanning trees of a graph is polynomial in the number n
of vertices and the number m of edges.

b) The MST problem is computationally tractable because there
are at most m possibilities for the total cost of a spanning tree
of a graph.

c) Exhaustive search does not solve the TSP in polynomial time
because a graph has an exponential number of traveling salesman
tours.

d) The TSP is computationally intractable because a graph has an
exponential number of traveling salesman tours.

Problem 19.3 (S) Which of the following statements are true?
(Choose all that apply.)

a) If the P 6= NP conjecture is true, NP-hard problems can never
be solved in practice.

b) If the P 6= NP conjecture is true, no NP-hard problem can be
solved by an algorithm that is always correct and that always
runs in polynomial time.

c) If the P 6= NP conjecture is false, NP-hard problems can always
be solved in practice.

d) If the P 6= NP conjecture is false, some NP-hard problems are
polynomial-time solvable.

Problem 19.4 (S) Which of the following statements are implied by
the P 6= NP conjecture? (Choose all that apply.)

a) Every algorithm that solves an NP-hard problem runs in super-
polynomial time in the worst case.

b) Every algorithm that solves an NP-hard problem runs in expo-
nential time in the worst case.
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c) Every algorithm that solves an NP-hard problem always runs
in super-polynomial time.

d) Every algorithm that solves an NP-hard problem always runs
in exponential time.

Problem 19.5 (S) Suppose that a problem A reduces to another
problem B. Which of the following statements are always true?
(Choose all that apply.)

a) If A is polynomial-time solvable, then B is also polynomial-time
solvable.

b) If B is NP-hard, then A is also NP-hard.

c) B also reduces to A.

d) B cannot reduce to A.

e) If the problem B reduces to another problem C, then A also
reduces to C.

Problem 19.6 (S) Assume that the P 6= NP conjecture is true.
Which of the following statements about the knapsack problem (Sec-
tion 19.4.2) are correct? (Choose all that apply.)

a) The special case in which all item sizes are positive integers less
than or equal to n5, where n is the number of items, can be
solved in polynomial time.

b) The special case in which all item values are positive integers
less than or equal to n5, where n is the number of items, can
be solved in polynomial time.

c) The special case in which all item values, all item sizes, and
the knapsack capacity are positive integers can be solved in
polynomial time.

d) There is no polynomial-time algorithm for the knapsack problem
in general.
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Challenge Problems

Problem 19.7 (H) The input in the traveling salesman path problem
(TSPP) is the same as that in the TSP, and the goal is to compute a
minimum-cost cycle-free path that visits every vertex (that is, a tour
without its final edge). Prove that the TSPP reduces to the TSP and
vice versa.

Problem 19.8 (H) This problem describes a computationally
tractable special case of the TSP. Consider a connected and acyclic
graph T = (V, F ) in which each edge e 2 F has a nonnegative length
ae � 0. Define the corresponding tree instance G = (V,E) of the TSP
by setting the cost cvw of each edge (v, w) 2 E equal to the lengthP

e2Pvw
ae of the (unique) v-w path Pvw in T . For example:

1

2

5

43

3

1

2 3

connected acyclic graph corresponding tree instance of TSP

Design a linear-time algorithm that, given a connected acyclic graph
with nonnegative edge lengths, outputs a minimum-cost traveling
salesman tour of the corresponding tree instance. Prove that your
algorithm is correct.

Programming Problems

Problem 19.9 Implement in your favorite programming language
the exhaustive search algorithm for the TSP (as seen in Quiz 19.2).
Give your implementation a spin on instances with edge costs chosen
independently and uniformly at random from the set {1, 2, . . . , 100}.
How large an input size (that is, how many vertices) can your program
reliably process in under a minute? What about in under an hour?
(See www.algorithmsilluminated.org for test cases and challenge
data sets.)



Chapter 20

Compromising on Correctness:

Efficient Inexact Algorithms

You can’t have it all with NP-hard problems and must give up on
generality, correctness, or speed. When generality and speed are
mission-critical, it’s time to consider heuristic algorithms that are not
always correct. The goal is then to minimize the damage and design
a general-purpose and fast algorithm that is—perhaps provably, or at
least empirically—“approximately correct.” This chapter illustrates
through examples how to use techniques both new (like local search)
and old (like greedy algorithms) for this purpose. The case studies
concern scheduling (Section 20.1), team selection (Section 20.2), social
network analysis (Section 20.3), and the TSP (Section 20.4).

20.1 Makespan Minimization

Our first case study concerns scheduling and the goal of assigning
tasks to shared resources to optimize some objective. For example, a
resource could represent a computer processor (with tasks correspond-
ing to jobs), a classroom (with tasks corresponding to lectures), or a
workday (with tasks corresponding to meetings).

20.1.1 Problem Definition

In scheduling problems, the tasks to be completed are usually called
jobs and the resources are called machines. A schedule specifies, for
each job, one machine to process it. There are a lot of possible
schedules. Which one should we prefer?

Suppose that each job j has a known length `j , which is the amount
of time required to process it (for example, the length of a lecture
or meeting). We’ll consider one of the most common objectives in
applications, of scheduling the jobs so that they all complete as quickly

41



42 Compromising on Correctness: Efficient Inexact Algorithms

as possible. The following objective function formalizes this idea by
assigning a numerical score to every schedule and quantifying what
we want:

The Makespan of a Schedule

1. The load of a machine in a schedule is the sum of the
lengths of the jobs assigned to it.

2. The makespan of a schedule is the maximum of the
machine loads.

Machine loads and the makespan are the same no matter how jobs
are ordered on each machine, so schedules specify only assignments of
jobs to machines and not orderings of jobs.

Quiz 20.1

What are the makespans of the following schedules? (Jobs
are labeled with their lengths.)

3

machine #2

1

2

machine #1

2

3

machine #2

1

2

machine #1

2

schedule #1 schedule #2

a) 4 and 3

b) 4 and 4

c) 4 and 5

d) 8 and 8

(See Section 20.1.9 for the solution and discussion.)

An “optimal” schedule is then one with the minimum-possible
makespan. For example, in Quiz 20.1, the first schedule is the unique
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one that minimizes the makespan.

Problem: Makespan Minimization

Input: A set of n jobs with positive lengths `1, `2, . . . , `n
and m identical machines.

Output: An assignment of jobs to machines that minimizes
the makespan.

For example, if jobs represent parts of a computational task to be
processed in parallel (such as the jobs that make up a MapReduce or
Hadoop program), the schedule’s makespan governs when the entire
computation completes.

Minimizing the makespan is an NP-hard problem (see Prob-
lem 22.10). Could there be an algorithm that is general-purpose,
fast, and “almost correct”?

20.1.2 Greedy Algorithms

For many computational problems (both easy and hard), greedy
algorithms are a great place to start brainstorming. To review (for
example, from Chapter 13 of Part 3), the greedy algorithm design
paradigm is:

The Greedy Paradigm

Construct a solution iteratively, via a sequence of myopic
decisions, and hope that everything works out in the end.

The two biggest selling points of greedy algorithms are that they’re
usually easy to come up with and they tend to be very fast. The
downside is that most greedy algorithms return an incorrect solution
in some cases. But for an NP-hard problem, this flaw is shared by all
fast algorithms: No polynomial-time algorithm is correct on all inputs
(assuming, as usual, that the P 6= NP conjecture is true)! Thus, the
greedy paradigm is particularly apropos for the design of fast heuristic
algorithms for NP-hard problems, and it plays a starring role in this
chapter.
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20.1.3 Graham’s Algorithm

What would a greedy algorithm look like for the makespan minimiza-
tion problem? Perhaps the simplest approach would be a single-pass
algorithm, which assigns jobs irrevocably to machines one by one. To
which machine should a job be assigned? Because we’re after the
most balanced schedule possible, the obvious greedy strategy is to
assign a job to the machine that can best tolerate it—the machine
with the smallest current load. This greedy algorithm is known as
Graham’s algorithm.1

Graham

Input: a set {1, 2, . . . ,m} of machines and a set
{1, 2, . . . , n} of jobs with positive lengths `1, `2, . . . , `n.

Output: an assignment of jobs to machines.

// Initialization

1 for i = 1 to m do
2 Ji := ; // jobs assigned to machine i
3 Li := 0 // current load of machine i

// Main loop

4 for j = 1 to n do
5 k := argminmi=1 Li // least-loaded machine2

6 Jk := Jk [ {j} // assign current job

7 Lk := Lk + `j // update loads

8 return J1, J2, . . . , Jm

On Pseudocode

This book series explains algorithms using a mixture
of high-level pseudocode and English (as above). I’m

1Proposed by Ronald L. Graham in the paper “Bounds on Multiprocessing
Time Anomalies” (SIAM Journal on Applied Mathematics, 1969).

2For a sequence a1, a2, . . . , an of real numbers, argminn
i=1 ai denotes the index

of the smallest number. (If multiple numbers are tied for the smallest, interpret
argminn

i=1 ai as breaking ties between them arbitrarily.) The function argmaxn
i=1 ai

is defined similarly.
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assuming that you have the skills to translate such
high-level descriptions into working code in your fa-
vorite programming language. Several other books
and resources on the Web offer concrete implementa-
tions of various algorithms in specific programming
languages.

The first benefit of emphasizing high-level descrip-
tions over language-specific implementations is flexi-
bility. While I assume familiarity with some program-
ming language, I don’t care which one. Second, this
approach promotes the understanding of algorithms
at a deep and conceptual level, unencumbered by low-
level details. Seasoned programmers and computer
scientists generally think and communicate about al-
gorithms at a similarly high level.

Still, there is no substitute for the detailed under-
standing of an algorithm that comes from providing
your own working implementation of it. I strongly
encourage you to implement as many of the algo-
rithms in this book as you have time for. (It’s also a
great excuse to pick up a new programming language!)
For guidance, see the end-of-chapter Programming
Problems and supporting test cases.

20.1.4 Running Time

Is Graham’s algorithm any good? As usual with greedy algorithms, its
running time is easy to analyze. If the argmin computation in line 5
is implemented by exhaustive search through the m possibilities, each
of the n iterations of the main loop runs in O(m) time (implementing
the Ji’s as linked lists, for example). Because only O(m) work is
performed outside the main loop, this straightforward implementation
leads to a running time of O(mn).

Readers who have experience with data structures should recog-
nize an opportunity for improvement. The work done by the algo-
rithm boils down to repeated minimum computations, so a light bulb
should go off in your head: This algorithm calls out for a heap data
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structure!3 Because a heap reduces the running time of a minimum
computation from linear to logarithmic, its use here leads to a blaz-
ingly fast O(n logm)-time implementation of the Graham algorithm.
Problem 20.6 asks you to fill in the details.

20.1.5 Approximate Correctness

What about the makespan of the schedule constructed by Graham’s
algorithm?

Quiz 20.2

Suppose there are five machines and the list of jobs consists
of twenty jobs with length 1 each, followed by a single job
with length 5. What is the makespan of the schedule output
by the Graham algorithm, and what is the smallest-possible
makespan of a schedule of these jobs?

a) 5 and 4

b) 6 and 5

c) 9 and 5

d) 10 and 5

(See Section 20.1.9 for the solution and discussion.)

Quiz 20.2 demonstrates that the Graham algorithm does not always
output an optimal schedule. This is no surprise, given that the
problem is NP-hard and the algorithm runs in polynomial time. (If
the algorithm were always correct, we would have refuted the P 6= NP
conjecture!) Even so, the example in Quiz 20.2 should give you pause.
Could there be other, more complicated inputs for which Graham’s
algorithm performs still more poorly? Happily, examples of the type
in Quiz 20.2 are as bad as it gets:

Theorem 20.1 (Graham: Approximate Correctness) The make-
span of the schedule output by the Graham algorithm is always at

3See, for example, Chapter 10 of Part 2.
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most 2� 1
m times the minimum-possible makespan, where m denotes

the number of machines.4,5

Graham’s algorithm is, therefore, an “approximately correct” algo-
rithm for the makespan minimization problem. Think of Theorem 20.1
as an insurance policy. Even in the doomsday scenario of a contrived
input like that in Quiz 20.2, the makespan of the algorithm’s schedule
is no more than double what you’d get by exhaustive search. For more
realistic inputs, you should expect the Graham algorithm to overdeliver
and achieve a makespan much closer to the minimum possible; see
also Problem 20.1.

The next section provides the full proof of Theorem 20.1. The
time-constrained or math-phobic reader might prefer some brief but
accurate intuition:

Intuition for Theorem 20.1

1. The smallest machine load is at most the (equal) ma-
chine loads in a perfectly balanced schedule, which in
turn is at most the minimum-possible makespan (as
the best-case scenario is a perfectly balanced schedule).

2. By the Graham algorithm’s greedy criterion, the largest
and smallest machine loads differ by at most the length
of a single job, which in turn is at most the minimum-
possible makespan (as every job has to go somewhere).

3. Thus, the largest machine load in the algorithm’s out-
put is at most twice the minimum-possible makespan.

20.1.6 Proof of Theorem 20.1

For the formal proof, fix an instance comprising jobs with lengths
`1, `2, . . . , `n and m machines. Directly comparing the minimum-
possible makespan M⇤ and the makespan M of the schedule output
by the Graham algorithm would be messy. Instead, the analysis hinges

4To generalize the bad example in Quiz 20.2 to an arbitrary number m of
machines, use m(m� 1) length-1 jobs followed by a single job with length m.

5The multiplier 2 � 1
m

is sometimes called the approximation ratio of the
algorithm, which in turn is called a (2� 1

m
)-approximation algorithm.
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on two easy-to-compute lower bounds on M⇤—the maximum job
length and the average machine load—that are easily related to M
and ultimately show that M  (2� 1

m)M⇤.
The first lower bound on M⇤ is simple: Every job must go some-

where, so it’s impossible to achieve a makespan smaller than a job
length.

Lemma 20.2 (Lower Bound #1 on the Optimal Makespan)
If M⇤ denotes the minimum makespan of any schedule and j a job,

M⇤ � `j . (20.1)

More generally, in every schedule, every job j is assigned to exactly
one machine i and contributes `j to its load Li. Thus, in every schedule,
the sum of the machines’ loads equals the sum of the jobs’ lengths:Pm

i=1 Li =
Pn

j=1 `j . In a perfect schedule, each machine has an ideal

load, meaning an exact 1
m fraction of the total (that is, 1

m

Pn
j=1 `j).

In any other schedule, some machines have a more-than-ideal load and
others a less-than-ideal load. For example, in Quiz 20.1, in the first
schedule both machines have ideal loads, while in the second schedule
neither has an ideal load (with one over and the other under).

The second lower bound on M⇤ now follows from the fact that
every schedule has a machine with a load equal to or larger than the
ideal load:

Lemma 20.3 (Lower Bound #2 on the Optimal Makespan)
If M⇤ denotes the minimum makespan of any schedule, then

M⇤ � 1

m

nX

j=1

`j

| {z }
ideal load

. (20.2)

The last step is to bound from above the makespan M of the
Graham algorithm’s schedule in terms of the two lower bounds intro-
duced in Lemmas 20.2 and 20.3. Let i denote a machine with the
largest load in this schedule (that is, with load Li equal to M), and j
the final job assigned to it (Figure 20.1(a)). Rewind the algorithm to
the moment in time just before j’s assignment and let bLi denote i’s
load at that time. The new and final load Li of the machine (and,
hence, the makespan M) is `j + bLi.
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#1 #5#3#2 #4

job j

load L1 = makespan M

(a) Final schedule

#1 #5#3#2 #4

load before job j’s assignment (L1)
^

(b) Before j’s assignment

Figure 20.1: The most loaded machine was the least loaded machine
immediately prior to its final job assignment.

How big could bLi have been? By the greedy criterion of the
Graham algorithm, i was the most lightly loaded machine at the time
(Figure 20.1(b)). If the jobs {1, 2, . . . , j � 1} prior to j were perfectly
balanced across the machines, all machines’ loads at that time would
have been 1

m

Pj�1
h=1 `h; otherwise, the lightest load bLi would have been

even less. In any case, the final makespan M = `j + bLi is at most

`j +
1

m

j�1X

h=1

`h  `j +
1

m

X

h 6=j

`h,

where on the right-hand side we have thrown in the missing (positive)
terms `j+1/m, `j+2/m, . . . , `n/m for convenience. Transferring `j/m
from the first term to the second, we can write

M 
✓
1� 1

m

◆
· `j

| {z }

⇣
1� 1

m

⌘
M⇤ by (20.1)

+
1

m

nX

h=1

`h

| {z }
M⇤ by (20.2)


✓
2� 1

m

◆
·M⇤, (20.3)

with the second inequality following from Lemma 20.2 (to bound
the first term) and Lemma 20.3 (to bound the second term). This
completes the proof of Theorem 20.1. QE D
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20.1.7 Longest Processing Time First (LPT)

An insurance policy like the approximate correctness guarantee in
Theorem 20.1 is reassuring, but it remains our duty to ask: Can we do
better? Can we devise a different fast heuristic algorithm that is “even
less incorrect,” offering an insurance policy with a lower deductible?
We can, using a familiar for-free primitive.

For-Free Primitives

You can think of an algorithm with a linear or near-
linear running time as a primitive that can be used
essentially “for free”—the amount of time required
barely exceeds what you need to read the input. When
you have such a blazingly fast primitive that is relevant
to your problem, why not use it? For example, you
can always sort your data in a preprocessing step,
even if you’re not quite sure how it will help later.
One of the goals of this book series is to stock your
algorithmic toolbox with as many for-free primitives
as possible, ready to be applied at will.

What goes wrong with the Graham algorithm in the contrived
example of Quiz 20.2? It perfectly balances the length-1 jobs, leaving
no good location for the length-5 job. If only the algorithm had
considered the length-5 job first, all the other jobs would have fallen
neatly into place. More generally, the second part of the intuition
for Theorem 20.1 (page 47) and the final step in its proof (inequal-
ity (20.3)) both advocate for making the last job assigned to the most
loaded machine (job j in (20.3)) as small as possible. This suggests
the longest processing time first (LPT) algorithm (also proposed by
Graham), which saves the smallest jobs for last.

LPT

Input/Output: as in the Graham algorithm (page 44).

sort the jobs from longest to shortest
run the Graham algorithm on the sorted jobs
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The first step can be implemented in O(n log n) time (for n jobs) using,
for example, the MergeSort algorithm. If the Graham algorithm is
implemented with heaps (Problem 20.6), both of these steps run in
near-linear time.6

Quiz 20.3

Suppose there are five machines, three jobs with length 5,
two with length 6, two with length 7, two with length 8, and
two with length 9. What is the makespan of the schedule
output by the LPT algorithm, and what is the smallest-
possible makespan of a schedule of these jobs?

a) 16 and 15

b) 17 and 15

c) 18 and 15

d) 19 and 15

(See Section 20.1.9 for the solution and discussion.)

Again, because the makespan minimization problem is NP-hard and
the LPT algorithm runs in polynomial time, we fully expected such
examples demonstrating that the latter is not always optimal. But
does it provide a better insurance policy than the Graham algorithm?

Theorem 20.4 (LPT: Approximate Correctness) The makespan
of the schedule output by the LPT algorithm is always at most 3

2 � 1
2m

times the minimum-possible makespan, where m denotes the number
of machines.

Intuitively, sorting the jobs reduces the possible damage caused by a
single job—the difference between the largest and smallest machine
loads—from M⇤ (the minimum-possible makespan) to M⇤/2.

The keen reader may have noticed the daylight between the bad
example in Quiz 20.3 (with a makespan blowup of 19/15 ⇡ 1.267)

6The Graham algorithm is an example of an “online algorithm”: It can be used
even if the jobs materialize one by one and must be scheduled immediately. The
LPT algorithm is not an online algorithm; it requires advance knowledge of all the
jobs to sort them by length.
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and the assurance of Theorem 20.4 (which, for m = 5, promises a
blowup of at most 14/10 = 1.4). With some additional arguments
(outlined in Problem 20.7), the guarantee in Theorem 20.4 can be
refined from 3

2 � 1
2m to 4

3 � 1
3m . Consequently, the examples suggested

by Quiz 20.3 are as bad as it gets for the LPT algorithm. And as
with the Graham algorithm, you should expect the LPT algorithm to
overdeliver for more realistic inputs.7

20.1.8 Proof of Theorem 20.4

The proof of Theorem 20.4 follows that of Theorem 20.1, with the
improvement enabled by a variant of Lemma 20.2 that is useful when
the jobs are sorted from longest to shortest.

Lemma 20.5 (Variant of Lower Bound #1) If M⇤ denotes the
minimum makespan of any schedule and j a job that is not among
the m longest (breaking ties arbitrarily),

M⇤ � 2`j . (20.4)

Proof: By the Pigeonhole Principle, every schedule must assign two of
the longest m+1 jobs to the same machine.8 Therefore, the minimum-
possible makespan is at least twice the length of the (m+1)th-longest
job; this is at least 2`j . QE D

Now on to:

Proof of Theorem 20.4: As in the final part of the proof of Theo-
rem 20.1, let i denote a machine that has the largest load in the LPT

algorithm’s schedule and j the final job assigned to it (Figure 20.1(a)).
Suppose at least one other job is assigned to i (prior to j); otherwise,
there’s nothing to prove.9

The algorithm assigns each of the first m jobs to a different machine
(each empty at the time). Therefore, job j cannot be one of the first m

7There are more sophisticated algorithms with even better approximate cor-
rectness guarantees; these technically run in polynomial time but are impractically
slow. If the makespan minimization problem comes up in your own work, the
LPT algorithm is an excellent starting point.

8The Pigeonhole Principle is the self-evident fact that, no matter how you
stuff n+ 1 pigeons into n holes, there will be a hole with at least two pigeons.

9If j is the only job assigned to i, the algorithm’s schedule has makespan `j
and no other schedule can be better (by Lemma 20.2).
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jobs. By the LPT greedy criterion, job j cannot be one of the m longest
jobs. Lemma 20.5 then tells us that `j  M⇤/2, where M⇤ is the
minimum-possible makespan. Plugging this improved bound (relative
to Lemma 20.2) into the inequality (20.3) shows that the makespan M
achieved by the LPT algorithm satisfies

M 
✓
1� 1

m

◆
· `j

| {z }

⇣
1� 1

m

⌘
·(M⇤/2) by (20.4)

+
1

m

nX

h=1

`h

| {z }
M⇤ by (20.2)


✓
3

2
� 1

2m

◆
·M⇤.

QE D

20.1.9 Solutions to Quizzes 20.1–20.3

Solution to Quiz 20.1

Correct answer: (c). The machine loads are 2+2 = 4 and 1+3 = 4
in the first schedule and 2 + 3 = 5 and 1 + 2 = 3 in the second.
Because the makespan is the largest machine load, these schedules
have makespans of 4 and 5, respectively.

Solution to Quiz 20.2

Correct answer: (c). The Graham algorithm schedules the first
twenty jobs evenly across the machines (with four length-1 jobs on
each). No matter how it schedules the final length-5 job, it’s stuck
with a makespan of 9:

5

#2

1

1

1

1

#1

1

1

1

1

#4

1

1

1

1

#3

1

1

1

1

#5

1

1

1

1
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Meanwhile, reserving one machine for the big job and splitting the
twenty small jobs evenly between the remaining four machines creates
a perfectly balanced schedule, with makespan 5:

5

#2

1

1

1

1

#1

1

1

1

1

#4

1

1

1

1

#3

1

1

1

1

#5

1111

Solution to Quiz 20.3

Correct answer: (d). The optimal schedule is perfectly balanced,
with the three length-5 jobs assigned to a common machine and
every other machine receiving either a length-9 and length-6 job or a
length-8 and length-7 job:

5

#1 #5#3#2 #4

5

5

6

9

7

8

6

9

7

8

The makespan of this schedule is 15. Meanwhile, all machines already
have load 14 when the time comes for the LPT algorithm to assign its
final length-5 job, so it gets stuck with a final makespan of 19:
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5

#1 #5#3#2 #4

5 5

6

9

7

8

6

9

78

20.2 Maximum Coverage

Imagine you’ve been put in charge of assembling a team—maybe
at your company to complete a project, or in your fantasy sports
league to compete over a season. You can afford to hire only a limited
number of people. Each potential team member has a combination of
skills—perhaps corresponding to programming languages that they
know, or positions on the field that they can play. You want a diverse
team with as many different skills as possible. Whom should you
pick?

20.2.1 Problem Definition

In the maximum coverage problem, the input comprises m subsets
A1, A2, . . . , Am of a ground set U , and a budget k. For example,
in a team-hiring application, the ground set U corresponds to all
possible skills that a team member could have, and each subset Ai

corresponds to one potential team member, with the elements of the
subset indicating the candidate’s skills. The goal is to choose k of the
subsets to maximize their coverage—the number of distinct ground set
elements they contain. In a team-hiring problem, coverage corresponds
to the number of distinct skills possessed by the team.
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Problem: Maximum Coverage

Input: A collection A1, A2, . . . , Am of subsets of a ground
set U , and a positive integer k.

Output: A choice K ✓ {1, 2, . . . ,m} of k indices to max-
imize the coverage fcov(K) of the corresponding subsets,
where:

fcov(K) = |[i2KAi| . (20.5)

For example:

Quiz 20.4

Consider a ground set U with 16 elements and six subsets
of it:

A4

A1

A2

A3

A5

A6

What is the largest coverage achieved by four of the subsets?

a) 13

b) 14

c) 15

d) 16

(See Section 20.2.8 for the solution and discussion.)
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Maximum coverage problems are tricky because of overlaps be-
tween subsets. For example, some skills may be common (covered
by many subsets) and others rare (covered by few). An ideal subset
is large with few redundant elements—a team member blessed with
many unique skills.

20.2.2 Further Applications

Maximum coverage problems show up all the time, and not only in
team-hiring applications. For example, suppose you want to choose
locations for k new firehouses in a city to maximize the number of
residents who live within one mile of a firehouse. This is a maximum
coverage problem in which the ground set elements correspond to
residents, each subset corresponds to a possible firehouse location,
and the elements of a subset correspond to the residents who live
within one mile of that location.

For a more complex example, imagine you want to coax people to
show up at an event, such as a concert. You need to start setting up
for the event and have time to convince only k of your friends to come.
But whichever friends you recruit then bring along their friends, and
friends of friends, and so on. We can visualize this problem using a
directed graph, in which vertices correspond to people and an edge
directed from v to w signifies that w would follow v to the event
should v attend. For example, in the graph

7 8

5

1 2 3

4 6

recruiting your friend 1 would ultimately trigger the attendance of four
people (1, 2, 3, and 5). Your friend 6 will show up only if recruited
directly, in which case four others (3, 5, 7, and 8) follow suit.

Maximizing event attendance is a maximum coverage problem.
Ground set elements correspond to people—equivalently, the vertices
of the graph. There is one subset per person, indicating who would
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ultimately follow that person to the event—equivalently, the vertices
reachable by a directed path from that vertex. The total attendance
triggered by the recruitment of k people is then exactly the coverage
achieved by the corresponding k subsets.

20.2.3 A Greedy Algorithm

The maximum coverage problem is NP-hard (see Problem 22.8). If
we don’t want to give up on speed, it’s time to consider heuristic
algorithms. Greedy algorithms, which myopically select subsets one
by one, are again the obvious place to start.

The problem is easy to solve when you can pick only one subset
(k = 1)—go with the biggest one. Suppose k = 2 and you have already
committed to picking the biggest of the subsets, A. What should the
second subset be? What matters now are the elements in a subset not
already covered by A, so the sensible greedy criterion is to maximize
the number of newly covered elements. Extending this idea to an
arbitrary budget k leads to the following famous greedy algorithm for
the maximum coverage problem, in which the coverage function fcov
is defined as in (20.5):10

GreedyCoverage

Input: subsets A1, A2, . . . , Am of a ground set U and a
positive integer k.

Output: a set K ✓ {1, 2, . . . ,m} of k indices.

1 K := ; // indices of chosen sets

2 for j = 1 to k do // choose sets one by one

// greedily increase coverage

// (break ties arbitrarily)

3 i⇤ := argmaxmi=1 [fcov(K [ {i})� fcov(K)]
4 K := K [ {i⇤}

5 return K

10First analyzed by Gérard P. Cornuéjols, Marshall L. Fisher, and George
L. Nemhauser in the paper “Location of Bank Accounts to Optimize Float: An
Analytic Study of Exact and Approximate Algorithms” (Management Science,
1977).
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For simplicity, the argmax in line 3 examines all the subsets; equiv-
alently, it could restrict attention to those not already chosen in
previous iterations.

20.2.4 Bad Examples for the GreedyCoverage Algorithm

The GreedyCoverage algorithm is easy to implement in polynomial
time.11 Because the maximum coverage problem is NP-hard, we
should expect examples for which the algorithm outputs a suboptimal
solution (as otherwise it would refute the P 6= NP conjecture). Here’s
one:

A1 A2

A3

Suppose k = 2. The optimal solution is to pick the subsets A1 and A2

to cover all four elements. The greedy algorithm (with arbitrary
tie-breaking) might well pick the subset A3 in its first iteration, in
which case it’s stuck picking either A1 or A2 in the second iteration
and covering only three of the four elements.

Are there still worse examples for the GreedyCoverage algorithm?
At least for larger budgets k, the answer is yes.

Quiz 20.5

Consider the following ground set of 81 elements and five
subsets of it:

11For example, compute the argmax in line 3 by exhaustive search through
the m subsets, computing the additional coverage fcov(K [ {i})� fcov(K) pro-
vided by a subset Ai using a single pass over Ai’s elements. A straightforward
implementation leads to a running time of O(kms), where s denotes the maximum
size of a subset (which is at most |U |).
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A1 A2 A3

A4

A5

For k = 3, what is: (i) the maximum-possible coverage;
(ii) the smallest-possible coverage of the output of the
GreedyCoverage algorithm (with arbitrary tie-breaking)?

a) 72 and 60

b) 81 and 57

c) 81 and 60

d) 81 and 64

(See Section 20.2.8 for the solution and discussion.)

Thus, with k = 2, the GreedyCoverage algorithm might capture
only 75% of the elements that could be covered, and with k = 3,
it might fare as poorly as 57

81 = 19
27 ⇡ 70.4%. How bad can things

get? Problem 20.8(a) asks you to extend this pattern to all positive
integers k, thereby showing:12

12The reliance on arbitrary tie-breaking is convenient but not essential to these
examples; see Problem 20.8(b).
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Proposition 20.6 (Bad Examples for GreedyCoverage) For ev-
ery positive integer k, there is an instance of the maximum coverage
problem in which:

(a) There exist k subsets that cover the entire ground set.

(b) With arbitrary tie-breaking, the GreedyCoverage algorithm
might cover only a 1� (1� 1

k )
k fraction of the elements.13

The easiest way to get a handle on a crazy expression with one variable
is to plot it. Following this advice for the function 1� (1� 1

x)
x, we see

that it is decreasing but seems to approach an asymptote at roughly
63.2%:

What’s going on is that 1�x is very well approximated by e�x when x
is close to 0 (as you should verify with a plot or a Taylor expansion
of e�x). Thus, the expression 1 � (1 � 1

k )
k tends to 1 � (e�1/k)k =

1� 1
e ⇡ 0.632 as k tends to infinity.14

20.2.5 Approximate Correctness

What’s a weird number like 1 � 1
e doing in proximity to the super-

simple GreedyCoverage algorithm? Maybe it’s an artifact of the
13Note that 1� (1� 1

k
)k equals 1� ( 1

2
)2 = 3

4
when k = 2 and 1� ( 2

3
)3 = 19

27

when k = 3.
14Here, e = 2.718 . . . denotes Euler’s number.
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examples we cooked up in Quiz 20.5 and Proposition 20.6? Quite the
opposite: The following approximate correctness guarantee proves
that these are the worst examples for the GreedyCoverage algorithm,
showing that it is inextricably tied to the numbers 1 � (1 � 1

k )
k

and 1� 1
e .

15,16

Theorem 20.7 (GreedyCoverage: Approximate Correctness)
The coverage of the solution output by the GreedyCoverage algorithm
is always at least a 1 � (1 � 1

k )
k fraction of the maximum-possible

coverage, where k is the number of subsets chosen.

Thus, the GreedyCoverage algorithm is guaranteed to cover at
least 75% as many elements as an optimal solution when k = 2,
at least 70.4% as many when k = 3, and at least 63.2% as many no
matter how large k is. As with Theorems 20.1 and 20.4, Theorem 20.7
is an insurance policy that limits the damage in a worst-case scenario;
for more realistic inputs, the algorithm is likely to overdeliver and
achieve significantly higher percentages.

20.2.6 A Key Lemma

To develop your intuition for Theorem 20.7, let’s revisit the example
in Quiz 20.5. Why didn’t the GreedyCoverage algorithm come up
with the optimal solution? In the first iteration, it had the option
of picking any of the three subsets in the optimal solution (A1, A2,
or A3). Unfortunately, the algorithm was tricked by a fourth, equally
large subset (A4, covering 27 elements). In the second iteration, the
algorithm again had the option of picking any of A1, A2, or A3, but
it was tricked by the subset A5, which covered just as many new
elements (18).

15It gets weirder: Assuming the P 6= NP conjecture, no polynomial-time
algorithm (greedy or otherwise) can guarantee a solution with coverage larger
than a 1� 1

e
fraction of the maximum possible as k grows large. (This is a difficult

result, due to Uriel Feige in the paper “A Threshold of lnn for Approximating
Set Cover” (Journal of the ACM, 1998).) This fact provides a strong theoretical
justification for adopting the GreedyCoverage algorithm as a starting point when
tackling the maximum coverage problem in practice. It also implies that the
number 1� 1

e
is intrinsic to the maximum coverage problem rather than an artifact

of one particular algorithm.
16We won’t see the number 1� 1

e
again in this book, but it recurs mysteriously

often in the analysis of algorithms.
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In general, every miscue by the GreedyCoverage algorithm can be
attributed to a subset that covers at least as many new elements as
each of the k subsets in an optimal solution. But shouldn’t this mean
that the GreedyCoverage algorithm makes healthy progress in each
iteration? This idea is formalized in the next lemma, which bounds
from below the number of newly covered elements in each iteration as
a function of the current coverage deficiency:

Lemma 20.8 (GreedyCoverage Makes Progress) For each j 2
{1, 2, . . . , k}, let Cj denote the coverage achieved by the first j subsets
chosen by the GreedyCoverage algorithm. For each such j, the jth
subset chosen covers at least 1

k (C
⇤ � Cj�1) new elements, where C⇤

denotes the maximum-possible coverage by k subsets:

Cj � Cj�1 �
1

k
(C⇤ � Cj�1) . (20.6)

Proof: Let Kj�1 denote the indices of the first j� 1 subsets chosen by
the GreedyCoverage algorithm and Cj�1 = fcov(Kj�1) their cover-
age. Consider any competing set bK of k indices, with corresponding
coverage bC = fcov( bK).

The most important inequality in the proof is:
X

i2 bK

[fcov(Kj�1 [ {i})� Cj�1]| {z }
coverage increase from Ai

� bC � Cj�1| {z }
current coverage gap

. (20.7)

Why is it true? Let W denote the ground set elements covered by
the subsets corresponding to bK but not those corresponding to Kj�1

(Figure 20.2). On the one hand, the size of W is at least bC � Cj�1,
the right-hand side of (20.7). On the other, it is also no more than
the left-hand side of (20.7): Each element of W contributes at least
once to the sum—once per subset with index in bK that contains it.
Therefore, the left-hand side of (20.7) is at least its right-hand side,
with the size of W sandwiched between them.

Next, if the k numbers summed on the left-hand side of (20.7) were
equal, each would be 1

k

P
i2 bK [fcov(Kj�1 [ {i})� Cj�1]; otherwise,

the largest of them would be even bigger:

max
i2 bK

[fcov(Kj�1[{i})�Cj�1]

| {z }
biggest value

� 1

k

X

i2 bK

[fcov(Kj�1[{i})�Cj�1]

| {z }
average value

. (20.8)
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A1 A2 A3

A4

A5

W

Figure 20.2: Illustration of the proof of Lemma 20.8 in the example from
Quiz 20.5, with j = 2, Kj−1 = {4}, Cj−1 = 27, bK = {1, 2, 3}, and bC = 81.
The set W is the 81� 27 = 54 elements covered by some subset with index
in bK and no subset with index in Kj−1.

Now instantiate bK as the indices K⇤ of an optimal solution,
with coverage fcov(K

⇤) = C⇤. Chaining together inequalities (20.7)
and (20.8) shows that the GreedyCoverage algorithm has at least one
good option (the best of the indices in the optimal solution K⇤):

max
i2K⇤

[fcov(Kj�1 [ {i})� Cj�1]
| {z }

best of the optimal indices

� 1

k
(C⇤ � Cj�1)

| {z }
guaranteed progress

.

The GreedyCoverage algorithm, due to its greedy criterion, selects
an index that is at least this good, thereby increasing the coverage of
its solution by at least 1

k (C
⇤ � Cj�1). QE D

20.2.7 Proof of Theorem 20.7

We can now prove Theorem 20.7 by iterating the recurrence (20.6)
from Lemma 20.8 that bounds from below the progress made by the
GreedyCoverage algorithm in each iteration. Continuing with the
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same notation, the goal is to compare the coverage Ck achieved by
the algorithm’s solution with the maximum-possible coverage C⇤.

The anticipated term 1� 1
k enters the picture as soon as we apply

Lemma 20.8 (first with j = k):

Ck � Ck�1 +
1

k
(C⇤ � Ck�1) =

C⇤

k
+

✓
1� 1

k

◆
Ck�1.

Applying it again (now with j = k � 1):

Ck�1 �
C⇤

k
+

✓
1� 1

k

◆
Ck�2.

Combining the two inequalities:

Ck � C⇤

k

✓
1 +

✓
1� 1

k

◆◆
+

✓
1� 1

k

◆2

Ck�2.

Applying Lemma 20.8 a third time with j = k�2 and then substituting
for Ck�2:

Ck � C⇤

k

 
1 +

✓
1� 1

k

◆
+

✓
1� 1

k

◆2
!

+

✓
1� 1

k

◆3

Ck�3.

The pattern continues and, after k applications of the lemma (and
using that C0 = 0), we wind up with

Ck � C⇤

k

 
1 +

✓
1� 1

k

◆
+

✓
1� 1

k

◆2

+ · · ·+

✓
1� 1

k

◆k�1
!

| {z }
geometric series

.

Inside the parentheses is an old friend, a geometric series. In general,
for r 6= 1, there is a useful closed-form formula for a geometric series:17

1 + r + r2 + · · ·+ r` =
1� r`+1

1� r
. (20.9)

Invoking this formula with r = 1� 1
k and ` = k � 1, our lower bound

on Ck transforms into

Ck � C⇤

k

 
1� (1� 1

k )
k

1� (1� 1
k )

!
= C⇤

 
1�

✓
1� 1

k

◆k
!
,

fulfilling the promise made by Theorem 20.7. QE D

17To verify this identity, multiply both sides by 1�r: (1�r)(1+r+r2+· · ·+r`) =
1� r + r � r2 + r2 � r3 + r3 � · · ·� r`+1 = 1� r`+1.
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20.2.8 Solutions to Quizzes 20.4–20.5

Solution to Quiz 20.4

Correct answer: (c). There are two ways to cover 15 of the 16
elements, by choosing A2, A4, A6, and either A3 or A5. The large
subset A1 does not participate in any optimal solution because it is
largely redundant with the other subsets.

Solution to Quiz 20.5

Correct answer: (b). The optimal solution picks the subsets A1,
A2, and A3 and covers all 81 elements. One possible execution of the
GreedyCoverage algorithm picks A4 in its first iteration, breaking a
four-way tie with A1, A2, A3; A5 in its second iteration, again breaking
a four-way tie with A1, A2, A3; and, finally, A1. This solution has
coverage 27 + 18 + 12 = 57.

*20.3 Influence Maximization

The GreedyCoverage algorithm from Section 20.2 was originally mo-
tivated by old-school applications like choosing locations for new
factories. In the 21st century, generalizations of this algorithm have
found new applications in many fields of computer science. This sec-
tion describes a representative example in social network analysis.18

20.3.1 Cascades in Social Networks

For our purposes, a social network is a directed graph G = (V,E) in
which the vertices correspond to people and a directed edge (v, w)
signifies that v “influences” w. For example, perhaps w follows v in
an online social network such as Twitter or Instagram.

A cascade model posits how information (such as a news article
or meme) travels through a social network. Here’s a simple one,
parameterized by a directed graph G = (V,E), an activation proba-
bility p 2 [0, 1], and a subset S ✓ V of seed vertices:19

18Starred sections like this one are the more difficult sections; they can be
skipped on a first reading.

19To brush up on basic discrete probability, see Appendix B of Part 1 or the
resources at www.algorithmsilluminated.org.
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A Simple Cascade Model

Initially, every seed vertex is “active” and all other vertices
are “inactive.” All edges are initially “unflipped.”

While there is some active vertex v and unflipped outgoing
edge (v, w):

• Flip a biased coin that comes up “heads” with proba-
bility p.

• If the coin comes up “heads,” update the status of
edge (v, w) to “active.” If w is inactive, update its
status to “active.”

• If the coin comes up “tails,” update the status of
edge (v, w) to “inactive.”

Once a vertex is activated (say, due to reading an article or seeing
a movie), it never becomes inactive. A vertex can have multiple
activation opportunities—one for each of its activated influencers. For
example, maybe the first two recommendations from friends for a new
movie don’t register, but the third triggers you to go see it.

20.3.2 Example

In the graph

active
a b

c d

inactive

inactiveinactive

unflipped

unflipped

unflippedunflipped

unflipped

the vertex a is a seed and initially active; the rest are initially inactive.
Each of the outgoing edges (a, b), (a, c), and (a, d) has a probability
of p of activating the other endpoint of the edge. Suppose the coin
associated with edge (a, b) comes up “heads” and the other two come
up “tails.” The new picture is:
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active
a b

c d

active

inactiveinactive

active

unflipped

unflippedinactive

inactive

At this point, there is no hope of activating vertex c. There remains a
probability of p that vertex d is activated via the unflipped edge (b, d);
if this event occurs, the final state is:

active
a b

c d

active

activeinactive

active

unflipped

activeinactive

inactive

For closure and convenience, we can optionally add a postprocess-
ing step that flips the coins of any remaining unflipped edges and
updates their statuses accordingly (while leaving all vertices’ statuses
unchanged). In our running example, the final result might be:

active

a b

c d

active

activeinactive

active

active

activeinactive

in
active

In general, with or without the postprocessing step, the vertices
that wind up activated at the end of the process are precisely those
reachable from a seed vertex by a directed path of activated edges.

20.3.3 The Influence Maximization Problem

In the influence maximization problem, the goal is to choose a limited
number of seed vertices in a social network to maximize the spread
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of information, meaning the number of vertices that are eventually
activated according to our cascade model.20 This number is a random
variable, depending on the outcomes of the coin flips in the cascade
model, and we focus on its expectation.21 Formally, let X(S) denote
the (random) set of vertices that are eventually activated when the
vertices S are chosen as seeds, and define the influence of S as

finf (S) = E[|X(S)|] , (20.10)

where the expectation is over the random coin flips in the cascade
model. The influence of a set depends on both the graph and on
the activation probability, with more edges or a higher probability
resulting in a bigger influence.

Problem: Influence Maximization

Input: A directed graph G = (V,E), a probability p, and
a positive integer k.

Output: A choice S ✓ V of k vertices with the maximum-
possible influence finf (S) in the cascade model with activa-
tion probability p.

For example, if you’re giving away k promotional copies of a product
and want to choose the recipients to maximize its eventual adoption,
you’re facing an influence maximization problem.

Problem 20.9 asks you to show that the maximum coverage prob-
lem can be viewed as a special case of the influence maximization
problem. Because the special case is NP-hard (Problem 22.8), so is
the more general problem. Could there be a fast and approximately
correct heuristic algorithm for the influence maximization problem?

20For much more on the influence maximization problem and its many variations,
check out the paper “Maximizing the Spread of Influence Through a Social
Network,” by David Kempe, Jon Kleinberg, and Éva Tardos (Theory of Computing,
2015).

21The expectation E[Y ] of a random variable Y is its average value, weighted
by the appropriate probabilities. For example, if Y can take on the values
{0, 1, 2, . . . , n}, then E[Y ] =

Pn

i=0 i ·Pr[Y = i].
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20.3.4 A Greedy Algorithm

The influence maximization problem resembles the maximum cover-
age problem, with vertices playing the role of subsets and with influ-
ence (20.10) playing the role of coverage (20.5). The GreedyCoverage
algorithm for the latter problem translates easily to the former, swap-
ping in the new definition (20.10) of the objective function.

GreedyInfluence

Input: directed graph G = (V,E),
probability p 2 [0, 1], and positive integer k.

Output: a set S ✓ V of k vertices.

1 S := ; // chosen vertices

2 for j = 1 to k do // choose vertices one by one

// greedily increase influence

// (break ties arbitrarily)

3 v⇤:= argmaxv2V [finf (S [ {v})� finf (S)]
4 S := S [ {v⇤}

5 return S

Quiz 20.6

What is the running time of a straightforward implementa-
tion of the GreedyInfluence algorithm on graphs with n
vertices and m edges? (Choose the strongest true state-
ment.)

a) O(knm)

b) O(knm2)

c) O(knm2m)

d) Unclear

(See Section 20.3.8 for the solution and discussion.)
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20.3.5 Approximate Correctness

Happily, our greedy heuristic algorithm remains equally approximately
correct for the influence maximization problem. Because the maximum
coverage problem is a special case of the influence maximization
problem (Problem 20.9), this is the best-case scenario—an equally
strong approximate correctness guarantee, but for a more general
problem.

Theorem 20.9 (GreedyInfluence: Approximate Correctness)
The influence of the solution output by the GreedyInfluence algo-
rithm is always at least a 1�(1� 1

k )
k fraction of the maximum-possible

influence, where k is the number of vertices chosen.

The key insight in the proof of Theorem 20.9 is to recognize the
influence function (20.10) as a weighted average of coverage func-
tions (20.5). Each of these coverage functions corresponds to the
event attendance application (Section 20.2.2) with a subgraph of
the social network (comprising the activated edges). We can then
check that the proof of Theorem 20.7 in Sections 20.2.6 and 20.2.7 for
coverage functions can be extended to weighted averages of coverage
functions.

20.3.6 Influence Is a Weighted Sum of Coverage Functions

More formally, fix a directed graph G = (V,E), an activation proba-
bility p 2 [0, 1], and a positive integer k. For convenience, we include
the postprocessing step in the cascade model (see Section 20.3.2) so
that every edge ends up either active or inactive. The vertices X(S)
activated by the seeds S are precisely those reachable from a vertex
in S by a directed path of activated edges.

As a thought experiment, imagine we had telepathy and knew in
advance the edges H ✓ E that would be activated—in effect, tossing
all edges’ coins up front rather than on a need-to-know basis. Then,
the influence maximization problem would boil down to a maximum
coverage problem. The ground set would be the vertices V and there
would be one subset per vertex, with the subset Av,H containing the
vertices that are reachable from v by a directed path in the subgraph
(V,H) of activated edges. For example, if the graph and edge statuses
are:
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a b

c d

active

active

activeinactive

in
active

then Aa,H = {a, b, d}, Ab,H = {b, d}, Ac,H = {c, d}, and Ad,H = {d}.
The influence of a set S of seeds (given the activated edges H) is then
the coverage of the corresponding subsets:

fH(S) := |[v2SAv,H | . (20.11)

Of course, we don’t have advance knowledge of the subset of activated
edges, and each subset H ✓ E occurs with some positive probabil-
ity pH .22 But because influence is defined as an expectation, we can
express it as a weighted average of coverage functions, with weights
equal to probabilities:23

Lemma 20.10 (Influence = Average of Coverage Functions)
For each subset H ✓ E of edges, let fH denote the coverage function
defined in (20.11) and pH the probability that the subset of edges
activated in the cascade model is precisely H. For every subset S ✓ V
of vertices,

finf (S) = EH [fH(S)] =
X

H✓E

pH · fH(S). (20.12)

20.3.7 Proof of Theorem 20.9

We can declare victory after proving an analog of Lemma 20.8 showing
that the GreedyInfluence algorithm makes healthy progress in each
iteration. Theorem 20.9 then follows from the exact same algebra
that we used to prove Theorem 20.7 in Section 20.2.7.

22Not that we’ll need it, but the formula is pH = p|H|(1� p)|E|�|H|.
23For the rigor-obsessed: We’re using the law of total expectation to write the

expectation in (20.10) as a probability-weighted average of conditional expecta-
tions, where the conditioning is on the activated edges H.
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Lemma 20.11 (GreedyInfluence Makes Progress) For each j 2
{1, 2, . . . , k}, let Ij denote the influence achieved by the first j vertices
chosen by the GreedyInfluence algorithm. For each such j, the jth
vertex chosen increases the influence by at least 1

k (I
⇤�Ij�1), where I⇤

denotes the maximum-possible influence of k vertices:

Ij � Ij�1 �
1

k
(I⇤ � Ij�1) .

Proof: Let Sj�1 denote the first j � 1 vertices chosen by the
GreedyInfluence algorithm and Ij�1 = finf (Sj�1) their influence.
Let S⇤ denote a set of k vertices with the maximum-possible influ-
ence I⇤.

Next, consider an arbitrary subset H ✓ E of edges and the
corresponding coverage function fH defined in (20.11). Piggybacking
on our hard work for coverage functions, we can translate the key
inequality (20.7) in the analysis of the GreedyCoverage algorithm to
the inequality

X

v2S⇤

[fH(Sj�1 [ {v})� fH(Sj�1)]| {z }
coverage increase from v (under fH)

� fH(S⇤)� fH(Sj�1)| {z }
coverage gap (under fH)

; (20.13)

here Sj�1 and S⇤ are playing the roles of Kj�1 and bK, and fH(Sj�1)

and fH(S⇤) correspond to Cj�1 and bC.
From Lemma 20.10, we know that influence (finf ) is a weighted

average of coverage functions (the fH ’s). We have one inequality
of the form (20.13) for each subset H ✓ E of edges; for shorthand,
denote its left- and right-hand sides by LH and RH , respectively.
The idea is to examine the analogous weighted average of these 2m

inequalities (where m denotes |E|).
Because multiplying both sides of an inequality by the same

nonnegative number (such as a probability pH) preserves it,

pH · LH � pH ·RH

for every H ✓ E. Because all 2m inequalities go in the same direction,
they add up to a combined inequality:

X

H✓E

pH · LH �
X

H✓E

pH ·RH . (20.14)
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Unpacking the right-hand side of (20.14) and using the expanded
formula for finf in (20.12), we obtain

X

H✓E

pH (fH(S⇤)� fH(Sj�1)) =
X

H✓E

pH · fH(S⇤)�
X

H✓E

pH · fH(Sj�1)

= finf (S
⇤)� finf (Sj�1)| {z }

right-hand side of (20.14)

.

The left-hand side of (20.14), after the same maneuvers, becomes
X

v2S⇤

[finf (Sj�1 [ {v})� finf (Sj�1)]

| {z }
left-hand side of (20.14)

.

Thus, inequality (20.14) translates to an analog of the key inequal-
ity (20.7) in the proof of Lemma 20.8:
X

v2S⇤

[finf (Sj�1[{v})�finf (Sj�1)| {z }
=Ij�1

] � finf (S
⇤)| {z }

=I⇤

� finf (Sj�1)| {z }
=Ij�1

. (20.15)

The biggest of the k terms in the sum on the left-hand side is at least
the average value (as in (20.8)), so the GreedyInfluence algorithm
always has at least one good option (the best of the vertices in the
optimal solution S⇤):

max
v2S⇤

[finf (Sj�1 [ {v})� Ij�1] �
1

k
(I⇤ � Ij�1) .

The GreedyInfluence algorithm, due to its greedy criterion, selects
a vertex that is at least this good, thereby increasing the influence of
its solution by at least 1

k (I
⇤ � Ij�1). QE D

20.3.8 Solution to Quiz 20.6

Correct answers: (c),(d). There are k iterations of the main loop,
each of which involves computing an argmax over the n vertices. The
running time of a straightforward implementation is, therefore, O(kn)
times the number of operations required to compute the influence
finf (S) of a subset S. And how many operations is this? Unlike
for the coverage objective function fcov, the answer is not obvious
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because of the pesky expectation in (20.10). (In this sense, answer (d)
is correct.) Computing this expectation naively—computing |X(S)|
via breadth- or depth-first search in O(m) time for each of the 2m

possible outcomes of the coin flips, and averaging the results—leads
to the running time bound in (c).

So is the GreedyInfluence algorithm useless in practice? Not at
all. The influence finf (S) of a subset S may be difficult to compute
to arbitrary precision, but it is easy to estimate accurately using
random sampling. In other words, given a subset S, go ahead and
flip all the coins in the cascade model and see how many vertices end
up activated with seed set S. After repeating this experiment many
times, the average number of activated vertices will almost always be
a good estimate of finf (S).

20.4 The 2-OPT Heuristic Algorithm for the TSP

NP-hardness is always a drag, but at least for the NP-hard problems
in Sections 20.1–20.3 (makespan minimization, maximum coverage,
and influence maximization), there are fast algorithms with good
approximate correctness guarantees. Alas, for many other NP-hard
problems, including the TSP, such an algorithm would refute the
P 6= NP conjecture (see Problem 22.12). If you insist on an efficient
algorithm for such a problem, the best-case scenario is a heuristic
algorithm that, despite having no insurance policy, works well on
many of the problem instances that arise in your application. Local
search, along with its many variants, is one of the most powerful and
flexible paradigms for devising algorithms of this type.

20.4.1 Tackling the TSP

I’m not going to tell you what local search is in general just yet. In-
stead, we’ll devise from scratch a heuristic algorithm for the traveling
salesman problem (TSP), which will force us to develop several new
ideas. Then, in Section 20.5, we’ll zoom out and identify the ingre-
dients of our solution that exemplify the general principles of local
search. Armed with a template for developing local search algorithms
and an example instantiation, you’ll be well-positioned to apply the
technique in your own work.
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In the TSP (Section 19.1.2), the input is a complete graph G =
(V,E) with real-valued edge costs, and the goal is to compute a tour—
a cycle visiting every vertex exactly once—with the minimum-possible
sum of edge costs. The TSP is NP-hard (see Section 22.7); if speed is
mission-critical, the only option is to resort to heuristic algorithms
(assuming, as usual, that the P 6= NP conjecture is true).

To get a feel for the TSP, let’s start with the first greedy algorithm
that you might think of, along the lines of Prim’s minimum spanning
tree algorithm.

Quiz 20.7

The nearest neighbor heuristic algorithm is a greedy algo-
rithm for the TSP which, given a complete graph with
real-valued edge costs, works as follows:

1. Begin a tour at an arbitrary vertex a.

2. Repeat until all vertices have been visited:

a) If the current vertex is v, proceed to the closest
unvisited vertex (a vertex w minimizing cvw).

3. Return to the starting vertex.

In the following example, what is the cost of the tour con-
structed by the nearest neighbor algorithm, and what is the
minimum cost of a tour?

1 2

4

5

3 6

7

9

10

8

a

b

c

de

a) 23 and 29
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b) 24 and 29

c) 25 and 29

d) 24 and 30

(See Section 20.4.6 for the solution and discussion.)

Quiz 20.7 shows that the nearest neighbor heuristic algorithm does
not always construct a minimum-cost tour—hardly surprising, given
that the TSP is NP-hard and the algorithm runs in polynomial time.
More disturbingly, the greedily constructed tour remains the same
even if we change the cost of the final hop (a, e) to a huge number.
Unlike our greedy heuristic algorithms in Sections 20.1–20.3, the
nearest neighbor algorithm can produce solutions that are worse than
an optimal solution by an arbitrarily large factor. More sophisticated
greedy algorithms can overcome this particular bad example, but all
ultimately suffer an equally disappointing fate in more complicated
TSP instances.

20.4.2 Improving a Tour with 2-Changes

Who says we have to give up as soon as we’ve constructed an initial
tour? If there’s a way to greedily tweak a tour to make it better, why
not do it? What’s the minimal modification that could transform one
tour into a better one?

Quiz 20.8

In a TSP instance with n vertices, what is the maximum
number of edges that two distinct tours can share?

a) log2 n

b) n/2

c) n� 2

d) n� 1

(See Section 20.4.6 for the solution and discussion.)
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Quiz 20.8 suggests exploring the landscape of tours by swapping
out one pair of edges for another:

2-change

v w

xu

v w

xu

This type of swap is called a 2-change.

2-Change

1. Given a tour T , remove two edges (v, w), (u, x) of T
that do not share an endpoint.

2. Add either the edges (v, x) and (u,w) or the edges
(u, v) and (w, x), whichever pair leads to a new tour T 0.

The first step chooses two edges with four distinct endpoints.24 There
are three different ways to pair up these four vertices, and exactly one
of them creates a new tour (as in the preceding figure). Beyond this
and their original pairing, the third pairing creates two disjoint cycles
rather than a feasible tour:

infeasible

v w

xu

v w

xu

A 2-change can create a tour that is better or worse than the original
one. If the newly swapped-in edges are (u,w) and (v, x):

decrease in tour cost = (cvw + cux)| {z }
edges removed

� (cuw + cvx)| {z }
edges added

. (20.16)

If the decrease in (20.16) is positive—if the benefit cvw + cux of
removing the old edges outweighs the cost cuw+ cvx of adding the new
ones—the 2-change produces a lower-cost tour and is called improving.

24Removing two edges with a shared endpoint is pointless; the only way to get
back a feasible tour would be to put them right back in.
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For example, starting from the greedily constructed tour in
Quiz 20.7, there are five candidate 2-changes, three of which are
improving:25

a

b

c

de

a

b

c

de

a

b

c
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a

b
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a
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improving 2-changes
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20.4.3 The 2-OPT Algorithm

The 2-OPT algorithm for the TSP constructs an initial tour (for
example, with the nearest neighbor algorithm) and performs improving
2-changes until none remain. In the following pseudocode, 2Change
is a subroutine that takes as input a tour and two of its edges (with
distinct endpoints) and returns as output the tour produced by the
corresponding 2-change (as described on page 78).

2OPT

Input: complete graph G = (V,E) and cost ce for each
edge e 2 E.

Output: a traveling salesman tour.

1 T := initial tour // perhaps greedily constructed

2 while improving 2-change (v, w), (u, x) 2 T exists do
3 T := 2Change(T, (v, w), (u, x))

4 return T

For example, starting from the tour constructed by the nearest
neighbor algorithm in Quiz 20.7, the first iteration of the 2OPT algo-
rithm might replace the edges (a, b) and (d, e) with the edges (a, d)
and (b, e):

25In general, with n � 4 vertices, there are always n(n � 3)/2 candidate 2-
changes: Choosing one of the n tour edges followed by one of the n� 3 tour edges
with different endpoints counts every 2-change in exactly two different ways.
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thereby lowering the tour cost from 29 to 27. From here, there are
again five 2-changes to consider:
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If the second iteration of the algorithm executes the first of the two
improving 2-changes, replacing the edges (a, e) and (b, c) with the
edges (a, b) and (c, e), the tour cost decreases further from 27 to 24.
At this point, there are no improving 2-changes (one leaves the tour
cost unchanged and four increase it), and the algorithm halts:
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20.4.4 Running Time

Does the 2OPT algorithm even halt, or could it loop forever? There
are an awful lot of traveling salesman tours (Quiz 19.1), but still only
finitely many. Every iteration of the 2OPT algorithm produces a tour
with cost strictly smaller than the previous one, so there’s no worry
about the same tour showing up in two different iterations. Even in
the doomsday scenario in which the algorithm searches through every
possible tour, it halts within a finite amount of time.

The running time of the algorithm is governed by the number of
iterations of the main while loop, times the number of operations
performed per iteration. With n vertices, there are O(n2) differ-
ent 2-changes to check in each iteration, leading to a per-iteration
time bound of O(n2) (Problem 20.13). What about the number of
iterations?
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The bad news is that, in pathological examples, the 2OPT algo-
rithm might perform an exponential (in n) number of iterations before
halting. The good news is twofold. First, on more realistic inputs,
the 2OPT algorithm almost always halts in a reasonable number of
iterations (typically subquadratic in n). Second, because the algo-
rithm maintains a feasible tour throughout its execution, it can be
interrupted at any time.26 You can decide in advance how long you’re
willing to run the algorithm (one minute, one hour, one day, etc.) and,
when time expires, use the last (and best) solution that the algorithm
found.

20.4.5 Solution Quality

The 2OPT algorithm can only improve upon its initial tour, but there’s
no guarantee that it will find an optimal solution. Already for the
example in Quiz 20.7, we saw in Section 20.4.3 that the algorithm
might return a tour with cost 24 instead of the optimal tour (which
has cost 23). Could there be worse examples? How much worse?

The bad news is that more complicated and contrived examples
show that the tour returned by the 2OPT algorithm can cost more than
an optimal tour by an arbitrarily large factor. In other words, the
algorithm does not have an approximate correctness guarantee akin to
those in Sections 20.1–20.3. The good news is that, for the instances
of the TSP that arise in practice, variants of the 2OPT algorithm
routinely find tours with total cost not much more than the minimum
possible. To tackle the TSP in practice on large inputs (with n in
the thousands or more), the 2OPT algorithm, augmented with some of
the bells and whistles covered in Section 20.5, is an excellent starting
point.

20.4.6 Solutions to Quizzes 20.7–20.8

Solution to Quiz 20.7

Correct answer: (a). The nearest neighbor algorithm starts at a
and greedily travels to b and then c. At this point, the tour must
proceed to either d or e (as no vertex can be visited twice), with d

26Algorithms that are interruptible in this sense are sometimes called anytime
algorithms.
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slightly preferred (cost 7 instead of 8). Once at d, the remaining hops
of the tour are forced: There is no choice but to travel to e (at a cost
of 9) and then return to a (at a cost of 10). The total cost of this
tour is 29 (see the left figure below). Meanwhile, the minimum total
cost of a tour is 23 (see the right figure below).
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(b) The optimal tour

Solution to Quiz 20.8

Correct answer: (c). Because any n� 1 edges of a tour uniquely
determine its final edge, distinct tours cannot share n � 1 edges.
Distinct tours can share n� 2 edges, however:
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20.5 Principles of Local Search

A local search algorithm explores a space of feasible solutions via “local
moves” that successively improve an objective function. The 2OPT

algorithm for the TSP, in which local moves correspond to 2-changes,
is a canonical example. This section zooms out and isolates the
essential ingredients of the local search algorithm design paradigm,
together with the key modeling and algorithmic decisions needed to
apply it.
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20.5.1 The Meta-Graph of Feasible Solutions

For a TSP instance G = (V,E) with real-valued edge costs, the 2OPT

algorithm can be visualized as a greedy walk through a “meta-graph”
H = (X,F ) of feasible solutions (shown in Figure 20.3 for the running
example from Quiz 20.7). The meta-graph H has one vertex x 2 X
for each tour of G, labeled with the tour’s total cost. It also has one
edge (x, y) 2 F for each pair x, y of tours that differ in exactly two
edges of G. In other words, the meta-graph edges correspond to the
possible 2-changes in the TSP instance.

a

b

c

de

a

b

c

de

a

b

c

de

a

b

c

de

a

b

c

de

a

b

c

de

a

b

c

de

a

b

c

de

a

b

c

de

a

b

c

de

a

b

c

de

a

b

c

de

…some edges omitted… …some edges omitted…
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Figure 20.3: The meta-graph of feasible solutions corresponding to the
TSP instance in Quiz 20.7. Vertices of the meta-graph correspond to tours,
and two tours are connected by an edge of the meta-graph if and only if
they differ in exactly two edges. The top tour is adjacent in the meta-graph
to the five tours in the second row, and similarly for the bottom tour and
the tours in the third row. Each tour in the second row is adjacent to each
tour in the third row, save the one in its own column. (To avoid clutter,
some of these meta-graph edges are omitted in the figure.) Each tour is
labeled with its total cost.
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Quiz 20.9

For a TSP instance with n � 4 vertices, how many vertices
and edges does the corresponding meta-graph have?27

a) 1
2(n� 1)! and n!(n�3)

8

b) 1
2(n� 1)! and n!(n�3)

4

c) (n� 1)! and n!(n�3)
4

d) (n� 1)! and n!(n�3)
2

(See Section 20.5.8 for the solution and discussion.)

We can view the 2OPT algorithm as starting at some meta-graph
vertex (for example, the output of the nearest neighbor algorithm)
and repeatedly traversing meta-graph edges to visit a sequence of tours
with successively smaller costs. The algorithm halts when it reaches a
meta-graph vertex with cost no larger than any of its neighbors in the
meta-graph. The example 2OPT trajectory in Section 20.4.3 begins at
the top tour in Figure 20.3 before proceeding to the second tour in
the second row and then halting at the first tour in the third row.

20.5.2 The Local Search Algorithm Design Paradigm

Most local search algorithms can be similarly visualized as a greedy
walk in a meta-graph of feasible solutions.28 Such algorithms differ
only in the choice of meta-graph and the details of the exploration
strategy.29

27Don’t worry about the meta-graph being REALLY BIG; it exists only in our
minds, never to be written out explicitly.

28We can even add a third dimension to the visualization, with the “height” of
a meta-graph vertex specified by its objective function value. This image explains
why local search is sometimes called hill climbing.

29One variant is gradient descent, an ancient local search algorithm for con-
tinuous (as opposed to discrete) optimization that is central to modern machine
learning. The simplest version of gradient descent is a heuristic algorithm for
minimizing a differentiable objective function over all points in Euclidean space,
with improving local moves corresponding to small steps in the direction of steepest
descent (that is, of the negative gradient) from the current point.
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The Local Search Paradigm

1. Define your feasible solutions (equivalently, the ver-
tices of the meta-graph).

2. Define your objective function (the numerical labels
of the meta-graph vertices) and whether the goal is to
maximize or minimize it.

3. Define your allowable local moves (the edges of the
meta-graph).

4. Decide how to choose an initial feasible solution (a
starting meta-graph vertex).

5. Decide how to choose among multiple improving local
moves (the possible next steps in the meta-graph).

6. Perform local search: Starting from the initial feasible
solution, iteratively improve the objective function
value via local moves until reaching a local optimum—
a feasible solution from which no improving local move
is possible.

The pseudocode of a generic local search algorithm closely resembles
that of the 2OPT algorithm. (MakeMove takes as input a feasible solu-
tion and the description of a local move, and returns the corresponding
neighboring solution.)

GenericLocalSearch

S := initial solution // as specified in step 4

while improving local move L exists do
S :=MakeMove(S,L) // as specified in step 5

return S // return the local optimum found

The first three steps in the local search paradigm are modeling deci-
sions and the next two are algorithmic decisions. Let’s examine each
step in more detail.
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20.5.3 Three Modeling Decisions

The first two steps of the local search paradigm define the problem.

Step 1: Define your feasible solutions. In the TSP, the feasible
solutions of an n-vertex instance are the 1

2(n � 1)! tours. In the
makespan minimization problem (Section 20.1.1), the feasible solutions
of an instance with m machines and n jobs are the mn different ways
of assigning jobs to machines. In the maximum coverage problem
(Section 20.2.1), in an instance with m subsets and parameter k,
the feasible solutions are the

�
m
k

�
different ways of choosing k of the

subsets.

Step 2: Define your objective function. This step is even more straight-
forward in our running examples. In the TSP, the objective function
(to minimize) is the total cost of a tour. In the makespan minimiza-
tion and maximum coverage problems, the objective functions (to
minimize and maximize, respectively) are, naturally, the makespan of
a schedule and the coverage of a collection of k subsets.

Steps 1 and 2 define the global optima of an instance—the feasible
solutions with the best-possible objective function value (like the tour
with cost 23 in Figure 20.3). Step 3 completes the definition of the
meta-graph by specifying its edges—the permitted local moves from
one feasible solution to another.

Step 3: Define your allowable local moves. In the 2OPT algorithm
for the TSP, local moves correspond to 2-changes; in an instance
with n vertices, the neighborhood size—the number of local moves
available from each solution—is n(n� 3)/2. What if you wanted to
apply the local search paradigm to the makespan minimization or
maximum coverage problem? For the former, the simplest definition of
a local move is the reassignment of a single job to a different machine.
The neighborhood size is then n(m � 1), where m and n denote
the number of machines and jobs, respectively. For the maximum
coverage problem, the simplest type of local move swaps out one of
the k subsets in the current solution for a different one. With m
subsets, the neighborhood size is then k(m � k), with k choices to
swap out and m� k to swap in.

The meta-graph of feasible solutions is fully specified after
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steps 1–3 and so are the local optima—the feasible solutions from
which there is no improving local move or, equivalently, the meta-
graph vertices with objective function value at least as good as all
their neighbors. For example, in Figure 20.3, the two local optima are
the first and third tours in the third row. (The latter is also a global
optimum, while the former is not.) For the makespan minimization
problem, with local moves corresponding to single job reassignments,
the schedule produced by the LPT algorithm in Quiz 20.3 is a local
minimum, while that produced by the Graham algorithm in Quiz 20.2
is not (as you should check). For the maximum coverage problem,
with local moves corresponding to subset swaps, the output of the
GreedyCoverage algorithm is not a local maximum in either of the
examples in Section 20.2.4 (as you should check).30

Example: The 3-Change Neighborhood for the TSP

Steps 1 and 2 do not uniquely determine the decision in step 3, as
multiple definitions of a “local move” might make sense for a given
computational problem. For example, in the TSP, who says we can
only take out and put back in two edges at a time? Why not three,
or more?

A 3-change is an operation that replaces three edges of a traveling
salesman tour with three different edges in a way that produces a new
tour:31

3-change

v w

xu

y z v w

xu

y z

The 3OPT algorithm is the generalization of the 2OPT algorithm (Sec-
tion 20.4.3) that, in each iteration of the main while loop, performs a
2-change or a 3-change that produces a lower-cost tour.

30Whenever you’ve got a little extra time, it’s worth passing the output of
a heuristic algorithm through a local search postprocessing step. After all, the
solution can only get better!

31In a 2-change, the pair of edges removed uniquely determines the pair to be
added (Section 20.4.2). This is no longer the case for 3-changes. For example, if
three edges with no shared endpoints are removed, there are seven ways to pair
up their six endpoints that lead to new feasible tours (as you should check).
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Quiz 20.10

Fix an instance of the TSP. Let H2 and H3 denote the
meta-graphs corresponding to the 2OPT and 3OPT algorithms,
respectively. Which of the following statements are true?
(Choose all that apply.)

a) Every edge of H2 is also an edge of H3.

b) Every edge of H3 is also an edge of H2.

c) Every local minimum of H2 is also a local minimum
of H3.

d) Every local minimum of H3 is also a local minimum
of H2.

(See Section 20.5.8 for the solution and discussion.)

Choosing Your Neighborhood Size

When there are competing definitions of “local moves,” which one
should you use? This question is usually best answered empirically,
by trying out several options. Quiz 20.10 does, however, illustrate
a general advantage of large neighborhood sizes: More local moves
means fewer lousy local optima for local search to get stuck at. The
primary downside of larger neighborhood sizes is the slowdown in
checking for improving local moves. For example, in the TSP, checking
for an improving 2-change takes quadratic time (in the number of
vertices) while checking for an improving 3-change takes cubic time.
One approach to balancing these pros and cons is to use the largest
neighborhood you can get away with subject to a target per-iteration
running time (like one second or ten seconds).

20.5.4 Two Algorithm Design Decisions

Steps 4 and 5 of the local search paradigm supply the details missing
from the generic local search algorithm in Section 20.5.2.

Step 4: Decide how to choose an initial feasible solution. Two simple
ways to choose an initial solution are greedily and randomly. For
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example, in the TSP, the initial tour could be constructed by the
nearest neighbor algorithm (Quiz 20.7), or by choosing a uniformly
random order to visit the vertices. In the makespan minimization
problem, the initial schedule could be constructed by the Graham or
LPT algorithms, or by assigning each job independently to a uniformly
random machine. For the maximum coverage problem, the initial
solution could be the output of the GreedyCoverage algorithm or a
uniformly random choice of k of the given subsets.

Why cast aside a perfectly good greedy heuristic algorithm in
favor of a random solution? Because starting local search from a
better initial solution does not necessarily lead to a better (or even
equally good) local optimum. An ideal initialization procedure quickly
produces a not-too-bad solution that leaves lots of opportunities for
local improvement. Random initialization often fits the bill.

Step 5: Decide how to choose among multiple improving local moves.
The generic local search algorithm in Section 20.5.2 does not specify
how to choose one improving local move from many. The simplest
approach is to enumerate local moves one by one until an improving
one is found.32 An alternative with a slower per-iteration running
time but a larger per-iteration objective function improvement is
to complete the enumeration and greedily execute the local move
offering the biggest improvement. A third option is to encourage wider
exploration of the solution space by choosing one of the improving
moves at random.

20.5.5 Running Time and Solution Quality

Steps 1–5 fully specify a local search algorithm, which starts from an
initial solution (chosen using the procedure from step 4) and repeatedly
performs improving local moves (chosen using the procedure from
step 5) until a local optimum is reached and no further improving
moves are possible. What kind of performance can you expect from
such an algorithm?

All the lessons learned about the 2OPT algorithm for the TSP
in Sections 20.4.4–20.4.5 apply to most other local search algo-
rithms:

32The 2OPT algorithm followed this approach in the example in Section 20.4.3
(assuming that it always scanned 2-changes from left to right in the figures).
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Common Characteristics of Local Search

1. Guaranteed to halt. (Assuming that there is only a
finite number of feasible solutions.)

2. Not guaranteed to halt in a polynomial (in the input
size) number of iterations.

3. On realistic inputs, almost always halts within a tol-
erable number of iterations.

4. Can be interrupted at any time to return the last (and
best) solution found.

5. Not guaranteed to return a local optimum with an ob-
jective function value that is close to the best possible.

6. On realistic inputs, often produces high-quality lo-
cal optima, but sometimes produces low-quality local
optima.

20.5.6 Avoiding Bad Local Optima

Low-quality local optima can impede the successful application of
local search. How can you tweak a local search algorithm to better
avoid them? While one fix is to increase the neighborhood size (see
Section 20.5.3), perhaps the easiest workaround is to rely on random-
ization, choosing a random initial solution or random improving moves
in each iteration. You can then run as many independent trials of
your algorithm as you have time for, returning the best local optimum
found by any of the trials.

A more drastic approach to avoiding bad local optima is to some-
times allow non-improving local moves. For example, in each iteration:

(i) From the current solution, choose a local move uniformly at
random.

(ii) If the chosen local move is improving, perform it.

(iii) Otherwise, if the chosen local move makes the objective function
worse by ∆ � 0, perform it with some probability p(∆) that is
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decreasing in ∆, and otherwise do nothing. (One popular choice
for the function p(∆) is the exponential function e��∆, where
� > 0 is a tunable parameter.)33

Local search algorithms that permit non-improving moves do not
generally halt and should be interrupted after a target amount of
computation time.

There’s no end to the additional bells and whistles you can layer
on top of the basic local search algorithm.34 Two different genres of
them are:

• History-dependent neighborhoods. Rather than fixing the allow-
able local moves once and for all, they could depend on the
trajectory-so-far of the local search algorithm. For example,
you might disallow local moves that seem to partially reverse
the previous move, such as a 2-change using some of the same
endpoints as the previous 2-change.35 Rules of this type are
particularly useful for avoiding cycles in local search algorithms
that allow non-improving moves.

• Maintaining a population of solutions. The algorithm could
maintain k � 2 feasible solutions at all times, rather than
only one. Each iteration of the algorithm now generates k new
feasible solutions from k old ones, for example, by keeping only
the k best neighbors of the current k solutions, or by combining
pairs of current solutions to create new ones.36

20.5.7 When Should You Use Local Search?

You know a lot of algorithm design paradigms; when is local search
the first one to try? If your application checks several of the following
boxes, local search is probably worth a shot.

33If you’ve heard of the “Metropolis algorithm” or “simulated annealing,” both
are based on this idea.

34For a deep dive, check out the book Local Search in Combinatorial Optimiza-
tion, edited by Emile Aarts and Jan Karel Lenstra (Princeton University Press,
2003).

35If you’ve heard of “tabu search” or the “Lin-Kernighan variable-depth heuris-
tic,” both are related to this idea.

36If you’ve heard of “beam search” or “genetic algorithms,” both are variants of
this idea.
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When to Use Local Search

1. You don’t have enough time to compute an exact
solution.

2. You’re willing to give up on running time and approx-
imate correctness guarantees.

3. You want an algorithm that is relatively easy to im-
plement.

4. You already have a good heuristic algorithm but want
to improve its output further in a postprocessing step.

5. You want an algorithm that can be interrupted at any
time.

6. State-of-the-art mixed integer programming and satis-
fiability solvers (discussed in Sections 21.4–21.5) aren’t
good enough—either because your input sizes are too
big for the solvers to handle, or because your problem
can’t be translated easily into the format they require.

And remember, to get the most out of local search, you have to
experiment—with different neighborhoods, initialization strategies,
local move selection strategies, extra bells and whistles, and so on.

20.5.8 Solutions to Quizzes 20.9–20.10

Solution to Quiz 20.9

Correct answer: (a). The meta-graph has one vertex per tour, for
a total of 1

2(n� 1)! (see Quiz 19.1). Each vertex of the meta-graph
is adjacent to n(n� 3)/2 other vertices (see footnote 25). The total
number of edges is therefore

1

2
·
(n� 1)!

2| {z }
# of vertices

·
n(n� 3)

2| {z }
# of incident edges

=
n!(n� 3)

8
;

the leading “ 12 ” term corrects for the double-counting of each meta-
graph edge (once via each endpoint).
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Solution to Quiz 20.10

Correct answers: (a),(d). The 3OPT algorithm can make whatever
2-change (or 3-change) it likes in each iteration. With every local
move available to 2OPT available also to 3OPT, answer (a) is correct.
Thus, (d) is correct as well: If a vertex has a neighbor in H2 with better
objective function value (showing that it is not a local minimum in H2),
this same neighbor shows that the vertex is not a local minimum
in H3, either.

In the example in Figure 20.3, the first tour in the third row
cannot be improved by a 2-change but can be improved by a 3-change
(as you should check). This shows that (b) and (c) are both incorrect.

The Upshot

P In the makespan minimization problem, the goal
is to assign jobs to machines to minimize the
makespan (the maximum machine load).

P Making a single pass over the jobs and schedul-
ing each on the currently least loaded machine
produces a schedule with makespan at most
twice the minimum possible.

P Sorting the jobs first (from longest to shortest)
improves the guarantee from 2 to 4/3.

P In the maximum coverage problem, the goal
is to choose k of m subsets to maximize their
coverage (the size of their union).

P Greedily selecting subsets that increase the cov-
erage as much as possible achieves a coverage
of at least 63.2% of the maximum possible.

P The influence of a set of initially active ver-
tices in a directed graph is the expected number
of eventually activated vertices, assuming that
an activated vertex activates each of its out-
neighbors with some probability p.



94 Compromising on Correctness: Efficient Inexact Algorithms

P In the influence maximization problem, the goal
is to choose k vertices of a directed graph to
maximize their influence.

P Because influence is a weighted average of cover-
age functions, the 63.2% guarantee carries over
to the greedy algorithm that iteratively selects
vertices that increase the influence the most.

P In the traveling salesman problem (TSP), the
input is a complete graph with real-valued edge
costs, and the goal is to compute a tour (a
cycle visiting every vertex exactly once) with
the minimum-possible sum of edge costs.

P A 2-change creates a new tour from an old one
by swapping out one pair of edges for another.

P The 2-OPT algorithm for the TSP repeatedly
improves an initial tour via 2-changes until no
such improvements are possible.

P A local search algorithm takes a walk through
a meta-graph in which vertices correspond to
feasible solutions (labeled by objective function
value) and edges to local moves.

P A local search algorithm is specified by a meta-
graph, an initial solution, and a rule for selecting
among improving local moves.

P Local search algorithms often produce high-
quality solutions in a reasonable amount of time,
despite lacking provable running time and ap-
proximate correctness guarantees.

P Local search algorithms can be tweaked to bet-
ter avoid low-quality local optima, for example,
by allowing randomization and non-improving
local moves.
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Test Your Understanding

Problem 20.1 (S) In the makespan minimization problem (Sec-
tion 20.1.1), suppose that jobs have similar lengths (with `j  2`h for
all jobs j, h) and that there is a healthy number of jobs (at least 10
times the number of machines). What can you say about the makespan
of the schedule output by the Graham algorithm of Section 20.1.3?
(Choose the strongest true statement.)

a) It is at most 10% larger than the minimum-possible makespan.

b) It is at most 20% larger than the minimum-possible makespan.

c) It is at most 50% larger than the minimum-possible makespan.

d) It is at most 100% larger than the minimum-possible makespan.

Problem 20.2 (S) The goal in the maximum coverage problem (Sec-
tion 20.2.1) is to cover as many elements as possible using a fixed
number of subsets; in the closely related set cover problem, the
goal is to cover all the elements while using as few subsets as possi-
ble (like hiring a team with all the requisite skills at the minimum-
possible cost).37 The greedy algorithm for the maximum coverage
problem (Section 20.2.3) extends easily to the set cover problem
(given as input m subsets A1, A2, . . . , Am of a ground set U , with
[m
i=1Ai = U):

Greedy Heuristic Algorithm for Set Cover

K := ; // indices of chosen sets

while fcov(K) < |U | do // part of U uncovered

i⇤ := argmaxmi=1 [fcov(K [ {i})� fcov(K)]
K := K [ {i⇤}

return K

Let k denote the minimum number of subsets required to cover all
of U . Which of the following approximate correctness guarantees
holds for this algorithm? (Choose the strongest true statement.)

a) Its solution consists of at most 2k subsets.
37This problem is NP-hard; see Problem 22.6.
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b) Its solution consists of O(k log |U |) subsets.

c) Its solution consists of O(k ·
p
|U |) subsets.

d) Its solution consists of O(k · |U |) subsets.

Problem 20.3 (S) This problem considers three greedy heuristics for
the knapsack problem (defined in Section 19.4.2). The input consists
of n items with values v1, v2, . . . , vn and sizes s1, s2, . . . , sn, and a
knapsack capacity C.

Greedy Heuristic Algorithm #1 for Knapsack

I := ;, S := 0 // chosen items and their size

sort and reindex the jobs so that v1 � v2 � · · · � vn
for i = 1 to n do

if S + si  C then // choose item if feasible

I := I [ {i}, S := S + si
return I

Greedy Heuristic Algorithm #2 for Knapsack

I := ;, S := 0 // chosen items and their size

sort and reindex the jobs so that v1
s1

� v2
s2

� · · · � vn
sn

for i = 1 to n do
if S + si  C then // choose item if feasible

I := I [ {i}, S := S + si
return I

Greedy Heuristic Algorithm #3 for Knapsack

I1 := output of greedy heuristic algorithm #1
I2 := output of greedy heuristic algorithm #2
return whichever of I1, I2 has higher total value

Which of the following statements are true? (Choose all that apply.)
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a) The total value of the solution returned by the first greedy
algorithm is always at least 50% of the maximum possible.

b) The total value of the solution returned by the second greedy
algorithm is always at least 50% of the maximum possible.

c) The total value of the solution returned by the third greedy
algorithm is always at least 50% of the maximum possible.

d) If every item size is at most 10% of the knapsack capacity (that
is, maxni=1 si  C/10), the total value of the solution returned
by the first greedy algorithm is at least 90% of the maximum
possible.

e) If every item size is at most 10% of the knapsack capacity,
the total value of the solution returned by the second greedy
algorithm is at least 90% of the maximum possible.

f) If every item size is at most 10% of the knapsack capacity, the
total value of the solution returned by the third greedy algorithm
is at least 90% of the maximum possible.

Problem 20.4 (S) In the vertex cover problem, the input is an
undirected graph G = (V,E), and the goal is to identify a minimum-
size subset S ✓ V of vertices that includes at least one endpoint of
every edge in E.38 (For example, perhaps the edges represent roads
and the vertices intersections, and the goal is to monitor all the roads
while installing security cameras at as few intersections as possible.)
One simple heuristic algorithm repeatedly chooses a not-yet-covered
edge and adds both its endpoints to its solution-so-far:

Heuristic Algorithm for Vertex Cover

S := ; // chosen vertices

while there is an edge (v, w) 2 E with v, w /2 S do
S := S [ {v, w} // add both endpoints of edge

return S

38This problem is NP-hard; see Problem 22.5.
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Let k denote the minimum number of vertices required to capture at
least one endpoint of each edge. Which of the following approximate
correctness guarantees holds for this algorithm? (Choose the strongest
true statement.)

a) Its solution consists of at most 2k vertices.

b) Its solution consists of O(k log |E|) vertices.

c) Its solution consists of O(k ·
p
|E|) vertices.

d) Its solution consists of O(k · |E|) vertices.

Problem 20.5 (S) Which of the following statements about the
generic local search algorithm in Section 20.5.2 is not true?

a) Its output generally depends on the choice of the initial feasible
solution.

b) Its output generally depends on the method for choosing one
improving local move from many.

c) It will always, eventually, halt at an optimal solution.

d) In some cases, it performs an exponential (in the input size)
number of iterations before halting.

Challenge Problems

Problem 20.6 (H) Propose an implementation of the Graham algo-
rithm (Section 20.1.3) that uses a heap data structure and runs in
O(n logm) time, where n is the number of jobs and m is the number
of machines.39

Problem 20.7 (H) This problem improves Theorem 20.4 and ex-
tends the example in Quiz 20.3 to identify the best-possible approxi-
mate correctness guarantee for the LPT algorithm (Section 20.1.7).

39Technically, the running time will be O(m + n logm). The problem is
uninteresting when n  m, however, as in that case each job can be granted a
dedicated machine.
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(a) Let job j be the last job assigned to the most heavily
loaded machine in the schedule returned by the LPT algorithm.
Prove that if `j > M⇤/3, where M⇤ denotes the minimum-
possible makespan, then this schedule is optimal (that is, has
makespan M⇤).

(b) Prove that the LPT algorithm always outputs a schedule with
makespan at most 4

3 � 1
3m times the minimum possible, where m

denotes the number of machines.

(c) Generalize the example in Quiz 20.3 to show that, for every
m � 1, there is an example with m machines in which the
schedule produced by the LPT algorithm has makespan 4

3 � 1
3m

times the minimum possible.

Problem 20.8 (H) Recall the bad example for the GreedyCoverage

algorithm in Quiz 20.5.

(a) Prove Proposition 20.6.

(b) Extend your examples in (a) to show that, even with best-case
tie-breaking, for every constant ✏ > 0, the GreedyCoverage

algorithm does not guarantee a 1� (1� 1
k )

k + ✏ fraction of the
maximum-possible coverage (where k denotes the number of
subsets chosen).

Problem 20.9 (H) Show that every instance of the maximum cover-
age problem can be encoded as an instance of the influence maximiza-
tion problem so that: (i) the two instances have the same optimal
objective function value F ⇤; and (ii) any solution to the latter instance
with influence F can be easily converted to a solution to the former
instance with coverage at least F .

Problem 20.10 (H) The goal in the maximum coverage problem is
to choose k subsets to maximize the coverage fcov. The goal in the
influence maximization problem is to choose k vertices to maximize
the influence finf . The general version of this type of problem is:
Given a set O of objects and a real-valued set function f (specifying
a number f(S) for each subset S ✓ O), choose k objects of O to
maximize f . The GreedyCoverage and GreedyInfluence algorithms
extend naturally to the general problem:
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Greedy Algorithm for Set Function Maximization

S := ; // chosen objects

for j = 1 to k do // choose objects one by one

// greedily increase objective function

o⇤ := argmaxo 62S [f(S [ {o})� f(S)]
S := S [ {o⇤}

return S

For which objective functions f does this greedy algorithm enjoy an
approximate correctness guarantee akin to Theorems 20.7 and 20.9?
Here are the key properties:

1. Nonnegative: f(S) � 0 for all S ✓ O.

2. Monotone: f(S) � f(T ) whenever S ◆ T .

3. Submodular: f(S [ {o})� f(S)  f(T [ {o})� f(T ) whenever
S ◆ T and o /2 S.40

(a) Prove that the coverage and influence functions fcov and finf
possess all three properties.

(b) Prove that whenever f is nonnegative, monotone, and submod-
ular, the general greedy heuristic algorithm is guaranteed to
return a set S of objects that satisfies

f(S) �
 
1�

✓
1� 1

k

◆k
!

· f(S⇤),

where S⇤ maximizes f over all size-k subsets of O.

Problem 20.11 (H) Problem 20.3 investigated approximate correct-
ness guarantees for greedy heuristic algorithms for the knapsack prob-
lem. This problem outlines a dynamic programming algorithm with a
much stronger guarantee: For a user-specified error parameter ✏ > 0
(like .1 or .01), the algorithm outputs a solution with total value at

40Submodularity asserts a “diminishing returns” property: The marginal value
of a new object o can only diminish as other objects are acquired.
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least 1� ✏ times the maximum possible. (Full disclosure, in case this
sounds too good to be true for an NP-hard problem: The running
time of the algorithm blows up as ✏ approaches 0.)

(a) Section 19.4.2 mentioned that the knapsack problem can be
solved in O(nC) time using dynamic programming, where n
denotes the number of items and C the knapsack capacity; see
also Chapter 16 of Part 3. (All item values and sizes, as well as
the knapsack capacity, are positive integers.) Give a different
dynamic programming algorithm for the problem that runs in
O(n2 · vmax) time, where vmax denotes the largest value of any
item.

(b) To shrink the item values down to a manageable magnitude,
divide each of them by m := (✏ · vmax)/n and round each result
down to the nearest integer (where ✏ is the user-specified error
parameter). Prove that the total value of every feasible solution
goes down by at least a factor of m and that the total value of
an optimal solution goes down by at most a factor of m/(1� ✏).
(You can assume that every item has size at most C and hence
fits in the knapsack.)

(c) Propose an O(n3/✏)-time algorithm that is guaranteed to return
a feasible solution with total value at least 1 � ✏ times the
maximum possible.41

Problem 20.12 (H) This problem describes a commonly encoun-
tered special case of the traveling salesman problem for which there are
fast heuristic algorithms with good approximate correctness guaran-
tees. In a metric instance G = (V,E) of the TSP, all the edge costs ce
are nonnegative and the shortest path between any two vertices is
the direct one-hop path (a condition that is known as the “triangle
inequality”):

cvw 
X

e2P
ce

for every pair v, w 2 V of vertices and v-w path P . (The example in
Quiz 19.2 is a metric instance, while the example in Quiz 20.7 is not.)

41A heuristic algorithm with this type of guarantee is called a fully polynomial-
time approximation scheme (FPTAS).
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The triangle inequality typically holds in applications in which edge
costs correspond to physical distances. The TSP remains NP-hard in
the special case of metric instances (see Problem 22.12(a)).

Our starting point for a fast heuristic algorithm is the linear-time
algorithm for tree instances described in Problem 19.8. The key idea
is to reduce a general metric instance to a tree instance by computing
a minimum spanning tree.

MST Heuristic for Metric TSP

T := minimum spanning tree of the input graph G
return an optimal tour of the tree instance defined by T

The first step can be implemented in near-linear time using Prim’s or
Kruskal’s algorithm. The second step can be implemented in linear
time using the solution to Problem 19.8. In the tree TSP instance
constructed in the second step, the length ae of an edge e of T is set
to the cost ce of that edge in the given metric TSP instance (with the
cost of each edge (v, w) in the tree instance then defined as the total
length

P
e2Pvw

ae of the unique v-w path Pvw in T ):

1

2

5

43

3

1

2 3

a minimum spanning tree tree TSP instance

4

42 1

2 3

metric TSP instance

(a) Prove that the minimum total cost of a traveling salesman tour
is at least that of a minimum spanning tree. (This step does
not require the triangle inequality.)

(b) Prove that, for every instance of metric TSP, the total cost of
the tour computed by the MST heuristic is at most twice the
minimum possible.
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Problem 20.13 (H) Propose an implementation of the 2OPT algo-
rithm (Section 20.4.3) in which each iteration of the main while loop
runs in O(n2) time, where n is the number of vertices.

Problem 20.14 (S) Most local search algorithms lack polynomial
running time and approximate correctness guarantees; this problem
describes a rare exception. For an integer k � 2, in the maximum
k-cut problem, the input is an undirected graph G = (V,E). The
feasible solutions are the k-cuts of the graph, meaning partitions of the
vertex set V into k non-empty groups S1, S2, . . . , Sk. The objective is
to maximize the number of edges with endpoints in different groups.
For example, in the graph

1 2 3

4 5 6

7 8 9

sixteen of the seventeen edges have endpoints in distinct groups of
the 3-cut ({1, 6, 7}, {2, 5, 9}, {3, 4, 8}).42

For a k-cut (S1, S2, . . . , Sk), each local move corresponds to a
reassignment of a single vertex from one group to another, subject to
the constraint that none of the k groups can become empty.

(a) Prove that, for every initial k-cut and selection rule for choosing
improving local moves, the generic local search algorithm halts
within |E| iterations.

(b) Prove that, for every initial k-cut and selection rule for choosing
improving local moves, the generic local search algorithm halts
with a k-cut with an objective function value of at least (k�1)/k
times the maximum possible.

42There’s no way to do better, as two of the vertices in {1, 2, 4, 5} must belong
to a common group.
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Programming Problems

Problem 20.15 Implement in your favorite programming language
the nearest neighbor algorithm for the TSP (as seen in Quiz 20.7).
Try out your implementation on instances with edge costs chosen
independently and uniformly at random from the set {1, 2, . . . , 100}
or, alternatively, for vertices that correspond to points chosen inde-
pendently and uniformly at random from the unit square.43 How
large an input size (that is, how many vertices) can your program
reliably process in under a minute? What about in under an hour?
(See www.algorithmsilluminated.org for test cases and challenge
data sets.)

Problem 20.16 Implement in your favorite programming language
the 2OPT algorithm from Section 20.4.3. Use your implementation
of the nearest neighbor algorithm from Problem 20.15 to compute
the initial tour. Implement each iteration of the main loop so that
it runs in quadratic time (see Problem 20.13) and experiment with
different ways of selecting an improving local move. Try out your
implementation on the same instances you used for Problem 20.15.44

By how much does local search improve the total cost of the initial
tour? Which of your selection rules leads to the most dramatic
improvement? (See www.algorithmsilluminated.org for test cases
and challenge data sets.)

43That is, the x- and y-coordinates of each point are independent and uniformly
random numbers in [0, 1]. The cost of the edge connecting two points (x1, y1) and
(x2, y2) is then defined as the Euclidean (that is, straight-line) distance between
them, which is

p

(x1 � x2)2 + (y1 � y2)2. (For the nearest neighbor algorithm,
you can equivalently work with squared Euclidean distances.)

44For points in the unit square, does it matter whether you use Euclidean or
squared Euclidean distances?



Chapter 21

Compromising on Speed:

Exact Inefficient Algorithms

You can’t have it all with NP-hard problems. When correctness cannot
be compromised and heuristic algorithms are out of the question,
it’s time to consider correct algorithms that do not always run in
polynomial time. The goal is then to design a general-purpose and
correct algorithm that is as fast as possible, and certainly faster
than exhaustive search, on as many inputs as possible. Sections 21.1
and 21.2 use dynamic programming to design algorithms that are
always faster than exhaustive search in two case studies: the TSP
and the problem of finding a long path in a graph. Sections 21.3–21.5
introduce mixed integer programming and satisfiability solvers, which
lack better-than-exhaustive-search running time guarantees but can
nevertheless be highly effective at solving the instances of NP-hard
problems that arise in practice.

21.1 The Bellman-Held-Karp Algorithm for the TSP

21.1.1 The Baseline: Exhaustive Search

In the TSP (Section 19.1.2), the input is a complete graph G = (V,E)
with real-valued edge costs and the goal is to compute a tour—a cycle
visiting every vertex exactly once—with the minimum-possible sum
of edge costs. The TSP is NP-hard (see Section 22.7); if correctness
cannot be compromised, the only option is to resort to algorithms that
run in super-polynomial (and presumably exponential) time in the
worst case (assuming, as usual, that the P 6= NP conjecture is true).
Can algorithmic ingenuity at least improve over mindless exhaustive
search? How big a speed-up can we hope for?

Solving the TSP by exhaustive search through the 1
2(n � 1)!

possible tours (Quiz 19.1) results in an O(n!)-time algorithm. The

105
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factorial function n! = n · (n � 1) · (n � 2) · · · 2 · 1 certainly grows
more quickly than a simple exponential function like 2n—the latter
is the product of n 2’s, the former the product of n terms that are
mostly much bigger than 2. Just how big is it? There’s a remarkably
accurate answer to this question, called Stirling’s approximation.1 (In
it, e = 2.718 . . . denotes Euler’s number and, of course, ⇡ = 3.14 . . ..)

Stirling’s Approximation

n! ⇡
p
2⇡n

⇣n
e

⌘n
(21.1)

Stirling’s approximation shows that the factorial function (with its nn-
type dependence) grows a lot faster than 2n. For example, you could
run to completion an n!-time algorithm on modern computers only
for n up to maybe 15, while a 2n-time algorithm could handle input
sizes up to n = 40 or so. (Still not that impressive, perhaps, but you
take what you can get with NP-hard problems!) Thus, solving the
TSP in time closer to 2n than n! is a worthy goal.

21.1.2 Dynamic Programming

While many of the killer applications of dynamic programming are to
polynomial-time solvable problems, the paradigm is equally adept at
solving NP-hard problems faster than exhaustive search, including the
knapsack problem (Section 19.4.2), the TSP (this section), and more
(Section 21.2). To review (for example, from Chapter 16 of Part 3),
the dynamic programming paradigm is:

The Dynamic Programming Paradigm

1. Identify a relatively small collection of subproblems.

2. Show how to quickly and correctly solve “larger” sub-
problems given the solutions to “smaller” ones.

3. Show how to quickly and correctly infer the final solu-

1Remember the name but not the formula or its proof; you can always look it
up on Wikipedia or elsewhere when you need it.
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tion from the solutions to all the subproblems.

After these three steps are implemented, the corresponding dynamic
programming algorithm writes itself: Systematically solve all the
subproblems one by one, working from “smallest” to “largest,” and
extract the final solution from those of the subproblems.

For example, suppose a dynamic programming algorithm solves
at most f(n) different subproblems (working systematically from
“smallest” to “largest”), using at most g(n) time for each, and performs
at most h(n) postprocessing work to extract the final solution (where n
denotes the input size). The algorithm’s running time is then at most

f(n)|{z}
# subproblems

⇥ g(n)|{z}
time per subproblem

(given previous solutions)

+ h(n)|{z}
postprocessing

. (21.2)

When applying dynamic programming to an NP-hard problem
like the TSP, we should expect at least one of the functions f(n),
g(n), or h(n) to be exponential in n. Looking back at some canonical
dynamic programming algorithms, we can see that the functions g(n)
and h(n) are almost always O(1) or O(n), while the number f(n) of
subproblems varies widely from algorithm to algorithm.2 We should,
therefore, be ready for a dynamic programming algorithm for the TSP
to use an exponential number of subproblems.

21.1.3 Optimal Substructure

The key that unleashes the potential of dynamic programming is the
identification of the right collection of subproblems. The best way
to home in on them is to think through the different ways that an
optimal solution might be built up from optimal solutions to smaller
subproblems.

Suppose someone handed us on a silver platter a minimum-cost
traveling salesman tour T of the vertices V = {1, 2, . . . , n}, with

2For example, the dynamic programming algorithm for the weighted indepen-
dent set problem in path graphs solves O(n) subproblems (where n denotes the
number of vertices), while that for the knapsack problem solves O(nC) subprob-
lems (where n denotes the number of items and C the knapsack capacity). The
Bellman-Ford and Floyd-Warshall shortest-path algorithms use O(n2) and O(n3)
subproblems, respectively (where n denotes the number of vertices).
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n � 3. What must it look like? In how many different ways could it
have been built up from optimal solutions to smaller subproblems?
Think of the tour T as starting and ending at the vertex 1, and zoom
in on its last decision—its final edge, from some vertex j back to the
starting point 1. If we only knew the identity of j, we would know
what the tour looks like: a minimum-cost cycle-free path from 1 to j
that visits every vertex, followed by the edge from j back to 1:3

j

1-j path (visits every vertex, cycle-free, min-cost)

1

cj1

Thus, there are n�1 and only n�1 candidates vying to be an optimal
traveling salesman tour (one for each choice j 2 {2, 3, . . . , n} of the
final vertex), and the best of these must be a minimum-cost tour:4

optimal tour cost =
n

min
j=2

0
@

min cost of cycle-
free 1-j path that
visits every vertex

+ cj1

1
A . (21.3)

So far, so good. But the argument grows trickier if we forge ahead.
Consider an optimal solution to one of our n � 1 subproblems—a
minimum-cost path from 1 to j that visits every vertex exactly once
(equivalently, that visits every vertex and is cycle-free). What must it
look like?

Quiz 21.1

Let P be a minimum-cost cycle-free path from 1 to j that
visits every vertex, with final hop (k, j). Let P 0 denote P

3Why must T � {(j, 1)} be such a minimum-cost path? Because if there were
a lower-cost cycle-free 1-j path visiting every vertex, we could plug the edge (j, 1)
back in to recover a lower-cost tour (contradicting the optimality of T ).

4Thinking recursively, a minimum-cost tour can be computed by iterating over
the n� 1 choices for the vertex j and, in each iteration, recursively computing a
minimum-cost cycle-free 1-j path that visits every vertex.
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with its final hop (k, j) removed. Which of the following are
true? (Choose all that apply.)

a) P 0 is a cycle-free path from 1 to k that visits every
vertex of V � {j}.

b) P 0 is a minimum-cost path of the form in (a).

c) P 0 is a cycle-free path from 1 to k that visits every
vertex of V � {j} and does not visit vertex j.

d) P 0 is a minimum-cost path of the form in (c).

(See Section 21.1.7 for the solution and discussion.)

The solution to Quiz 21.1 proves the following lemma.

Lemma 21.1 (TSP Optimal Substructure) Assume that n � 3.
Suppose P is a minimum-cost cycle-free path from vertex 1 to vertex j
that visits every vertex of V = {1, 2, . . . , n}, and its final hop is (k, j).
The 1-k subpath P 0 is a minimum-cost cycle-free 1-k path that visits
exactly the vertices V � {j}.

In other words, once you know the last hop of an optimal path, you
know what the rest of it must look like.

The subproblem solved optimally by P 0 in Lemma 21.1 specifies
the exact subset of vertices to visit. The bad news is that this will force
our dynamic programming algorithm to use subproblems indexed by
subsets of vertices (of which there are, unfortunately, an exponential
number). The good news is that these subproblems will not specify
the order in which to visit the vertices. For this reason, their number
will scale with 2n rather than n!.5

21.1.4 Recurrence

Lemma 21.1 narrows down the possibilities for an optimal path from
vertex 1 to a vertex j to n�2 and only n�2 candidates—one for each
choice of the penultimate vertex k. The best of these n� 2 candidates
must be an optimal path.

5For the same reason, the memory required by the algorithm will also scale
with 2n (unlike exhaustive search, which uses minimal memory).
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Corollary 21.2 (TSP Recurrence) With the assumptions and no-
tation of Lemma 21.1, let CS,j denote the minimum cost of a cycle-free
path that begins at the vertex 1, ends at the vertex j 2 S, and visits
exactly the vertices in the subset S ✓ V . Then, for every j 2 V � {1},

CV,j = min
k2V
k 6=1,j

�
CV�{j},k + ckj

�
. (21.4)

More generally, for every subset S ✓ V that contains 1 and at least
two other vertices, and for every vertex j 2 S � {1},

CS,j = min
k2S
k 6=1,j

�
CS�{j},k + ckj

�
. (21.5)

The second statement in Corollary 21.2 follows by applying the first
statement to the vertices of S, viewed as a TSP instance in their own
right (with edge costs inherited from the original instance). The “min”
in the recurrences (21.4) and (21.5) implements exhaustive search
over the candidates for the penultimate vertex of an optimal solution.

21.1.5 The Subproblems

Ranging over all relevant values of the parameters S and j in the
recurrence (21.5), we obtain our collection of subproblems. The base
cases correspond to subsets of the form {1, j} for some j 2 V � {1}.6

TSP: Subproblems

Compute CS,j , the minimum cost of a cycle-free path from
vertex 1 to vertex j that visits exactly the vertices in S.

(For each S ✓ {1, 2, . . . , n} containing vertex 1 and at least
one other vertex, and each j 2 S � {1}.)

The identity in (21.3) shows how to compute the minimum cost of a
tour from the solutions to the largest subproblems (with S = V ):

optimal tour cost =
n

min
j=2

(CV,j + cj1) . (21.6)

6Thinking recursively, each application of the recurrence (21.5) effectively
removes one vertex (other than vertex 1) from further consideration. These vertex
choices are arbitrary, so we must be prepared for any subset of vertices (that
contains 1 and at least one other vertex).
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21.1.6 The Bellman-Held-Karp Algorithm

With the subproblems, recurrence (21.5), and postprocessing
step (21.6) in hand, the dynamic programming algorithm for the
TSP writes itself. There are 2n�1 � 1 choices of S to keep track of
(one per non-empty subset of {2, 3, . . . , n}), and “subproblem size” is
measured by the number of vertices to visit (the size of S). For a base
case with subset S = {1, j}, the only option is the one-hop 1-j path
with cost c1j . In the following pseudocode, the subproblem array is
indexed by vertex subsets S; a concrete implementation would encode
these subsets by integers.7

BellmanHeldKarp

Input: complete undirected graph G = (V,E) with
V = {1, 2, . . . , n} and n � 3, and a real-valued cost cij
for each edge (i, j) 2 E.

Output: the minimum total cost of a traveling
salesman tour of G.

// subproblems (1 2 S, |S| � 2, j 2 V � {1})
// (only subproblems with j 2 S are ever used)

A := (2n�1 � 1)⇥ (n� 1) two-dimensional array

// base cases (|S| = 2)
for j = 2 to n do

A[{1, j}][j] := c1j

// systematically solve all subproblems

for s = 3 to n do // s=subproblem size

for S with |S| = s and 1 2 S do
for j 2 S � {1} do

// use recurrence from Corollary 21.2

A[S][j] := min k2S
k 6=1,j

(A[S � {j}][k] + ckj)

// use (21.6) to compute the optimal tour cost

return minnj=2 (A[V ][j] + cj1)

7For example, the subsets of V � {1} can be represented using length-(n� 1)
bit arrays, which in turn can be interpreted as the binary expansions of the integers
between 0 and 2n�1 � 1.
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In the loop iteration responsible for computing the subproblem solution
A[S][j], all terms of the form A[S � {j}][k] have been computed in
the previous iteration of the outermost for loop (or in the base cases).
These values are ready and waiting to be looked up in constant time.8,9

The correctness of the BellmanHeldKarp algorithm follows by
induction (on the subproblem size), with the recurrence in Corol-
lary 21.2 justifying the inductive step and the identity (21.6) the final
postprocessing step.10

And the running time? The base cases and the postprocessing step
take O(n) time. There are (2n�1 � 1)(n� 1) = O(n2n) subproblems.
Solving a subproblem boils down to the minimum computation in
the inner loop, which takes O(n) time. The overall running time is
then O(n22n).11,12

Theorem 21.3 (Properties of BellmanHeldKarp) For every com-
plete graph G = (V,E) with n � 3 vertices and real-valued edge costs,
the BellmanHeldKarp algorithm runs in O(n22n) time and returns
the minimum cost of a traveling salesman tour.

The BellmanHeldKarp algorithm computes the total cost of an
optimal tour, not an optimal tour itself. As always with dynamic
programming algorithms, you can reconstruct an optimal solution in a
postprocessing step that traces back through the filled-in subproblem
array (Problem 21.6).

21.1.7 Solution to Quiz 21.1

Correct answers: (a),(c),(d). Because P is a cycle-free path from 1
to j visiting every vertex and with final hop (k, j), the subpath P 0

8This algorithm was proposed independently by Richard E. Bellman in the
paper “Dynamic Programming Treatment of the Travelling Salesman Problem”
(Journal of the ACM, 1962) and Michael Held and Richard M. Karp in the paper
“A Dynamic Programming Approach to Sequencing Problems” (Journal of the
Society for Industrial and Applied Mathematics, 1962).

9For an example of the BellmanHeldKarp algorithm in action, see Problem 21.2.
10For an induction refresher, see Appendix A of Part 1 or the resources at

www.algorithmsilluminated.org.
11In the notation of (21.2), f(n) = O(n2n), g(n) = O(n), and h(n) = O(n).
12This running time analysis assumes that the subsets S with a given size s � 3

and 1 2 S are enumerated in time linear in their number
�

n�1
s�1

�

, for example, by
recursive enumeration. (If you want to venture out into the weeds on this point,
look up “Gosper’s hack.”)
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is a cycle-free path from 1 to k that visits all the vertices of V � {j}
but not j. Thus, (a) and (c) are both correct answers. Answer (b) is
incorrect because P 0 might not be able to compete with the cycle-free
paths from 1 to k that visit every vertex of V � {j} and can also
visit j:

j

1
cost = 5

k
cost = 1 cos

t =
 3

We can prove (d) by contradiction.13 Let C denote the total cost
of P , so that the cost of P 0 is C � ckj . If (d) is false, there is another
cycle-free path P ⇤ from 1 to k that visits every vertex of V � {j},
does not visit vertex j, and has cost C⇤ < C � ckj . Then, appending
the edge (k, j) to P ⇤ produces a path bP from 1 to j with total cost
C⇤ + ckj < C:

1

k

j

P* = 1-k path (cycle-free, visits exactly 
the vertices V-{j}, cost < C - ckj)

ckj

P = 1-j path (cycle-free, visits 
exactly the vertices V, cost < C)

^

Moreover, the path bP is cycle-free (because P ⇤ is cycle-free and does
not visit j) and visits every vertex of V (because P ⇤ visits every
vertex of V � {j}). This contradicts our assumption that P is a
minimum-cost such path.

13Recall that in this type of proof, you assume the opposite of what you want
to prove, and then build on this assumption with a sequence of logically correct
steps that culminates in a patently false statement. Such a contradiction implies
that the assumption can’t be true, which proves the desired statement.
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*21.2 Finding Long Paths by Color Coding

Graphs are omnipresent in the study of algorithms because they hit
the sweet spot between expressiveness and tractability. Throughout
this book series, we’ve seen many efficient algorithms for processing
graphs (graph search, connected components, shortest paths, etc.),
and many application domains well modeled by graphs (road networks,
the World Wide Web, social networks, etc.). This section furnishes
another example, a killer application of dynamic programming and
randomization to the detection of structure in biological networks.

21.2.1 Motivation

Most of the work that takes place in a cell is carried out by proteins
(chains of amino acids), often acting in concert. For example, a series
of proteins might transmit a signal that arrives at the cell membrane to
the proteins that regulate the transcription of the cell’s DNA to RNA.
Understanding such signaling pathways and how they get rewired by
genetic mutations is an important step in developing new drugs to
combat diseases.

Interactions between proteins are naturally modeled as a graph,
called a protein-protein interaction (PPI) network, with one vertex
per protein and one edge per pair of proteins suspected to interact.
The simplest signaling pathways are linear pathways, corresponding
to paths in the PPI network. How quickly can we find them?

21.2.2 Problem Definition

The problem of finding a linear pathway of a given length in a PPI
network can be cast as the following minimum-cost k-path problem,
where a k-path of a graph is a (cycle-free) path of k�1 edges visiting k
distinct vertices.

Problem: Minimum-Cost k-Path

Input: An undirected graph G = (V,E), a real-valued
cost ce for each edge e 2 E, and a positive integer k.

Output: A k-path P of G with the minimum-possible total
cost

P
e2P ce. (Or if G has no k-paths, report this fact.)



*21.2 Finding Long Paths by Color Coding 115

The edge costs reflect the uncertainties inevitable in noisy biological
data, with a higher cost indicating a lower confidence that the corre-
sponding pair of proteins really do interact. (Missing edges effectively
have a cost of +1.) In a PPI network, the minimum-cost k-path
corresponds to the most plausible linear pathway of a given length. In
realistic instances, k might be 10 or 20; the number of vertices might
be in the hundreds or thousands.

For example, in the graph

1 2

4

5

3 6

7

9

10

8

a

b

c

de

the minimum cost of a 4-path is 8 (c ! a ! b ! e).
The minimum-cost k-path problem is closely related to the TSP

and, for this reason, is NP-hard (see Section 22.3). But can we at
least improve over exhaustive search?

21.2.3 A First Stab at the Subproblems

The minimum-cost k-path problem closely resembles the TSP, with
the main difference being the path length bound k. Why not use the
same subproblems that served us so well in beating exhaustive search
for the TSP (Section 21.1.5)? That is, given a graph G = (V,E) with
real-valued edge costs and a path length k:

Subproblems (A First Stab)

Compute CS,v, the minimum cost of a cycle-free path that
ends at the vertex v 2 V and visits exactly the vertices in S
(or +1, if there is no such path).

(For each non-empty subset S ✓ V of at most k vertices
and each v 2 S.)
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Because a minimum-cost k-path could start anywhere, subproblems
no longer specify a starting vertex (which in the TSP was always
vertex 1). The minimum cost of a k-path is the smallest of the
solutions to the biggest subproblems (with |S| = k); if the graph has
no k-paths, all such subproblem solutions will be +1.

Quiz 21.2

Suppose k = 10. How many subproblems are there, as a
function of the number of vertices n? (Choose the strongest
correct statement.)

a) O(n)

b) O(n10)

c) O(n11)

d) O(2n)

(See Section 21.2.11 for the solution and discussion.)

Meanwhile:

Quiz 21.3

Suppose k = 10. What is the running time of a straight-
forward implementation of exhaustive search, as a function
of n? (Choose the strongest correct statement.)

a) O(n10)

b) O(n11)

c) O(2n)

d) O(n!)

(See Section 21.2.11 for the solution and discussion.)

Uh-oh. . . a dynamic programming algorithm that uses the subprob-
lems on page 115 can’t beat exhaustive search! And any algorithm
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with a running time like O(n10) is practically useless except in the
smallest of graphs. We need another idea.

21.2.4 Color Coding

Why are we using so many subproblems? Oh right, we’re keeping track
of the vertices S visited by a path to avoid inadvertently creating
a path that visits a vertex more than once (recall Quiz 21.1 and
Lemma 21.1). Can we get away with tracking less information about
a path? Here’s the inspired idea, given a graph G = (V,E) and path
length bound k:14

Color Coding

1. Partition the vertex set V into k groups V1, V2, . . . , Vk

so that there is a minimum-cost k-path of G that has
exactly one vertex in each group.

2. Among all paths with exactly one vertex in each group,
compute one with the minimum cost.

This technique is called color coding because if we associate each
integer of {1, 2, . . . , k} with a color, we can visualize the ith group Vi

of the partition in the first step as the vertices colored i. The second
step then seeks a minimum-cost panchromatic path, meaning a path
in which each color is represented exactly once:

V1 (red) V2 (green)

V3 (blue) V4 (yellow)

panchromatic path

14Proposed by Noga Alon, Raphael Yuster, and Uri Zwick, in the paper “Color-
Coding” (Journal of the ACM, 1995).
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Because there are k colors, a panchromatic path must be a k-path.
The converse is false, as a k-path might use some color more than
once (and some other color not at all):

V1 (red) V2 (green)

V3 (blue) V4 (yellow)

4-path but not panchromatic

If the color-coding plan can be carried out, it would solve the
minimum-cost k-path problem: The second step computes a minimum-
cost panchromatic path, and the first step ensures that this is also a
minimum-cost k-path in G (panchromatic or otherwise).

Skeptical? Perfectly understandable. Why should computing a
minimum-cost panchromatic path be any easier than the original
problem? And how on earth can we implement the first step without
knowing anything about what the minimum-cost k-paths are?

21.2.5 Computing a Minimum-Cost Panchromatic Path

Restricting attention to panchromatic paths simplifies the minimum-
cost k-path problem because it frees a dynamic programming algo-
rithm to guard against repeated colors instead of repeated vertices.
(A repeated vertex implies a repeated color but not vice versa.) Sub-
problems can track the colors represented in a path, along with an
ending vertex, in lieu of the vertices themselves. Why is this a win?
Because there are only 2k subsets of colors, as opposed to the Ω(nk)
subsets of at most k vertices (see the solution to Quiz 21.2).

Subproblems and Recurrence

For a color subset S ✓ {1, 2, . . . , k}, an S-path is a (cycle-free) path
with |S| vertices and all colors of S represented. (Panchromatic paths
are precisely the S-paths with S = {1, 2, . . . , k}.) For a graph G =
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(V,E) with edge costs and a color assignment (in {1, 2, . . . , k}) to
each vertex v 2 V , the subproblems are then:

Minimum-Cost Panchromatic Path: Subproblems

Compute CS,v, the minimum cost of an S-path that ends
at the vertex v 2 V (or +1, if there is no such path).

(For each non-empty subset S ✓ {1, 2, . . . , k} of colors, and
each vertex v 2 V .)

The minimum cost of a panchromatic path is the smallest of the
solutions to the biggest subproblems (with S = {1, 2, . . . , k}); if the
graph has no panchromatic paths, all such subproblem solutions will
be +1.

An optimal path P for a subproblem with color subset S and
ending vertex v must be built up from an optimal path for a smaller
subproblem:

w

v

P’ = min-cost path that ends at w and uses 

every color of S other than red exactly once

cwv

P: min-cost path that ends at v and uses 

every color of S exactly once

(red)

If P ’s final hop is (w, v), its prefix P 0 = P � {(w, v)} must be a
minimum-cost (S� {�(v)})-path ending at w, where �(v) denotes v’s
color.15 This optimal substructure leads immediately to the following
recurrence for solving all the subproblems.

Lemma 21.4 (Min-Cost Panchromatic Path Recurrence)
Continuing with the same notation, for every subset S ✓ {1, 2, . . . , k}
of at least two colors and vertex v 2 V :

CS,v = min
(w,v)2E

�
CS�{�(v)},w + cwv

�
. (21.7)

15The formal proof of this statement is almost the same as the proof of
Lemma 21.1 (see page 113).
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Dynamic Programming Algorithm

In turn, this recurrence leads immediately to a dynamic programming
algorithm for computing the minimum cost of a panchromatic path
(or +1, if no such path exists):

PanchromaticPath

Input: undirected graph G = (V,E), a real-valued
cost cvw for each edge (v, w) 2 E, and a color
�(v) 2 {1, 2, . . . , k} for each vertex v 2 V .

Output: the minimum total cost of a panchromatic
path of G (or +1, if no such path exists).

// subproblems (indexed by S ✓ {1, . . . , k}, v 2 V )

A := (2k � 1)⇥ |V | two-dimensional array

// base cases (|S| = 1)
for i = 1 to k do

for v 2 V do
if �(v) = i then

A[{i}][v] := 0 // via the empty path

else
A[{i}][v] := +1 // no such path

// systematically solve all subproblems

for s = 2 to k do // s=subproblem size

for S with |S| = s do
for v 2 V do

// use recurrence from Lemma 21.4

A[S][v] := min
(w,v)2E (A[S � {�(v)}][w] + cwv)

// best of solutions to largest subproblems

return minv2V A[{1, 2, . . . , k}][v]

See Problem 21.5 for an example of the algorithm in action.

21.2.6 Correctness and Running Time

The correctness of the PanchromaticPath algorithm follows by induc-
tion (on the subproblem size), with the recurrence in Lemma 21.4
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justifying the inductive step. With a little extra bookkeeping, a
minimum-cost panchromatic path can be reconstructed in an O(k)-
time postprocessing step (Problem 21.7).

The running time analysis echoes that of the Bellman-Ford algo-
rithm (see Chapter 18 in Part 3). Almost all the work performed by
the algorithm occurs in its triple-for loop. Assuming the input graph
is represented using adjacency lists, an innermost loop iteration that
computes the value of A[S][v] takes O(deg(v)) time, where deg(v)
denotes the degree (the number of incident edges) of the vertex v.16

For each subset S, the combined time spent solving the associated |V |
subproblems is O(

P
v2V deg(v)) = O(m), where m = |E| denotes the

number of edges.17 The number of different color subsets S is less
than 2k, so the overall running time of the algorithm is O(2km).

Theorem 21.5 (Properties of PanchromaticPath) For every
graph G with m edges, real-valued edge costs, and assignment of each
vertex to a color in {1, 2, . . . , k}, the PanchromaticPath algorithm
runs in O(2km) time and returns the minimum cost of a panchromatic
path (if one exists) or +1 (otherwise).

With running time scaling with 2k rather than nk, the
PanchromaticPath algorithm improves dramatically over exhaustive
search. But the problem we truly care about is the minimum-cost
k-path problem without any panchromatic constraint. How does this
algorithm help?

21.2.7 Randomization to the Rescue

The first step of the color-coding approach colors the vertices of
the input graph so that at least one minimum-cost k-path turns
panchromatic. How can we accomplish this without knowing which k-
paths are the minimum-cost ones? Time to bring out another tool from
our algorithmic toolbox: randomization. The hope is that a uniformly
random coloring has a healthy chance of rendering some minimum-cost
k-path panchromatic, in which case the PanchromaticPath algorithm
will find one.

16Technically, this analysis assumes that every vertex has degree at least 1;
degree-0 vertices can be discarded harmlessly in a preprocessing step.

17The sum
P

v2V
deg(v) of vertex degrees is twice the number of edges, with

each edge contributing 1 to the degree of each of its two endpoints.
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Quiz 21.4

Suppose we assign each vertex of a graph G a color
from {1, 2, . . . , k} independently and uniformly at random.
Consider a k-path P in G. What is the probability that P
winds up panchromatic?

a) 1
k

b) 1
k2

c) 1
k!

d) k!
kk

e) 1
kk

(See Section 21.2.11 for the solution and discussion.)

Is this probability of getting lucky—call it p—big or small? Remember
that we know an extremely accurate estimate of the factorial function
(Stirling’s approximation on page 106). Plugging in the approximation
in (21.1), with k playing the role of n:

p =
k!

kk
⇡ 1

kk
·
p
2⇡k

✓
k

e

◆k

=

p
2⇡k

ek
. (21.8)

Looks bad—the probability of success (that is, of turning a
minimum-cost k-path panchromatic) is less than 1% already when
k = 7. But if we experiment with a large number of independent
random colorings—running the PanchromaticPath algorithm for each
and remembering the least costly k-path found—one lucky coloring is
all we need. How many random trials T do we need to ensure a 99%
chance that one of our colorings renders a minimum-cost k-path
panchromatic?

A trial succeeds with probability p, so it fails with probability 1�p.
Because the trials are independent, their failure probabilities multiply.
The probability that all T trials fail is then (1� p)T .18 Remembering
that we can bound 1� p from above by e�p:

18For background on discrete probability, see Appendix B of Part 1 or the
resources at www.algorithmsilluminated.org.
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this failure probability is

(1� p)T  (e�p)T = e�pT . (21.9)

Setting the right-hand side of (21.9) to a target � (like .01), taking
logarithms of both sides, and solving for T shows that

T � 1

p
· ln

✓
1

�

◆
(21.10)

independent trials are enough to drive the failure probability down
to �. As expected, the lower the single-trial success probability or the
desired failure probability, the greater the number of trials required.

Substituting our success probability p from (21.8) into (21.10)
shows that:

Lemma 21.6 (Random Colorings Are Good Enough) For ev-
ery graph G, k-path P of G, and failure probability � 2 (0, 1): If

T � ekp
2⇡k

· ln

✓
1

�

◆
,

the probability that at least one of T uniformly random colorings
turns P panchromatic is at least 1� �.

The exponential number of trials in Lemma 21.6 may look extravagant,
but it’s in the same ballpark as the time already required by a
single invocation of the PanchromaticPath subroutine. When k is
small relative to n—the regime relevant to the motivating application
(Section 21.2.1)—the number of trials is much less than the time
required to solve the minimum-cost k-path problem on n-vertex graphs
by exhaustive search (which, by Quiz 21.3, scales with nk).
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21.2.8 The Final Algorithm

We now have all our ducks in a row: Lemma 21.6 promises that many
independent random colorings suffice to implement the first step of
the color-coding approach (page 117) and the PanchromaticPath

algorithm takes care of the second step.

ColorCoding

Input: undirected graph G = (V,E), a real-valued
cost cvw for each edge (v, w) 2 E, a path length k, and
a failure probability � 2 (0, 1).

Output: the minimum total cost of a k-path of G (or
+1, if no such path exists), except with a failure
probability of at most �.

Cbest := +1 // cheapest k-path found so far

// number of random trials (from Lemma 21.6)

T := (ek/
p
2⇡k) ln 1

�
// round up to an integer

for t = 1 to T do // independent trials

for each v 2 V do // choose random coloring

�t(v) := random number from {1, 2, . . . , k}

// best panchromatic path for this coloring

C := PanchromaticPath(G, c,�t) // see page 120

if C < Cbest then // found a cheaper k-path!
Cbest := C

return Cbest

21.2.9 Running Time and Correctness

The running time of the ColorCoding algorithm is dominated by its
T = O((ek/

p
k) ln 1

�
) calls to the O(2km)-time PanchromaticPath

subroutine, where m denotes the number of edges (Theorem 21.5).
To argue correctness, consider a minimum-cost k-path P ⇤ of G,

with total cost C⇤.19 For every coloring �, the minimum cost of a
panchromatic path—the output of the PanchromaticPath subroutine—
is at least C⇤. Whenever � turns P ⇤ panchromatic, this cost is

19If G has no k-paths, every invocation of PanchromaticPath and the
ColorCoding algorithm will return +1 (which is the correct answer).
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exactly C⇤. By Lemma 21.6, with probability at least 1� �, at least
one of the iterations of the outer loop chooses such a coloring; in this
event, the ColorCoding algorithm returns C⇤, which is the correct
answer.20

To summarize:

Theorem 21.7 (Properties of ColorCoding) For every graph G
with n vertices and m edges, real-valued edge costs, path length k 2
{1, 2, . . . , n}, and failure probability � 2 (0, 1), the ColorCoding algo-
rithm runs in

O

✓
(2e)kp

k
m ln

✓
1

�

◆◆
(21.11)

time and, with probability at least 1� �, returns the minimum cost of
a k-path of G (if one exists) or +1 (otherwise).

How should we feel about the running time of the ColorCoding

algorithm? The bad news is that the running time bound in (21.11)
is exponential—no surprise, given that the minimum-cost k-path
problem is NP-hard in general. The good news is that its exponential
dependence is confined entirely to the path length k, with only linear
dependence on the graph size. In fact, in the special case in which
k  c lnm for a constant c > 0, the ColorCoding algorithm solves
the minimum-cost k-path problem in polynomial time!21,22

20The most famous randomized algorithm, QuickSort, has a random running
time (ranging from near-linear to quadratic) but is always correct; see Chapter 5
of Part 1. The ColorCoding algorithm is the opposite: The outcomes of its coin
flips determine whether it’s correct but have little effect on its running time.

21Observe that (2e)c lnm = mc ln(2e) ⇡ m1.693c, which is polynomial in the
graph size.

22The ColorCoding algorithm is an example of a fixed-parameter algorithm,
meaning one with a running time of the form O(f(k) · nd), where n denotes the
input size, d is a constant (independent of k and n), and k is a parameter measuring
the “difficulty” of the instance. The function f must be independent of n but can
have arbitrary dependence (typically exponential or worse) on the parameter k.
A fixed-parameter algorithm runs in polynomial time for all instances in which k
is sufficiently small relative to n.

The 21st century has seen tremendous progress in understanding which NP-
hard problems and parameter choices allow for fixed-parameter algorithms. For a
deep dive, check out the book Parameterized Algorithms, by Marek Cygan, Fedor
V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin Pilipczuk,
Michał Pilipczuk, and Saket Saurabh (Springer, 2015).
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21.2.10 Revisiting PPI Networks

Fancy guarantees like Theorem 21.7 are nice and all, but how well
does the ColorCoding algorithm actually work in the motivating
application of finding long linear pathways in PPI networks? The
algorithm is a great fit for the application, in which typical path
lengths k are in the 10–20 range. (Significantly longer paths, if
they exist, are challenging to interpret.) Already with circa-2007
computers, optimized implementations of the ColorCoding algorithm
could find linear pathways of length k = 20 in major PPI networks with
thousands of vertices. This was a significant advance over exhaustive
search (which is useless even for k = 5) and the competing algorithms
at that time (which failed to go much beyond k = 10).23

21.2.11 Solutions to Quizzes 21.2–21.4

Solution to Quiz 21.2

Correct answer: (b). The number of non-empty subsets S ✓ V of
size at most 10 is the sum

P10
i=1

�
n
i

�
of ten binomial coefficients. Bound-

ing the ith summand from above by ni and using the formula (20.9)
for a geometric series shows that this sum is O(n10). Expanding the
last binomial coefficient shows that it alone is Ω(n10).24 With at most
ten choices for the endpoint v for each set S, the total number of
subproblems is Θ(n10).

Solution to Quiz 21.3

Correct answer: (a). Exhaustive search enumerates the n · (n� 1) ·
(n� 2) · · · · · (n� 9) = Θ(n10) ordered 10-tuples of distinct vertices,
computes the cost of each tuple that corresponds to a path (in O(1)
time, assuming access to an adjacency matrix populated by edges’
costs), and remembers the best of the 10-paths it encounters. The
running time of this algorithm is Θ(n10).

23For more details, check out the paper “Algorithm Engineering for Color-
Coding with Applications to Signaling Pathway Detection,” by Falk Hüffner,
Sebastian Wernicke, and Thomas Zichner (Algorithmica, 2008).

24Recall that big-omega notation is analogous to “greater than or equal to.”
Formally, f(n) = Ω(g(n)) if and only if there is a constant c > 0 such that
f(n) � c · g(n) for all sufficiently large n. Also, f(n) = Θ(g(n)) if and only if
f(n) = O(g(n)) and f(n) = Ω(g(n)).
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Solution to Quiz 21.4

Correct answer: (d). There are kk different ways to color the
vertices of P (with k color choices for each of the k vertices), each
equally likely (with probability 1/kk each). How many of these
render P panchromatic? There are k choices for the vertex receiving
the color 1, then k � 1 remaining choices for the vertex receiving
the color 2, and so on, for a total of k! panchromatic colorings. The
probability of panchromaticity is, therefore, k!/kk.

21.3 Problem-Specific Algorithms vs. Magic Boxes

21.3.1 Reductions and Magic Boxes

Bespoke solutions to fundamental problems like the BellmanHeldKarp
(Section 21.1.6) and ColorCoding (Section 21.2.8) algorithms are
deeply satisfying. But before investing the effort necessary to design
or code up a new algorithm, you should always ask yourself:

Is this problem a special case or a thinly disguised version
of one that I already know how to solve?

If the answer is “no,” or even “yes, but the algorithms for the more
general problem aren’t good enough for this application,” you’ve
justified proceeding to problem-specific algorithm development.

Throughout this book series, we’ve seen several problems for
which the answer is “yes.” For example, median-finding reduces to
sorting, all-pairs shortest paths reduces to single-source shortest paths,
and the longest common subsequence problem is a special case of
the sequence alignment problem (Section 19.5.2). Such reductions
transfer tractability from one problem B to another problem A:

subroutine for B

algorithm for A

input (problem A)
inputs (problem B) solutions (problem B) 

solution (problem A)

Our reductions thus far have been to problems B for which we
ourselves had already designed a fast algorithm. But a reduction
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from a problem A to a problem B retains its power even if you don’t
personally know how to solve B efficiently. As long as someone gives
you a magic box (such as an inscrutable piece of software) that solves
problem B, you’re good to go: To solve problem A, execute the
reduction to problem B and invoke the magic box as needed.

21.3.2 MIP and SAT Solvers

A “magic box” probably sounds like pure fantasy, akin to a unicorn or
the fountain of youth. Could one really exist? Sections 21.4 and 21.5
describe two of the closest approximations out there—solvers for mixed
integer programming (MIP) and satisfiability (SAT) problems. By a
“solver,” we mean a sophisticated algorithm that has been carefully
tuned and expertly implemented as ready-to-use software. MIP and
SAT are very general problems, expressive enough to capture most of
the problems studied in this book series as special cases.

Several decades worth of engineering effort and ingenuity have been
poured into state-of-the-art MIP and SAT solvers. For this reason,
despite their generality, such solvers semi-reliably solve medium-size
instances of NP-hard problems in a tolerable amount of time. Solver
performance varies widely with the problem (and many other factors)
but, as a rough guideline, you can reasonably cross your fingers and
hope for inputs with size in the thousands to be solved in less than
a day, and often much faster. In some applications, MIP and SAT
solvers are unreasonably effective even for large instances, with input
sizes in the millions.

21.3.3 What You Will and Won’t Learn

The goals of Sections 21.4 and 21.5 are modest. They do not explain
how MIP and SAT solvers work—that would require a whole other
book. Instead, they prepare you to be an educated client of these
solvers.25

25From 30,000 feet, the basic idea is: Recursively search the space of candidate
solutions à la depth-first search, applying the clues gleaned so far to aggressively
prune not-yet-examined candidates (such as candidates that cannot possibly
have objective function value better than the best solution already discovered),
backtracking as needed. The hope is that most of the search space gets pruned
without explicit examination. To explore these ideas further, look up “branch and
bound” (for MIP solvers) and “conflict-driven clause learning” (for SAT solvers).
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Goals of Sections 21.4–21.5

1. Be aware that semi-reliable magic boxes called MIP
and SAT solvers exist and can be unreasonably effec-
tive at tackling NP-hard problems in practice. (Not
enough programmers know this!)

2. See examples of encodings of NP-hard problems as
MIP and SAT problems.

3. Know where to go next to learn more.

21.3.4 A Rookie Mistake Revisited

MIP and SAT solvers routinely crack tough problems, but don’t get
fooled into thinking that NP-hardness doesn’t matter in practice (the
third rookie mistake in Section 19.6). When applying such a solver to
an NP-hard problem, keep your fingers crossed and have at the ready
a plan B (like a fast heuristic algorithm) in case the solver fails. And
make no mistake: There will be some instances out there, including
fairly small ones, that can bring your solver to its knees. You take
whatever you can with NP-hard problems, and semi-reliable magic
boxes are about as good as it gets.

21.4 Mixed Integer Programming Solvers

Most discrete optimization problems can be cast as mixed integer
programming (MIP) problems.26 Whenever you’re faced with an
NP-hard optimization problem that you can encode efficiently as a
MIP problem, throwing the latest and greatest MIP solver at it is
probably worth a shot.

21.4.1 Example: The Knapsack Problem

In the knapsack problem (Section 19.4.2), the input is specified by
2n + 1 positive integers: n item values v1, v2, . . . , vn, n item sizes
s1, s2, . . . , sn, and a knapsack capacity C. For example:

26This is the same anachronistic use of the word “programming” as in dynamic
programming (or television programming); it refers to planning, not coding.
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Value Size
Item #1 6 5
Item #2 5 4
Item #3 4 3
Item #4 3 2
Item #5 2 1
Knapsack capacity: 10

The goal is to compute a subset of the items with the maximum-
possible total value, subject to having a total size of at most the
knapsack capacity. The problem specification thus spells out three
things:

1. The decisions to be made: for each of the n items, whether to
include it in the subset. One convenient way to encode these per-
item binary decisions numerically is with 0-1 variables, called
decision variables:

xj =

⇢
1 if item j is included
0 if item j is excluded

. (21.12)

2. The constraints to be respected: the sum of the sizes of the
chosen items should be at most the knapsack capacity C. This
constraint is easily expressed in terms of the decision variables,
with item j contributing sj to the total size if it’s included (with
xj = 1) and 0 if it’s excluded (with xj = 0):

nX

j=1

sjxj

| {z }
total size of

chosen subset

 C. (21.13)

3. The objective function: the sum of the values of the chosen
items should be as large as possible (subject to the capacity
constraint). This objective function is equally easy to express
(with j contributing value vj if included and 0 if excluded):

maximize
nX

j=1

vjxj .

| {z }
total value of
chosen subset

(21.14)
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Guess what? In (21.12)–(21.14), you’ve just seen your first example
of an integer program. For example, in the 5-item instance described
above, this integer program reads:

maximize 6x1 + 5x2 + 4x3 + 3x4 + 2x5 (21.15)

subject to 5x1 + 4x2 + 3x3 + 2x4 + x5  10 (21.16)

x1, x2, x3, x4, x5 2 {0, 1}. (21.17)

This is exactly the sort of description that can be fed directly into a
magic box called a mixed integer programming (MIP) solver.27 For
example, to solve the integer program in (21.15)–(21.17) using Gurobi
Optimizer, the leading commercial MIP solver, you literally just call
it from the command line with the following input file:

Maximize 6 x(1) + 5 x(2) + 4 x(3) + 3 x(4) + 2 x(5)

subject to

5 x(1) + 4 x(2) + 3 x(3) + 2 x(4) + x(5) <= 10

binary

x(1) x(2) x(3) x(4) x(5)

end

Magically, the solver then spits out the optimal solution (in this
case, with x1 = 0, x2 = x3 = x4 = x5 = 1, and objective function
value 14).28

21.4.2 MIPs More Generally

In general, a MIP is specified by the three ingredients listed in Sec-
tion 21.4.1: the decision variables, along with the values they can

27Why “mixed”? Because these solvers also accommodate decision variables
that can take on real (not necessarily integer) values. Some authors refer to MIPs
as integer linear programs (ILPs) or simply integer programs (IPs). Others reserve
the latter term for MIPs in which all the decision variables are integer-valued.

A MIP in which none of the decision variables are required to be integers is
called a linear program (LP). State-of-the-art solvers work particularly well for LPs,
and often solve thousands of them in the course of solving a single MIP. (Relatedly,
linear programming is a polynomial-time solvable problem while general mixed
integer programming is an NP-hard problem.)

28For this toy example, the input file is easy enough to create by hand. For
larger instances, you’ll want to write a program that generates the input file
automatically or interacts directly with the solver API.
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assume (such as 0 or 1, or any integer, or any real number); the
constraints; and the objective function. The one important restriction
is that both the constraints and the objective function should be
linear in the decision variables.29 In other words, it’s OK to scale a
decision variable by a constant, and it’s OK to add decision variables
together, but that’s it. For example, in (21.15)–(21.17), you don’t see
any terms like x2j , xjxk, 1/xj , e

xj , and so on.30

Problem: Mixed Integer Programming

Input: A list of (binary, integer, or real-valued) deci-
sion variables x1, x2, . . . , xn; a linear objective function to
be maximized or minimized, specified by its coefficients
c1, c2, . . . , cn; and m linear constraints, with each con-
straint i specified by its coefficients ai1, ai2, . . . , ain and
right-hand side bi.

Output: An assignment of values to x1, x2, . . . , xn that op-
timizes the objective function (

Pn
j=1 cjxj) subject to the m

constraints (
Pn

j=1 aijxj  bi for all i = 1, 2, . . . ,m). (Or if
no assignment satisfies all the constraints, report this fact.)

Even with the linearity restriction, it’s often embarrassingly simple
to express NP-hard optimization problems as MIPs. For example,
consider the two-dimensional knapsack problem, where every item j
now has a weight wj in addition to a value vj and size sj ; in addition
to the knapsack capacity C, there is a weight bound W . The goal is
then to choose the maximum-value subset of items with total size at
most C and total weight at most W . As a graduate of the Algorithms
Illuminated dynamic programming boot camp, you could knock out
an algorithm for this problem without much trouble. But you couldn’t
do it as quickly as you could add the constraint

nX

j=1

wjxj  W (21.18)

29Thus, “MILP” (for mixed integer linear program) would be more precise than
“MIP,” though also less pleasing to the ear. . .

30State-of-the-art solvers can also accommodate limited types of nonlinearity
(like quadratic terms) but are typically much faster with linear constraints and
objective functions.
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to the knapsack MIP (21.12)–(21.14)!
Familiar optimization problems like the maximum-weight inde-

pendent set (Section 19.4.2), minimum makespan (Section 20.1),
and maximum coverage (Section 20.2) problems are almost equally
easy to express as MIPs (see Problem 21.9).31 MIPs are also the
basis for the state-of-the-art exact algorithms for the TSP (Sec-
tion 19.1.2), although this application is much more sophisticated (see
Problem 21.10).32

A problem can generally be formulated as a MIP problem in
several different ways, with some formulations leading to better solver
performance than others (in some cases by orders of magnitude). If
your first attempt at tackling an optimization problem with a MIP
solver fails, consider experimenting with alternative encodings. As
with algorithms, the design of good MIP formulations takes practice;
the resources in footnote 32 will get you started.

Finally, if your MIP solver is taking too long to complete no
matter which formulation you try, you can interrupt it after a target
amount of time and use the best feasible solution found up to that
point. (MIP solvers typically generate a sequence of successively
better feasible solutions, analogous to the local search algorithms of
Sections 20.4–20.5, en route to an optimal solution.) Stopping early
effectively turns a MIP solver into a fast heuristic algorithm.

21.4.3 MIP Solvers: Some Starting Points

Now that you’re amped up to apply a MIP solver to your favorite
problem, where should you start? As of this writing (in 2020), there is
a huge gulf in performance between commercial and non-commercial
MIP solvers. Currently, Gurobi Optimizer is generally viewed as
the fastest and most robust MIP solver, with runners-up including
CPLEX and FICO Xpress. University students and staff can obtain

31For starters, a constraint of the form
Pn

j=1 aijxj � bi can be represented
by the equivalent constraint

Pn

j=1(�aij)xj  �bi, and an equality constraint
Pn

j=1 aijxj = bi can be represented by a pair of inequality constraints.
32For many more examples and tricks of the trade, check out the (free) docu-

mentation for the solvers listed in Section 21.4.3, or the textbook Model Building in
Mathematical Programming, by H. Paul Williams (Wiley, 5th edition, 2013). The
examples in Dan Gusfield’s book Integer Linear Programming in Computational
and Systems Biology (Cambridge, 2019) slant toward biological applications but
are useful broadly for MIP (and especially Gurobi Optimizer) newbies.
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free academic licenses for these solvers (for research and educational
purposes only).

If you’re stuck using a non-commercial solver, good starting points
include SCIP, CBC, MIPCL, and GLPK. CBC and MIPCL have more
liberal licensing agreements than the other two, which are free for
non-commercial use only.

You can decouple the tasks of formulating a MIP for your problem
and describing that MIP to a particular solver by specifying your MIP
in a high-level solver-independent modeling language, such as the
Python-based CVXPY. You can then experiment easily with all the
solvers supported by that language, with your high-level specification
automatically compiled into the format expected by the solver.

21.5 Satisfiability Solvers

In many applications, the primary goal is to figure out whether a
feasible solution exists (and, if so, to find some such solution) rather
than to optimize a numerical objective function. Problems of this
type can often be cast as satisfiability (SAT) problems. Whenever
you’re faced with an NP-hard problem that you can encode efficiently
as a SAT problem, throwing the latest and greatest SAT solver at it
is probably worth a shot.

21.5.1 Example: Graph Coloring

One of the oldest graph problems out there, studied extensively already
in the 19th century, is the graph coloring problem. A k-coloring of
an undirected graph G = (V,E) is an assignment �(v) of each of
its vertices v 2 V to a color in {1, 2, . . . , k} such that no edge is
monochromatic (that is, �(v) 6= �(w) whenever (v, w) 2 E).33 A
graph with a k-coloring is called—wait for it—k-colorable.34 For

33The ColorCoding algorithm (Section 21.2.8) uses random colorings—which
are generally not k-colorings—internally as a device to achieve a faster running
time. In this section, the problem studied explicitly concerns k-colorings.

34The most famous result in all of graph theory is the “Four Color Theorem,”
stating that every planar graph—a graph that can be drawn on a piece of paper
without any edge crossings—is 4-colorable. (The second graph in this section
shows that four colors may be necessary.) Equivalently, as it turns out, maps need
only four colors of ink to ensure that every pair of neighboring countries can be
colored with different colors (assuming each country is a contiguous region).
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example, a wheel graph with six spokes is 3-colorable, while a wheel
graph with five spokes is not (as you should check):

(3-colorable) (not 3-colorable)

Problem: Graph Coloring

Input: An undirected graph G = (V,E) and a positive
integer k.

Output: A k-coloring of G, or a correct declaration that G
is not k-colorable.

The graph coloring problem is not purely recreational. For exam-
ple, the problem of assigning classes to one of k classrooms is exactly
a graph coloring problem (with one vertex per class and an edge
between each pair of classes that overlap in time). For a high-stakes
application of graph coloring-type problems, see Chapter 24.

21.5.2 Satisfiability

The non-numerical and rule-based nature of the graph coloring prob-
lem suggests expressing decision variables and constraints using the
formalism of logic rather than arithmetic. Instead of numerical deci-
sion variables, we’ll use Boolean variables, which can take on only the
values true and false. A truth assignment specifies one of these two
values for each variable. Constraints, which are also called clauses,
are then logical formulas that express restrictions on the permitted
truth assignments. A seemingly simple type of constraint, called a
disjunction of literals, uses only the logical “or” (denoted by _) and
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logical “not” (denoted by ¬) operations.35 For example, the constraint
x1 _ ¬x2 _ x3 is a disjunction of literals and is satisfied unless you
screw up all three of its assignment requests (by setting x1 and x3 to
false and x2 to true):

Value of x1 Value of x2 Value of x3 x1_¬x2_x3 Satisfied?
true true true yes
true true false yes
true false true yes
false true true yes
true false false yes
false true false no
false false true yes
false false false yes

In general, disjunctions of literals are easygoing creatures: one with k
literals, each corresponding to a distinct decision variable, forbids one
and only one of the 2k ways to assign values to its variables.

An instance of satisfiability (SAT) is specified by its variables
(restricted to be Boolean) and constraints (restricted to be disjunctions
of literals).

Problem: Satisfiability

Input: A list of Boolean decision variables x1, x2, . . . , xn;
and a list of constraints, each a disjunction of one or more
literals.

Output: A truth assignment to x1, x2, . . . , xn that satisfies
every constraint, or a correct declaration that no such truth
assignment exists.

21.5.3 Encoding Graph Coloring as SAT

Is the SAT problem, with its mere Boolean variables and disjunctions
of literals, expressive enough to encode other interesting problems?
For example, in the graph coloring problem, we’d ideally like one

35“Literal” means a decision variable xi or its negation ¬xi, and “disjunction”
means logical “or.”
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(non-Boolean) decision variable per vertex, each taking on one of k
different values (one per possible color).

With a little practice, you can encode a surprisingly large number
of problems as SAT.36,37 For example, to encode an instance of graph
coloring specified by the graph G = (V,E) and integer k, we can use k
variables per vertex; for each vertex v 2 V and color i 2 {1, 2, . . . , k},
the Boolean variable xvi indicates whether vertex v is assigned the
color i.

What about the constraints? For an edge (v, w) 2 E and color i,
the constraint

¬xvi _ ¬xwi (21.19)

is not satisfied precisely when both v and w are colored i. In tandem,
the |E| · k constraints of the form (21.19) enforce that no edge is
monochromatic.

We’re not quite done, as all the constraints of the form (21.19)
are satisfied by the all-false truth assignment (corresponding to no
vertex receiving any color). But we can add one constraint

xv1 _ xv2 _ · · · _ xvk (21.20)

for each vertex v 2 V that is not satisfied precisely when v receives
no color. Every k-coloring of G translates to a truth assignment
that satisfies all the constraints and now, conversely, every truth
assignment that satisfies all the constraints encodes one or more
k-colorings of G.38

The system of constraints defined by (21.19) and (21.20) is exactly
the sort of description that can be fed directly into a magic box called

36For many examples, including classic applications to hardware and software
verification, see the Handbook of Satisfiability, edited by Armin Biere, Marijn
Heule, Hans van Maaren, and Toby Walsh (IOS Press, 2009). Or, if you’ve been
wondering what Donald E. Knuth has been up to lately, check out Satisfiability,
Fascicle 6 of Volume 4 of The Art of Computer Programming (Addison-Wesley,
2015). Another fun fact: SAT solvers were recently employed to break the once-
secure cryptographic hash function SHA-1; see “The First Collision for Full SHA-1,”
by Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini, and Yarik
Markov (Proceedings of the 37th CRYPTO Conference, 2017).

37In fact, the Cook-Levin theorem (Theorems 22.1 and 23.2) shows that SAT
is a “universal” problem in a precise sense; see Section 23.6.3.

38The constraints (21.20) allow vertices to receive more than one color, but the
constraints (21.19) ensure that every way of choosing among the assigned colors
produces a k-coloring of G.
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a satisfiability (SAT) solver. For example, to check whether a complete
graph on three vertices is 2-colorable using MiniSAT, a popular open-
source SAT solver, you literally just call it from the command line
with the following input file:

p cnf 6 9

1 4 0

2 5 0

3 6 0

-1 -2 0

-4 -5 0

-1 -3 0

-4 -6 0

-2 -3 0

-5 -6 0

Magically, the solver spits out a (correct) declaration that there is no
way to satisfy all the constraints.39

21.5.4 SAT Solvers: Some Starting Points

As of this writing (in 2020), there are lots of good options for freely
available SAT solvers. In fact, at least once every two years, SAT nerds
from around the world gather and run Olympic-style competitions
(complete with medals) between the latest and greatest solvers, each
evaluated across a range of difficult benchmark instances. There
are dozens of submissions to each competition, most of which are
open-source.40 If you want just one recommendation, MiniSAT, which
combines good performance with ease of use and a permissive license
(the MIT license), is a popular choice.41

39The first line of the file warns the solver that the SAT instance has six
decision variables and nine constraints; the “cnf” stands for “conjunctive normal
form” and indicates that each constraint is a disjunction of literals. Numbers
between 1 and 6 refer to variables, with “-” indicating negation. The first three
and last three variables correspond to the first color and second color, respectively.
The first three and last six constraints are of the form in (21.20) and (21.19),
respectively. Zeroes mark the ends of constraints.

40See www.satcompetition.org.
41And to up your SAT-solving game to the next level, look up “satisfiability

modulo theories (SMT)” solvers, such as Microsoft’s z3 solver (which is also freely
available under the MIT license).
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The Upshot

P Solving the TSP by exhaustive search requires
time scaling with n!, where n is the number of
vertices.

P The Bellman-Held-Karp dynamic programming
algorithm solves the TSP in O(n22n) time.

P The key idea in the Bellman-Held-Karp algo-
rithm is to parameterize subproblems by a sub-
set of vertices to be visited exactly once and
which of those vertices should be visited last.

P In the minimum-cost k-path problem, the in-
put is an undirected graph with real-valued
edge costs, and the goal is to compute a cycle-
free path visiting k vertices with the minimum-
possible sum of edge costs.

P Solving the minimum-cost k-path problem by
exhaustive search requires time scaling with nk,
where n is the number of vertices.

P The color-coding algorithm solves the minimum-
cost k-path problem in O((2e)km ln 1

�
) time,

where m is the number of edges and � is a
user-specified failure probability.

P The first key idea in the color-coding algorithm
is a dynamic programming subroutine that,
given an assignment of one of k colors to each
vertex of the input graph, computes in O(2km)
time a minimum-cost panchromatic path.

P The second key idea is to experiment with
O(ek ln 1

�
) independent and uniformly random

vertex colorings; with probability at least 1� �,
at least one will render some minimum-cost k-
path panchromatic.
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P A mixed integer program (MIP) is specified by
numerical decision variables, linear constraints,
and a linear objective function.

P Most discrete optimization problems can be for-
mulated as MIP problems.

P An instance of satisfiability (SAT) is specified
by Boolean decision variables and constraints
that are disjunctions of literals.

P Most feasibility-checking problems can be for-
mulated as SAT problems.

P State-of-the-art MIP and SAT solvers can semi-
reliably solve medium-size instances of NP-hard
problems.

Test Your Understanding

Problem 21.1 (S) Does the BellmanHeldKarp algorithm for the
TSP (Section 21.1.6) refute the P 6= NP conjecture? (Choose all that
apply.)

a) Yes, it does.

b) No. A polynomial-time algorithm for the TSP does not neces-
sarily refute the P 6= NP conjecture.

c) No. Because the algorithm uses an exponential (in the input size)
number of subproblems, it does not always run in polynomial
time.

d) No. Because the algorithm might perform an exponential
amount of work to solve a single subproblem, it does not always
run in polynomial time.

e) No. Because the algorithm might perform an exponential
amount of work to extract the final solution from the solu-
tions to its subproblems, it does not always run in polynomial
time.
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Problem 21.2 (S) For the TSP input in Quiz 20.7 (page 76), what
are the final subproblem array entries of the BellmanHeldKarp algo-
rithm from Section 21.1.6?

Problem 21.3 (S) Consider the following proposed subproblems for
an instance G = (V,E) of the TSP:

Subproblems (Attempt)

Compute Ci,v, the minimum cost of a cycle-free path that
begins at vertex 1, ends at vertex v, and visits exactly i
vertices (or +1, if there is no such path).

(For each i 2 {2, 3, . . . , |V |} and v 2 V � {1}.)

What prevents us from using these subproblems, with i as the measure
of subproblem size, to design a polynomial-time dynamic programming
algorithm for the TSP? (Choose all that apply.)

a) The number of subproblems is super-polynomial in the input
size.

b) Optimal solutions to bigger subproblems cannot be computed
easily from optimal solutions to smaller subproblems.

c) The optimal tour cannot be computed easily from the optimal
solutions to all the subproblems.

d) Nothing!

Problem 21.4 (S) Which of the following problems can be solved
in O(n22n) time for n-vertex graphs using a minor variation of the
BellmanHeldKarp algorithm? (Choose all that apply.)

a) Given an n-vertex undirected graph, determine whether it has
a Hamiltonian path (a cycle-free path with n� 1 edges).

b) Given an n-vertex directed graph, determine whether it has a
directed Hamiltonian path (a cycle-free directed path with n� 1
edges).
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c) Given a complete undirected graph and real-valued edge costs,
compute the maximum cost of a traveling salesman tour.

d) Given a complete n-vertex directed graph (with all n(n � 1)
directed edges present) and real-valued edge costs, compute the
minimum cost of a directed traveling salesman tour (a directed
cycle that visits every vertex exactly once).

e) The cycle-free shortest path problem defined on page 29 in
Section 19.5.4.

Problem 21.5 (S) For the instance

e

b hf

1

2

4

5

3

6 8

a c

d

g7 9

10

(red)

(red)

(green)

(green)

(blue)

(blue)

(yellow)

(yellow)

what are the final subproblem array entries of the PanchromaticPath

algorithm from Section 21.2.5?

Problem 21.6 (H) Propose an implementation of a postprocessing
step that reconstructs a minimum-cost traveling salesman tour from
the subproblem array computed by the BellmanHeldKarp algorithm.
Can you achieve a linear (in the number of vertices) running time,
perhaps after adding some extra bookkeeping to the BellmanHeldKarp
algorithm?

Problem 21.7 (H) Propose an implementation of a postprocessing
step that reconstructs a minimum-cost panchromatic path from the
subproblem array computed by the PanchromaticPath algorithm.
Can you achieve a linear (in the number of colors) running time, per-
haps after adding some extra bookkeeping to the PanchromaticPath

algorithm?
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Challenge Problems

Problem 21.8 (H) Optimize the BellmanHeldKarp algorithm for
the TSP (Section 21.1.6) so that its memory requirement drops from
O(n · 2n) to O(

p
n · 2n) for n-vertex instances. (You are responsible

only for computing the minimum cost of a tour, not an optimal tour
itself.)

Problem 21.9 (S) Show how to encode instances of the following
problems as mixed integer programs:

(a) Maximum-weight independent set (Section 19.4.2).

(b) Makespan minimization (Section 20.1.1).

(c) Maximum coverage (Section 20.2.1).

Problem 21.10 (H) Given a TSP instance G with vertex set V =
{1, 2, . . . , n} and edge costs c, consider the MIP

minimize
Pn

i=1

P
j 6=i cijxij (21.21)

subject to
P

j 6=i xij = 1 [for every vertex i] (21.22)
P

j 6=i xji = 1 [for every vertex i] (21.23)

xij 2 {0, 1} [for every i 6= j]. (21.24)

The intent is to encode a traveling salesman tour (oriented in one
of the two possible directions) with xij equal to 1 if and only if the
tour visits j immediately after i. The constraints (21.22)–(21.23)
enforce that each vertex has exactly one immediate predecessor and
one immediate successor on the tour.

(a) Prove that, for every TSP instance G and traveling salesman
tour of G, there is a feasible solution of the corresponding
MIP (21.21)–(21.24) with the same objective function value.

(b) Prove that there is a TSP instance G and a feasible solution of
the corresponding MIP (21.21)–(21.24) with objective function
value strictly less than the minimum total cost of a traveling
salesman tour of G. (Thus, this MIP has spurious feasible
solutions, above and beyond the traveling salesman tours, and
does not correctly encode the TSP.)
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(c) Suppose we throw in the following additional constraints:

y1j = (n� 1)x1j [for all j 2 V �{1}] (21.25)

yij  (n� 1)xij [for all i 6= j] (21.26)
P

j 6=i yji �
P

j 6=i yij = 1 [for all i 2 V �{1}] (21.27)

yij 2 {0, 1, . . . , n� 1} [for all i 6= j], (21.28)

where the yij ’s are additional decision variables.

Reprove (a) for the expanded MIP (21.21)–(21.28).

(d) Prove that, for every TSP instance G, every feasible solution of
the corresponding expanded MIP (21.21)–(21.28) translates to
a traveling salesman tour of G with the same objective function
value. (As a consequence, the expanded MIP correctly encodes
the TSP.)42

Problem 21.11 (H) Show how to encode an instance of the satisfia-
bility problem as a mixed integer program.

Problem 21.12 (H) For a positive integer k, the k-SAT problem
is the special case of the SAT problem in which every constraint
has at most k literals. Show that the 2-SAT problem can be solved
in O(m+n) time, where m and n denote the number of constraints and
variables, respectively. (You can assume that the input is represented
as an array of literals and an array of constraints, with pointers from
each constraint to its literals and from each literal to the constraints
that contain it.)43

42Adding still more constraints, while not necessary for correctness, provides a
MIP solver with more clues to work with and can result in significant speedups.
For example, adding the (logically redundant) inequalities xij + xji  1 for
all i 6= j to the expanded MIP (21.21)–(21.28) typically reduces the amount of
time required to solve it. State-of-the-art MIP solvers that are tailored to the
TSP, such as the Concorde TSP solver, draw from an exponentially large set of
additional inequalities, generated lazily on an as-needed basis. (To learn more,
look up the “subtour relaxation” for the TSP.)

43The satisfiability formulation in Section 21.5.3 can be viewed as a reduction
from the k-coloring problem to the k-SAT problem. Through this formulation,
the 2-SAT algorithm in this problem translates to a linear-time algorithm for
checking whether a graph is 2-colorable. (A 2-colorable graph is also called
“bipartite.”) Alternatively, 2-colorability can be checked directly in linear time
using breadth-first search.
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Problem 21.13 (H) Meanwhile, the 3-SAT problem is NP-hard
(Theorem 22.1). But can we at least improve over exhaustive search,
which enumerates all the 2n possible truth assignments to the n
decision variables? Here’s a randomized algorithm, parameterized by
a number of trials T :

Schöning

Input: an n-variable instance of 3-SAT and a failure
probability � 2 (0, 1).

Output: with probability at least 1� �, either a truth
assignment that satisfies all the constraints or a correct
declaration that none exist.

ta := length-n Boolean array // truth assignment

for t = 1 to T do // T independent trials

for i = 1 to n do // random initial assignment

ta[i] := “true” or “false” // 50% chance each

for k = 1 to n do // n local modifications

if ta satisfies all constraints then // done!
return ta

else // fix a violated constraint

choose an arbitrary violated constraint C
choose variable xi in C, uniformly at random
ta[i] := ¬ta[i] // flip its value

return “no solution” // give up on the search

(a) Prove that whenever there is no truth assignment that satisfies
all the constraints of the given 3-SAT instance, the Schöning

algorithm returns “no solution.”

(b) For this and the next three parts, restrict attention to inputs
with a satisfying truth assignment (that is, a truth assignment
that satisfies all the constraints). Let p denote the probability,
over the coin flips of the Schöning algorithm, that an itera-
tion of the outermost for loop discovers a satisfying assignment.
Prove that, with T = 1

p ln
1
�

independent random trials, the
Schöning algorithm finds a satisfying assignment with proba-
bility at least 1� �.
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(c) In this and the next part, let ta⇤ denote a satisfying assignment
of the given 3-SAT instance. Prove that every variable flip made
by the Schöning algorithm in its inner loop has at least a 1
in 3 chance of increasing the number of variables with the same
value in both ta and ta⇤.

(d) Prove that the probability that a uniformly random truth assign-
ment agrees with ta⇤ on at least n/2 variables is at least 50%.

(e) Prove that the probability p defined in (b) is at least 1/(2 ·3n/2);
hence, with T = 2 · 3n/2 ln 1

�
trials, the Schöning algorithm

returns a satisfying assignment with probability at least 1� �.

(f) Conclude that there is a randomized algorithm that solves
the 3-SAT problem (with failure probability at most �) in
O((1.74)n ln 1

�
) time—exponentially faster than exhaustive

search.44

Programming Problems

Problem 21.14 Implement in your favorite programming language
the BellmanHeldKarp algorithm for the TSP (Section 21.1.6). As in
Problem 20.15, try out your implementation on instances with edge
costs chosen independently and uniformly at random from the set
{1, 2, . . . , 100} or, alternatively, for vertices that correspond to points
chosen independently and uniformly at random from the unit square

44This algorithm was proposed by Uwe Schöning. His paper “A Probabilistic
Algorithm for k-SAT Based on Limited Local Search and Restart” (Algorithmica,
2002) achieves a running time bound of O((1.34)n ln 1

�
) on n-variable instances

through a more careful analysis, and also extends the algorithm and analysis to the
k-SAT problem for all k (with the base in the exponential running time increasing
from ⇡ 4

3
to ⇡ 2 � 2

k
). Some slightly faster algorithms (both randomized and

deterministic) have been developed since, but none have achieved a running time
of O((1.3)n).

Section 23.5 describes the “Exponential Time Hypothesis (ETH)” and “Strong
Exponential Time Hypothesis (SETH),” both of which postulate that the flaws of
the Schöning algorithm are shared by all k-SAT algorithms. The ETH is a bolder
form of the P 6= NP conjecture asserting that solving 3-SAT requires exponential
time—time Ω(an) for some constant a > 1—and hence the only improvements
possible to the Schöning algorithm are to the base of the exponent. The SETH
asserts that the base of the exponent of the running time of k-SAT algorithms
must degrade to 2 as k grows large.
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(with edge costs equal to Euclidean distances). How large an input size
(that is, how many vertices) can your program reliably process in under
a minute? What about in under an hour? Is the biggest bottleneck
time or memory? Does it help if you implement the optimization in
Problem 21.8? (See www.algorithmsilluminated.org for test cases
and challenge data sets.)

Problem 21.15 Try out one or more MIP solvers on the same types
of TSP instances you considered in Problem 21.14, using the MIP
formulation in Problem 21.10. How large an input size can the solver
reliably process in under a minute, or under an hour? How much does
the answer vary with the solver? Does it help if you add the additional
inequalities from footnote 42? (See www.algorithmsilluminated.

org for test cases and challenge data sets.)



Chapter 22

Proving Problems NP-Hard

Chapters 20 and 21 supplied you with an algorithmic toolbox for
tackling NP-hard problems, be it by fast heuristic algorithms or
better-than-exhaustive-search exact algorithms. How do you know
when you must resort to this toolbox? If your boss hands you a
computational problem and tells you it’s NP-hard, fine. But what
if you’re the boss? Problems in the wild don’t show up tattooed
with their computational status, and recognizing NP-hard problems—
level-3 expertise (Section 19.2)—requires a trained eye. This chapter
provides this training, beginning with a single NP-hard problem (3-
SAT) and concluding, after eighteen reductions, with a list of nineteen
NP-hard problems, including all those studied earlier in this book.
You can use this list as a starting point for NP-hardness proofs, and
these reductions as templates for your own.

22.1 Reductions Revisited

What is NP-hardness, again? In Section 19.3.7, we provisionally
defined an NP-hard problem as one for which a polynomial-time
algorithm would refute the P 6= NP conjecture, which in turn we
informally described as the assertion that checking a solution to a
problem (like a filled-out Sudoku puzzle) can be fundamentally easier
than coming up with your own from scratch. (Chapter 23 is your
source for 100% rigorous definitions.) Refuting the P 6= NP conjecture
would immediately solve thousands of problems—including almost all
those studied in this book—that have resisted the efforts of countless
brilliant minds over many decades. Thus, NP-hardness is strong
evidence (if not an airtight proof) that a problem is intrinsically
difficult and that the types of compromises described in Chapters 20
and 21 are required.

To apply the theory of NP-hardness, you don’t actually have to

148
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understand any fancy mathematical definitions; this is one of the
reasons why the theory has been adopted successfully far and wide,
including broadly in engineering, the life sciences, and the social
sciences.1 The only prerequisite is the understanding of reductions
that you already possess (Section 19.5.1):

subroutine for B

algorithm for A

input (problem A)
inputs (problem B) solutions (problem B) 

solution (problem A)

Formally, a problem A reduces to a problem B if A can be solved
using a polynomial (in the input size) number of invocations of a
subroutine that solves the problem B, along with a polynomial amount
of additional work (outside of the subroutine calls). We’ve seen several
examples of reductions that spread tractability from one problem (B)
to another (A): If A reduces to B, a polynomial-time algorithm
solving B automatically produces one for A (simply run the reduction,
invoking the assumed subroutine for B as needed).

An NP-hardness proof turns this implication on its head, using a
reduction for the nefarious purpose of spreading intractability from
one problem to another (in the opposite direction of tractability):

problem A problem B

reduction

intractability

For if an NP-hard problem A reduces to B, any polynomial-time
algorithm for B would automatically produce one for A, thereby
refuting the P 6= NP conjecture. That is, B must itself be NP-hard.

So, how do you prove that a problem is NP-hard? Just follow the
simple two-step recipe.

1To see what I mean, check out how many results you get back from a search
for “NP-hard” or “NP-complete” in your favorite academic database!
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How to Prove a Problem Is NP-Hard

To prove that a problem B is NP-hard:

1. Choose an NP-hard problem A.

2. Prove that A reduces to B.

The rest of this chapter builds up your inventory of NP-hard problems
(that is, choices for A in the first step) and hones your reduction skills
(to be put to work in the second step).

A typical NP-hard problem B can be proved NP-hard using any
number of choices for the known NP-hard problem A in the first step.
The more closely A resembles B, the simpler the details of the second
step. For example, the reduction in Section 19.5.4 from the directed
Hamiltonian path problem to the cycle-free shortest path problem
is relatively straightforward due to the similarities between the two
problems.

22.2 3-SAT and the Cook-Levin Theorem

Every application of our two-step recipe identifies one new NP-hard
problem using one old one. Apply it thousands of times and you’ll
have a catalog of thousands of NP-hard problems. But how does the
process get started in the first place? With one of the most famous
and important results in all of computer science: the Cook-Levin
theorem, which proves from scratch that the seemingly innocuous
3-SAT problem is NP-hard.2

2Proved independently around 1971 by Stephen A. Cook and Leonid Levin on
opposite sides of the Iron Curtain (Toronto and Moscow, respectively), although
it took awhile for Levin’s work to be widely appreciated in the West. Both
hinted at the possibility that many more fundamental problems would be NP-hard.
This prophecy was fulfilled by Richard M. Karp, who in 1972 demonstrated the
power and reach of NP-hardness by using the two-step recipe to prove that an
unexpectedly diverse array of notorious problems are NP-hard. Karp’s work
made clear that NP-hardness was the fundamental obstacle impeding algorithmic
progress in many different directions. His original list of twenty-one NP-hard
problems includes most of those studied in this chapter.

Cook and Karp were awarded the ACM Turing Award—the equivalent of the
Nobel Prize in computer science—in 1982 and 1985, respectively. Levin was
awarded the Knuth Prize—a lifetime achievement award in theoretical computer
science—in 2012.



22.2 3-SAT and the Cook-Levin Theorem 151

Theorem 22.1 (Cook-Levin Theorem) The 3-SAT problem is
NP-hard.

The 3-SAT problem (introduced in Problem 21.13) is the special case
of the SAT problem (Section 21.5) in which every constraint is a
disjunction of at most three literals.3,4

Problem: 3-SAT

Input: A list of Boolean decision variables x1, x2, . . . , xn;
and a list of constraints, each a disjunction of at most three
literals.

Output: A truth assignment to x1, x2, . . . , xn that satisfies
every constraint, or a correct declaration that no such truth
assignment exists.

For example, there’s no way to satisfy all eight of the constraints

x1 _ x2 _ x3 x1 _ ¬x2 _ x3 ¬x1 _ ¬x2 _ x3 x1 _ ¬x2 _ ¬x3
¬x1 _ x2 _ x3 x1 _ x2 _ ¬x3 ¬x1 _ x2 _ ¬x3 ¬x1 _ ¬x2 _ ¬x3,

as each of them forbids one of the eight possible truth assignments.
If some constraint is removed, there is then one truth assignment left
over that satisfies the other seven constraints. 3-SAT instances with
and without a satisfying truth assignment are called satisfiable and
unsatisfiable, respectively.

The 3-SAT problem occupies a central position in the theory of
NP-hardness, both for historical reasons and because of the problem’s
equipoise between expressiveness and simplicity. To this day, the
3-SAT problem remains the most common choice for the known NP-
hard problem in NP-hardness proofs (that is, for the problem A in
the two-step recipe).

3Why three? Because this is the smallest value of k for which the k-SAT
problem is NP-hard (see Problem 21.12).

4There is no contradiction between the Cook-Levin theorem and the remarkable
successes of SAT solvers (Section 21.5). SAT solvers are only semi-reliable, solving
some but not all SAT instances in a reasonable amount of time. They do not
show that SAT is a polynomial-time solvable problem, so the P 6= NP conjecture
lives on!
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In this chapter, we’ll take the Cook-Levin theorem on faith. Stand-
ing on the shoulders of these giants, we’ll assume only that a single
problem (3-SAT) is NP-hard and then generate, via reductions, eigh-
teen additional NP-hard problems. Section 23.3.5 outlines the high-
level idea behind the proof of the Cook-Levin theorem and provides
pointers for learning more.5

22.3 The Big Picture

We have a lot of problems and a lot of reductions between them to
keep track of. Let’s get organized.

22.3.1 A Rookie Mistake Revisited

As algorithm designers, we’re accustomed to honorable reductions
that spread tractability from one problem to another. Reductions
nefariously spread intractability in the opposite direction, and for
this reason, there’s an overwhelming temptation to design reductions
in the wrong direction (also known as the fifth rookie mistake from
Section 19.6).

Quiz 22.1

Section 21.4 proves that the knapsack problem reduces to
the mixed integer programming (MIP) problem. What does
this imply? (Choose all that apply.)

a) If the MIP problem is NP-hard, so is the knapsack
problem.

b) If the knapsack problem is NP-hard, so is the MIP
problem.

c) A semi-reliable MIP solver can be translated to a
semi-reliable algorithm for the knapsack problem.

5The proof is worth seeing at least once in your life, but almost nobody
remembers the gory details. Most computer scientists are content to be educated
clients of the Cook-Levin theorem, using it (and other NP-hard problems) like we
do in this chapter, as a tool to prove problems NP-hard.



22.3 The Big Picture 153

d) A semi-reliable algorithm for the knapsack problem
can be translated to a semi-reliable MIP solver.

(See Section 22.3.4 for the solution and discussion.)

22.3.2 Eighteen Reductions

Figure 22.1 summarizes eighteen reductions, which (assuming the
Cook-Levin theorem) imply that all nineteen problems in the figure
are NP-hard.6

3-SAT
(NP-hard by Cook-Levin)

directed

Hamiltonian path independent set
mixed integer

programming
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Figure 22.1: Eighteen reductions and nineteen NP-hard problems. An
arrow from a problem A to a problem B indicates that A reduces to B.
Computational intractability spreads in the same direction as the reductions,
from the 3-SAT problem (which is NP-hard by the Cook-Levin theorem) to
the other eighteen problems.

Six of these reductions are either immediate or have been smuggled
into previous chapters of the book.

6Something stronger is true and will be explained in Chapter 23: The “search
versions” of almost all of these problems are “NP-complete,” and as a consequence
any one of them can encode any other. The distinction between “NP-hard”
and “NP-complete” is not of first-order importance to the algorithm designer:
Either way, the problem is not polynomial-time solvable (assuming the P 6= NP
conjecture).
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Reductions We’ve Already Seen

1. The 3-SAT problem is a special case of the general
SAT problem (page 136) and thus trivially reduces to
it.

2. The traveling salesman path problem (Problem 19.7
on page 40) trivially reduces to the minimum-cost
k-path problem (page 114), as it is the special case in
which the path length k equals the number of vertices.

3. Lemma 19.2 in Section 19.5.4 proves that the directed
Hamiltonian path problem (page 30) reduces to the
cycle-free shortest path problem (page 29).

4. Problem 19.7 proves that the traveling salesman prob-
lem (TSP; page 3) reduces to the traveling salesman
path problem.

5. Problem 20.9 proves that the maximum coverage prob-
lem (page 56) reduces to the influence maximization
problem (page 69).

6. Problem 21.11 proves that the SAT problem reduces to
the mixed integer programming problem (page 132).

The end-of-chapter problems cover eight of the easier reduc-
tions.

Some Easier Reductions

7. Problem 22.4: The independent set problem (page 158)
reduces to the clique problem (page 180).

8. Problem 22.5: The independent set problem reduces to
the vertex cover problem (Problem 20.4 on page 97).

9. Problem 22.6: The vertex cover problem reduces to
the set cover problem (Problem 20.2 on page 95).

10. Problem 22.7: The subset sum problem (page 172)
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reduces to the knapsack problem (page 19).

11. Problem 22.8: The set cover problem reduces to the
maximum coverage problem.

12. Problem 22.9: The directed Hamiltonian path problem
reduces to the undirected Hamiltonian path problem
(page 169).

13. Problem 22.10: The subset sum problem reduces to
the makespan minimization problem (page 42).

14. Problem 22.11: The 3-SAT problem reduces to the
problem of checking whether a graph is 3-colorable
(page 135).7

We’re left holding a to-do list comprising four of the more difficult
reductions:

Some Harder Reductions

15. The 3-SAT problem reduces to the independent set
problem (Section 22.5).

16. The 3-SAT problem reduces to the directed Hamilto-
nian path problem (Section 22.6).

17. The undirected Hamiltonian path problem reduces to
the TSP (Section 22.7). (This one’s not that difficult.)

18. The independent set problem reduces to the subset
sum problem (Section 22.8).

22.3.3 Why Slog Through NP-Hardness Proofs?

I’ll be honest: NP-hardness proofs can be painfully messy and problem-
specific, and almost no one remembers their details. Why torture you
with them over the next five sections? Because there are several good
reasons to slog through a few:

7This reverses the direction of the reduction in Section 21.5.3; the intent is to
spread (worst-case) intractability rather than (semi-reliable) tractability. Also, full
disclosure: This reduction is somewhat harder than those in Problems 22.4–22.10.
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Goals of Sections 22.4–22.8

1. Fulfill previously made promises that all the problems
studied in this book are NP-hard and hence require
the compromises described in Chapters 20 and 21.

2. Provide you with a long list of known NP-hard prob-
lems for use in your own reductions (in the first step
of the two-step recipe).8

3. Empower you with the belief that, should the need
arise, you could devise the reduction required to prove
that a problem arising in your own work is NP-hard.

22.3.4 Solution to Quiz 22.1

Correct answers: (b),(c). A reduction from a problem A to a
problem B spreads tractability from B to A and intractability in the
opposite direction, from A to B (as we saw way back in Figures 19.2
and 19.3). Taking A and B as the knapsack and MIP problems,
respectively, the reduction in Section 21.4 transfers tractability from
the MIP problem to the knapsack problem (hence (c) is correct) and
intractability in the reverse direction (hence (b) is correct).

22.4 A Template for Reductions

Typical reductions in NP-hardness proofs follow a common template.
In general, a reduction from a problem A to a problem B can be
sophisticated, invoking an assumed subroutine for B any polynomial
number of times and processing its responses in polynomial time in
arbitrarily clever ways (Section 22.1). At the other extreme, what
would a simplest-imaginable reduction look like?

If we believe that the problem A is NP-hard (and that the P 6=
NP conjecture is true), every reduction from A to B must use the
assumed subroutine for B at least once; otherwise, the reduction

8For a really long list (with more than 300 NP-hard problems), check out
the classic book Computers and Intractability: A Guide to the Theory of NP-
Completeness, by Michael R. Garey and David S. Johnson (Freeman, 1979). Few
computer science books from 1979 remain as useful as this one!
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would constitute a stand-alone polynomial-time algorithm for A. And
for typechecking purposes, the instance of problem A provided to the
reduction may require preprocessing before it makes sense to feed into
the subroutine for B—if, for example, the input is a graph and the
subroutine is expecting only a list of integers. Similarly, the response
spit out by the subroutine may require postprocessing before it makes
sense as the output of the reduction:

subroutine 
for problem B

algorithm for problem A

input (problem A) output (problem A)
preprocess
input

(poly-time)

postprocess
output

(poly-time)

For our NP-hardness proofs, we’ll be able to get away with these
simplest-imaginable reductions:

Simplest-Imaginable Reduction from A to B

1. Preprocessor: Given an instance of problem A, trans-
form it in polynomial time to an instance of problem B.

2. Subroutine: Invoke the assumed subroutine for B.

3. Postprocessor: Transform the subroutine’s output
in polynomial time to a correct output for the given
instance of A.

The preprocessor and postprocessor are generally designed in tandem,
with the former’s transformation guided explicitly by the latter’s
needs. In all our examples, it will be obvious that the preprocessor
and postprocessor run in polynomial (if not linear) time.

The reduction in Lemma 19.2, from the directed Hamiltonian path
problem to the cycle-free shortest path problem, is archetypal. That
reduction uses a preprocessor that converts an instance of the former
problem into one of the latter by reusing the same graph and assigning
each edge a length of �1, and a postprocessor that immediately
deduces the correct output from the output of the assumed cycle-free
shortest path subroutine. The reductions in the next four sections are
more complex variations of the same idea.
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22.5 Independent Set Is NP-Hard

The first NP-hardness proof of this chapter is for the independent
set problem, in which the input is an undirected graph G = (V,E)
and the goal is to compute an independent set (that is, a set of
mutually non-adjacent vertices) with the maximum-possible size.9

For example, if G is a cycle graph with n vertices, the maximum size
of an independent set is n/2 (if n is even) or (n� 1)/2 (if n is odd).
If edges represent conflicts between people or tasks, independent sets
correspond to the conflict-free subsets.

We currently have only one NP-hard problem at our disposal, the
3-SAT problem. Thus, if we’re to prove that the independent set
problem is NP-hard using the two-step recipe, our hand is forced: it
can only be via a reduction from the 3-SAT problem to the independent
set problem. These two problems seem to have nothing to do with each
other: one is about logic and the other concerns graphs. Nevertheless,
the main result of this section is:

Theorem 22.2 (Reduction from 3-SAT to Independent Set)
The 3-SAT problem reduces to the independent set problem.

Using the two-step recipe, because the 3-SAT problem is NP-hard
(Theorem 22.1), so is the independent set problem.

Corollary 22.3 (NP-Hardness of Independent Set) The inde-
pendent set problem is NP-hard.

22.5.1 The Main Idea

The reduction from the directed Hamiltonian path problem to the
cycle-free shortest path problem in Lemma 19.2 exploited the strong
similarities between the two problems, both of which are about finding
paths in directed graphs. The 3-SAT and independent set problems,
on the other hand, appear to be totally unrelated. If we’re shooting
for a simplest-imaginable reduction (Section 22.4), what’s our plan
for the preprocessor and postprocessor? The postprocessor must
somehow extract a satisfying truth assignment for a 3-SAT instance

9This problem is the special case of the weighted independent set problem
(page 19) in which every vertex weight is 1. Because this special case is NP-hard
(as we’ll see), so is the more general problem.
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(or conclude that none exist) from a maximum-size independent set
of a graph fabricated by the preprocessor. Next, we illustrate the
main ideas through an example; Section 22.5.2 provides the formal
description of the reduction and its proof of correctness.

To explain the reduction’s preprocessor, think of a disjunction
of k literals as someone’s list of requests for their k favorite variable
assignments. For example, the constraint ¬x1 _x2 _x3 pleads: “could
you set x1 to false?”; “or what about x2 to true?”; “or at least x3 to
true?” Meet at least one of their demands and they walk away happy,
the constraint satisfied.

The key idea in the preprocessor is to encode an instance of
the 3-SAT problem as a graph in which each vertex represents one
assignment request by one constraint.10 For example, the constraints

x1 _ x2 _ x3| {z }
C1

¬x1 _ x2 _ x3| {z }
C2

¬x1 _ ¬x2 _ ¬x3| {z }
C3

would be represented by three groups of three vertices each:

(C1)
x1 = T

(C1)
x2 = T

(C1)
x3 = T

(C3)
x1 = F

(C3)
x2 = F

(C3)
x3 = F

(C2)
x1 = F

(C2)
x2 = T

(C2)
x3 = T

The fourth vertex, for instance, encodes the second constraint’s plea
to set the variable x1 to false (corresponding to its literal ¬x1).

Looking toward the postprocessor, do subsets of these vertices
encode truth assignments? Not always. The issue is that some of
the requests are inconsistent and ask for opposite assignments to
the same variable (like the first and fourth vertices above). But
remember, the whole point of the independent set problem is to
represent conflicts! The preprocessor should therefore add an edge
between each vertex pair corresponding to inconsistent assignments;
because every independent set must choose at most one endpoint
per edge, all conflicts are then avoided. Applying this idea to our
running example (with the dashed vertices indicating one particular
independent set):

10Your first thought might have been to turn a 3-SAT instance with n variables
into a graph with n vertices, with the 2n vertex subsets corresponding to the 2n

possible truth assignments. Alas, this approach doesn’t pan out, motivating the
more clever construction used here.
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(C1)
x1 = T

(C1)
x2 = T

(C1)
x3 = T

(C2)
x1 = F

(C2)
x2 = T

(C2)
x3 = T

(C3)
x1 = F

(C3)
x2 = F

(C3)
x3 = F

A postprocessor can now extract a satisfying truth assignment
from any independent set S that contains at least one vertex in each
group, simply by making all the corresponding variable assignment
requests. (A variable with no requests in either direction can be safely
assigned either true or false.) Because all the vertices of S are non-
adjacent, none of the requests conflict, and the result is a well-defined
truth assignment. Because S includes at least one vertex per group
(one fulfilled request per constraint), this truth assignment satisfies all
the constraints. For example, the three dashed vertices above would
translate to one of the two satisfying assignments {false, true, true}
or {false, true, false}.

Finally, the reduction must also recognize unsatisfiable 3-SAT
instances. As we’ll see in the next section, the preprocessor can
make unsatisfiability obvious to the postprocessor by adding an edge
between each pair of vertices that belong to the same group:

(C1)
x1 = T

(C1)
x2 = T

(C1)
x3 = T

(C2)
x1 = F

(C2)
x2 = T

(C2)
x3 = T

(C3)
x1 = F

(C3)
x2 = F

(C3)
x3 = F
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22.5.2 Proof of Theorem 22.2

The proof of Theorem 22.2 simply scales up the example and reasoning
in Section 22.5.1 to general 3-SAT instances.

Description of the Reduction

Preprocessor. Given an arbitrary 3-SAT instance, with n variables
and m constraints with at most three literals each, the preprocessor
constructs a corresponding graph G = (V,E). It defines V = V1 [
V2[ · · ·[Vm, where Vj is a group with one vertex per literal of the jth
constraint. It defines E = E1 [ E2, where E1 contains one edge per
pair of vertices that reside in the same group and E2 contains one
edge per pair of conflicting vertices (corresponding to requests for
opposite assignments to the same variable).

Postprocessor. If the assumed subroutine returns an independent
set of the graph G constructed by the preprocessor with at least m
vertices, the postprocessor returns an arbitrary truth assignment
consistent with the corresponding variable assignment requests. Oth-
erwise, the postprocessor returns “no solution.”

Proof of Correctness

The crux of the correctness proof is showing that the preprocessor
translates satisfiable and unsatisfiable 3-SAT instances into graphs in
which the maximum size of an independent set is equal to and less
than m, respectively:

3-SAT

reduction

unsatisfiable

satisfiable

reduction

maximum

size = m

IS

maximum

size < m
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Case 1: Unsatisfiable instances. Suppose, for the purposes of a
proof by contradiction, that the reduction fails to return “no solution”
for some unsatisfiable 3-SAT instance. This means that the assumed
subroutine returns an independent set S of the graph G = (V,E)
constructed by the preprocessor that includes at least m vertices.
The edges of E1 preclude more than one vertex from a group, so S
must possess exactly m vertices, with one per group. Because of the
edges in E2, at least one truth assignment is consistent with all the
assignment requests corresponding to the vertices of S. Because S
includes one vertex from each group, the truth assignment extracted
from S by the postprocessor would satisfy every constraint. This
contradicts our initial assumption that the given 3-SAT instance is
unsatisfiable.

Case 2: Satisfiable instances. Suppose the given 3-SAT instance
has a satisfying truth assignment. Pick one fulfilled variable assign-
ment request from each constraint—because the truth assignment
satisfies every constraint, there must be one to pick—and let X denote
the corresponding subset of m vertices. The set X is an independent
set of G: It does not contain both endpoints of any edge of E1 (as it
contains only one vertex per group), nor of any edge of E2 (as it is
derived from a consistent truth assignment). With at least one size-m
independent set of G out there to find, the assumed subroutine must
return one—possibly X, or possibly some other size-m independent
set (which in any case must have one vertex per group). As in case 1,
the postprocessor then extracts from this independent set a satisfy-
ing assignment, which it returns as the reduction’s (correct) output.
QE D

Lest such correctness proofs strike you as overly pedantic, let’s
conclude this section with an example of a reduction gone awry.

Quiz 22.2

Where does the proof of Theorem 22.2 break down if the
intragroup edges E1 are omitted from the graph G? (Choose
all that apply.)

a) An independent set of G no longer translates to a



*22.6 Directed Hamiltonian Path Is NP-Hard 163

well-defined truth assignment.

b) A satisfiable 3-SAT instance need not translate to a
graph in which the maximum size of an independent
set is at least m, the number of constraints.

c) An unsatisfiable 3-SAT instance need not translate to
a graph in which the maximum size of an independent
set is less than m.

d) Actually, the proof still works.

(See below for the solution and discussion.)

Correct answer: (c). With an unsatisfiable 3-SAT instance, and
even without the intragroup edges E1, no independent set of G includes
one vertex from each of the m groups (as the postprocessor could
translate any such independent set into a satisfying assignment).
However, as independent sets of G are now free to recruit multiple
vertices from a group, one may well include m vertices (or more).

*22.6 Directed Hamiltonian Path Is NP-Hard

With one reduction from the 3-SAT problem to a graph problem
under our belt, why not another? In the directed Hamiltonian path
(DHP) problem (page 30), the input is a directed graph G = (V,E),
a starting vertex s 2 V , and an ending vertex t 2 V . The goal is to
return an s-t path visiting every vertex of G exactly once (called an
s-t Hamiltonian path), or correctly declare that no such path exists.11

In contrast to most of the nineteen problems studied in this chapter,
our interest in this problem stems less from its direct applications and
more from its utility in proving that other important problems (like
the TSP) are NP-hard.

The main result of this section is:

Theorem 22.4 (Reduction from 3-SAT to DHP) The 3-SAT
problem reduces to the directed Hamiltonian path problem.

11The problem statement on page 30 is slightly different, requiring only a
“yes”/“no” answer rather than a path. Problem 22.3 asks you to show that the
two versions of the problem are equivalent, with each reducing to the other.
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Combined with the Cook-Levin theorem (Theorem 22.1) and our two-
step recipe, Theorem 22.4 fulfills a promise made back in Section 19.5.4:

Corollary 22.5 (NP-Hardness of DHP) The directed Hamilto-
nian path problem is NP-hard.

22.6.1 Encoding Variables and Truth Assignments

To get away with a simplest-imaginable reduction (Section 22.4), we
need a plan for the preprocessor (responsible for fabricating a directed
graph from a 3-SAT instance) and the postprocessor (responsible for
extracting a satisfying truth assignment from an s-t Hamiltonian path
of that graph).

The first idea is to construct a graph in which an s-t Hamiltonian
path is forced to make a sequence of binary decisions, which can
then be interpreted as a truth assignment by the postprocessor. For
example, in the diamond graph

s

v

w

t

there are two s-t Hamiltonian paths: one that zig-zags downward
(s ! v ! w ! t) and one that zig-zags upward (s ! w ! v ! t).
Identifying down and up as “true” and “false,” the s-t Hamiltonian
paths encode the possible assignments to one Boolean variable.

What about more variables? The preprocessor will deploy one
diamond graph per variable, chained together in a necklace. For
example, the dashed s-t Hamiltonian path in the necklace graph

s t

(x1 := false) (x2 := true) (x3 := true)
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can be interpreted by the postprocessor as the truth assignment
{false, true, true}; the rest of the s-t Hamiltonian paths similarly
encode the other seven truth assignments.

22.6.2 Encoding Constraints

The preprocessor must next augment its graph to reflect the con-
straints of the given 3-SAT instance, so that only the satisfying truth
assignments survive as s-t Hamiltonian paths. Here’s an idea: Add
one new vertex per constraint in such a way that visiting that vertex
corresponds to satisfying the constraint. To see how this might work,
consider the constraint ¬x1 _ x2 _ x3 and the following graph (with
the dashed edges indicating one particular s-t Hamiltonian path):

s t

¬"! ∨ "" ∨ "#

(x1 := true) (x2 := true) (x3 := true)

(satisfied by x2’s assignment)

The edges between the necklace and the new constraint vertex allow
visits to that vertex by s-t Hamiltonian paths only from diamonds that
are traversed in a direction corresponding to a variable assignment
that satisfies the constraint.12

For example, consider the dashed edges, an s-t Hamiltonian path.
The path travels downward in each of the three diamonds, correspond-
ing to the all-true truth assignment. Assigning x1 to true does not

12Because every variable participates in this constraint, every diamond has an
edge to and from the constraint vertex. If some variable were absent from the
constraint, the corresponding diamond would have no such edges.
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satisfy the constraint ¬x1 _ x2 _ x3. Accordingly, there is no way to
visit the new constraint vertex from the first diamond without skip-
ping or visiting twice some vertex. Assigning x2 to true does satisfy
the constraint, which is why the dashed path can take a quick back-
and-forth day trip to the constraint vertex from the second diamond
before resuming its downward journey where it left off. Because x3’s
assignment also satisfies the constraint, such a day trip is possible also
from the third diamond. With the constraint vertex already visited,
however, the s-t Hamiltonian path instead proceeds directly down the
third diamond and over to t. (There’s also a second s-t Hamiltonian
path corresponding to the same truth assignment, traveling straight
down in the second diamond and making the day trip from the third.)

To encode a second constraint, say x1_¬x2_¬x3, the preprocessor
can add another new vertex and wire it to the necklace in the same
way (with the dashed edges indicating one particular s-t Hamiltonian
path):

s t

!! ∨¬!" ∨¬!#

¬!! ∨ !" ∨ !#

(x1 := true) (x2 := true) (x3 := true)

(satisfied by x2’s assignment)

(satisfied by x1’s assignment)
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The two new vertices in each diamond provide room for any s-t
Hamiltonian paths that might want to make back-and-forth day trips
to both constraint vertices from the same diamond.13 The dashed path
is one of the two s-t Hamiltonian paths corresponding to the all-true
truth assignment; the only opportunity to visit the new constraint
vertex is from the first diamond. Of the other seven truth assignments,
the five satisfying ones each correspond to one or more s-t Hamiltonian
paths, while the other two do not.

22.6.3 Proof of Theorem 22.4

The proof of Theorem 22.4 scales up the example in Section 22.6.2 to
general 3-SAT instances.

Description of the Reduction

Preprocessor. Given a 3-SAT instance with n variables and m
constraints, the preprocessor constructs a directed graph:

• Define a set V of 2mn+3n+m+1 vertices: a starting vertex s;
3 external diamond vertices vi, wi, ti for each variable xi; 2m
internal diamond vertices ai,1, ai,2, . . . , ai,2m for each variable i;
and m constraint vertices c1, c2, . . . , cm.

• Define a set E1 of necklace edges by connecting s to v1 and w1;
ti to vi+1 and wi+1 for each i = 1, 2, . . . , n� 1; vi and wi to ti,
vi to and from ai,1, and wi to and from ai,2m for each i =
1, 2, . . . , n; and ai,j to and from ai,j+1, for each i = 1, 2, . . . , n
and j = 1, 2, . . . , 2m� 1.

• Define a set E2 of constraint edges by connecting ai,2j�1 to cj
and cj to ai,2j whenever the jth constraint includes the literal xi
(that is, requests xi = true); and ai,2j to cj and cj to ai,2j�1

whenever the jth constraint includes the literal ¬xi (requesting
xi = false).

The preprocessor concludes with the graph G = (V,E1 [ E2); the
starting and ending vertices of the constructed instance are defined
as s and tn, respectively.

13There are no such paths in this example, but there would be if we changed
the second constraint to, say, x1 _ ¬x2 _ x3.
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Postprocessor. If the assumed subroutine computes an s-tn Hamil-
tonian path P of the graph G constructed by the preprocessor, the
postprocessor returns the truth assignment in which a variable xi is
set to true if P visits the vertex vi before wi and to false otherwise.
If the assumed subroutine responds “no solution,” the postprocessor
also responds “no solution.”

Proof of Correctness

The crux of the correctness proof is showing that the preprocessor
translates satisfiable and unsatisfiable 3-SAT instances into graphs
with and without an s-tn Hamiltonian path, respectively:

3-SAT

reduction

unsatisfiable

satisfiable

reduction

has an s-tn
Hamiltonian 

path

DHP

no s-tn
Hamiltonian 

path 

Case 1: Unsatisfiable instances. Suppose that the reduction
fails to return “no solution” for some unsatisfiable 3-SAT instance.
This means that the assumed subroutine returns an s-tn Hamilto-
nian path P of the graph G constructed by the preprocessor. The
Hamiltonian path P must resemble those in Section 22.6.2, traversing
every diamond upward or downward and also visiting every constraint
vertex. To visit a constraint vertex, the path must include a back-
and-forth day trip interrupting some diamond traversal in a direction
that corresponds to one of the constraint’s variable assignment re-
quests. (If the path fails to immediately return from the constraint
vertex to the same diamond, it’s out of options to visit the rest of
the diamond later without visiting some vertex twice.) The truth
assignment extracted from P by the postprocessor would therefore be
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a satisfying assignment, contradicting the assumption that the given
3-SAT instance is unsatisfiable.

Case 2: Satisfiable instances. Suppose the given 3-SAT instance
has a satisfying truth assignment. The graph G constructed by
the preprocessor then has an s-tn Hamiltonian path: traverse each
diamond in the direction suggested by this assignment (downward for
variables set to true, upward for the rest), taking a back-and-forth
day trip to each constraint vertex at the earliest opportunity (from
the diamond corresponding to the first variable whose assignment
satisfies that constraint). With at least one s-tn Hamiltonian path
of G out there to find, the assumed subroutine must return one. As
in case 1, the postprocessor then extracts from this path and returns
a satisfying assignment. QE D

22.7 The TSP Is NP-Hard

We now return to a problem that we care about in its own right: the
traveling salesman problem (TSP) from Section 19.1.2.

22.7.1 The Undirected Hamiltonian Path Problem

The plan is to piggyback on our hard work showing that the directed
Hamiltonian path problem is NP-hard (Corollary 22.5), loosely follow-
ing our reduction in Section 19.5.4 from that problem to the cycle-free
shortest path problem. There is an immediate typechecking error,
however, because the TSP concerns undirected rather than directed
graphs. The undirected version of the Hamiltonian path problem
seems more germane.

Problem: Undirected Hamiltonian Path (UHP)

Input: An undirected graph G = (V,E), a starting vertex
s 2 V , and an ending vertex t 2 V .

Output: An s-t path of G that visits every vertex exactly
once (that is, an s-t Hamiltonian path), or a correct decla-
ration that no such path exists.
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Problem 22.9 asks you to show that the undirected and directed
Hamiltonian path problems are equivalent, with each reducing to the
other. Corollary 22.5 thus carries over to undirected graphs as well.

Corollary 22.6 (NP-Hardness of UHP) The undirected Hamil-
tonian path problem is NP-hard.

The main result in this section is then:

Theorem 22.7 (Reduction from UHP to TSP) The undirected
Hamiltonian path problem reduces to the traveling salesman problem.

Combining this reduction with Corollary 22.6 shows that the TSP is
indeed an NP-hard problem.

Corollary 22.8 (NP-Hardness of the TSP) The traveling sales-
man problem is NP-hard.

22.7.2 Proof of Theorem 22.7

We should breathe a sigh of relief that Theorem 22.7, unlike Theo-
rems 22.2 and 22.4, relates two intuitively similar problems, both of
which more or less concern long paths in undirected graphs. Given an
undirected Hamiltonian path instance, how can we convert it to an
instance of the TSP, so that a Hamiltonian path (or a correct declara-
tion that none exist) can be easily extracted from a minimum-cost
traveling salesman tour? The main idea is to simulate missing edges
by costly edges.

Description of the Reduction

Preprocessor. Given an undirected graph G = (V,E), a starting
vertex s, and an ending vertex t, the preprocessor first bridges the
gap between paths that visit all vertices and cycles that visit all
vertices by augmenting G with an additional vertex v0 and edges
connecting v0 to s and t. It then assigns a cost of 0 to all edges in this
augmented graph. To complete the construction of the TSP instance,
the preprocessor adds in all the missing edges (to form the complete
graph G0 with vertex set V [ {v0}) and assigns each of these a cost
of 1.
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For example, the preprocessor translates the following graph with
no s-t Hamiltonian path to a TSP instance with no zero-cost tour:

0 0

0

0

1 1

0

1

0

0

s

v0

ts

v0

t

s t

Postprocessor. If the assumed subroutine computes a zero-cost
traveling salesman tour T of the graph G0 constructed by the pre-
processor, the postprocessor removes v0 and its two incident edges
from T and returns the resulting path. Otherwise, as in the example
above, the postprocessor reports “no solution.”

Proof of Correctness

To argue correctness, we’ll justify this picture:

UHP

reduction

reduction

has an s-t 

Hamiltonian 

path

TSP

no s-t 

Hamiltonian 

path 

minimum tour 

cost = 0

minimum tour 

cost > 0

Case 1: Non-Hamiltonian instances. Suppose that the reduc-
tion fails to return “no solution” for some undirected Hamiltonian
path instance G that has no s-t Hamiltonian path. This means that
the assumed subroutine returns a zero-cost tour T of the graph G0 con-
structed by the preprocessor—a tour that avoids all the cost-1 edges
in G0. Because only the edges of G and the edges (v0, s) and (v0, t)
have cost zero in G0, the two edges of T incident to v0 must be (v0, s)
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and (v0, t), and the rest of T must be a cycle-free s-t path that visits all
vertices of V while using only edges in G. Thus T � {(v0, s), (v0, t)} is
an s-t Hamiltonian path of G, contradicting our original assumption.

Case 2: Hamiltonian instances. Suppose the given undirected
Hamiltonian path instance has an s-t Hamiltonian path P . The TSP
instance G0 constructed by the preprocessor then has a zero-cost
tour in P [ {(v0, s), (v0, t)}. With at least one zero-cost tour out
there to find, the assumed subroutine must return one. As in case 1,
the postprocessor then extracts from this tour and returns an s-t
Hamiltonian path of G. QE D

22.8 Subset Sum Is NP-Hard

Last in our parade of NP-hardness proofs is one for the subset sum prob-
lem; as a consequence, both the knapsack and makespan minimization
problems are also NP-hard (see Problems 22.7 and 22.10).

Problem: Subset Sum

Input: Positive integers a1, a2, . . . , an, and a positive
integer t.

Output: A subset of the ai’s with sum equal to t. (Or,
correctly declare that no such subset exists.)

For example, if the ai’s are all the powers of ten from 1 to 10100, there
is a subset with a target sum t if and only if t (written base-10) has
at most 101 digits, with each digit a 0 or a 1.

All the subset sum problem worries about is a bunch of numbers;
it would seem to have nothing to do with problems that concern more
complex objects like graphs. Nonetheless, the main result of this
section is:

Theorem 22.9 (Reduction from IS to Subset Sum) The inde-
pendent set problem reduces to the subset sum problem.

This result, in conjunction with Corollary 22.3, shows that:

Corollary 22.10 (NP-Hardness of Subset Sum) The subset
sum problem is NP-hard.
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22.8.1 The Basic Approach

For now, let’s focus on the problem of checking whether a given
graph has an independent set of a given target size k, as opposed
to computing a maximum-size independent set. (Any solution to
the former problem extends easily to the latter: Use linear or binary
search to identify the largest value of k for which the graph has a
size-k independent set.)

The reduction’s preprocessor must somehow metamorphose a
graph and a target size into what our assumed subroutine for the
subset sum problem is expecting: a bunch of positive integers.14 The
simplest-imaginable approach would define one number per vertex
(along with a target t) so that independent sets of a target size k
correspond to subsets of numbers that sum to t:

IS

reduction

reduction

maximum

size ≥ k

SS

maximum

size < k

exists subset

with sum t

no subset

with sum t

14As a special case of the knapsack problem (see Problem 22.7), the subset
sum problem can be solved by dynamic programming in pseudopolynomial time,
meaning in time polynomial in the input size and the magnitudes of the input
numbers (see page 19 and Problem 20.11(a)). We should therefore expect a
preprocessor to construct a subset sum instance with exponentially large numbers—
an instance for which our dynamic programming algorithms offer no improvement
over exhaustive search.

Problems that are both NP-hard and pseudopolynomial-time solvable are called
weakly NP-hard, while strongly NP-hard problems remain NP-hard in instances
with all input numbers bounded by a polynomial function of the input size. (An
NP-hard problem with no numbers in the input, such as the 3-SAT problem, is
automatically strongly NP-hard.) Of the nineteen problems in Figure 22.1, all
but the subset sum and knapsack problems are strongly NP-hard.
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22.8.2 Example: The Four-Cycle

The key idea is to use each of the lower-order digits of a number to
encode whether an edge is incident to the corresponding vertex. For
instance, the preprocessor could encode the vertices of the four-cycle

v2

v4

e1

e2e4

e3

v1

v3

with the following five-digit numbers (written in base 10):

v1 v2 v3 v4
11,001 11,100 10,110 10,011

For example, the trailing four digits of v2’s encoding indicate that it
is adjacent to e1 and e2 but not e3 or e4.

This idea shows promise. The two size-2 independent sets of the
four-cycle, {v1, v3} and {v2, v4}, correspond to two pairs of numbers
with the same sum: 11,001 + 10,110 = 11,100 + 10,011 = 21,111. All
other subsets have different sums; for example, the sum corresponding
to the non-independent set {v3, v4} is 10,110 + 10,011 = 20,121. A
postprocessor could therefore translate any subset of numbers with
sum 21,111 into a size-2 independent set of the four-cycle.

22.8.3 Example: The Five-Cycle

Suppose, however, that we try the same maneuver with the five-cycle:

e5 e1

e2

e3

e4

v1

v2

v3v4

v5
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with each vertex (and its incident edges) encoded using a six-digit
number. Different size-2 independent sets now correspond to pairs
of numbers with different sums—211,101 and 211,110 for {v1, v3}
and {v2, v4}, for example. In general, a lower-order digit of the sum
will be 0 if it corresponds to an edge with neither endpoint in the
independent set, and 1 otherwise.

To correct lower-order digits that would otherwise be 0, the prepro-
cessor can define one additional number per edge. For the five-cycle,
the final list of numbers is:

v1 v2 v3 v4 v5
110,001 111,000 101,100 100,110 100,011

e1 e2 e3 e4 e5
10,000 1,000 100 10 1

Now, the target sum t = 211,111 can be achieved by taking the
numbers corresponding to a size-2 independent set (like {v1, v3} or
{v2, v4}) along with the numbers corresponding to edges with neither
endpoint in the independent set (like e4 or e5, respectively). There is
no other way to achieve this target sum (as you should check).

22.8.4 Proof of Theorem 22.9

The proof of Theorem 22.9 scales up the example in the preceding
section to general independent set instances.

Description of the Reduction

Preprocessor. Given both an undirected graph G = (V,E) with
vertex set V = {v1, v2, . . . , vn} and edge set E = {e1, e2, . . . , em} and
a target size k, the preprocessor constructs n+m+1 positive integers
that define an instance of the subset sum problem:

• For each vertex vi, define the number ai = 10m+
P

ej2Ai
10m�j ,

where Ai denotes the edges incident to vi. (Written in base 10,
the leading digit is 1 and the jth digit after that is 1 if ej is
incident to vi and 0 otherwise.)

• For each edge ej , define the number bj = 10m�j .

• Define the target sum t = k · 10m +
Pm

j=1 10
m�j . (Written in

base 10, the digits of k followed by m 1’s.)
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Postprocessor. If the assumed subroutine computes a subset of
{a1, a2, . . . , an, b1, b2, . . . , bm} with sum t, the postprocessor returns
the vertices vi that correspond to the ai’s in the subset. (For example,
if handed the subset {a2, a4, a7, b3, b6}, the postprocessor returns the
vertex subset {v2, v4, v7}.) If the assumed subroutine responds “no
solution,” the postprocessor also responds “no solution.”

Outer loop. The preprocessor and postprocessor are designed to
check for an independent set of a target size k. To compute a
maximum-size independent set of an input graph G = (V,E), the
reduction checks all possible values of k = n, n� 1, n� 2, . . . , 2, 1:

1. Invoke the preprocessor to transform G and the current value
of k into an instance of the subset sum problem.

2. Invoke the assumed subroutine for the subset sum problem.

3. Invoke the postprocessor on the subroutine’s output. If it returns
a size-k independent set S of G, halt and return S.

Overall, the reduction invokes the subset sum subroutine at most n
times and performs at most a polynomial amount of additional work.

Proof of Correctness

The reduction is correct provided that every iteration of its outer loop
correctly determines, for the current value of k, whether the input
graph has a size-k independent set.

Case 1: No size-k independent set. Suppose that an iteration
of the reduction’s outer loop fails to return “no solution” for some
graph G = (V,E) that has no size-k independent set. This means
that the assumed subroutine returns a subset N of the numbers
{a1, a2, . . . , an, b1, b2, . . . , bm} constructed by the preprocessor with
the target sum t. Let S ✓ V denote the vertices that correspond to
the ai’s in N . To obtain a contradiction, we next argue that S is a
size-k independent set of G.

In general, for every subset of s of the ai’s and any number of
the bj ’s, the sum (written base-10) is the digits of s followed by m
digits that each belong to {0, 1, 2, 3}. (Exactly three numbers can
contribute to the jth of the m trailing digits: bj , and the two ai’s
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that correspond to ej ’s endpoints.) Because the leading digits of the
target sum t match those of k, the subset N must contain k of the ai’s;
thus, S has size k. Because the m trailing digits of t are all 1, the
subset N cannot contain two ai’s that correspond to the endpoints of
a common edge; thus, S is an independent set of G.

Case 2: At least one size-k independent set. Suppose the
input graph G = (V,E) has a size-k independent set S. The subset
sum instance constructed by the preprocessor then has a subset with
the target sum t: Choose the k ai’s corresponding to the vertices of S,
along with the bj ’s corresponding to the edges with neither endpoint
in S. With at least one feasible solution out there to find, the assumed
subroutine must return a subset N with sum t. As in case 1, the
postprocessor then extracts from N and returns a size-k independent
set of G. QE D

The Upshot

P To prove that a problem B is NP-hard, follow
the two-step recipe: (i) choose an NP-hard prob-
lem A; (ii) prove that A reduces to B.

P The 3-SAT problem is the special case of the
satisfiability problem in which every constraint
has at most three literals.

P The Cook-Levin theorem proves that the 3-SAT
problem is NP-hard.

P Starting from the 3-SAT problem, thousands of
applications of the two-step recipe have proved
that thousands of problems are NP-hard.

P Reductions in NP-hardness proofs conform to
a template: preprocess the input; invoke the
assumed subroutine; postprocess the output.

P In the independent set problem, the input is an
undirected graph and the goal is to compute a
maximum-size subset of non-adjacent vertices.
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P The 3-SAT problem reduces to the independent
set problem, proving the latter NP-hard.

P An s-t Hamiltonian path of a graph G starts
at the vertex s, ends at the vertex t, and visits
every vertex of G exactly once.

P The 3-SAT problem reduces to the directed ver-
sion of the Hamiltonian path problem, proving
the latter NP-hard.

P The undirected version of the Hamiltonian path
problem reduces to the traveling salesman prob-
lem, proving the latter NP-hard.

P In the subset sum problem, the goal is to com-
pute a subset of a given set of positive integers
with sum equal to a given target (or conclude
that none exist).

P The independent set problem reduces to the sub-
set sum problem, proving the latter NP-hard.

Test Your Understanding

Problem 22.1 (S) Assume that the P 6= NP conjecture is true.
Which of the following problems can be solved in polynomial time?
(Choose all that apply.)

a) Given a connected undirected graph, compute a spanning tree
with the smallest-possible number of leaves.

b) Given a connected undirected graph, compute a spanning tree
with the minimum-possible maximum degree. (The degree of a
vertex is the number of incident edges.)

c) Given a connected undirected graph with nonnegative edge
lengths, a starting vertex s, and an ending vertex t, compute
the minimum length of a cycle-free s-t path with exactly n� 1
edges (or +1, if no such path exists).
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d) Given a connected undirected graph with nonnegative edge
lengths, a starting vertex s, and an ending vertex t, compute
the minimum length of a (not necessarily cycle-free) s-t path
with exactly n� 1 edges (or +1, if no such path exists).

Problem 22.2 (S) Assume that the P 6= NP conjecture is true.
Which of the following problems can be solved in polynomial time?
(Choose all that apply.)

a) Given a directed graph G = (V,E) with nonnegative edge
lengths, compute the longest length of a shortest path be-
tween any pair of vertices (that is, maxv,w2V dist(v, w), where
dist(v, w) denotes the shortest-path distance from vertex v to
vertex w).

b) Given a directed acyclic graph with real-valued edge lengths,
compute the length of a longest path between any pair of vertices.

c) Given a directed graph G = (V,E) with nonnegative edge
lengths, compute the length of a longest cycle-free path between
any pair of vertices (that is, maxv,w2V maxlen(v, w), where
maxlen(v, w) denotes the length of a longest cycle-free path
from v to w).

d) Given a directed graph with real-valued edge lengths, compute
the length of a longest cycle-free path between any pair of
vertices.

Problem 22.3 (S) Call the version of the directed Hamiltonian path
problem on page 30, in which only a “yes”/“no” answer is required,
the decision version. Call the version on page 163, in which an s-t
Hamiltonian path itself is required (whenever one exists), the search
version. Call the version of the TSP in Section 19.1.2 the optimization
version, and define the search version of the TSP as: Given a complete
graph, real-valued edge costs, and a target cost C, return a traveling
salesman tour with a total cost of at most C (or correctly declare that
none exist).

Which of the following are true? (Choose all that apply.)

a) The decision version of the directed Hamiltonian path problem
reduces to the search version.
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b) The search version of the directed Hamiltonian path problem
reduces to the decision version.

c) The search version of the TSP reduces to the optimization
version.

d) The optimization version of the TSP reduces to the search
version.

Problem 22.4 (H) In the clique problem, the input is an undirected
graph and the goal is to output a clique—a subset of mutually adjacent
vertices—with the maximum-possible size. Prove that the independent
set problem reduces to the clique problem, implying (by Corollary 22.3)
that the latter is NP-hard.

Problem 22.5 (H) In the vertex cover problem, the input is an
undirected graph G = (V,E), and the goal is to identify a minimum-
size subset S ✓ V of vertices that includes at least one endpoint of
every edge in E. Prove that the independent set problem reduces to
the vertex cover problem, implying (by Corollary 22.3) that the latter
is NP-hard.

Problem 22.6 (H) In the set cover problem, the input comprises m
subsets A1, A2, . . . , Am of a ground set U , and the goal is to identify a
minimum-size collection of subsets whose union equals U . Prove that
the vertex cover problem reduces to the set cover problem, implying
(by Problem 22.5) that the latter is NP-hard.

Problem 22.7 (H) Prove that the subset sum problem reduces to
the knapsack problem (page 19), implying (by Corollary 22.10) that
the latter is NP-hard.

Challenge Problems

Problem 22.8 (S) Prove that the set cover problem reduces to the
maximum coverage problem (Section 20.2.1), implying (by Prob-
lem 22.6) that the latter is NP-hard.

Problem 22.9 (H) Prove that the undirected Hamiltonian path
problem reduces to the directed Hamiltonian path problem and vice
versa. (In particular, Corollary 22.6 follows from Corollary 22.5.)
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Problem 22.10 (H)

(a) Prove that the subset sum problem remains NP-hard in the
special case in which the target sum equals half the sum of the
input numbers (that is, t = 1

2

Pn
i=1 ai).

15

(b) Prove that this special case of the subset sum problem reduces
to the makespan minimization problem with two machines,
implying (by (a)) that the latter is NP-hard.16

Problem 22.11 (H) Prove that the 3-SAT problem reduces to the
special case of the graph coloring problem (page 135) in which the num-
ber k of allowable colors is 3, implying (by the Cook-Levin theorem)
that the latter is NP-hard.17

Problem 22.12 (H) Problem 20.12 introduced the metric special
case of the TSP, in which the edge costs c of the input graph G = (V,E)
are nonnegative and satisfy the triangle inequality:

cvw 
X

e2P
ce

for every pair v, w 2 V of vertices and v-w path P in G. Problem 20.12
also developed a polynomial-time heuristic algorithm that, given a
metric TSP instance, is guaranteed to return a tour with total cost at
most twice the minimum possible. Can we do better and solve the
metric special case exactly, or at least extend the heuristic algorithm’s
approximate correctness guarantee to the general TSP?

(a) Prove that the metric special case of the TSP is NP-hard.

(b) Assume that the P 6= NP conjecture is true. Prove that there is
no polynomial-time algorithm that, for every TSP instance with
nonnegative edge costs (and no other assumptions), returns a
tour with total cost at most 10100 times the minimum possible.

15This special case of the subset sum problem is often called the partition
problem.

16The two-machine special case of the makespan minimization problem can be
solved in pseudopolynomial time by dynamic programming (as you should check)
and is therefore only weakly NP-hard (see footnote 14). A more complicated
reduction shows that the general version of the problem is strongly NP-hard.

17The graph coloring problem can be solved in linear time when k = 2 (see
footnote 43 in Chapter 21).



Chapter 23

P, NP, and All That

Chapters 19–22 cover everything the pure algorithm designer needs to
know about NP-hard problems—the algorithmic implications of NP-
hardness, algorithmic tools for making headway on NP-hard problems,
and how to spot NP-hard problems in the wild. We provisionally
defined NP-hardness in terms of the P 6= NP conjecture and infor-
mally described this conjecture in Section 19.3.5, without any formal
mathematical definitions (which we didn’t need at the time). This
optional chapter fills in the missing foundations.1

Section 23.1 outlines our plan to amass evidence of a problem’s
intractability by reducing a large number of problems to it. Sec-
tion 23.2 distinguishes three types of computational problems: de-
cision, search, and optimization problems. Section 23.3 defines the
complexity class NP as the set of all search problems with efficiently
recognizable solutions, formally defines NP-hard problems, and revis-
its the Cook-Levin theorem. Section 23.4 formally defines the P 6= NP
conjecture and surveys its current status. Section 23.5 describes two
important conjectures that are stronger than the P 6= NP conjecture—
the Exponential Time Hypothesis (ETH) and Strong Exponential
Time Hypothesis (SETH)—and their algorithmic implications (for
example, for the sequence alignment problem). Section 23.6 concludes
with a discussion of Levin reductions and NP-complete problems—
universal problems that simultaneously encode all problems with
efficiently recognizable solutions.

1This chapter is an introduction to a beautiful and mathematically deep field
called computational complexity theory, which studies the quantity of computing
resources (like time, memory, or randomness) necessary to solve different compu-
tational tasks (as a function of the input size). We’ll maintain a ruthless focus on
the algorithmic implications of this theory, resulting in a slightly unconventional
treatment. If you want to learn more about computational complexity theory, I
recommend starting with Ryan O’Donnell’s excellent (and freely available) video
lectures (http://www.cs.cmu.edu/~odonnell/).
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*23.1 Amassing Evidence of Intractability

In 1967, Jack Edmonds conjectured that the traveling salesman prob-
lem (TSP) cannot be solved by any polynomial-time algorithm, not
even one with a running time of O(n100) or O(n10000) for inputs with n
vertices (page 6). Absent a mathematical proof, how could we build
a compelling case that this conjecture is true? The failed efforts to
come up with such an algorithm by so many brilliant minds over the
past seventy years constitute circumstantial evidence of intractability,
but can we do better?

23.1.1 Building a Case with Reductions

The key idea is to show that a polynomial-time algorithm for the
TSP would not merely solve one unsolved problem—it would solve
thousands of them.

Amassing Evidence That the TSP Is Intractable

1. Choose a really big collection C of computational prob-
lems.

2. Prove that every problem in C reduces to the TSP.2

TSP

problem #1 problem #2 problem #10000…….

reduction
reduction

reduction
…….

2As a reminder from Sections 19.5.1 and 22.1, a reduction from a problem A
to a problem B is an algorithm that solves problem A while using at most a
polynomial (in the input size) number of calls to a subroutine solving B and a
polynomial amount of additional work. This type of reduction is sometimes called
a Cook reduction (after Stephen Cook) or a polynomial-time Turing reduction (after
Alan Turing), and is the most sensible one to focus on when studying algorithms.
More restricted types of reductions are important for defining “NP-complete”
problems; see Section 23.6.
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A polynomial-time algorithm for the TSP would then automatically
provide one for every problem in the set C. Said another way, if
even one problem in the set C cannot be solved by a polynomial-time
algorithm, neither can the TSP. The bigger the set C, the stronger the
argument that the TSP is not a polynomial-time solvable problem.

23.1.2 Choosing the Set C for the TSP

To make the case against the TSP’s polynomial-time solvability as
compelling as possible, why not reach for the stars and take C to be
the set of all the computational problems in the world? Because this
is too ambitious. Hard as the TSP may be, there are computational
problems out there that are much, much harder. At the extreme are
undecidable problems—problems that cannot be solved by a computer
in any finite amount of time (not even in exponential time, not even
in doubly-exponential time, and so on). One famous example of an
undecidable problem is the halting problem: Given a program (say,
one thousand lines of Python), determine whether it goes into an
infinite loop or eventually halts. The obvious approach is to run the
program and see what it does. But if the program hasn’t halted after
a century, how do you know if it’s in an infinite loop or if it will
halt tomorrow? You might hope for some shortcut smarter than rote
simulation of the code, but unfortunately none exist in general.3

The TSP no longer looks so bad—at least it can be solved in a
finite (albeit exponential) amount of time via exhaustive search. No
way can the halting problem reduce to the TSP, as such a reduction
would translate the exponential-time algorithm for the TSP into one
for the halting problem (which, per Turing, does not exist).

3In 1936, Alan M. Turing published his paper “On Computable Numbers,
with an Application to the Entscheidungsproblem” (Proceedings of the London
Mathematical Society, 1936). I and many other computer scientists view this
paper as the birth of our discipline and, for this reason, believe that Turing’s
name should be as widely recognized as, say, that of Albert Einstein.

What made this paper so important? Two things. First, Turing introduced
a formal model of what general-purpose computers can do, now called a Turing
machine. (Mind you, this was ten years before anyone had actually built a
general-purpose computer!) Second, defining what computers can do enabled
Turing to study what they can’t do and to prove that the halting problem is
undecidable. Thus, from literally day 1, computer scientists have been acutely
aware of computers’ limitations and the necessity of compromise when tackling
hard computational problems.
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Going back to the drawing board, what is the largest set C of
computational problems that might conceivably reduce to the TSP?
Intuitively, the biggest set we could hope for is the set of all problems
solvable by an analogous exhaustive search algorithm—then, among
all such problems, the TSP would be the hardest one. Could there be
a mathematical definition that captures this idea?

*23.2 Decision, Search, and Optimization

Before defining the set of “problems solvable by naive exhaustive-
search”—the complexity class NP—let’s step back and categorize the
different types of input-output formats that we’ve seen.

Three Types of Computational Problems

1. Decision problem. Output “yes” if there is a feasible
solution and “no” otherwise.

2. Search problem. Output a feasible solution if one
exists, and “no solution” otherwise.

3. Optimization problem. Output a feasible solution with
the best-possible objective function value (or “no solu-
tion,” if none exist).

Decision problems are the rarest of the three in applications, and
we’ve seen only one example in this book: the original description
of the directed Hamiltonian path problem (page 30), in which “fea-
sible solutions” correspond to s-t Hamiltonian paths. Search and
optimization problems are both common. Of the nineteen problems
studied in Chapter 22 (see Figure 22.1), six are search problems: the
3-SAT, SAT, graph coloring, directed Hamiltonian path (the version
on page 163), undirected Hamiltonian path, and subset sum problems.
The other thirteen are optimization problems.4 The definition of a
“feasible solution”—such as a satisfying assignment, a Hamiltonian

4To shoehorn the cycle-free shortest path problem into this definition of an
optimization problem, consider the variant in which two vertices are supplied as
input and a shortest cycle-free path from the first to the second is required as
output. The NP-hardness proof in Section 19.5.4 (Lemma 19.2) also applies to
this version of the problem.
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path, or a traveling salesman tour (perhaps with at most some target
total cost)—is problem-specific. For the optimization problems, the
objective function—such as minimizing the total cost or maximizing
the total value—is also problem-specific.

Complexity classes usually stick with problems of only one type to
avoid typechecking errors, and we’ll restrict our definition of NP to
search problems.5 Don’t worry about leaving optimization problems
like the TSP out in the cold: Every optimization problem has a
corresponding search version. The input to the search version also
includes a target objective function value t; the goal is then to find a
feasible solution with value at least t (for maximization problems) or
at most t (for minimization problems), or correctly report that none
exist. As we’ll see, the search versions of almost all the optimization
problems that we have studied reside in NP .6

*23.3 NP: Problems with Easily Recognized Solutions

We now arrive at the heart of the discussion. How can we define the set
of “exhaustive-search-solvable” problems—the set of all problems that
might plausibly reduce to the TSP? What are the minimal ingredients
for solving a problem by naive exhaustive search?

23.3.1 Definition of the Complexity Class NP

The big idea behind the complexity class NP is the efficient recognition
of purported solutions. That is, if someone handed you an alleged
feasible solution to a problem instance on a silver platter, you could
quickly check whether it was indeed a feasible solution. For example,

5Most books define the complexity class NP in terms of decision problems;
this is more convenient for developing complexity theory but further removed from
natural algorithmic problems. The version of the class used here is sometimes
called FNP, where the “F” stands for “functional.” All the algorithmic impli-
cations of NP-hardness, including the truth or falsity of the P 6= NP conjecture,
remain the same no matter which definition is used.

6The search version of an optimization problem reduces immediately to the
original version: Either an optimal solution meets a given target objective function
value t, or no feasible solutions do. More interesting is the converse: A typical
optimization problem reduces to its search version via binary search over the
target t (see also Problem 22.3). Such an optimization problem is polynomial-time
solvable if and only if its search version is polynomial-time solvable, and similarly
is NP-hard if and only if its search version is NP-hard.



*23.3 NP: Problems with Easily Recognized Solutions 187

if someone hands you a filled-out Sudoko or KenKen puzzle, it’s easy
to check whether they followed all the rules. Or, if someone suggests
a sequence of vertices in a graph, it’s easy to check whether they
constitute a traveling salesman tour and, if they do, whether the total
cost of the tour is at most a given target t.7

The Complexity Class NP

A search problem belongs to the complexity class NP if
and only if:

1. For every instance, every candidate solution has de-
scription length (in bits, say) bounded above by a
polynomial function of the input size.

2. For every instance and candidate solution, the alleged
feasibility of the solution can be confirmed or denied
in time polynomial in the input size.

23.3.2 Examples of Problems in NP

The entrance requirements for membership in NP are so easily passed
that almost all the search problems that you’ve seen qualify. For
example, the search version of the TSP belongs to the class NP: A
tour of n vertices can be described using O(n log n) bits—roughly
log2 n bits to name each vertex—and, given a list of vertices, it’s
easy to check whether they constitute a tour with total cost at most
a given target t. The 3-SAT problem (Section 22.2) also belongs
to NP : Describing a truth assignment to n Boolean variables takes n
bits, and checking whether one satisfies each of the given constraints
is straightforward. Similarly, it’s easy to check whether a proposed
path is Hamiltonian, whether a proposed job schedule has a given
makespan, or whether a proposed subset of vertices is an independent
set, vertex cover, or clique of a given size.

7NP can equivalently be defined as the search problems that are efficiently
solvable in a fictitious computational model defined by “nondeterministic Turing
machines.” The acronym “NP” stands for “nondeterministic polynomial-time”
(and not for “not polynomial”!) and refers to this alternative definition. In
an algorithms context, you should always think of NP problems as those with
efficiently recognizable solutions.
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Quiz 23.1

Of the nineteen problems listed in Figure 22.1, for how many
does the search version belong to NP?

a) 16

b) 17

c) 18

d) 19

(See Section 23.3.6 for the solution and discussion.)

23.3.3 NP Problems Are Solvable by Exhaustive Search

We originally set out to define the set of problems that are solvable by
naive exhaustive search—the problems with a shot at reducing to the
TSP—but instead defined the class NP as the search problems with
efficiently recognizable solutions. The connection? Every problem
in NP can be solved in exponential time by using naive exhaustive
search to check candidate solutions one by one:

Exhaustive Search for a Generic NP Problem

1. Enumerate candidate solutions, one by one:

a) If the current candidate is feasible, return it.

2. Return “no solution.”

For a problem in NP, candidate solutions require O(nd) bits to de-
scribe, where n denotes the input size and d is a constant (independent
of n). Thus, the number of possible candidates (and hence of loop
iterations) is 2O(nd).8 By the second defining property of an NP
problem, each loop iteration can be carried out in polynomial time.

8Big-O notation in an exponent suppresses constant factors (and lower order
terms) in the exponent. For example, a function T (n) is 2O(

p
n) if there are

constants c, n0 > 0 such that T (n)  2c
p
n for all n � n0. (Whereas T (n) =

O(2
p
n) means that T (n)  c · 2

p
n for all n � n0.)
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Exhaustive search therefore correctly solves the problem in time “only”
exponential in the input size n.

23.3.4 NP-Hard Problems

The requirements for membership in the complexity class NP are
extremely weak. All you need is the ability to recognize a correct
solution—to know one when you see one. As a result, NP is an enor-
mous class of search problems, capturing the overwhelming majority
of those you’re likely to encounter. So if every problem in NP reduces
to a problem A—if A is at least as hard as every problem in NP—a
polynomial-time algorithm for A would lead directly to such algo-
rithms for the entire gamut of NP problems. This constitutes strong
evidence of intrinsic intractability and is exactly the formal definition
of an NP-hard problem.

NP-Hard Problem (Formal Definition)

A computational problem is NP-hard if every problem in
NP reduces to it.

Once we formally define the P 6= NP conjecture in Section 23.4, we’ll
see that every problem that is NP-hard under this definition also
satisfies the provisional definition (Section 19.3.7) used throughout
Chapters 19–22. The minor switch in definition affects none of the
lessons from those chapters. For example, the Cook-Levin theorem
(Theorem 22.1) shows that the 3-SAT problem is NP-hard according
to the formal definition (as we’ll see in Section 23.3.5); reductions
continue to spread NP-hardness (Problem 23.4); and as a consequence,
the nineteen problems studied in Chapter 22 remain NP-hard under
this new definition.9

9Look in other books and you’ll often see a more demanding definition of NP-
hardness that requires reductions of a very specific form, called “Levin reductions.”
(Section 23.6.1 defines such reductions and Section 23.6.2 uses them to define
“NP-complete” problems.) Only search problems are eligible for NP-hardness
under this more restrictive definition; instead of “the TSP is NP-hard,” one must
say “the search version of the TSP is NP-hard.” The more liberal definition
used here, with general (Cook) reductions, better accords with the algorithmic
viewpoint of this book series.
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23.3.5 The Cook-Levin Theorem Revisited

In Chapter 22 we were content to take the Cook-Levin theorem
(Theorem 22.1) on faith and couple it with our two-step recipe to
prove problems NP-hard. We’re now equipped with all the definitions
necessary to understand precisely what that theorem says: Every
problem in NP reduces to the 3-SAT problem. How could this be
true? The 3-SAT problem seems so simple, the class NP so vast.

The details of the proof get messy, but here’s the gist.10 Fix an
arbitrary NP problem A; we must show that A reduces to the 3-SAT
problem. All we know about A is that it meets the two defining re-
quirements of an NP problem: (i) feasible solutions to size-n instances
can be described using at most c1n

d1 bits; and (ii) alleged feasible
solutions to size-n instances can be verified in at most c2n

d2 time
(where c1, c2, d1, d2 are constants). Denote by verifyA the algorithm
in (ii) that checks the feasibility of a purported solution.

We’ll be able to get away with a simplest-imaginable reduction
(Section 22.4). The main ingredient is a preprocessor that translates
instances of A with and without a feasible solution into satisfiable
and unsatisfiable 3-SAT instances, respectively:

arbitrary

NP problem

reduction

has no feasible

solution

has a feasible

solution

reduction

satisfiable

3-SAT

unsatisfiable

Preprocessor. Given a size-n instance IA of the problem A, the
preprocessor constructs a 3-SAT instance I3SAT :

10For a complete proof, refer to any textbook on computational complexity.
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• Define c1n
d1 solution variables. The intent is for these variables

to record bits that describe a candidate solution for IA.

• Define (c2n
d2)2 = c22 ·n

2d2 state variables. The intent is for these
variables to encode the execution of verifyA on the candidate
solution for IA encoded by the solution variables.

• Define constraints to enforce the semantics of the state variables.
A typical constraint asserts: “the jth bit of memory after step i+
1 is consistent with the relevant memory contents after step i,
the given instance IA, the candidate solution to IA encoded by
the solution variables, and the code for the algorithm verifyA.”

• Define constraints that ensure that the computation encoded by
the state variables concludes with an assertion of the feasibility
of the candidate solution encoded by the solution variables.

Why (c2n
d2)2 state variables? The algorithm verifyA performs at

most c2nd2 primitive operations and, assuming a computational model
in which one bit of memory can be accessed per operation, references
at most c2n

d2 bits of memory. Its entire computation can therefore
be summarized (more or less) using a c2n

d2 ⇥ c2n
d2 table, with rows

corresponding to steps i and columns to bits j of memory. Each state
variable then encodes the content of one bit of memory at one point
in the computation.11

The consistency constraints sound complicated. But because one
step of an algorithm (such as a Turing machine) is so simple, each of
these logical constraints can be implemented with a small number of
three-literal disjunctions (with the details depending on the precise
computational model). The end result is a 3-SAT instance I3SAT with
a polynomial (in n) number of variables and constraints.

Postprocessor. If the assumed subroutine returns a satisfying truth
assignment for the 3-SAT instance I3SAT constructed by the preproces-
sor, the postprocessor returns the candidate solution for IA encoded

11There are additional details here that depend on the exact computational
model used and the definition of a “primitive operation.” The simplest approach is
to use a Turing machine (see footnote 3), in which case another batch of Boolean
variables is needed at each step to encode the machine’s current internal state.
The proof can be made to work for any reasonable model of computation.
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by the assignments to the solution variables. If the assumed subrou-
tine responds that I3SAT is unsatisfiable, the postprocessor reports
that IA has no feasible solutions.

Outline of correctness. The constraints of the fabricated 3-SAT
instance I3SAT are defined so that the satisfying truth assignments
correspond to the feasible solutions to the given instance IA (encoded
by the solution variables) along with the supporting verification per-
formed by the algorithm verifyA (encoded by the state variables).
Thus, if IA has no feasible solutions, the instance I3SAT must be un-
satisfiable. Conversely, if IA does have a feasible solution, I3SAT must
have a satisfying truth assignment. The assumed 3-SAT subroutine
must then compute such an assignment, which will be converted by
the postprocessor into a feasible solution for IA.

23.3.6 Solution to Quiz 23.1

Correct answer: (c). The exception? The influence maximization
problem. While computing the total cost of a given tour or the
makespan of a given schedule is straightforward, the influence of a
given subset of k vertices is defined as an expectation with exponen-
tially many terms (see (20.10) and the solution to Quiz 20.6). Because
it’s unclear how to evaluate the objective function in the influence
maximization problem in polynomial time, the search version of the
problem does not obviously belong to NP .

*23.4 The P 6= NP Conjecture

Way back in Section 19.3.5, we informally defined the P 6= NP conjec-
ture as: Checking an alleged solution to a problem can be fundamen-
tally easier than coming up with your own solution from scratch. We
are now, finally, in a position to state this conjecture formally.

23.4.1 P: Polynomial-Time Solvable NP Problems

At least some of the problems in NP can be solved in polynomial time,
such as the 2-SAT problem (Problem 21.12) and the search version of
the minimum spanning tree problem (Section 19.1.1). The complexity
class P is defined as the set of all such problems.
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The Complexity Class P

A search problem belongs to the complexity class P if and
only if it belongs to NP and can be solved with a polynomial-
time algorithm.

By definition, every problem in P also belongs to NP :

P ✓ NP.

23.4.2 Formal Definition of the Conjecture

No prizes for now guessing the formal statement of the P 6= NP
conjecture, that P is a strict subset of NP :

The P 6= NP Conjecture (Formal Version)

P ( NP .

3-SAT
TSP
(search)

MST
(search)

!

2-SAT

"!

(a) The world if P 6= NP

3-SAT TSP
(search)

MST
(search)

! (= $!)

2-SAT

(b) The world if P = NP

The P 6= NP conjecture asserts the existence of a search problem
with efficiently recognizable solutions (an NP problem) that cannot
be solved by any polynomial-time algorithm—a problem for which
checking an alleged feasible solution is easy, but coming up with your
own from scratch is hard. If the conjecture is false, P = NP and the
efficient recognition of feasible solutions leads automatically to the
efficient computation of feasible solutions (whenever they exist).

A polynomial-time algorithm for an NP-hard problem A would
directly lead to one for every NP problem—with every problem
in NP reducing to A, tractability would spread from A to all of NP—
proving that P = NP and refuting the P 6= NP conjecture. Thus, the
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provisional definition of an NP-hard problem in Section 19.3.7 is a
logical consequence of the formal definition on page 189:

Consequence of NP-Hardness

If the P 6= NP conjecture is true, no NP-hard problem can
be solved by a polynomial-time algorithm.

23.4.3 Status of the P 6= NP Conjecture

The P 6= NP conjecture is arguably the most important open question
in all of computer science, and also one of the deepest unsolved
problems in mathematics. For example, resolving the conjecture is
one of the seven “Millennium Problems” proposed in the year 2000
by the Clay Mathematics Institute; solve one of these problems and
you’ll earn a prize of one million US dollars.12,13

Most experts believe that the P 6= NP conjecture is true. (Al-
though the legendary logician Kurt Gödel conjectured, in a 1956
letter to the still more legendary John von Neumann, a statement
equivalent to P = NP.) Why? For starters, humans are crafty at
discovering fast algorithms. If it really were the case that every single
problem in NP can be solved by a fast algorithm, why hasn’t some
super-smart engineer or scientist discovered one yet? Meanwhile,
proofs delineating the limitations of algorithms have been few and far
between; if P ( NP , it’s no real surprise that we haven’t yet figured
out how to prove it.

Second, how could we reconcile P = NP with the way the world
seems to work? We all “know,” from direct experience, tasks for which
checking someone else’s work (like a mathematical proof) takes far
less time and creativity than searching a large space of candidates for
your own solution. Yet P = NP would imply that such creativity can
be efficiently automated; for example, at least in principle, a proof of

12The other six: the Riemann Hypothesis, the Navier-Stokes Equation, the
Poincaré Conjecture, the Hodge Conjecture, the Birch and Swinnerton-Dyer
Conjecture, and the Yang-Mills Existence and Mass Gap Problem. As of this
writing (in 2020), only the Poincaré Conjecture has been resolved (by Grigori
Perelman, in 2006, who famously refused the prize money).

13While one million dollars is nothing to sneeze at, it undersells the importance
and value of the advancement in human knowledge that appears necessary to
resolve a problem like the P 6= NP conjecture.
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Fermat’s Last Theorem could then be generated by an algorithm in
time polynomial in the length of the proof!14

As a mathematical statement, how about some mathematical
evidence for or against the P 6= NP conjecture? Here, we know
shockingly little. It may seem bizarre that no one has been able to
prove such a seemingly obvious statement. The intimidating barrier is
the dizzyingly rich fauna of the land of polynomial-time algorithms. If
the “obvious” cubic running time lower bound for matrix multiplication
is false (as shown by Strassen’s algorithm in Part 1), who’s to say
that some other exotic species can’t break through other “obvious”
lower bounds, including the presumed ones for NP-hard problems?

Who’s right: Gödel or Edmonds? You’d hope that, as the years
go by, we’d be getting closer to a resolution of the P 6= NP conjecture,
one way or the other. Instead, as more and more mathematical
approaches to the problem have proved inadequate, the solution has
been receding further into the distance. We have to face the reality
that we may not know the answer for a long time—certainly years,
probably decades, and maybe even centuries.15

*23.5 The Exponential Time Hypothesis

23.5.1 Do NP-Hard Problems Require Exponential Time?

NP-hard problems are commonly conflated with problems that require
exponential time to solve in the worst case (the third acceptable
inaccuracy in Section 19.6). The P 6= NP conjecture does not assert

14The ramifications of P = NP would depend on whether all NP problems
can be solved by algorithms that are fast in practice, or merely by algorithms
that technically run in polynomial time but are too slow or complicated to be
implemented and used. The first and more implausible scenario would have
tremendous consequences for society, including the end of cryptography and
modern ecommerce as we know it (see footnote 32 in Chapter 19); for a general-
audience account of this possibility, see Lance Fortnow’s book A Golden Ticket
(Princeton University Press, 2013). The second scenario, which Donald E. Knuth
himself has speculated about, would not necessarily have any practical implications;
instead, it would signal that the mathematical definition of polynomial-time
solvability is too liberal to accurately capture what we mean by “solvable by a
fast algorithm in the physical world.”

15For much more on the conjecture’s broader context and current status, check

out Scott Aaronson’s book chapter “P
?
= NP” in Open Problems in Mathematics,

edited by John F. Nash, Jr. and Michael Th. Rassias (Springer, 2016).
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this, however, and even if true, leaves open the possibility that an NP-
hard problem like the TSP could be solved in nO(logn) or 2O(

p
n) time

on instances with n vertices. The widely held belief that typical NP-
hard problems require exponential time is codified by the Exponential
Time Hypothesis (ETH).16

The Exponential Time Hypothesis (ETH)

There is a constant c > 1 such that: Every algorithm that
solves the 3-SAT problem requires time at least cn in the
worst case, where n denotes the number of variables.

The ETH does not preclude algorithms for the 3-SAT problem that
improve over exhaustive search (which runs in time scaling with 2n),
and this is no accident: Problem 21.13 shows that there are much
faster (if still exponential-time) algorithms for the problem. However,
all the known 3-SAT algorithms require time cn for some c > 1 (with
the current record being c ⇡ 1.308); the ETH conjectures that this is
unavoidable.

Reductions can be used to show that, if the ETH is true, many
other natural NP-hard problems also require exponential time. For
example, the ETH would imply that there is a constant a > 1 such that
every algorithm for one of the NP-hard graph problems in Chapter 22
requires time at least an in the worst case, where n denotes the number
of vertices.

23.5.2 The Strong ETH (SETH)

The Exponential Time Hypothesis is a stronger assumption than the
P 6= NP conjecture: If the former is true, so is the latter. Stronger
assumptions lead to stronger conclusions; unfortunately, they are also
more likely to be false (Figure 23.1)! Still, most experts believe the
ETH is true.

Next is an even stronger assumption that is more controversial
but has remarkable algorithmic implications. What could be stronger
than assuming that an NP-hard problem requires exponential time to

16The stronger statement that every NP-hard problem requires exponential
time is false; see Problem 23.5 for a contrived NP-hard problem that can be solved
in subexponential time.
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more likely to be true

P ≠ NP conjecture
strong exponential 

time hypothesis (SETH)
exponential time 
hypothesis (ETH)

more compelling consequences

Figure 23.1: Three unproven conjectures about the computational in-
tractability of NP-hard problems, ordered from strongest (and least plausi-
ble) to weakest (and most plausible).

solve? Assuming that there is no algorithm for the problem significantly
faster than exhaustive search. This can’t possibly be true for the 3-
SAT problem (on account of Problem 21.13); perhaps for a different
problem? We don’t need to look far—the general SAT problem, with
no restriction on the number of disjunctions per constraint (page 136),
is a plausible candidate.

The generality (and hence difficulty) of the k-SAT problem is
nondecreasing in k, the maximum number of literals per constraint.
Does the problem’s difficulty strictly increase with k? For example,
the randomized 3-SAT algorithm in Problem 21.13 can be extended
to the k-SAT problem for every positive integer k, but its running
time degrades with k as roughly (2 � 2

k )
n, where n is the number

of variables (see footnote 44 on page 146). This same degradation
in running time to 2n as k increases shows up in all known k-SAT
algorithms. Could it be necessary?

The Strong Exponential Time Hypothesis (SETH)

For every constant c < 2, there exists a positive integer k
such that: Every algorithm that solves the k-SAT problem
requires time at least cn in the worst case, where n denotes
the number of variables.17

Refuting the SETH would entail a major theoretical advance in satis-
fiability algorithms—a family of k-SAT algorithms (one per positive
integer k), all of which run in O((2� ✏)n) time, where n denotes the
number of variables and ✏ > 0 is a constant (independent of k and n,

17While not obvious, the SETH does imply the ETH.
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like .01 or .001). Such an advance might or might not be in our near
future, and expert opinion on the SETH is split; in any case, everyone
is prepared for it to be refuted at any time.18

23.5.3 Running Time Lower Bounds for Easy Problems

Why tell you about a conjecture so strong that it might well be false?
Because the SETH, a conjecture about the intractability of NP-hard
problems, also has striking algorithmic implications for polynomial-
time solvable problems.19

From the SETH to Sequence Alignment

In Parts 1–3 of this book series we aspired to ever-faster algorithms,
with the holy grail a blazingly fast linear- or near-linear-time algorithm.
We achieved this goal for a number of problems (especially in Parts 1
and 2); for others (especially in Part 3), we stopped short. For
example, for the sequence alignment problem (see footnote 24 on
page 25 and Chapter 17 of Part 3), we declared victory with the
NW (Needleman-Wunsch) dynamic programming algorithm that runs
in O(n2) time, where n denotes the length of the longer of the two
input strings.

Can we do better than this quadratic-time sequence alignment
algorithm? Or, how would we amass evidence that we can’t? The
theory of NP-hardness, developed to reason about problems that seem
unsolvable in polynomial time, appears irrelevant to this question.
But a relatively new area of computational complexity theory, called
fine-grained complexity, shows that hardness assumptions for NP-hard
problems (like the SETH) translate meaningfully to polynomial-time
solvable problems.20 For example, a better-than-quadratic-time algo-
rithm for the sequence alignment problem would automatically lead

18The ETH and SETH were formulated by Russell Impagliazzo and Ramamohan
Paturi in their paper “On the Complexity of k-SAT” (Journal of Computer and
System Sciences, 2001).

19The ETH also has some interesting algorithmic consequences that are not
known to follow from the P 6= NP conjecture. For example, if the ETH is true,
many NP-hard problems and parameter choices do not allow for fixed-parameter
algorithms (see footnote 22 on page 125).

20For a deep dive, check out the survey “On Some Fine-Grained Questions in
Algorithms and Complexity,” by Virginia Vassilevska Williams (Proceedings of the
International Congress of Mathematicians, 2018).
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to a better-than-exhaustive-search algorithm for the k-SAT problem
for all k!21

Fact 23.1 (SETH Implies NW Is Essentially Optimal) For ev-
ery constant ✏ > 0, an O(n2�✏)-time algorithm for the sequence align-
ment problem, where n is the length of the longer input string, would
refute the SETH.

In other words, the only avenue for improving on the running time
of the NW algorithm is to make major progress on the SAT problem!
This is a stunning connection between two problems that seem wildly
different.

Reductions with Exponential Blow-Up

Fact 23.1, like all our NP-hardness proofs in Chapter 22, boils down to
a reduction—actually, one reduction for each positive integer k—with
k-SAT playing the role of the known hard problem and sequence
alignment the role of the target problem:

k-SAT

reduction

unsatisfiable

satisfiable

reduction

minimum  

penalty ≤ t

sequence

alignment

minimum

penalty > t

But how can we reduce an NP-hard problem to a polynomial-time
solvable one without refuting the P 6= NP conjecture? Each reduction
behind Fact 23.1 employs a preprocessor that translates a k-SAT
instance with n variables into a sequence alignment instance that is

21This result appears in the paper “Edit Distance Cannot Be Computed in
Strongly Subquadratic Time (Unless SETH Is False),” by Arturs Backurs and
Piotr Indyk (SIAM Journal on Computing, 2018).
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exponentially bigger, with input strings that have length N in the
ballpark of 2n/2.22 The reduction also ensures that the fabricated
instance has an alignment with total penalty at most a fabricated
target t if and only if the given k-SAT instance is satisfiable, and that
a postprocessor can easily extract a satisfiable assignment from an
alignment with total penalty at most t.

Why a blow-up of N ⇡ 2n/2? Because that number matches
up the running times of the state-of-the-art algorithms for sequence
alignment (dynamic programming) and k-SAT (exhaustive search).
Composing such a reduction with an O(N2)-time sequence alignment
algorithm leads only to a k-SAT algorithm with running time ⇡ 2n,
the same as exhaustive search. By the same reasoning, a hypothet-
ical O(N1.99)-time (say) sequence alignment subroutine would lead
automatically (for every k) to an algorithm that solves the k-SAT
problem in time roughly O((2n/2)1.99) = O((1.9931)n). Because the
base of this exponent is less than 2 (for all k), such an algorithm
would refute the SETH.23

*23.6 NP-Completeness

A polynomial-time subroutine for an NP-hard problem like 3-SAT
is all you need to solve every problem in NP—every problem with
efficiently recognizable solutions—in polynomial time. But something
even stronger is true: Every problem in NP is literally just a thinly
disguised special case of 3-SAT. In other words, the 3-SAT problem is
universal among NP problems, in that it simultaneously encodes every
single problem of NP! This is the meaning of “NP-completeness.”
The search versions of almost all the problems studied in Chapter 22
are also NP-complete in this sense.

23.6.1 Levin Reductions

The idea that one search problem A is a “thinly disguised special
case” of another search problem B is expressed through a highly

22This exponential blow-up evokes the exponentially large numbers essential
to our reduction from the independent set problem to the subset sum problem
(Theorem 22.9); see footnote 14 on page 173.

23Problem 23.7 outlines a simpler reduction of this type for the problem of
computing the diameter of a graph.
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restricted type of reduction known as a Levin reduction. Like the
“simplest-imaginable reductions” introduced in Section 22.4, a Levin
reduction carries out only the three unavoidable steps: transform in
a preprocessing step a given instance of A to one of B; invoke the
assumed subroutine for B; and transform in a postprocessing step the
feasible solution returned by the subroutine (if any) into one for the
given instance of A:24,25

subroutine 
for problem B

algorithm for problem A

input (problem A)

solution (problem A)
preprocess

input
(poly-time)

“no solution” “no solution”

postprocess
output

(poly-time)

Levin Reduction from A to B

1. Preprocessor: Given an instance I of problem A, trans-
form it in polynomial time to an instance I 0 of prob-
lem B.

2. Subroutine: Invoke the assumed subroutine for B with
input I 0.

3. Postprocessor (feasible case): If the subroutine re-
turns a feasible solution to I 0, transform it in polyno-
mial time to a feasible solution to I.

4. Postprocessor (infeasible case): If the subroutine
returns “no solution,” return “no solution.”

Throughout this book, we’ve inadvertently used only Levin re-
ductions and not the full power of general (Cook) reductions. Our

24Levin reductions conform to the template in Section 22.4 and, in addition:
(i) both problems are required to be search problems; and (ii) the postprocessor is
required to respond “no solution” if and only if the assumed subroutine does.

25If A and B are decision (“yes”/“no”) problems rather than search problems,
no postprocessing is necessary and the (binary) answer returned by the subroutine
for B can be passed along unchanged as the final output. This analog of a
Levin reduction for decision problems has a number of names: Karp reduction;
polynomial-time many-to-one reduction; and polynomial-time mapping reduction.
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reduction in Theorem 22.4 from the 3-SAT problem to the directed
Hamiltonian path problem (page 167) is a canonical example: Given
a 3-SAT instance, the preprocessor constructs a directed graph, which
is then fed into a subroutine for computing an s-t Hamiltonian path,
and if the subroutine returns such a path, the postprocessor extracts
from it a satisfying truth assignment.26

23.6.2 The Hardest Problems in NP

A problem B is NP-hard if it is algorithmically sufficient to solve
all NP problems in polynomial time, meaning that for every prob-
lem A in NP there is a (Cook) reduction from A to B (page 189).
To qualify as “NP-complete,” a problem B must also belong to the
class NP and include all other NP problems as thinly disguised
special cases.

NP-Complete Problem

A computational problem B is NP-complete if:

1. For every problem A in NP , there is a Levin reduction
from A to B;

2. B is a member of the class NP .

Because a Levin reduction is a special case of a (Cook) reduction,
every NP-complete problem is automatically NP-hard.27

Of all the problems in NP, the NP-complete problems are the
hardest ones. Each such problem simultaneously encodes all search
problems with efficiently recognizable solutions.28

26The other three main reductions in Chapter 22 (Theorems 22.2, 22.7, and 22.9)
turn into Levin reductions once the optimization problem in the original is replaced
by its search version (as you should check). For example, the reduction from the
undirected Hamiltonian path problem to the TSP (Theorem 22.7) requires only a
subroutine for the search version of the TSP (to check whether there is a zero-cost
tour).

27Because of the second condition, only search problems can qualify for NP-
completeness. For example, the TSP is NP-hard but not NP-complete, while its
search version turns out to be both NP-hard and NP-complete.

28Most books define NP-completeness using decision (rather than search) prob-
lems and Karp (rather than Levin) reductions (footnote 25). The interpretation
and algorithmic implications of NP-completeness are the same either way.
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23.6.3 Existence of NP-Complete Problems

How cool is the definition of an NP-complete problem? A single search
problem with efficiently recognizable solutions that simultaneously
encodes all such search problems? It’s amazing that such a problem
could even exist!

But wait. . . we haven’t actually seen any examples of NP-complete
problems. Are there any? Could there really be such a “univer-
sal” search problem? Yes, and the Cook-Levin theorem already
proves it! The reason is that its proof (Section 23.3.5) uses only
a Levin reduction—a preprocessor that transforms instances of an
arbitrary NP problem into 3-SAT instances and a postprocessor that
extracts feasible solutions from satisfying truth assignments. Because
the 3-SAT problem is also a member of NP , it passes both tests for
NP-completeness with flying colors.

Theorem 23.2 (Cook-Levin Theorem (Stronger Version))
The 3-SAT problem is NP-complete.

Proving from scratch that a problem is NP-complete is a tough
task—Cook and Levin weren’t awarded major prizes for nothing—but
there’s no need to do it more than once. Just as (Cook) reductions
spread NP-hardness from one problem to another, Levin reductions
spread NP-completeness (Problem 23.4):

problem B
(in NP)

Levin reduction

NP-completeness

problem A
(in NP)

Thus, to prove that a problem is NP-complete, just follow the three-
step recipe (with the third step a check that the problem indeed
belongs to NP):

How to Prove a Problem Is NP-Complete

To prove that a problem B is NP-complete:

1. Prove that B is a member of the class NP .
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2. Choose an NP-complete problem A.

3. Prove that there is a Levin reduction from A to B.

This recipe has been applied many times over, and as a result we now
know that thousands of natural problems are NP-complete, including
problems from all across engineering, the life sciences, and the social
sciences. For example, the search versions of almost all the problems
studied in Chapter 22 are NP-complete (Problem 23.3).29 The classic
book by Garey and Johnson (see footnote 8 on page 156) lists hundreds
more.30

The Upshot

P To amass evidence of a problem’s intractabil-
ity, prove that many other seemingly difficult
problems reduce to it.

P In a search problem, the goal is to output a
feasible solution or deduce that none exist.

P NP is the set of all search problems for which
feasible solutions have polynomial length and
can be verified in polynomial time.

P A problem is NP-hard if every problem in NP
reduces to it.

29The exception? The influence maximization problem, the search version of
which is not obviously in NP (see the solution to Quiz 23.1).

30The hopelessly inscrutable term “NP-complete” does a disservice to the
fundamental concept that it defines, which deserves widespread appreciation and
wonder. Lots of thought went into the name, however, as documented in Donald E.
Knuth’s article “A Terminological Proposal” (SIGACT News, 1974). Knuth’s initial
suggestions for what would become “NP-complete”: “Herculean,” “formidable,” and
“arduous.” Write-in suggestions included “hard-boiled” (by Kenneth Steiglitz, as a
hat tip to Cook) and “hard-ass” (by Albert R. Meyer, allegedly abbreviating “hard
as satisfiability”). Meanwhile, Shen Lin suggested “PET” as a pleasingly flexible
acronym, alternatively standing for: “probably exponential time,” as long as the
P 6= NP conjecture is unresolved; “provably exponential time,” if the conjecture is
proved; and “previously exponential time,” if the conjecture is refuted. (Now is
not the time to nitpick and bring up Problem 23.5. . . )
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P P is the set of all NP problems that can be
solved with a polynomial-time algorithm.

P The P 6= NP conjecture asserts that P ( NP .

P The exponential time hypothesis (ETH) asserts
that natural NP-hard problems like the 3-SAT
problem require exponential time.

P The strong exponential time hypothesis (SETH)
asserts that, as k grows large, no algorithm for
the k-SAT problem improves significantly over
exhaustive search.

P If the SETH is true, no algorithm for the
sequence alignment problem improves signifi-
cantly over the Needleman-Wunsch algorithm.

P A Levin reduction carries out the minimum-
imaginable work: preprocess the input; invoke
the assumed subroutine; postprocess the output.

P A problem B is NP-complete if it belongs to
the class NP and, for every problem A 2 NP,
there is a Levin reduction from A to B.

P To prove that a problem B is NP-complete,
follow the three-step recipe: (i) prove that B 2
NP; (ii) choose an NP-complete problem A;
and (iii) design a Levin reduction from A to B.

P The Cook-Levin theorem proves that the 3-SAT
problem is NP-complete.

Test Your Understanding

Problem 23.1 (S) Which of the following statements could be true,
given the current state of knowledge? (Choose all that apply.)

a) There is an NP-hard problem that is polynomial-time solvable.
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b) The P 6= NP conjecture is true and also the 3-SAT problem can
be solved in 2O(

p
n) time, where n is the number of variables.

c) There is no NP-hard problem that can be solved in 2O(
p
n) time,

where n is the size of the input.

d) Some NP-complete problems are polynomial-time solvable, and
some are not polynomial-time solvable.

Problem 23.2 (S) Prove that Edmonds’s 1967 conjecture that (the
optimization version of) the TSP cannot be solved by any polynomial-
time algorithm is equivalent to the P 6= NP conjecture.

Problem 23.3 (S) Which of the eighteen reductions listed in Sec-
tion 22.3.2 can be easily turned into Levin reductions between the
search versions of the corresponding problems?

Challenge Problems

Problem 23.4 (H) This problem formally justifies the recipes on
pages 150 and 203 for proving that a problem is NP-hard and NP-
complete, respectively.

(a) Prove that if a problem A reduces to a problem B and B reduces
to a problem C, then A reduces to C.

(b) Conclude that if an NP-hard problem reduces to a problem B,
then B is also NP-hard. (Use the formal definition of NP-
hardness on page 189.)

(c) Prove that if there are Levin reductions from a problem A to a
problem B and from B to a problem C, then there is a Levin
reduction from A to C.

(d) Conclude that if a problem B belongs to NP and there is a
Levin reduction from an NP-complete problem to B, then B is
also NP-complete.

Problem 23.5 (S) Call an instance of the 3-SAT problem padded
if its list of constraints concludes with n2 redundant copies of the
single-literal constraint “x1,” where n denotes the number of Boolean
variables and x1 is the first of those variables.
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In the PADDED 3-SAT problem, the input is the same as in
the 3-SAT problem. If the given 3-SAT instance is not padded or is
unsatisfiable, the goal is to return “no solution.” Otherwise, the goal
is to return a satisfying truth assignment for the (padded) instance.

(a) Prove that the PADDED 3-SAT problem is NP-hard (or even
NP-complete).

(b) Prove that the PADDED 3-SAT problem can be solved in
subexponential time, namely 2O(

p
N) time for size-N inputs.

Problem 23.6 (H) Assume that the Exponential Time Hypothesis
(page 196) is true. Prove that there exists a problem in NP that is
neither polynomial-time solvable nor NP-hard.31

Problem 23.7 (H) The diameter of an undirected graph G = (V,E)
is the maximum shortest-path distance between any two vertices:
maxv,w2V dist(v, w), where dist(v, w) denotes the minimum number
of edges in a v-w path of G (or +1, if no such path exists).

(a) Explain how to compute the diameter of a graph in O(mn) time,
where n and m denote the number of vertices and edges of G,
respectively. (You can assume that n and m are at least 1.)

(b) Assume that the Strong Exponential Time Hypothesis (page 197)
is true. Prove that, for every constant ✏ > 0, there is no
O((mn)1�✏)-time algorithm for computing the diameter of a
graph.

31A famous and harder-to-prove result known as Ladner’s Theorem shows that
the conclusion remains true assuming only the (weaker) P 6= NP conjecture.



Chapter 24

Case Study: The FCC Incentive Auction

NP-hardness is not some purely academic concept—it really does
govern the range of computationally feasible options when solving
a real-world problem. This chapter details a recent illustration of
the importance of NP-hardness, in the context of a high-stakes eco-
nomic problem: the efficient reallocation of a scarce resource (wireless
spectrum). The solution deployed by the U.S. government, known
as the FCC Incentive Auction, drew on an amazingly wide swath of
the algorithmic toolbox that you’ve learned in this book. As you
read through its details, take the time to appreciate the mastery of
algorithms you’ve acquired since we first struggled through Karatsuba
multiplication and the MergeSort algorithm in Chapter 1 of Part 1—
how what started as a cacophony of mysterious and unconnected
tricks has resolved into a symphony of interlocking algorithm design
techniques.1

24.1 Repurposing Wireless Spectrum

24.1.1 From Television to Mobile Phones

Television spread like wildfire over the United States in the 1950s.
In those days, television programming was transmitted solely over
the air by radio waves, sent from a station’s transmitter and re-
ceived by a television’s antenna. To coordinate stations’ transmissions
and prevent interference between them, the Federal Communications
Commission (FCC) divvied up the usable frequencies—the spectrum—

1To learn more about the FCC Incentive Auction from its lead designers—
Kevin Leyton-Brown, Paul Milgrom, and Ilya Segal—dig into their paper “Eco-
nomics and Computer Science of a Radio Spectrum Reallocation” (Proceedings
of the National Academy of Sciences, 2017). For a deep dive into the connec-
tions between auctions and algorithms, check out my book Twenty Lectures on
Algorithmic Game Theory (Cambridge University Press, 2016).

208
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into 6-megahertz (MHz) blocks called channels. Different stations
in the same city would then broadcast on different channels. For
example, “channel 14” refers to the frequencies between 470 MHz and
476 MHz; “channel 15” the frequencies between 476 MHz to 482 MHz;
and so on.2

You know what else travels by radio waves over the air? All the
data exchanged by your mobile phone and the nearest base station.
For example, if it’s the year 2020 and Verizon Wireless is your carrier,
chances are you’ve been downloading and uploading data using the
frequencies 746–756 MHz and 777–787 MHz, respectively. To avoid
interference, the part of the spectrum reserved for cellular data does
not overlap with that reserved for terrestrial (that is, over-the-air)
television.

Mobile and wireless data usage has been exploding throughout the
21st century, increasing by roughly an order of magnitude over the
past five years alone. Transmitting more data requires more dedicated
frequencies, and not all frequencies are useful for wireless communi-
cation. (For example, with limited power, very high frequencies can
carry signals only short distances.) Spectrum is a scarce resource, and
modern technology is hungry for as much as it can get.

Television may still be big, but terrestrial television is not. Roughly
85-90% of U.S. households rely exclusively on cable television (which
requires no over-the-air spectrum at all) or satellite television (which
uses much higher frequencies than typical wireless applications). Re-
serving the most valuable spectrum real estate for over-the-air tele-
vision made sense in the mid-20th century; no longer in the early
21st.

24.1.2 A Recent Reallocation of Spectrum

At the time of this writing, a major reallocation of spectrum is almost
complete. After July 13, 2020, there will no longer be any television
stations anywhere in the U.S. broadcasting over the air on what had
been the highest channels, the fourteen channels between 38 and 51
(614–698 MHz). Every station that had been broadcasting on one of

2The ultra high frequency (UHF) channels start at 470 MHz and go up from
there in 6 MHz blocks. The very high frequency (VHF) channels use lower
frequencies, 174–216 MHz (for channels 7–13) and 54–88 MHz (for channels 2–6,
along with 4 MHz for miscellaneous uses like garage door openers).
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these channels is either switching to a lower channel or ceasing all
terrestrial transmissions (while possibly still broadcasting via cable
and satellite television). Even some of the stations that were already
broadcasting on channels below 38 are going off the air or migrating
to different channels, to make room for their comrades dropping down
from higher channels. All told, 175 stations are relinquishing their
broadcasting licenses and roughly 1000 are switching channels.3

The liberated 84 MHz of spectrum has been reorganized and
awarded to telecommunication companies like T-Mobile, Dish, and
Comcast, which are expected to use it to build out a new generation
of wireless networks in the coming years. (T-Mobile, for example, has
already flipped the switch on its new nationwide 5G network.) Where
there had been channels 38–51, there are now seven independent pairs
of 5 MHz blocks. For example, the first pair comprises the frequencies
617–622 MHz (meant for downloading to a device) and 663–668 MHz
(meant for uploading); the second 622–627 MHz and 668–673 MHz;
and so on.4

CBA GFED

38 39 40 41 42 43 44 45 46 47 48 49 50 51

614 MHz 698 MHz

1 channel = 6 MHz

A B C G duplex gap

for downloading (5 MHz each) for uploading (5 MHz each)

FED

3Since the 2009 switchover from analog to exclusively digital broadcasting
of terrestrial television, a logical channel (as displayed on a set-top box) can be
remapped to a physical channel different from the one historically associated with
that channel number. A station can therefore retain its logical channel even as its
physical channel is reassigned.

4There’s also an 11 MHz duplex gap (652–663 MHz) separating the two types
of blocks, and a 3 MHz guard band (614–617 MHz) to avoid interference with
channel 37 (608–614 MHz), which has long been reserved for radio astronomy and
wireless medical telemetry.
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This should all sound like a big, messy operation. Which stations
should go off the air? Which should switch channels? What should
their new channels be? How much should station owners be compen-
sated for their losses? Which telecoms should be awarded the newly
created paired blocks of spectrum? What should they pay for them?
These are all questions answered by the FCC Incentive Auction—a
complex algorithm that leaned heavily on the toolbox for tackling
NP-hard problems described in this book.

24.2 Greedy Heuristics for Buying Back Licenses

The FCC Incentive Auction had two parts: a reverse auction for
deciding which television stations would go off the air or switch
channels, and the appropriate compensation for them; and a forward
auction for choosing who receives blocks of the newly freed spectrum,
and at what prices. The U.S. government (along with many other
countries) has been running forward auctions to sell spectrum licenses
with great success for twenty-five years, making small tweaks to them
along the way. This case study focuses on the FCC Incentive Auction’s
unprecedented reverse auction, wherein lay most of its innovation.

24.2.1 Four Temporary Simplifying Assumptions

The FCC confers property rights to a television broadcaster through
a broadcasting license, which authorizes broadcasting over a channel
in a specified geographic region. The FCC assumes responsibility for
ensuring that each station suffers little to no interference across its
broadcast area.5

The goal of the reverse auction in the FCC Incentive Auction was
to reclaim enough licenses from television stations to free up a target
amount of spectrum (like channels 38–51). To get an initial feel for
this problem, let’s make some simplifying assumptions, to be removed
as we go along:

5For the purposes of the FCC Incentive Auction, the specific channel assign-
ment of a station was not considered part of the license owner’s property rights.
An act of Congress was required to authorize this interpretation and allow the
auction to reassign stations’ channels as needed. (One of only eight bills passed
by Congress in 2012, perhaps because of its veto-proof title: the “Middle Class
Tax Relief and Job Creation Act.”)
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Temporary Simplifying Assumptions

1. All stations that remain on the air will broadcast on
a single channel (channel 14, say).

2. Two stations can broadcast on the same channel si-
multaneously if and only if their broadcasting areas
do not overlap.

3. There is a known value for each station.

4. The government can unilaterally decide which stations
remain on the air.

Ideally, the most valuable stations would be the ones to retain
their licenses. The objective, then, would be to identify a set of
non-interfering stations with the maximum-possible sum of station
values. Do you recognize this optimization problem?

24.2.2 Ambushed by Weighted Independent Set

It’s exactly the weighted independent set problem (page 19)! Vertices
correspond to stations, edges to pairs of interfering stations, and
station values to vertex weights:

(five stations & their broadcast areas) (corresponding graph)

We know from Corollary 22.3 that this problem is NP-hard, even
when every vertex has weight 1. The problem can be solved in linear
time using dynamic programming when the input graph is a tree
(see Chapter 16 of Part 3), but the interference patterns of television
stations are not at all tree-like. For example, all stations in the same
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city interfere with each other, leading to a clique in the corresponding
graph.

Searching Through the Algorithmic Toolbox

Now that we have diagnosed the problem as NP-hard, it’s time to
search for a cure in the appropriate compartment of our algorithmic
toolbox. (NP-hardness is not a death sentence!) Most ambitiously,
could the problem be solved exactly in a tolerable amount of time—say,
under a week?

The answer depends on the size of the problem. If only thirty
stations were involved, exhaustive search would work just fine. But
the real problem had thousands of participating stations and tens
of thousands of interference constraints—well above the pay grade
of exhaustive search and the dynamic programming techniques in
Sections 21.1–21.2.

The last hope for an exact algorithm would be a semi-reliable
magic box for optimization problems like a MIP solver (Section 21.4).
The weighted independent set problem is easily encoded as a MIP
problem (Problem 21.9), and this was exactly what the FCC tried
first. Unfortunately, the problem proved too big, and even the latest
and greatest MIP solvers choked on it. (Or at least, they choked
on the more realistic multi-channel version of the problem described
in Section 24.2.4.) With all options exhausted for a 100% correct
algorithm, the FCC had no choice but to compromise on correctness
and turn to fast heuristic algorithms.

24.2.3 Greedy Heuristic Algorithms

For the weighted independent set problem, as with so many others,
greedy algorithms are the perfect place to start brainstorming about
fast heuristic algorithms.

The Basic Greedy Algorithm

Perhaps the simplest greedy approach to the weighted independent
set problem is to mimic Kruskal’s minimum spanning tree algorithm
and perform a single pass over the vertices (in decreasing order of
weight), always adding a vertex to the output unless it destroys
feasibility:
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WISBasicGreedy

Input: undirected graph G = (V,E) and a nonnegative
weight wv for each vertex v 2 V .

Output: an independent set of G.

S := ;
sort vertices of V from highest to lowest weight

// Main loop

for each v 2 V , in nonincreasing order of weight do
if S [ {v} is feasible then // all non-adjacent

S := S [ {v}
return S

For example, in the graph

(vertices labeled with their weights)

a b c

d e4

3 23

3

the WISBasicGreedy algorithm selects the vertex d with the largest
weight in its first iteration, skips the weight-3 vertices in its second,
third, and fourth iterations (because each is adjacent to d), and
concludes by selecting vertex c. The resulting independent set has
total weight 6 and is not optimal (as the independent set {a, b, c} has
total weight 8).

Because the weighted independent set problem is NP-hard and
the WISBasicGreedy algorithm runs in polynomial time, we were fully
expecting examples of this type. But here’s a more troubling case
(with vertices labeled with their weights):
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2

1

1

1

1

1

1

1

1

The WISBasicGreedy algorithm is tricked into committing to the
center of the star, precluding it from taking any of the leaves. How
can we discourage pitfalls of this type?

Vertex-Specific Multipliers

To avoid the miscues of the WISBasicGreedy algorithm, we can dis-
criminate against vertices with many neighbors. For example, acknowl-
edging that selecting a vertex v accrues benefit wv while knocking
out 1 + deg(v) vertices from consideration (where deg(v) denotes v’s
degree), the algorithm’s single pass could be in decreasing order of
bang-per-buck wv/(1+deg(v)) rather than of weight wv.6 (This greedy
algorithm returns the maximum-weight independent set in our two
examples.) More generally, the algorithm can compute vertex-specific
multipliers however it likes in a preprocessing step before proceeding
to its single pass over vertices:

WISGeneralGreedy

compute �v for each v 2 V // ex: �v = 1 + deg(v)
S := ;
sort vertices of V from highest to lowest value of wv/�v

for each v 2 V , in nonincreasing order of wv/�v do
if S [ {v} is feasible then // all non-adjacent

S := S [ {v}
return S

6You might recognize this idea from Problem 20.3 and the greedy heuristic
algorithm for the knapsack problem that sorts items in decreasing order of value-
size ratios.
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What’s the best choice for the vertex-specific multipliers? No
matter how smart the formula for each parameter �v, there will
be examples in which the WISGeneralGreedy algorithm returns a
suboptimal independent set (assuming that the �v’s can be computed
in polynomial time and that the P 6= NP conjecture is true). The
best choice depends on the problem instances that tend to show up
in the application of interest, and should therefore be determined
empirically using representative instances.7

Station-Specific Parameters in the FCC Incentive Auction

Representative instances of the weighted independent set problem,
and the more general multi-channel problem described in the next
section, were easy to come by in the design phase of the reverse
auction. The graph—derived from the participating stations and
their broadcast areas—was fully known in advance. Educated guesses
could be made about the range of likely vertex weights (station
values) based on historical data. With a carefully tuned choice of
vertex-specific multipliers, the WISGeneralGreedy algorithm (and the
multi-channel generalization FCCGreedy described in the next section)
routinely returned solutions to representative instances with total
weight exceeding 90% of the maximum possible.8,9

24.2.4 The Multi-Channel Case

Time to discard the first simplifying assumption in Section 24.2.1
and allow still-on-air stations to be assigned any one of k channels.

7General advice for tackling NP-hard problems in a real application: Exploit
as much domain-specific knowledge as you can!

8How were the parameters computed in the actual FCC Incentive Auction?
Via the formula �v =

p

deg(v) ·
p

pop(v), where deg(v) and pop(v) denote the
number of stations overlapping with and the population served by the station v,
respectively. The

p

deg(v) term discriminated against stations that would block
lots of other stations from remaining on the air. The point of the

p

pop(v) term
was more subtle (and controversial); its effect was to decrease the compensation
paid by the government to small television stations that were likely to go off the
air anyway.

9The FCC was also able to obtain high-quality solutions in a reasonable
amount of time by stopping a state-of-the-art MIP solver early, prior to finding
an optimal solution (see page 133). The greedy approach ultimately won out on
account of its easy translation to a transparent auction format (as detailed in
Section 24.4).
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The WISGeneralGreedy algorithm would seem to extend easily to the
multi-channel version of the problem:10

FCCGreedy

compute �v for each station v
S := ;
sort stations from highest to lowest value of wv/�v

for each station v, in nonincreasing order of wv/�v do
if S [ {v} is feasible then // fit on k channels

S := S [ {v}
return S

Looks like all our other (polynomial-time) greedy algorithms,
right? But let’s drill down on an iteration of the main loop, which
is responsible for testing whether the current station v can be added
to the solution-so-far S without destroying feasibility. What makes a
subset of stations “feasible”? Feasibility means that the stations can
all be on the air at the same time, without interference. That is, there
should be an assignment of the stations in S [ {v} to the k available
channels so that no two stations with overlapping broadcast areas
are assigned the same channel. Do you recognize this computational
problem?

24.2.5 Ambushed by Graph Coloring

It’s exactly the graph coloring problem (page 135)! Vertices correspond
to stations, edges to pairs of stations with overlapping broadcast areas,
and the k colors to the k available channels.

As we know from Problem 22.11, the graph coloring problem is
NP-hard even when k = 3.11 Worse still, the FCCGreedy algorithm
must solve many instances of the graph coloring problem, one in each
iteration of its main loop. How are these instances related?

10Think of k as 23, corresponding to channels 14–36. The FCC Incentive
Auction also allowed UHF stations to drop down to the VHF band (channels 2–
13), but most of the action took place in the UHF band.

11Checking feasibility in the special case of a single channel (Section 24.2.2)
corresponds to the trivial problem of checking 1-colorability or, equivalently,
checking whether a set of vertices constitutes an independent set.
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Quiz 24.1

Consider the sequence of feasibility-checking instances that
arises in the FCCGreedy algorithm. Which of the following
statements are true? (Choose all that apply.)

a) If the instance in one iteration is feasible, so is the
instance in the next iteration.

b) If the instance in one iteration is infeasible, so is the
instance in the next iteration.

c) The instance in a given iteration has one more station
than the instance in the previous iteration.

d) The instance in a given iteration has one more station
than the most recent feasible instance.

(See Section 24.2.6 for the solution and discussion.)

Now what? Does diagnosing our feasibility-checking problem as
the NP-hard graph coloring problem rule out using a greedy heuristic
algorithm to approximately maximize the total value of the stations
that remain on the air?

24.2.6 Solution to Quiz 24.1

Correct answer: (d). Answer (a) is obviously incorrect: The first
instance is always feasible, while some of the instances toward the end
of the algorithm may not be. Answer (b) is also incorrect; for example,
the solution-so-far might block all newcomers in the northeastern
region of the U.S. while leaving its west coast wide open. Answer (c)
is incorrect and (d) is correct, as the solution-so-far S changes only in
an iteration in which the station set S [ {v} is feasible. For example,
phrased in terms of graph coloring:

v1

[with k=2 ]

(S is 2-colorable) (not 2-colorable,  
S stays the same)

v3
v2

(2-colorable,       
v3 added to S)

(not 2-colorable,  
S stays the same)
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24.3 Feasibility Checking

If only we had a magic box for checking feasibility, we could run
the FCCGreedy algorithm and, hopefully, after carefully tuning the
station-specific multipliers, reliably compute feasible solutions with
total value close to the maximum possible. Our dreams of magic boxes
have already been thwarted once, with the original value-maximization
problem proving too tough for the latest and greatest MIP solvers
(Section 24.2.2). Why should we expect any more success this time
around?

24.3.1 Encoding as a Satisfiability Problem

The subroutine required by the FCCGreedy algorithm is responsible
only for feasibility checking (corresponding to checking whether a
given subgraph is k-colorable), not optimization (corresponding to
finding the maximum-value k-colorable subgraph of a given graph).
This raises the hope for a magic box that solves the easier (if still
NP-hard) feasibility-checking problem, even if none exist for the
optimization problem. The pivot from optimization to feasibility
checking also suggests experimenting with a different language and
technology—logic and SAT solvers, rather than arithmetic and MIP
solvers.

The formulation of the graph coloring problem as a satisfiability
problem in Section 21.5.3 is immediately relevant here. To review, for
each vertex v in the input graph and allowable color i 2 {1, 2, . . . , k},
there is a Boolean (true/false) variable xvi. For each edge (u, v) of
the input graph and color i, there is a constraint

¬xui _ ¬xvi (24.1)

that rules out assigning the color i to both u and v. For each vertex v
of the input graph, there is a constraint

xv1 _ xv2 _ · · · _ xvk (24.2)

that rules out leaving v colorless.
Optionally, for each vertex v and distinct colors i, j 2 {1, 2, . . . , k},

the constraint
¬xvi _ ¬xvj (24.3)



220 Case Study: The FCC Incentive Auction

can be used to rule out assigning both color i and color j to v.12

24.3.2 Incorporating Side Constraints

The actual FCC Incentive Auction used a formulation slightly more
complicated than (24.1)–(24.3). Stations with overlapping broadcast
areas interfere when assigned the same channel and, depending on
several factors, may also interfere when assigned adjacent channels
(like 14 and 15). A separate team at the FCC determined in advance,
for each pair of stations, exactly which pairs of channel assignments
would create interference. This list of forbidden pairwise channel
assignments, while difficult to compile, was straightforward to incor-
porate into the satisfiability formulation, with one constraint of the
form

¬xuc _ ¬xvc0 (24.4)

for each pair u, v of stations and forbidden channel assignments c, c0

to them. For example, the constraint ¬xu14 _ ¬xv15 would prevent
the stations u and v from being assigned channels 14 and 15, respec-
tively. This list of interference constraints replaces the second of the
simplifying assumptions in Section 24.2.1.

Another wrinkle was that not all stations were eligible for all
channel assignments. For example, stations that bordered Mexico
could not be assigned to a channel that would interfere with an
existing station on the Mexican side of the border. To reflect these
additional constraints, the decision variable xvi was omitted whenever
the station v was forbidden from channel i.

These tweaks to the original SAT formulation (24.1)–(24.3) illus-
trate a general strength of MIP and SAT solvers, relative to problem-
specific algorithm design: They are often better at accommodating
all kinds of idiosyncratic side constraints with minimal modifications
to the basic formulation.

24.3.3 The Repacking Problem

The feasibility-checking problem in the reverse auction of the FCC
Incentive Auction was almost but not quite a graph coloring problem

12Vertices can receive multiple colors if these constraints are omitted, but every
way of choosing among the assigned colors results in a k-coloring.
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(because of the side constraints in Section 24.3.2), so let’s give it a
new name: the repacking problem.

Problem: The Repacking Problem

Known in advance: A list V of television stations, the
allowable channels Cv for each station v 2 V , and the
allowable channel pairs Puv for each station pair u, v 2 V .

Input: A subset S ✓ V of television stations.

Output: An assignment of each station v 2 S to a channel
in Cv such that each station pair u, v 2 S is assigned a
channel pair in Puv. (Or, correctly declare that no such
assignment exists.)

Call a subset of stations packable if the corresponding repacking
instance has a feasible solution, and unpackable otherwise.

The FCC’s algorithmic aspirations were ambitious: to solve the
repacking problem reliably in a minute or less! (We’ll see in Sec-
tion 24.4 why the time budget was so small.) Repacking instances in
the FCC Incentive Auction had thousands of stations, tens of thou-
sands of pairs of overlapping stations, and dozens of available channels.
After the translation to satisfiability (as in Sections 24.3.1–24.3.2),
the resulting instances had tens of thousands of decision variables and
more than one million constraints.

That’s pretty big! Still, why not throw the latest and greatest SAT
solvers at them and see how they do? Unfortunately, when applied off

the shelf, these solvers frequently needed ten minutes or more to solve
representative repacking instances. Doing better required throwing
the kitchen sink at the problem.

24.3.4 Trick #1: Presolvers (Look for an Easy Way Out)

The FCC Incentive Auction used presolvers to quickly ferret out
instances that were obviously packable or unpackable. These pre-
solvers exploited the nested structure of the repacking instances in
the FCCGreedy algorithm (see Quiz 24.1), with each instance taking
the form S [ {v} for a packable set of stations S and a new station v.
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For example, the auction administered two quick and dirty local
tests that examined only the (relatively small) neighborhood of v.
Formally, call two stations neighbors if they appear jointly in at least
one interference constraint (24.4), and let N ✓ S denote the neighbors
of v in S.

1. Check if N [ {v} is packable; if not, halt and report “unpack-
able.” (Correctness: Supersets of unpackable sets of stations are
themselves unpackable.)

The analog in a graph coloring instance would be to check if a given
vertex v and its neighbors form a k-colorable subgraph. For example
(with k = 2):

v

(already not 2-colorable)
N

2. Inherit the previously computed feasible channel assignments
for the (packable) stations S. Hold the assignments of all
stations in S �N fixed. Check if there are channel assignments
to the stations in N [ {v} so that the combined assignments
are feasible. If so, report “packable” and return the combined
channel assignments.

Whether this step succeeds generally depends on the inherited channel
assignments for the stations in S �N . For example (with k = 3):

v

red

recolor green

red redblue blue bluered green green

v

red red redblue blue bluegreen green green

color blue

(local recoloring to obtain a 3-coloring) (no local recoloring works)

The size of the neighborhood N was typically in the single or
double digits, so each of these steps could be carried out quickly using
a SAT solver. Ambiguity remained for the repacking instances that
passed through both steps. Such an instance could have been packable,
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due to a feasible channel assignment deviating from the restricted
form considered in step 2. Or it could have been unpackable, with no
packing of N [ {v} in step 1 extendable to one of all of S [ {v}.

24.3.5 Trick #2: Preprocess and Simplify

Every repacking instance that survived the presolvers was subjected
to a preprocessing step designed to reduce its size.13

Removing Easy Stations

Call a station u of S [ {v} easy if, no matter what the other stations’
channel assignments are, u can be assigned a channel of Cu that avoids
interference with all of its neighbors. (The analog in a graph coloring
instance would be a vertex whose degree is smaller than the number k
of colors.)

3. Iteratively remove easy stations: (i) initialize X := S [ {v}; (ii)
while X contains an easy station u, X := X � {u}.

For example, in a graph coloring context (with k = 3):

easy

easy

Quiz 24.2

Iteratively removing easy stations from a set S [ {v}. . .

a) . . . could change the set’s status from packable to un-
packable, or vice versa.

b) . . . could change the set’s status from packable to un-
packable, but not from unpackable to packable.

13This idea is similar in spirit to the “for-free primitives” emphasized throughout
this book series. If you have a blazingly fast primitive (like sorting, computing
connected components, etc.) that might simplify your problem, why not use it?
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c) . . . could change the set’s status from unpackable to
packable, but not from packable to unpackable.

d) . . . cannot change the set’s packability status.

(See Section 24.3.8 for the solution and discussion.)

Decomposing the Problem

The next step sought to decompose the problem into smaller indepen-
dent subproblems. (The analog in a graph coloring instance would be
to compute a k-coloring separately for each connected component.)

4. Given a set of (non-easy) stations:

a) Form a graph H with vertices corresponding to stations
and edges to neighboring stations.

b) Compute the connected components of H.

c) For each connected component, solve the corresponding
repacking problem.

d) If at least one subproblem is unpackable, report “unpack-
able.” Otherwise, report “packable” and return the union
of the channel assignments computed in the subproblems.

Because stations interfere only with neighboring stations, the different
subproblems do not interact in any way. The stations in X are
therefore packable if and only if all the independent subproblems are
packable.

Why did decomposing the problem help? The FCC Incentive
Auction remained on the hook for solving all the subproblems, whose
combined size was the same as that of the original problem. But
whenever you have an algorithm that runs in super-linear time (as
one would expect from a SAT solver), it’s faster to solve an instance
in pieces than all at once.14

14For example, consider a quadratic-time algorithm, running in time cn2 on
size-n instances for some constant c > 0. Solving two size-(n/2) instances then
takes 2 · c(n/2)2 = cn2/2 time, a factor-2 speedup over solving a single size-n
instance.
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24.3.6 Trick #3: A Portfolio of SAT Solvers

The toughest repacking instances survived the gauntlet of presolvers
and preprocessing and awaited more sophisticated tools. While ev-
ery state-of-the-art SAT solver had success on some representative
instances, none met the FCC mandate of reliably solving instances in
a minute or less. What next?

The designers of the reverse auction in the FCC Incentive Auction
took advantage of two things: (i) the empirical observation that
different SAT solvers struggle on different instances; and (ii) modern
computer processors. Rather than putting all its eggs in one basket
with a single SAT solver, the auction used a portfolio of eight carefully
tuned solvers, running in parallel on an 8-core workstation.15,16 This,
finally, was sufficient algorithmic firepower to solve over 99% of the
repacking instances faced by the auction within the target of one
minute each. Pretty impressive for satisfiability instances with tens
of thousands of variables and more than one million constraints!

24.3.7 Tolerating Failures

Over 99% sounds pretty good, but what happened the remaining 1%
of the time? Did the FCC Incentive Auction spin its wheels helplessly
while eight SAT solvers fumbled around, desperate for a satisfying
assignment?

Another feature of the FCCGreedy algorithm is its tolerance of
failures by its feasibility-checking subroutine. Suppose, when checking
the feasibility of a set S [{v}, the subroutine times out and reports “I
don’t know.” Without an assurance of feasibility (which is an ironclad
constraint), the algorithm cannot risk adding v to its solution and
must skip it, potentially foregoing some of the value it could have
otherwise obtained. But the algorithm always finishes in a predictable

15And how were these eight solvers chosen? With a greedy heuristic algorithm
analogous to those for the maximum coverage (Section 20.2) and influence max-
imization (Section 20.3) problems! The solvers were chosen sequentially, with
each solver maximizing the marginal running time improvement on representative
instances, relative to the solvers already in the portfolio.

16For fans of local search (Sections 20.4–20.5) distraught over its apparent
absence from this case study: Several SAT solvers in this portfolio were local search
algorithms—think greedier and highly parameterized versions of the randomized
SAT algorithm described in Problem 21.13.
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amount of time with a feasible solution, and the loss in value from
timeouts should be modest provided they are infrequent, as they were
in the FCC Incentive Auction.

24.3.8 Solution to Quiz 24.2

Correct answer: (d). If the final set X is unpackable, so is the
superset S [ {v}. If X is packable, every feasible channel assignment
to the stations of X can be extended to all of S[{v}, one easy station
at a time (in reverse order of removal):

red

blue green

green blue

blue green

green blue

red

red blue green red

green blue

red

green

24.4 Implementation as a Descending Clock Auction

Where’s the “auction” in the FCC Incentive Auction? Doesn’t the
FCCGreedy algorithm in Section 24.2, along with the repacking sub-
routine in Section 24.3, already solve the value-maximization problem
to near-optimality? With at most a few thousand feasibility checks
(one per participating station) and one minute spent per feasibility
check, the algorithm would finish in a matter of days. Time to declare
victory?

No. Time instead to revisit and remove the last two simplifying
assumptions in Section 24.2.1. Stations were not forcibly removed
from the air; they relinquished their licenses voluntarily (in exchange
for compensation). So why not run the FCCGreedy algorithm to figure
out which stations should stay on the air and buy out the other
stations at whatever price they’d be willing to accept? Because the
value of a station, defined here as the minimum compensation its
owner would accept for going off the air, was not known in advance.
(You could ask the owner, but they would probably overstate their
value in the hopes of receiving extra compensation.) How could
the FCCGreedy algorithm possibly be implemented without advance
knowledge of stations’ values?
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24.4.1 Auctions and Algorithms

Think back to auctions that you’ve seen in the movies or in real life—
perhaps at an estate sale, an auction house, or a school fundraiser. An
auctioneer asks questions of the form “who’s willing to buy this tennis
ball signed by Roger Federer for one hundred bucks?” and the willing
buyers raise their hands. In the reverse auction of the FCC Incentive
Auction, the “auctioneer” (the government) was buying rather than
selling, so the questions had the form “who’s willing to sell their
broadcasting license for one million dollars”? A station’s response
to this question with offered compensation p revealed whether its
value—the minimum acceptable compensation—was above or below p.

The FCCGreedy algorithm begins by sorting stations in nonin-
creasing order of wv/�v, where wv is the value of station v and �v is
a station-specific parameter—an apparent nonstarter when station
values are unknown.17 Can we reimplement the algorithm so that
the stations effectively sort themselves, using only auction-friendly
operations of the form “is wv  p”?

24.4.2 Example

To see how this might work, assume for now that stations’ values are
positive integers between 1 and a known upper bound W . Assume also
that there is only one free channel (k = 1) and that �v = 1 for every
station v. For example, suppose there are five stations and W = 5:

(stations labeled with their values)

3
3

3

2

4

[p = 5]

17In the FCC Incentive Auction, the station-specific parameters �v were known
in advance, as they depended only on the population served by and interference
constraints of a station (see footnote 8).
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The idea is to start with the highest-imaginable compensation (p = W )
and work downward. The set S of stations to remain on the air is
initially empty. In the algorithm’s first iteration, each station’s value
is compared to the initial value of p (that is, to 5); equivalently, each
broadcaster is asked if they would accept a compensation of 5 in
exchange for their license. All participants accept, and the algorithm
decrements p and proceeds to the next iteration. All participants
again accept the reduced compensation offer (with p = 4). The station
with value 4 refuses the offer at p = 3 in the next iteration, and the
algorithm responds by adding it to the on-air station set S:

3
3

3

2

4

[p = 3]

refuses offer, 

stays on the air
cannot also stay 

on the air

cannot also stay 

on the air

With the value-4 station now back on the air and only one channel
available, the three overlapping stations are blocked and must stay off
the air. In subsequent iterations, the algorithm makes decreasing offers
of compensation to the only station whose fate remains unresolved,
the value-2 station. That station refuses the offer at p = 1, at which
point it is added to S and the algorithms halts:

3
3

3

2

4

[p = 1]

In this example and in general, this iterative process recreates the
trajectory of the WISBasicGreedy algorithm on the corresponding
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weighted independent set instance (Section 24.2.3): Stations drop
out (and go back on the air) in nonincreasing order of value, subject
to feasibility. Can we extend this idea to capture the full-fledged
FCCGreedy algorithm?

24.4.3 Reimplementing the FCCGreedy Algorithm

The station-specific parameters �v in the FCCGreedy algorithm can be
emulated using station-specific offers, with compensation �v · p offered
to station v in an iteration with “base price” p. A station v with
value wv will then drop out when the base price p drops below wv/�v.
As p gradually decreases, the resulting process faithfully simulates
the FCCGreedy algorithm: Stations drop out (and go back on the air)
in nonincreasing order of wv/�v, subject to feasibility. The resulting
algorithm is called a descending clock auction, and it is the exact one
used in the FCC Incentive Auction’s reverse auction (with ✏ = 0.05
and the �v’s defined as in footnote 8):

FCCDescendingClock

Input: set V of stations, parameter �v > 0 for each
v 2 V , parameter ✏ 2 (0, 1).

Output: a repackable subset S ✓ V .

p := LARGE NUMBER // maximize participation

S := ; // stations staying on the air

X := ; // stations going off the air

while S [X 6= V do // still stations in limbo

for each station v 62 S [X, in arbitrary order do
// invoke feasibility checker (§24.3)

if S [ {v} packable then // still room for v
offer compensation �v · p to v
if offer refused then // because p < wv/�v

S := S [ {v} // v goes back on air

else // no room for v (or timeout)

X := X [ {v} // v must stay off air

p := (1� ✏) · p // lower offers in next round

return S
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The outer loop of the FCCDescendingClock algorithm controls the
value p of the “clock.” This base price decreases by a small amount
in each iteration (called a round), until all stations’ fates have been
sealed. Within a round, the inner loop performs a single pass over the
remaining stations in an arbitrary order, with the intention of making
a new, lower offer of compensation to each. But before making a
lower offer to a station v, the algorithm calls on the feasibility checker
from Section 24.3 to ensure that v could be accommodated on the air
should it decline the offer.18 If the feasibility checker finds that S[{v}
is unpackable, or if it times out, the algorithm cannot risk a refusal
by v and commits to keeping v off the air. If the feasibility checker
comes back with a feasible packing of the stations in S [ {v}, the
algorithm can proceed safely with the lower offer to v. The algorithm
returns the final set S of stations to remain on the air, along with the
channel assignments computed for them by the feasibility checker.

24.4.4 Time to Get Paid

The FCCDescendingClock algorithm determines the stations remain-
ing on the air and their new channel assignments. It has one more
responsibility: to compute the prices paid to the departing broadcast-
ers in exchange for their licenses. (Broadcasters that remain on the
air receive no compensation.19)

First, what’s the initial base price p? In the FCC Incentive Auction,
this value was chosen so that the opening offers would be absurdly
lucrative and entice many stations to participate (participation was
voluntary). For example, the opening offer to WCBS, the CBS affiliate
in New York City, was 900 million dollars!20 Every broadcaster that
entered the auction was contractually obligated to sell its license at

18The original FCCGreedy algorithm in Section 24.2.4 invokes the feasibility
checker only once per participating station. The reimplemented version, the
FCCDescendingClock algorithm, requires a new batch of feasibility checks in every
round. The FCC Incentive Auction’s reverse auction ran for dozens of rounds,
requiring roughly one hundred thousand feasibility checks in all. This is why the
FCC granted only one minute per feasibility check. (And even with one-minute
timeouts, the auction took many months to complete.)

19Technically, stations forced to switch channels after the FCC Incentive
Auction received a modest sum of money—far less than the typical selling price
of a license—to cover the switching costs.

20And remember that selling a license only meant giving up on terrestrial
broadcasting—small potatoes compared to cable and satellite television.
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the opening offer should the government request it, and similarly
for every subsequent (lower) offer accepted during the auction. The
government, naturally, paid the lowest agreed-upon price:

Compensation in the FCC Incentive Auction

Each broadcaster going off the air was paid the most recent
(and hence lowest) offer that it accepted in the auction.

For all its complexity under the hood, the FCC Incentive Auction’s
reverse auction was extremely simple for the participating broadcasters.
The opening offer for a license was known in advance, and each
subsequent offer was automatically 95% of the previous one. As long
as the current offer exceeded a broadcaster’s value for its license, the
obvious move was to accept it (as the broadcaster reserved the right to
reject lower offers made later). Once the current offer dropped below
the license’s value, the obvious response was to reject the offer and
go back on the air (as any subsequent offers would be even worse).

The efficacy of the feasibility checker (Section 24.3) had a first-
order effect on the government’s costs. No harm, no foul when
the subroutine timed out with an unpackable set of stations—the
FCCDescendingClock algorithm proceeded as it would have anyway.
But whenever the feasibility checker timed out on a packable set of
stations S[{v}, a pile of money—often in the millions of dollars—was
left on the table.21 The auction could have made a lower offer to the
station v, but for the failure of its feasibility checker. You can see
why the auction’s designers wanted to get the subroutine’s success
rate up to as close to 100% as possible!22

24.5 The Final Outcome

The FCC Incentive Auction ran for roughly a year, from March 2016
to March 2017. Nearly three thousand television stations were in-
volved, 175 of which elected to go off the air in exchange for a total
compensation of roughly ten billion dollars (an average of around fifty
million dollars per license, with high variance across different regions

21Around 50% of the timeouts occurred with a packable set of stations.
22Has there ever been a more direct relationship between an algorithm’s running

time and huge sums of money?
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of the country).23 Roughly one thousand stations had their channels
reassigned.

Meanwhile, the 84 MHz of freed spectrum was reorganized into
seven pairs of 5 MHz blocks (one block for uploading, one for down-
loading). Each of the licenses for sale in the FCC Incentive Auction’s
forward auction corresponded to one of these seven pairs and one
of 416 regions in the U.S. (called “partial economic areas”). The
revenue from this forward auction? Twenty billion dollars!24 Most of
the resulting profit was used to reduce the U.S. deficit.25

The FCC Incentive Auction was a smashing success, and it never
would have happened without a cutting-edge algorithmic toolbox for
tackling NP-hard problems—the very same toolbox that you can now,
after persevering to the end of this book, claim as your own.

The Upshot

P The FCC Incentive Auction was a complex al-
gorithm that procured 84 MHz of wireless spec-
trum used for terrestrial television and repur-
posed it for next-generation wireless networks.

P Its reverse auction decided which television sta-

23You can check out the full list of results at https://auctiondata.fcc.gov/.
24Good thing the forward auction revenue exceeded the reverse auction procure-

ment costs—did the government just get lucky? This relates to another question:
Who decided that 84 MHz was the perfect amount of spectrum to clear?

The actual FCC Incentive Auction had an additional outer loop, which searched
downward for the ideal number of channels to clear (one of the reasons why the
auction took so long). In its first iteration (called a “stage”), the auction ambitiously
attempted to free up twenty-one channels (126 MHz), sufficient to create ten paired
licenses per region for sale in the forward auction. (The twenty-one channels were
30–36 and 38–51; as noted in footnote 4, channel 37 was off limits.) This stage
failed badly, with procurement costs roughly eighty-six billion dollars and forward
auction revenue only around twenty-three billion dollars. The auction proceeded
to a second stage with the reduced clearing target of nineteen channels (114 MHz,
enough for nine paired licenses per region), resuming the reverse and forward
auctions where they left off in the first stage. The auction eventually halted after
the fourth stage (clearing fourteen channels, as described in this chapter)—the
first one in which its revenue covered its costs.

25Deficit reduction was the plan all along—probably one of the main reasons
the bill managed to pass Congress (see footnote 5).
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tions would go off the air or switch channels,
along with their compensation.

P Even with only one available channel, determin-
ing the most valuable non-interfering stations
to keep on the air boils down to the (NP-hard)
weighted independent set problem.

P With multiple available channels, merely check-
ing whether a set of stations can all remain on
the air without interference boils down to the
(NP-hard) graph coloring problem.

P On representative instances, a carefully tuned
greedy heuristic algorithm reliably returned so-
lutions with near-optimal total value.

P Each iteration of this greedy algorithm invoked
a feasibility-checking subroutine to check if there
was room on the airwaves for the current station.

P A descending clock auction was used to imple-
ment this algorithm, with offers of compensation
falling and stations dropping out over time.

P Using presolvers, preprocessing, and a portfolio
of eight state-of-the-art SAT solvers, over 99%
of the feasibility-checking instances in the FCC
Incentive Auction were solved in under a minute.

P The FCC Incentive Auction ran for a year,
removed 175 stations from the airwaves, and
cleared almost ten billion U.S. dollars in profit.

Test Your Understanding

Problem 24.1 (S) Which of the algorithmic tools described in Chap-
ters 20 and 21 played no role in the FCC Incentive Auction?

a) Greedy heuristic algorithms
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b) Local search

c) Dynamic programming

d) MIP and SAT solvers

Problem 24.2 (S) In each round of the FCCDescendingClock algo-
rithm in Section 24.4.3, the stations still in limbo are processed in an
arbitrary order. Is the set S of stations returned by the algorithm
independent of the order used in each round? (Choose whichever
statements are true.)

a) Yes, provided no two station values wv are the same and all
parameters �v are set to 1.

b) Yes, provided all parameters �v are set to 1 and ✏ is sufficiently
small.

c) Yes, provided no two station values wv are the same, all param-
eters �v are set to 1, and ✏ is sufficiently small.

d) Yes, provided no two ratios wv/�v are the same and ✏ is suffi-
ciently small.

Problem 24.3 (S) Before making a lower offer to a station v, the
FCCDescendingClock algorithm checks if S [ {v} is a packable set of
stations, where S denotes the already-on-air stations. Suppose we
reversed the order of these two steps:

offer compensation �v · p to v
if offer refused then // because p < wv/�v

if S [ {v} packable then // room for v
S := S [ {v} // v goes back on the air

else // no room for v
X := X [ {v} // v must stay off the air

Suppose we offer compensation to the departing broadcasters as on
page 231, with each paid according to the last offer they accepted (the
penultimate offer they were given). Is it still true that a broadcaster
should accept every offer above its value and reject the first offer
below its value?
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Challenge Problems

Problem 24.4 (H) This problem investigates the solution quality
achieved by the WISBasicGreedy and WISGeneralGreedy heuristic
algorithms in Section 24.2.3 for the special case of the weighted
independent set problem in which the degree deg(v) of every vertex v
is at most ∆ (where ∆ is a nonnegative integer, such as 3 or 4).

(a) Prove that the independent set returned by the WISBasicGreedy
algorithm always has total weight at least 1/(∆+ 1) times the
total weight of all the vertices in the input graph.

(b) Prove that the same guarantee holds for the WISGeneralGreedy

algorithm with �v set to 1 + deg(v) for each vertex v 2 V .

(c) Show by examples that, for every nonnegative integer ∆, the
statements in (a) and (b) become false if 1/(∆+ 1) is replaced
by any larger number.

Programming Problems

Problem 24.5 Try out one or more SAT solvers on a collection of
graph coloring instances, using the formulation (24.1)–(24.3). (Exper-
iment both with and without the constraints in (24.3).) For example,
you could investigate random graphs, where each edge is present inde-
pendently with some probability p 2 (0, 1). Or, even better, derive
a graph from the actual interference constraints used in the FCC
Incentive Auction.26 How large an input size can the solver reliably
process in under a minute, or under an hour? How much does the
answer vary with the solver?

26Available at https://data.fcc.gov/download/incentive-auctions/

Constraint_Files/.
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With the Algorithms Illuminated series under your belt, you now
possess a rich algorithmic toolbox suitable for tackling a wide range
of computational problems. So rich, in fact, that you might find the
sheer number of algorithms, data structures, and design paradigms
daunting. When you’re confronted with a new problem, what’s the
most effective way to put your tools to work? To give you a starting
point, I’ll tell you the typical recipe I use when I need to understand
an unfamiliar computational problem. You should develop your own
personalized recipe as you accumulate more algorithmic experience.

1. Can you avoid solving the problem from scratch? Is it a disguised
version, variant, or special case of a problem that you already
know how to solve? For example, can it be reduced to sorting,
graph search, or a shortest-path computation?27 If so, use the
fastest and simplest algorithm sufficient for solving the problem.

2. Can you simplify the problem by preprocessing the input with
a for-free primitive, such as sorting or computing connected
components?

3. If you must design a new algorithm from scratch, get calibrated
by identifying the line in the sand drawn by the “obvious” solu-
tion (such as exhaustive search). For the inputs that you care
about, is the obvious solution already fast enough?

4. If the obvious solution is inadequate, brainstorm as many natural
greedy algorithms as you can and test them on small examples.

27If you go on to a deeper study of algorithms, you’ll learn about more well-
solved problems that show up in disguise all the time. A few examples include the
fast Fourier transform, the maximum flow and minimum cut problems, bipartite
matching, and linear and convex programming.

236
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Most likely, all will fail. But the ways in which they fail will
help you better understand the problem.

5. If there’s an obvious way to split the input into smaller subprob-
lems, how easy would it be to combine their solutions? If you
see how to do it quickly, proceed with the divide-and-conquer
paradigm.

6. Try dynamic programming. Can you argue that a solution
must be built up from solutions to smaller subproblems in one
of a small number of ways? Can you formulate a recurrence
to quickly solve a subproblem given solutions to the smaller
subproblems?

7. In the happy event that you devise a good algorithm for the
problem, can you make it even better through the deft deploy-
ment of data structures? Look for significant computations that
your algorithm performs over and over again (such as lookups
or minimum computations). Remember the principle of parsi-
mony: Choose the simplest data structure that supports all the
operations required by your algorithm.

8. Can you make your algorithm simpler or faster using random-
ization? For example, if your algorithm must choose one object
among many, what happens when it chooses randomly?

9. If all the preceding steps end in failure, contemplate the unfortu-
nate but realistic possibility that there is no efficient algorithm
for your problem. Of the NP-hard problems you know, which
one most closely resembles your problem? Can you reduce this
NP-hard problem to yours? What about the 3-SAT problem?
Or any of the other problems in the Garey and Johnson book
(page 156)?

10. Decide whether you’d rather compromise on correctness or on
speed. If you prefer to retain guaranteed speed and compromise
on correctness, iterate over the algorithm design paradigms
again, this time looking for opportunities for fast heuristic
algorithms. The greedy algorithm design paradigm stands out
as the most frequently useful one for this purpose.
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11. Consider also the local search paradigm, both for approximately
solving the problem from scratch and for a no-downside post-
processing step to tack on to some other heuristic algorithm.

12. If you’d rather insist on guaranteed correctness while compro-
mising on speed, return to the dynamic programming paradigm
and seek out better-than-exhaustive-search (but presumably
still exponential-time) exact algorithms.

13. If dynamic programming doesn’t apply or your dynamic pro-
gramming algorithms are too slow, cross your fingers and ex-
periment with semi-reliable magic boxes. For an optimization
problem, try formulating it as a mixed integer program and
throwing a MIP solver at it. For a feasibility-checking problem,
start instead with a satisfiability formulation and throw a SAT
solver at it.
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Solution to Problem 19.1: (b),(c). The dynamic programming
algorithm for the (NP-hard) knapsack problem is a good example of
why (d) is incorrect.

Solution to Problem 19.2: (c). Footnote 2 shows why (a) is
incorrect. The spanning trees of a graph can all have distinct total
costs (for example, if the edge costs are distinct powers of 2), so (b)
is also incorrect. The logic in (d) is flawed, as the MST problem is
computationally tractable even in graphs with an exponential number
of spanning trees.

Solution to Problem 19.3: (b),(d). Answer (c) is incorrect be-
cause polynomial-time solvability is related to but not the same
thing as solvability in practice. (Imagine an algorithm with running
time O(n100) on size-n inputs, for example.)

Solution to Problem 19.4: (a). For example, the dynamic pro-
gramming algorithm for the knapsack problem shows that (c) and (d)
are incorrect.

Solution to Problem 19.5: (e). For (a) and (b), the reduction goes
in the wrong direction. Answer (c) is incorrect because some problems
(like the halting problem mentioned in footnote 18) are strictly harder
than others (like the MST problem). Answer (d) is incorrect when,
for example, A and B are the single-source and all-pairs shortest
path problems. The formal proof for (e) resembles the solution to
Quiz 19.3.

Solution to Problem 19.6: (a),(b),(d). In (a), you can assume
without loss of generality that the knapsack capacity C is at most n6

(why?). For (b), refer to Problem 20.11. For (c), the problem is NP-
hard even when the input comprises only positive integers (page 19).

239
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Hint for Problem 19.7: To use a subroutine for the TSP to solve
an instance of the TSPP, add one additional vertex, connected by a
zero-cost edge to each of the original vertices. To use a subroutine
for the TSPP to solve an instance of the TSP, first split an arbitrary
vertex v into two copies v0 and v00 (each inheriting edge costs from v,
and with cv0v00 = +1). Then add two new vertices x, y that are
each connected to all other vertices by infinite-cost edges, with the
exceptions that cxv0 = cyv00 = 0.

Hint for Problem 19.8: Visit the vertices of G in the same order
that depth-first search (from an arbitrary starting vertex) would visit
the vertices of T . Prove that the total cost of the resulting tour
is 2

P
e2F ae, and that no tour can have a smaller total cost.

Solution to Problem 20.1: (b). To falsify (a), consider ten ma-
chines, ten jobs with length 1, ninety jobs with length 6/5, and one
job with length 2. To prove (b), use the assumptions to show that
the maximum job length is at most 20% of the average machine load,
and plug this into (20.3).

Solution to Problem 20.2: (b). To falsify (a), use a sixteen-element
variant of the example in Quiz 20.5; the optimal solution should use
two subsets the greedy algorithm five (with worst-case tie-breaking).
For (b), the first k iterations of the greedy algorithm match those of
the GreedyCoverage algorithm with a budget of k. The approximate
correctness guarantee for the latter algorithm (Theorem 20.7) implies
that this first batch of k iterations covers at least a 1 � 1

e fraction
of the elements of U . The next batch of k iterations covers at least
a 1 � 1

e fraction of the elements that weren’t covered in the first
batch (why?). After t batches of k iterations each, the number of
still-uncovered elements is at most (1e )

t · |U |. This number is less
than 1 once t > ln |U |, so the algorithm completes within O(k log |U |)
iterations.

Solution to Problem 20.3: (c),(e),(f). To falsify (a) and (d), take
C = 100 and consider ten items with value 2 and size 10, together with
one hundred items with value 1 and size 1. To falsify (b), consider
one item with size and value equal to 100 and a second item with
value 20 and size 10. To prove (c), imagine allowing the second
greedy algorithm to cheat and fill up the knapsack completely using
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a fraction of one additional item (with value earned on a pro rata
basis). Use an exchange argument to prove that the total value of this
cheating solution is at least that of any feasible solution. Argue that
the combined value of the solutions returned by the first two greedy
algorithms is at least that of the cheating solution (and hence the
better of the two is at least 50% as good). To prove (e) and (f), argue
that the second greedy algorithm misses out only on the worst 10%
(in terms of value-to-size ratio) of the cheating solution.

Solution to Problem 20.4: (a). Each iteration of the algorithm’s
main while loop chooses one edge of the input graph; let M denote
the set of chosen edges. The subset S returned by the algorithm
then contains 2|M | vertices. No two edges of M share an endpoint
(why?), so every feasible solution must include at least |M | vertices
(one endpoint per edge of M).

Solution to Problem 20.5: (c). A local search algorithm eventually
halts at a locally optimal solution.

Hint for Problem 20.6: Store in a heap one object per machine,
with keys equal to the machines’ current loads. Each machine load
update boils down to an ExtractMin operation followed by an
Insert operation with the updated key value.

Hint for Problem 20.7: For (a), you can ignore any jobs after job j
(why?). Prove that, if `j > M⇤/3, each machine is assigned one or
two of the first j jobs, with the longest jobs on their own machines
and the rest paired up optimally on the remaining machines. For (b),
use (20.3).

Hint for Problem 20.8: For (a), use a kk�1⇥kk�1 grid of elements
and 2k � 1 subsets. For (b), replace each element with a group of N
copies of it (each belonging to the same subsets as before). Eliminate
ties by adding one additional copy to some of the groups. The choice
of N should depend on ✏.

Hint for Problem 20.9: For example, given an instance of the
maximum coverage problem with budget k, ground set U = {1, 2, 3, 4},
and subsets A1 = {1, 2}, A2 = {3, 4}, and A3 = {2, 4}, encode it
using the directed graph
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4

A3

32

A2

1

A1

along with the activation probability p = 1 and the same budget k.

Hint for Problem 20.10: For (a), verify the properties directly
for coverage functions and then use Lemma 20.10. For (b), the
primary ingredient is a general version of Lemmas 20.8 and 20.11,
and specifically the inequalities (20.7) and (20.15). Let S⇤ denote
an optimal solution and Sj�1 the first j � 1 objects chosen by the
greedy algorithm. One way to view the right-hand sides of these
inequalities is as the sum of the successive marginal values of the
objects in S⇤ � Sj�1, when added to Sj�1 one by one in an arbitrary
order. The left-hand sides express the sum of the marginal values
of the objects in S⇤ � Sj�1 when each is added to Sj�1 in isolation.
Submodularity implies that each term in the former sum is at most
that in the latter. Where do nonnegativity and monotonicity show
up in the proof?

Hint for Problem 20.11: For (a), each subproblem computes, for
some i 2 {0, 1, 2, . . . , n} and x 2 {0, 1, 2, . . . , n · vmax}, the minimum
total size of a subset of the first i items that has a total value of at
least x (or +1, if no such subset exists). For the full solution, see
the bonus videos at www.algorithmsilluminated.org.

Hint for Problem 20.12: For (a), every tour can be viewed as
a Hamiltonian path (which, as a spanning tree, has total cost at
least that of an MST) together with one additional edge (which,
by assumption, has a nonnegative cost). For (b), use the triangle
inequality to argue that all edge costs in the constructed tree TSP
instance are at least as large as in the given metric TSP instance.
Using the solution to Problem 19.8, conclude that the total cost of
the computed tour is at most twice that of the MST T .

Hint for Problem 20.13: For example, represent the graph using
an adjacency matrix (with entries encoding edges’ costs) and the
current tour using a doubly-linked list.
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Solution to Problem 20.14: For (a), the objective function value
is always an integer between 0 and |E|, and it increases by at least 1
in each iteration. For (b), consider a local maximum. For each
vertex v 2 Si and group Sj with j 6= i, the number of edges between v
and the vertices of Si is at most that between v and the vertices of Sj

(why?). Adding up these |V | · (k � 1) inequalities and rearranging
completes the argument.

Solution to Problem 21.1: (c).

Solution to Problem 21.2: With columns indexed by vertices
of V � {a} and rows indexed by subsets S that contain a and at least
one other vertex:

{a, b} 1 N/A N/A N/A
{a, c} N/A 4 N/A N/A
{a, d} N/A N/A 5 N/A
{a, e} N/A N/A N/A 10
{a, b, c} 6 3 N/A N/A
{a, b, d} 11 N/A 7 N/A
{a, b, e} 13 N/A N/A 4
{a, c, d} N/A 12 11 N/A
{a, c, e} N/A 18 N/A 12
{a, d, e} N/A N/A 19 14
{a, b, c, d} 14 13 10 N/A
{a, b, c, e} 15 12 N/A 9
{a, b, d, e} 17 N/A 13 14
{a, c, d, e} N/A 22 21 20
{a, b, c, d, e} 23 19 18 17

b c d e

Solution to Problem 21.3: (b). Appending an edge (w, v) to a
minimum-cost (i � 1)-hop path P from 1 to w creates a cycle if P
already visits v.

Solution to Problem 21.4: (a),(b),(c),(d),(e).

Solution to Problem 21.5: With columns indexed by vertices and
rows indexed by non-empty subsets of colors:
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{R} 0 0 +1 +1 +1 +1 +1 +1
{G} +1 +1 0 0 +1 +1 +1 +1
{B} +1 +1 +1 +1 0 0 +1 +1
{Y } +1 +1 +1 +1 +1 +1 0 0

{R,G} 1 4 1 4 +1 +1 +1 +1
{R,B} 2 6 +1 +1 6 2 +1 +1
{R, Y } +1 +1 +1 +1 +1 +1 +1 +1
{G,B} +1 +1 7 3 7 3 +1 +1
{G, Y } +1 +1 8 5 +1 +1 5 8
{B, Y } +1 +1 +1 +1 9 10 9 10

{R,G,B} 5 7 3 5 8 3 +1 +1
{R,G, Y } 9 9 +1 +1 +1 +1 9 9
{R,B, Y } 12 15 +1 +1 +1 +1 15 12
{G,B, Y } +1 +1 16 13 14 8 8 13

{R,G,B, Y } 10 17 13 19 15 11 10 11

a b c d e f g h

Hint for Problem 21.6: Any vertex j that achieves the minimum
in (21.6) appears last on some optimal tour. A vertex k that achieves
the minimum in (21.4) immediately precedes j on some such tour.
The rest of the tour can be similarly reconstructed in reverse order. To
achieve a linear running time, modify the BellmanHeldKarp algorithm
so that it caches for each subproblem a vertex that achieves the
minimum in the recurrence (21.5) used to compute the subproblem
solution.

Hint for Problem 21.7: Modify the PanchromaticPath algorithm
so that it caches for each subproblem an edge (w, v) that achieves the
minimum in the recurrence (21.7) used to compute the subproblem
solution. Also, cache a vertex achieving the minimum in the last line
of the pseudocode.

Hint for Problem 21.8: Throw out the solutions to the size-s
subproblems after computing all the solutions to the size-(s + 1)
subproblems. Use Stirling’s approximation (21.1) to estimate

�
n

n/2

�
.

Solution to Problem 21.9: (a) With xv indicating whether vertex v
is included in the solution:

maximize
P

v2V wvxv

subject to xu + xv  1 [for every edge (u, v) 2 E]

xv 2 {0, 1} [for every vertex v 2 V ].
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(b) With xij indicating whether job j is assigned to machine i, and
with M denoting the corresponding schedule’s makespan:28

minimize M

subject to
Pn

j=1 `jxij  M [for every machine i]
Pm

i=1 xij = 1 [for every job j]

xij 2 {0, 1} [for every machine i and job j]

M 2 R.

(c) With xi indicating whether subset Ai is included in the solution,
and ye whether element e belongs to a chosen subset:29

maximize
P

e2U ye

subject to ye 
P

i : e2Ai
xi [for every element e 2 U ]

Pm
i=1 xi = k

xi, ye 2 {0, 1} [for every subset Ai and element e].

Hint for Problem 21.10: For (a), orient the tour in one direction
and set xij to 1 if j is the immediate successor of i and to 0 otherwise.
For (b), show that a union of two (or more) disjoint directed cycles
that together visit all vertices also translates to a feasible solution of
the MIP. For (c), if edge (i, j) is the `th hop of the tour (starting from
vertex 1), set yij = n� `. For (d), argue that every feasible solution
is of the form constructed in (c).

Hint for Problem 21.11: For example, encode the constraint x1 _
¬x2 _ x3 as y1 + (1 � y2) + y3 � 1, where the yi’s are 0-1 decision
variables. (Use a placeholder objective function, like the constant 0.)

Hint for Problem 21.12: First preprocess the 2-SAT instance so
that every constraint has exactly two literals. (One hack is to replace

28If the constraints with decision variables on both sides bother you, rewrite
them as

Pn

j=1 `jxij �M  0 for every machine i. These constraints force M to
be at least as large as the maximum machine load; in any optimal solution to the
MIP, equality must hold (why?).

29The first set of constraints force ye = 0 whenever none of the subsets that
contain e are chosen. (And if such a subset is chosen, ye will equal 1 in every
optimal solution.)
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a constraint like xi with two constraints, xi _ z and xi _ ¬z, where z
is a newly added decision variable. The more practical solution is
to iteratively eliminate single-literal constraints—such a constraint
forces a variable assignment, which can then be propagated to any
other constraints involving that variable.) When only two-literal
constraints remain, the key trick is to compute the strongly connected
components of an appropriate directed graph (which can be done in
linear time; see Chapter 8 of Part 2). You’re on the right track if
your graph has 2n vertices (one per literal) and 2m directed edges;
the given 2-SAT instance will be feasible if and only if every literal
resides in a different component than its opposite.

Hint for Problem 21.13: For (b), recall (21.10). For (c), use
that ta⇤ satisfies the constraint while ta does not. For (d), use that a
truth assignment and its opposite are equally likely. For (f), use that
a running time bound of the form O((

p
3)nnd ln 1

�
) for a constant d is

also O((1.74)n ln 1
�
) (because any exponential function grows faster

than any polynomial function).

Solution to Problem 22.1: (d). The undirected Hamiltonian path
problem reduces to each of the problems in (a)–(c). The problem
in (d) can be solved in polynomial time using a variation of the
Bellman-Ford shortest-path algorithm (see Chapter 18 of Part 3).

Solution to Problem 22.2: (a),(b). The problems in (a) and (b)
both reduce to the all-pairs shortest path problem with no negative
cycles (for (b), after multiplying all edge lengths by �1), which can
be solved in polynomial time using the Floyd-Warshall algorithm
(see Chapter 18 of Part 3). The directed Hamiltonian path problem
reduces to the problem in (c), proving that the latter (and the more
general problem in (d)) is NP-hard.

Solution to Problem 22.3: (a),(b),(c),(d). For (b), if the assumed
subroutine for the decision version says “no,” report “no solution.” If it
says “yes,” use the subroutine repeatedly to delete outgoing edges of s,
never deleting an edge that would flip its answer to “no”; eventually,
only one outgoing edge (s, v) will remain. Repeat the process from v.

For (d), perform binary search over the target total cost C. The
running time is polynomial in the number of vertices and the number
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of digits required to represent the edge costs, which is polynomial in
the input size; see also the discussion on page 19.

Hint for Problem 22.4: Toggle which edges are present or absent.

Hint for Problem 22.5: A subset S of vertices is a vertex cover if
and only if its complement V � S is an independent set.

Hint for Problem 22.6: Use one subset per vertex, containing its
incident edges.

Hint for Problem 22.7: Use t as the knapsack capacity. Use ai as
both the value and size of item i.

Solution to Problem 22.8: Invoke a subroutine for the maximum
coverage problem with the given set system and successively increasing
budgets k = 1, 2, . . . ,m. The first time the subroutine returns k
subsets that cover all of U , these subsets constitute an optimal solution
to the given set cover instance.

Hint for Problem 22.9: To reduce the undirected version to the
directed version, replace each undirected edge (v, w) with two directed
edges (v, w) and (w, v). For the other direction, perform the following
operation on each vertex:

v vin vmid vout

Hint for Problem 22.10: For (a), add one additional number to
the input. For (b), use the ai’s as job lengths.

Hint for Problem 22.11: Start with a triangle on vertices called t
(for “true”), f (for “false”), and o (for “other”). Add two more ver-
tices vi, wi per variable xi in the given 3-SAT instance, and connect
them in a triangle with o. In every 3-coloring, vi and wi either have
the same colors as t and f , respectively (interpreted as xi := true) or
the same colors as f and t, respectively (interpreted as xi := false).
Implement a disjunction of two literals using a subgraph of the form
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with “inputs” on the left and the “output” on the right. Fuse together
two such subgraphs to implement a disjunction of three literals.

Hint for Problem 22.12: Part (b) follows immediately from the
reduction in the proof of Theorem 22.7. For part (a), add 1 to each
of the edge costs in this reduction.

Solution to Problem 23.1: (a),(b). For (a), for all we know, the
TSP (say) can be solved in polynomial time. For (b), for all we know,
P 6= NP but the Exponential Time Hypothesis is false. For (c), see
Problem 23.5. For (d), if any NP-complete problem is polynomial-
time solvable, P = NP and all such problems are polynomial-time
solvable.

Solution to Problem 23.2: Because the TSP is NP-hard (Theo-
rem 22.7), every problem in NP reduces to it. Hence, if Edmonds’s
conjecture is false (meaning there is a polynomial-time algorithm for
the TSP), so is the P 6= NP conjecture. Conversely, if P = NP, the
search version of the TSP (which belongs to NP) would be polynomial-
time solvable. The optimization version of the TSP reduces to the
search version by binary search (Problem 22.3) and would then also
be polynomial-time solvable, refuting Edmonds’s conjecture.

Solution to Problem 23.3: All of them (as you should check).

Hint for Problem 23.4: For (a), compose the reductions. For (c),
chain together the two preprocessors and the two postprocessors. To
bound the running time, argue as in the solution to Quiz 19.3.

Solution to Problem 23.5: For (a), there is a Levin reduction from
3-SAT to PADDED 3-SAT (add one new variable and the appropriate
padding). For (b), check (in linear time) if the input is padded and,
if so, use exhaustive search to compute a satisfying assignment or
conclude that none exist. Because the size N of a padded instance is
at least n2, this exhaustive search runs in 2O(n) = 2O(

p
N) time.
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Hint for Problem 23.6: Borrow the trick from the previous problem,
with the amount of padding super-polynomial but subexponential.
Show that a polynomial-time algorithm for the padded problem would
refute the Exponential Time Hypothesis. Using that the padded
problem can be solved in subexponential time (why?), prove that a
(Cook) reduction from the 3-SAT problem to the padded problem
would also refute the Exponential Time Hypothesis.

Hint for Problem 23.7: For part (a), run breadth-first search n
times, once for each choice of the starting vertex. For part (b),
divide the n variables of a given k-SAT instance into two groups of
size n/2 each. Introduce one vertex for each of the 2n/2 possible
truth assignments to the variables in the first group, and likewise
for the second group. Call the two sets of 2n/2 vertices A and B.
Introduce one vertex for each of the m constraints, along with two
additional vertices s and t; call this set of m+2 vertices C and define
V = A [ B [ C. (Question: How big can m be, as a function of n
and k?) Include edges between each pair of vertices in C, between s
and each vertex of A, and between t and each vertex of B. Complete
the edge set E by connecting a vertex v of A or B to a vertex w
corresponding to a constraint if and only if none of the n/2 variable
assignments encoded by v satisfy the constraint corresponding to w.
Prove that the diameter of G = (V,E) is either 3 or 2, depending on
whether the given k-SAT instance is satisfiable or unsatisfiable.

Solution to Problem 24.1: (c).

Solution to Problem 24.2: (c),(d). If in each round of the
FCCDescendingClock algorithm there is at most one still-in-limbo
station v that would refuse that round’s offer (because for the first
time, wv exceeds �v ·p), the order doesn’t affect which stations remain
on the air (why?).30 When the station ratios wv/�v are distinct,
this condition can be enforced by taking ✏ sufficiently small; hence,
answers (c) and (d) are correct. If two stations are poised to drop
out in the same round—because of ties between station ratios wv/�v
or because ✏ isn’t small enough—different orderings generally lead to
different outputs (as you should check); hence, answers (a) and (b)
are incorrect.

30Though even in this case, the compensation paid to a station going off the
air might depend on the order of processing (why?).
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Solution to Problem 24.3: Not necessarily, as a broadcaster can
in some cases game the system by rejecting an offer higher than its
value and receiving more compensation than it would have otherwise.
(For example, if the owner of an in-limbo station v learns that the
set S [ {v} has become unpackable, the owner should always reject
the next offer received.)

Hint for Problem 24.4: For (a), whenever the algorithm includes v
in its solution-so-far S, it knocks out from further consideration at
most ∆ other vertices, each with weight at most wv. Thus

P
v/2S wv P

v2S ∆ · wv, which implies the stated bound. For (b), for v 2 S,
let X(v) denote the vertices knocked out from further consideration
by v’s inclusion in S—that is, u 2 X(v) if v is the first neighbor of u
added to S, or if u is v itself. By the algorithm’s greedy criterion,
whenever it includes v in S, wv �Pu2X(v)wu/(deg(u) + 1). Because
every vertex u 2 V belongs to the set X(v) for exactly one vertex v 2 S
(why?),

X

v2S
wv �

X

v2S

X

u2X(v)

wu

deg(u) + 1
=
X

u2V

wu

deg(u) + 1
�
P

u2V wu

∆+ 1
.
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