

Excel® 2019
Power Programming

with VBA

Excel® 2019
Power Programming

with VBA
Michael Alexander

Dick Kusleika

Previously by John Walkenbach

Excel® 2019 Power Programming with VBA

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2019 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-119-51492-3
ISBN: 978-1-119-51494-7 (ebk)
ISBN: 978-1-119-51491-6 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under
Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of
the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance
Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher
for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties
with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties,
including without limitation warranties of fitness for a particular purpose. No warranty may be created or
extended by sales or promotional materials. The advice and strategies contained herein may not be suitable for
every situation. This work is sold with the understanding that the publisher is not engaged in rendering legal,
accounting, or other professional services. If professional assistance is required, the services of a competent
professional person should be sought. Neither the publisher nor the author shall be liable for damages arising
herefrom. The fact that an organization or Web site is referred to in this work as a citation and/or a potential
source of further information does not mean that the author or the publisher endorses the information the
organization or website may provide or recommendations it may make. Further, readers should be aware that
Internet websites listed in this work may have changed or disappeared between when this work was written and
when it is read.

For general information on our other products and services please contact our Customer Care Department within
the United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to
media such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2019936928

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/
or its affiliates, in the United States and other countries, and may not be used without written permission.
Microsoft and Excel are registered trademarks of Microsoft Corporation. All other trademarks are the property of
their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this
book.

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com

v

About the Authors
Michael Alexander is a Microsoft Certified Application Developer (MCAD) and author of sev-
eral books on advanced business analysis with Microsoft Access and Microsoft Excel. He has
more than 20 years of experience consulting and developing Microsoft Office solutions. Mike
has been named a Microsoft MVP for his ongoing contributions to the Excel community. You
can find Mike at www.datapigtechnologies.com.

Dick Kusleika is a 12-time Microsoft Excel MVP and has been working with Microsoft Office
for more than 20 years. Dick develops Access- and Excel-based solutions for his clients and
has conducted training seminars on Office products in the United States and Australia. Dick
also writes a popular Excel-related blog at www.dailydoseofexcel.com.

http://www.datapigtechnologies.com
http://www.dailydoseofexcel.com

vii

About the Technical Editors
Doug Holland is an Architect Evangelist at Microsoft Corporation, working with partners to
drive digital transformation through technologies such as the Microsoft Cloud, Office 365,
and HoloLens. He holds a master’s degree in software engineering from Oxford University and
lives in Northern California with his wife and five children.

Guy Hart-Davis is the author of an improbable number of computer books on a bizarre range
of topics. If you had been wondering who was responsible for the Word 2000 Developer’s Hand-
book, AppleScript: A Beginner’s Guide, iMac Portable Genius, or Samsung Galaxy S8 Maniac’s
Guide, you need wonder no more.

ix

Credits

Associate Publisher
Jim Minatel

Senior Editorial Assistant
Devon Lewis

Editorial Manager
Pete Gaughan

Production Manager
Katie Wisor

Project Editor
Gary Schwartz

Production Editor
Barath Kumar Rajasekaran

Technical Editors
Doug Holland
Guy Hart-Davis

Copy Editor
Kim Wimpsett

Proofreader
Nancy Bell

Indexer
Johnna VanHoose Dinse

Cover Designer
Wiley

Cover Image

© Rost-9D/Getty Images

xi

Acknowledgments

O ur deepest thanks to the professionals at John Wiley & Sons for all the hours of work
put into bringing this book to life. Thanks also to Doug Holland and Guy Hart-Davis
for suggesting numerous improvements to the examples and text in this book. A

special thank-you goes out to our families for putting up with all the time spent locked
away on this project. Finally, we’d like to thank John Walkenbach for his many years of
work on the previous editions of this book. His efforts in curating Excel knowledge have
been instrumental, not only in helping millions of Excel users to achieve their learning
goals but also in inspiring countless Excel MVPs to share their expertise with the Excel
community.

xiii

Contents at a Glance
Introduction .. xxxiii

Part I: Introduction to Excel VBA . 1
Chapter 1: Essentials of Spreadsheet Application Development .. 3
Chapter 2: Introducing Visual Basic for Applications ...19
Chapter 3: VBA Programming Fundamentals ...61
Chapter 4: Working with VBA Sub Procedures ... 105
Chapter 5: Creating Function Procedures .. 143
Chapter 6: Understanding Excel’s Events ...183
Chapter 7: VBA Programming Examples and Techniques ... 217

Part II: Advanced VBA Techniques . 287
Chapter 8: Working with Pivot Tables ...289
Chapter 9: Working with Charts ...305
Chapter 10: Interacting with Other Applications ... 351
Chapter 11: Working with External Data and Files ... 377

Part III: Working with UserForms .417
Chapter 12: Leveraging Custom Dialog Boxes .. 419
Chapter 13: Introducing UserForms .. 441
Chapter 14: Looking at UserForm Examples ... 479
Chapter 15: Implementing Advanced UserForm Techniques .. 519

Part IV: Developing Excel Applications . 567
Chapter 16: Creating and Using Add-Ins ...569
Chapter 17: Working with the Ribbon ...599
Chapter 18: Working with Shortcut Menus .. 637
Chapter 19: Providing Help for Your Applications .. 659
Chapter 20: Leveraging Class Modules .. 679
Chapter 21: Understanding Compatibility Issues ...699

Part V: Appendix . 713
Appendix: VBA Statements and Functions Reference ... 715

Index .. 725

xv

Contents
Introduction. xxxiii

Part I: Introduction to Excel VBA 1

Chapter 1: Essentials of Spreadsheet Application Development .3
What Is a Spreadsheet Application? .. 3
Steps for Application Development ... 4
Determining User Needs .. 5
Planning an Application That Meets User Needs .. 6
Determining the Most Appropriate User Interface .. 7

Customizing the Ribbon .. 8
Customizing shortcut menus ... 8
Creating shortcut keys .. 9
Creating custom dialog boxes .. 9
Using ActiveX controls on a worksheet ...10
Executing the development effort ..12

Concerning Yourself with the End User ..12
Testing the application ..12
Making the application bulletproof ...13
Making the application aesthetically appealing and intuitive15
Creating a user Help system ...16
Documenting the development effort ..16
Distributing the application to the user ..16
Updating the application when necessary ...17

Other Development Issues...17
The user’s installed version of Excel ..17
Language issues ..17
System speed ..18
Video modes ...18

Chapter 2: Introducing Visual Basic for Applications. .19
Getting a Head Start with the Macro Recorder ..19

Creating your first macro ...20
Examining your macro ..21

Contents

xvi

Testing your macro ...22
Editing your macro ...22

Comparing absolute and relative macro recording ..23
Recording macros with absolute references ...23
Recording macros with relative references ..26

Other macro recording concepts ...28
Macro security in Excel ...28
Trusted locations ..28
Storing macros in your Personal Macro Workbook29
Assigning a macro to a button and other form controls..........................30
Placing a macro on the Quick Access toolbar ...31

Working with the Visual Basic Editor ...32
Understanding VBE components ...32

Menu bar ..32
Toolbar ..33
Project window ...33
Code window ..33
Immediate window ...34

Working with the Project window ...34
Adding a new VBA module ...35
Removing a VBA module ..35

Working with a Code window..36
Minimizing and maximizing windows ..36
Getting VBA code into a module ...37

Customizing the VBA environment ...39
The Editor tab ..39

The Editor Format tab ..41
The General tab ...41
The Docking tab ..42

VBA Fundamentals ...43
Understanding objects ...43
Understanding collections .. 44
Understanding properties ... 44

Specifying properties for the active object ...45
Understanding methods ..46

Deep Dive: Working with Range Objects .. 48
Finding the properties of the Range object... 48
The Range property .. 48
The Cells property ...49
The Offset property ...51

Essential Concepts to Remember ...52
Don’t Panic–You Are Not Alone ..54

Read the rest of the book ...54
Let Excel help write your macro ...54

Contents

xvii

Use the Help system ..55
Location matters when asking for help ...55
You need to be connected to the Internet ...55

Use the Object Browser ..55
Pilfer code from the Internet ...57
Leverage user forums ..57
Visit expert blogs ..58
Mine YouTube for video training ...58
Learn from the Microsoft Office Dev Center ...58
Dissect the other Excel files in your organization ..58
Ask your local Excel genius ..59

Chapter 3: VBA Programming Fundamentals . 61
VBA Language Elements: An Overview ...61
Comments ...63
Variables, Data Types, and Constants ...65

Defining data types ...66
Declaring variables ..67

Determining a data type ...68
Forcing yourself to declare all variables ..69

Scoping variables ..70
Local variables ...70
Module-wide variables ...71
Public variables ..72
Static variables ..72

Working with constants ...72
Declaring constants ..73
Using predefined constants ...73

Working with strings ...74
Working with dates ...74

Assignment Statements ..76
Arrays ...78
Declaring arrays ..78

Declaring multidimensional arrays ...79
Declaring dynamic arrays ..79

Object Variables ...80
User-Defined Data Types ...81
Built-in Functions ..82
Manipulating Objects and Collections ..85

With-End With constructs ..85
For Each-Next constructs ...86

Controlling Code Execution ...88
GoTo statements ..88
If-Then constructs ...89
Select Case constructs ...93

Contents

xviii

Looping blocks of instructions ...96
For-Next loops ..97
Do While loops ..100
Do Until loops .. 102

Chapter 4: Working with VBA Sub Procedures .105
About Procedures ... 105

Declaring a Sub procedure ..106
Scoping a procedure .. 107

Public procedures ... 107
Private procedures .. 107

Executing Sub Procedures ...108
Executing a procedure with the Run Sub/UserForm command109
Executing a procedure from the Macro dialog box ..109
Executing a procedure with a Ctrl+shortcut key combination 110
Executing a procedure from the Ribbon... 111
Executing a procedure from a customized shortcut menu 112
Executing a procedure from another procedure .. 112

Calling a procedure in a different module ... 113
Calling a procedure in a different workbook .. 114

Executing a procedure by clicking an object .. 117
Executing a procedure when an event occurs ... 118
Executing a procedure from the Immediate window 118

Passing Arguments to Procedures .. 119
Error-Handling Techniques ...123

Trapping errors ...123
Error-handling examples .. 124

A Realistic Example That Uses Sub Procedures .. 127
The goal ... 127
Project requirements ...128
What you know ...128
The approach ..129
Some preliminary recording ...129
Initial setup ...130
Code writing ... 131
Writing the Sort procedure... 132
More testing ... 137
Fixing the problems... 137

Utility availability ...140
Evaluating the project .. 141

Chapter 5: Creating Function Procedures .143
Sub Procedures vs. Function Procedures .. 143
Why Create Custom Functions? ..144

Contents

xix

An Introductory Function Example ...144
Using the function in a worksheet .. 145
Using the function in a VBA procedure ...146
Analyzing the custom function ..146

Function Procedures ..148
A function’s scope ...150
Executing function procedures ...150

From a procedure ..150
In a worksheet formula ...150
In a conditional formatting formula ... 151
From the VBE Immediate Window ... 153

Function Arguments .. 153
Function Examples ... 153

Functions with no argument .. 153
A function with one argument ...156
A function with two arguments ... 159
A function with an array argument .. 159
A function with optional arguments ...160
A function that returns a VBA array ... 162
A function that returns an error value .. 165
A function with an indefinite number of arguments 166

Emulating Excel’s SUM Function .. 167
Extended Date Functions .. 170
Debugging Functions ... 172
Dealing with the Insert Function Dialog Box .. 173

Using the MacroOptions method ... 174
Specifying a function category .. 176
Adding a function description manually ... 177

Using Add-Ins to Store Custom Functions .. 178
Using the Windows API .. 178

Windows API examples .. 179
Determining the Windows directory ... 179
Detecting the Shift key ...181
Learning more about API functions ..181

Chapter 6: Understanding Excel’s Events .183
What You Should Know About Events ..183

Understanding event sequences ...184
Where to put event-handler procedures ...184
Disabling events ...186
Entering event-handler code .. 187
Event-handler procedures that use arguments ...188

Getting Acquainted with Workbook-Level Events ..189
The Open event ... 191
The Activate event .. 191

Contents

xx

The SheetActivate event .. 192
The NewSheet event .. 192
The BeforeSave event .. 192
The Deactivate event ... 193
The BeforePrint event .. 193

Updating a header or footer ... 193
Hiding columns before printing ...194

The BeforeClose event .. 195
Examining Worksheet Events .. 197

The Change event .. 198
Monitoring a specific range for changes .. 199

Monitoring a range to make formulas bold .. 199
Monitoring a range to validate data entry ..200

The SelectionChange event ..203
The BeforeDoubleClick event ..204
The BeforeRightClick event ..205

Monitoring with Application Events ..206
Enabling Application-level events ..206
Determining when a workbook is opened ..208
Monitoring Application-level events ...209
Accessing events not associated with an object ... 210
The OnTime event ... 210
The OnKey event ... 212

An OnKey event example ... 212
Key Codes...213
Disabling shortcut menus .. 214

Chapter 7: VBA Programming Examples and Techniques. 217
Learning by Example.. 217
Working with Ranges ...218

Copying a range .. 218
Moving a range ... 219
Copying a variably sized range ... 219
Selecting or otherwise identifying various types of ranges 221
Resizing a range ..223
Prompting for a cell value ..223
Entering a value in the next empty cell ..225
Pausing a macro to get a user-selected range ... 226
Counting selected cells ..228
Determining the type of selected range ..228
Looping through a selected range efficiently ...230
Deleting all empty rows ...233
Duplicating rows a variable number of times ...234
Determining whether a range is contained in another range236

Contents

xxi

Determining a cell’s data type ..236
Reading and writing ranges ...238
A better way to write to a range ...239
Transferring one-dimensional arrays .. 241
Transferring a range to a variant array ...242
Selecting cells by value ... 243
Copying a noncontiguous range ..244

Working with Workbooks and Sheets ...246
Saving all workbooks ...246
Saving and closing all workbooks ... 247
Hiding all but the selection ... 247
Creating a hyperlink table of contents .. 249
Synchronizing worksheets ...250

VBA Techniques ... 251
Toggling a Boolean property... 251
Displaying the date and time ... 251
Displaying friendly time .. 253
Getting a list of fonts ..254
Sorting an array ..256
Processing a series of files ..256

Some Useful Functions for Use in Your Code ...258
The FileExists function .. 259
The FileNameOnly function .. 259
The PathExists function .. 259
The RangeNameExists function ..260
The SheetExists function ...260
The WorkbookIsOpen function .. 261
Retrieving a value from a closed workbook .. 262

Some Useful Worksheet Functions ... 263
Returning cell formatting information..264
A talking worksheet .. 265
Displaying the date when a file was saved or printed 265
Understanding object parents ..266
Counting cells between two values ... 267
Determining the last nonempty cell in a column or row268
Does a string match a pattern? ... 269
Extracting the nth element from a string .. 270
Spelling out a number ... 271
A multifunctional function .. 272
The SHEETOFFSET function .. 273
Returning the maximum value across all worksheets 274
Returning an array of nonduplicated random integers.................................. 275
Randomizing a range ... 276
Sorting a range ... 277

Contents

xxii

Windows API Calls ... 278
Understanding API declarations ... 279

32-bit vs. 64-bit declarations ... 279
Determining file associations ...280
Determining default printer information...281
Determining video display information ...282
Reading from and writing to the Registry ...283

Reading from the Registry ..284
Writing to the Registry ...284

Part II: Advanced VBA Techniques 287

Chapter 8: Working with Pivot Tables .289
An Introductory Pivot Table Example ..289

Creating a pivot table ..290
Examining the recorded code for the pivot table ..292
Cleaning up the recorded pivot table code ...292

Creating a More Complex Pivot Table ...295
The code that created the pivot table..296
How the more complex pivot table works ... 297

Creating Multiple Pivot Tables ...299
Creating a Reverse Pivot Table ..302

Chapter 9: Working with Charts .305
Getting the Inside Scoop on Charts ...305

Chart locations ...305
The macro recorder and charts ...306
The Chart object model ..306

Creating an Embedded Chart ...308
Creating a Chart on a Chart Sheet ...309
Modifying Charts ...309
Using VBA to Activate a Chart .. 310
Moving a Chart .. 311
Using VBA to Deactivate a Chart ... 312
Determining Whether a Chart Is Activated ... 313
Deleting from the ChartObjects or Charts Collection ... 313
Looping Through All Charts .. 314
Sizing and Aligning ChartObjects .. 317
Creating Lots of Charts ... 318
Exporting a Chart .. 321

Exporting all graphics ... 321
Changing the Data Used in a Chart .. 322

Changing chart data based on the active cell .. 324
Using VBA to determine the ranges used in a chart 325

Using VBA to Display Custom Data Labels on a Chart .. 328
Displaying a Chart in a UserForm .. 331

Contents

xxiii

Understanding Chart Events ...334
An example of using Chart events ..334
Enabling events for an embedded chart .. 337

Create a class module .. 337
Declare a public Chart object ... 337
Connect the declared object with your chart 337
Write event-handler procedures for the chart class 337

Example: Using Chart events with an embedded chart338
Discovering VBA Charting Tricks ...340

Printing embedded charts on a full page ...340
Creating unlinked charts ... 341
Displaying text with the MouseOver event ..343
Scrolling a chart ...345

Working with Sparkline Charts ... 347

Chapter 10: Interacting with Other Applications .351
Understanding Microsoft Office Automation ... 351

Understanding the concept of binding .. 351
Early binding ... 352
Late binding... 352

A simple automation example ...354
Automating Access from Excel ..354

Running an Access query from Excel ...354
Running an Access macro from Excel .. 356

Automating Word from Excel ... 356
Sending Excel data to a Word document .. 357
Simulating Mail Merge with a Word document ...358

Automating PowerPoint from Excel ...360
Sending Excel data to a PowerPoint presentation ... 361
Sending all Excel charts to a PowerPoint presentation.................................. 362
Convert a workbook into a PowerPoint presentation 363

Automating Outlook from Excel ..365
Mailing the active workbook as an attachment ..365
Mailing a specific range as an attachment ...366
Mailing a Single Sheet as an Attachment .. 367
Mailing All E-mail Addresses in Your Contact List ..368

Starting Other Applications from Excel ..369
Using the VBA Shell function ... 370
Using the Windows ShellExecute API function ... 372
Using AppActivate ... 373
Running Control Panel Dialog Boxes ... 374

Chapter 11: Working with External Data and Files .377
Working with External Data Connections ... 377
Power Query Basics .. 377

Understanding query steps ..383

Contents

xxiv

Refreshing Power Query data ...385
Managing existing queries ...385
Using VBA to create dynamic connections ...386
Iterating through all connections in a workbook ...389

Using ADO and VBA to Pull External Data ..390
The connection string ...390
Declaring a Recordset .. 392
Referencing the ADO object library ... 392
Putting it all together in code ..394
Using ADO with the active workbook .. 395

Querying data from an Excel workbook ... 395
Appending records to an existing Excel table 396

Working with Text Files .. 397
Opening a text file ..398
Reading a text file ...399
Writing a text file ...399
Getting a file number ..399
Determining or setting the file position ..399
Statements for reading and writing ..400

Text File Manipulation Examples ...401
Importing data in a text file ..401
Exporting a range to a text file ..401
Importing a text file to a range ..402
Logging Excel usage ..403
Filtering a text file ..404

Performing Common File Operations ..405
Using VBA file-related statements ...406

A VBA function to determine whether a file exists406
A VBA function to determine whether a path exists406
A VBA procedure to display a list of files in a directory407
A recursive VBA procedure to display a list of files in nested

directories ...409
Using the FileSystemObject object .. 410

Using FileSystemObject to determine whether a file exists 411
Using FileSystemObject to determine whether a path exists 412
Using FileSystemObject to list information about all available

disk drives ... 412
Zipping and Unzipping Files ... 413

Zipping files .. 413
Unzipping a file... 415

Contents

xxv

Part III: Working with UserForms 417

Chapter 12: Leveraging Custom Dialog Boxes. 419
Alternatives to UserForms .. 419
Using an Input Box .. 419

Using the VBA InputBox function ... 419
Using the Application.InputBox method ...422

Using the VBA MsgBox Function ...426
Using the Excel GetOpenFilename Method .. 431
Using the Excel GetSaveAsFilename Method ...434
Prompting for a Folder ... 435
Displaying Excel’s Built-in Dialog Boxes ... 435
Displaying a Data Form ..438

Making the data form accessible ...438
Displaying a data form by using VBA ..440

Chapter 13: Introducing UserForms .441
How Excel Handles Custom Dialog Boxes .. 441
Inserting a New UserForm ...442
Adding Controls to a UserForm ..443
Toolbox Controls ..443

CheckBox..444
ComboBox ...445
CommandButton ...445
Frame ...445
Image ...445
Label ..445
ListBox ...445
MultiPage ...445
OptionButton ..446
RefEdit ...446
ScrollBar...446
SpinButton ...446
TabStrip ...446
TextBox ..446
ToggleButton ..446

Adjusting UserForm Controls ...448
Adjusting a Control’s Properties ..450

Using the Properties window ..450
Common properties .. 452

Contents

xxvi

Accommodating keyboard users ..454
Changing the tab order of controls ...454
Setting hot keys ... 455

Displaying a UserForm .. 456
Adjusting the display position ... 456
Displaying a modeless UserForm ... 457
Displaying a UserForm based on a variable .. 457
Loading a UserForm ...458
About event-handler procedures ...458

Closing a UserForm ...458
Creating a UserForm: An Example ..460

Creating the UserForm ...460
Writing code to display the dialog box ..463
Testing the dialog box ...464
Adding event-handler procedures ...465
The finished dialog box ...466
Learning about events ...467
SpinButton events ...468

Mouse-initiated events ..469
Keyboard-initiated events ...469
What about code-initiated events? ... 470

Pairing a SpinButton with a TextBox .. 470
Referencing UserForm Controls ... 473
Customizing the Toolbox .. 474

Adding new pages to the Toolbox ... 474
Customizing or combining controls ... 474
Adding other ActiveX controls ... 475

Creating UserForm Templates .. 477
A UserForm Checklist ... 478

Chapter 14: Looking at UserForm Examples . 479
Creating a UserForm “Menu” ... 479

Using CommandButtons in a UserForm .. 479
Using a list box in a UserForm ..480

Selecting Ranges from a UserForm ...481
Creating a Splash Screen ..483
Disabling a UserForm’s Close Button ..486
Changing a UserForm’s Size ...487
Zooming and Scrolling a Sheet from a UserForm ...488
Exploring ListBox Techniques ... 490

Adding items to a ListBox control ... 491
Adding items to a list box at design time ... 491
Adding items to a list box at run-time.. 492
Adding only unique items to a list box ... 494

Contents

xxvii

Determining the selected item in a list box ... 496
Determining multiple selections in a list box .. 497
Multiple lists in a single list box .. 498
List box item transfer .. 498
Moving items in a list box ..500
Working with multicolumn ListBox controls ..502
Using a list box to select worksheet rows ..505
Using a list box to activate a sheet ...507
Using a text box to filter a list box ... 510

Using the MultiPage Control in a UserForm .. 512
Using an External Control ... 513
Animating a Label ... 516

Chapter 15: Implementing Advanced UserForm Techniques . 519
A Modeless Dialog Box .. 519
Displaying a Progress Indicator ...523

Creating a stand-alone progress indicator .. 524
Building the stand-alone progress indicator UserForm 525
Creating the code that increments the progress bar 526
Calling the stand-alone progress indicator from your code 527
Benefits of a stand-alone progress indicator .. 528

Showing a progress indicator that’s integrated into a UserForm 528
Modifying your UserForm for a progress indicator with a

MultiPage control ... 528
Inserting the UpdateProgress procedure for a progress

indicator with a MultiPage control ... 530
Modifying your procedure for a progress indicator with

a MultiPage control ... 530
How a progress indicator with a MultiPage control works 531
Showing a progress indicator without using a MultiPage control 531

Creating a nongraphical progress indicator .. 532
Creating the UserForm to display the steps ... 533
Modifying the calling procedure to use the progress indicator 533

Creating Wizards ..534
Setting up the MultiPage control for the wizard .. 535
Adding the buttons to the wizard’s UserForm .. 536
Programming the wizard’s buttons.. 536
Programming dependencies in a wizard ..538
Performing the task with the wizard ..540

Emulating the MsgBox Function .. 541
MsgBox emulation: MyMsgBox code...542
How the MyMsgBox function works ...543
Using the MyMsgBox function ..545

A UserForm with Movable Controls ..545

Contents

xxviii

A UserForm with No Title Bar ..546
Simulating a Toolbar with a UserForm ...548
Emulating a Task Pane with a UserForm ...550
A Resizable UserForm ... 551
Handling Multiple UserForm Controls with One Event Handler556
Selecting a Color in a UserForm ... 559
Displaying a Chart in a UserForm .. 561

Saving a chart as a GIF file ...562
Changing the Image control’s Picture property ..562

Making a UserForm Semitransparent ...562
A Puzzle on a UserForm ..563
Video Poker on a UserForm ...565

Part IV: Developing Excel Applications 567

Chapter 16: Creating and Using Add-Ins. .569
What Is an Add-In? ..569

Comparing an add-in with a standard workbook ..569
Why create add-ins? .. 570

Understanding Excel’s Add-in Manager .. 572
Creating an Add-In .. 574
An Add-In Example .. 575

Adding descriptive information for the example add-in 577
Creating an add-in ... 577
Installing an add-in .. 578
Testing the add-in ... 579
Distributing an add-in ... 579
Modifying an add-in ..580

Comparing XLAM and XLSM Files ...581
XLAM file VBA collection membership ...581
Visibility of XLSM and XLAM files ...582
Worksheets and chart sheets in XLSM and XLAM files582
Accessing VBA procedures in an add-in ...583

Manipulating Add-Ins with VBA ..587
Adding an item to the AddIns collection ..587
Removing an item from the AddIns collection588

AddIn object properties ...589
The Name property of an AddIn object ...589
The Path property of an AddIn object ...589
The FullName property of an AddIn object ..589
The Title property of an AddIn object ...590
The Comments property of an AddIn object ..590
The Installed property of an AddIn object ..590

Accessing an add-in as a workbook ... 592
AddIn object events .. 593

Contents

xxix

Optimizing the Performance of Add-Ins ... 593
Special Problems with Add-Ins ..594

Ensuring that an add-in is installed ...594
Referencing other files from an add-in ..596

Chapter 17: Working with the Ribbon .599
Ribbon Basics ..599
Customizing the Ribbon ...601

Adding a button to the Ribbon ...601
Adding a button to the Quick Access toolbar ...604
Understanding the limitations of Ribbon customization605

Creating a Custom Ribbon ...606
Adding a button to an existing tab ...607

The RibbonX code ... 611
Callback procedures .. 612
The CUSTOM UI part .. 612

Adding a check box to an existing tab .. 613
The RibbonX code ... 614
The VBA code ... 615

Ribbon controls demo .. 616
Creating a new tab .. 617
Creating a Ribbon group .. 617
Creating controls .. 618

A dynamicMenu control example .. 625
More on Ribbon customization ... 627

Using VBA with the Ribbon .. 628
Accessing a Ribbon control ..629
Working with the Ribbon ...630
Activating a tab .. 631

Creating an Old-Style Toolbar .. 632
Limitations of old-style toolbars... 632
Code to create a toolbar ... 632

Chapter 18: Working with Shortcut Menus .637
CommandBar Overview ... 637

CommandBar types .. 637
Listing shortcut menus ..638
Referring to CommandBars ... 639

Referring to Controls in a CommandBar ...640
Properties of CommandBar Controls ... 641
Displaying All Shortcut Menu Items ..642
Using VBA to Customize Shortcut Menus..644

Shortcut menu and the single-document interface644
Resetting a shortcut menu ...646

Disabling a shortcut menu ... 647
Disabling shortcut menu items ...648

Contents

xxx

Adding a new item to the Cell shortcut menu ..648
Adding a submenu to a shortcut menu ..650
Limiting a shortcut menu to a single workbook ... 652

Shortcut Menus and Events ..654
Adding and deleting menus automatically ...654
Disabling or hiding shortcut menu items ...654
Creating a context-sensitive shortcut menu ...655

Chapter 19: Providing Help for Your Applications .659
Help for Your Excel Applications ... 659
Help Systems That Use Excel Components .. 661

Using cell comments for help .. 661
Using a text box for help ...663
Using a worksheet to display help text ...664
Displaying help in a UserForm ..665

Using Label controls to display help text ..666
Using a scrolling label to display help text ...667
Using a ComboBox control to select a help topic668

Displaying Help in a Web Browser .. 670
Using HTML files ... 670
Using an MHTML file .. 671

Using the HTML Help System .. 672
Using the Help method to display HTML Help .. 674
Associating a help file with your application ... 675
Associating a help topic with a VBA function .. 675

Chapter 20: Leveraging Class Modules. .679
What Is a Class Module? .. 679

Built-in class modules ..680
Custom class modules ..680

Classes and objects ...680
Objects, properties, and methods ...681

Creating a NumLock Class ...681
Inserting a class module ..682
Adding VBA code to the class module ...683
Using the CNumLock class ..684

Coding Properties, Methods, and Events ..685
Programming properties of objects ...685
Programming methods for objects ..687
Class module events ..688

Exposing a QueryTable Event ..688
Creating a Class to Hold Classes .. 692

Creating the CSalesRep and CSalesReps classes .. 693
Creating the CInvoice and CInvoices classes ..695
Filling the parent classes with objects ..696
Calculating the commissions .. 697

Contents

xxxi

Chapter 21: Understanding Compatibility Issues .699
What Is Compatibility? ...699
Types of Compatibility Problems ..699
Avoid Using New Features ... 701
But Will It Work on a Mac? .. 703
Dealing with 64-Bit Excel ...704
Creating an International Application ... 705
Multilanguage Applications .. 707
VBA Language Considerations ...708
Using Local Properties ..708
Identifying System Settings ...709
Date and Time Settings .. 711

Part V: Appendix 713

Appendix: VBA Statements and Functions Reference . 715

Index .725

xxxiii

Introduction

F or most of us, the path to Excel VBA programming starts with the need to perform
some task that can’t be done with the standard tools in Excel. That task is different
for each of us. Maybe that task is to create separate workbooks automatically for all

the rows in a data set. Maybe that task is to automate the emailing of dozens of reports.
Whatever that task is for you, you can bet that someone has started their own journey into
Excel VBA with the same need.

The beautiful thing about Excel VBA is that you don’t have to be an expert to start solving
problems with it. You can learn just enough to solve a particular problem, or you can go fur-
ther and discover ways to handle all kinds of automation scenarios.

Whatever your goals may be, Excel 2019 Power Programming with VBA will help you harness the
power of the VBA language to automate tasks, work smarter, and be more productive.

Topics Covered
This book focuses on Visual Basic for Applications (VBA), the programming language built
into Excel (and other applications that make up Microsoft Office). More specifically, it shows
you how to write programs that automate various tasks in Excel. This book covers every-
thing from recording simple macros through creating sophisticated user-oriented applica-
tions and utilities.

You can approach this book in any way you please. You can read it from cover to cover, or
you can skip around, picking up useful tidbits here and there. VBA programming is often a
task-oriented endeavor. So, if you’re faced with a challenging task, you might try the index
first to see where the book might specifically address your problem.

This book does not cover Microsoft Visual Studio Tools for Office (VSTO), a technology that
uses Visual Basic .NET and Microsoft Visual C#. VSTO can also be used to control Excel and
other Microsoft Office applications.

As you may know, Excel 2019 is available for other platforms. For example, you can use
Microsoft’s Excel Web App in your browser and even iPads and tablets. These versions
do not support VBA. In other words, this book is for the desktop version of Excel 2019
for Windows.

Introduction

xxxiv

What You Need to Know
This is not a book for beginning Excel users. If you have no experience with Excel, a better
choice might be the Excel 2019 Bible (Wiley, 2018), which provides comprehensive coverage
of all the features of Excel and is meant for users of all levels.

To get the most out of this book, you should be a relatively experienced Excel user who
knows how to do the following:

 ■ Create workbooks, insert sheets, save files, and so on
 ■ Navigate through a workbook
 ■ Use the Excel Ribbon user interface
 ■ Enter formulas
 ■ Use Excel’s worksheet functions
 ■ Name cells and ranges
 ■ Use basic Windows features, such as file management techniques and the Clipboard

What You Need to Have
Excel is available in several versions, including a web version and a version for tablets
and phones. This book was written exclusively for the desktop version of Microsoft Excel
2019 for Windows. If you plan to develop applications that will be used in earlier versions
of Excel, we strongly suggest you use the earliest version of Excel that your target audi-
ence will be using. Over the last few years, Microsoft has adopted an agile release cycle
for the web version of Excel with Office 365, generating release updates practically on a
monthly basis.

It is important to have a full installation of Excel, and if you want to try the more
advanced chapters involving communication between Excel and other Office applications,
you will need a full installation of Office.

The version of Windows you use is not important. Any computer system that can run Win-
dows will suffice, but you’ll be much better off with a fast machine with plenty of memory.
Excel is a large program, and using it on a slower system or a system with minimal memory
can be extremely frustrating.

Please note that this book is not applicable to Microsoft Excel for Mac.

Conventions Used in This Book
Take a minute to skim this section and learn about some of the typographic conventions
used throughout this book.

Introduction

xxxv

Excel commands
Excel uses a context-sensitive Ribbon menu system. The words along the top (such as Insert
and View) are known as tabs. Click a tab, and the Ribbon of icons displays the commands
that are most suited to the task at hand. Each icon has a name that is (usually) displayed
next to or below the icon. The icons are arranged in groups, and the group name appears
below the icons.

The convention used in this book is to indicate the tab name, followed by the group name,
followed by the icon name. So, for example, the command used to toggle word wrap in a cell
is indicated as follows:

Home ➪ Alignment ➪ Wrap Text

Clicking the first tab, labeled File, takes you to the Backstage window. The Backstage
window has commands along the left side of the window. To indicate Backstage commands,
we use the word File, followed by the command. For example, the following command dis-
plays the Excel Options dialog box:

File ➪ Options

Visual Basic Editor commands
Visual Basic Editor is the window in which you will work with your VBA code. VB Editor
uses the traditional menu-and-toolbar interface. A command like the following means to
click the Tools menu and select the References menu item:

Tools ➪ References

Keyboard conventions
You need to use the keyboard to enter data. In addition, you can work with menus and dia-
log boxes directly from the keyboard—a method that you might find easier if your hands
are already positioned over the keys.

Input
Inputs that you are supposed to type from the keyboard will appear in boldface—for exam-
ple, enter =SUM(B2: B50) in cell B51.

Lengthier inputs will appear on a separate line in a monospace font. For example, we might
instruct you to enter the following formula:

=VLOOKUP(StockNumber,PriceList,2)

VBA code
This book contains many snippets of VBA code, as well as complete procedure listings. Each
listing appears in a monospace font, and each line of code occupies a separate line.

Introduction

xxxvi

(We copied these listings directly from the VBA module and pasted them into our word
 processors.) To make the code easier to read, we often use one or more tabs to create inden-
tations. Indentation is optional, but it does help to delineate statements that go together.

If a line of code doesn’t fit on a single line in this book, we use the standard VBA line con-
tinuation sequence: at the end of a line, a space followed by an underscore character indi-
cates that the line of code extends to the next line. For example, the following two lines
are a single code statement:

columnCount = Application.WorksheetFunction. _
CountA(Range("A:A")) + 1

You can enter this code either on two lines, exactly as shown, or on a single line without
the space and underscore character.

Functions, filenames, and named ranges
Excel’s worksheet functions appear in uppercase font, like so: “Enter a SUM formula in
cell C20.” For VBA procedure names, properties, methods, and objects, we often use mixed
uppercase and lowercase letters to make these names easier to read.

Typographical conventions
Anything that you’re supposed to type using the keyboard appears in bold. Lengthy input
usually appears on a separate line. Here’s an example:

="Part Name: " &VLOOKUP(PartNumber,PartList,2)

Names of the keys on your keyboard appear in normal type. When two keys should be
pressed simultaneously, they’re connected with a plus sign, like this: “Press Ctrl+C to copy
the selected cells.”

The four “arrow” keys are collectively known as the navigation keys.

Excel built-in worksheet functions appear in monofont in uppercase like this: “Note the
SUMPRODUCT function used in cell C20.”

Mouse conventions
You’ll come across some of the following mouse-related terms, which are all standard fare.

Mouse pointer This is the small graphic figure that moves on-screen when you move
your mouse. The mouse pointer is usually an arrow, but it changes shape when you
move to certain areas of the screen or when you’re performing certain actions.

Point Move the mouse so that the mouse pointer is on a specific item; for example,
“Point to the Save button on the toolbar.”

Click Press the left mouse button once and release it immediately.

Introduction

xxxvii

Right-click Press the right mouse button once and release it immediately. The right
mouse button is used in Excel to open shortcut menus that are appropriate for what-
ever is currently selected.

Double-click Press the left mouse button twice in rapid succession.

Drag Press the left mouse button and keep it pressed while you move the mouse.
Dragging is often used to select a range of cells or to change the size of an object.

What the Icons Mean
Throughout the book, we use icons to call your attention to points that are particularly
important.

How This Book Is Organized
The chapters of this book are grouped into five main parts.

Part I: Introduction to Excel VBA
In Part I, we introduce you to VBA, providing the programming fundamentals that you will
need to create and manage Excel subroutines and functions. Chapter 1 sets the stage with
a conceptual overview of Excel application development. Chapters 2 through 6 cover every-
thing you need to know to start coding in VBA. Chapter 7 rounds out your introduction to
VBA with many useful examples.

Note
We use Note icons to tell you that something is important—perhaps a concept that could help you master the task at
hand or something fundamental for understanding subsequent material.

tip
Tip icons indicate a more efficient way of doing something or a technique that might not be obvious.

 These icons are used to refer to other section or chapters that have more to say on a subject.

CautioN
We use caution icons when the operation that we’re describing can cause problems if you’re not careful.

oN the Web
These icons indicate that an example file is available on the book’s website. See the section “What’s on the Website”
later in this introduction.

Introduction

xxxviii

Part II: Advanced VBA Techniques
Part II covers additional techniques that are often considered advanced. Chapters 8 and 9
discuss how to use VBA to work with pivot tables and charts (including Sparkline graphics).
Chapter 10 discusses various techniques that you can use to interact with other applica-
tions (such as Word and Outlook). Chapter 11 concludes Part II with a discussion on how to
work with files and external data sources, including how to control Power Query from VBA.

Part III: Working with UserForms
The four chapters in Part III cover custom dialog boxes (UserForms). Chapter 12 presents
some built-in alternatives to creating custom UserForms. Chapter 13 provides an introduc-
tion to UserForms and the various controls that you can use. Chapters 14 and 15 present
many examples of custom dialog boxes, ranging from basic to advanced.

Part IV: Developing Excel Applications
The chapters in Part IV deal with important elements of creating user-oriented applications.
Chapter 16 offers a hands-on discussion of creating add-ins. Chapters 17 and 18 discuss
how to modify Excel’s Ribbon and shortcut menus. Chapter 19 demonstrates several ways to
provide online help for your applications. In Chapter 20, we present a primer on developing
user-oriented applications. Chapter 21 rounds out your exploration of Excel VBA program-
ming with some information regarding compatibility.

Part V: Appendix
Part V includes an appendix that offers a reference guide to all the statements and
functions exposed to VBA as keywords.

How to Use This Book
The topics in this book get more advanced as you progress through it, so you can work
through the material from front to back and build your skills as you go. You can also use
this book as a reference that you can consult when you need help with the following
situations:

 ■ You’re stuck while trying to do something
 ■ You need to do something that you’ve never done before
 ■ You have some time on your hands, and you’re interested in learning something

new about VBA

The index is comprehensive, and each chapter typically focuses on a single broad topic.
Don’t be discouraged if some of the material is over your head. Most VBA programmers get
by just fine by using only a subset of the language.

Introduction

xxxix

What’s on the Website
Nearly everything discussed in this book has examples with it. You can (and should) down-
load the many useful examples included with this book.

The files are located at www.wiley.com/go/excel2019powerprogramming.

http://www.wiley.com/go/excel2019powerprogramming

IN THIS PART
Chapter 1
Essentials of Spreadsheet Application Development

Chapter 2
Introducing Visual Basic for Applications

Chapter 3
VBA Programming Fundamentals

Chapter 4
Working with VBA Sub Procedures

Chapter 5
Creating Function Procedures

Chapter 6
Understanding Excel’s Events

Chapter 7
VBA Programming Examples and Techniques

Part I

Introduction to Excel VBA

Excel® 2019 Power Programming with VBA, First Edition. Michael Alexander and Dick Kusleika.
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.

3

CHAP T ER

1
Essentials of Spreadsheet
Application Development

IN THIS CHAPTER
Discovering the basic steps involved in spreadsheet application development

Determining end users’ needs

Planning applications to meet users’ needs

Developing and testing your applications

Documenting your development efforts and writing user documentation

What Is a Spreadsheet Application?
For the purposes of this book, a spreadsheet application is a spreadsheet file (or group of related
files) that is designed so that someone other than the developer can perform specific tasks without
extensive training. According to this definition, most of the spreadsheet files that you’ve developed
probably don’t qualify as spreadsheet applications. You may have dozens or hundreds of spreadsheet
files on your hard drive, but it’s a safe bet that most of them aren’t designed for others to use.

A good spreadsheet application does the following:

 ■ Enables the end user to perform a task that he or she probably would not be able to do
otherwise.

 ■ Provides the appropriate solution to the problem. (A spreadsheet environment isn’t always
the optimal approach.)

 ■ Accomplishes what it is supposed to do. This prerequisite may be obvious, but it’s not at all
uncommon for applications to fail this test.

 ■ Produces accurate results and is free of bugs.
 ■ Uses appropriate and efficient methods and algorithms to accomplish its job.
 ■ Traps errors before the user is forced to deal with them.
 ■ Does not allow the user to delete or modify important components accidentally (or

intentionally).

Excel® 2019 Power Programming with VBA, First Edition. Michael Alexander and Dick Kusleika.
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.

Part I: Introduction to Excel VBA

4

 ■ Has a clear and consistent user interface so that the user always knows how
to proceed.

 ■ Has well-documented formulas, macros, and user interface elements that allow for
subsequent changes, if necessary.

 ■ Is designed so that it can be modified in simple ways without making major
changes. A basic fact is that a user’s needs change over time.

 ■ Has an easily accessible help system that provides useful information on at least
the major procedures.

 ■ Is designed to be portable and to run on any system that has the proper software
(in this case, a copy of a supported version of Excel).

It should come as no surprise that it is possible to create spreadsheet applications for many
different usage levels, ranging from a simple fill-in-the-blank template to an extremely
complex application that uses a custom interface and may not even look like a spreadsheet.

Steps for Application Development
There is no simple, surefire recipe for developing an effective spreadsheet application.
Everyone has his or her own style for creating such applications. In addition, every project
is different and therefore requires its own approach. Finally, the demands and technical
expertise of the people with whom (or for whom) you work also play a role in how the
development process proceeds.

Spreadsheet developers typically perform the following activities:

 ■ Determine the needs of the user(s)
 ■ Plan an application that meets these needs
 ■ Determine the most appropriate user interface
 ■ Create the spreadsheet, formulas, macros, and user interface
 ■ Test and debug the application
 ■ Attempt to make the application bulletproof
 ■ Make the application aesthetically appealing and intuitive
 ■ Document the development effort
 ■ Develop user documentation and Help systems
 ■ Distribute the application to the user
 ■ Update the application when necessary

Not all of these steps are required for each application, and the order in which these activ-
ities are performed varies from project to project. We describe each of these activities in
the pages that follow. For most of these items, we cover the technical details in subse-
quent chapters.

Chapter 1: Essentials of Spreadsheet Application Development

5

1

Determining User Needs
When you undertake a new Excel project, one of your first steps is to identify exactly what
the end users require. Failure to assess the end users’ needs thoroughly early on often
results in additional work later when you have to adjust the application so that it does
what it was supposed to do in the first place.

In some cases, you’ll be intimately familiar with the end users—you may even be an end
user yourself. In other cases (for example, if you’re a consultant developing a project for a
new client), you may know little or nothing about the users or their situations.

How do you determine the needs of the user? If you’ve been asked to develop a spreadsheet
application, it’s a good idea to meet with the end users and ask specific questions. Better
yet, get everything in writing, create flow diagrams, pay attention to minor details, and do
anything else to ensure that the product you deliver is the product that is needed.

Here are some guidelines that may help make this phase easier:

 ■ Don’t assume that you know what the user needs. Second-guessing at this stage
almost always causes problems later.

 ■ If possible, talk directly to the end users of the application, not just their supervi-
sor or manager.

 ■ Learn what, if anything, is currently being done to meet the users’ needs. You
might be able to save some work by simply adapting an existing application.
At the very least, looking at current solutions will familiarize you with the
operation.

 ■ Identify the resources available at the users’ site. For example, try to determine
whether you must work around any hardware or software limitations.

 ■ If possible, determine the specific hardware systems that will be used. If your
application will be used on slow systems, you need to take that into account.

 ■ Identify which versions of Excel are in use. Keep in mind that users can have ver-
sions of Excel running on macOS, mobile platforms, and Windows. These have to be
taken into account when planning an automated Excel solution. Although Microsoft
does everything in its power to urge users to upgrade to the latest version of the
software, the majority of Excel users don’t.

 ■ Understand the skill levels of the end users. This information will help you design
the application appropriately.

 ■ Determine how long the application will be used and whether any changes are
anticipated during the lifetime of the project. Knowing this information may
influence the amount of effort that you put into the project and help you plan
for changes.

Finally, don’t be surprised if the project specifications change before you complete the
application. This occurrence is common, and you’re in a better position if you expect

Part I: Introduction to Excel VBA

6

changes rather than being surprised by them. Just make sure that your contract (if you
have one) addresses the issue of changing specifications.

Planning an Application That Meets User Needs
After you determine the end users’ needs, it’s tempting to jump right in and start fiddling
around in Excel. Take it from those who suffer from this problem: try to restrain yourself.
Builders don’t construct a house without a set of blueprints, and you shouldn’t build a
spreadsheet application without some type of plan. The formality of your plan depends on
the scope of the project and your general style of working, but you should spend at least
some time thinking about what you’re going to do and coming up with a plan of action.

Before rolling up your sleeves and settling down at your keyboard, you’ll benefit by taking
some time to consider the various ways that you can approach the problem. This planning
period is where a thorough knowledge of Excel pays off. Avoiding blind alleys rather than
stumbling into them is always a good idea.

If you ask a dozen Excel experts to design an application based on precise specifications,
chances are that you’ll get a dozen different implementations of the project that meet
those specifications. Of those solutions, some will be better than the others because Excel
often provides several options to accomplish a task. If you know Excel inside and out, you’ll
have a good idea of the potential methods at your disposal, and you can choose the one
most appropriate for the project at hand. Often, a bit of creative thinking yields an unusual
approach that’s vastly superior to other methods.

Consider some general options at the beginning stage of this planning period, such as the
following:

File structure Think about whether you want to use one workbook with multiple
sheets, several single-sheet workbooks, or a template file.

Data structure You should always consider how your data will be structured and also
determine whether you will be using external database files, data sources stored on
the cloud, or storing everything in worksheets.

Add-in or workbook file In some cases, an add-in may be the best choice for your
final product, or perhaps you might use an add-in with a standard workbook.

Version of Excel Will your Excel application be used with Excel 2019 only, or will
your application also need to run on earlier versions of Excel? What about versions
of Excel running on other platforms, such as macOS or mobile devices? These consid-
erations are important because each new version of Excel adds features that aren’t
available in previous versions.

Error handling Error handling is a major issue with applications. You need to deter-
mine how your application will detect and deal with errors. For example, if your
application performs pivot table operations on the active sheet, you need to be able
to handle a case in which a pivot table does not exist on the sheet that is active.

Chapter 1: Essentials of Spreadsheet Application Development

7

1

Use of special features If your application needs to summarize a lot of data, you
may want to consider using Excel’s pivot table feature, or you may want to use
Excel’s data validation feature as a check for valid data entry.

Performance issues The time to start thinking about increasing the speed and effi-
ciency of your application is in the development stage, not when the application is
complete and users are complaining.

Level of security As you may know, Excel provides several protection options to
restrict access to particular elements of a workbook. For example, you can lock
cells so that formulas cannot be changed, and you can assign a password to prevent
unauthorized users from viewing or accessing specific files. Determining up front
exactly what you need to protect—and what level of protection is necessary—will
make your job easier.

You’ll probably have to deal with many other project-specific considerations in this phase.
Consider all options, and don’t settle on the first solution that comes to mind.

Another design consideration is remembering to plan for change. You’ll do yourself a favor
if you make your application as generic as possible. For example, don’t write a procedure
that works with only a specific range of cells. Rather, write a procedure that accepts any
range as an argument. When the inevitable changes are requested, such a design makes it
easier for you to carry out the revisions. Also, you may find that the work that you do for
one project is similar to the work that you do for another. Keep reusability in mind when
you are planning a project.

Avoid letting the end user completely guide your approach to a problem. For example, sup-
pose that you meet with a manager who tells you that the department needs an application
to write text files that will be imported into another application. Don’t confuse the user’s
need with the solution. The user’s real need is to share data. Using an intermediate text
file to do it is just one possible solution; better ways to approach the problem may exist.
In other words, don’t let the users define their problem by stating it in terms of a solution
approach. Determining the best approach is your job.

Determining the Most Appropriate User Interface
When you develop spreadsheets that others will use, you need to pay special attention to the
user interface. By user interface, we mean the method by which the user interacts with
the application and executes your VBA macros.

Note
Be aware that Excel’s protection features aren’t 100 percent effective—far from it. If you desire complete and
absolute security for your application, Excel probably isn’t the best platform.

Part I: Introduction to Excel VBA

8

Since the introduction of Excel 2007, some of these user interface decisions are irrelevant.
Custom menus and toolbars are, for all intents and purposes, obsolete. Consequently, devel-
opers must learn how to work with the Ribbon.

Excel provides several features that are relevant to user interface design:

 ■ Ribbon customization
 ■ Shortcut menu customization
 ■ Shortcut keys
 ■ Custom dialog boxes (UserForms)
 ■ Message boxes and input boxes
 ■ Controls (such as a ListBox or a CommandButton) placed directly on a worksheet

We discuss these features briefly in the following sections and cover them more thoroughly
in later chapters.

Customizing the Ribbon
As a developer, you have a fair amount of control over the Ribbon including which tabs
and commands are available when your Excel application opens. Although Excel allows end
users to modify the Ribbon, making UI changes via code isn’t a simple task.

Customizing shortcut menus
Excel allows the VBA developer to customize the right-click shortcut menus. Right-click
menus can offer users a way to trigger an action easily without having to move too far
from the range in which they are working. Figure 1.1 illustrates a customized shortcut
menu that appears when a cell is right-clicked.

FIGURE 1.1

A customized shortcut menu

See Chapter 17, “Working with the Ribbon,” for information about working with the Ribbon.

Chapter 18, “Working with Shortcut Menus,” describes how to work with shortcut menus using VBA,
including some limitations due to the single document interface introduced in Excel 2013.

Chapter 1: Essentials of Spreadsheet Application Development

9

1

Creating shortcut keys
Another user interface option at your disposal is a custom shortcut key. Excel lets you
assign a Ctrl key (or Shift+Ctrl key) combination to a macro. When the user presses the key
combination, the macro executes.

There are two caveats, however. First, make it clear to the user which keys are active and
what they do. Second, do not assign a key combination that’s already used for something
else. A key combination that you assign to a macro takes precedence over the built-in
shortcut keys. For example, Ctrl+S is a built-in Excel shortcut key used to save the current
file. If you assign this key combination to a macro, you lose the capability to save the file
with Ctrl+S. Remember that shortcut keys are case sensitive, so you can use a combination
such as Ctrl+Shift+S.

Creating custom dialog boxes
Anyone who has used a personal computer for any length of time is undoubtedly familiar
with dialog boxes. Consequently, custom Excel dialog boxes can play a major role in the
user interfaces that you design for your applications. Figure 1.2 shows an example of a
custom dialog box.

A custom dialog box is known as a UserForm. A UserForm can solicit user input, get a user’s
options or preferences, and direct the flow of your entire application. The elements that
make up a UserForm (buttons, drop-down lists, check boxes, and so on) are called controls—
more specifically, ActiveX controls. Excel provides a standard assortment of ActiveX controls,
and you can also incorporate third-party controls.

After adding a control to a dialog box, you can link it to a worksheet cell so that it doesn’t
require any macros (except a simple macro to display the dialog box). Linking a control to a
cell is easy, but it’s not always the best way to get user input from a dialog box. Most of the
time, you want to develop VBA macros that work with your custom dialog boxes.

FIGURE 1.2

A dialog box created with Excel’s UserForm feature

We cover UserForms in detail in Part III.

Part I: Introduction to Excel VBA

10

Using ActiveX controls on a worksheet
Excel also lets you add UserForm ActiveX controls to a worksheet’s drawing layer (an invis-
ible layer on top of a sheet that holds pictures, charts, and other objects). Figure 1.3 shows
a simple worksheet model with several UserForm controls inserted directly in the work-
sheet. This sheet contains the following ActiveX controls: a CheckBox, a ScrollBar, and
two sets of OptionButtons. This workbook uses no macros. Rather, the controls are linked
to worksheet cells.

Perhaps the most common control is a CommandButton. By itself, a CommandButton
doesn’t do anything, so you need to attach a macro to each CommandButton.

Using dialog box controls directly in a worksheet often eliminates the need for custom
dialog boxes. You can often greatly simplify the operation of a spreadsheet by adding a few
ActiveX controls (or form controls) to a worksheet. These ActiveX controls let the user make
choices by operating familiar controls rather than making entries in cells.

Access these controls by using the Developer ➪ Controls ➪ Insert command (see Figure 1.4).
If the Developer tab isn’t on the Ribbon, add it by using the Customize Ribbon tab of the
Excel Options dialog box.

FIGURE 1.3

You can add UserForm controls to worksheets and link them to cells.

oN the Web
This workbook is available on this book’s website. The file is named worksheet controls.xlsx.

Chapter 1: Essentials of Spreadsheet Application Development

11

1

The controls come in two types: form controls and ActiveX controls. Both sets of con-
trols have their advantages and disadvantages. Generally, form controls are easier to
use, but ActiveX controls are a bit more flexible. Table 1.1 summarizes these two classes
of controls.

FIGURE 1.4

Using the Ribbon to add controls to a worksheet

TABLE 1.1 ActiveX Controls versus Form Controls

ActiveX Controls Form Controls

Excel versions 97, 2000, 2002, 2003, 2007, 2010,
2013, 2016, 2019

5, 95, 97, 2000, 2002, 2003, 2007,
2010, 2013, 2016, 2019

Controls
available

CheckBox, TextBox, Command
Button, OptionButton, ListBox,
ComboBox, ToggleButton, Spin
Button, ScrollBar, Label, Image
(and others can be added)

GroupBox, Button, Check
Box, OptionButton, List-
Box, DropDown (ComboBox),
ScrollBar, Spinner

Macro
code storage

In the code module for the sheet In any standard VBA module

Macro name Corresponds to the control name
(for example, CommandButton1_
Click)

Any name you specify

Correspond to UserForm controls Pre–Excel 97 dialog
sheet controls

Customization Extensive, using the Properties box Minimal

Respond to events Yes Click or Change events only

Part I: Introduction to Excel VBA

12

Executing the development effort
After you identify user needs, determine the approach you’ll take to meet those needs, and
decide on the components that you’ll use for the user interface. Next, it’s time to get down
to the nitty-gritty and start creating the application. This step, of course, constitutes a
great deal of the total time you spend on a particular project.

How you go about developing the application depends on your personal style and the
nature of the application. Except for simple fill-in-the-blanks template workbooks, your
application will probably use macros. Creating macros in Excel is easy, but creating good
macros is difficult.

Concerning Yourself with the End User
In this section, we discuss the important development issues that surface as your applica-
tion becomes more and more workable and as the time to package and distribute your work
grows nearer.

Testing the application
How many times have you used a commercial software application, only to have it
bomb out on you at a crucial moment? Most likely, the problem was caused by insufficient
testing that didn’t catch all of the bugs. All nontrivial software has bugs, but in the best
software, the bugs are simply more obscure. As you’ll see, you sometimes must work around
the bugs in Excel to get your application to perform properly.

After you create your application, you need to test it. Testing is one of the most crucial
steps; it’s not uncommon to spend as much time testing and debugging an application as you
did creating it. Actually, you should be doing a great deal of testing during the development
phase. After all, whether you’re writing a VBA routine or creating formulas in a worksheet,
you want to make sure that the application is working the way it’s supposed to work.

Like standard compiled applications, spreadsheet applications that you develop are prone to
bugs. A bug can be defined as (1) something that does happen but shouldn’t happen while
a program (or application) is running, or (2) something that doesn’t happen when it should
happen. Both species of bugs are equally nasty, and you should plan on devoting a good
portion of your development time to testing the application under all reasonable conditions
and fixing any problems that you find.

It’s important to test thoroughly any spreadsheet application that you develop for others.
And depending on its eventual audience, you may want to make your application bullet-
proof. In other words, try to anticipate all the errors and screw-ups that could possibly
occur and make concerted efforts to avoid them—or, at least, to handle them gracefully.
This foresight not only helps the end user but also makes it easier on you and protects your
reputation. Also, consider using beta testing—your end users are likely candidates because
they’re the ones who will be using your product. (See the upcoming sidebar “What about
beta testing?”)

Chapter 1: Essentials of Spreadsheet Application Development

13

1

Although you can’t conceivably test for all possibilities, your macros should be able to han-
dle common types of errors. For example, what if the user enters a text string instead of a
numeric value? What if the user tries to run your macro when a workbook isn’t open? What
if the user cancels a dialog box without making any selections? What happens if the user
presses Ctrl+F6 and jumps to the next window? When you gain experience, these types of
issues become very familiar, and you account for them without even thinking.

Making the application bulletproof
If you think about it, destroying a spreadsheet is fairly easy. Erasing one critical formula
or value can cause errors throughout the entire worksheet—and perhaps even other depen-
dent worksheets. Even worse, if the damaged workbook is saved, it replaces the good copy
on disk. Unless a backup procedure is in place, the user of your application may be in
trouble, and you will probably be blamed for it.

Obviously, you can easily see why you need to add some protection when users—especially
novices—will be using your worksheets. Excel provides several techniques for protecting
worksheets and parts of worksheets.

Lock specific cells You can lock specific cells (by using the Protection tab in the
Format Cells dialog box) so that users can’t change them. Locking takes effect
only when the document is protected with the Review ➪ Changes ➪ Protect Sheet
command. The Protect Sheet dialog box has options that allow you to specify which
actions users can perform on a protected sheet (see Figure 1.5).

What about beta testing?
Software manufacturers typically have a rigorous testing cycle for new products. After extensive
internal testing, the pre-release product is usually sent to a group of interested users for beta testing.
This phase often uncovers additional problems that are usually corrected before the product’s
final release.

If you’re developing an Excel application that more than a few people will use, you may want to con-
sider a beta test. This test enables your intended users to use your application in its proposed setting
on different hardware (usually).

The beta period should begin after you’ve completed all of your own testing and you feel that the
application is ready to distribute. You’ll need to identify a group of users to help you. The process
works best if you distribute everything that will ultimately be included in your application: user doc-
umentation, the installation program, help, and so on. You can evaluate the beta test in a number of
ways, including face-to-face discussions, email, questionnaires, and phone calls.

You almost always become aware of problems that you need to correct or improvements that you need
to make before you undertake a widespread distribution of the application. Of course, a beta-testing
phase takes additional time, and not all projects can afford that luxury.

Part I: Introduction to Excel VBA

14

Hide the formulas in specific cells You can hide the formulas in specific cells
(by using the Protection tab in the Format Cells dialog box) so that others can’t
see them. Again, hiding takes effect only when the document is protected by choos-
ing the Review ➪ Changes ➪ Protect Sheet command.

Protect an entire workbook You can protect an entire workbook—the structure of
the workbook, the window position and size, or both. Use the Review ➪ Protect ➪
Protect Workbook command for this purpose.

Lock objects on the worksheet Use the Properties section in the task pane to lock
objects (such as shapes) and prevent them from being moved or changed. To access
this section of the task pane, right-click the object and choose Size and Properties.
Locking objects takes effect only when the document is protected using the Review
➪ Protect ➪ Protect Sheet command. By default, all objects are locked.

Hide rows, columns, sheets, and documents You can hide rows, columns, sheets, and
entire workbooks. Doing so helps prevent the worksheet from looking cluttered,
and it also provides some modest protection against prying eyes.

Designate an Excel workbook as read-only recommended You can designate an
Excel workbook as read-only recommended (and use a password) to ensure that the
file can’t be overwritten with any changes. You make this designation in the Gen-
eral Options dialog box. Display this dialog box by choosing File ➪ Save As, choos-
ing a directory, and then clicking the Tools button found on the Save As dialog box.
Choose General Options to specify the appropriate password.

Assign a password You can assign a password to prevent unauthorized users from
opening your file. Choose File ➪ Info ➪ Protect Workbook ➪ Encrypt with Password.

Use a password-protected add-in You can use a password-protected add-in, which
doesn’t allow the user to change anything on their worksheets.

FIGURE 1.5

Using the Protect Sheet dialog box to specify what users can and can’t do

Chapter 1: Essentials of Spreadsheet Application Development

15

1

Making the application aesthetically appealing and intuitive
If you’ve used many different software packages, you’ve undoubtedly seen examples of
poorly designed user interfaces, difficult-to-use programs, and just plain ugly screens. If
you’re developing spreadsheets for other people, you should pay particular attention to how
the application looks.

How a computer program looks can make all the difference in the world to users, and
the same is true of the applications that you develop with Excel. Beauty, however, is
in the eye of the beholder. If your skills lean more in the analytical direction, consider
enlisting the assistance of someone with a more aesthetic sensibility to provide help
with design.

End users appreciate a good-looking user interface, and your applications will have a much
more polished and professional look if you devote additional time to design and aesthetic
considerations. An application that looks good demonstrates that its developer cared
enough about the product to invest extra time and effort. Take the following suggestions
into account:

Strive for consistency When designing dialog boxes, for example, try to emulate the
look and feel of Excel’s dialog boxes whenever possible. Be consistent with format-
ting, fonts, text size, and colors.

Keep it simple A common mistake that developers make is trying to cram too much
information into a single screen or dialog box. A good rule is to present only one or
two chunks of information at a time.

Break down input screens If you use an input screen to solicit information from the
user, consider breaking it up into several, less-crowded screens. If you use a complex
dialog box, you may want to break it up by using a MultiPage control, which lets
you create a familiar tabbed dialog box.

Don’t overdo color Use color sparingly. It’s easy to overdo color and make the screen
look gaudy.

Monitor typography and graphics Pay attention to numeric formats and use consis-
tent typefaces, font sizes, and borders.

Evaluating aesthetic qualities is subjective. When in doubt, strive for simplicity and clarity.

Excel passwords are not foolproof
Be aware that Excel passwords can often be easily circumvented using commercially available
password-breaking programs. Don’t think of password protection as foolproof. Sure, it will be
effective for the casual user. But if someone really wants to break your password, he or she
probably can.

Part I: Introduction to Excel VBA

16

Creating a user Help system
With regard to user documentation, it’s a best practice to provide users with paper-based
documentation or electronic documentation (or both). Providing electronic help is standard
fare in Windows applications. Fortunately, your Excel applications can also provide help—
even context-sensitive help. Developing help text takes quite a bit of additional effort, but
for a large project it may be worth it.

Another point to consider is support for your application. In other words, who gets the
phone call if the user encounters a problem? If you aren’t prepared to handle routine ques-
tions, you need to identify someone who is. In some cases, you want to arrange it so that
only highly technical or bug-related issues escalate to the developer.

Documenting the development effort
Putting a spreadsheet application together is one thing. Making it understandable for other
people is another. As with traditional programming, it’s important that you thoroughly doc-
ument your work. Such documentation helps if you need to go back to it (and you will), and
it helps anyone else whom you might pass it onto.

How do you document a workbook application? You can either store the information in a
worksheet or use another file. You can even use a paper document if you prefer. Perhaps the
easiest way is to use a separate worksheet to store your comments and key information for
the project. For VBA code, use comments liberally. (VBA text preceded with an apostrophe
is ignored because that text is designated as a comment.) Although an elegant piece of VBA
code can seem perfectly obvious to you today, when you come back to it in a few months,
your reasoning may be completely obscured unless you use the VBA comment feature.

Distributing the application to the user
You’ve completed your project, and you’re ready to release it to the end users. How do you
go about distributing it? You can choose from many ways to distribute your application,
and the method that you choose depends on many factors.

You could just hand over a download link or thumb drive, scribble a few instructions, and
be on your way. Or, you may want to install the application yourself—but this approach
isn’t always feasible. Another option is to develop an official setup program that performs
the task automatically. You can write such a program in a traditional programming lan-
guage, purchase a generic setup program, or write your own in VBA.

Excel incorporates technology to enable developers to sign their applications digitally.
This process is designed to help end users identify the author of an application, to ensure
that the project has not been altered, and to help prevent the spread of macro viruses or
other potentially destructive code. To sign a project digitally, you first apply for a digital
certificate from a formal certificate authority (or you can self-sign your project by creating

In Chapter 19, “Providing Help for Your Applications,” we discuss several alternatives for providing help for
your applications.

Chapter 1: Essentials of Spreadsheet Application Development

17

1

your own digital certificate). Refer to the Help system or the Microsoft website for addi-
tional information.

Updating the application when necessary
After you distribute your application, you’re finished with it, right? You can sit back, enjoy
yourself, and try to forget about the problems that you encountered (and solved) during
development. In rare cases, yes, you may be finished. More often, however, the users of
your application won’t be completely satisfied. Sure, your application adheres to all of the
original specifications, but things change. Seeing an application working often causes
the user to think of other things that the application could be doing.

When you need to update or revise your application, you’ll appreciate that you designed it
well in the first place and that you fully documented your efforts.

Other Development Issues
You need to keep several other issues in mind when developing an application—especially
if you don’t know exactly who will be using the application. If you’re developing an applica-
tion that will have widespread use (a shareware application, for example), you have no way
of knowing how the application will be used, what type of system it will run on, or what
other software will be running concurrently.

The user’s installed version of Excel
Although Excel 2019 is available, many large corporations are still using earlier versions of
Excel. Unfortunately, there is no guarantee that an application developed for, say, Excel
2010 will work perfectly with later versions of Excel. If you need your application to work
with a variety of Excel versions, the best approach is to work with the lowest version—and
then test it thoroughly with all other versions.

Also, be aware of any security updates or new changes to Excel released with service packs
(for stand-alone versions of Excel). If some of your users are on Office 365, be aware that
Microsoft has adopted an agile release cycle, allowing it to release updates to Office 365
practically on a monthly basis. This is great news for those who love seeing new features
added to Excel. It’s not so great if you’re trying to manage compatibility with your applica-
tion. Although rare, some changes introduced in these releases can cause certain compo-
nents of your application no longer to work as designed.

Language issues
Consider yourself fortunate if all of your end users have the English language version of
Excel. Non-English versions of Excel aren’t always 100 percent compatible, so that means

Compatibility issues are discussed in Chapter 21, “Understanding Compatibility Issues.”

Part I: Introduction to Excel VBA

18

additional testing on your part. In addition, keep in mind that two users can both be using
the English language version of Excel yet use different Windows regional settings. In some
cases, you may need to be aware of potential problems.

System speed
Although system speed and processing power has become less of an issue on modern PCs
and devices, testing your application for performance and speed is still a recommended best
practice. A procedure that executes almost instantaneously on your system may take sev-
eral seconds to execute on another system. In the world of computers, several seconds may
be unacceptable.

Video modes
As you probably know, users’ video displays vary widely. Higher-resolution displays and
even dual displays are becoming increasingly common. Just because you have a super-high-
resolution monitor, you can’t assume that everyone else does.

Video resolution can be a problem if your application relies on specific information being
displayed on a single screen. For example, if you develop an input screen that fills the
screen in 1280 × 1024 mode, users with a 1024 × 768 display won’t be able to see the whole
input screen without scrolling or zooming.

Also, it’s important to realize that a restored (that is, not maximized or minimized) work-
book is displayed at its previous window size and position. In the extreme case, it’s possible
that a window saved by using a high-resolution display may be completely off the screen
when opened on a system running in a lower resolution.

Unfortunately, you can’t automatically scale things so that they look the same regardless
of the display resolution. In some cases, you can zoom the worksheet (using the Zoom control
in the status bar), but doing so reliably may be difficult. Unless you’re certain about the video
resolution that the users of your application will use, you should probably design your appli-
cation so that it works with the lowest common denominator—800 × 600 or 1024 × 768 mode.

As you will discover later in the book, you can determine the user’s video resolution by
using Windows API calls from VBA. In some cases, you may want to adjust things program-
matically, depending on the user’s video resolution.

We briefly discuss language issues in Chapter 21.

tip
When you gain more experience with VBA, you’ll discover that there are ways to get the job done and there are ways
to get the job done fast. It’s a good idea to get into the habit of coding for speed. Other chapters in this book can
certainly help you out in this area.

19

CHAP T ER

2
Introducing Visual Basic
for Applications

IN THIS CHAPTER
Using Excel’s macro recorder

Working with the Visual Basic Editor

Understanding the Excel Object Model

Diving into the Range object

Knowing where to turn for help

Getting a Head Start with the Macro Recorder
A macro is essentially Visual Basic for Applications (VBA) code that you can call to execute any
number of actions. In Excel, macros can be written or recorded.

Excel programming terminology can be a bit confusing. A recorded macro is technically no different
from a VBA procedure that you create manually. The terms macro and VBA procedure are often used
interchangeably. Many Excel users call any VBA procedure a macro. However, when most people
think of macros, they think of recorded macros.

Recording a macro is like programming a phone number into your smartphone. First you manu-
ally enter and save a number. Then when you want, you can redial the number with the touch of a
button. Just like on a smartphone, you can record your actions in Excel while you perform them.
While you record, Excel gets busy in the background, translating and storing your keystrokes
and mouse clicks to VBA code. After a macro is recorded, you can play back those actions any
time you want.

The absolute best way to become familiar with VBA, without question, is simply to turn on the
macro recorder and record some of the actions that you perform in Excel. This approach is a quick
way to learn the relevant VBA syntax for a task.

In this section, you’ll explore macros and learn how you can use the macro recorder to start famil-
iarizing yourself with VBA.

Excel® 2019 Power Programming with VBA, First Edition. Michael Alexander and Dick Kusleika.
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.

Part I: Introduction to Excel VBA

20

Creating your first macro
To start recording your first macro, you first need to find the macro recorder, which is
on the Developer tab. Unfortunately, Excel comes out of the box with the Developer tab
hidden—you may not see it on your version of Excel at first. To display this tab, follow
these steps:

1. Choose File ➪ Excel Options.

2. In the Excel Options dialog box, select Customize Ribbon.

3. In the list box on the right, place a check mark next to Developer.

4. Click OK to return to Excel.

Now that you have the Developer tab showing in the Excel Ribbon, you can start up the
macro recorder by selecting the Record Macro command found in the Code group on the
Developer tab. This activates the Record Macro dialog box, as shown in Figure 2.1.

Here are the four parts of the Record Macro dialog box:

Macro Name This should be self-explanatory. Excel gives a default name to your
macro, such as Macro1, but you should give your macro a name more descriptive of
what it actually does. For example, you might name a macro that formats a generic
table as FormatTable.

FIGURE 2.1

The Record Macro dialog box

Note
Note that you can also get to the Macro Recorder by selecting View ➪ Macros ➪ Macros ➪ Record Macros. How-
ever, if you plan to work with VBA macros, you’ll want to make sure that the Developer tab is visible in order to gain
access to the full gamut of developer features.

21

2

Chapter 2: Introducing Visual Basic for Applications

Shortcut Key Every macro needs an event, or something to happen, for it to run. This
event can be a button press, a workbook opening, or, in this case, a keystroke com-
bination. When you assign a shortcut key to your macro, entering that combination
of keys triggers your macro to run. This is an optional field.

Store Macro In This Workbook is the default option. Storing your macro in This Workbook
simply means that the macro is stored along with the active Excel file. The next time
you open that particular workbook, the macro is available to run. Similarly, if you send
the workbook to another user, that user can run the macro as well (provided the macro
security is properly set by your user—more on that later in this chapter).

Description This is an optional field, but it can come in handy if you have numerous
macros in a workbook or if you need to give a user a more detailed description about
what the macro does. The description is also useful for distinguishing one macro
from another when you have multiple workbooks open or you have macros stored in
the Personal Macro Workbook.

With the Record Macro dialog box open, follow these steps to create a simple macro that
enters your name into a worksheet cell:

1. Enter a new single-word name for the macro to replace the default Macro1 name. A
good name for this example is MyName.

2. Assign the shortcut key Ctrl+Shift+N to this macro by entering uppercase N in the
edit box labeled Shortcut Key.

3. Click OK to close the Record Macro dialog box and begin recording your actions.

4. Type your name into the active cell and press Enter.

5. Choose Developer ➪ Code ➪ Stop Recording. Alternatively, you can click the Stop
Recording icon in the status bar (the square icon on left side of the status bar).

Examining your macro
Excel stored your newly recorded macro in a new module that it created automatically and
named Module1. To view the code in this module, you must activate the Visual Basic Edi-
tor. You can activate the VB Editor in either of two ways:

 ■ Press Alt+F11.
 ■ Choose Developer ➪ Code ➪ Visual Basic.

In the VB Editor, the Project window displays a list of all open workbooks and add-ins. This
list is displayed as a tree diagram on the left of the screen, which you can expand or col-
lapse. The code that you recorded previously is stored in Module1 in the current workbook.
When you double-click Module1, the code in the module appears in the Code window.

Note
If you don’t see a Project window in the VB Editor, you can activate it by going up to the menu and selecting View ➪
Project Explorer. Alternatively, you can use the keyboard shortcut Ctrl+R.

Part I: Introduction to Excel VBA

22

The macro should look something like this:

Sub MyName()
'' MyName Macro
'' Keyboard Shortcut: Ctrl+Shift+N
ActiveCell.FormulaR1C1 = "Michael Alexander"
End Sub

The macro recorded is a Sub procedure that is named MyName. The statements tell Excel
what to do when the macro is executed.

Notice that Excel inserted some comments at the top of the procedure. These comments
are some of the information that appeared in the Record Macro dialog box. These comment
lines (which begin with an apostrophe) aren’t really necessary, and deleting them has no
effect on how the macro runs. If you ignore the comments, you’ll see that this procedure
has only one VBA statement.

ActiveCell.FormulaR1C1 = "Michael Alexander"

This single statement causes the name you typed while recording to be inserted into the
active cell.

Testing your macro
Before you recorded this macro, you set an option that assigned the macro to the
Ctrl+Shift+N shortcut key combination. To test the macro, return to Excel by using either of
the following methods:

 ■ Press Alt+F11.
 ■ Click the View Microsoft Excel button on the standard toolbar in the VB Edi-

tor window.

When Excel is active, activate a worksheet. (It can be in the workbook that contains the
VBA module or in any other workbook.) Select a cell and press Ctrl+Shift+N. The macro
immediately enters your name into the cell.

Editing your macro
After you record a macro, you can make changes to it. For example, assume that you want
your name to be bold. You could re-record the macro, but this modification is simple, so
editing the code is more efficient. Press Alt+F11 to activate the VB Editor window. Then
activate Module1 and insert ActiveCell.Font.Bold = True, as demonstrated in the
following sample code:

ActiveCell.Font.Bold = True

Note
In the preceding example, notice that you selected your target cell before you started recording your macro. This
step is important. If you select a cell while the macro recorder is turned on, the actual cell that you selected will be
recorded into the macro. In such a case, the macro would always format that particular cell, and it would not be a
general-purpose macro.

Chapter 2: Introducing Visual Basic for Applications

23

2

The edited macro appears as follows:

Sub MyName()
'' MyName Macro
'' Keyboard Shortcut: Ctrl+Shift+N
 ActiveCell.Font.Bold = True
 ActiveCell.FormulaR1C1 = "Michael Alexander"
End Sub

Test this new macro, and you’ll see that it performs as it should.

Comparing absolute and relative macro recording
Now that you’ve read about the basics of the macro recorder interface, it’s time to go
deeper and begin recording a more complex macro. The first thing you need to understand
before you begin is that Excel has two modes for recording: absolute reference and relative
reference.

Recording macros with absolute references
Excel’s default recording mode is in absolute reference. As you may know, the term absolute
reference is often used in the context of cell references found in formulas. When a cell ref-
erence in a formula is an absolute reference, it does not automatically adjust when the for-
mula is pasted to a new location.

The best way to understand how this concept applies to macros is to try it. Open the Chap-
ter 2 Sample.xlsm file and record a macro that counts the rows in the Branchlist work-
sheet. (See Figure 2.2.)

FIGURE 2.2

Your pretotaled worksheet containing two tables

Part I: Introduction to Excel VBA

24

Follow these steps to record the macro:

1. Before recording, make sure that cell A1 is selected.

2. Select Record Macro from the Developer tab.

3. Name the macro AddTotal.

4. Choose This Workbook in the Store Macro In drop-down.

5. Click OK to start recording.

At this point, Excel is recording your actions. While Excel is recording, perform the
following steps:

6. Select cell A16, and type Total in the cell.

7. Select the first empty cell in Column D (D16), type = COUNTA(D2:D15), and then
press Enter. This gives a count of branch numbers at the bottom of column D. The
COUNTA function is used to catch any branch numbers stored as text.

8. Click Stop Recording on the Developer tab to stop recording the macro.

The formatted worksheet should look like something like the one in Figure 2.3.

Note
The sample dataset used in this chapter can be found on this book’s companion website. See this book’s introduc-
tion for more on the companion website.

FIGURE 2.3

Your post-totaled worksheet

Chapter 2: Introducing Visual Basic for Applications

25

2

To see your macro in action, delete the total row that you just added and play back your
macro by following these steps:

1. Select Macros from the Developer tab.

2. Find and select the AddTotal macro that you just recorded.

3. Click the Run button.

If all goes well, the macro plays back your actions perfectly and gives your table a total.
Here’s the thing: no matter how hard you try, you can’t make the AddTotal macro work on
the second table. Why? Because you recorded it as an absolute macro.

To understand what this means, examine the underlying code. To examine the code,
select Macros from the Developer tab to get the Macro dialog box illustrated in Figure 2.4.
The Macro dialog box will, by default, list the macros available in all open Excel work-
books (including any Add-ins that you may have installed). You can limit the list to only
those macros contained in the active workbook by changing the Macros In setting to
This Workbook.

Select the AddTotal macro and click the Edit button. This opens the Visual Basic Editor to
show you the code that was written when you recorded your macro.

Sub AddTotal()
 Range("A16").Select
 ActiveCell.FormulaR1C1 = "Total"
 Range("D16").Select
 ActiveCell.FormulaR1C1 = "=COUNTA(R[-14]C:R[-1]C)"
End Sub

FIGURE 2.4

The Excel Macro dialog box

Part I: Introduction to Excel VBA

26

Pay particular attention to line 2 and line 4 of the macro. When you asked Excel to select
cell range A16 and then D16, those cells are exactly what it selected. Because the macro was
recorded in absolute reference mode, Excel interpreted your range selection as absolute. In
other words, if you select cell A16, that cell is what Excel gives you. In the next section,
you will examine what the same macro looks like when recorded in relative reference mode.

Recording macros with relative references
In the context of Excel macros, relative means relative to the currently active cell. Thus, you
should use caution with your active cell choice—both when you record the relative refer-
ence macro and when you run it.

First, make sure that the Chapter 2 Sample.xlsm file is open. (This file is available
on this book’s companion website.) Then use the following steps to record a relative-
reference macro:

1. Select the Use Relative References toggle button from the Developer tab, as shown
in Figure 2.5.

2. Before recording, make sure that cell A1 is selected.

3. Select Record Macro from the Developer tab.

4. Name the macro AddTotalRelative.

5. Choose This Workbook in the Store Macro In drop-down.

6. Click OK to start recording.

7. Select cell A16 and type Total in the cell.

8. Select the first empty cell in Column D (D16), type = COUNTA(D2:D15), and then
press Enter.

9. Click Stop Recording on the Developer tab to stop recording the macro.

At this point, you have recorded two macros. Take a moment to examine the code for your
newly created macro.

Select Macros from the Developer tab to open the Macro dialog box. Here, choose the
AddTotalRelative macro and click Edit.

FIGURE 2.5

Recording a macro with relative references

Chapter 2: Introducing Visual Basic for Applications

27

2

Again, this opens the Visual Basic Editor to show you the code that was written when you
recorded your macro. This time, your code looks something like the following:

Sub AddTotalRelative()
 ActiveCell.Offset(15, 0).Range("A1").Select
 ActiveCell.FormulaR1C1 = "Total"
 ActiveCell.Offset(0, 3).Range("A1").Select
 ActiveCell.FormulaR1C1 = "=COUNTA(R[-14]C:R[-1]C)"
End Sub

Notice that there are no references to any specific cell ranges at all (other than the starting
point "A1"). Let’s take a moment to look at what the relevant parts of this VBA code
really mean.

Notice that in line 2, Excel uses the Offset property of the active cell. This property tells
the cursor to move a certain number of cells up or down and a certain number of cells
left or right.

The Offset property code tells Excel to move 15 rows down and 0 columns across from the
active cell (in this case, A1). There’s no need for Excel to select a cell explicitly, as it did
when recording an absolute reference macro.

To see this macro in action, delete the total row and do the following:

1. Select cell A1.

2. Select Macros from the Developer tab.

3. Find and select the AddTotalRelative macro.

4. Click the Run button.

5. Now select cell F1.

6. Select Macros from the Developer tab.

7. Find and select the AddTotalRelative macro.

8. Click the Run button.

Notice that this macro, unlike your previous macro, works on both sets of data. Because
the macro applies the totals relative to the currently active cell, the totals are applied
correctly.

For this macro to work, you simply need to ensure that

 ■ You’ve selected the correct starting cell before running the macro.
 ■ The block of data has the same number of rows and columns as the data on which

you recorded the macro.

Ideally, this simple example has given you a firm grasp of macro recording of both absolute
and relative references.

Part I: Introduction to Excel VBA

28

Other macro recording concepts
At this point, you should feel comfortable recording your own Excel macros. Next are some of
the other important concepts you’ll need to keep in mind when writing or recording macros.

By default, Excel workbooks are given the standard file extension .xlsx. Be aware that
files with the .xlsx extension cannot contain macros. If your workbook contains macros
and then you save that workbook as an .xlsx file, all VBA code is removed automatically.
Luckily, Excel will warn you that your macro content will be removed when saving a work-
book with macros as an .xlsx file.

If you want to retain the macros, you must save your file as an Excel Macro-Enabled Work-
book. This gives your file an .xlsm extension. The idea is that all workbooks with an
.xlsx file extension are automatically known to be safe, whereas you can recognize .xlsm
files as a potential threat.

Alternatively, you can save your workbook as an Excel 97-2003 Workbook (with the .xls
extension). The .xls file type can contain macros, but it doesn’t support some of the mod-
ern features of Excel such as conditional formatting icons and pivot table slicers. You would
typically use this file type only if there is a specific reason, such as that you need to have
your workbook interact with an add-in that works only with .xls files.

Macro security in Excel
With the release of Office 2010, Microsoft introduced significant changes to its Office
security model. One of the most significant changes is the concept of trusted documents.
Without getting into the technical minutiae, a trusted document is essentially a workbook
that you have deemed safe by enabling macros.

If you open a workbook that contains macros, you will see a yellow bar message under the
Ribbon stating that macros (active content) have, in effect, been disabled.

If you click Enable, it automatically becomes a trusted document. This means that you no
longer are prompted to enable the content as long as you open that file on your computer.
The basic idea is that if you told Excel that you “trust” a particular workbook by enabling
macros, it is highly likely that you will enable macros each time you open it. Thus, Excel
remembers that you’ve enabled macros before and inhibits any further messages about
macros for that workbook.

This is great news for you and your clients. After enabling your macros just one time, they
won’t be annoyed by the constant messages about macros, and you won’t have to worry that
your macro-enabled dashboard will fall flat because macros have been disabled.

Trusted locations
If the thought of any macro message coming up (even one time) unnerves you, you can set
up a trusted location for your files. A trusted location is a directory that is deemed a safe
zone where only trusted workbooks are placed. A trusted location allows you and your cli-
ents to run a macro-enabled workbook with no security restrictions as long as the work-
book is in that location.

Chapter 2: Introducing Visual Basic for Applications

29

2

To set up a trusted location, follow these steps:

1. Select the Macro Security button on the Developer tab. This activates the Trust
Center dialog box.

2. Click the Trusted Locations button. This opens the Trusted Locations menu (see
Figure 2.6), which shows you all the directories that are considered trusted.

3. Click the Add New Location button.

4. Click Browse to find and specify the directory that will be considered a
trusted location.

After you specify a trusted location, any Excel file that is opened from this location will
have macros automatically enabled.

Storing macros in your Personal Macro Workbook
Most user-created macros are designed for use in a specific workbook, but you may want to
use some macros in all of your work. You can store these general-purpose macros in the Per-
sonal Macro Workbook so that they’re always available to you. The Personal Macro Workbook
is loaded whenever you start Excel. This file, named Personal.xlsb, doesn’t exist until
you record a macro using Personal Macro Workbook as the destination.

FIGURE 2.6

The Trusted Locations tab allows you to add directories that are considered trusted.

Part I: Introduction to Excel VBA

30

To record the macro in your Personal Macro Workbook, select the Personal Macro Workbook
option in the Record Macro dialog box before you start recording. This option is in the Store
Macro In drop-down list (refer to Figure 2.1 in the section “Creating Your First Macro”).

If you store macros in the Personal Macro Workbook, you don’t have to remember to open
the Personal Macro Workbook when you load a workbook that uses macros. When you want
to exit, Excel asks whether you want to save changes to the Personal Macro Workbook.

Assigning a macro to a button and other form controls
When you create macros, you may want to have a clear and easy way to run each macro. A
basic button can provide a simple but effective user interface.

As luck would have it, Excel offers a set of form controls designed specifically for creating
user interfaces directly on spreadsheets. There are several different types of form controls,
from buttons (the most commonly used control) to scrollbars.

The idea behind using a form control is simple. You place a form control on a spreadsheet
and then assign a macro to it—that is, a macro you’ve already recorded. When a macro is
assigned to the control, that macro is executed, or played, when the control is clicked.

Take a moment to create a button for the AddTotalRelative macro you created earlier.
Here’s how:

1. Click the Insert button on the Developer tab (see Figure 2.7).

2. Select the Button control from the drop-down list that appears.

3. Click the location where you want to place your button.

When you drop the button control onto your spreadsheet, the Assign Macro dialog
box, as shown in Figure 2.8, activates and asks you to assign a macro to this button.

Note
The Personal Macro Workbook normally is in a hidden window to keep it out of the way.

FIGURE 2.7

You can find the form controls on the Developer tab.

Chapter 2: Introducing Visual Basic for Applications

31

2

4. Select the macro that you want to assign to the button and then click OK.

At this point, you have a button that runs your macro when you click it. Keep in mind that
all the controls in the Form Controls group (shown in Figure 2.7) work in the same way as
the command button in that you right-click and choose Assign Macro to specify a macro to
trigger with the control.

Placing a macro on the Quick Access toolbar
You can also assign a macro to a button in Excel’s Quick Access toolbar. The Quick Access
toolbar sits either above or below the Ribbon. You can add a custom button that will run
your macro by following these steps:

1. Right-click your Quick Access toolbar and select Customize Quick Access Toolbar.
This will open the dialog box illustrated in Figure 2.9.

2. Select Macros from the Choose Commands From drop-down list on the left.

3. Select the macro that you want to add and click the Add button.

4. Click the Modify button to choose an icon for your macro and provide a friendly
display name.

5. Click the OK button.

Note
Notice the form controls and ActiveX controls in Figure 2.7. Although they look similar, they’re quite different. Form
controls are designed specifically for use on a spreadsheet, and ActiveX controls are typically used on Excel user
forms. As a general rule, you should always use form controls when working on a spreadsheet. Why? Form controls
need less overhead, so they perform better, and configuring form controls is far easier than configuring their ActiveX
counterparts.

FIGURE 2.8

Assign a macro to the newly added button.

Part I: Introduction to Excel VBA

32

Working with the Visual Basic Editor
The Visual Basic Editor is a separate application that runs when you open Excel. To see this
hidden VBE environment, you’ll need to activate it. The quickest way to activate the VBE is
to press Alt+F11 when Excel is active. To return to Excel, press Alt+F11 again.

You can also activate the VBE by using the Visual Basic command on Excel’s Developer tab.

Understanding VBE components
Figure 2.10 shows the VBE program with some of the key parts identified. Chances are that
your VBE program window won’t look exactly like what you see in Figure 2.10. The VBE con-
tains several windows and is highly customizable. You can hide windows, rearrange win-
dows, dock windows, and so on.

Menu bar
The VBE menu bar works just like every other menu bar you’ve encountered. It contains
commands that you use to do things with the various components in the VBE. You will also
find that many of the menu commands have shortcut keys associated with them.

The VBE also features shortcut menus. You can right-click virtually anything in the VBE
and get a shortcut menu of common commands.

FIGURE 2.9

Adding a macro to the Quick Access toolbar

Chapter 2: Introducing Visual Basic for Applications

33

2

Toolbar
The Standard toolbar, which is directly under the menu bar by default, is one of four VBE
toolbars available. You can customize the toolbars, move them around, display other tool-
bars, and so on. If you’re so inclined, use the View ➪ Toolbars command to work with VBE
toolbars. Most people just leave them as they are.

Project window
The Project window displays a tree diagram that shows every workbook currently open in
Excel (including add-ins and hidden workbooks). Double-click items to expand or contract
them. You’ll explore this window in more detail in the “Working with the Project Window”
section later in this chapter.

If the Project window is not visible, press Ctrl+R or use the View ➪ Project Explorer
command. To hide the Project window, click the Close button in its title bar. Alternatively,
right-click anywhere in the Project window and select Hide from the shortcut menu.

Code window
A Code window contains VBA code. Every object in a project has an associated Code
window. To view an object’s Code window, double-click the object in the Project window.
For example, to view the Code window for the Sheet1 object, double-click Sheet1 in the
Project window. Unless you’ve added some VBA code, the Code window will be empty.

Menu Bar

Toolbar

Project
Window

Properties
Window

Immediate
Window

Code
Window

FIGURE 2.10

The VBE with significant elements identified

Part I: Introduction to Excel VBA

34

You find out more about Code windows later in this chapter’s “Working with a Code
Window” section.

Immediate window
The Immediate window may or may not be visible. If it isn’t visible, press Ctrl+G or use
the View ➪ Immediate Window command. To close the Immediate window, click the Close
button in its title bar (or right-click anywhere in the Immediate window and select Hide
from the shortcut menu).

The Immediate window is most useful for executing individual VBA statements and for
debugging your code. If you’re just starting out with VBA, this window won’t be all that
useful, so feel free to hide it and free up some screen space for other things.

Working with the Project window
When you’re working in the VBE, each Excel workbook and add-in that’s open is a project.
You can think of a project as a collection of objects arranged as an outline. You can expand
a project by clicking the plus sign (+) at the left of the project’s name in the Project
window. Contract a project by clicking the minus sign (-) to the left of a project’s name. Or,
you can double-click the items to expand and contract them.

Figure 2.11 shows a Project window with two projects listed: a workbook named Book1 and
a workbook named Book2.

FIGURE 2.11

This Project window lists two projects. They are expanded to show their objects.

Chapter 2: Introducing Visual Basic for Applications

35

2

Every project expands to show at least one node called Microsoft Excel Objects. This node
expands to show an item for each sheet in the workbook (each sheet is considered an
object), and another object called ThisWorkbook (which represents the Workbook object). If
the project has any VBA modules, the project listing also shows a Modules node.

Adding a new VBA module
When you record a macro, Excel automatically inserts a VBA module to hold the recorded
code. The workbook that holds the module for the recorded macro depends on where you
chose to store the recorded macro, just before you started recording.

In general, a VBA module can hold three types of code.

Declarations One or more information statements that you provide to VBA. For exam-
ple, you can declare the data type for variables you plan to use or set some other
module-wide options.

Sub procedures A set of programming instructions that performs some action. All
recorded macros will be Sub procedures.

Function procedures A set of programming instructions that returns a single value
(similar in concept to a worksheet function, such as Sum).

A single VBA module can store any number of Sub procedures, Function procedures, and
declarations. How you organize a VBA module is completely up to you. Some people prefer to
keep all of their VBA code for an application in a single VBA module; others like to split up
the code into several different modules. It’s a personal choice, just like arranging furniture.

Follow these steps to add a new VBA module manually to a project:

1. Select the project’s name in the Project window.

2. Choose Insert ➪ Module.

Or you can do the following:

1. Right-click the project’s name.

2. Choose Insert ➪ Module from the shortcut menu.

The new module is added to a Modules folder in the Project window (see Figure 2.12). Any
module that you create in a given workbook is placed in this Modules folder.

Removing a VBA module
You may want to remove a code module that is no longer needed. To do so, follow
these steps:

1. Select the module’s name in the Project window.

2. Choose File ➪ Remove xxx, where xxx is the module name. Note that Excel will ask
if you want to export the module before removing it. You can click Yes if you want
to save the module for backup purposes or for importing into another workbook.

Part I: Introduction to Excel VBA

36

Or you can do the following:

1. Right-click the module’s name in the Project window.

2. Choose Remove xxx from the shortcut menu.

Working with a Code window
As you become proficient with VBA, you spend lots of time working in Code windows.
Macros that you record are stored in a module, and you can type VBA code directly into a
VBA module.

Minimizing and maximizing windows
Code windows are much like workbook windows in Excel. You can minimize them, maxi-
mize them, resize them, hide them, rearrange them, and so on. Most people find it much
easier to maximize the Code window on which they’re working. Doing so lets you see more
code and keeps you from getting distracted.

To maximize a Code window, click the maximize button in its title bar (right next to the X).
Or, just double-click its title bar to maximize it. To restore a Code window to its original
size, click the Restore button. When a window is maximized, its title bar isn’t really visible,
so you’ll find the Restore button to the right of the Type a Question for Help box.

Note
You can remove VBA modules, but there is no way to remove the other code modules such as those for the Sheet
objects or for This Workbook.

FIGURE 2.12

Code modules are visible in the Project window in a folder called Modules.

Chapter 2: Introducing Visual Basic for Applications

37

2

Sometimes, you may want to have two or more Code windows visible. For example, you may
want to compare the code in two modules or copy code from one module to another. You
can arrange the windows manually or use the Window ➪ Tile Horizontally or Window ➪ Tile
Vertically command to arrange them automatically.

You can quickly switch among Code windows by pressing Ctrl+Tab. If you repeat that key
combination, you keep cycling through all the open Code windows. Pressing Ctrl+Shift+Tab
cycles through the windows in reverse order.

Minimizing a Code window gets it out of the way. You can also click the window’s Close
button in a Code window’s title bar to close the window completely. (Closing a window just
hides it; you won’t lose anything.) To open it again, just double-click the appropriate object
in the Project window. Working with these Code windows sounds more difficult than it
really is.

Getting VBA code into a module
Before you can do anything meaningful, you must have some VBA code in the VBA module.
You can get VBA code into a VBA module in three ways.

 ■ Use the Excel macro recorder to record your actions and convert them to VBA code.
 ■ Enter the code directly.
 ■ Copy the code from one module and paste it into another.

You have discovered the excellent method for creating code by using the Excel Macro
recorder. However, not all tasks can be translated to VBA by recording a macro. You often
have to enter your code directly into the module. Entering code directly basically means
either typing the code yourself or copying and pasting code you have found from some-
where else.

Entering and editing text in a VBA module works as you might expect. You can select, copy,
cut, paste, and do other things to the text.

A single line of VBA code can be as long as you like. However, you may want to use the
line-continuation character to break up lengthy lines of code. To continue a single line of
code (also known as a statement) from one line to the next, end the first line with a space
followed by an underscore (_). Then continue the statement on the next line. Here’s an
example of a single statement split into three lines:

Selection.Sort Key1:=Range("A1"), _
 Order1:=xlAscending, Header:=xlGuess, _
 Orientation:=xlTopToBottom

This statement would perform exactly the same way if it were entered in a single line (with
no line-continuation characters). Notice that the second and third lines of this statement
are indented. Indenting is optional, but it helps clarify the fact that these lines are not
separate statements.

Part I: Introduction to Excel VBA

38

The VBE has multiple levels of undo and redo. If you deleted a statement that you shouldn’t
have, use the Undo button on the toolbar (or press Ctrl+Z) until the statement appears
again. After undoing, you can use the Redo button to perform the changes you’ve undone.

Are you ready to enter some real, live code? Try the following steps:

1. Create a new workbook in Excel.

2. Press Alt+F11 to activate the VBE.

3. Click the new workbook’s name in the Project window.

4. Choose Insert ➪ Module to insert a VBA module into the project.

5. Type the following code into the module:

 Sub GuessName()
 Dim Msg as String
 Dim Ans As Long
 Msg = "Is your name " & Application.UserName & "?"
 Ans = MsgBox(Msg, vbYesNo)
 If Ans = vbNo Then MsgBox "Oh, never mind."
 If Ans = vbYes Then MsgBox "I must be clairvoyant!"
 End Sub

6. Make sure that the cursor is located anywhere within the text you typed, and press
F5 to execute the procedure.

When you enter the code listed in step 5, you might notice that the VBE makes some
adjustments to the text you enter. For example, after you type the Sub statement and
press Enter, the VBE automatically inserts the End Sub statement. And if you omit
the space before or after an equal sign, the VBE inserts the space for you. Also, the VBE
changes the color and capitalization of some text. This is all perfectly normal. It’s just the
VBE’s way of keeping things neat and readable.

If you followed the previous steps, you just created a VBA Sub procedure, also known as a
macro. When you press F5, Excel executes the code and follows the instructions. In other
words, Excel evaluates each statement and does what you told it to do. You can execute
this macro any number of times—although it tends to lose its appeal after a few dozen
executions.

This simple macro uses the following concepts:

 ■ Defining a Sub procedure (the first line)
 ■ Declaring variables (the Dim statements)
 ■ Assigning values to variables (Msg and Ans)

tip
F5 is a shortcut for the Run ➪ Run Sub/UserForm command.

Chapter 2: Introducing Visual Basic for Applications

39

2

 ■ Concatenating (joining) strings of text (using the & operator)
 ■ Using a built-in VBA function (MsgBox)
 ■ Using built-in VBA constants (vbYesNo, vbNo, and vbYes)
 ■ Using an If-Then construct (twice)
 ■ Ending a Sub procedure (the last line)

As mentioned previously, you can copy and paste code into a VBA module. For example, a
Sub or Function procedure that you write for one project might also be useful in another
project. Instead of wasting time reentering the code, you can activate the module and use
the normal copy and paste procedures (Ctrl+C to copy and Ctrl+V to paste). After pasting it
into a VBA module, you can modify the code as necessary.

Alternatively, you can right-click your module and select the Export File option. This
allows you to save your module as a .bas file. Once you have your .bas file, you can open
another workbook, open the VBE, and then choose File ➪ Import File to import the saved
.bas file.

Customizing the VBA environment
If you’re serious about becoming an Excel programmer, you’ll spend a lot of time with VBA
modules on your screen. To help make things as comfortable as possible, the VBE provides
quite a few customization options.

When the VBE is active, choose Tools ➪ Options. You’ll see a dialog box with four tabs: Edi-
tor, Editor Format, General, and Docking. Take a moment to explore some of the options
found on each tab.

The Editor tab
Figure 2.13 shows the options accessed by clicking the Editor tab of the Options dialog box.
Use the options in the Editor tab to control how certain things work in the VBE.

The Auto Syntax Check option The Auto Syntax Check setting determines whether the
VBE pops up a dialog box if it discovers a syntax error while you’re entering your VBA
code. The dialog box tells roughly what the problem is. If you don’t choose this setting,
the VBE flags syntax errors by displaying them in a different color from the rest of the
code, and you don’t have to deal with any dialog boxes popping up on your screen.

The Require Variable Declaration option If the Require Variable Declaration option is
set, the VBE inserts the following statement at the beginning of each new VBA module
you insert: Option Explicit. Changing this setting affects only new modules, not
existing modules. If this statement appears in your module, you must explicitly define
each variable you use. Using a Dim statement is one way to declare variables.

The Auto List Members option If the Auto List Members option is set, the VBE pro-
vides some help when you’re entering your VBA code. It displays a list that would
logically complete the statement you’re typing. This is one of the best features
of the VBE.

Part I: Introduction to Excel VBA

40

The Auto Quick Info option If the Auto Quick Info option is selected, the VBE
displays information about functions and their arguments as you type. This is
similar to the way Excel lists the arguments for a function as you start typing a
new formula.

The Auto Data Tips option If the Auto Data Tips option is set, VBE displays the
value of the variable over which your cursor is placed when you’re debugging code.
This is turned on by default and often quite useful. There is no reason to turn this
option off.

The Auto Indent setting The Auto Indent setting determines whether the VBE auto-
matically indents each new line of code the same as the previous line. Most Excel
developers are keen on using indentations in their code, so this option is typi-
cally kept on.

The Tab Width setting The Tab Width setting is used to increase or decrease the
number of spaces used when indenting code or pressing the Tab key on
the keyboard.

The Drag-and-Drop Text Editing option The Drag-and-Drop Text Editing option, when
enabled, lets you copy and move text by dragging and dropping with your mouse.

The Default to Full Module View option The Default to Full Module View option sets
the default state for new modules. (It doesn’t affect existing modules.) If set, proce-
dures in the Code window appear as a single scrollable list. If this option is turned
off, you can see only one procedure at a time.

The Procedure Separator option When the Procedure Separator option is turned on,
separator bars appear at the end of each procedure in a Code window. Separator bars
provide a nice visual line between procedures, making it easy to see where one piece
of code ends and where another starts.

FIGURE 2.13

The Editor tab in the Options dialog box

Chapter 2: Introducing Visual Basic for Applications

41

2

The Editor Format tab
Figure 2.14 shows the Editor Format tab of the Options dialog box. With this tab, you can
customize the way the VBE looks.

The Code Colors option The Code Colors option lets you set the text color and
background color displayed for various elements of VBA code. This is largely a
matter of personal preference. Most Excel developers stick with the default colors,
but if you like to change things up, you can play around with these settings.

The Font option The Font option lets you select the font that’s used in your VBA
modules. For best results, stick with a fixed-width font such as Courier New. In a
fixed-width font, all characters are the same width. This makes your code more
readable because the characters are nicely aligned vertically, and you can easily dis-
tinguish multiple spaces (which is sometimes useful).

The Size setting The Size setting specifies the point size of the font in the VBA mod-
ules. This setting is a matter of personal preference determined by your video dis-
play resolution and how good your eyesight is.

The Margin Indicator Bar option This option controls the display of the vertical
margin indicator bar in your modules. You should keep this turned on; otherwise, you
won’t be able to see the helpful graphical indicators when you’re debugging your code.

The General tab
Figure 2.15 shows the options available on the General tab in the Options dialog box. In
almost every case, the default settings are just fine. The most important setting on the Gen-
eral tab is Error Trapping. If you are just starting your Excel macro writing career, it’s best to
leave the Error Trapping set to Break on Unhandled Errors. This ensures that Excel warns you
of errors as you type your code—as opposed to waiting until you try to run your macro.

FIGURE 2.14

Change the VBE’s looks with the Editor Format tab.

Part I: Introduction to Excel VBA

42

The Docking tab
Figure 2.16 shows the Docking tab. These options determine how the various windows in
the VBE behave. When a window is docked, it is fixed in place along one of the edges of the
VBE program window. This makes it much easier to identify and locate a particular window.
If you turn off all docking, you have a big, confusing mess of windows. Generally, the
default settings work fine.

FIGURE 2.15

The General tab of the Options dialog box

FIGURE 2.16

The Docking tab of the Options dialog box

Chapter 2: Introducing Visual Basic for Applications

43

2

VBA Fundamentals
VBA is an object-oriented programming language. The basic concept of object-oriented pro-
gramming is that a software application (Excel in this case) consists of various individual
objects. An Excel application contains workbooks, worksheets, cells, charts, pivot tables,
shapes, and the list goes on. Each object has its own set of attributes, which are called
properties, and its own set of actions, called methods.

You can think of this concept just as you would of the objects you encounter every day,
such as your computer or your car. Each of those objects has attributes, such as height,
weight, and color. They also have their own distinct actions. For instance, your computer
boots up, and your program starts.

VBA objects also have their identifiable attributes and actions. A workbook, for example, is
an object with attributes (properties), such as its name, the number of worksheets it con-
tains, and the date it was created. A workbook object also has actions (methods) such as
Open, Close, and Save.

In Excel, you deal with objects such as workbooks, worksheets, and ranges on a daily basis.
You likely think of each of these “objects” as all part of Excel, not really separating them in
your mind. However, Excel thinks about these internally as all part of a hierarchical model
called the Excel Object Model. The Excel Object Model is a clearly defined set of objects that
are structured according to the relationships among them.

Understanding objects
In the real world, you can describe everything you see as an object. When you look at your
house, it is an object. Your house has rooms; those rooms are also separate objects. Those
rooms may have closets. Those closets are likewise objects. As you think about your house,
the rooms, and the closets, you may see a hierarchical relationship among them. Excel
works in the same way.

In Excel, the Application object is the all-encompassing object—similar to your house. Inside
the Application object, Excel has a workbook. Inside a workbook is a worksheet. Inside that
is a range. These are all objects that live in a hierarchical structure.

To point to a specific object in VBA, you can traverse the object model. For example, to get
to cell A1 on Sheet 1, you can enter this code:

Application.ThisWorkbook.Sheets("Sheet1").Range("A1").Select

In most cases, the object model hierarchy is understood, so you don’t have to type every
level. Entering this code also gets you to cell A1 because Excel infers that you mean the
active workbook and the active sheet:

Range("A1").Select

Indeed, if you have your cursor already in cell A1, you can simply use the ActiveCell
object, negating the need to spell out the range.

Activecell.Select

Part I: Introduction to Excel VBA

44

Understanding collections
Many of Excel’s objects belong to collections. Your house sits within a neighborhood, for
example, which is a collection of houses called a neighborhood. Each neighborhood sits in a
collection of neighborhoods called a city. Excel considers collections to be objects themselves.

In each Workbook object, you have a collection of Worksheets. The Worksheets collection
is an object that you can call upon through VBA. Each worksheet in your workbook lives in
the Worksheets collection.

If you want to refer to a worksheet in the Worksheets collection, you can refer to it by its
position in the collection as an index number starting with 1 or by its name as quoted text.
If you run these two lines of code in a workbook that has only one worksheet and that
worksheet is called MySheet, they both do the same thing:

Worksheets(1).Select
Worksheets("MySheet").Select

If you have two worksheets in the active workbook that have the names MySheet and
YourSheet, in that order, you can refer to the second worksheet by typing either of these
statements:

Worksheets(2).Select
Worksheets("YourSheet").Select

If you want to refer to a worksheet in a workbook called MySheet in a particular workbook
that is not active, you must qualify the worksheet reference and the workbook reference.
Here’s an example:

Workbooks("MyData.xlsx").Worksheets("MySheet").Select

Understanding properties
Properties are essentially the characteristics of an object. Your house has a color, a square
footage, an age, and so on. Some properties can be changed, like the color of your house.
Other properties can’t be changed, like the year your house was constructed.

Likewise, an object in Excel, like the Worksheet object, has a sheet name property that
can be changed, and a Rows.Count row property that cannot.

You refer to the property of an object by referring to the object and then the property. For
instance, you can change the name of your worksheet by changing its Name property.

In this example, you are renaming Sheet1 to MySheet:

Sheets("Sheet1").Name = "MySheet"

Some properties are read-only, which means you can’t assign a value to them directly—for
instance, the Text property of a cell. The Text property gives you the formatted appear-
ance of value in a cell, but you cannot overwrite or change it.

Chapter 2: Introducing Visual Basic for Applications

45

2

Some properties have arguments that further specify the property value. For instance,
this line of code uses the RowAbsolute and ColumnAbsolute arguments to return the
address of cell A1 as an absolute reference (A 1).

MsgBox Range("A1").Address(RowAbsolute:=True, ColumnAbsolute:=True)

Specifying properties for the active object
When you’re working with Excel, only one workbook at a time can be active. In that work-
book, only one sheet can be active. And if the sheet is a worksheet, one cell is the active
cell (even if a multicell range is selected). VBA knows about active workbooks, worksheets,
and cells, and it lets you refer to these active objects in a simplified manner.

This method of referring to objects is often useful because you won’t always know the
exact workbook, worksheet, or range on which you want to operate. VBA makes object
referencing easy by providing properties of the Application object. For example, the
Application object has an ActiveCell property that returns a reference to the active
cell. The following instruction assigns the value 1 to the active cell:

ActiveCell.Value = 1

In the preceding example, we omitted the reference to the Application object and to the
active worksheet because both are assumed. This instruction will fail if the active sheet
isn’t a worksheet. For example, if VBA executes this statement when a chart sheet is active,
the procedure halts and you get an error message.

If a range is selected in a worksheet, the active cell is a cell within the selected range. In
other words, the active cell is always a single cell (never a multicell range).

The Application object also has a Selection property that returns a reference to what-
ever is selected, which may be a single cell (the active cell), a range of cells, or an object
such as ChartObject, TextBox, or Shape.

Table 2.1 lists the other Application properties that are useful when working with cells
and ranges.

TABLE 2.1 Some Useful Properties of the Application Object

Property Object Returned

ActiveCell The active cell.

ActiveChart The active chart sheet or chart contained in a ChartObject on a work-
sheet. This property is Nothing if a chart isn’t active.

ActiveSheet The active sheet (worksheet or chart sheet).

ActiveWindow The active window.

ActiveWorkbook The active workbook.

Selection The object selected. It could be a Range object, Shape, ChartObject,
and so on.

ThisWorkbook The workbook that contains the VBA procedure being executed. This
object may or may not be the same as the ActiveWorkbook object.

Part I: Introduction to Excel VBA

46

The advantage of using these properties to return an object is that you don’t need to know
which cell, worksheet, or workbook is active, and you don’t need to provide a specific ref-
erence to it. This allows you to write VBA code that isn’t specific to a particular workbook,
sheet, or range. For example, the following instruction clears the contents of the active
cell, even though the address of the active cell isn’t known:

ActiveCell.ClearContents

The example that follows displays a message that tells you the name of the active sheet:

MsgBox ActiveSheet.Name

If you want to know the name and directory path of the active workbook, use a statement
like this:

MsgBox ActiveWorkbook.FullName

If a range on a worksheet is selected, you can fill the entire range with a value by exe-
cuting a single statement. In the following example, the Selection property of the
Application object returns a Range object that corresponds to the selected cells. The
instruction simply modifies the Value property of this Range object, and the result is a
range filled with a single value.

Selection.Value = 12

If something other than a range is selected (such as a ChartObject or a Shape), the pre-
ceding statement generates an error because ChartObject and Shape objects don’t have
a Value property.

The following statement, however, enters a value of 12 into the Range object that was
selected before a non-Range object was selected. If you look up the RangeSelection
property in the Help system, you find that this property applies only to a Window object.

ActiveWindow.RangeSelection.Value = 12

To find out how many cells are selected in the active window, access the Count property.
Here’s an example:

MsgBox ActiveWindow.RangeSelection.Count

Understanding methods
Methods are the actions that can be performed with an object. It helps to think of
methods as verbs. You can paint your house, so in VBA, that translates to something like
house.paint.

A simple example of an Excel method is the Select method of the Range object.

Range("A1").Select

Another is the Copy method of the Range object.

Range("A1").Copy

Chapter 2: Introducing Visual Basic for Applications

47

2

Some methods have arguments that can dictate how they are applied. For instance,
the Paste method can be used more effectively by explicitly defining the
 Destination argument.

ActiveSheet.Paste Destination:=Range("B1")

More about arguments
An issue that often leads to confusion among new VBA programmers concerns arguments. Some
methods use arguments to clarify further the action to be taken, and some properties use arguments
to specify additionally the property value. In some cases, one or more of the arguments are optional.

Consider the Protect method for a workbook object. Check the Help system, and you’ll find that the
Protect method takes three arguments: Password, Structure, and Windows. These arguments
correspond to the options in the Protect Structure and Windows dialog box.

If you want to protect a workbook named MyBook.xlsx, for example, you might use a statement like this:

 Workbooks("MyBook.xlsx").Protect "xyzzy", True, False

In this case, the workbook is protected with a password (argument 1). Its structure is protected (argu-
ment 2) but not its windows (argument 3).

If you don’t want to assign a password, you can use a statement like this:

 Workbooks("MyBook.xlsx").Protect , True, False

The first argument is omitted, and we specified the placeholder by using a comma.

You can make your code more readable by using named arguments. Here’s an example of how you
use named arguments for the preceding example:

 Workbooks("MyBook.xlsx").Protect Structure:=True, Windows:=False

Using named arguments is a good idea, especially for methods that have many optional arguments
and also when you need to use only a few of them. When you use named arguments, you don’t need
to use a placeholder for missing arguments.

For properties (and methods) that return a value, you must use parentheses around the arguments. For
example, the Address property of a Range object takes five optional arguments. Because the Address
property returns a value, the following statement isn’t valid because the parentheses are omitted:

 MsgBox Range("A1").Address False ' invalid

The proper syntax for such a statement requires parentheses as follows:

 MsgBox Range("A1").Address(False)

You can also write the statement using a named argument:

 MsgBox Range("A1").Address(RowAbsolute:=False)

These nuances will become clearer as you gain more experience with VBA.

Part I: Introduction to Excel VBA

48

Deep Dive: Working with Range Objects
Much of the work that you will do in VBA involves cells and ranges in worksheets. That
being the case, let’s take some time to use the Range object as a case study on how to
explore and get familiar with a specific object.

Finding the properties of the Range object
Open the Visual Basic Editor and then go up to the menu and click Help ➪ Microsoft Visual
Basic for Applications Help. You’ll be taken to the Microsoft Developer Network (MSDN)
website. While on MSDN, search for the word Range to see the page for the Range object.
There you will discover that the Range object exposes three properties that can be used to
manipulate your worksheets via VBA.

 ■ The Range property of a Worksheet or Range class object
 ■ The Cells property of a Worksheet object
 ■ The Offset property of a Range object

The Range property
The Range property returns a Range object. If you consult the Help system for the Range
property, you learn that this property has two syntaxes.

object.Range(cell1)
object.Range(cell1, cell2)

The Range property applies to two types of objects: a Worksheet object or a Range
object. Here, cell1 and cell2 refer to placeholders for terms that Excel recognizes as
identifying the range (in the first instance) and delineating the range (in the second in-
stance). The following are a few examples of using the Range property.

You’ve already seen examples like the following one earlier in the chapter. The instruc-
tion that follows simply enters a value into the specified cell. In this case, it puts the value
12.3 into cell A1 on Sheet1 of the active workbook.

Worksheets("Sheet1").Range("A1").Value = 12.3

The Range property also recognizes defined names in workbooks. Therefore, if a cell is
named Input, you can use the following statement to enter a value into that named cell:

Worksheets("Sheet1").Range("Input").Value = 100

The example that follows enters the same value in a range of 20 cells on the active sheet. If
the active sheet isn’t a worksheet, the statement causes an error message.

ActiveSheet.Range("A1:B10").Value = 2

The next example produces the same result as the preceding example:

Range("A1", "B10") = 2

Chapter 2: Introducing Visual Basic for Applications

49

2

The sheet reference is omitted, however, so the active sheet is assumed. Also, the Value
property is omitted, so the default property (which is Value for a Range object) is
assumed. This example also uses the second syntax of the Range property. With this
syntax, the first argument is the cell at the top left of the range, and the second argument
is the cell at the lower right of the range.

The following example uses the Excel range intersection operator (a space) to return the
intersection of two ranges. In this case, the intersection is a single cell, C6. Therefore, this
statement enters 3 in cell C6:

Range("C1:C10 A6:E6") = 3

Finally, if the range you’re referencing is a noncontiguous range (a range where not all the
cells are adjacent to each other), you can use commas to serve as a union operator. For
example, the following statement enters the value 4 in five cells that make up a noncontig-
uous range. Note that the commas are within the quote marks.

Range("A1,A3,A5,A7,A9") = 4

So far, all the examples have used the Range property on a Worksheet object. As men-
tioned, you can also use the Range property on a Range object. For example, the following
line of code treats the Range object as if it were the upper-left cell in the worksheet, and
then it enters a value of 5 in the cell that would be B2. In other words, the reference returned
is relative to the upper-left corner of the Range object. Therefore, the statement that follows
enters a value of 5 into the cell directly to the right and one row below the active cell:

ActiveCell.Range("B2") = 5

Fortunately, you can access a cell relative to a range in a much clearer way—the Offset
property. We discuss this property after the next section.

The Cells property
Another way to reference a range is to use the Cells property. You can use the Cells
property, like the Range property, on Worksheet objects and Range objects. Check the
Help system, and you see that the Cells property has three syntaxes.

object.Cells(rowIndex, columnIndex)
object.Cells(rowIndex)
object.Cells

Some examples demonstrate how to use the Cells property. The first example enters the
value 9 in cell A1 on Sheet1. In this case, we’re using the first syntax, which accepts the
index number of the row (from 1 to 1048576) and the index number of the column (from 1
to 16384):

Worksheets("Sheet1").Cells(1, 1) = 9

Here’s an example that enters the value 7 in cell D3 (that is, row 3, column 4) in the active
worksheet:

ActiveSheet.Cells(3, 4) = 7

Part I: Introduction to Excel VBA

50

You can also use the Cells property on a Range object. When you do so, the Range object
returned by the Cells property is relative to the upper-left cell of the referenced Range.
Confusing? Probably. An example may help clear up any confusion. The following instruc-
tion enters the value 5 in the active cell. Remember, in this case, the active cell is treated
as if it were cell A1 in the worksheet.

ActiveCell.Cells(1, 1) = 5

To enter a value of 5 in the cell directly below the active cell, you can use the following
instruction:

ActiveCell.Cells(2, 1) = 5

Think of the preceding example as though it said this: “Start with the active cell and con-
sider this cell as cell A1. Place 5 in the cell in the second row and the first column.”

The second syntax of the Cells property uses a single argument that can range from 1 to
17,179,869,184. This number is equal to the number of cells in an Excel worksheet. The cells
are numbered starting from A1 and continuing right and then down to the next row. The
16,384th cell is XFD1; the 16,385th cell is A2.

The next example enters the value 2 into cell SZ1 (which is the 520th cell in the worksheet)
of the active worksheet:

ActiveSheet.Cells(520) = 2

To display the value in the last cell in a worksheet (XFD1048576), use this statement:

MsgBox ActiveSheet.Cells(17179869184)

You can also use this syntax with a Range object. In this case, the cell returned is relative
to the Range object referenced. For example, if the Range object is A1:D10 (40 cells), the
Cells property can have an argument from 1 to 40 and can return one of the cells in the
Range object. In the following example, a value of 2000 is entered in cell A2 because A2 is
the 5th cell (counting from the top, to the right, and then down) in the referenced range:

Range("A1:D10").Cells(5) = 2000

Note
The real advantage of this type of cell referencing will be apparent when you explore variables and looping (in Chap-
ter 3, “VBA Programming Fundamentals”). In most cases, you don’t use actual values for the arguments; rather, you
use variables.

Note
In the preceding example, the argument for the Cells property isn’t limited to values between 1 and 40. If the
argument exceeds the number of cells in the range, the counting continues as if the range were taller than it actually
is. Therefore, a statement like the preceding one could change the value in a cell that’s outside the range A1:D10.
The statement that follows, for example, changes the value in cell A11:

Range("A1:D10").Cells(41) = 2000

Chapter 2: Introducing Visual Basic for Applications

51

2

The third syntax for the Cells property simply returns all cells on the referenced work-
sheet. Unlike the other two syntaxes, in this one, the return data isn’t a single cell. This
example uses the ClearContents method on the range returned by using the Cells
property on the active worksheet. The result is that the content of every cell on the work-
sheet is cleared.

ActiveSheet.Cells.ClearContents

The Offset property
The Offset property, like the Range and Cells properties, also returns a Range object.
But unlike the other two methods discussed, the Offset property applies only to a Range
object and no other class. Its syntax is as follows:

object.Offset(rowOffset, columnOffset)

The Offset property takes two arguments that correspond to the relative position from
the upper-left cell of the specified Range object. The arguments can be positive (down or
to the right), negative (up or to the left), or 0. The example that follows enters a value of
12 into the cell directly below the active cell:

ActiveCell.Offset(1,0).Value = 12

The next example enters a value of 15 in the cell directly above the active cell:

ActiveCell.Offset(-1,0).Value = 15

If the active cell is in row 1, the Offset property in the preceding example generates an
error because it can’t return a Range object that doesn’t exist.

Getting information from a cell
If you need to get the contents of a cell, VBA provides several properties. The following are the most
commonly used properties:

 ■ The Formula property returns the formula in a single cell, if the cell has one. If the cell
doesn’t contain a formula, it returns the value in the cell. The Formula property is a read/
write property. Variations on this property include FormulaR1C1, FormulaLocal, and
FormulaArray. (Consult the Help system for details.)

 ■ The Value property returns the raw, unformatted value in the cell. This property is a read/
write property.

 ■ The Text property returns the text that is displayed in the cell. If the cell contains a numeric
value, this property includes all the formatting, such as commas and currency symbols. The
Text property is a read-only property.

 ■ The Value2 property is just like the Value property, except that it doesn’t use the Date
and Currency data types. Rather, this property converts Date and Currency data types
to Variants containing Doubles. If a cell contains the date 5/1/2019, the Value property
returns it as a Date, while the Value2 property returns it as a double (for example, 43586).

Part I: Introduction to Excel VBA

52

The Offset property is useful, especially when you use variables in looping procedures. We
discuss these topics in the next chapter.

When you record a macro using the relative reference mode, Excel uses the Offset property
to reference cells relative to the starting position (that is, the active cell when macro record-
ing begins). For example, we used the macro recorder to generate the following code. We
started with the cell pointer in cell B1, entered values into B1:B3, and then returned to B1.

Sub Macro1()
 ActiveCell.FormulaR1C1 = "1"
 ActiveCell.Offset(1, 0).Range("A1").Select
 ActiveCell.FormulaR1C1 = "2"
 ActiveCell.Offset(1, 0).Range("A1").Select
 ActiveCell.FormulaR1C1 = "3"
 ActiveCell.Offset(-2, 0).Range("A1").Select
End Sub

The macro recorder uses the FormulaR1C1 property. Normally, you want to use the Value
property to enter a value in a cell. However, using FormulaR1C1 or even Formula pro-
duces the same result. Also, the generated code references cell A1—a cell that wasn’t even
involved in the macro. This notation is a quirk in the macro recording procedure that
makes the code more complex than necessary. You can delete all references to Range ("A1"),
and the macro still works perfectly.

Sub Modified_Macro1()
 ActiveCell.FormulaR1C1 = "1"
 ActiveCell.Offset(1, 0).Select
 ActiveCell.FormulaR1C1 = "2"
 ActiveCell.Offset(1, 0).Select
 ActiveCell.FormulaR1C1 = "3"
 ActiveCell.Offset(-2, 0).Select
End Sub

In fact, you can enter this much more efficient version of the macro. In this version, you
don’t do any selecting.

Sub Macro1()
 ActiveCell = 1
 ActiveCell.Offset(1, 0) = 2
 ActiveCell.Offset(2, 0) = 3
End Sub

Essential Concepts to Remember
In this section, we cover some additional essential concepts for would-be VBA gurus. These
concepts will become clearer when you work with VBA and read subsequent chapters:

Objects have unique properties and methods. Each object has its own set of prop-
erties and methods. Some properties and methods are common to various objects.
For example, many objects in Excel have a Name property and a Delete method.

Chapter 2: Introducing Visual Basic for Applications

53

2

You can manipulate objects without selecting them. This idea may be contrary to
how you normally think about manipulating objects in Excel. After all, to work with
an object in Excel, you have to select that object manually first, right?

Well, this is not so when using VBA. It’s usually more efficient to perform actions on
objects without selecting them first.

However, when you record a macro, Excel records every step you take, including
selecting objects before you work with them. These are unnecessary steps that may
make your macro run more slowly. You can generally remove the lines of code in
your recorded macro that selects objects.

It’s important that you understand the concept of collections. Most of the
time, you refer to an object indirectly by referring to the collection in which it’s
located. For example, to access a Workbook object named Myfile, reference the
 Workbooks collection as follows:

 Workbooks("Myfile.xlsx")

This reference returns an object, which is the workbook with which you’re concerned.

Properties can return a reference to another object. For example, in the following
statement, the Font property returns a Font object contained in a Range object.
Bold is a property of the Font object, not the Range object.

 Range("A1").Font.Bold = True

You can refer to the same object in many ways. Assume that you have a workbook
named Sales, and it’s the only workbook open. Then assume that this workbook
has one worksheet, named Summary. You can refer to the sheet in any of the fol-
lowing ways:

 Workbooks("Sales.xlsx").Worksheets("Summary")
 Workbooks(1).Worksheets(1)
 Workbooks(1).Sheets(1)
 Application.ActiveWorkbook.ActiveSheet
 ActiveWorkbook.ActiveSheet
 ActiveSheet

The method that you use is usually determined by how much you know about the work-
space. For example, if more than one workbook is open, the second and third methods
aren’t reliable. If you want to work with the active sheet (whatever it may be), any of the
last three methods would work. To be absolutely sure that you’re referring to a specific
sheet on a specific workbook, the first method is your best choice.

About the code examples
Throughout this book, we present many small snippets of VBA code to make a point or to provide an
example. In some cases, this code consists of a single statement, or only an expression, which isn’t a
valid instruction by itself.

Part I: Introduction to Excel VBA

54

Don’t Panic—You Are Not Alone
If this is your first exposure to VBA, you’re probably a bit overwhelmed by objects, prop-
erties, and methods. That’s normal. No one is going to be a VBA expert in one day. VBA is
a journey of time and practice. The good news is that you won’t be alone on this journey.
There are plenty of resources out there that can help you on your path. This section high-
lights a few resources you can leverage when you need a push in the right direction.

Read the rest of the book
Don’t forget, the name of this chapter is “Introducing Visual Basic for Applications.” The
remainder of this book covers many additional details and provides many useful and infor-
mative examples.

Let Excel help write your macro
One of the best places to get macro help is the macro recorder in Excel. When you record a
macro with the macro recorder, Excel writes the underlying VBA for you. After recording,
you can review the code, see what the recorder is doing, and then try to turn the code it cre-
ates into something more suited to your needs. For example, let’s say you need a macro that
refreshes all the pivot tables in your workbook and clears all of the filters in each pivot table.

For example, the following is an expression:

 Range("A1").Value

To test an expression, you must evaluate it. The MsgBox function is a handy tool for this:

 MsgBox Range("A1").Value

To try these examples, put the statement in a procedure in a VBA module, like this:

 Sub Test()
 ' statement goes here
 End Sub

Then put the cursor anywhere in the procedure and press F5 to execute it. Also, make sure that the
code is being executed in the proper context. For example, if a statement refers to Sheet1, make sure
that the active workbook has a sheet named Sheet1.

If the code is just a single statement, you can use the VBE Immediate window. The Immediate window
is useful for executing a statement immediately, without having to create a procedure. If the Immediate
window isn’t displayed, press Ctrl+G in the VBE.

Just type the VBA statement in the Immediate window and press Enter. To evaluate an expression in
the Immediate window, precede the expression with a question mark (?), which is a shortcut for Print.
For example, you can type the following in the Immediate window:

 ? Range("A1").Value

The result of this expression is displayed in the next line of the Immediate window.

Chapter 2: Introducing Visual Basic for Applications

55

2

Writing this macro from a blank canvas would be a daunting task. Instead, you can start the
macro recorder and record yourself refreshing all the pivot tables and clearing all the filters.
Once you’ve stopped recording, you can review the macro and make any changes that you
deem necessary.

Use the Help system
To a new Excel user, the Help system may seem like a clunky mechanism that returns a per-
plexing list of topics that has nothing to do with the topic you’re searching. The truth is,
however, once you learn how to use the Excel Help system effectively, it’s often the fastest
and easiest way to get extra help on a topic.

You just need to remember two basic tenets of the Excel Help system: location matters when
asking for help, and you need to be connected to the Internet to use Excel’s Help system.

Location matters when asking for help
In Excel, there are actually two Help systems: one providing help on Excel features and
another providing help on VBA programming topics. Instead of doing a global search with
your criteria, Excel throws your search criteria only against the Help system that is rele-
vant to your current location. This essentially means that the help you get is determined
by the area of Excel in which you’re working. So, if you need help on a topic that involves
macros and VBA programming, you’ll need to be in the Visual Basic Editor while performing
your search. This will ensure that your keyword search is performed on the correct
Help system.

You need to be connected to the Internet
When you search for help on a topic, Excel checks to see if you’re connected to the Inter-
net. If you are, Excel takes you to the MSDN website where you can search for the topic on
which you need help. If you aren’t connected to the Internet, Excel gives you a message
telling you that you need to be online to use Help.

Use the Object Browser
The Object Browser is a handy tool that lists every property and method available for every
object. When you are in the VBE, you can bring up Object Browser in any of the following
three ways:

 ■ Press F2.
 ■ Choose View ➪ Object Browser.
 ■ Click the Object Browser button on the Standard toolbar.

The Object Browser is shown in Figure 2.17.

The drop-down list in the upper-left corner of Object Browser includes a list of all object
libraries to which you have access:

 ■ Excel itself
 ■ MSForms (if user forms are utilized in your workbook)

Part I: Introduction to Excel VBA

56

 ■ Office (objects common to all Microsoft Office applications)
 ■ Stdole (OLE automation objects)
 ■ VBA
 ■ The current project (the project that’s selected in Project Explorer) and any work-

books referenced by that project

Your selection in this upper-left drop-down list determines what is displayed in the Classes
window, and your selection in the Classes window determines what is visible in the Mem-
bers Of panel.

After you select a library, you can search for a particular text string to get a list of prop-
erties and methods that contain the text. You do so by entering the text in the second
drop-down list and then clicking the binoculars (Search) icon.

1. Select the library of interest.

If you’re not sure which object library is appropriate, you can select <All Libraries>.

2. Enter the object you’re seeking in the drop-down list below the library list.

3. Click the binoculars icon to begin the text search.

FIGURE 2.17

The Object Browser is a great reference source.

Chapter 2: Introducing Visual Basic for Applications

57

2

The Search Results window displays the matching text. Select an object to display its
classes in the Classes window. Select a class to display its members (properties, methods,
and constants). Pay attention to the bottom pane, which shows more information about the
object. You can press F1 to go directly to the appropriate help topic.

Object Browser may seem complex at first, but its usefulness to you will increase over time.

Pilfer code from the Internet
All the macro syntax you will ever need has likely been documented somewhere on the
Internet. In many ways, programming has become less about the code one creates from
scratch and more about how to take existing code and apply it creatively to a particu-
lar scenario.

If you are stuck trying to create a macro for a particular task, fire up your favorite online
search engine and simply describe the task you are trying to accomplish. For the best
results, enter Excel VBA before your description.

For example, if you are trying to write a macro that deletes all the blank rows in a work-
sheet, search for Excel VBA delete blank rows in a worksheet. You can bet two months’ salary
that someone out there on the Internet has tackled the same problem. Nine times out of 10,
you will find some example code that will give you the nugget of information you need to
jump-start some ideas for building your own macro.

Leverage user forums
If you find yourself in a bind, you can post your question in a forum to get customized
guidance based on your scenario.

User forums are online communities that revolve around a particular topic. In these
forums, you can post questions and have experts offer advice on how to solve particular
problems. The folks answering the questions are typically volunteers who have a passion
for helping the community solve real-world challenges.

There are many forums dedicated to all things Excel. To find an Excel Forum, enter the
words Excel Forum in your favorite online search engine.

Here are a few tips for getting the most out of user forums:

 ■ Always read and follow the forum rules before you get started. These rules often
include advice on posting questions and community etiquette guidelines.

 ■ Use concise and accurate subject titles for your questions. Don’t create forum ques-
tions with abstract titles like “Need Advice” or “Please Help.”

 ■ Keep the scope of your questions as narrow as possible. Don’t ask questions like
“How do I build an invoicing macro in Excel?”

 ■ Be patient. Remember that the folks answering your questions are volunteers who
typically have day jobs. Give the community some time to answer your question.

Part I: Introduction to Excel VBA

58

 ■ Check back often. After posting your question, you may receive requests for more
details about your scenario. Do everyone a favor and return to your posting either
to review the answers or respond to follow-up questions.

 ■ Thank the expert who answered your question. If you receive an answer that helps
you, take a moment to post a thank you to the expert who helped you out.

Visit expert blogs
There are a few dedicated Excel gurus who share their knowledge through blogs. These
blogs are often treasure troves of tips and tricks, offering nuggets that can help build up
your skills. Best of all, they are free!

Although these blogs will not necessarily speak to your particular needs, they offer articles
that advance your knowledge of Excel and can even provide general guidance on how to
apply Excel in practical business situations.

Here is a starter list of a few of the best Excel blogs on the Internet today:

http://chandoo.org
http://www.contextures.com
http://www.datapigtechnologies.com/blog
http://www.dailydoseofexcel.com
http://www.excelguru.ca/blog
http://www.mrexcel.com

Mine YouTube for video training
Some of us learn better if we watch a task being done. If you find that you absorb video
training better than online articles, consider mining YouTube. There are dozens of channels
run by amazing folks who have a passion for sharing knowledge. You’ll be surprised at how
many free high-quality video tutorials you’ll find.

Go to www.youtube.com and search for the words Excel VBA.

Learn from the Microsoft Office Dev Center
The Microsoft Office Dev Center is a site dedicated to helping new developers get a
quick start in programming Office products. You can get to the Excel portion of this site
by going to

https://msdn.microsoft.com/en-us/library/office/fp179694.aspx

Although the site can be a bit difficult to navigate, it’s worth a visit to see all of the free
resources, including sample code, tools, step-by-step instructions, and much more.

Dissect the other Excel files in your organization
Like finding gold in your backyard, the existing files in your organization are often a
treasure trove for learning. Consider cracking open those Excel files that contain macros
and take a look under the covers. See how others in your organization use macros. Try to

http://chandoo.org
http://www.contextures.com
http://www.datapigtechnologies.com/blog
http://www.dailydoseofexcel.com
http://www.excelguru.ca/blog
http://www.mrexcel.com
http://www.youtube.com
https://msdn.microsoft.com/en-us/library/office/fp179694.aspx

Chapter 2: Introducing Visual Basic for Applications

59

2

go through the macros line by line and see if you can spot new techniques. You may even
stumble upon entire chunks of useful code that you can copy and implement in your own
workbooks.

Ask your local Excel genius
Do you have an Excel genius in your company, department, organization, or community?
Make friends with that person today. Most Excel experts love sharing their knowledge.
Don’t be afraid to approach your local Excel guru to ask questions or seek out advice on how
to tackle macro problems.

61

CHAP T ER

3
VBA Programming Fundamentals

IN THIS CHAPTER
Understanding VBA language elements, including variables, data types, constants, and arrays

Using VBA built-in functions

Manipulating objects and collections

Controlling the execution of your procedures

VBA Language Elements: An Overview
If you’ve used other programming languages, much of the information in this chapter may sound
familiar. However, VBA has a few unique wrinkles, so even experienced programmers may find some
new information.

This chapter explores the VBA language elements, which are the keywords and control structures
that you use to write VBA routines.

To get the ball rolling, take a look at the following VBA Sub procedure. This simple procedure,
which is stored in a VBA module, calculates the sum of the first 100 positive integers. When the
code finishes executing, the procedure displays a message with the result.

Sub VBA_Demo()
 ' This is a simple VBA Example
 Dim Total As Long, i As Long
 Total = 0
 For i = 1 To 100
 Total = Total + i
 Next i
 MsgBox Total
End Sub

This procedure uses some common VBA language elements, including the following:

 ■ A comment (the line that begins with an apostrophe)
 ■ A variable declaration statement (the line that begins with Dim)

Excel® 2019 Power Programming with VBA, First Edition. Michael Alexander and Dick Kusleika.
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.

Part I: Introduction to Excel VBA

62

 ■ Two variables (Total and i)
 ■ Two assignment statements (Total = 0 and Total = Total + i)
 ■ A looping structure (For - Next)
 ■ A VBA function (MsgBox)

You will explore all of these language elements in subsequent sections of this chapter.

Entering VBA code
VBA code, which resides in a VBA module, consists of instructions. The accepted practice is
to use one instruction per line. This standard isn’t a requirement, however; you can use a colon to
separate multiple instructions on a single line. The following example combines four instructions
on one line:

 Sub OneLine()
 x= 1: y= 2: z= 3: MsgBox x + y + z
 End Sub

Most programmers agree that code is easier to read if you use one instruction per line.

Sub MultipleLines()
 x = 1
 y = 2
 z = 3
 MsgBox x + y + z
End Sub

Each line can be as long as you like; the VBA module window scrolls to the left when you reach the right
side. However, reading very long lines of code while having to scroll is not a particularly pleasant. For
lengthy lines, it’s considered a best practice to use VBA’s line continuation sequence: a space followed
by an underscore (_). Here’s an example:

Sub LongLine()
 SummedValue = _
 Worksheets("Sheet1").Range("A1").Value + _
 Worksheets("Sheet2").Range("A1").Value
End Sub

Note
VBA procedures need not manipulate any objects. The preceding procedure, for example, doesn’t do anything with
objects. It simply works with numbers.

Chapter 3: VBA Programming Fundamentals

63

3

Comments
A comment is descriptive text embedded in your code and ignored by VBA. It’s a good idea
to use comments liberally to describe what you’re doing because an instruction’s purpose
isn’t always obvious.

You can use a complete line for your comment, or you can insert a comment after an
instruction on the same line. A comment is indicated by an apostrophe. VBA ignores any
text that follows an apostrophe—except when the apostrophe is contained within quota-
tion marks—up until the end of the line. For example, the following statement doesn’t con-
tain a comment, even though it has an apostrophe:

Msg = "Can't continue"

When you record macros, Excel often uses the line continuation sequence to break a long statement
into multiple lines.

After you enter an instruction, VBA performs the following actions to improve readability:

 ■ It inserts spaces between operators. If you enter Ans=1+2 (without spaces), for example,
VBA converts it to the following:

Ans = 1 + 2

 ■ It adjusts the case of the letters for keywords, properties, and methods. If you enter
the following text:

Result=activesheet.range("a1").value=12

VBA converts it to the following:

Result = ActiveSheet.Range("a1").Value = 12

Notice that text within quotation marks (in this case, "a1") isn’t changed.

 ■ Because VBA variable names aren’t case-sensitive, the VBE, by default, adjusts the
names of all variables with the same letters so that their case matches the case of
letters that you most recently typed. For example, if you first specify a variable as
myvalue (all lowercase) and then enter the variable as MyValue (mixed case), the VBA
changes all other occurrences of the variable to MyValue. An exception occurs if you
declare the variable with Dim or a similar statement; in this case, the variable name always
appears as it was declared.

 ■ VBA scans the instruction for syntax errors. If VBA finds an error, it changes the color
of the line and might display a message describing the problem. In the Visual Basic Editor,
choose the Tools ➪ Options command to display the Options dialog box, where you con-
trol the error color (use the Editor Format tab) and whether the error message is displayed
(use the Auto Syntax Check option in the Editor tab).

Part I: Introduction to Excel VBA

64

The following example shows a VBA procedure with three comments:

Sub CommentDemo()
' This procedure does nothing of value
 x = 0 'x represents nothingness
' Display the result
 MsgBox x
End Sub

Although the apostrophe is the preferred comment indicator, you can also use the Rem key-
word to mark a line as a comment. Here’s an example:

Rem -- The next statement prompts the user for a filename

The Rem keyword (short for Remark) is essentially a holdover from older versions of BASIC,
and it is included in VBA for the sake of compatibility. Unlike the apostrophe, Rem can be
written only at the beginning of a line, not on the same line as another instruction.

The following are a few general tips on making the best use of comments:

 ■ Use comments to describe briefly the purpose of each procedure that you write.
 ■ Use comments to describe changes you make to a procedure.
 ■ Use comments to indicate you’re using functions or constructs in an unusual or a

nonstandard manner.
 ■ Use comments to describe the purpose of variables so that you and other people

can decipher otherwise cryptic names.
 ■ Use comments to describe workarounds that you develop to overcome Excel bugs or

limitations.
 ■ Write comments while you code rather than afterward.
 ■ When you’ve completed all coding, take some time to go back and tidy up your com-

ments, removing any comments that are no longer needed and expanding on com-
ments that may be incomplete or a bit too cryptic.

tip
In some cases, you may want to test a procedure without including a particular instruction or group of instructions.
Instead of deleting the instruction, convert it to a comment by inserting an apostrophe at the beginning. VBA then
ignores the instruction when the routine is executed. To convert the comment back to an instruction, just delete the
apostrophe.

The Visual Basic Editor offers an Edit toolbar containing tools to assist you in editing your code. In particular, there
are two handy buttons that enable you to comment and uncomment entire blocks of code at once.

Note that the Edit toolbar isn’t displayed by default. To display this toolbar, choose View ⇨ Toolbars ⇨ Edit.

You can select several lines of code at once and then click the Comment Block button on the Edit toolbar to convert
the selected lines to comments. The Uncomment Block button converts a group of comments back into uncom-
mented code.

Chapter 3: VBA Programming Fundamentals

65

3

Variables, Data Types, and Constants
VBA’s main purpose is to manipulate data. Some data resides in objects, such as worksheet
ranges. Other data is stored in variables that you create.

You can think of a variable as a named storage location in your computer’s memory. Vari-
ables can accommodate a wide variety of data types—from simple Boolean values (True or
False) to large, double-precision values (see the following section). You assign a value to a
variable by using the equal sign operator (more about this process in the upcoming section
“Assignment Statements”).

You make your life easier if you get into the habit of making your variable names as
descriptive as possible. VBA does, however, have a few rules regarding variable names.

 ■ You can use alphabetic characters, numbers, and some punctuation characters, but
the first character must be alphabetic.

 ■ VBA doesn’t distinguish between case. To make variable names more readable,
programmers often use mixed case (for example, InterestRate rather than
interestrate).

 ■ You can’t use spaces or periods. To make variable names more readable, program-
mers often use the underscore character (Interest _ Rate).

 ■ You can’t embed special type declaration characters (#, $, %, &, or !) in a
variable name.

 ■ Variable names can be as long as 254 characters—but using such long variable
names isn’t recommended.

The following list contains some examples of assignment expressions that use various types
of variables. The variable names are to the left of the equal sign. Each statement assigns
the value to the right of the equal sign to the variable on the left.

x = 1
InterestRate = 0.075
LoanPayoffAmount = 243089.87
DataEntered = False
x = x + 1
MyNum = YourNum * 1.25
UserName = "Bob Johnson"
DateStarted = #12/14/2012#

VBA has many reserved words, which are words that you can’t use for variable or procedure
names. If you attempt to use one of these words, you get an error message. For example,
although the reserved word Next might make a very descriptive variable name, the follow-
ing instruction generates a syntax error:

Next = 132

Part I: Introduction to Excel VBA

66

Unfortunately, syntax error messages aren’t always descriptive. If the Auto Syntax Check
option is turned on, you get the error Compile error: Expected: variable. If Auto
Syntax Check is turned off, attempting to execute this statement results in Compile
error: Syntax error. It would be more helpful if the error message were something
like Reserved word used as a variable. So, if an instruction produces a strange
error message, check the VBA Help system to ensure that your variable name doesn’t have a
special use in VBA.

Defining data types
VBA makes life easy for programmers because it can automatically handle all the details
involved in dealing with data. Some programming languages, however, are strictly
typed, which means that the programmer must explicitly define the data type for every
variable used.

Data type refers to how data is stored in memory—as integers, real numbers, strings, and
so on. Although VBA can take care of data typing automatically, it does so at a cost: slower
execution and less efficient use of memory. As a result, letting VBA handle data typing may
present problems when you’re running large or complex applications. Another advantage of
explicitly declaring your variables as a particular data type is that VBA can perform some
additional error checking at the compile stage. These errors might otherwise be difficult
to locate.

Table 3.1 lists VBA’s assortment of built-in data types. (Note that you can also define
custom data types, which are covered later in this chapter in the section “User-Defined
Data Types.”)

Generally, it’s best to use the data type that uses the smallest number of bytes yet still
can handle all the data that will be assigned to it. When VBA works with data, execution
speed is partially a function of the number of bytes that VBA has at its disposal. In other
words, the fewer the bytes used by the data, the faster that VBA can access and manipu-
late the data.

For worksheet calculation, Excel uses the Double data type, so that’s a good choice for
processing numbers in VBA when you don’t want to lose any precision. For integer calcu-
lations, you can use the Integer type (which is limited to values less than or equal to
32,767). Otherwise, use the Long data type. In fact, using the Long data type even for
values less than 32,767 is recommended because this data type may be a bit faster than
using the Integer type. When dealing with Excel worksheet row numbers, you want to

Note
The Decimal data type is unusual because you can’t declare it. In fact, it is a subtype of a variant. You need to use
the VBA CDec function to convert a variant to the Decimal data type.

Chapter 3: VBA Programming Fundamentals

67

3

use the Long data type because the number of rows in a worksheet exceeds the maximum
value for the Integer data type.

Declaring variables
If you don’t declare the data type for a variable that you use in a VBA routine, VBA uses the
default data type, Variant. Data stored as a Variant acts like a chameleon: it changes
type, depending on what you do with it.

TABLE 3.1 VBA Built-in Data Types

Data Type Bytes Used Range of Values

Byte 1 byte 0 to 255.

Boolean 2 bytes True or False.

Integer 2 bytes –32,768 to 32,767.

Long 4 bytes –2,147,483,648 to 2,147,483,647.

Single 4 bytes –3.402823E38 to –1.401298E-45 (for negative values);
1.401298E-45 to 3.402823E38 (for positive values).

Double 8 bytes –1.79769313486232E308 to –4.94065645841247E-
324 (negative values); 4.94065645841247E-324 to
1.79769313486232E308 (for positive values).

Currency 8 bytes –922,337,203,685,477.5808 to
922,337,203,685,477.5807.

Decimal 12 bytes +/–79,228,162,514,264,337,593,543,
950,335 with no decimal point;
+/–7.9228162514264337593543950335 with 28 places
to the right of the decimal.

Date 8 bytes January 1, 0100 to December 31, 9999.

Object 4 bytes Any object reference.

String
(variable length)

10 bytes +
string length

0 to approximately 2 billion characters.

String
(fixed length)

Length of string 1 to approximately 65,400 characters.

Variant
(with numbers)

16 bytes Any numeric value up to the range of a double data
type. It can also hold special values, such as Empty,
Error, Nothing, and Null.

Variant (with
characters)

22 bytes +
string length

0 to approximately 2 billion.

User-defined Varies Varies by element.

Part I: Introduction to Excel VBA

68

The following procedure demonstrates how a variable can assume different data types:

Sub VariantDemo()
 MyVar = True
 MyVar = MyVar * 100
 MyVar = MyVar / 4
 MyVar = "Answer: " & MyVar
 MsgBox MyVar
End Sub

In the VariantDemo procedure, MyVar starts as a Boolean. The multiplication operation
converts it to an Integer. The division operation converts it to a Double. Finally, it’s con-
catenated with text to make it a String. The MsgBox statement displays the final string:
Answer: -25.

To demonstrate further the potential problems in dealing with Variant data types, try
executing this procedure:

Sub VariantDemo2()
 MyVar = "123"
 MyVar = MyVar + MyVar
 MyVar = "Answer: " & MyVar
 MsgBox MyVar
End Sub

The message box displays Answer: 123123. This is probably not what you wanted. When
dealing with variants that contain text strings, the + operator will join (concatenate) the
strings together rather than perform addition.

Determining a data type
You can use the VBA TypeName function to determine the data type of a variable. Here’s
a modified version of the VariantDemo procedure. This version displays the data type of
MyVar at each step.

Sub VariantDemo3()
 MyVar = True
 MsgBox TypeName(MyVar)
 MyVar = MyVar * 100
 MsgBox TypeName(MyVar)
 MyVar = MyVar / 4
 MsgBox TypeName(MyVar)
 MyVar = "Answer: " & MyVar
 MsgBox TypeName(MyVar)
 MsgBox MyVar
End Sub

Thanks to VBA, the data type conversion of undeclared variables is automatic. This process
may seem like an easy way out, but remember that you sacrifice speed and memory—and
you run the risk of errors that you may not even know about.

Chapter 3: VBA Programming Fundamentals

69

3

Declaring each variable in a procedure before you use it is an excellent habit. Declaring a
variable tells VBA its name and data type. Declaring variables provides two main benefits.

 ■ Your programs run faster and use memory more efficiently. The default data
type, Variant, causes VBA to perform time-consuming checks repeatedly and
reserve more memory than necessary. If VBA knows the data type, it doesn’t have
to investigate, and it can reserve just enough memory to store the data.

 ■ You avoid problems involving misspelled variable names. This benefit assumes
that you use Option Explicit to force yourself to declare all variables (see the
next section). Say that you use an undeclared variable named CurrentRate. At
some point in your routine, however, you insert the statement CurentRate =
.075. This misspelled variable name, which is difficult to spot, will likely cause
your routine to give incorrect results.

Forcing yourself to declare all variables
To force yourself to declare all the variables that you use, include the following as the first
instruction in your VBA module:

Option Explicit

When this statement is present, VBA won’t even execute a procedure if it contains an unde-
clared variable name. VBA issues the error message shown in Figure 3.1, and you must
declare the variable before you can proceed.

FIGURE 3.1

VBA’s way of telling you that your procedure contains an undeclared variable

tip
To ensure that the Option Explicit statement is inserted automatically whenever you insert a new VBA
module, enable the Require Variable Declaration option on the Editor tab of the VBE Options dialog box (choose Tools
➪ Options). It is generally considered a best practice to enable this option. Be aware, however, that this option will
not affect existing modules; the option affects only those modules created after it is enabled.

Part I: Introduction to Excel VBA

70

Scoping variables
A variable’s scope determines in which modules and procedures you can use the variable.
Table 3.2 lists the three ways in which a variable can be scoped.

We discuss each scope further in the following sections.

Local variables
A local variable is one declared within a procedure. You can use local variables only in the
procedure in which they’re declared. When the procedure ends, the variable no longer
exists, and Excel frees up the memory that the variable used. If you need the variable to
retain its value when the procedure ends, declare it as a Static variable. (See the section
“Static variables” later in this chapter.)

The most common way to declare a local variable is to place a Dim statement between a
Sub statement and an End Sub statement. Dim statements usually are placed right after
the Sub statement, before the procedure’s code.

TABLE 3.2 Variable Scope

Scope To Declare a Variable with This Scope

Single procedure Include a Dim or Static statement within the procedure.

Single module Include a Dim or Private statement before the first procedure
in a module.

All modules Include a Public statement before the first procedure in a module.

A note about the examples in this chapter
This chapter contains many examples of VBA code, usually presented in the form of simple procedures.
These examples demonstrate various concepts as simply as possible. Most of these examples don’t
perform any particularly useful task; in fact, the task can often be performed in a different (perhaps
more efficient) way. In other words, don’t use these examples in your own work. Subsequent chapters
provide many more code examples that are useful.

Note
Dim is a shortened form of Dimension. In old versions of BASIC, this statement was used exclusively to declare the
dimensions for an array. In VBA, the Dim keyword is used to declare any variable, not just arrays.

Chapter 3: VBA Programming Fundamentals

71

3

The following procedure uses six local variables declared by using Dim statements:

Sub MySub()
 Dim x As Integer
 Dim First As Long
 Dim InterestRate As Single
 Dim TodaysDate As Date
 Dim UserName As String
 Dim MyValue
' - [The procedure's code goes here] -
End Sub

Notice that the last Dim statement in the preceding example doesn’t declare a data type; it
simply names the variable. As a result, that variable becomes a variant.

You also can declare several variables with a single Dim statement. Here’s an example:

Dim x As Integer, y As Integer, z As Integer
Dim First As Long, Last As Double

If a variable is declared with a local scope, other procedures in the same module can use the
same variable name, but each instance of the variable is unique to its own procedure.

In general, local variables are the most efficient because VBA frees up the memory that
they use when the procedure ends.

Module-wide variables
Sometimes, you want a variable to be available to all procedures in a module. If so, just
declare the variable before the module’s first procedure (outside of any procedures or
functions).

In the following example, the Dim statement is the first instruction in the module. Both
Procedure1 and Procedure2 have access to the CurrentValue variable.

Dim CurrentValue as Long
Sub Procedure1()
' - [Code goes here] -
End Sub

CautioN
Unlike some languages, VBA doesn’t let you declare a group of variables to be a particular data type by separating the vari-
ables with commas. For example, the following statement, although valid, does not declare all the variables as integers:

Dim i, j, k As Integer

In VBA, only k is declared to be an integer; the other variables are declared variants. To declare i, j, and k as inte-
gers, use this statement:

Dim i As Integer, j As Integer, k As Integer

Part I: Introduction to Excel VBA

72

Sub Procedure2()
' - [Code goes here] -
End Sub

The value of a module-wide variable retains its value when a procedure ends normally (that
is, when it reaches the End Sub or End Function statement). An exception is if the pro-
cedure is halted with an End statement. When VBA encounters an End statement, all vari-
ables in all modules lose their values.

Public variables
To make a variable available to all the procedures in all the VBA modules in a project,
declare the variable at the module level (before the first procedure declaration) by using
the Public keyword rather than Dim. Here’s an example:

Public CurrentRate as Long

The Public keyword makes the CurrentRate variable available to any procedure in the
VBA project, even those in other modules in the project. You must insert this statement
before the first procedure in a module (any module). This type of declaration must appear in
a standard VBA module, not in a code module for a sheet or a UserForm.

Static variables
Static variables are a special case. They’re declared at the procedure level, and they retain
their value when the procedure ends normally. However, if the procedure is halted by an
End statement, static variables do lose their values. Note that an End statement is not the
same as an End Sub statement.

You declare static variables by using the Static keyword.

Sub MySub()
 Static Counter as Long
 '- [Code goes here] -
End Sub

Working with constants
A variable’s value may change while a procedure is executing (that’s why it’s called a
variable). Sometimes, you need to refer to a named value or string that never changes:
a constant.

Using constants throughout your code in place of hard-coded values or strings is an excel-
lent programming practice. For example, if your procedure needs to refer to a specific value
(such as an interest rate) several times, it’s better to declare the value as a constant and
use the constant’s name rather than its value in your expressions. Not only does this tech-
nique make your code more readable, it also makes it easier to change should the need
arise—you have to change only one instruction rather than several.

Chapter 3: VBA Programming Fundamentals

73

3

Declaring constants
You declare constants with the Const statement. Here are some examples:

Const NumQuarters as Integer = 4
Const Rate = .0725, Period = 12
Const ModName as String = "Budget Macros"
Public Const AppName as String = "Budget Application"

The second example doesn’t declare a data type. Consequently, VBA determines the data
type from the value. The Rate variable is a Double, and the Period variable is an
Integer. Because a constant never changes its value, you normally want to declare your
constants as a specific data type.

Like variables, constants have a scope. If you want a constant to be available within a
single procedure only, declare it after the Sub or Function statement to make it a local
constant. To make a constant available to all procedures in a module, declare it before the
first procedure in the module. To make a constant available to all modules in the workbook,
use the Public keyword and declare the constant before the first procedure in a module.
Here’s an example:

Public Const InterestRate As Double = 0.0725

Using predefined constants
Excel and VBA make available many predefined constants, which you can use without
declaring. In fact, you don’t even need to know the value of these constants to use them.
The macro recorder generally uses constants rather than actual values. The following proce-
dure uses a built-in constant (xlLandscape) to set the page orientation to landscape for
the active sheet:

Sub SetToLandscape()
 ActiveSheet.PageSetup.Orientation = xlLandscape
End Sub

It’s often useful to record a macro just to discover the various constants that can be used.
And, if you have the AutoList Members option turned on, you can often get some assis-
tance while you enter your code (see Figure 3.2). In many cases, VBA lists all the constants
that you can assign to a property.

The actual value for xlLandscape is 2 (which you can discover by using the Immediate
window). The other built-in constant for changing paper orientation is xlPortrait, which

Note
If your VBA code attempts to change the value of a constant, you get an error (Assignment to constant
not permitted). This message is what you would expect. A constant is a constant, not a variable.

Part I: Introduction to Excel VBA

74

has a value of 1. Obviously, if you use the built-in constants, you don’t really need to know
their values.

Working with strings
Like Excel, VBA can manipulate both numbers and text (strings). There are two types of
strings in VBA.

 ■ Fixed-length strings are declared with a specified number of characters. The maxi-
mum length is 65,535 characters.

 ■ Variable-length strings theoretically can hold up to 2 billion characters.

Each character in a string requires 1 byte of storage, plus a small amount of storage for
the header of each string. When you declare a variable with a Dim statement as data type
String, you can specify the length if you know it (that is, a fixed-length string), or you
can let VBA handle it dynamically (a variable-length string).

In the following example, the MyString variable is declared to be a string with a maxi-
mum length of 50 characters. YourString is also declared as a string; but it’s a variable-
length string, so its length is not fixed.

Dim MyString As String * 50
Dim YourString As String

Working with dates
You can use a string variable to store a date, but if you do, it’s not a real date (meaning
that you can’t perform date calculations with it). Using the Date data type is a better way
to work with dates.

A variable defined as a date uses 8 bytes of storage and can hold dates ranging from Janu-
ary 1, 0100, to December 31, 9999. That’s a span of nearly 10,000 years—more than enough
for even the most aggressive financial forecast! The Date data type is also useful for

FIGURE 3.2

VBA displays a list of constants that you can assign to a property.

Note
The Object Browser can display a list of all Excel and VBA constants. In the VBE, press F2 to bring up the Object
Browser.

Chapter 3: VBA Programming Fundamentals

75

3

storing time-related data. In VBA, you specify dates and times by enclosing them between
two hash marks (#).

Here are some examples of declaring variables and constants as Date data types:

Dim Today As Date
Dim StartTime As Date
Const FirstDay As Date = #1/1/2019#
Const Noon = #12:00:00#

If you use a message box to display a date, it’s displayed according to your system’s short
date format. Similarly, a time is displayed according to your system’s time format (either
12- or 24-hour). You can modify these system settings by using the Regional Settings
option in the Windows Control Panel.

About Excel’s date bug
It is commonly known that Excel has a date bug: it incorrectly assumes that the year 1900 is a leap
year. Even though there was no February 29, 1900, Excel accepts the following formula and displays
the result as the 29th day of February 1900:

 =Date(1900,2,29)

VBA doesn’t have this date bug. The VBA equivalent of Excel’s DATE function is DateSerial. The
following expression (correctly) returns March 1, 1900:

 DateSerial(1900,2,29)

Therefore, Excel’s date serial number system doesn’t correspond exactly to the VBA date serial
number system. These two systems return different values for dates between January 1, 1900, and
February 28, 1900.

Note
The range of dates that VBA can handle is much larger than Excel’s own date range, which begins with January 1,
1900, and extends through December 31, 9999. Therefore, be careful that you don’t attempt to use a date in a work-
sheet that is outside Excel’s acceptable date range.

CautioN
Dates are always defined using month/day/year format, even if your system is set to display dates in a different
format (for example, day/month/year).

In Chapter 5, “Creating Function Procedures,” we describe some relatively simple VBA functions that
enable you to create formulas that work with pre-1900 dates in a worksheet.

Part I: Introduction to Excel VBA

76

Assignment Statements
An assignment statement is a VBA instruction that evaluates an expression and assigns the
result to a variable or an object. Excel’s Help system defines expression as “a combination
of keywords, operators, variables, and constants that yields a string, number, or object. An
expression can perform a calculation, manipulate characters, or test data.”

Much of the work done in VBA involves developing (and debugging) expressions. If you
know how to create formulas in Excel, you’ll have no trouble creating expressions in VBA.
With a worksheet formula, Excel displays the result in a cell. The result of a VBA expression,
on the other hand, can be assigned to a variable or used as a property value.

VBA uses the equal sign (=) as its assignment operator. The following are examples of
assignment statements (the expressions are to the right of the equal sign):

x = 1
x = x + 1
x = (y * 2) / (z * 2)
FileOpen = True
FileOpen = Not FileOpen
Range("TheYear").Value = 2010

Often, expressions use functions. These functions can be built-in VBA functions, Excel’s
worksheet functions, or custom functions that you develop in VBA. We discuss built-in VBA
functions later in this chapter (see the upcoming section “Built-in Functions”).

Operators play a major role in VBA. Familiar operators describe mathematical operations,
including addition (+), multiplication (*), division (/), subtraction (–), exponentiation (^),
and string concatenation (&). Less familiar operators are the backslash (\) operator (used
in integer division) and the Mod operator (used in modulo arithmetic). The Mod opera-
tor returns the remainder of one number divided by another. For example, the following
expression returns 2:

17 Mod 3

VBA also supports the same comparison operators used in Excel formulas: equal to (=),
greater than (>), less than (<), greater than or equal to (>=), less than or equal to (<=), and
not equal to (<>).

With one exception, the order of precedence for operators in VBA is exactly the same as in
Excel (see Table 3.3). And, of course, you can use parentheses to change the default order of
precedence.

tip
Expressions can be complex. You may want to use the line continuation sequence (space followed by an underscore)
to make lengthy expressions easier to read.

Chapter 3: VBA Programming Fundamentals

77

3

TABLE 3.3 Operator Precedence

Operator Operation Order of Precedence

^ Exponentiation 1

* and / Multiplication and division 2

+ and - Addition and subtraction 3

& Concatenation 4

=, <, >, <=, >=, <> Comparison 5

In the statement that follows, x is assigned the value 10 because the multiplication opera-
tor has a higher precedence than the addition operator:

x = 4 + 3 * 2

To avoid ambiguity, you may prefer to write the statement as follows:

x = 4 + (3 * 2)

In addition, VBA provides a full set of logical operators, shown in Table 3.4. For complete
details on these operators (including examples), use the VBA Help system.

TABLE 3.4 VBA Logical Operators

Operator What It Does

Not Performs a logical negation on an expression

And Performs a logical conjunction on two expressions

Or Performs a logical disjunction on two expressions

Xor Performs a logical exclusion on two expressions

Eqv Performs a logical equivalence on two expressions

Imp Performs a logical implication on two expressions

CautioN
The negation operator (a minus sign) is handled differently in VBA. In Excel, the following formula returns 25:

=-5^2
In VBA, x equals –25 after this statement is executed.

x = -5 ^ 2
VBA performs the exponentiation operation first and then applies the negation operator. The following statement
returns 25:

x = (-5) ^ 2

Part I: Introduction to Excel VBA

78

The following instruction uses the Not operator to toggle the gridline display in the active
window. The DisplayGridlines property takes a value of either True or False. There-
fore, using the Not operator changes False to True and True to False.

ActiveWindow.DisplayGridlines = Not ActiveWindow.DisplayGridlines

The following expression performs a logical And operation. The MsgBox statement displays
True only when Sheet1 is the active sheet and the active cell is in Row 1. If either or
both of these conditions aren’t true, the MsgBox statement displays False.

MsgBox ActiveSheet.Name = "Sheet1" And ActiveCell.Row = 1

The following expression performs a logical Or operation. The MsgBox statement displays
True when either Sheet1 or Sheet2 is the active sheet.

MsgBox ActiveSheet.Name = "Sheet1" Or ActiveSheet.Name = "Sheet2"

Arrays
An array is a group of elements of the same type that have a common name. You refer to a
specific element in the array by using the array name and an index number. For example,
you can define an array of 12 string variables so that each variable corresponds to the
name of a month. If you name the array MonthNames, you can refer to the first element
of the array as MonthNames(0), the second element as MonthNames(1), and so on, up to
MonthNames(11).

Declaring arrays
You declare an array with a Dim or Public statement, just as you declare a regular vari-
able. You can also specify the number of elements in the array. You do so by specifying the
first index number, the keyword To, and the last index number—all inside parentheses. For
example, here’s how to declare an array comprising exactly 100 integers:

Dim MyArray(1 To 100) As Integer

tip
When you declare an array, you need to specify only the upper index, in which case VBA assumes that 0 is the lower
index. Therefore, the two statements that follow have the same effect:

Dim MyArray(0 To 100) As Integer
Dim MyArray(100) As Integer

In both cases, the array consists of 101 elements.

Chapter 3: VBA Programming Fundamentals

79

3

By default, VBA assumes zero-based arrays. If you would like VBA to assume that 1 is the
lower index for all arrays that declare only the upper index, include the following state-
ment before any procedures in your module:

Option Base 1

Declaring multidimensional arrays
The array examples in the preceding section are one-dimensional arrays. VBA arrays can
have up to 60 dimensions, although you’ll rarely need more than three dimensions (a 3D
array). The following statement declares a 100-integer array with two dimensions (2D):

Dim MyArray(1 To 10, 1 To 10) As Integer

You can think of the preceding array as occupying a 10 × 10 matrix. To refer to a specific
element in a 2D array, you need to specify two index numbers. For example, here’s how you
can assign a value to an element in the preceding array:

MyArray(3, 4) = 125

The following is a declaration for a 3D array that contains 1,000 elements (visualize this
array as a cube):

Dim MyArray(1 To 10, 1 To 10, 1 To 10) As Integer

Reference an item in the array by supplying three index numbers.

MyArray(4, 8, 2) = 0

Declaring dynamic arrays
A dynamic array doesn’t have a preset number of elements. You declare a dynamic array
with a blank set of parentheses.

Dim MyArray() As Integer

Before you can use a dynamic array in your code, however, you must use the ReDim state-
ment to tell VBA how many elements are in the array. You can use a variable to assign the
number of elements in an array. Often the value of the variable isn’t known until the pro-
cedure is executing. For example, if the variable x contains a number, you can define the
array’s size by using this statement:

ReDim MyArray (1 To x)

You can use the ReDim statement any number of times, changing the array’s size as often
as you need. When you change an array’s dimensions, the existing values are destroyed. If
you want to preserve the existing values, use ReDim Preserve. Here’s an example:

ReDim Preserve MyArray (1 To y)

Arrays crop up later in this chapter when we discuss looping (see the section “Looping
blocks of instructions”).

Part I: Introduction to Excel VBA

80

Object Variables
An object variable is one that represents an entire object, such as a range or a worksheet.
Object variables are important for two reasons.

 ■ They can simplify your code significantly.
 ■ They can make your code execute more quickly.

Object variables, like normal variables, are declared with the Dim or Private or Public
statement. For example, the following statement declares InputArea as a Range
object variable:

Dim InputArea As Range

Use the Set keyword to assign an object to the variable. Here’s an example:

Set InputArea = Range("C16:E16")

To see how object variables simplify your code, examine the following procedure, which
doesn’t use an object variable:

Sub NoObjVar()
 Worksheets("Sheet1").Range("A1").Value = 124
 Worksheets("Sheet1").Range("A1").Font.Bold = True
 Worksheets("Sheet1").Range("A1").Font.Italic = True
 Worksheets("Sheet1").Range("A1").Font.Size = 14
 Worksheets("Sheet1").Range("A1").Font.Name = "Cambria"
End Sub

This routine enters a value into cell A1 of Sheet1 on the active workbook, applies some for-
matting, and changes the fonts and size. That’s a lot of typing. To reduce wear and tear on
your fingers (and make your code more efficient), you can condense the routine with an
object variable.

Sub ObjVar()
 Dim MyCell As Range
 Set MyCell = Worksheets("Sheet1").Range("A1")
 MyCell.Value = 124
 MyCell.Font.Bold = True
 MyCell.Font.Italic = True
 MyCell.Font.Size = 14
 MyCell.Font.Name = "Cambria"
End Sub

After the variable MyCell is declared as a Range object, the Set statement assigns an
object to it. Subsequent statements can then use the simpler MyCell reference in place of
the lengthy Worksheets("Sheet1").Range("A1") reference.

Chapter 3: VBA Programming Fundamentals

81

3

The true value of object variables will become apparent when we discuss looping later in
this chapter.

User-Defined Data Types
VBA lets you create custom, or user-defined, data types. A user-defined data type can ease
your work with some types of data. For example, if your application deals with customer
information, you may want to create a user-defined data type named CustomerInfo.

Type CustomerInfo
 Company As String
 Contact As String
 RegionCode As Long
 Sales As Double
End Type

After you create a user-defined data type, you use a Dim statement to declare a variable as
that type. Usually, you define an array. Here’s an example:

Dim Customers(1 To 100) As CustomerInfo

Each of the 100 elements in this array consists of four components (as specified by the
user-defined data type, CustomerInfo). You can refer to a particular component of the
record as follows:

Customers(1).Company = "Acme Tools"
Customers(1).Contact = "Tim Robertson"
Customers(1).RegionCode = 3
Customers(1).Sales = 150674.98

tip
After an object is assigned to a variable, VBA can access it more quickly than it can a normal, lengthy reference that
has to be resolved. So, when speed is critical, use object variables. One way to think about code efficiency is in terms
of dot processing. Every time VBA encounters a dot, as in Sheets(1).Range("A1"), it takes time to resolve the
reference. Using an object variable reduces the number of dots to be processed. The fewer the dots, the faster the
processing time. Another way to improve the speed of your code is by using the With-End With construct, which
also reduces the number of dots to be processed. We discuss this construct later in this chapter.

Note
You define custom data types at the top of your module, before any procedures.

Part I: Introduction to Excel VBA

82

You can also work with an element in the array as a whole. For example, to copy the infor-
mation from Customers(1) to Customers(2), use this instruction:

Customers(2) = Customers(1)

The preceding example is equivalent to the following instruction block:

Customers(2).Company = Customers(1).Company
Customers(2).Contact = Customers(1).Contact
Customers(2).RegionCode = Customers(1).RegionCode
Customers(2).Sales = Customers(1).Sales

Built-in Functions
Like most programming languages, VBA has a variety of built-in functions that simplify cal-
culations and operations. Many VBA functions are similar (or identical) to Excel worksheet
functions. For example, the VBA function UCase, which converts a string argument to
uppercase, is equivalent to the Excel worksheet function UPPER.

FIGURE 3.3

Displaying a list of VBA functions in VBE

tip
To get a list of VBA functions while you’re writing your code, type VBA followed by a period (.).V BE displays a list of
all its members, including functions (see Figure 3.3). The functions are preceded by a green icon. If this technique
doesn’t work for you, make sure that the Auto List Members option is selected. Choose Tools ➪ Options and then
click the Editor tab.

Appendix A contains a complete list of VBA functions, with a brief description of each. All are thoroughly
described in the VBA Help system.

Chapter 3: VBA Programming Fundamentals

83

3

You use functions in VBA expressions in much the same way that you use functions in
worksheet formulas. Here’s a simple procedure that calculates the square root of a vari-
able (using the VBA Sqr function), stores the result in another variable, and then displays
the result:

Sub ShowRoot()
 Dim MyValue As Double
 Dim SquareRoot As Double
 MyValue = 25
 SquareRoot = Sqr(MyValue)
 MsgBox SquareRoot
End Sub

The VBA Sqr function is equivalent to the Excel SQRT worksheet function.

You can use many (but not all) of Excel’s worksheet functions in your VBA code. The
WorksheetFunction object, which is contained in the Application object, holds all
the worksheet functions that you can call from your VBA procedures.

To use a worksheet function in a VBA statement, just precede the function name with this:

Application.WorksheetFunction

The following example demonstrates how to use an Excel worksheet function in a VBA
procedure. Excel’s infrequently used ROMAN function converts a decimal number into a
Roman numeral.

Sub ShowRoman()
 Dim DecValue As Long
 Dim RomanValue As String
 DecValue = 1939
 RomanValue = Application.WorksheetFunction.Roman(DecValue)
 MsgBox RomanValue
End Sub

When you execute this procedure, the MsgBox function displays the string MCMXXXIX.

Keep in mind that you can’t use worksheet functions that have an equivalent VBA
function. For example, VBA can’t access the Excel SQRT worksheet function because VBA
has its own version of that function, Sqr. Therefore, the following statement gener-
ates an error:

MsgBox Application.WorksheetFunction.Sqrt(123) 'error

In Chapter 5, you will discover that you can use VBA to create custom worksheet functions that work just
like Excel’s built-in worksheet functions.

Part I: Introduction to Excel VBA

84

The MsgBox function
The MsgBox function is one of the most useful VBA functions. Many of the examples in this chapter
use this function to display the value of a variable.

This function often is a good substitute for a simple custom dialog box. It’s also a useful debugging
tool because you can insert MsgBox functions at any time to pause your code and display the result
of a calculation or an assignment.

Most functions return a single value, which you assign to a variable. The MsgBox function not only returns
a value but also displays a dialog box to which the user can respond. The value returned by the MsgBox
function represents the user’s response to the dialog box. You can use the MsgBox function even when
you have no interest in the user’s response but want to take advantage of the message display.

The official syntax of the MsgBox function has five arguments (those in square brackets are optional).

MsgBox(prompt[, buttons][, title][, helpfile, context])

prompt: Required. The message displayed in the pop-up display.

buttons: Optional. A value that specifies which buttons and which icons, if any, appear in the
message box. Use built-in constants—for example, vbYesNo.

title: Optional. The text that appears in the message box’s title bar. The default is Micro-
soft Excel.

helpfile: Optional. The name of the Help file associated with the message box.

context: Optional. The context ID of the Help topic, which represents a specific Help topic to
display. If you use the context argument, you must also use the helpfile argument.

You can assign the value returned to a variable, or you can use the function by itself without an assign-
ment statement. This example assigns the result to the variable Ans:

 Dim Ans As Long
 Ans = MsgBox("Continue?", vbYesNo + vbQuestion, "Tell me")
 If Ans = vbNo Then Exit Sub

Note that we used the sum of two built-in constants (vbYesNo + vbQuestion) for the buttons argu-
ment. Using vbYesNo displays two buttons in the message box: one labeled Yes and one labeled No.
Adding vbQuestion to the argument also displays a question mark icon. When the first statement is
executed, Ans contains one of two values, represented by the constant vbYes or vbNo. In this example,
if the user clicks the No button, the procedure ends.

See Chapter 12, “Leveraging Custom Dialog Boxes,” for more information about the MsgBox function.

Chapter 3: VBA Programming Fundamentals

85

3

Manipulating Objects and Collections
As an Excel programmer, you’ll spend a lot of time working with objects and collections.
Therefore, you want to know the most efficient ways to write your code to manipulate
these objects and collections. VBA offers two important constructs that can simplify
working with objects and collections.

 ■ With-End With constructs
 ■ For Each-Next constructs

With-End With constructs
The With-End With construct enables you to perform multiple operations on a single
object. To start understanding how the With-End With construct works, examine the fol-
lowing procedure, which modifies six properties of a selection’s formatting. (The selection
is assumed to be a Range object.)

Sub ChangeFont1()
 Selection.Font.Name = "Cambria"
 Selection.Font.Bold = True
 Selection.Font.Italic = True
 Selection.Font.Size = 12
 Selection.Font.Underline = xlUnderlineStyleSingle
 Selection.Font.ThemeColor = xlThemeColorAccent1
End Sub

You can rewrite this procedure using the With-End With construct. The following proce-
dure performs exactly like the preceding one:

Sub ChangeFont2()
 With Selection.Font
 .Name = "Cambria"
 .Bold = True
 .Italic = True
 .Size = 12
 .Underline = xlUnderlineStyleSingle
 .ThemeColor = xlThemeColorAccent1
 End With
End Sub

Some people think that the second incarnation of the procedure is more difficult to read.
Remember, though, that the objective is increased speed. Although the first version may be
more straightforward and easier to understand, a procedure that uses the With-End With
construct to change several properties of an object can be faster than the equivalent proce-
dure that explicitly references the object in each statement.

Part I: Introduction to Excel VBA

86

For Each-Next constructs
Recall from the preceding chapter that a collection is a group of related objects. For exam-
ple, the Workbooks collection is a collection of all open Workbook objects. You can also
work with many other collections.

Suppose you want to perform some action on all objects in a collection. Or suppose you
want to evaluate all objects in a collection and take action under certain conditions. These
occasions are perfect for the For Each-Next construct because you don’t have to know
how many elements are in a collection to use the For Each-Next construct.

The syntax of the For Each-Next construct is as follows:

For Each element In collection
 [instructions]
 [Exit For]
 [instructions]
Next [element]

The following procedure uses the For Each-Next construct with the Worksheets collec-
tion in the active workbook. When you execute the procedure, the MsgBox function dis-
plays each worksheet’s Name property. (If five worksheets are in the active workbook, the
MsgBox function is called five times.)

Sub CountSheets()
 Dim Item as Worksheet
 For Each Item In ActiveWorkbook.Worksheets
 MsgBox Item.Name
 Next Item
End Sub

The next example uses For Each-Next to cycle through all objects in the Windows collec-
tion and count the number of windows that are hidden:

Sub HiddenWindows()
 Dim iCount As Integer
 Dim Win As Window

Note
When you record a VBA macro, Excel uses the With-End With construct every chance it gets. To see a good
example of this construct, try recording your actions while you change the page orientation using the Page Layout ➪
Page Setup ➪ Orientation command.

Note
In the preceding example, Item is an object variable (more specifically, a Worksheet object). There’s nothing spe-
cial about the name Item; you can use any valid variable name in its place.

Chapter 3: VBA Programming Fundamentals

87

3

 iCount = 0
 For Each Win In Windows
 If Not Win.Visible Then iCount = iCount + 1
 Next Win
 MsgBox iCount & " hidden windows."
End Sub

For each window, if the window is hidden, the iCount variable is incremented. When the
loop ends, the message box displays the value of iCount.

Here’s an example that closes all workbooks except the active workbook. This procedure
uses the If-Then construct to evaluate each workbook in the Workbooks collection:

Sub CloseInactive()
 Dim Book as Workbook
 For Each Book In Workbooks
 If Book.Name <> ActiveWorkbook.Name Then Book.Close
 Next Book
End Sub

A common use for the For Each-Next construct is to loop through all of the cells in a
range. The next example of For Each-Next is designed to be executed after the user
selects a range of cells. Here, the Selection object acts as a collection that consists of
Range objects because each cell in the selection is a Range object. The procedure eval-
uates each cell and uses the VBA UCase function to convert its contents to uppercase.
(Numeric cells are not affected.)

Sub MakeUpperCase()
 Dim Cell as Range
 For Each Cell In Selection
 Cell.Value = UCase(Cell.Value)
 Next Cell
End Sub

VBA provides a way to exit a For-Next loop before all the elements in the collection are
evaluated. Do this with an Exit For statement. The example that follows selects the first
negative value in Row 1 of the active sheet:

Sub SelectNegative()
 Dim Cell As Range
 For Each Cell In Range("1:1")
 If Cell.Value < 0 Then
 Cell.Select
 Exit For
 End If
 Next Cell
End Sub

This example uses an If-Then construct to check the value of each cell. If a cell is nega-
tive, it’s selected, and then the loop ends when the Exit For statement is executed.

Part I: Introduction to Excel VBA

88

Controlling Code Execution
Some VBA procedures start at the top and progress line by line to the bottom. Macros
that you record, for example, always work in this fashion. Often, however, you need
to control the flow of your routines by skipping over some statements, executing
some statements multiple times, and testing conditions to determine what the routine
does next.

The preceding section describes the For Each-Next construct, which is a type of loop.
This section discusses the additional ways of controlling the execution of your VBA
procedures.

 ■ GoTo statements
 ■ If-Then constructs
 ■ Select Case constructs
 ■ For-Next loops
 ■ Do While loops
 ■ Do Until loops

GoTo statements
The most straightforward way to change the flow of a program is to use a GoTo statement.
This statement simply transfers program execution to a new instruction, which must be
preceded by a label (a text string followed by a colon, or a number with no colon). VBA
procedures can contain any number of labels, but a GoTo statement can’t branch outside a
procedure.

The following procedure uses the VBA InputBox function to get the user’s name. If the
name is not Howard, the procedure branches to the WrongName label and ends. Otherwise,
the procedure executes some additional code. The Exit Sub statement causes the proce-
dure to end.

Sub GoToDemo()
 UserName = InputBox("Enter Your Name:")
 If UserName <> "Howard" Then GoTo WrongName
 MsgBox ("Welcome Howard...")
' -[More code here] -
 Exit Sub
WrongName:
 MsgBox "Sorry. Only Howard can run this macro."
End Sub

This simple procedure works, but it’s not an example of good programming. In general, you
should use the GoTo statement only when you have no other way to perform an action. In
fact, the only time you really need to use a GoTo statement in VBA is for error handling
(refer to Chapter 4, “Working with VBA Sub Procedures”).

Chapter 3: VBA Programming Fundamentals

89

3

Finally, it goes without saying that the preceding example is not intended to demonstrate
an effective security technique!

If-Then constructs
Perhaps the most commonly used instruction grouping in VBA is the If-Then construct.
This common instruction is one way to endow your applications with decision-making capa-
bility. Good decision-making is the key to writing successful programs.

The basic syntax of the If-Then construct is as follows:

If condition Then true_instructions [Else false_instructions]

The If-Then construct is used to execute one or more statements conditionally. The Else
clause is optional. If included, the Else clause lets you execute one or more instructions
when the condition that you’re testing isn’t True.

The following procedure demonstrates an If-Then structure without an Else clause. The
example deals with time, and VBA uses a date-and-time serial number system similar to
Excel’s. The time of day is expressed as a fractional value—for example, noon is represented
as .5. The VBA Time function returns a value that represents the time of day, as reported
by the system clock.

In the following example, a message is displayed if the time is before noon. If the current
system time is greater than or equal to .5, the procedure ends, and nothing happens.

Sub GreetMe1()
 If Time < 0.5 Then MsgBox "Good Morning"
End Sub

Another way to code this routine is to use multiple statements, as follows:

Sub GreetMe1a()
 If Time < 0.5 Then
 MsgBox "Good Morning"
 End If
End Sub

Note that the If statement has a corresponding End If statement. In this example, only
one statement is executed if the condition is True. You can, however, place any number of
statements between the If and End If statements.

If you want to display a different greeting when the time of day is after noon, add another
If-Then statement, as follows:

Sub GreetMe2()
 If Time < 0.5 Then MsgBox "Good Morning"
 If Time >= 0.5 Then MsgBox "Good Afternoon"
End Sub

Notice that we used >= (greater than or equal to) for the second If-Then statement. This
covers the remote chance that the time is precisely 12 p.m.

Part I: Introduction to Excel VBA

90

Another approach is to use the Else clause of the If-Then construct. Here’s an example:

Sub GreetMe3()
 If Time < 0.5 Then MsgBox "Good Morning" Else _
 MsgBox "Good Afternoon"
End Sub

Notice that we used the line continuation sequence; If-Then-Else is actually a single
statement.

If you need to execute multiple statements based on the condition, use this form:

Sub GreetMe3a()
 If Time < 0.5 Then
 MsgBox "Good Morning"
 ' Other statements go here
 Else
 MsgBox "Good Afternoon"
 ' Other statements go here
 End If
End Sub

If you need to expand a routine to handle three conditions (for example, morning, after-
noon, and evening), you can use either three If-Then statements or a form that uses
ElseIf. The first approach is simpler.

Sub GreetMe4()
 If Time < 0.5 Then MsgBox "Good Morning"
 If Time >= 0.5 And Time < 0.75 Then MsgBox "Good Afternoon"
 If Time >= 0.75 Then MsgBox "Good Evening"
End Sub

The value 0.75 represents 6 p.m.—three-quarters of the way through the day and a good
point at which to call it an evening.

In the preceding examples, every instruction in the procedure gets executed, even if the
first condition is satisfied (that is, it’s morning). A more efficient procedure would include
a structure that ends the routine when a condition is found to be True. For example, it
might display the “Good Morning” message in the morning and then exit without evalu-
ating the other, superfluous conditions. True, the difference in speed is inconsequential
when you design a procedure as small as this routine. For more complex applications, how-
ever, you need another syntax.

If condition Then
 [true_instructions]
[ElseIf condition-n Then
 [alternate_instructions]]
[Else
 [default_instructions]]
End If

Chapter 3: VBA Programming Fundamentals

91

3

Here’s how you can use this syntax to rewrite the GreetMe procedure:

Sub GreetMe5()
 If Time < 0.5 Then
 MsgBox "Good Morning"
 ElseIf Time >= 0.5 And Time < 0.75 Then
 MsgBox "Good Afternoon"
 Else
 MsgBox "Good Evening"
 End If
End Sub

With this syntax, when a condition is True, the conditional statements are executed, and
the If-Then construct ends. In other words, the extraneous conditions aren’t evaluated.
Although this syntax makes for greater efficiency, some find the code to be more difficult
to understand.

The following procedure demonstrates yet another way to code this example. It uses nested
If-Then-Else constructs (without using ElseIf). This procedure is efficient and also easy
to understand. Note that each If statement has a corresponding End If statement.

Sub GreetMe6()
 If Time < 0.5 Then
 MsgBox "Good Morning"
 Else
 If Time >= 0.5 And Time < 0.75 Then
 MsgBox "Good Afternoon"
 Else
 If Time >= 0.75 Then
 MsgBox "Good Evening"
 End If
 End If
 End If
End Sub

The following is another example that uses the simple form of the If-Then construct. This
procedure prompts the user for a value for Quantity and then displays the appropriate
discount based on that value. Note that Quantity is declared as a Variant data type.
This is because Quantity contains an empty string (not a numeric value) if InputBox is
cancelled. To keep the procedure simple, it doesn’t perform any other error checking. For
example, it doesn’t ensure that the quantity entered is a non-negative numeric value.

Sub Discount1()
 Dim Quantity As Variant
 Dim Discount As Double
 Quantity = InputBox("Enter Quantity: ")
 If Quantity = "" Then Exit Sub
 If Quantity >= 0 Then Discount = 0.1
 If Quantity >= 25 Then Discount = 0.15

Part I: Introduction to Excel VBA

92

 If Quantity >= 50 Then Discount = 0.2
 If Quantity >= 75 Then Discount = 0.25
 MsgBox "Discount: " & Discount
End Sub

Notice that every If-Then statement in this procedure is always executed, and the value
for Discount can change. The final value, however, is the desired value.

The following procedure is the previous one rewritten to use the alternate syntax. In this
alternate version, only the If-Then statement that evaluates to True is actually executed.

Sub Discount2()
 Dim Quantity As Variant
 Dim Discount As Double
 Quantity = InputBox("Enter Quantity: ")
 If Quantity = "" Then Exit Sub
 If Quantity >= 0 And Quantity < 25 Then
 Discount = 0.1
 ElseIf Quantity < 50 Then
 Discount = 0.15
 ElseIf Quantity < 75 Then
 Discount = 0.2
 Else
 Discount = 0.25
 End If
 MsgBox "Discount: " & Discount
End Sub

VBA’s IIf function
VBA offers an alternative to the If-Then construct: the IIf function. This function takes three argu-
ments and works much like Excel’s IF worksheet function. The syntax is as follows:

 IIf(expr, truepart, falsepart)

expr: (Required) Expression you want to evaluate

truepart: (Required) Value or expression returned if expr is True

falsepart: (Required) Value or expression returned if expr is False

The following instruction demonstrates the use of the IIf function. The message box displays Zero
if cell A1 contains a 0 or is empty and displays Nonzero if cell A1 contains anything else.

 MsgBox IIf(Range("A1") = 0, "Zero", "Nonzero")

It’s important to understand that the third argument (falsepart) is always evaluated, even if the first
argument (expr) is True. Therefore, the following statement generates a division-by-zero error if the
value of n is 0 (zero):

 MsgBox IIf(n = 0, 0, 1 / n)

Chapter 3: VBA Programming Fundamentals

93

3

Select Case constructs
The Select Case construct is useful for choosing among three or more options. This
construct also works with two options, and it is a good alternative to If-Then-Else. The
syntax for Select Case is as follows:

Select Case testexpression
 [Case expressionlist-n
 [instructions-n]]
 [Case Else
 [default_instructions]]
End Select

The following example of a Select Case construct shows another way to code the
GreetMe examples presented in the preceding section:

Sub GreetMe()
 Dim Msg As String
 Select Case Time
 Case Is < 0.5
 Msg = "Good Morning"
 Case 0.5 To 0.75
 Msg = "Good Afternoon"
 Case Else
 Msg = "Good Evening"
 End Select
 MsgBox Msg
End Sub

And here’s a rewritten version of the Discount example using a Select Case construct.
This procedure assumes that Quantity is always an integer value. For simplicity, the pro-
cedure performs no error checking.

Sub Discount3()
 Dim Quantity As Variant
 Dim Discount As Double
 Quantity = InputBox("Enter Quantity: ")
 Select Case Quantity
 Case ""
 Exit Sub
 Case 0 To 24
 Discount = 0.1
 Case 25 To 49
 Discount = 0.15
 Case 50 To 74
 Discount = 0.2
 Case Is >= 75
 Discount = 0.25
 End Select
 MsgBox "Discount: " & Discount
End Sub

Part I: Introduction to Excel VBA

94

The Case statement also can use a comma to separate multiple values for a single case. The
following procedure uses the VBA Weekday function to determine whether the current day
is a weekend (that is, the Weekday function returns 1 or 7). The procedure then displays
an appropriate message.

Sub GreetUser1()
 Select Case Weekday(Now)
 Case 1, 7
 MsgBox "This is the weekend"
 Case Else
 MsgBox "This is not the weekend"
 End Select
End Sub

The following example shows another way to code the previous procedure:

Sub GreetUser2()
 Select Case Weekday(Now)
 Case 2, 3, 4, 5, 6
 MsgBox "This is not the weekend"
 Case Else
 MsgBox "This is the weekend"
 End Select
End Sub

Here’s another way to code the procedure, using the To keyword to specify a range
of values:

Sub GreetUser3()
 Select Case Weekday(Now)
 Case 2 To 6
 MsgBox "This is not the weekend"
 Case Else
 MsgBox "This is the weekend"
 End Select
End Sub

To demonstrate the flexibility of VBA, here is a final example in which each case is evalu-
ated until one of the expressions evaluates to True:

Sub GreetUser4()
 Select Case True
 Case Weekday(Now) = 1
 MsgBox "This is the weekend"
 Case Weekday(Now) = 7
 MsgBox "This is the weekend"
 Case Else
 MsgBox "This is not the weekend"
 End Select
End Sub

Chapter 3: VBA Programming Fundamentals

95

3

Any number of instructions can be written after each Case statement, and they’re all exe-
cuted if that case evaluates to True. If you use only one instruction per case, as in the
preceding example, you might want to put the instruction on the same line as the Case
keyword (but don’t forget the VBA statement-separator character, the colon). This tech-
nique makes the code more compact. Here’s an example:

Sub Discount3()
 Dim Quantity As Variant
 Dim Discount As Double
 Quantity = InputBox("Enter Quantity: ")
 Select Case Quantity
 Case "": Exit Sub
 Case 0 To 24: Discount = 0.1
 Case 25 To 49: Discount = 0.15
 Case 50 To 74: Discount = 0.2
 Case Is >= 75: Discount = 0.25
 End Select
 MsgBox "Discount: " & Discount
End Sub

Select Case structures can also be nested. The following procedure, for example, uses
the VBA TypeName function to determine what is selected (a range, nothing, or any-
thing else). If a range is selected, the procedure executes a nested Select Case and
tests for the number of cells in the range. If one cell is selected, it displays One cell is
selected. Otherwise, it displays a message with the number of selected rows.

Sub SelectionType()
 Select Case TypeName(Selection)
 Case "Range"
 Select Case Selection.Count
Case 1
MsgBox "One cell is selected"
Case Else
MsgBox Selection.Rows.Count & " rows"
 End Select
 Case "Nothing"
 MsgBox "Nothing is selected"
 Case Else
 MsgBox "Something other than a range"
 End Select
End Sub

tip
VBA exits a Select Case construct as soon as a True case is found. Therefore, for maximum efficiency, you
should check the most likely case first.

Part I: Introduction to Excel VBA

96

This procedure also demonstrates the use of Case Else, a catchall case. You can nest
Select Case constructs as deeply as you need, but make sure that each Select Case
statement has a corresponding End Select statement.

This procedure demonstrates the value of using indentation in your code to clarify the
structure. For example, take a look at the same procedure without the indentations:

Sub SelectionType()
Select Case TypeName(Selection)
Case "Range"
Select Case Selection.Count
Case 1
MsgBox "One cell is selected"
Case Else
MsgBox Selection.Rows.Count & " rows"Case "Nothing"
MsgBox "Nothing is selected"
Case Else
MsgBox "Something other than a range"
End Select
End Sub

Fairly incomprehensible, eh?

Looping blocks of instructions
Looping is the process of repeating a block of instructions. You might know the
number of times to loop, or the number may be determined by the values of variables
in your program.

The following code, which enters consecutive numbers into a range, demonstrates what
is considered to be a bad loop. The procedure uses two variables to store a starting value
(StartVal) and the total number of cells to fill (NumToFill). This loop uses the GoTo
statement to control the flow. If the iCount variable, which keeps track of how many
cells are filled, is less than the value of NumToFill, the program control loops back to
DoAnother.

Sub BadLoop()
 Dim StartVal As Integer
 Dim NumToFill As Integer
 Dim iCount As Integer
 StartVal = 1
 NumToFill = 100
 ActiveCell.Value = StartVal
 iCount = 1
DoAnother:
 ActiveCell.Offset(iCount, 0).Value = StartVal + iCount
 iCount = iCount + 1
 If iCount < NumToFill Then GoTo DoAnother Else Exit Sub
End Sub

Chapter 3: VBA Programming Fundamentals

97

3

This procedure works as intended, so why is it an example of bad looping? Programmers
generally frown on using a GoTo statement when not absolutely necessary. Using GoTo
statements to loop is contrary to the concept of structured coding. (See the “What is struc-
tured programming?” sidebar.) A GoTo statement makes the code much more difficult to
read because representing a loop using line indentations is almost impossible. In addition,
this type of unstructured loop makes the procedure more susceptible to error. Furthermore,
using lots of labels results in spaghetti code—code that appears to have little or no struc-
ture and has a tangled flow.

Because VBA has several structured looping commands, you almost never have to rely on
GoTo statements for your decision-making.

For-Next loops
The simplest type of a good loop is a For-Next loop. Its syntax is as follows:

For counter = start To end [Step stepval]
 [instructions]
 [Exit For]
 [instructions]
Next [counter]

The following is an example of a For-Next loop that doesn’t use the optional Step
value or the optional Exit For statement. This routine executes the Sum = Sum +
Sqr(Count) statement 100 times and displays the result, that is, the sum of the square
roots of the first 100 integers.

What is structured programming?
Hang around with programmers, and sooner or later you’ll hear the term structured programming. You’ll
also discover that structured programs are considered superior to unstructured programs.

So, what is structured programming, and can you do it with VBA?

The basic premise of structured programming is that a routine or code segment should have only one
entry point and one exit point. In other words, a body of code should be a stand-alone unit, and program
control should not jump into or exit from the middle of this unit. As a result, structured programming
rules out the GoTo statement. When you write structured code, your program progresses in an orderly
manner and is easy to follow—as opposed to spaghetti code, in which a program jumps around.

A structured program is easier to read and understand than an unstructured one. More important,
it’s also easier to modify.

VBA is a structured language. It offers standard structured constructs, such as If-Then-Else and
Select Case and the For-Next, Do Until, and Do While loops. Furthermore, VBA fully supports
modular code construction.

If you’re new to programming, form good structured programming habits early.

Part I: Introduction to Excel VBA

98

Sub SumSquareRoots()
 Dim Sum As Double
 Dim Count As Integer
 Sum = 0
 For Count = 1 To 100
 Sum = Sum + Sqr(Count)
 Next Count
 MsgBox Sum
End Sub

In this example, Count (the loop counter variable) starts out as 1 and increases by 1
each time the loop repeats. The Sum variable simply accumulates the square roots of each
value of Count.

You can also use a Step value to skip some values in the loop. Here’s the same procedure
rewritten to sum the square roots of the odd numbers between 1 and 100:

Sub SumOddSquareRoots()
 Dim Sum As Double
 Dim Count As Integer
 Sum = 0
 For Count = 1 To 100 Step 2
 Sum = Sum + Sqr(Count)
 Next Count
 MsgBox Sum
End Sub

In this procedure, Count starts out as 1 and then takes on values of 3, 5, 7, and so on. The
final value of Count used in the loop is 99. When the loop ends, the value of Count is 101.

A Step value in a For-Next loop can also be negative. The procedure that follows deletes
rows 2, 4, 6, 8, and 10 of the active worksheet:

Sub DeleteRows()
 Dim RowNum As Long
 For RowNum = 10 To 2 Step -2
 Rows(RowNum).Delete
 Next RowNum
End Sub

You may wonder why we used a negative Step value in the DeleteRows procedure. If you
use a positive Step value, as shown in the following procedure, incorrect rows are deleted.

CautioN
When you use For-Next loops, it’s important to understand that the loop counter is a normal variable—nothing
special. As a result, it’s possible to change the value of the loop counter in the block of code executed between the
For and Next statements. Changing the loop counter inside a loop, however, is a bad practice and can cause
unpredictable results. You should take precautions to ensure that your code doesn’t change the loop counter.

Chapter 3: VBA Programming Fundamentals

99

3

That’s because the rows below a deleted row get a new row number. For example, when row
2 is deleted, row 3 becomes the new row 2. Using a negative Step value ensures that the
correct rows are deleted.

Sub DeleteRows2()
 Dim RowNum As Long
 For RowNum = 2 To 10 Step 2
 Rows(RowNum).Delete
 Next RowNum
End Sub

The following procedure performs the same task as the BadLoop example at the beginning
of the “Looping blocks of instructions” section. We eliminate the GoTo statement, how-
ever, converting a bad loop into a good loop that uses the For-Next structure.

Sub GoodLoop()
 Dim StartVal As Integer
 Dim NumToFill As Integer
 Dim iCount As Integer
 StartVal = 1
 NumToFill = 100
 For iCount = 0 To NumToFill - 1
 ActiveCell.Offset(iCount, 0).Value = StartVal + iCount
 Next iCount
End Sub

For-Next loops can also include one or more Exit For statements in the loop. When this
statement is encountered, the loop terminates immediately, and control passes to the state-
ment following the Next statement of the current For-Next loop. The following example
demonstrates the use of the Exit For statement. This procedure determines which cell
has the largest value in Column A of the active worksheet:

Sub ExitForDemo()
 Dim MaxVal As Double
 Dim Row As Long
 MaxVal = Application.WorksheetFunction.Max(Range("A:A"))
 For Row = 1 To 1048576
 If Cells(Row, 1).Value = MaxVal Then
 Exit For
 End If
 Next Row
 MsgBox "Max value is in Row " & Row
 Cells(Row, 1).Activate
End Sub

The maximum value in the column is calculated by using the Excel MAX function, and
the value is assigned to the MaxVal variable. The For-Next loop checks each cell in the
column. If the cell being checked is equal to MaxVal, the Exit For statement terminates
the loop, and the statements following the Next statement are executed. These statements
display the row of the maximum value and activate the cell.

Part I: Introduction to Excel VBA

100

The previous examples use relatively simple loops. But you can have any number of state-
ments in the loop, and you can even nest For-Next loops inside other For-Next loops.
Here’s an example that uses nested For-Next loops to initialize a 10 × 10 × 10 array with
the value –1. When the procedure is finished, each of the 1,000 elements in MyArray
contains –1.

Sub NestedLoops()
 Dim MyArray(1 to 10, 1 to 10, 1 to 10)
 Dim i As Integer, j As Integer, k As Integer
 For i = 1 To 10
 For j = 1 To 10
 For k = 1 To 10
 MyArray(i, j, k) = -1
 Next k
 Next j
 Next i
' [More code goes here]
End Sub

Do While loops
This section describes another type of looping structure available in VBA. Unlike a For-
Next loop, a Do While loop executes as long as a specified condition is met.

A Do While loop can have either of two syntaxes. Here’s the first:

Do [While condition]
 [instructions]
 [Exit Do]
 [instructions]
Loop

Here’s the second:

Do
 [instructions]
 [Exit Do]
 [instructions]
Loop [While condition]

As you can see, VBA lets you put the While condition at the beginning or the end of the
loop. The difference between these two syntaxes involves the point at which the condition

Note
The ExitForDemo procedure is presented to demonstrate how to exit from a For-Next loop. However, it’s not
the most efficient way to activate the largest value in a range. In fact, a single statement does the job.

Range("A:A").Find(Application.WorksheetFunction.Max _
(Range("A:A"))).Activate

Chapter 3: VBA Programming Fundamentals

101

3

is evaluated. In the first syntax, the contents of the loop may never be executed. In the
second syntax, the statements inside the loop are always executed at least one time.

The following examples insert a series of dates into the active worksheet. The dates corre-
spond to the days in the current month, and the dates are entered in a column beginning
at the active cell.

The first example demonstrates a Do While loop that tests the condition at the beginning
of the loop: The EnterDates1 procedure writes the dates of the current month to a work-
sheet column, beginning with the active cell.

Sub EnterDates1()
' Do While, with test at the beginning
 Dim TheDate As Date
 TheDate = DateSerial(Year(Date), Month(Date), 1)
 Do While Month(TheDate) = Month(Date)
 ActiveCell = TheDate
 TheDate = TheDate + 1
 ActiveCell.Offset(1, 0).Activate
 Loop
End Sub

This procedure uses a variable, TheDate, which contains the dates that are written to the
worksheet. This variable is initialized with the first day of the current month. Inside the
loop, the value of TheDate is entered into the active cell, TheDate is incremented, and the
next cell is activated. The loop continues while the month of TheDate is the same as
the month of the current date.

The following procedure has the same result as the EnterDates1 procedure, but it uses
the second Do While loop syntax, which checks the condition at the end of the loop.

Sub EnterDates2()
' Do While, with test at the end
 Dim TheDate As Date
 TheDate = DateSerial(Year(Date), Month(Date), 1)
 Do
 ActiveCell = TheDate
 TheDate = TheDate + 1
 ActiveCell.Offset(1, 0).Activate
 Loop While Month(TheDate) = Month(Date)
End Sub

Note
These examples use some VBA date-related functions:

Date returns the current date.

Month returns the month number for a date supplied as its argument.

DateSerial returns a date for the year, month, and day supplied as arguments.

Part I: Introduction to Excel VBA

102

Do While loops can also contain one or more Exit Do statements. When an Exit Do
statement is encountered, the loop ends immediately, and control passes to the statement
following the Loop statement.

Do Until loops
The Do Until loop structure is similar to the Do While structure. The difference is evi-
dent only when the condition is tested. In a Do While loop, the loop executes while the
condition is True; in a Do Until loop, the loop executes until the condition is True.

Do Until also has two syntaxes. Here’s the first way:

Do [Until condition]
 [instructions]
 [Exit Do]
 [instructions]
Loop

Here’s the second way:

Do
 [instructions]
 [Exit Do]
 [instructions]
Loop [Until condition]

The two examples that follow perform the same action as the Do While date entry exam-
ples in the previous section. The difference in these two procedures is where the condition
is evaluated (at the beginning or the end of the loop). Here is the first example:

Sub EnterDates3()
' Do Until, with test at beginning
 Dim TheDate As Date
 TheDate = DateSerial(Year(Date), Month(Date), 1)
 Do Until Month(TheDate) <> Month(Date)
 ActiveCell = TheDate
 TheDate = TheDate + 1
 ActiveCell.Offset(1, 0).Activate
 Loop
End Sub

Here is the second example:

Sub EnterDates4()
' Do Until, with test at end
 Dim TheDate As Date
 TheDate = DateSerial(Year(Date), Month(Date), 1)
 Do
 ActiveCell = TheDate
 TheDate = TheDate + 1s
 ActiveCell.Offset(1, 0).Activate
 Loop Until Month(TheDate) <> Month(Date)
End Sub

Chapter 3: VBA Programming Fundamentals

103

3

The following example was originally presented for the Do While loop but has been
rewritten to use a Do Until loop. The only difference is the line with the Do statement.
This example makes the code a bit clearer because it avoids the negative required in the Do
While example.

Sub DoUntilDemo1()
 Dim LineCt As Long
 Dim LineOfText As String
 Open "c:\data\textfile.txt" For Input As #1
 LineCt = 0
 Do Until EOF(1)
 Line Input #1, LineOfText
 Range("A1").Offset(LineCt, 0) = UCase(LineOfText)
 LineCt = LineCt + 1
 Loop
 Close #1
End Sub

Note
VBA supports yet another type of loop, While Wend. This looping structure is included primarily for compatibility
purposes. Here’s how the date entry procedure looks when it’s coded to use a While Wend loop:

Sub EnterDates5()
 Dim TheDate As Date
 TheDate = DateSerial(Year(Date), Month(Date), 1)
 While Month(TheDate) = Month(Date)
 ActiveCell = TheDate
 TheDate = TheDate + 1
 ActiveCell.Offset(1, 0).Activate
 Wend
End Sub

105

CHAP T ER

4
Working with VBA Sub
Procedures

IN THIS CHAPTER
Declaring and creating VBA Sub procedures

Executing procedures

Passing arguments to a procedure

Using error-handling techniques

An example of developing a useful procedure

About Procedures
A procedure is a series of VBA statements that resides in a VBA module, which you access in the
Visual Basic Editor (VBE). A module can hold any number of procedures. A procedure holds a group
of VBA statements that accomplishes a desired task. Most VBA code is contained in procedures.

You have a number of ways to call, or execute, procedures. A procedure is executed from beginning
to end, but it can also be ended prematurely.

Some procedures are written to receive arguments. An argument is information that is used by the
procedure and that is passed to the procedure when it is executed. Procedure arguments work much
like the arguments that you use in Excel worksheet functions. Instructions within the procedure
perform operations using these arguments, and the results of the procedure are usually based on
those arguments.

Tip
A procedure can be any length, but many people prefer to avoid creating extremely long procedures that perform
many different operations. You may find it easier to write several smaller procedures, each with a single purpose,
and then design a main procedure that calls those other procedures. This approach can make your code easier to
maintain.

Excel® 2019 Power Programming with VBA, First Edition. Michael Alexander and Dick Kusleika.
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.

Part I: Introduction to Excel VBA

106

Declaring a Sub procedure
A procedure declared with the Sub keyword must adhere to the following syntax:

 [Private | Public][Static] Sub name ([arglist])
 [instructions]
 [Exit Sub]
 [instructions]
End Sub

Here’s a description of the elements that make up a Sub procedure:

Private: Optional. Indicates that the procedure is accessible only to other procedures
in the same module.

Public: Optional. Indicates that the procedure is accessible to all other procedures
in all other modules in the workbook. If used in a module that contains an Option
Private Module statement, the procedure is not available outside the project
(other workbooks or Microsoft Office applications that may attempt to call the pro-
cedures in the module).

Static: Optional. Indicates that the procedure’s variables are preserved when the pro-
cedure ends.

Sub: Required. The keyword that indicates the beginning of a procedure.

name: Required. Any valid procedure name.

arglist: Optional. Represents a list of variables, enclosed in parentheses, that receive
arguments passed to the procedure. Use a comma to separate arguments. If the pro-
cedure uses no arguments, a set of empty parentheses is required.

instructions: Optional. Represents valid VBA instructions.

Exit Sub: Optional. Forces an immediate exit from the procedure prior to its formal
completion.

End Sub: Required. Indicates the end of the procedure.

NoTe
With a few exceptions, all VBA instructions in a module must be contained in procedures. Exceptions include module-
level variable declarations, user-defined data type definitions, and a few other instructions that specify module-level
options (for example, Option Explicit).

Although this chapter focuses on Sub procedures, VBA also supports Function procedures, which
we discuss in Chapter 5, “Creating Function Procedures.” Chapter 7, “VBA Programming Examples and
Techniques,” has many additional examples of procedures, both Sub and Function, that you can
incorporate into your work.

Chapter 4: Working with VBA Sub Procedures

107

4

Scoping a procedure
In the preceding chapter, we noted that a variable’s scope determines the modules and pro-
cedures in which you can use the variable. Similarly, a procedure’s scope determines which
other procedures can call it.

Public procedures
By default, procedures are public procedures; that is, they can be called by other procedures
in any module in the workbook. It’s not necessary to use the Public keyword, but pro-
grammers often include it for clarity. The following two procedures are both public:

Sub First()
' ... [code goes here] ...
End Sub
Public Sub Second()
' ... [code goes here] ...
End Sub

Private procedures
Private procedures can be called by other procedures in the same module but not by proce-
dures in other modules.

NoTe
When a user displays the Macro dialog box (by pressing Alt+F8), Excel shows only public procedures. Therefore, if you
have procedures that are designed to be called only by other procedures in the same module, you should make sure
that those procedures are declared as Private. Doing so prevents the user from viewing and selecting these pro-
cedures from the Macro dialog box.

Naming procedures
Every procedure must have a name. The rules governing procedure names are generally the same as
those for variable names. Ideally, a procedure’s name should describe what its contained processes
do. A good rule is to use a name that includes a verb and a noun (for example, ProcessDate, Print
Report, Sort_Array, or CheckFilename). Unless you’re writing a quick and dirty procedure that
you’ll use once and delete, avoid meaningless names such as DoIt, Update, and Fix.

Some programmers use sentence-like names that describe the procedure (for example, WriteReport-
ToTextFile and Get_Print_Options_ and _Print_Report).

Note that the first letter of each word in the example procedure names are uppercase. This technique
is called Pascal casing, and it is generally considered a best practice.

Part I: Introduction to Excel VBA

108

The following example declares a private procedure named MySub:

Private Sub MySub()
' ... [code goes here] ...
End Sub

Excel’s macro recorder creates new Sub procedures called Macro1, Macro2, and so on.
Unless you modify the recorded code, these procedures are all public procedures, and they
will never use any arguments.

Executing Sub Procedures
In this section, we describe the various ways to execute, or call, a VBA Sub procedure:

 ■ You can call Sub procedure with the Run ➪ Run Sub/UserForm command (in the
VBE menu). You can also call a Sub procedure by pressing the F5 shortcut key,
or you can click the Run Sub/UserForm button on the Standard toolbar. These
methods all assume that the cursor is within a procedure.

 ■ You can call a Sub procedure from Excel’s Macro dialog box.
 ■ You can call a Sub procedure by using the Ctrl key shortcut assigned to the proce-

dure (assuming that you assigned one).
 ■ You can call a Sub procedure by clicking, on a worksheet, a button or shape

assigned to the procedure.
 ■ You can call a Sub procedure from another procedure that you write. Sub and
Function procedures can execute other procedures.

 ■ You can call a Sub procedure from an icon added to the Quick Access toolbar.
 ■ You can call a Sub procedure from a button added to the Ribbon.
 ■ You can call a Sub procedure from a customized shortcut menu.
 ■ You can specify that a Sub procedure be run when an event occurs, such as open-

ing the workbook, saving the workbook, closing the workbook, changing a cell’s
value, or activating a sheet.

 ■ Finally, you can run a Sub procedure from the Immediate window in VBE. Just
type the name of the procedure, including any arguments that may apply, and
press Enter.

We discuss these methods of executing procedures in the following sections.

Tip
You can force all procedures in a module to be private—even those declared with the Public keyword—by including
the following statement before your first Sub statement:

Option Private Module

If you write this statement in a module, you can omit the Private keyword from your Sub declarations.

Chapter 4: Working with VBA Sub Procedures

109

4

Executing a procedure with the Run Sub/UserForm command
The VBE Run ➪ Run Sub/UserForm menu command is used primarily to test a procedure
while you’re developing it. You would never require a user to activate VBE to execute a pro-
cedure. Choose Run ➪ Run Sub/UserForm in VBE to execute the current procedure (in other
words, the procedure that contains the cursor). Or, press F5 or use the Run Sub/UserForm
button on the Standard toolbar.

If the cursor isn’t located within a procedure, VBE displays its Macro dialog box so that you
can select a procedure to execute.

Executing a procedure from the Macro dialog box
Choose Excel’s View ➪ Macros ➪ Macros command to display the Macro dialog box, as shown
in Figure 4.1. You can also press Alt+F8 or choose Developer ➪ Code ➪ Macros to access this
dialog box. Use the Macros In drop-down box to limit the scope of the macros displayed (for
example, show only the macros in the active workbook).

FIGURE 4.1

The Macro dialog box

NoTe
In many cases, a procedure won’t work properly unless it’s executed in the appropriate context. For example, if a
procedure is designed to work with the active worksheet, it will fail if a chart sheet is active. A good procedure incor-
porates code that checks for the appropriate context and exits gracefully if it can’t proceed.

Part I: Introduction to Excel VBA

110

The Macro dialog box does not display the following:

 ■ Function procedures
 ■ Sub procedures declared with the Private keyword
 ■ Sub procedures that require one or more arguments
 ■ Sub procedures contained in add-ins
 ■ Event procedures stored in code modules for objects such as ThisWorkbook,
Sheet1, or UserForm1

Executing a procedure with a Ctrl+shortcut key combination
You can assign a Ctrl+shortcut key combination to any Sub procedure that doesn’t use any
arguments. If you assign the Ctrl+U key combo to a procedure named UpdateCustomer
List, for example, pressing Ctrl+U executes that procedure.

When you begin recording a macro, the Record Macro dialog box gives you the opportu-
nity to assign a shortcut key. However, you can assign a shortcut key at any time. To
assign a Ctrl shortcut key to a procedure (or to change a procedure’s shortcut key), follow
these steps:

1. Activate Excel and display the Macro dialog box (Alt+F8 is one way to do that).

2. Select the appropriate procedure from the list box in the Macro dialog box.

3. Click the Options button to display the Macro Options dialog box (see Figure 4.2).

Tip
Even though procedures stored in an add-in are not listed in the Macro dialog box, you still can execute such a pro-
cedure if you know the name. Simply type the procedure name in the Macro Name field in the Macro dialog box and
then click Run.

FIGURE 4.2

The Macro Options dialog box lets you assign a Ctrl key shortcut and an optional
description to a procedure.

Chapter 4: Working with VBA Sub Procedures

111

4

4. Enter a character into the Ctrl+ text box.

Note: The character that you enter into the Ctrl+ text box is case-sensitive. If you
enter a lowercase s, the shortcut key combo is Ctrl+S. If you enter an uppercase S,
the shortcut key combo is Ctrl+Shift+S.

5. Enter a description (optional). If you enter a description for a macro, it’s dis-
played at the bottom of the Macro dialog box when the procedure is selected in
the list box.

6. Click OK to close the Macro Options dialog box and then click Cancel to close the
Macro dialog box.

Executing a procedure from the Ribbon
Excel’s Ribbon user interface was introduced in Excel 2007. In that version, custom-
izing the Ribbon required writing XML code to add a new button (or other control) to the
Ribbon. Note that you modify the Ribbon in this way outside of Excel, and you can’t do it
using VBA.

Beginning with Excel 2010, users can modify the Ribbon directly from Excel. Just right-
click any part of the Ribbon and choose Customize the Ribbon from the shortcut menu. It’s
a simple matter to add a new control to the Ribbon and assign a VBA macro to the control.
However, this must be done manually. In other words, it’s not possible to use VBA to add a
control to the Ribbon.

CauTioN
If you assign one of Excel’s predefined shortcut key combinations to a procedure, your key assignment takes prece-
dence over the predefined key assignment. For example, Ctrl+S is the Excel predefined shortcut key for saving the
active workbook. But if you assign Ctrl+S to a procedure, pressing Ctrl+S no longer saves the active workbook when
that macro is available.

Tip
The following keyboard keys are not used by Excel 2019 for Ctrl+key combinations: J, M, and Q. Excel doesn’t use too
many Ctrl+Shift+key combinations, and they are used for obscure commands.

Refer to Chapter 17, “Working with the Ribbon,” for more information about customizing the Ribbon.

Part I: Introduction to Excel VBA

112

Executing a procedure from a customized shortcut menu
You can also execute a macro by clicking a menu item in a customized shortcut menu. A
shortcut menu appears when you right-click an object or range in Excel. It’s fairly easy to
write VBA code that adds a new item to any of Excel’s shortcut menus.

Executing a procedure from another procedure
One of the most common ways to execute a procedure is to call it from another VBA proce-
dure. You have three ways to do this.

 ■ Enter the procedure’s name, followed by its arguments (if any) separated by
commas. Do not enclose the argument list in parentheses.

 ■ Use the Call keyword followed by the procedure’s name and then its arguments
(if any) enclosed in parentheses and separated by commas. The Call keyword is
technically optional, as you don’t need it to run the specified procedure. However,
many Excel developers still use it as a clear indicator that another procedure is
being called.

 ■ Use the Run method of the Application object. The Run method is useful when
you need to run a procedure whose name is assigned to a variable. You can then
pass the variable as an argument to the Run method.

Here’s a simple Sub procedure that takes two arguments. The procedure displays the prod-
uct of the two arguments.

Sub AddTwo (arg1, arg2)
 MsgBox arg1 + arg2
End Sub

The following three statements demonstrate three different ways to execute the AddTwo
procedure and pass two arguments. All three have the same result.

AddTwo 12, 6
Call AddTwo (12, 6)
Run "AddTwo", 12, 6

Refer to Chapter 18, “Working with Shortcut Menus,” for more information about customizing shortcut
menus.

Tip
Even though it’s optional, consider always using the Call keyword. It not only makes it perfectly clear that another
procedure is being called, but the Call keyword also comes in handy when you want to search for all of the
instances in your code where you’re explicitly calling other procedures.

Chapter 4: Working with VBA Sub Procedures

113

4

Perhaps the best reason to use the Run method is when the procedure name is assigned to a
variable. In fact, it’s the only way to execute a procedure in such a way. The following over-
simplified example demonstrates this. The Main procedure uses the VBA WeekDay function
to determine the day of the week (an integer between 1 and 7, beginning with Sunday).
The SubToCall variable is assigned a string that represents a procedure name. The Run
method then calls the appropriate procedure (either WeekEnd or Daily).

Sub Main()
 Dim SubToCall As String
 Select Case WeekDay(Now)
 Case 1, 7: SubToCall = "WeekEnd"
 Case Else: SubToCall = "Daily"
 End Select
 Application.Run SubToCall
End Sub

Sub WeekEnd()
 MsgBox "Today is a weekend"
 ' Code to execute on the weekend
 ' goes here
End Sub

Sub Daily()
 MsgBox "Today is not a weekend"
 ' Code to execute on the weekdays
 ' goes here
End Sub

Calling a procedure in a different module
If VBA can’t locate a called procedure in the current module, it looks for public procedures
in other modules in the same workbook.

If you need to call a private procedure from another procedure, both procedures must reside
in the same module.

You can’t have two procedures with the same name in the same module, but you can have
identically named procedures in different modules within the project. You can force VBA to

NoTe
Note that the last example is included to illustrate the concept of the Run keyword. However, it’s generally consid-
ered a bad practice to call a procedure through a variable or string because the VBA compiler will not be able to con-
firm that the specified procedure actually exists. In other words, the name of the procedure to be run isn’t supplied
to the code until run-time. This introduces the chance for error, as supplying an invalid or even misspelled procedure
name during run-time will cause the code to fail.

Part I: Introduction to Excel VBA

114

execute an ambiguously named procedure, that is, another procedure in a different module
that has the same name. To do so, precede the procedure name with the module name
and a dot.

For example, assume that you define procedures named MySub in Module1 and Module2.
If you want a procedure in Module2 to call the MySub in Module1, you can use either of
the following statements:

Module1.MySub
Call Module1.MySub

If you do not differentiate between procedures that have the same name, you get the aptly
named Ambiguous name detected error message.

Calling a procedure in a different workbook
In some cases, you may need your procedure to execute another procedure defined in a dif-
ferent workbook. To do so, you have two options: either establish a reference to the other
workbook or use the Run method and specify the workbook name explicitly.

To add a reference to another workbook, choose VBE’s Tools ➪ References command. Excel
displays the References dialog box (see Figure 4.3), which lists all available references,
including all open workbooks. Select the box that corresponds to the workbook that you
want to add as a reference and then click OK. After you establish a reference, you can call
procedures in the workbook as if they were in the same workbook as the calling procedure.

FIGURE 4.3

The References dialog box lets you establish a reference to another workbook.

Chapter 4: Working with VBA Sub Procedures

115

4

A referenced workbook doesn’t have to be open when you create the reference; the
referenced workbook is treated like a separate object library. Use the Browse button in the
References dialog box to establish a reference to a workbook that isn’t open.

When you open a workbook that contains a reference to another workbook, the referenced
workbook is opened automatically.

The list of references displayed in the References dialog box also includes object libraries
and ActiveX controls that are registered on your system. Excel 2019 workbooks always
include references to the following object libraries:

 ■ Visual Basic for Applications
 ■ Microsoft Excel 17.0 Object Library
 ■ OLE Automation
 ■ Microsoft Office 17.0 Object Library
 ■ Microsoft Forms 2.0 Object Library (this reference is included only if your project

includes a UserForm)

If you’ve established a reference to a workbook that contains the YourSub procedure, for
example, you can use either of the following statements to call YourSub:

YourSub
Call YourSub

To identify precisely a procedure in a different workbook, specify the project name, module
name, and procedure name by using the following syntax:

YourProject.YourModule.YourSub

NoTe
The workbook names that appear in the list of references are listed by their VBE project names. By default, every
project is initially named VBAProject. Therefore, the list may contain several identically named items (but the full
path of the selected item appears at the bottom of the dialog box). To distinguish a project, change its name in the
Project Properties dialog box. Click the project name in the Project window and then choose Tools ➪ xxxx Properties
(where xxxx is the current project name). In the Project Properties dialog box, click the General tab and change the
name displayed in the Project Name field.

NoTe
Any additional references to other workbooks that you add are also listed in your project outline in the Project
Explorer window in VBE. These references are listed under a node called References.

Part I: Introduction to Excel VBA

116

Alternatively, you can use the Call keyword.

Call YourProject.YourModule.YourSub

Another way to call a procedure in a different workbook is to use the Run method of the
Application object. This technique doesn’t require that you establish a reference, but the
workbook that contains the procedure must be open. The following statement executes the
Consolidate procedure located in a workbook named budget macros.xlsm:

Application.Run "'budget macros.xlsm'!Consolidate"

Note that the workbook name is enclosed in single quotes. That syntax is necessary only if
the filename includes one or more space characters. Here’s an example of calling a proce-
dure in a workbook that doesn’t have any spaces:

Application.Run "budgetmacros.xlsm!Consolidate"

Why call other procedures?
If you’re new to programming, you may wonder why anyone would ever want to call a procedure from
another procedure. You may ask, “Why not just put the code from the called procedure into the calling
procedure and keep things simple?”

One reason is to clarify your code. The simpler your code, the easier it is to read, maintain, and modify.
Smaller routines are easier to decipher and then debug. Examine the accompanying procedure, which
does nothing but call other procedures. This procedure is easy to follow.

Sub Main()
 Call GetUserOptions
 Call ProcessData
 Call CleanUp
 Call CloseAllFiles
End Sub

Calling other procedures also eliminates redundancy. Suppose that you need to perform an operation
at 10 different places in your routine. Rather than enter the code 10 times, you can write a procedure
to perform the operation and then simply call the procedure 10 times. Also, if you need to make a
change, you make it only 1 time rather than 10 times.

Also, you may have a series of general-purpose procedures that you use frequently. If you store these
in a separate module, you can import the module to your current project and then call these proce-
dures as needed—which is much easier than copying and pasting the code into your new procedures.

Creating several small procedures rather than a single large one is often considered good program-
ming practice. A modular approach not only makes your job easier, but it also makes life easier for the
people who wind up working with your code.

Chapter 4: Working with VBA Sub Procedures

117

4

Executing a procedure by clicking an object
Excel provides a variety of objects that you can place on a worksheet or chart sheet; you
can attach a macro to any of these objects. These objects fall into several classes.

 ■ ActiveX controls
 ■ Forms controls
 ■ Inserted objects (Shapes, SmartArt, WordArt, charts, and pictures)

To assign a procedure to a Button object from the form controls, follow these steps:

1. Choose Developer ➪ Controls ➪ Insert and click the Button icon in the Form Con-
trols group.

2. Click the worksheet to create a button with the default height and width, or you
can drag your mouse on the worksheet to create your button using your own
preferred height and width.

Excel jumps right in and displays the Assign Macro dialog box (see Figure 4.4).

3. Select the macro that you want to assign to the button and then click OK.

You can always change the macro assignment by right-clicking the button and choosing
Assign Macro.

To assign a macro to a Shape, SmartArt, WordArt, or picture, right-click the object and
choose Assign Macro from the shortcut menu.

To assign a macro to an embedded chart, press Ctrl and click the chart (to select the chart
as an object). Then right-click and choose Assign Macro from the shortcut menu.

NoTe
The Developer ➪ Controls ➪ Insert drop-down list contains two types of controls that you can insert on a worksheet:
form controls and ActiveX controls. Form controls are designed specifically for use on a spreadsheet, and ActiveX
controls are typically used on Excel UserForms. As a general rule, you should always use form controls when working
on a spreadsheet. Form controls perform better on spreadsheets, and they are easier to configure.

Unlike form controls, you can’t use ActiveX controls to execute just any macro. An ActiveX control executes a specially
named macro. For example, if you insert an ActiveX button control named CommandButton1, clicking the button
executes a macro named CommandButton1 _ Click, which must be located in the code module for the sheet
on which the control was inserted.

Refer to Chapter 13, “Introducing UserForms,” for information about using controls on worksheets.

Part I: Introduction to Excel VBA

118

Executing a procedure when an event occurs
You might want a procedure to execute when a particular event occurs, such as opening a
workbook, entering data into a worksheet, saving a workbook, or clicking a Command
Button ActiveX control. A procedure that is executed when an event occurs is an event-
handler procedure. Event-handler procedures are characterized by the following:

 ■ They have special names that are made up of an object, an underscore, and the
event name. For example, the procedure that is executed when a workbook is
opened is Workbook _ Open.

 ■ They’re stored in the Code module for the particular object (for example, ThisWork-
book or Sheet1).

Executing a procedure from the Immediate window
You also can execute a procedure by entering its name in the Immediate window of VBE.
(If the Immediate window isn’t visible, press Ctrl+G.) The Immediate window executes VBA
statements while you enter them. To execute a procedure, simply enter the name of the pro-
cedure in the Immediate window and press Enter.

Chapter 6, “Understanding Excel’s Events,” is devoted to event-handler procedures.

FIGURE 4.4

Assigning a macro to a button

Chapter 4: Working with VBA Sub Procedures

119

4

This method can be useful when you’re developing a procedure because you can insert com-
mands to display results in the Immediate window. The following procedure demonstrates
this technique:

Sub ChangeCase()
 Dim MyString As String
 MyString = "This is a test"
 MyString = UCase(MyString)
 Debug.Print MyString
End Sub

Figure 4.5 shows what happens when you enter ChangeCase in the Immediate window:
the Debug.Print statement displays the result immediately.

Passing Arguments to Procedures
A procedure’s arguments provide it with data that it uses in its instructions. The data that’s
passed by an argument can be any of the following:

 ■ A variable
 ■ A constant
 ■ An expression
 ■ An array
 ■ An object

FIGURE 4.5

Executing a procedure by entering its name in the Immediate window

Part I: Introduction to Excel VBA

120

You are probably familiar with many of Excel’s worksheet functions. Arguments for proce-
dures are similar.

 ■ A procedure may not require any arguments.
 ■ A procedure may require a fixed number of arguments.
 ■ A procedure may accept an indefinite number of arguments.
 ■ A procedure may require some arguments, leaving others optional.
 ■ A procedure may have all optional arguments.

For example, a few of Excel’s worksheet functions, such as RAND and NOW, use no argu-
ments. Others, such as COUNTIF, require two arguments. Others still, such as SUM, can use
up to 255 arguments. Still other worksheet functions have optional arguments. The PMT
function, for example, can have five arguments (three are required; two are optional).

Most of the procedures that you’ve seen so far in this book have been declared without
arguments. They were declared with just the Sub keyword, the procedure’s name, and a
set of empty parentheses. Empty parentheses indicate that the procedure does not accept
arguments.

The following example shows two procedures. The Main procedure calls the ProcessFile
procedure three times (the Call statement is in a For-Next loop). Before calling Process-
File, however, a three-element array is created. Inside the loop, each element of the array
becomes the argument for the procedure call. The ProcessFile procedure takes one argu-
ment (named TheFile). Note that the argument goes inside parentheses in the Sub state-
ment. When ProcessFile finishes, program control continues with the statement after the
Call statement.

Sub Main()
 Dim File(1 To 3) As String
 Dim i as Integer
 File(1) = "dept1.xlsx"
 File(2) = "dept2.xlsx"
 File(3) = "dept3.xlsx"
 For i = 1 To 3
 Call ProcessFile(File(i))
 Next i
End Sub

 Sub ProcessFile(TheFile)
 Workbooks.Open FileName:=TheFile
' ...[more code here]...
End Sub

You can also pass literals (that is, not variables) to a procedure. Here’s an example:

Sub Main()
 Call ProcessFile("budget.xlsx")
End Sub

Chapter 4: Working with VBA Sub Procedures

121

4

You can pass an argument to a procedure in two ways.

By reference Passing an argument by reference passes the memory address of the
 variable. Changes to the argument within the procedure are made to the original vari-
able. This is the default method of passing an argument.

By value Passing an argument by value passes a copy of the original variable. Con-
sequently, changes to the argument within the procedure are not reflected in the
original variable.

The following example demonstrates this concept. The argument for the Process proce-
dure is passed by reference (the default method). After the Main procedure assigns a value
of 12 to MyValue, it calls the Process procedure and passes MyValue as the argument.
The Process procedure multiplies the value of its argument (named YourValue) by 10.
When Process ends and program control passes back to Main, the MsgBox function
displays 120.

Sub Main()
 Dim MyValue As Integer
 MyValue = 12
 Call Process(MyValue)
 MsgBox MyValue
End Sub
Sub Process(YourValue)
 YourValue = YourValue * 10
End Sub

If you don’t want the called procedure to modify any variables passed as arguments, you
can modify the called procedure’s argument list so that arguments are passed to it by value
rather than by reference. To do so, precede the argument with the ByVal keyword. This
technique causes the called routine to work with a copy of the passed variable’s data—not
the data itself. In the following procedure, for example, the changes made to YourValue
in the Process procedure do not affect the MyValue variable in Main. As a result, the
MsgBox function displays 12 and not 120.

Sub Process(ByVal YourValue)
 YourValue = YourValue * 10
End Sub

In most cases, you’ll be content to use the default reference method of passing arguments.
However, if your procedure needs to use data passed to it in an argument—and you must
keep the original data intact—you’ll want to pass the data by value.

A procedure’s arguments can mix and match by value and by reference. Arguments preceded
with ByVal are passed by value; all others are passed by reference.

NoTe
If you pass a variable defined as a user-defined data type to a procedure, it must be passed by reference. Attempting
to pass it by value generates an error.

Part I: Introduction to Excel VBA

122

Because we didn’t declare a data type for any of the arguments in the preceding examples,
all of the arguments have been of the Variant data type. But a procedure that uses argu-
ments can define the data types directly in the argument list. The following is a Sub state-
ment for a procedure with two arguments of different data types. The first is declared as an
integer, and the second is declared as a string.

Sub Process(Iterations As Integer, TheFile As String)

When you pass arguments to a procedure, the data that is passed as the argument must
match the argument’s data type. For example, if you call Process in the preceding exam-
ple and pass a string variable for the first argument, you get an error: ByRef argument
type mismatch.

NoTe
Arguments are relevant to both Sub procedures and Function procedures. In fact, arguments are more often
used in Function procedures. In Chapter 5, where we focus on Function procedures, we provide additional
examples of using arguments with your routines, including how to handle optional arguments.

Using public variables vs. passing arguments to
a procedure
In Chapter 3, “VBA Programming Fundamentals,” we point out how a variable declared as Public (at
the top of the module) is available to all procedures in the module. In some cases, you may want to
access a Public variable rather than pass the variable as an argument when calling another procedure.

For example, the procedure that follows passes the value of MonthVal to the ProcessMonth procedure:

Sub MySub()
 Dim MonthVal as Integer
 ' ... [code goes here]
 MonthVal = 4
 Call ProcessMonth(MonthVal)
 ' ... [code goes here]
End Sub

An alternative approach, which doesn’t use an argument, is as follows:

Public MonthVal as Integer
Sub MySub()
'... [code goes here]
 MonthVal = 4
 Call ProcessMonth2
'... [code goes here]
End Sub

In the revised code, because MonthVal is a public variable, the ProcessMonth2 procedure can access
it, thus eliminating the need for an argument for the ProcessMonth2 procedure.

Chapter 4: Working with VBA Sub Procedures

123

4

Error-Handling Techniques
When a VBA procedure is running, errors can (and probably will) occur. These include either
syntax errors (which you must correct before you can execute a procedure) or run-time errors
(which occur while the procedure is running). This section deals with run-time errors.

Normally, a run-time error causes VBA to stop, and the user sees a dialog box that displays
the error number and a description of the error. A good application doesn’t make the user
deal with these messages. Rather, it incorporates error-handling code to trap errors and
take appropriate actions. At the very least, your error-handling code can display a more
meaningful error message than the one VBA pops up.

Trapping errors
You can use the On Error statement to specify what happens when an error occurs. Basi-
cally, you have two choices.

 ■ Ignore the error and let VBA continue. Your code can later examine the Err
object to determine what the error was and then take action, if necessary.

 ■ Jump to a special error-handling section of your code to take action. This sec-
tion is placed at the end of the procedure and is also marked by a label.

To cause your VBA code to continue when an error occurs, insert the following statement in
your code:

On Error Resume Next

Some errors are inconsequential, and you can ignore them without causing a problem. How-
ever, you might want to determine what the error was. When an error occurs, you can use
the Err object to determine the error number. You can use the VBA Error function to dis-
play the text that corresponds to the Err.Number value. For example, the following state-
ment displays the same information as the normal Visual Basic error dialog box (the error
number and the error description):

MsgBox "Oops! Can't find the object being referenced. " & _
"Error " & Err & ": " & Error(Err.Number)

Figure 4.6 shows a VBA error message, and Figure 4.7 shows the same error displayed in a
message box. You can, of course, make the error message a bit more meaningful to your end
users by using more descriptive text.

CauTioN
For error-handling procedures to work, the Break on All Errors setting must be turned off. In VBE, choose Tools ➪
Options and click the General tab in the Options dialog box. If Break on All Errors is selected, VBA ignores your error-
handling code. You’ll usually want to use the Break on Unhandled Errors option.

Part I: Introduction to Excel VBA

124

You also use the On Error statement to specify a location in your procedure to jump to
when an error occurs. You use a label to mark the location. Here’s an example:

On Error GoTo ErrorHandler

Error-handling examples
The first example demonstrates an error that you can safely ignore. The SpecialCells
method selects cells that meet a certain criterion.

NoTe
Referencing Err is equivalent to accessing the Number property of the Err object. Therefore, the following two
statements have the same effect:

MsgBox Err
MsgBox Err.Number

NoTe
The SpecialCells method is equivalent to choosing the Home ➪ Editing ➪ Find & Select ➪ Go To Special
command. The Go To Special dialog box provides you with a number of choices. For example, you can select cells that
contain a numeric constant (nonformula).

FIGURE 4.7

You can create a message box to display the error code and description.

FIGURE 4.6

VBA error messages aren’t always user friendly.

Chapter 4: Working with VBA Sub Procedures

125

4

FIGURE 4.8

The SpecialCells method generates this error if no cells are found.

In the example that follows, which doesn’t use any error handling, the SpecialCells
method selects all the cells in the current range selection that contain a formula. If no cells
in the selection qualify, VBA displays the error message shown in Figure 4.8.

Sub SelectFormulas()
 Selection.SpecialCells(xlFormulas).Select
' ...[more code goes here]
End Sub

The following is a variation that uses the On Error Resume Next statement to prevent
the error message from appearing:

Sub SelectFormulas2()
 On Error Resume Next
 Selection.SpecialCells(xlFormulas).Select
 On Error GoTo 0
' ...[more code goes here]
End Sub

The On Error GoTo 0 statement restores normal error handling for the remaining state-
ments in the procedure.

The following procedure uses an additional statement to determine whether a specific error
did occur. If so, the user is informed by a message.

Sub SelectFormulas3()
 On Error Resume Next
 Selection.SpecialCells(xlFormulas).Select
 If Err.Number = 1004 Then MsgBox "No formula cells were found."
 On Error GoTo 0
' ...[more code goes here]
End Sub

Part I: Introduction to Excel VBA

126

If the Number property of Err is equal to anything other than 0, an error occurred. The
If statement checks to see whether Err.Number is equal to 1004 and displays a message
box if it is. In this example, the code is checking for a specific error number. To check for
any error, use a statement like this:

If Err.Number <> 0 Then MsgBox "An error occurred."

The next example demonstrates error handling by jumping to a label:

Sub ErrorDemo()
 On Error GoTo Handler
 Selection.Value = 123
 Exit Sub
Handler:
 MsgBox "Cannot assign a value to the selection."
End Sub

The procedure attempts to assign a value to the current selection. If an error occurs (for
example, a range isn’t selected or the sheet is protected), the assignment statement results
in an error. The On Error statement specifies a jump to the handler label if an error
occurs. Note the use of the Exit Sub statement before the label. This statement prevents
the error-handling code from being executed if no error occurs. If this statement is omit-
ted, the error message is displayed even if an error does not occur.

Sometimes, you can take advantage of an error to get information. The example
that follows simply checks whether a particular workbook is open. It doesn’t use any
error handling.

Sub CheckForFile1()
 Dim FileName As String
 Dim FileExists As Boolean
 Dim book As Workbook
 FileName = "BUDGET.XLSX"
 FileExists = False
' Cycle through all open workbooks
 For Each book In Workbooks
 If UCase(book.Name) = FileName Then FileExists = True
 Next book
' Display appropriate message
 If FileExists Then
 MsgBox FileName & " is open."
 Else
 MsgBox FileName & " is not open."
 End If
End Sub

Here, a For Each-Next loop cycles through all objects in the Workbooks collection. If
the workbook is open, the FileExists variable is set to True. Finally, a message is dis-
played that tells the user whether the workbook is open.

Chapter 4: Working with VBA Sub Procedures

127

4

You can rewrite the preceding routine to use error handling to determine whether the file
is open. In the example that follows, the On Error Resume Next statement causes VBA
to ignore any errors. The next instruction attempts to reference the workbook by assigning
the workbook to an object variable (by using the Set keyword). If the workbook isn’t open,
an error occurs. The If-Then-Else structure checks the value property of Err and displays
the appropriate message. This procedure uses no looping, so it’s slightly more efficient.

Sub CheckForFile()
 Dim FileName As String
 Dim x As Workbook
 FileName = "BUDGET.XLSX"
 On Error Resume Next
 Set x = Workbooks(FileName)
 If Err = 0 Then
 MsgBox FileName & " is open."
 Else
 MsgBox FileName & " is not open."
 End If
 On Error GoTo 0
End Sub

A Realistic Example That Uses Sub Procedures
Up to this point, the code examples covered in this chapter have been presented for demon-
stration purposes and not very useful on their own. The remainder of this chapter will walk
you through a real-life exercise that demonstrates many of the concepts covered in this and
the preceding two chapters.

This section describes the development of a useful utility. More important, you will explore
the process of analyzing a problem and then solving it with VBA.

The goal
The goal of this exercise is to develop a utility that rearranges a workbook by alphabetizing
its sheets (something that Excel can’t do on its own). If you tend to create workbooks that
consist of many sheets, you know that locating a particular sheet can be difficult. If the
sheets are ordered alphabetically, however, it’s easier to find a desired sheet.

Chapter 7 includes several additional examples that use error handling.

oN The Web
You can find the completed application, named sheet sorter.xlsm, on this book’s website.

Part I: Introduction to Excel VBA

128

Project requirements
Where to begin? One way to get started is to list the requirements for your application.
When you develop your application, you can check your list to ensure that you’re covering
all of the bases.

Here’s the list of requirements for this example application:

 ■ It should sort the sheets (that is, worksheets and chart sheets) in the active work-
book in ascending order of their names.

 ■ It should be easy to execute.
 ■ It should always be available. In other words, the user shouldn’t have to open a

workbook to use this utility.
 ■ It should work properly for any workbook that’s open.
 ■ It should trap errors gracefully and not display any cryptic VBA error messages.

What you know
Often, the most difficult part of a project is figuring out where to start. It’s often helpful
to start by listing things that you know about Excel that may be relevant to the project
requirements. For this scenario, you know the following:

 ■ Excel doesn’t have a command that sorts sheets, so you’re not reinventing the wheel.
 ■ The macro recorder can’t be used to record the sorting of worksheets, as new work-

sheets (that didn’t exist at the time of recording) will likely be added by the user
sometime in the future. That being said, a recorded macro might provide some help-
ful guidance on the correct syntax to use.

 ■ Sorting the sheets will require moving some or all of them. You can manually move
a sheet easily by dragging its sheet tab.

 ■ Mental note: Turn on the macro recorder and drag a sheet to a new location to find
out what kind of code this action generates.

 ■ Excel also has a Move or Copy dialog box, which is displayed when you right-click a
sheet tab and choose Move or Copy. Would recording a macro of this command gen-
erate different code than moving a sheet manually?

 ■ You’ll need to know how many sheets are in the active workbook. You can get this
information with VBA.

 ■ You’ll need to know the names of all of the sheets. Again, you can get this informa-
tion with VBA.

 ■ Excel has a command that sorts data in worksheet cells.
 ■ Mental note: Maybe you can transfer the sheet names to a range and use this fea-

ture. Or maybe VBA has a sorting method of which you can take advantage.
 ■ You will need a way to test the code on workbooks other than the one in which

you’re working. This means that you will need to store the macro in the Personal
Macro workbook so that you can use it with other workbooks.

 ■ Mental note: Create a dummy workbook for testing.

Chapter 4: Working with VBA Sub Procedures

129

4

The approach
After detailing what you know, you can start listing the series of steps needed to accom-
plish the actual task. In this case, you will need VBA to do the following:

1. Identify the active workbook.

2. Get a list of all of the sheet names in the workbook.

3. Count the sheets.

4. Sort the sheet names (somehow).

5. Rearrange the sheets so that they correspond to the sorted sheet names.

Some preliminary recording
The best place to start any VBA procedure is the macro recorder; it’s a developer’s best
friend. Let’s start by figuring out the VBA syntax for moving sheets around.

You can turn on the macro recorder and specify that the macro should be placed in the
Personal Macro Workbook (because you want to test the code on workbooks other than the
one in which you’re working). Once the macro starts recording, you can drag Sheet3 before
Sheet1 and then stop recording. A review of the recorded macro code shows that Excel
used the Move method.

Sub Macro1()
 Sheets("Sheet3").Select
 Sheets("Sheet3").Move Before:=Sheets(1)
End Sub

A quick search in the VBA Help system tells us that the Move method moves a sheet to a
new location in the workbook. It also takes an argument that specifies the location for the
sheet. This must be why the recorded macro included Before:=Sheets(1).

So far, so good. Now you need to find out how many sheets are in the active workbook.
Searching VBA Help for the word Count tells us that it’s a property of a collection. This
means that all collections such as Sheets, Rows, Cells, and Shapes have a Count property.
Good to know.

To test out this newly acquired piece of information, you can fire up the Visual Basic Editor,
activate the Immediate window, and then type the following:

? ActiveWorkbook.Sheets.Count

Tip
It’s likely that you will not know exactly how to code the steps needed to accomplish the task you have in mind. Don’t
let this discourage you. The truth is that many developers rarely know the exact syntax needed off the top of their
heads. Rest assured that you will eventually be able to find the correct syntax by using a combination of the macro
recorder, the VBA Help system, and examples found on the Internet.

Part I: Introduction to Excel VBA

130

Figure 4.9 shows the result. Success!

Okay. What about the sheet names? Time for another test. You can enter the following
statement in the Immediate window:

? ActiveWorkbook.Sheets(1).Name

This returns the name of the first sheet (Sheet3), which is correct because you moved it
while recording the macro. More good information to keep in mind.

You can now take this information to construct a simple For Each-Next construct
(covered in Chapter 3 of this book).

Sub Test()
 For Each Sheet In ActiveWorkbook.Sheets
 MsgBox Sheet.Name
 Next Sheet
End Sub

Running this procedure displays three message boxes, each showing a different sheet
name. Great. Now you know how to get a list of sheet names.

So, what about sorting? A quick search of the VBA Help system tells you that the Sort
method applies to a Range object. Thus, one option is to transfer the sheet names to a
range and then sort the range, but that seems like overkill for this application. A better
option would be to dump the sheet names into an array of strings and then sort the array
by using VBA code.

Initial setup
At this point, you know enough to start writing the procedure. Before doing so, however,
you need to set up a test workbook. This test workbook will allow you to re-create the steps
we determined at the start of this endeavor.

1. Create an empty workbook with five worksheets, named Sheet1, Sheet2, Sheet3,
Sheet4, and Sheet5.

Check out Chapter 3 for a refresher on arrays.

FIGURE 4.9

Using the VBE Immediate window to test a statement

Chapter 4: Working with VBA Sub Procedures

131

4

2. Move the sheets around randomly so that they aren’t in any particular order. Just
click and drag the sheet tabs.

3. Save the workbook as Test.xlsx.

4. Activate VBE and select the Personal.xlsb project in the Project window.

If Personal.xlsb doesn’t appear in the Project window in VBE, it means that
you’ve never used the Personal Macro Workbook. To have Excel create this workbook
for you, simply record a macro (any macro) and specify the Personal Macro Work-
book as the destination for the macro.

5. Insert a new VBA module in Personal.xlsb (choose Insert ➪ Module).

6. Create an empty Sub procedure called SortSheets (see Figure 4.10).

You can store this macro in any module in the Personal Macro Workbook. However,
keeping each group of related macros in a separate module is a good idea. That way,
you can easily export the module and import it into a different project later.

7. Activate Excel and choose Developer ➪ Code ➪ Macros to display the Macro
dialog box.

8. In the Macro dialog box, select the SortSheets procedure and click the Options
button to assign a shortcut key to this macro.

The Ctrl+Shift+S key combination is a good choice.

Code writing
Now it’s time to write some code. You know that you need to put the sheet names into an
array consisting of text (so the array needs to have the data type String), but because
you don’t know yet how many sheets there will be in any given workbook, you use a Dim
statement with empty parentheses to declare the array. You can use ReDim once you know
the actual number of sheets.

FIGURE 4.10

An empty procedure in a module located in the Personal Macro Workbook

Part I: Introduction to Excel VBA

132

As you can see in the following code, you loop through all of the sheets in the active work-
book and insert each sheet’s name into the SheetNames array. You also add a MsgBox
function within the loop just to give ourselves a visual indicator that the sheets’ names are
indeed being entered into the array.

Sub SortSheets()
' Sorts the sheets of the active workbook
 Dim SheetNames() as String
 Dim i as Long
 Dim SheetCount as Long
 SheetCount = ActiveWorkbook.Sheets.Count
 ReDim SheetNames(1 To SheetCount)
 For i = 1 To SheetCount
 SheetNames(i) = ActiveWorkbook.Sheets(i).Name
 MsgBox SheetNames(i)
 Next i
End Sub

It’s a best practice to test as you go. So, test the code to see five message boxes appear,
each displaying the name of a sheet in the active workbook. So far, so good.

You can now remove the MsgBox statement. (These message boxes become annoying after
a while.)

At this point, the SortSheets procedure simply creates an array of sheet names
corresponding to the sheets in the active workbook. Two steps remain: sort the elements in
the SheetNames array and then rearrange the sheets to correspond to the sorted array.

Writing the Sort procedure
Now that you have the sheet names in the SheetNames array, you can start thinking
about sorting. One option is to insert the sorting code in the SortSheets procedure, but
a better approach is to write a general-purpose sorting procedure that you can reuse with
other projects. (Sorting arrays is a common operation.)

The thought of writing a sorting procedure seems daunting, but you can search the Inter-
net to find commonly used routines that you can use or adapt. A quick search of VBA

Tip
Rather than use the MsgBox function to test your work, you can use the Print method of the Debug object to
display information in the Immediate window. For this example, use the following statement in place of the MsgBox
statement:

Debug.Print SheetNames(i)

This technique is much less intrusive than using MsgBox statements. Just make sure you remember to remove the
statement when you’re finished.

Chapter 4: Working with VBA Sub Procedures

133

4

sorting procedures leads us to the bubble sort method. Although it’s not a fast technique,
it’s easy to code. Blazing speed isn’t a requirement in this application.

The bubble sort method uses a nested For-Next loop to evaluate each array element. If the
array element is greater than the next element, the two elements swap positions. The code
includes a nested loop, so this evaluation is repeated for every pair of items (that is, n – 1
times).

Here is the sorting procedure pulled together with the help of a few examples found on
the Internet:

Sub BubbleSort(List() As String)
' Sorts the List array in ascending order
 Dim First As Long, Last As Long
 Dim i As Long, j As Long
 Dim Temp As String
 First = LBound(List)
 Last = UBound(List)
 For i = First To Last - 1
 For j = i + 1 To Last
 If List(i) > List(j) Then
 Temp = List(j)
 List(j) = List(i)
 List(i) = Temp
 End If
 Next j
 Next i
End Sub

This procedure accepts one argument: a one-dimensional array named List. An array
passed to a procedure can be of any length. It uses the LBound function to assign the
lower bound of the array and the UBound function to assign the upper bound of the array
to the variables First and Last, respectively.

Here’s a little temporary procedure that you can use to test the BubbleSort procedure:

Sub SortTester()
 Dim x(1 To 5) As String
 Dim i As Long
 x(1) = "dog"
 x(2) = "cat"
 x(3) = "elephant"
 x(4) = "aardvark"
 x(5) = "bird"
 Call BubbleSort(x)

In Chapter 7, you will explore some other sorting routines and compare them in terms of speed.

Part I: Introduction to Excel VBA

134

 For i = 1 To 5
 Debug.Print i, x(i)
 Next i
End Sub

The SortTester routine creates an array of five strings, passes the array to BubbleSort,
and then displays the sorted array in the Immediate window (see Figure 4.11). By the way,
it’s often helpful to create temporary procedures for testing. Once you’re done with testing,
you can simply delete them.

Now that you’re satisfied that the BubbleSort procedure works reliably, you can modify
SortSheets by adding a call to the BubbleSort procedure, passing the SheetNames
array as an argument. At this point, the code looks like the following:

Sub SortSheets()
 Dim SheetNames() As String
 Dim SheetCount as Long
 Dim i as Long
 SheetCount = ActiveWorkbook.Sheets.Count
 ReDim SheetNames(1 To SheetCount)
 For i = 1 To SheetCount

FIGURE 4.11

Using a temporary procedure to test the BubbleSort code

Chapter 4: Working with VBA Sub Procedures

135

4

 SheetNames(i) = ActiveWorkbook.Sheets(i).Name
 Next i
 Call BubbleSort(SheetNames)
End Sub

Sub BubbleSort(List() As String)
' Sorts the List array in ascending order
 Dim First As Long, Last As Long
 Dim i As Long, j As Long
 Dim Temp As String
 First = LBound(List)
 Last = UBound(List)
 For i = First To Last - 1
 For j = i + 1 To Last
 If List(i) > List(j) Then
 Temp = List(j)
 List(j) = List(i)
 List(i) = Temp
 End If
 Next j
 Next i
End Sub

When the SheetSort procedure ends, it contains an array that consists of the sorted sheet
names in the active workbook. To verify this, you can display the array contents in the VBE
Immediate window by adding the following code at the end of the SortSheets procedure
(if the Immediate window is not visible, press Ctrl+G):

For i = 1 To SheetCount
 Debug.Print SheetNames(i)
Next i

So far, so good. The next step is to write some code to rearrange the sheets to correspond
to the sorted items in the SheetNames array.

The code that you recorded earlier proved useful. Remember the instruction that was
recorded when you moved a sheet to the first position in the workbook?

Sheets("Sheet3").Move Before:=Sheets(1)

You can write a For-Next loop that will go through each sheet and move it to its
corresponding sheet location, specified in the SheetNames array.

For i = 1 To SheetCount
 Sheets(SheetNames(i)).Move Before:=Sheets(i)
Next i

For example, the first time through the loop, the loop counter i is 1. The first element in
the sorted SheetNames array is (in this example) Sheet1. Therefore, the expression for the
Move method in the loop evaluates to the following:

Sheets("Sheet1").Move Before:= Sheets(1)

Part I: Introduction to Excel VBA

136

The second time through the loop, the expression evaluates to the following:

Sheets("Sheet2").Move Before:= Sheets(2)
This is what the SortSheets procedure looks like with the added code:

Sub SortSheets()
 Dim SheetNames() As String
 Dim SheetCount as Long
 Dim i as Long
 SheetCount = ActiveWorkbook.Sheets.Count
 ReDim SheetNames(1 To SheetCount)
 For i = 1 To SheetCount
 SheetNames(i) = ActiveWorkbook.Sheets(i).Name
 Next i
 Call BubbleSort(SheetNames)
 For i = 1 To SheetCount
 ActiveWorkbook.Sheets(SheetNames(i)).Move _
 Before:=ActiveWorkbook.Sheets(i)
 Next i
End Sub

It’s time to clean things up. Let’s make sure that all the variables used in the procedures
are declared. Let’s also add some comments and blank lines to make the code easier to read.

Sub SortSheets()
' This routine sorts the sheets of the
' active workbook in ascending order.
' Use Ctrl+Shift+S to execute
 Dim SheetNames() As String
 Dim SheetCount As Long
 Dim i As Long
' Determine the number of sheets & ReDim array
 SheetCount = ActiveWorkbook.Sheets.Count
 ReDim SheetNames(1 To SheetCount)
' Fill array with sheet names
 For i = 1 To SheetCount
 SheetNames(i) = ActiveWorkbook.Sheets(i).Name
 Next i
' Sort the array in ascending order
 Call BubbleSort(SheetNames)
' Move the sheets
 For i = 1 To SheetCount
 ActiveWorkbook.Sheets(SheetNames(i)).Move _
 Before:= ActiveWorkbook.Sheets(i)
 Next i
End Sub

You can test the code by adding a few more sheets to Test.xlsx and changing some of the
sheet names.

Chapter 4: Working with VBA Sub Procedures

137

4

More testing
Just because the procedure works with the Test.xlsx workbook doesn’t mean that it will
work with all workbooks. To test it further, you can open a few other workbooks and try
running the sort procedure on each workbook.

It soon becomes apparent that there are few issues with the code.

 ■ Workbooks with many sheets take a long time to sort because the screen continu-
ally updates during the move operations.

 ■ The sorting procedure you chose seems to be case-sensitive. For example, a sheet
named SUMMARY (all uppercase) appears before a sheet named Sheet1. According
to the BubbleSort procedure, an uppercase U is “greater than” a lowercase h.

 ■ If there are no workbooks open, the code fails.
 ■ If the workbook’s structure is protected, the Move method fails.
 ■ After sorting, the last sheet in the workbook becomes the active sheet. Changing

the user’s active sheet isn’t a good practice; it’s better to keep the user’s original
sheet active.

 ■ If the code is interrupted by pressing Ctrl+Break, VBA displays an error message.
 ■ The macro can’t be reversed (that is, the Undo command is disabled when a macro

is executed). If the user accidentally triggers the sorting procedure, the only way to
get back to the original sheet order is by doing it manually.

Fixing the problems
Fixing the screen-updating problem is a breeze. You can insert the following instruction to
turn off screen updating while the sheets are being moved.

Application.ScreenUpdating = False

This statement causes Excel’s windows to freeze while the macro is running. A beneficial
side effect is that it also speeds up the macro considerably. After the macro completes its
operation, screen updating is turned back on automatically.

It is also easy to fix the problem with the BubbleSort procedure. You can use VBA’s
UCase function to convert the sheet names to uppercase for the comparison. This causes
all of the comparisons to be made by using uppercase versions of the sheet names. The
corrected line reads as follows:

If UCase(List(i)) > UCase(List(j)) Then

Tip
Another way to solve the “case” problem is to add the following statement to the top of your module:

Option Compare Text

This statement causes VBA to perform string comparisons based on a case-insensitive text sort order. In other words,
A is considered the same as a.

Part I: Introduction to Excel VBA

138

To prevent the error message that appears when no workbooks are visible, you can add a
simple check to see whether an active workbook is available. If no active workbook is avail-
able, you simply exit the procedure. This statement can go at the top of the SortSheets
procedure:

If ActiveWorkbook Is Nothing Then Exit Sub

There’s usually a good reason that a workbook’s structure is protected. The best approach is
to not attempt to unprotect the workbook. Rather, the code should display a message box
warning and let the user unprotect the workbook and re-execute the macro. Testing for a
protected workbook structure is easy—the ProtectStructure property of a Workbook
object returns True if a workbook is protected.

' Check for protected workbook structure
If ActiveWorkbook.ProtectStructure Then
 MsgBox ActiveWorkbook.Name & " is protected.", _
 vbCritical, "Cannot Sort Sheets."
 Exit Sub
End If

If the workbook’s structure is protected, the user sees a message box like the one shown in
Figure 4.12.

To reactivate the original active sheet after the sorting is performed, you can add some
code to assign the original sheet to an object variable (OldActive) and then activate that
sheet when the routine is finished. Here’s the statement that assigns the variable:

Set OldActive = ActiveSheet

This statement activates the original active worksheet.

OldActive.Activate

Pressing Ctrl+Break normally halts a macro, and VBA usually displays an error message.
However, because you want to avoid VBA error messages, you can insert a command to pre-
vent this situation. From the VBA Help system, you discover that the Application object has

FIGURE 4.12

This message box tells the user that the sheets cannot be sorted.

Chapter 4: Working with VBA Sub Procedures

139

4

an EnableCancelKey property that can disable Ctrl+Break. So, you can add the following
statement at the top of the routine:

Application.EnableCancelKey = xlDisabled

To prevent the problem of inadvertently starting the sort procedure, you can add a simple
message box asking the user to confirm the action. The following statement is placed before
the Ctrl+Break key is disabled:

If MsgBox("Sort the sheets in the active workbook?", _
 vbQuestion + vbYesNo) <> vbYes Then Exit Sub

When users execute the SortSheets procedure, they see the message box in Figure 4.13.

After all these adjustments are implemented, the SortSheets procedure looks like this:

Option Explicit
Sub SortSheets()
 ' This routine sorts the sheets of the
 ' active workbook in ascending order.
 ' Use Ctrl+Shift+S to execute
 Dim SheetNames() As String
 Dim i As Long
 Dim SheetCount As Long
 Dim OldActiveSheet As Object
 If ActiveWorkbook Is Nothing Then Exit Sub ' No active workbook
 SheetCount = ActiveWorkbook.Sheets.Count
 ' Check for protected workbook structure
 If ActiveWorkbook.ProtectStructure Then

CauTioN
Be careful when you disable the Cancel key. If your code gets caught in an infinite loop, you can’t break out of it. For
best results, insert this statement only after you’re sure that everything is working properly.

FIGURE 4.13

This message box appears before the sheets are sorted.

Part I: Introduction to Excel VBA

140

 MsgBox ActiveWorkbook.Name & " is protected.", _
 vbCritical, "Cannot Sort Sheets."
 Exit Sub
 End If

 ' Make user verify
 If MsgBox("Sort the sheets in the active workbook?", _
 vbQuestion + vbYesNo) <> vbYes Then Exit Sub
 ' Disable Ctrl+Break
 Application.EnableCancelKey = xlDisabled
 ' Get the number of sheets
 SheetCount = ActiveWorkbook.Sheets.Count
 ' Redimension the array
 ReDim SheetNames(1 To SheetCount)
 ' Store a reference to the active sheet
 Set OldActiveSheet = ActiveSheet
 ' Fill array with sheet names
 For i = 1 To SheetCount
 SheetNames(i) = ActiveWorkbook.Sheets(i).Name
 Next i
 ' Sort the array in ascending order
 Call BubbleSort(SheetNames)
 ' Turn off screen updating
 Application.ScreenUpdating = False
 ' Move the sheets
 For i = 1 To SheetCount
 ActiveWorkbook.Sheets(SheetNames(i)).Move _
 Before:=ActiveWorkbook.Sheets(i)
 Next i
 ' Reactivate the original active sheet
 OldActiveSheet.Activate
End Sub

Utility availability
Because the SortSheets macro is stored in the Personal Macro Workbook, it’s available
whenever Excel is running. At this point, you can execute the macro by selecting the
macro’s name from the Macro dialog box (Alt+F8 displays this dialog box) or by pressing
Ctrl+Shift+S. Another option is to add a command to the Ribbon.

To add a command, follow these steps:

1. Right-click any area of the Ribbon and choose Customize the Ribbon.

2. Use the controls in the box on the right to specify a Ribbon tab and then click the
New Group button to create a group on the specified tab. You can right-click your
new group to rename it.

Chapter 4: Working with VBA Sub Procedures

141

4

Figure 4.14 illustrates a new group named Sort Sheets in the View tab. Note that
you can’t add a command to any of Excel’s pre-existing groups.

3. In the Customize Ribbon tab of the Excel Options dialog box, choose Macros
from the Choose Commands From drop-down list and find the macro that you
want to add.

4. Add the macro to your newly created group.

Evaluating the project
There you have it. The utility meets all the original project requirements: it sorts all of the
sheets in the active workbook, it can be executed easily, and it’s always available for use
with any workbook.

NoTe
The procedure still has one slight problem: the sorting is strict and may not always be “logical.” For example, after
sorting, Sheet10 is placed before Sheet2. Most would want Sheet2 to be listed before Sheet10. Solving that
problem is possible, but it is beyond the scope of this introductory exercise.

FIGURE 4.14

Adding a new command to the Ribbon

143

CHAP T ER

5
Creating Function Procedures

IN THIS CHAPTER
Understanding the difference between Sub procedures and Function procedures

Creating custom functions

Looking at Function procedures and Function arguments

Creating a function that emulates Excel’s SUM function

Using functions that enable you to work with pre-1900 dates in your worksheets

Debugging functions, dealing with the Insert Function dialog box, and using add-ins to store custom functions

Calling the Windows application programming interface (API) to perform otherwise impossible feats

Sub Procedures vs. Function Procedures
A VBA Function is a procedure that performs calculations and returns a value. You can use these
functions in your Visual Basic for Applications (VBA) code or in worksheet formulas.

VBA enables you to create Sub procedures and Function procedures. You can think of a Sub
procedure as a command that either the user or another procedure can execute. Function pro-
cedures, on the other hand, usually return a single value (or an array), just like Excel worksheet
functions and VBA built-in functions. As with built-in functions, your Function procedures can
use arguments.

Function procedures are versatile, and you can use them in two situations.

 ■ As part of an expression in a VBA procedure
 ■ In formulas that you create in a worksheet

In fact, you can use a Function procedure anywhere you can use an Excel worksheet function or a
VBA built-in function. The only exception is that you can’t use a VBA function in a data validation
formula. You can, however, use a custom VBA function in a conditional formatting formula.

We cover Sub procedures in the preceding chapter and Function procedures in this chapter.

Excel® 2019 Power Programming with VBA, First Edition. Michael Alexander and Dick Kusleika.
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.

Part I: Introduction to Excel VBA

144

Why Create Custom Functions?
You’re undoubtedly familiar with Excel worksheet functions; even novices know how to
use the most common worksheet functions, such as SUM, AVERAGE, and IF. Excel includes
more than 450 predefined worksheet functions that you can use in formulas. In addition,
you can create custom functions by using VBA.

With all the functions available in Excel and VBA, you might wonder why you’d ever need to
create new functions. The answer is to simplify your work. With a bit of planning, custom
functions are useful in worksheet formulas and VBA procedures.

Often, for example, you can create a custom function that can significantly shorten your
formulas. And shorter formulas are more readable and easier to work with. The trade-off,
however, is that custom functions are usually much slower than built-in functions. And, of
course, the user must enable macros to use these functions.

When you create applications, you may notice that some procedures repeat certain calcu-
lations. In such cases, consider creating a custom function that performs the calculation.
Then you can call the function from your procedure. A custom function can eliminate the
need for duplicated code, thus reducing errors.

An Introductory Function Example
Without further ado, this section presents an example of a VBA Function procedure.

The following is a custom function defined in a VBA module. This function, named
REMOVEVOWELS, uses a single argument. The function returns the argument, but with all
the vowels removed.

Function REMOVEVOWELS(Txt) As String
' Removes all vowels from the Txt argument
 Dim i As Long
 RemoveVowels = ""
 For i = 1 To Len(Txt)
 If Not UCase(Mid(Txt, i, 1)) Like "[AEIOU]" Then
 REMOVEVOWELS = REMOVEVOWELS & Mid(Txt, i, 1)
 End If
 Next i
End Function

This function certainly isn’t the most useful function, but it demonstrates some key con-
cepts related to functions. We explain how this function works later in the “Analyzing the
custom function” section.

Chapter 7, “VBA Programming Examples and Techniques,” has many useful and practical examples of
Function procedures. You can incorporate many of these techniques into your work.

Chapter 5: Creating Function Procedures

145

5

Using the function in a worksheet
When you enter a formula that uses the REMOVEVOWELS function, Excel executes the code
to get the result that’s returned by the function. Here’s an example of how you’d use the
function in a formula:

=REMOVEVOWELS(A1)

See Figure 5.1 for examples of this function in action. The formulas are in column B, and
they use the text in column A as their arguments. As you can see, the function returns the
single argument, but with the vowels removed.

Actually, the function works like any built-in worksheet function. You can insert it in a formula
by choosing Formulas ➪ Function Library ➪ Insert Function or by clicking the Insert Function
icon to the left of the formula bar. Either of these actions displays the Insert Function dialog
box. In the Insert Function dialog box, your custom functions are located, by default, in the
User Defined category.

You can also nest custom functions and combine them with other elements in your
formulas. For example, the following formula nests the REMOVEVOWELS function inside
Excel’s UPPER function. The result is the original string (minus vowels), converted to
uppercase.

=UPPER(REMOVEVOWELS(A1))

Caution
When you create custom functions that will be used in a worksheet formula, make sure that the code resides in a
normal VBA module (use Insert ➪ Module to create a normal VBA module). If you place your custom functions in a
code module for a UserForm, a sheet, or ThisWorkbook, they won’t work in your formulas. Your formulas will return a
#NAME? error.

FIGURE 5.1

Using a custom function in a worksheet formula

Part I: Introduction to Excel VBA

146

Using the function in a VBA procedure
In addition to using custom functions in worksheet formulas, you can use them in other
VBA procedures. The following VBA procedure, which is defined in the same module as the
custom REMOVEVOWELS function, first displays an input box to solicit text from the user.
Then the procedure uses the VBA built-in MsgBox function to display the user input after
the REMOVEVOWELS function processes it (see Figure 5.2). The original input appears as the
caption in the message box.

Sub ZapTheVowels()
 Dim UserInput as String
 UserInput = InputBox("Enter some text:")
 MsgBox REMOVEVOWELS(UserInput), vbInformation, UserInput
End Sub

Figure 5.2 shows text entered into an input box and the result displayed in a message box.

Analyzing the custom function
Function procedures can be as complex as you need them to be. Most of the time, they’re
more complex and much more useful than this sample procedure. Nonetheless, an analysis
of this example may help you understand what is happening.

Here’s the code, again:

Function REMOVEVOWELS(Txt) As String
' Removes all vowels from the Txt argument
 Dim i As Long
 REMOVEVOWELS = ""

FIGURE 5.2

Using a custom function in a VBA procedure

Chapter 5: Creating Function Procedures

147

5

 For i = 1 To Len(Txt)
 If Not UCase(Mid(Txt, i, 1)) Like "[AEIOU]" Then
 REMOVEVOWELS = REMOVEVOWELS & Mid(Txt, i, 1)
 End If
 Next i
End Function

Note that the procedure starts with the keyword Function, rather than Sub, followed by
the name of the function (REMOVEVOWELS). This custom function uses only one argument
(Txt), enclosed in parentheses. As String defines the data type of the function’s return
value. Excel uses the Variant data type if no data type is specified.

The second line is an optional comment that describes what the function does. This line
is followed by a Dim statement, which declares the variable (i) used in the procedure as
type Long.

The next five instructions make up a For-Next loop. The procedure loops through each
character in the input and builds the string. The first instruction in the loop uses VBA’s
Mid function to return a single character from the input string and converts this character
to uppercase. That character is then compared to a list of characters by using Excel’s Like
operator. In other words, the If clause is true if the character isn’t A, E, I, O, or U. In such
a case, the character is appended to the REMOVEVOWELS variable.

When the loop is finished, REMOVEVOWELS consists of the input string with all the vowels
removed. This string is the value that the function returns.

The procedure ends with an End Function statement.

Keep in mind that you can do the coding for this function in a number of ways. Here’s a
function that accomplishes the same result, but it is coded differently:

Function REMOVEVOWELS(txt) As String
' Removes all vowels from the Txt argument
 Dim i As Long
 Dim TempString As String
 TempString = ""
 For i = 1 To Len(txt)
 Select Case ucase(Mid(txt, i, 1))
 Case "A", "E", "I", "O", "U"
 'Do nothing
 Case Else
 TempString = TempString & Mid(txt, i, 1)
 End Select
 Next i
 REMOVEVOWELS = TempString
End Function

In this version, we used a string variable (TempString) to store the vowels string as
it’s being constructed. Then, before the procedure ends, we assigned the contents of

Part I: Introduction to Excel VBA

148

TempString to the function’s name. This version also uses a Select Case construct
rather than an If-Then construct.

Function Procedures
A Function procedure has much in common with a Sub procedure. (For more information
on Sub procedures, see Chapter 4, “Working with VBA Sub Procedures.”)

The syntax for declaring a function is as follows:

[Public | Private][Static] Function name ([arglist])[As type]
 [instructions]
 [name = expression]
 [Exit Function]
 [instructions]
 [name = expression]
End Function

on the Web
Both versions of this function are available at this book’s website. The file is named remove vowels.xlsm.

What custom worksheet functions can’t do
When you develop custom functions, it’s important to understand a key distinction between functions
that you call from other VBA procedures and functions that you use in worksheet formulas. Function
procedures used in worksheet formulas must be passive. For example, code in a Function procedure
can’t manipulate ranges or change things on the worksheet. An example can help make this limita-
tion clear.

You may be tempted to write a custom worksheet function that changes a cell’s formatting. For example,
it may be useful to have a formula that uses a custom function to change the color of text in a cell
based on the cell’s value. Try as you might, however, such a function is impossible to write. No matter
what you do, the function won’t change the worksheet. Remember, a function simply returns a value.
It can’t perform actions with objects.

That said, we should point out one notable exception. You can change the text in a cell comment by
using a custom VBA function. Here’s an example function that does just that:

Function MODIFYCOMMENT(Cell As Range, Cmt As String)
 Cell.Comment.Text Cmt
End Function

Here’s an example of using this function in a formula. The formula replaces the comment in cell A1
with new text. The function won’t work if cell A1 doesn’t have a comment.

 =MODIFYCOMMENT(A1,"Hey, I changed your comment")

Chapter 5: Creating Function Procedures

149

5

The Function procedure contains the following elements:

Public: Optional. Indicates that the Function procedure is accessible to all other
procedures in all other modules in all active Excel VBA projects.

Private: Optional. Indicates that the Function procedure is accessible only to other
procedures in the same module.

Static: Optional. Indicates that the values of variables declared in the Function
procedure are preserved between calls.

Function: Required. Indicates the beginning of a procedure that returns a value or
other data.

name: Required. Any valid Function procedure name, which must follow the same
rules as a variable name.

arglist: Optional. A list of one or more variables that represent arguments passed to
the Function procedure. The arguments are enclosed in parentheses. Use a comma
to separate pairs of arguments.

type: Optional. The data type returned by the Function procedure.

instructions: Optional. Any number of valid VBA instructions.

Exit Function: Optional. A statement that forces an immediate exit from the
Function procedure before its completion.

End Function: Required. A keyword that indicates the end of the Function
procedure.

A key point to remember about a custom function written in VBA is that a value is always
assigned to the function’s name a minimum of one time, generally when it has completed
execution.

To create a custom function, start by inserting a VBA module. You can use an existing
module, as long as it’s a normal VBA module. Enter the keyword Function followed by the
function name and a list of its arguments (if any) in parentheses and then press Enter on
your keyboard. Note that the VBE will automatically insert the End Function statement.

Insert the VBA code that performs the work, making sure that the appropriate value is
assigned to the term corresponding to the function name at least once in the body of the
Function procedure.

Function names must adhere to the same rules as variable names. If you plan to use your
custom function in a worksheet formula, be careful if the function name is also a cell
address. For example, if you use something like ABC123 as a function name, you can’t use
the function in a worksheet formula, because ABC123 is a cell address. If you do so, Excel
displays a #REF! error.

The best advice is to avoid using function names that are also cell references, including
named ranges. And avoid using function names that correspond to Excel’s built-in function
names. In the case of a function name conflict, Excel always uses its built-in function.

Part I: Introduction to Excel VBA

150

A function’s scope
In Chapter 4, we discuss the concept of a procedure’s scope (public or private). The same
discussion applies to functions: a function’s scope determines whether it can be called by
procedures in other modules or in worksheets.

Here are a few things to keep in mind about a function’s scope:

 ■ If you don’t declare a function’s scope, its default scope is Public.
 ■ Functions declared As Private don’t appear in Excel’s Insert Function dialog box.

Therefore, when you create a function that should be used only in a VBA procedure,
you should declare it Private so that users don’t try to use it in a formula.

 ■ If your VBA code needs to call a function that’s defined in another workbook, set
up a reference to the other workbook by choosing the Visual Basic Editor (VBE)
Tools ➪ References command.

 ■ You do not have to establish a reference if the function is defined in an add-in.
Such a function is available for use in all workbooks.

Executing function procedures
Although you can execute a Sub procedure in many ways, you can execute a Function
procedure in only four ways.

 ■ Call it from another procedure
 ■ Use it in a worksheet formula
 ■ Use it in a formula that’s used to specify conditional formatting
 ■ Call it from the VBE Immediate window

From a procedure
You can call custom functions from a VBA procedure the same way that you call built-in
functions. For example, after you define a function called SUMARRAY, you can enter a
statement like the following:

Total = SUMARRAY(MyArray)

This statement executes the SUMARRAY function with MyArray as its argument, returns
the function’s result, and assigns it to the Total variable.

You also can use the Run method of the Application object. Here’s an example:

Total = Application.Run ("SUMARRAY", "MyArray")

The first argument for the Run method is the function name. Subsequent arguments rep-
resent the arguments for the function. The arguments for the Run method can be literal
strings (as shown in the preceding example), numbers, expressions, or variables.

In a worksheet formula
Using custom functions in a worksheet formula is like using built-in functions except
that you must ensure that Excel can locate the Function procedure. If the Function

Chapter 5: Creating Function Procedures

151

5

procedure is in the same workbook, you don’t have to do anything special. If it’s in a differ-
ent workbook, you may have to tell Excel where to find it.

You can do so in three ways.

Precede the function name with a file reference: For example, if you want to use a
function called COUNTNAMES that’s defined in an open workbook named Myfuncs.
xlsm, you can use the following reference:

=Myfuncs.xlsm!COUNTNAMES(A1:A1000)

If you insert the function with the Insert Function dialog box, the workbook reference
is inserted automatically.

Set up a reference to the workbook: You do so by choosing the VBE Tools ➪ Refer-
ences command. If the function is defined in a referenced workbook, you don’t need
to use the worksheet name. Even when the dependent workbook is assigned as a
reference, the Paste Function dialog box continues to insert the workbook reference
(although it’s not necessary).

Create an add-in: When you create an add-in from a workbook that has Function
procedures, you don’t need to use the file reference when you use one of the
functions in a formula. The add-in must be installed, however. We discuss add-ins in
Chapter 16, “Creating and Using Add-Ins.”

You’ll notice that, unlike Sub procedures, your Function procedures don’t appear in the
Macro dialog box when you issue the Developer ➪ Code ➪ Macros command. In addition,
you can’t choose a function when you issue the VBE Run ➪ Sub/UserForm command (or
press F5) if the cursor is located in a Function procedure. (You get the Macro dialog box
that lets you choose a macro to run.) Therefore, you need to do a bit of extra up-front work
to test your functions while you’re developing them. One approach is to set up a simple
procedure that calls the function. If the function is designed to be used in worksheet
formulas, you’ll want to enter a simple formula to test it.

In a conditional formatting formula
When you specify conditional formatting, one of the options is to create a formula. The
formula must be a logical formula (that is, it must return either TRUE or FALSE). If the for-
mula returns TRUE, the condition is met, and formatting is applied to the cell.

You can use custom VBA functions in your conditional formatting formulas. For example,
here’s a simple VBA function that returns TRUE if its argument is a cell that contains
a formula:

Function CELLHASFORMULA(cell) As Boolean
 CELLHASFORMULA = cell.HasFormula
End Function

After defining this function in a VBA module, you can set up a conditional formatting rule
so that cells that contain a formula contain different formatting.

Part I: Introduction to Excel VBA

152

1. Select the range that will contain the conditional formatting. For example,
select A1:G20.

2. Choose Home ➪ Styles ➪ Conditional Formatting ➪ New Rule.

3. In the New Formatting Rule dialog box, select the option labeled Use a Formula to
Determine Which Cells to Format.

4. Enter this formula in the formula box, but make sure that the cell reference argu-
ment corresponds to the upper-left cell in the range that you selected in step 1:

=CELLHASFORMULA(A1)

5. Click the Format button to specify the formatting for cells that meet this
condition.

6. Click OK to apply the conditional formatting rule to the selected range.

Cells in the range that contain a formula will display the formatting you specified. In
the New Formatting Rule dialog box shown in Figure 5.3, we specify a custom function in
a formula.

note
The ISFORMULA worksheet function (introduced in Excel 2013) works exactly like the custom CELLHAS
FORMULA function. But the CELLHASFORMULA function is still useful if you plan to share your workbook with
others who are still using Excel 2010 or earlier versions.

FIGURE 5.3

Using a custom VBA function for conditional formatting

Chapter 5: Creating Function Procedures

153

5

From the VBE Immediate Window
The final way to call a Function procedure is from the VBE Immediate window. This
method is generally used only for testing. Figure 5.4 shows an example. The ? character is a
shortcut for the Debug.Print command (used to print results to the Immediate window).

Function Arguments
Keep in mind the following points about Function procedure arguments:

 ■ Arguments can be variables (including arrays), constants, literals, or expressions.
 ■ Some functions don’t have arguments.
 ■ Some functions have a fixed number of required arguments (from 1 to 60).
 ■ Some functions have a combination of required and optional arguments.

Function Examples
In this section, we present a series of examples that demonstrate how to use arguments
effectively with functions. By the way, this discussion applies also to Sub procedures.

Functions with no argument
Like Sub procedures, Function procedures need not have arguments. Excel, for example,
has a few built-in functions that don’t use arguments, including RAND, TODAY, and NOW.
You can create similar functions.

This section contains examples of functions that don’t use an argument.

note
If your formula uses a custom worksheet function and it returns #VALUE!, your function has an error. The error
may be caused by logical errors in your code or by passing incorrect arguments to the function. See the “Debugging
Functions” section later in this chapter.

FIGURE 5.4

Calling a Function procedure from the Immediate window

Part I: Introduction to Excel VBA

154

Here’s a simple example of a function that doesn’t use an argument. The following function
returns the UserName property of the Application object. This is the name that appears
in the Excel Options dialog box (General tab) and is stored in the Windows Registry.

Function USER()
 ' Returns the name of the current user
 USER = Application.UserName
End Function

When you enter the following formula, the cell returns the name of the current user:

=USER()

There is no need to use this function in another procedure because you can simply access
the UserName property directly in your code.

The USER function demonstrates how you can create a wrapper function that returns
a property or the result of a VBA function. The following are three additional wrapper
functions that take no argument:

Function EXCELDIR() As String
 ' Returns the directory in which Excel is installed
 EXCELDIR = Application.Path
End Function

Function SHEETCOUNT()
 ' Returns the number of sheets in the workbook
 SHEETCOUNT = Application.Caller.Parent.Parent.Sheets.Count
End Function

Function SHEETNAME()
 ' Returns the name of the worksheet
 SHEETNAME = Application.Caller.Parent.Name
End Function

You can probably think of other potentially useful wrapper functions. For example, you
can write a function to display the template’s location (Application.TemplatesPath),
the default file location (Application.DefaultFilePath), and the version of Excel

on the Web
A workbook that contains these functions is available on this book’s website. The file is named no argument
.xlsm.

note
When you use a function with no arguments in a worksheet formula, you must include a set of empty parentheses.
This requirement isn’t necessary if you call the function in a VBA procedure, although including the empty paren-
theses does make it clear that you’re calling a function.

Chapter 5: Creating Function Procedures

155

5

(Application.Version). Also, note that Excel 2013 introduced a worksheet function,
SHEETS, that makes the SHEETCOUNT function obsolete.

Here’s another example of a function that doesn’t take an argument. Most people use Excel’s
RAND function to fill a range of cells quickly with values. But the RAND function forces
random values to be changed whenever the worksheet was recalculated. So, after using the
RAND function, most people will convert the formulas to values.

As an alternative, you could use VBA to create a custom function that returns static ran-
dom numbers that do not change. The custom function follows:

Function STATICRAND()
 ' Returns a random number that doesn't
 ' change when recalculated
 STATICRAND = Rnd()
End Function

If you want to generate a series of random integers between 0 and 1,000, you can use a for-
mula such as the following:

=INT(STATICRAND()*1000)

The values produced by this formula never change when the worksheet is calculated nor-
mally. However, you can force the formula to recalculate by pressing Ctrl+Alt+F9.

Controlling function recalculation
When you use a custom function in a worksheet formula, when is it recalculated?

Custom functions behave like Excel’s built-in worksheet functions. Normally, a custom function is
recalculated only when any of the function’s arguments are modified. You can, however, force functions
to recalculate more frequently. Adding the following statement to a Function procedure makes the
function recalculate whenever the sheet is recalculated. If you’re using automatic calculation mode, a
calculation occurs whenever any cell is changed.

 Application.Volatile True

The Volatile method of the Application object has one argument (either True or False). Marking
a Function procedure as volatile forces the function to be calculated whenever recalculation occurs
for any cell in the worksheet.

For example, the custom STATICRAND function can be changed to emulate Excel’s RAND function
using the Volatile method.

Function NONSTATICRAND()
 ' Returns a random number that changes with each calculation
 Application.Volatile True
 NONSTATICRAND = Rnd()
End Function

Part I: Introduction to Excel VBA

156

A function with one argument
This section describes a function for sales managers who need to calculate the commis-
sions earned by their sales forces. The calculations in this example are based on the fol-
lowing table:

Monthly Sales Commission Rate

0–$9,999 8.0%

$10,000–$19,999 10.5%

$20,000–$39,999 12.0%

$40,000+ 14.0%

Note that the commission rate is nonlinear and also depends on the month’s total sales.
Employees who sell more earn a higher commission rate.

You can calculate commissions for various sales amounts entered in a worksheet in several
ways. If you’re not thinking too clearly, you can waste lots of time and come up with a
lengthy formula such as this one:

=IF(AND(A1>=0,A1<=9999.99),A1*0.08,
IF(AND(A1>=10000,A1<=19999.99),A1*0.105,
IF(AND(A1>=20000,A1<=39999.99),A1*0.12,
IF(A1>=40000,A1*0.14,0))))

This approach is bad for a couple of reasons. First, the formula is overly complex, making
it difficult to understand. Second, the values are hard-coded into the formula, making the
formula difficult to modify.

A better (non-VBA) approach is to use a lookup table function to compute the commissions.
For example, the following formula uses VLOOKUP to retrieve the commission value from a
range named Table and multiplies that value by the value in cell A1:

=VLOOKUP(A1,Table,2)*A1

Yet another approach (that eliminates the need to use a lookup table) is to create a custom
function such as the following:

Function COMMISSION(Sales)
 Const Tier1 = 0.08
 Const Tier2 = 0.105

Using the False argument of the Volatile method causes the function to be recalculated only when
one or more of its arguments change as a result of a recalculation.

To force an entire recalculation, including nonvolatile custom functions, press Ctrl+Alt+F9. This key
combination will, for example, generate new random numbers for the STATICRAND function presented
in this chapter.

Chapter 5: Creating Function Procedures

157

5

 Const Tier3 = 0.12
 Const Tier4 = 0.14
 ' Calculates sales commissions
 Select Case Sales
 Case 0 To 9999.99: COMMISSION = Sales * Tier1
 Case 10000 To 19999.99: COMMISSION = Sales * Tier2
 Case 20000 To 39999.99: COMMISSION = Sales * Tier3
 Case Is >= 40000: COMMISSION = Sales * Tier4
 End Select
End Function

After you enter this function in a VBA module, you can use it in a worksheet formula or call
the function from other VBA procedures.

Entering the following formula into a cell produces a result of 3,000; the amount (25,000)
qualifies for a commission rate of 12 percent:

=COMMISSION(25000)

Even if you don’t need custom functions in a worksheet, creating Function procedures can
make your VBA coding much simpler. For example, if your VBA procedure calculates sales
commissions, you can use the same function and call it from a VBA procedure. Here’s a tiny
procedure that asks the user for a sales amount and then uses the COMMISSION function to
calculate the commission due:

Sub CalcComm()
 Dim Sales as Long
 Sales = InputBox("Enter Sales:")
 MsgBox "The commission is " & COMMISSION(Sales)
End Sub

The CalcComm procedure starts by displaying an input box that asks for the sales amount.
Then it displays a message box with the calculated sales commission for that amount.

This Sub procedure works, but it’s crude. The following is an enhanced version with a bit of
error handling. It also displays formatted values and keeps looping until the user clicks No
(see Figure 5.5).

Sub CalcComm()
 Dim Sales As Long
 Dim Msg As String, Ans As String
 ' Prompt for sales amount
 Sales = Val(InputBox("Enter Sales:", _
 "Sales Commission Calculator"))
 ' Exit if canceled
 If Sales = 0 Then Exit Sub
 ' Build the Message
 Msg = "Sales Amount:" & vbTab & Format(Sales, "$#,##0.00")
 Msg = Msg & vbCrLf & "Commission:" & vbTab
 Msg = Msg & Format(COMMISSION(Sales), "$#,##0.00")
 Msg = Msg & vbCrLf & vbCrLf & "Another?"

Part I: Introduction to Excel VBA

158

 ' Display the result and prompt for another
 Ans = MsgBox(Msg, vbYesNo, "Sales Commission Calculator")
 If Ans = vbYes Then CalcComm
End Sub

This function uses two VBA built-in constants: vbTab represents a tab (to space the
output), and vbCrLf specifies a carriage return and line feed (to skip to the next line).
VBA’s Format function displays a value in a specified format (in this case, with a dollar
sign, a comma, and two decimal places).

In both examples, the Commission function must be available in the active workbook;
otherwise, Excel displays an error message saying that the function isn’t defined.

Use arguments, not cell references
All ranges that are used in a custom function should be passed as arguments. Consider the following
function, which returns the value in A1, multiplied by 2:

Function DOUBLECELL()
 DOUBLECELL = Range("A1") * 2
End Function

Although this function works, at times it may return an incorrect result. Excel’s calculation engine
can’t account for ranges in your code that aren’t passed as arguments. Therefore, in some cases, all
precedents may not be calculated before the function’s value is returned. The DOUBLECELL function
should be written as follows, with A1 passed as the argument:

Function DOUBLECELL(cell)
 DOUBLECELL = cell * 2
End Function

FIGURE 5.5

Using a function to display the result of a calculation

Chapter 5: Creating Function Procedures

159

5

A function with two arguments
Imagine that the aforementioned hypothetical sales managers implement a new policy to
help reduce turnover: The total commission paid is increased by 1 percent for every year
that the salesperson has been with the company.

We modified the custom COMMISSION function (defined in the preceding section) so that
it takes two arguments. The new argument represents the number of years. Call this new
function COMMISSION2.

Function COMMISSION2(Sales, Years)
 ' Calculates sales commissions based on
 ' years in service
 Const Tier1 = 0.08
 Const Tier2 = 0.105
 Const Tier3 = 0.12
 Const Tier4 = 0.14
 Select Case Sales
 Case 0 To 9999.99: COMMISSION2 = Sales * Tier1
 Case 10000 To 19999.99: COMMISSION2 = Sales * Tier2
 Case 20000 To 39999.99: COMMISSION2 = Sales * Tier3
 Case Is >= 40000: COMMISSION2 = Sales * Tier4
 End Select
 COMMISSION2 = COMMISSION2 + (COMMISSION2 * Years / 100)
End Function

Pretty simple, right? We just added the second argument (Years) to the Function state-
ment and included an additional computation that adjusts the commission.

Here’s an example of how you can write a formula using this function (it assumes that the
sales amount is in cell A1 and the number of years the salesperson has worked is in cell B1):

=COMMISSION2(A1,B1)

A function with an array argument
A Function procedure also can accept one or more arrays as arguments, process the
array(s), and return a single value. The array can also consist of a range of cells.

The following function accepts an array as its argument and returns the sum of
its elements:

Function SUMARRAY(List) As Double
 Dim Item As Variant
 SumArray = 0

on the Web
All commission-related examples are available on this book’s website, in a file named commission
functions.xlsm.

Part I: Introduction to Excel VBA

160

 For Each Item In List
 If WorksheetFunction.IsNumber(Item) Then _
 SUMARRAY = SUMARRAY + Item
 Next Item
End Function

Excel’s ISNUMBER function checks to see whether each element is a number before adding
it to the total. Adding this simple error-checking statement eliminates the type-mismatch
error that occurs when you try to perform arithmetic with something other than a number.

The following procedure demonstrates how to call this function from a Sub procedure. The
MakeList procedure creates a 100-element array and assigns a random number to each ele-
ment. Then the MsgBox function displays the sum of the values in the array by calling the
SUMARRAY function.

Sub MakeList()
 Dim Nums(1 To 100) As Double
 Dim i As Integer
 For i = 1 To 100
 Nums(i) = Rnd * 1000
 Next i
 MsgBox SUMARRAY(Nums)
End Sub

Note that the SUMARRAY function doesn’t declare the data type of its argument (it’s a
Variant type). Because it’s not declared as a specific numeric type, the function also
works in your worksheet formulas in which the argument is a Range object. For example,
the following formula returns the sum of the values in A1:C10:

=SUMARRAY(A1:C10)

You might notice that, when used in a worksheet formula, the SUMARRAY function works
very much like Excel’s SUM function. One difference, however, is that SUMARRAY doesn’t
accept multiple arguments. Understand that this example is for educational purposes
only. Using the SUMARRAY function in a formula offers no advantages over the Excel
SUM function.

A function with optional arguments
Many of Excel’s built-in worksheet functions use optional arguments. An example is the
LEFT function, which returns characters from the left side of a string. Its syntax is
as follows:

LEFT(text,num_chars)

on the Web
This example, named array argument.xlsm, is available on this book’s website.

Chapter 5: Creating Function Procedures

161

5

The first argument is required, but the second is optional. If the optional argument is
omitted for the LEFT function, Excel assumes a value of 1. Therefore, the following two
formulas return the same result:

=LEFT(A1,1)
=LEFT(A1)

The custom functions that you develop in VBA also can have optional arguments. You spec-
ify an optional argument by preceding the argument’s name with the keyword Optional.
In the argument list, optional arguments must appear after any required arguments.

The following is a simple function example that returns the user’s name. The function’s
argument is optional.

Function USER(Optional UpperCase As Variant)
 If IsMissing(UpperCase) Then UpperCase = False
 USER = Application.UserName
 If UpperCase Then USER = UCase(USER)
End Function

If the argument is False or omitted, the user’s name is returned without any changes. If
the argument is True, the user’s name is converted to uppercase (using the VBA UCase
function) before it’s returned. Note that the first statement in the procedure uses the VBA
IsMissing function to determine whether the argument was supplied. If the argument is
missing, the statement sets the UpperCase variable to False (the default value).

All of the following formulas are valid, and the first two produce the same result:

=USER()
=USER(False)
=USER(True)

The following is another example of a custom function that uses an optional argument. This
function randomly chooses one cell from an input range and returns that cell’s contents. If
the second argument is True, the selected value changes whenever the worksheet is recal-
culated (that is, the function is made volatile). If the second argument is False (or omit-
ted), the function isn’t recalculated unless one of the cells in the input range is modified.

Function DRAWONE(Rng As Variant, Optional Recalc As Variant = False)
' Chooses one cell at random from a range

' Make function volatile if Recalc is True
Application.Volatile Recalc

note
If you need to determine whether an optional argument was passed to a function, you must declare the optional argu-
ment as a Variant data type. Then you can use the IsMissing function in the procedure, as demonstrated in
this example. In other words, the argument for the IsMissing function must always be a Variant data type.

Part I: Introduction to Excel VBA

162

' Determine a random cell
 DRAWONE = Rng(Int((Rng.Count) * Rnd + 1))
End Function

Note that the second argument for DRAWONE includes the Optional keyword, along with a
default value.

All the following formulas are valid, and the first two have the same effect:

=DRAWONE(A1:A100)
=DRAWONE(A1:A100,False)
=DRAWONE(A1:A100,True)

This function might be useful for choosing lottery numbers, picking a winner from a list of
names, and so on.

A function that returns a VBA array
VBA includes a useful function called Array. The Array function returns a variant that
contains an array (that is, multiple values). If you’re familiar with array formulas in Excel,
you have a head start on understanding VBA’s Array function. You enter an array formula
into a cell by pressing Ctrl+Shift+Enter. Excel inserts curly braces around the formula to
indicate that it’s an array formula.

The MONTHNAMES function, which follows, is a simple example that uses VBA’s Array
function in a custom function:

Function MONTHNAMES ()
 MONTHNAMES = Array("Jan", "Feb", "Mar", "Apr","May", "Jun", _
 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec")
End Function

The MONTHNAMES function returns a horizontal array of month names. You can create a
multicell array formula that uses the MONTHNAMES function. Here’s how to use it:

1. Make sure that the function code is present in a VBA module.

2. In a worksheet, select multiple cells in a row (start by selecting 12 cells).

3. Enter the formula that follows (without the braces) and press Ctrl+Shift+Enter.

{=MONTHNAMES()}

on the Web
This function is available on this book’s website. The filename is draw.xlsm.

note
It’s important to understand that the array returned by the Array function isn’t the same as a normal array made up
of elements of the Variant data type. In other words, a variant array isn’t the same as an array of variants.

Chapter 5: Creating Function Procedures

163

5

What if you’d like to generate a vertical list of month names? No problem; just select
a vertical range, enter the following formula (without the braces), and then press
Ctrl+Shift+Enter:

{=TRANSPOSE(MONTHNAMES ())}

This formula uses the Excel TRANSPOSE function to convert the horizontal array to a ver-
tical array.

The following example is a variation on the MONTHNAMES function:

Function MonthNames(Optional MIndex)
 Dim AllNames As Variant
 Dim MonthVal As Long
 AllNames = Array("Jan", "Feb", "Mar", "Apr", "May", "Jun", _
 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec")
 If IsMissing(MIndex) Then
 MONTHNAMES = AllNames
 Else
 Select Case MIndex
 Case Is >= 1
' Determine month value (for example, 13=1)
 MonthVal = ((MIndex - 1) Mod 12)
 MONTHNAMES = AllNames(MonthVal)
 Case Is <= 0 ' Vertical array
 MONTHNAMES = Application.Transpose(AllNames)
 End Select
 End If
End Function

Note that we use the VBA IsMissing function to test for a missing argument. In this situ-
ation, it isn’t possible to specify the default value for the missing argument in the argu-
ment list of the function because the default value is defined in the function. You can use
the IsMissing function only if the optional argument is a variant.

This enhanced function uses an optional argument that works as follows:

 ■ If the argument is missing, the function returns a horizontal array of
month names.

 ■ If the argument is less than or equal to 0, the function returns a vertical array of
month names. It uses Excel’s TRANSPOSE function to convert the array.

 ■ If the argument is greater than or equal to 1, the function returns the month name
that corresponds to the argument value.

note
This procedure uses the Mod operator to determine the month value. The Mod operator returns the remainder after
dividing the first operand by the second. Keep in mind that the AllNames array is zero-based and that indices range
from 0 to 11. In the statement that uses the Mod operator, 1 is subtracted from the function’s argument. Therefore, an
argument of 13 returns 0 (corresponding to Jan), and an argument of 24 returns 11 (corresponding to Dec).

Part I: Introduction to Excel VBA

164

You can use this function in a number of ways, as illustrated in Figure 5.6.

Range A1:L1 contains the following formula entered as an array. Start by selecting A1:L1,
enter the formula (without the braces), and then press Ctrl+Shift+Enter.

{=MONTHNAMES()}

Range A3:A14 contains integers from 1 to 12. Cell B3 contains the following (nonarray) for-
mula, which was copied to the 11 cells below it:

=MONTHNAMES(A3)

Range D3:D14 contains the following formula entered as an array:

{=MONTHNAMES(-1)}

Cell F3 contains this (nonarray) formula:

=MONTHNAMES(3)

note
To enter an array formula, you must press Ctrl+Shift+Enter (and don’t enter the curly braces).

note
The lower bound of an array, created using the Array function, is determined by the lower bound specified with the
Option Base statement at the top of the module. If there is no Option Base statement, the default lower
bound is 0.

FIGURE 5.6

Different ways of passing an array or a single value to a worksheet

Chapter 5: Creating Function Procedures

165

5

A function that returns an error value
In some cases, you might want your custom function to return a particular error
value. Consider the following REMOVEVOWELS function, which we presented earlier in
this chapter:

Function REMOVEVOWELS(Txt) As String
' Removes all vowels from the Txt argument
 Dim i As Long
 RemoveVowels = ""
 For i = 1 To Len(Txt)
 If Not UCase(Mid(Txt, i, 1)) Like "[AEIOU]" Then
 REMOVEVOWELS = REMOVEVOWELS & Mid(Txt, i, 1)
 End If
 Next i
End Function

When used in a worksheet formula, this function removes the vowels from its single-cell
argument. If the argument is a numeric value, this function returns the value as a string.
You may prefer that the function returns an error value (#N/A), rather than the numeric
value converted to a string.

You may be tempted simply to assign a string that looks like an Excel formula error value.
Here’s an example:

REMOVEVOWELS = "#N/A"

Although the string looks like an error value, other formulas that may reference it don’t
treat it as such. To return a real error value from a function, use the VBA CVErr function,
which converts an error number to a real error.

Fortunately, VBA has built-in constants for the errors that you want to return from a
custom function. These errors are Excel formula error values and not VBA run-time error
values. These constants are as follows:

 ■ xlErrDiv0 (for #DIV/0!)
 ■ xlErrNA (for #N/A)
 ■ xlErrName (for #NAME?)
 ■ xlErrNull (for #NULL!)
 ■ xlErrNum (for #NUM!)
 ■ xlErrRef (for #REF!)
 ■ xlErrValue (for #VALUE!)

note
A workbook that demonstrates the MONTHNAMES function is available on this book’s website. The file is named
month names.xslm.

Part I: Introduction to Excel VBA

166

To return a #N/A error from a custom function, you can use a statement like this:

REMOVEVOWELS = CVErr(xlErrNA)

The revised REMOVEVOWELS function follows. This function uses an If-Then construct to
take a different action if the argument isn’t text. It uses Excel’s ISTEXT function to deter-
mine whether the argument is text. If the argument is text, the function proceeds nor-
mally. If the cell doesn’t contain text (or is empty), the function returns the #N/A error.

Function REMOVEVOWELS (Txt) As Variant
' Removes all vowels from the Txt argument
' Returns #VALUE if Txt is not a string
 Dim i As Long
 RemoveVowels = ""
 If Application.WorksheetFunction.IsText(Txt) Then
 For i = 1 To Len(Txt)
 If Not UCase(Mid(Txt, i, 1)) Like "[AEIOU]" Then
 REMOVEVOWELS = REMOVEVOWELS & Mid(Txt, i, 1)
 End If
 Next i
 Else
 REMOVEVOWELS = CVErr(xlErrNA)
 End If
End Function

A function with an indefinite number of arguments
Some Excel worksheet functions take an indefinite number of arguments. A familiar exam-
ple is the SUM function, which has the following syntax:

SUM(number1,number2,...)

The first argument is required, but you can specify as many as 254 additional arguments.
Here’s an example of a SUM function with four range arguments:

=SUM(A1:A5,C1:C5,E1:E5,G1:G5)

You can even mix and match the argument types. For example, the following example uses
three arguments: The first is a range, the second is a value, and the third is an expression.

=SUM(A1:A5,12,24*3)

You can create Function procedures that have an indefinite number of arguments.
The trick is to use an array as the last (or only) argument, preceded by the keyword
ParamArray.

note
Note that we also changed the data type for the function’s return value. Because the function can now return some-
thing other than a string, we changed the data type to Variant.

Chapter 5: Creating Function Procedures

167

5

The following is a function that can have any number of single-value arguments. (It doesn’t
work with multicell range arguments.) It simply returns the sum of the arguments.

Function SIMPLESUM(ParamArray arglist() As Variant) As Double
 For Each arg In arglist
 SIMPLESUM = SIMPLESUM + arg
 Next arg
End Function

To modify this function so that it works with multicell range arguments, you need to add
another loop, which processes each cell in each of the arguments.

Function SIMPLESUM (ParamArray arglist() As Variant) As Double
 Dim cell As Range
 For Each arg In arglist
 For Each cell In arg
 SIMPLESUM = SIMPLESUM + cell
 Next cell
 Next arg
End Function

The SIMPLESUM function is similar to Excel’s SUM function, but it’s not nearly as flexible.
Try it by using various types of arguments, and you’ll see that it fails if any of the cells
contain a nonvalue, or even if you use a literal value for an argument.

Emulating Excel’s SUM Function
In this section, we present a custom function called MYSUM. Unlike the SIMPLE-
SUM function listed in the preceding section, the MYSUM function emulates Excel’s SUM
function (almost) perfectly.

Before you look at the code for MYSUM, take a minute to think about the Excel SUM
function. It is versatile: it can have as many as 255 arguments (even “missing” arguments),
and the arguments can be numerical values, cells, ranges, text representations of numbers,
logical values, and even embedded functions. For example, consider the following formula:

=SUM(B1,5,"6",,TRUE,SQRT(4),A1:A5,D:D,C2*C3)

This perfectly valid formula contains all the following types of arguments, listed here in
the order of their presentation:

 ■ A single-cell reference
 ■ A literal value
 ■ A string that looks like a value

note
ParamArray can apply only to the last argument in the procedure’s argument list. It’s always a Variant data
type and always an optional argument (although you don’t use the Optional keyword).

Part I: Introduction to Excel VBA

168

 ■ A missing argument
 ■ A logical TRUE value
 ■ An expression that uses another function
 ■ A simple range reference
 ■ A range reference that includes an entire column
 ■ An expression that calculates the product of two cells

The MYSUM function (see Listing 5.1) handles all of these argument types.

LISTING 5.1 MYSUM Function

Function MYSUM(ParamArray args() As Variant) As Variant
 ' Emulates Excel's SUM function
 ' Variable declarations
 Dim i As Variant
 Dim TempRange As Range, cell As Range
 Dim ECode As String
 Dim m, n
 MYSUM = 0
 ' Process each argument
 For i = 0 To UBound(args)
 ' Skip missing arguments
 If Not IsMissing(args(i)) Then
 ' What type of argument is it?
 Select Case TypeName(args(i))
 Case "Range"
 ' Create temp range to handle full row or column ranges
 Set TempRange = Intersect(args(i).Parent.
UsedRange, args(i))
 For Each cell In TempRange
 If IsError(cell) Then
 MYSUM = cell ' return the error
 Exit Function
 End If
 If cell = True Or cell = False Then
 MYSUM = MYSUM + 0
 Else
 If IsNumeric(cell) Or IsDate(cell) Then _
 MYSUM = MYSUM + cell
 End If
 Next cell
 Case "Variant()"
 n = args(i)

on the Web
A workbook containing the MYSUM function is available on this book’s website. The file is named mysum
function.xlsm.

Chapter 5: Creating Function Procedures

169

5

 For m = LBound(n) To UBound(n)
 MYSUM = MYSUM(MYSUM, n(m)) 'recursive call
 Next m
 Case "Null" 'ignore it
 Case "Error" 'return the error
 MYSUM = args(i)
 Exit Function
 Case "Boolean"
 ' Check for literal TRUE and compensate
 If args(i) = "True" Then MYSUM = MYSUM + 1
 Case "Date"
 MYSUM = MYSUM + args(i)
 Case Else
 MYSUM = MYSUM + args(i)
 End Select
 End If
 Next i
End Function

Figure 5.7 shows a workbook with various formulas that use SUM (column E) and MYSUM
(column G). As you can see, the functions return identical results.

MYSUM is a close emulation of the SUM function, but it’s not perfect. It cannot handle
operations on arrays. For example, this array formula returns the sum of the squared values
in range A1:A4:

{=SUM(A:A4^2)}

FIGURE 5.7

Comparing SUM with MYSUM

Part I: Introduction to Excel VBA

170

This formula returns a #VALUE! error:

{=MYSUM(A1:A4^2)}

If you’re interested in learning how the MYSUM function works, create a formula that uses
the function. Then set a breakpoint in the code and step through the statements line by
line. (See the section “Debugging Functions” later in this chapter.) Try this for several dif-
ferent argument types, and you’ll soon have a good feel for how the MYSUM function works.

As you study the code for MYSUM, keep the following points in mind:

 ■ Missing arguments (determined by the IsMissing function) are simply ignored.
 ■ The procedure uses the VBA TypeName function to determine the type of argu-

ment (Range, Error, and so on). Each argument type is handled differently.
 ■ For a range argument, the function loops through each cell in the range, deter-

mines the type of data in the cell, and (if appropriate) adds its value to a
running total.

 ■ The data type for the function is Variant because the function needs to return an
error if any of its arguments contain an error value.

 ■ If an argument contains an error (for example, #DIV/0!), the MYSUM function sim-
ply returns the error—just as Excel’s SUM function does.

 ■ Excel’s SUM function considers a text string to have a value of 0 unless it appears
as a literal argument (that is, as an actual value, not a variable). Therefore, MYSUM
adds the cell’s value only if it can be evaluated as a number. (The MYSUM function
uses the IsNumeric function to determine whether a string can be evaluated as
a number.)

 ■ For range arguments, the function uses the Intersect method to create a tempo-
rary range that consists of the intersection of the range and the sheet’s used range.
This technique handles cases in which a range argument consists of a complete row
or column, which would take forever to evaluate.

You may be curious about the relative speeds of SUM and MYSUM. The MYSUM function, of
course, is much slower, but just how much slower depends on the speed of your system and
the formulas themselves. However, the point of this example is not to create a new SUM
function. Rather, it demonstrates how to create custom worksheet functions that look and
work like those built into Excel.

Extended Date Functions
A common complaint among Excel users is the inability to work with dates prior to 1900.
For example, genealogists often use Excel to keep track of birth and death dates. If either
of those dates occurs in a year prior to 1900, calculating the number of years the person
lived isn’t possible.

Chapter 5: Creating Function Procedures

171

5

We created a series of functions that take advantage of the fact that VBA can work with a
much larger range of dates. The earliest date recognized by VBA is January 1, 0100.

The functions are as follows:

 ■ XDATE(y,m,d,fmt): Returns a date for a given year, month, and day. As an option,
you can provide a date-formatting string.

 ■ XDATEADD(xdate1,days,fmt): Adds a specified number of days to a date. As an
option, you can provide a date-formatting string.

 ■ XDATEDIF(xdate1,xdate2): Returns the number of days between two dates.
 ■ XDATEYEARDIF(xdate1,xdate2): Returns the number of full years between two

dates (useful for calculating ages).
 ■ XDATEYEAR(xdate1): Returns the year of a date.
 ■ XDATEMONTH(xdate1): Returns the month of a date.
 ■ XDATEDAY(xdate1): Returns the day of a date.
 ■ XDATEDOW(xdate1): Returns the day of the week of a date (as an integer

between 1 and 7).

Figure 5.8 shows a workbook that uses some of these functions.

Caution
Beware of calendar changes if you use dates prior to 1752. Differences between the historical American, British,
Gregorian, and Julian calendars can result in inaccurate computations.

FIGURE 5.8

The Extended Date functions used in formulas

Part I: Introduction to Excel VBA

172

Keep in mind that the date returned by these functions is a string, not a real date. Therefore,
you can’t perform mathematical operations on the returned value using Excel’s standard opera-
tors. You can, however, use the return value as an argument for other Extended Date functions.

The functions are surprisingly simple. For example, here’s the listing for the XDATE function:

Function XDATE(y, m, d, Optional fmt As String) As String
 If IsMissing(fmt) Then fmt = "Short Date"
 XDATE = Format(DateSerial(y, m, d), fmt)
End Function

The arguments for XDATE are as follows:

 ■ y: Required. A four-digit year (0100–9999).
 ■ m: Required. A month number (1–12).
 ■ d: Required. A day number (1–31).
 ■ fmt: Optional. A date format string.

If the fmt argument is omitted, the date is displayed using the system’s short date setting
(as specified in the Windows Control Panel).

If the m or d argument exceeds a valid number, the date rolls over into the next year or
month. For example, a month of 13 is interpreted as January of the next year.

Debugging Functions
When you’re using a formula in a worksheet to test a Function procedure, VBA run-time
errors don’t appear in the all-too-familiar, pop-up error box. If an error occurs, the formula
simply returns an error value (#VALUE!). The lack of a pop-up error message doesn’t pres-
ent a problem for debugging functions because you have several possible workarounds.

 ■ Place MsgBox functions at strategic locations to monitor the value of specific var-
iables. Message boxes in Function procedures do pop up when the procedure is
executed. But make sure that you have only one formula in the worksheet that uses
your function; otherwise, message boxes will appear for each formula that is evalu-
ated, which will quickly become annoying.

 ■ Test the procedure by calling it from a Sub procedure, not from a worksheet for-
mula. Run-time errors are displayed in the usual manner, and you can either fix the
problem (if you know it) or jump right into using Debugger.

 ■ Set a breakpoint in the function and then step through the function. You then
can access all standard VBA debugging tools. To set a breakpoint, move the cursor

on the Web
The VBA code for the Extended Data functions is available on this book’s website. The filename is extended
date function.xlsm. You can also download documentation for these functions in the extended date
functions help.pdf document.

Chapter 5: Creating Function Procedures

173

5

to the statement at which you want to pause execution and then choose Debug ➪
Toggle Breakpoint (or press F9). When the function is executing, press F8 to step
through the procedure line by line.

 ■ Use one or more temporary Debug.Print statements in your code to write values
to the VBE Immediate window. For example, if you want to monitor a value inside a
loop, use something like the following routine:

Function VOWELCOUNT(r) As Long
 Dim Count As Long
 Dim i As Long
 Dim Ch As String * 1
 Count = 0
 For i = 1 To Len(r)
 Ch = UCase(Mid(r, i, 1))
 If Ch Like "[AEIOU]" Then
 Count = Count + 1
 Debug.Print Ch, i
 End If
 Next i
 VOWELCOUNT = Count
End Function

In this case, the values of two variables, Ch and i, are printed to the Immediate window
whenever the Debug.Print statement is encountered. Figure 5.9 shows the result when
the function has an argument of Tucson, Arizona.

Dealing with the Insert Function Dialog Box
Excel’s Insert Function dialog box is a handy tool. When you’re creating a worksheet for-
mula, this tool lets you select a particular worksheet function from a list of functions.
These functions are grouped into various categories to make locating a particular function
easier. When you select a function and click OK, the Function Arguments dialog box acti-
vates to help insert the function’s arguments.

FIGURE 5.9

Use the Immediate window to display results while a function is running.

Part I: Introduction to Excel VBA

174

The Insert Function dialog box also displays your custom worksheet functions. By default,
custom functions are listed under the User Defined category. The Function Arguments dia-
log box prompts you for a custom function’s arguments.

The Insert Function dialog box enables you to search for a function by keyword. Unfortu-
nately, you can’t use this search feature to locate custom functions created in VBA.

Using the MacroOptions method
You can use the MacroOptions method of the Application object to make your
functions appear just like built-in functions. Specifically, this method enables you to do
the following:

 ■ Provide a description of the function.
 ■ Specify a function category.
 ■ Provide descriptions for the function arguments.

The following is an example of a procedure that uses the MacroOptions method to pro-
vide information about a function:

Sub DescribeFunction()
Dim FuncName As String
 Dim FuncDesc As String
 Dim FuncCat As Long
 Dim Arg1Desc As String, Arg2Desc As String

 FuncName = "DRAWONE"
 FuncDesc = "Displays the contents of a random cell from a range"
 FuncCat = 5
 Arg1Desc = "The range that contains the values"
 Arg2Desc = "(Optional) If False or missing, a new cell is
selected when "

note
Custom Function procedures defined with the Private keyword don’t appear in the Insert Function dialog box.
If you develop a function that’s intended to be used only in your other VBA procedures, you should declare it by using
the Private keyword. However, declaring the function as Private doesn’t prevent it from being used in a work-
sheet formula. It just prevents the display of the function in the Insert Function dialog box.

tip
Another useful advantage of using the MacroOptions method is that it allows Excel to autocorrect the capi-
talization of your functions. For instance, if you create a function called MyFunction and you enter the formula
=myfunction(a), Excel will automatically change the formula to =MyFunction(a). This behavior provides a
quick and easy way to tell whether you’ve misspelled the function name. (If the lowercase letters do not autoadjust,
the function name is misspelled.)

Chapter 5: Creating Function Procedures

175

5

 Arg2Desc = Arg2Desc & "recalculated. If True, a new cell is
selected "
 Arg2Desc = Arg2Desc & "when recalculated."

 Application.MacroOptions _
 Macro:=FuncName, _
 Description:=FuncDesc, _
 Category:=FuncCat, _
 ArgumentDescriptions:=Array(Arg1Desc, Arg2Desc)
End Sub

This procedure uses variables to store the information, and the variables are used as argu-
ments for the MacroOptions method. The function is assigned to function category 5
(Lookup & Reference). Note that descriptions for the two arguments are indicated by using
an array as the last argument for the MacroOptions method.

Figure 5.10 shows the Insert Function and Function Arguments dialog boxes after exe-
cuting this procedure.

note
The capability to provide argument descriptions was introduced in Excel 2010. If the workbook that contains the
function is opened in a version prior to Excel 2010, the arguments won’t display the descriptions.

FIGURE 5.10

The Insert Function and Function Arguments dialog boxes for a custom function

Part I: Introduction to Excel VBA

176

You need to execute the DescribeFunction procedure only one time. After doing so, the
information assigned to the function is stored in the workbook. You can also omit argu-
ments for the MacroOptions method. For example, if you don’t need the arguments to
have descriptions, just omit the ArgumentDescriptions argument in the code.

Specifying a function category
If you don’t use the MacroOptions method to specify a different category, your custom
worksheet functions appear in the User Defined category in the Insert Function dialog box.
You may prefer to assign your function to a different category. Assigning a function to a cat-
egory also causes it to appear in the drop-down controls in the Formulas ➪ Function Library
group on the Ribbon.

Table 5.1 lists the category numbers that you can use for the Category argument for the
MacroOptions method. A few of these categories (10–13) aren’t normally displayed in the
Insert Function dialog box. If you assign your function to one of these categories, the cat-
egory will appear in the dialog box.

For information on creating a custom help topic accessible from the Insert Function dialog box, refer to
Chapter 19, “Providing Help for Your Applications.”

TABLE 5.1 Function Categories

Category Number Category Name

0 All (no specific category)

1 Financial

2 Date & Time

3 Math & Trig

4 Statistical

5 Lookup & Reference

6 Database

7 Text

8 Logical

9 Information

10 Commands

11 Customizing

12 Macro Control

13 DDE/External

14 User Defined

Chapter 5: Creating Function Procedures

177

5

Adding a function description manually
As an alternative to using the MacroOptions method to provide a function description,
you can use the Macro dialog box.

Follow these steps to provide a description for a custom function:

1. Create your function in VBE.

2. Activate Excel, making sure that the workbook that contains the function is the
active workbook.

3. Choose Developer ➪ Code ➪ Macros (or press Alt+F8). The Macro dialog box lists
available procedures, but your function won’t be in the list.

4. In the Macro Name box, type the name of your function.

5. Click the Options button to display the Macro Options dialog box.

6. In the Description box, enter the function description. The Shortcut Key field is
irrelevant for functions.

7. Click OK and then click Cancel.

tip
You can also create custom function categories. Instead of using a number for the Category argument for
MacroOptions, use a text string. The statement that follows creates a new function category named VBA
Functions and assigns the COMMISSION function to this category:

Application.MacroOptions Macro:="COMMISSION",_
Category:="VBA Functions"

note
If you don’t provide a description for your custom function, the Insert Function dialog box displays No help
available.

Category Number Category Name

15 Engineering

16 Cube

17 Compatibility*

18 Web**

* The Compatibility category was introduced in Excel 2010.

** The Web category was introduced in Excel 2013.

Part I: Introduction to Excel VBA

178

After you perform the preceding steps, the Insert Function dialog box displays the descrip-
tion that you entered in step 6 when the function is selected.

Using Add-Ins to Store Custom Functions
You may prefer to store frequently used custom functions in an add-in file. A primary
advantage is that you can use those functions in any workbook when the add-in is
installed.

In addition, you can use the functions in formulas without a filename qualifier. Assume
that you have a custom function named ZAPSPACES that is stored in Myfuncs.xlsm. To
use this function in a formula in a workbook other than Myfuncs.xlsm, you need to enter
the following formula:

=Myfuncs.xlsm!ZAPSPACES(A1)

If you create an add-in from Myfuncs.xlsm and the add-in is loaded, you can omit the file
reference and enter a formula such as the following:

=ZAPSPACES(A1)

Using the Windows API
VBA can borrow methods from other files that have nothing to do with Excel or VBA—for
example, the Dynamic Link Library (DLL) files that Windows and other software uses. As a
result, you can do things with VBA that would otherwise be outside the language’s scope.

The Windows API is a set of functions available to Windows programmers. When you call
a Windows function from VBA, you’re accessing the Windows API. Many of the Windows
resources used by Windows programmers are available in DLLs, which store programs and
functions and are linked at run-time rather than at compile time.

We discuss add-ins in Chapter 16.

Caution
A potential problem with using add-ins to store custom functions is that your workbook is dependent on the add-in
file. If you need to share your workbook with a colleague, you also need to share a copy of the add-in that contains
the functions.

Chapter 5: Creating Function Procedures

179

5

Windows API examples
Before you can use a Windows API function, you must declare the function at the top of
your code module. If the code module is for UserForm, sheet, or ThisWorkbook, you must
declare the API function as Private.

An API function must be declared precisely. The declaration statement tells VBA the
following:

 ■ Which API function you’re using
 ■ In which library the API function is located
 ■ The API function’s arguments

After you declare an API function, you can use it in your VBA code.

Determining the Windows directory
This section contains an example of an API function that displays the name of the Win-
dows directory—something that’s not possible using standard VBA statements. This code
works with Excel 2010 and later.

64-bit Excel and API functions
Using Windows API functions in your code became a bit more challenging when Excel became avail-
able in both 32-bit and 64-bit versions. If you want your code to be compatible with the 32-bit and the
64-bit versions of Excel, you need to declare your API functions twice, using compiler directives to
ensure that the correct declaration is used.

For example, the following declaration works with 32-bit Excel versions, but it causes a compile error
with 64-bit Excel:

Declare Function GetWindowsDirectoryA Lib "kernel32" _
(ByVal lpBuffer As String, ByVal nSize As Long) As Long

In many cases, making the declaration compatible with 64-bit Excel is as simple as adding PtrSafe
after the Declare keyword. The following declaration is compatible with both the 32-bit and 64-bit
versions of Excel:

Declare PtrSafe Function GetWindowsDirectoryA Lib "kernel32" _
(ByVal lpBuffer As String, ByVal nSize As Long) As Long

However, the code will fail in Excel 2007 and earlier versions because the PtrSafe keyword is not
recognized by those versions.

In Chapter 21, “Understanding Compatibility Issues,” we describe how to make API function declara-
tions compatible with all versions of 32-bit Excel and 64-bit Excel.

Part I: Introduction to Excel VBA

180

Here’s the API function declaration:

Declare PtrSafe Function GetWindowsDirectoryA Lib "kernel32" _
(ByVal lpBuffer As String, ByVal nSize As Long) As Long

This function, which has two arguments, returns the name of the directory in which Win-
dows is installed. After calling the function, the Windows directory is contained in lp
Buffer, and the length of the directory string is contained in nSize.

After inserting the Declare statement at the top of your module, you can access the
function by calling the GetWindowsDirectoryA function. The following is an example of
calling the function and displaying the result in a message box:

Sub ShowWindowsDir()
 Dim WinPath As String * 255
 Dim WinDir As String
 WinPath = Space(255)
 WinDir = Left(WinPath, GetWindowsDirectoryA (WinPath, Len(WinPath)))
 MsgBox WinDir, vbInformation, "Windows Directory"
End Sub

Executing the ShowWindowsDir procedure displays a message box with the Windows
directory.

Often, you’ll want to create a wrapper for API functions. In other words, you create your
own function that uses the API function. This greatly simplifies using the API function.
Here’s an example of a wrapper VBA function:

Function WINDOWSDIR() As String
 ' Returns the Windows directory
 Dim WinPath As String * 255
 WinPath = Space(255)
 WINDOWSDIR=Left(WinPath,GetWindowsDirectoryA
(WinPath,Len(WinPath)))
End Function

After declaring this function, you can call it from another procedure.

MsgBox WINDOWSDIR()

You can even use the function in a worksheet formula.

=WINDOWSDIR()

The reason for using API calls is to perform actions that would otherwise be impossible (or
at least very difficult). If your application needs to find the path of the Windows directory,
you could search all day and not find a function in Excel or VBA to do the trick. But know-
ing how to access the Windows API may solve your problem.

on the Web
This example is available on this book’s website. The filename is windows directory.xlsm.

Chapter 5: Creating Function Procedures

181

5

Detecting the Shift key
Here’s another example of using an API function. Suppose that you’ve written a VBA macro
that will be executed by clicking a button on a worksheet. Furthermore, suppose that you
want the macro to perform differently if the user presses the Shift key when the button
is clicked. VBA doesn’t provide a way to detect whether the Shift key is pressed. But you
can use the GetKeyState API function to find out. The GetKeyState function tells you
whether a particular key is pressed. It takes a single argument, nVirtKey, which repre-
sents the code for the key in which you’re interested.

The following code demonstrates how to detect whether the Shift key is pressed when the
Button_Click event-handler procedure is executed. Note that we define a constant for
the Shift key (using a hexadecimal value) and then use this constant as the argument for
GetKeyState. If GetKeyState returns a value less than zero, it means that the Shift key
was pressed; otherwise, the Shift key wasn’t pressed. This code isn’t compatible with Excel
2007 and earlier versions.

Declare PtrSafe Function GetKeyState Lib "user32" _
 (ByVal nVirtKey As Long) As Integer
Sub Button_Click()
 Const VK_SHIFT As Integer = &H10
 If GetKeyState(VK_SHIFT) < 0 Then
 MsgBox "Shift is pressed"
 Else
 MsgBox "Shift is not pressed"
 End If
End Sub

Learning more about API functions
Working with the Windows API functions can be tricky. Many programming reference books
list the declarations for common API calls and often provide examples. Usually, you can
simply copy the declarations and use the functions without understanding the details.
Many Excel programmers take a cookbook approach to API functions. The Internet has
dozens of reliable examples that you can copy and paste. Or search the Web for a file named
Win32API_PtrSafe.txt. This file, from Microsoft, contains many examples of declara-
tion statements.

Caution
When you work with API calls, system crashes during testing aren’t uncommon, so save your work often.

on the Web
A workbook named key press.xlsm, available on this book’s website, demonstrates how to detect the Ctrl,
Shift, and Alt keys (as well as any combinations). The API function declaration in this workbook is compatible with
Excel 2007 and later. Figure 5.11 shows the message from this procedure.

Part I: Introduction to Excel VBA

182

Chapter 7 has several additional examples of using Windows API functions.

FIGURE 5.11

Using Windows API functions to determine which keys were pressed

183

CHAP T ER

6
Understanding Excel’s Events

IN THIS CHAPTER
Recognizing the types of events that Excel can monitor

Figuring out what you need to know to work with events

Exploring examples of Workbook events and Worksheet events

Using Application events to monitor all open workbooks

Seeing examples of processing time-based events and keystroke events

What You Should Know About Events
In many of the example macros in this book, there will be code implemented as event procedures,
which are procedures that automatically trigger upon the occurrence of an event. An event is
nothing more than an action that takes place during a session in Excel.

Everything that happens in Excel happens to an object through an event. A few examples of events
are opening a workbook, adding a worksheet, changing a value in a cell, saving a workbook, double-
clicking a cell, and the list goes on. The nifty thing is that you can tell Excel to run a certain
macro or piece of code when a particular event occurs.

Excel is programmed to monitor many different events. These events can be classified as follows:

Workbook events Events that occur for a particular workbook. Examples of such events
include Open (the workbook is opened or created), BeforeSave (the workbook is about to
be saved), and NewSheet (a new sheet is added).

Worksheet events Events that occur for a particular worksheet. Examples include Change (a
cell on the sheet is changed), SelectionChange (the user moves the cell indicator), and
Calculate (the worksheet is recalculated).

Chart events Events that occur for a particular chart. These events include Select (an
object in the chart is selected) and SeriesChange (a value of a data point in a series
is changed).

Excel® 2019 Power Programming with VBA, First Edition. Michael Alexander and Dick Kusleika.
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.

Part I: Introduction to Excel VBA

184

Application events Events that occur for the application (Excel). Examples include
NewWorkbook (a new workbook is created), WorkbookBeforeClose (any work-
book is about to be closed), and SheetChange (a cell in any open workbook is
altered). To monitor Application-level events, you need to use a class module.

UserForm events Events that occur for a particular UserForm or an object contained
on the UserForm. For example, a UserForm has an Initialize event (occurs before
the UserForm is displayed), and a CommandButton on a UserForm has a Click
event (occurs when the button is clicked).

Events not associated with objects The final category consists of two useful
 Application-level events that we call On events: OnTime and OnKey. These
work in a different manner than other events.

In the following sections, you’ll explore a few examples that demonstrate some of
these events.

Understanding event sequences
Some actions trigger multiple events. For example, when you insert a new worksheet into a
workbook, three Application-level events are triggered:

WorkbookNewSheet: Occurs when a new worksheet is added

SheetDeactivate: Occurs when the active worksheet is deactivated

SheetActivate: Occurs when the newly-added worksheet is activated

At this point, just keep in mind that events fire in a particular sequence, and knowing that
sequence may be critical when writing event-handler procedures. Later in this chapter, we
describe how to determine the order of the events that occur for a particular action (see
“Monitoring Application-level events”).

Where to put event-handler procedures
VBA newcomers often wonder why their event-handler procedures aren’t being executed
when the corresponding event occurs. The answer is almost always because these proce-
dures are located in the wrong place.

In the Visual Basic Editor (VBE) window, each project (one project per workbook) is listed in
the Project window. The project components are arranged in a collapsible list, as shown in
Figure 6.1.

Note
Event sequencing is a bit more complicated than you might think. The preceding events are Application-level
events. When adding a new worksheet, additional events occur at the workbook level and at the worksheet level.

Chapter 6: Understanding Excel’s Events

185

6

Each of the following components has its own code module:

Sheet objects For example, Sheet1, Sheet2, and so on. Use this module for event-
handler code related to the particular worksheet.

Chart objects Namely, chart sheets. Use this module for event-handler code related to
the chart.

ThisWorkbook object Use this module for event-handler code related to
the workbook.

General VBA modules You never put event-handler procedures in a general (that is,
nonobject) module.

UserForm objects Use this module for event-handler code related to the UserForm or
controls on the UserForm.

Class modules Use class modules for special-purpose event handlers, including appli-
cation-level events and events for embedded charts.

Even though the event-handler procedure must be located in the correct module, the proce-
dure can call other standard procedures stored in other modules. For example, the following
event-handler procedure, located in the module for the ThisWorkbook object, calls a pro-
cedure named WorkbookSetup, which you can store in a regular VBA module:

Private Sub Workbook_Open()
 Call WorkbookSetup
End Sub

FIGURE 6.1

The components for each VBA project are listed in the Project window.

Part I: Introduction to Excel VBA

186

Disabling events
By default, all events are enabled. To disable all events, execute the following VBA
instruction:

Application.EnableEvents = False

To enable events, use this instruction:

Application.EnableEvents = True

Why would you need to disable events? One common reason is to prevent an infinite loop of
cascading events.

For example, suppose that cell A1 of your worksheet must always contain a value of less
than or equal to 12. You can write some code that is executed whenever data is entered
in a cell to validate the cell’s contents. In this case, you’re monitoring the Change event
for a Worksheet with a procedure named Worksheet_Change. Your procedure checks the
user’s entry, and if the entry isn’t less than or equal to 12, it displays a message and then
clears that entry. The problem is that clearing the entry with your VBA code generates a
new Change event, so your event-handler procedure is executed again. This is not what
you want to happen, so you need to disable events before you clear the cell and then enable
events again so that you can monitor the user’s next entry.

Another way to prevent an infinite loop of cascading events is to declare a Static Boolean
variable at the beginning of your event-handler procedure, such as the following:

Static AbortProc As Boolean
Whenever the procedure needs to make its own changes, set the AbortProc variable to
True (otherwise, make sure that it’s set to False). Insert the following code at the top of
the procedure:

If AbortProc Then
 AbortProc = False
 Exit Sub
End if

The event procedure is reentered, but the True state of AbortProc causes the procedure
to end. In addition, AbortProc is reset to False.

Note
Disabling events does not apply to events triggered by UserForm controls, for example, the Click event generated
by clicking a CommandButton control on a UserForm.

For a practical example of validating data, see “Monitoring a range to validate data entry,” later in
this chapter.

Chapter 6: Understanding Excel’s Events

187

6
Entering event-handler code
Every event-handler procedure has a predetermined name, and you can’t change those
names. The following are some examples of event-handler procedure names:

 ■ Worksheet_SelectionChange
 ■ Workbook_Open
 ■ Chart_Activate
 ■ Class_Initialize

You can declare the procedure by typing it manually, but a much better approach is to let
VBE declare it for you.

Figure 6.2 shows the code module for the ThisWorkbook object. To insert a procedure dec-
laration, select Workbook from the Object drop-down list on the left. Then select the event
from the Procedure drop-down list on the right. When you do so, you get a procedure shell
that contains the procedure declaration line and an End Sub statement.

For example, if you select Workbook from the objects list and Open from the procedures list,
VBE inserts the following (empty) procedure:

Private Sub Workbook_Open()

End Sub

Your VBA code, of course, goes between these two statements.

CautioN
Disabling events in Excel applies to all workbooks. For example, if you disable events in your procedure and then
open another workbook that has, say, a Workbook _ Open procedure, that procedure will not execute.

FIGURE 6.2

The best way to create an event procedure is to let the VBE do it for you.

Part I: Introduction to Excel VBA

188

Event-handler procedures that use arguments
Some event-handler procedures use an argument list. For example, you may need to create
an event-handler procedure to monitor the SheetActivate event for a workbook. If you
use the technique described in the preceding section, VBE creates the following procedure
in the code module for the ThisWorkbook object:

Private Sub Workbook_SheetActivate(ByVal Sh As Object)

End Sub

This procedure uses one argument (Sh), which represents the sheet that was activated.
In this case, Sh is declared as an Object data type rather than a Worksheet data type
because the activated sheet can also be a chart sheet.

Your code can use the data passed as an argument. The following procedure is executed
whenever a sheet is activated. It displays the type and name of the activated sheet by
using VBA’s TypeName function and accessing the Name property of the object passed in
the argument.

Private Sub Workbook_SheetActivate(ByVal Sh As Object)
 MsgBox TypeName(Sh) & vbCrLf & Sh.Name
End Sub

Figure 6.3 shows the message that appears when Sheet3 is activated.

Note
Note that as soon as you select an item from the Object drop-down (for example, Workbook or Worksheet), VBE
inserts a procedure declaration automatically. Usually, the procedure definition is not the one you want. Simply
choose the event you want from the Procedure drop-down list on the right and then delete the one that was gener-
ated automatically.

FIGURE 6.3

This message box was triggered by a SheetActivate event.

Chapter 6: Understanding Excel’s Events

189

6

Several event-handler procedures use a Boolean argument named Cancel. For example,
the declaration for a workbook’s BeforePrint event is as follows:

Private Sub Workbook_BeforePrint(Cancel As Boolean)

The value of Cancel passed to the procedure is False. However, your code can set
Cancel to True, which will cancel the printing. The following example demonstrates this:

Private Sub Workbook_BeforePrint(Cancel As Boolean)
 Dim Msg As String, Ans As Integer
 Msg = "Have you loaded the 5164 label stock?"
 Ans = MsgBox(Msg, vbYesNo, "About to print...")
 If Ans = vbNo Then Cancel = True
End Sub

The Workbook_BeforePrint procedure is executed before the workbook is printed. This
routine displays the message box shown in Figure 6.4. If the user clicks the No button,
Cancel is set to True, and nothing is printed.

Unfortunately, Excel doesn’t provide a sheet-level BeforePrint event. Therefore, your
code can’t determine which sheet is about to be printed. Often, you can assume that the
ActiveSheet is the sheet that will be printed. However, there is no way to detect whether
the user requests that the entire workbook be printed.

Getting Acquainted with Workbook-Level Events
Workbook-level events occur in a particular workbook. Table 6.1 lists the commonly used
workbook events, along with a brief description of each. Consult the Help system for a com-
plete list of Workbook-level events. Workbook event-handler procedures are stored in the
code module for the ThisWorkbook object.

tip
The BeforePrint event also occurs when the user previews a worksheet.

FIGURE 6.4

Clicking No cancels the print operation by changing the Cancel argument in the event-
handler procedure.

Part I: Introduction to Excel VBA

190

If you need to monitor events for any workbook, you need to work with Application-level events (see
“Monitoring with Application Events,” later in this chapter). The remainder of this section presents exam-
ples of using Workbook-level events. All the example procedures that follow must be located in the code
module for the ThisWorkbook object. If you put them into any other type of code module, they won’t
work.

TABLE 6.1 Commonly Used Workbook Events

Event Action That Triggers the Event

Activate The workbook is activated.

AddinInstall The workbook is installed as an add-in.

AddinUninstall The workbook is uninstalled as an add-in.

AfterSave The workbook has been saved.

BeforeClose The workbook is about to be closed.

BeforePrint The workbook (or anything in it) is about to be printed or
previewed.

BeforeSave The workbook is about to be saved.

Deactivate The workbook is deactivated.

NewSheet The new sheet is created in a workbook.

Open The workbook is opened.

SheetActivate Any sheet is activated within the workbook.

SheetBeforeDoubleClick Any worksheet in the workbook is double-clicked. This event
occurs before the default double-click action.

SheetBefore RightClick Any worksheet in the workbook is right-clicked. This event
occurs before the default right-click action.

SheetCalculate Any worksheet in the workbook is calculated (or recalculated).

SheetChange Any worksheet in the workbook is changed by the user or by an
external link.

SheetDeactivate Any sheet in the workbook is deactivated.

SheetFollowHyperlink A hyperlink on a sheet in the workbook is clicked.

SheetPivotTableUpdate A pivot table in the workbook is changed or refreshed.

SheetSelectionChange The selection on any worksheet in the workbook is changed.

WindowActivate Any workbook window is activated.

WindowDeactivate Any workbook window is deactivated.

WindowResize Any workbook window is resized.

Chapter 6: Understanding Excel’s Events

191

6

The Open event
One of the most common monitored events is the Open event for a workbook. This event
is triggered when the workbook (or add-in) is opened and executes the procedure named
Workbook_Open. A Workbook_Open procedure is often used for tasks such as these:

 ■ Displaying welcome messages.
 ■ Opening other workbooks.
 ■ Setting up shortcut menus.
 ■ Activating a particular sheet or cell.
 ■ Ensuring that certain conditions are met. For example, a workbook may require

that a particular add-in be installed.
 ■ Setting up certain automatic features. For example, you can define key combina-

tions (see the section “The OnKey event” later in this chapter).
 ■ Setting a worksheet’s ScrollArea property (which isn’t stored with the

workbook).
 ■ Setting UserInterfaceOnly protection for worksheets so that your code can

operate on protected sheets. This setting is an argument for the Protect method
and isn’t stored with the workbook.

The following is an example of a Workbook_Open procedure. It uses the VBA Weekday
function to determine the day of the week. If it’s Friday, a message box appears, reminding
the user to submit a weekly report. If it’s not Friday, nothing happens.

Private Sub Workbook_Open()
If Weekday(Now) = vbFriday Then
 Msg = "Today is Friday. Make sure that you "
 Msg = Msg & "submit the TPS Report."
 MsgBox Msg, vbInformation
End If
End Sub

The Activate event
The following procedure is executed whenever the workbook is activated. This procedure
simply maximizes the active window. If the workbook window is already maximized, the
procedure has no effect.

Private Sub Workbook_Activate()
 ActiveWindow.WindowState = xlMaximized
End Sub

Note
Creating event-handler procedures doesn’t guarantee that they will be executed. If the user holds down the Shift key
when opening a workbook, the workbook’s Workbook_Open procedure won’t execute. And, of course, the proce-
dure won’t execute if the workbook is opened with macros disabled.

Part I: Introduction to Excel VBA

192

The SheetActivate event
The following procedure is executed whenever the user activates any sheet in the work-
book. If the sheet is a worksheet, the code selects cell A1. If the sheet isn’t a worksheet,
nothing happens. This procedure uses the VBA function to ensure that the activated sheet
is a worksheet (as opposed to a chart sheet).

Private Sub Workbook_SheetActivate(ByVal Sh As Object)
 If TypeName(Sh) = "Worksheet" Then Range("A1").Select
End Sub

The following procedure demonstrates an alternative method that doesn’t require checking
the sheet type. In this procedure, the error is just ignored.

Private Sub Workbook_SheetActivate(ByVal Sh As Object)
 On Error Resume Next
 Range("A1").Select
End Sub

The NewSheet event
The following procedure is executed whenever a new sheet is added to the workbook. The
sheet is passed to the procedure as an argument. Because a new sheet can be a worksheet or
a chart sheet, this procedure determines the sheet type. If it’s a worksheet, the code adjusts
the width of all columns and inserts a date and time stamp in cell A1 on the new sheet.

Private Sub Workbook_NewSheet(ByVal Sh As Object)
 If TypeName(Sh) = "Worksheet" Then
 Sh.Cells.ColumnWidth = 35
 Sh.Range("A1") = "Sheet added " & Now()
 End If
End Sub

The BeforeSave event
The BeforeSave event occurs after the Save command is given but before the work-
book is saved.

As you know, choosing the File ➪ Save command sometimes brings up the Save As dialog
box. This dialog box appears if the workbook has never been saved or if it was opened in
read-only mode.

When the Workbook_BeforeSave procedure is executed, it receives the argument
(SaveAsUI) that indicates whether the Save As dialog box will be displayed. The follow-
ing example demonstrates how to use the SaveAsUI argument:

Private Sub Workbook_BeforeSave _
(ByVal SaveAsUI As Boolean, Cancel As Boolean)
 If SaveAsUI Then
 MsgBox "Make sure you save this file on drive J."
 End If
End Sub

Chapter 6: Understanding Excel’s Events

193

6

When the user attempts to save the workbook, the Workbook_BeforeSave procedure is
executed. If the save operation will display Excel’s Save As dialog box, the SaveAsUI vari-
able is True. The Workbook_BeforeSave procedure checks this variable and displays a
message only if the Save As dialog box will be displayed. If the procedure sets the Cancel
argument to True, the file won’t be saved (or the Save As dialog box won’t be shown).

The Deactivate event
The following example demonstrates the Deactivate event. This procedure is executed
whenever the workbook is deactivated and essentially never lets the user deactivate the
workbook. One way to trigger the Deactivate event is to activate a different workbook
window. When the Deactivate event occurs, the code reactivates the workbook and dis-
plays a message.

Private Sub Workbook_Deactivate()
 Me.Activate
 MsgBox "Sorry, you may not leave this workbook"
End Sub

This example also illustrates the importance of understanding event sequences. If you try
this procedure, you’ll see that it works well if the user attempts to activate another work-
book. However, it’s important to understand that the workbook Deactivate event is also
triggered by the following actions:

 ■ Closing the workbook
 ■ Opening a new workbook
 ■ Minimizing the workbook

In other words, this procedure may not perform as it was originally intended. When pro-
gramming event procedures, you need to make sure that you understand all of the actions
that can trigger the events.

The BeforePrint event
The BeforePrint event occurs when the user requests a print or a print preview but
before the printing or previewing occurs. The event uses a Cancel argument, so your code
can cancel the printing or previewing by setting the Cancel variable to True. Unfor-
tunately, you can’t determine whether the BeforePrint event was triggered by a print
request or by a preview request.

Updating a header or footer
Excel’s page header and footer options are flexible, but these options don’t include a
common request: the capability to print the contents of a specific cell in the header or
footer. The Workbook_BeforePrint event provides a way to display the current contents
of a cell in the header or footer when the workbook is printed. The following code updates
each sheet’s left footer whenever the workbook is printed or previewed. Specifically, it
inserts the contents of cell A1 on Sheet1.

Part I: Introduction to Excel VBA

194

Private Sub Workbook_BeforePrint(Cancel As Boolean)
 Dim sht As Object
 For Each sht In ThisWorkbook.Sheets
 sht.PageSetup.LeftFooter = Worksheets("Sheet1").Range("A1")
 Next sht
End Sub

This procedure loops through each sheet in the workbook and sets the LeftFooter prop-
erty of the PageSetup object to the value in cell A1 on Sheet1.

Hiding columns before printing
The example that follows uses a Workbook_BeforePrint procedure to hide columns B:D
in Sheet1 before printing or previewing:

Private Sub Workbook_BeforePrint(Cancel As Boolean)
 'Hide columns B:D on Sheet1 before printing
 Worksheets("Sheet1").Range("B:D").EntireColumn.Hidden = True
End Sub

Ideally, you would want to unhide the columns after printing has occurred. It would be
nice if Excel provided an AfterPrint event, but that event doesn’t exist. However, there
is a way to unhide the columns automatically. The modified procedure that follows sched-
ules an OnTime event, which calls a procedure named UnhideColumns five seconds after
printing or previewing:

Private Sub Workbook_BeforePrint(Cancel As Boolean)
 'Hide columns B:D on Sheet1 before printing
 Worksheets("Sheet1").Range("B:D").EntireColumn.Hidden = True
 Application.OnTime Now()+ TimeValue("0:00:05"), "UnhideColumns"
End Sub

The UnhideColumns procedure goes in a standard VBA module.

Sub UnhideColumns()
 Worksheets("Sheet1").Range("B:D").EntireColumn.Hidden = False
End Sub

oN the Web
This example, named hide columns before printing.xlsm, is available on the book’s website.

For more information about OnTime events, see the section “The OnTime event” later in this chapter.

Chapter 6: Understanding Excel’s Events

195

6

The BeforeClose event
The BeforeClose event occurs after the Close command is given but before a workbook is
closed. This event is often used with a Workbook_Open event handler. For example, you
might use the Workbook_Open procedure to add shortcut menu items for your workbook
and then use the Workbook_BeforeClose procedure to delete the shortcut menu items
when the workbook is closed. That way, the custom menu is available only when the work-
book is open.

Unfortunately, the Workbook_BeforeClose event isn’t implemented very well. For
example, if you attempt to close a workbook that hasn’t been saved, Excel displays a prompt
asking whether you want to save the workbook before closing, as shown in Figure 6.5.
The problem is that the Workbook_BeforeClose event has already occurred by the
time the user sees this message. If the user cancels, your event-handler procedure has
already executed.

Consider this scenario: you need to display custom shortcut menus when a particular work-
book is open. Therefore, your workbook uses a Workbook_Open procedure to create the
menu items when the workbook is opened and a Workbook_BeforeClose procedure to
remove the menu items when the workbook is closed. These two event-handler procedures
follow. Both of these call other procedures, which aren’t shown here.

Private Sub Workbook_Open()
 Call CreateShortcutMenuItems
End Sub
Private Sub Workbook_BeforeClose(Cancel As Boolean)
 Call DeleteShortcutMenuItems
End Sub

As we noted earlier, the Excel “Do you want to save . . .” prompt is displayed after the
Workbook_BeforeClose event handler runs. So, if the user clicks Cancel, the workbook
remains open, but the custom menu items have already been deleted.

FIGURE 6.5

When this message appears, Workbook_BeforeClose has already done its thing.

Part I: Introduction to Excel VBA

196

One solution to this problem is to bypass Excel’s prompt and write your own code in the
Workbook_BeforeClose procedure to ask the user to save the workbook. The following
code demonstrates this solution:

Private Sub Workbook_BeforeClose(Cancel As Boolean)
 Dim Msg As String
 If Me.Saved = False Then
 Msg = "Do you want to save the changes you made to "
 Msg = Msg & Me.Name & "?"
 Ans = MsgBox(Msg, vbQuestion + vbYesNoCancel)
 Select Case Ans
 Case vbYes
 Me.Save
 Case vbCancel
 Cancel = True
 Exit Sub
 End Select
 End If
 Call DeleteShortcutMenuItems
 Me.Saved = True
End Sub

This procedure checks the Saved property of the Workbook object to determine whether
the workbook has been saved. If so, no problem—the DeleteShortcutMenuItems pro-
cedure is executed, and the workbook is closed. But if the workbook hasn’t been saved, the
procedure displays a message box similar to the one that Excel would normally show (see
Figure 6.6). The following lists details the effect of clicking each of the three buttons:

Yes: The workbook is saved, the shortcut menu items are deleted, and the workbook
is closed.

No: The code sets the Saved property of the Workbook object to True (but doesn’t
actually save the file), deletes the menu items, and closes the file.

Cancel: The BeforeClose event is canceled, and the procedure ends without deleting
the shortcut menu items.

FIGURE 6.6

A message displayed by the Workbook_BeforeClose event procedure

Chapter 6: Understanding Excel’s Events

197

6

Examining Worksheet Events
The events for a Worksheet object are some of the most useful, because most of what hap-
pens in Excel occurs on a worksheet. Monitoring these events can make your applications
perform feats that would otherwise be impossible.

Table 6.2 lists the available worksheet events, with a brief description of each.

oN the Web
A workbook with this example is available on the book’s website in the workbook_beforeclose work
around.xlsm file.

TABLE 6.2 Worksheet Events

Event Action That Triggers the Event

Activate The worksheet is activated.

BeforeDelete The worksheet is about to be deleted.

BeforeDoubleClick The worksheet is double-clicked.

BeforeRightClick The worksheet is right-clicked.

Calculate The worksheet is calculated (or recalculated).

Change Cells on the worksheet are changed by the user or by an
external link.

Deactivate The worksheet is deactivated.

FollowHyperlink A hyperlink on the sheet is clicked.

LensGalleryRender A callout gallery has been activated and has finished rendering
all icons.

PivotTableAfter
ValueChange

A calculated field in a pivot table on the sheet has recalculated.

PivotTableBefore
AllocateChanges

The user has chosen to apply changes to an OLAP pivot table’s
data source.

PivotTableBefore
CommitChanges

The user has chosen to apply changes to an OLAP pivot table’s
data source.

PivotTableBefore
DiscardChanges

The user has chosen to roll back the changes made to an OLAP
pivot table’s data source.

PivotTableChangeSync A pivot table on the sheet has changed or has been refreshed.

PivotTableUpdate A pivot table on the sheet is updated or refreshed.

SelectionChange The selection on the worksheet is changed or refreshed.

TableUpdate A query table on the sheet has completed updating data from the
internal data model.

Part I: Introduction to Excel VBA

198

The Change event
The Change event occurs when any cell in a worksheet is changed by the user or by a VBA
procedure. The Change event does not occur when a calculation generates a different value
for a formula or when an object is added to the sheet.

When the Worksheet_Change procedure is executed, it receives a Range object as its
Target argument. This Range object represents the changed cell or range that triggered
the event. The following procedure is executed whenever the worksheet is changed. It dis-
plays a message box that shows the address of the Target range.

Private Sub Worksheet_Change(ByVal Target As Range)
 MsgBox "Range " & Target.Address & " was changed."
End Sub

To get a better feel for the types of actions that generate a Change event for a worksheet,
enter the preceding procedure in the code module for a Worksheet object. After entering
this procedure, activate Excel and make some changes to the worksheet using various tech-
niques. Every time the Change event occurs, you’ll see a message box that displays the
address of the range that was changed.

When you run this procedure, you’ll discover some interesting quirks. Some actions that
should trigger the event don’t, and other actions that shouldn’t trigger the event do!

 ■ Changing the formatting of a cell doesn’t trigger the Change event (as expected).
But copying and pasting formatting does trigger the Change event. Choosing the
Home ➪ Editing ➪ Clear ➪ Clear Formats command also triggers the event.

 ■ Merging cells doesn’t trigger the Change event, even if the contents of some of the
merged cells are deleted in the process.

 ■ Adding, editing, or deleting a cell comment doesn’t trigger the Change event.
 ■ Pressing Delete generates an event, even if the cell is empty to start with.
 ■ Cells that are changed by using Excel commands may or may not trigger the
Change event. For example, sorting a range or using Goal Seek to change a cell
does not trigger the event. But using the spellchecker does.

 ■ If your VBA procedure changes the contents of a cell, it does trigger the
Change event.

tip
Remember that the code for a worksheet event must be stored in the code module for the specific worksheet.

tip
To activate the module for a worksheet and display its code sheet, right-click the sheet tab and then choose
View Code.

Chapter 6: Understanding Excel’s Events

199

6

As you can see from the preceding list, it’s not a good idea to rely on the Change event to
detect cell changes for critical applications.

Monitoring a specific range for changes
The Change event occurs when any cell on the worksheet is changed. But, in most cases,
all you care about are changes made to a specific cell or range. When the Worksheet_
Change event handler procedure is called, it receives a Range object as its argument. This
Range object represents the cell or cells that were changed.

Assume that your worksheet has a range named InputRange and you’d like to monitor
changes made only within this range. There is no Change event for a Range object, but
you can perform a quick check in the Worksheet_Change procedure.

Private Sub Worksheet_Change(ByVal Target As Range)
 Dim MRange As Range
 Set MRange = Range("InputRange")
 If Not Intersect(Target, MRange) Is Nothing Then _
 MsgBox "A cell in the input range has been changed."
End Sub

This example uses a Range object variable named MRange, which represents the work-
sheet range that you want to monitor for changes. The procedure uses the VBA Intersect
function to determine whether the Target range (passed to the procedure in its argument)
intersects with MRange. The Intersect function returns an object that consists of all
cells contained in both of its arguments. If the Intersect function returns Nothing, the
ranges have no cells in common. The Not operator is used so that the expression returns
True if the ranges do have at least one cell in common. Therefore, if the changed range has
any cells in common with the range named InputRange, a message box is displayed. Oth-
erwise, the procedure ends and nothing happens.

Monitoring a range to make formulas bold
The following example monitors a worksheet, and it also makes formula entries bold and
nonformula entries not bold:

Private Sub Worksheet_Change(ByVal Target As Range)
 Dim cell As Range
 For Each cell In Target
 If cell.HasFormula Then cell.Font.Bold = True
 Next cell
End Sub

Because the object passed to the Worksheet_Change procedure can consist of a multicell
range, the procedure loops through each cell in the Target range. If the cell has a formula,
the cell is made bold. Otherwise, the Bold property is set to False.

The procedure works, but it has a problem. What if the user deletes a row or column? In
that case, the Target range consists of a huge number of cells. The For-Each loop would
take a long time to examine them all—and it wouldn’t find any formulas.

Part I: Introduction to Excel VBA

200

The modified procedure listed next solves this problem by changing the Target range to
the intersection of the Target range and the worksheet’s used range. The check to ensure
that Target Is Not Nothing handles the case in which an empty row or column outside
the used range is deleted.

Private Sub Worksheet_Change(ByVal Target As Range)
 Dim cell As Range
 Set Target = Intersect(Target, Target.Parent.UsedRange)
 If Not Target Is Nothing Then
 For Each cell In Target
 cell.Font.Bold = cell.HasFormula
 Next cell
 End If
End Sub

Monitoring a range to validate data entry
Excel’s data validation feature is a useful tool, but it suffers from a potentially serious
problem. When you paste data into a cell that uses data validation, the pasted value not
only fails to get validated but also deletes the validation rules associated with the cell!
This fact makes the data validation feature practically worthless for critical applications. In
this section, we demonstrate how you can use the Change event for a worksheet to create
your own data validation procedure.

The Worksheet_Change procedure that follows is executed when a user changes a
cell. The validation is restricted to the range named InputRange. Values entered into
this range must be integers between 1 and 12.

Private Sub Worksheet_Change(ByVal Target As Range)
 Dim VRange As Range, cell As Range
 Dim Msg As String

oN the Web
This example, named make formulas bold.xlsm, is available on the book’s website.

CautioN
A Worksheet_Change procedure may affect Excel’s Undo feature, a potentially serious side effect. Excel’s Undo
stack is destroyed whenever an event procedure makes a change to the worksheet. In the preceding example, making
a cell entry triggers a formatting change, which destroys the Undo stack.

oN the Web
The book’s website contains two versions of this example. One (named validate entry1.xlsm) uses the
EnableEvents property to prevent cascading Change events; the other (named validate entry2.xlsm)
uses a Static variable. See “Disabling events” earlier in this chapter.

Chapter 6: Understanding Excel’s Events

201

6

 Dim ValidateCode As Variant
 Set VRange = Range("InputRange")

 If Intersect(VRange, Target) Is Nothing Then Exit Sub

 For Each cell In Intersect(VRange, Target)
 ValidateCode = EntryIsValid(cell)
 If TypeName(ValidateCode) = "String" Then
 Msg = "Cell " & cell.Address(False, False) & ":"
 Msg = Msg & vbCrLf & vbCrLf & ValidateCode
 MsgBox Msg, vbCritical, "Invalid Entry"
 Application.EnableEvents = False
 cell.ClearContents
 cell.Activate
 Application.EnableEvents = True
 End If
 Next cell
End Sub

The Worksheet_Change procedure creates a Range object (named VRange) that repre-
sents the worksheet range that is validated. Then it loops through each cell in the Tar
get argument, which represents the cell or cells that were changed. The code determines
whether each cell is contained in the range to be validated. If so, it passes the cell as
an argument to a custom function (EntryIsValid), which returns True if the cell is a
valid entry.

If the entry isn’t valid, the EntryIsValid function returns a string that describes the
problem, and the user is informed by a message box (see Figure 6.7). When the message box
is dismissed, the invalid entry is cleared from the cell, and the cell is activated. Note that
events are disabled before the cell is cleared. If events weren’t disabled, clearing the cell
would produce a Change event that causes an endless loop.

Also, note that entering an invalid value clears Excel’s Undo stack.

FIGURE 6.7

This message box describes the problem when the user makes an invalid entry.

Part I: Introduction to Excel VBA

202

The EntryIsValid function procedure is shown here:

Private Function EntryIsValid(cell) As Variant
' Returns True if cell is an integer between 1 and 12
' Otherwise it returns a string that describes the problem

 ' Numeric?
 If Not WorksheetFunction.IsNumber (cell) Then
 EntryIsValid = "Nonnumeric entry."
 Exit Function
 End If

 ' Integer?
 If CInt(cell) <> cell Then
 EntryIsValid = "Integer required."
 Exit Function
 End If

 ' Between 1 and 12?
 If cell < 1 Or cell > 12 Then
 EntryIsValid = "Valid values are between 1 and 12."
 Exit Function
 End If

 ' It passed all the tests
 EntryIsValid = True
End Function

The preceding technique works, but setting it up is tedious. Wouldn’t it be nice if you could
take advantage of Excel’s data validation feature yet ensure that the data validation rules
aren’t deleted if the user pastes data into the validation range? The next example does
the trick:

Private Sub Worksheet_Change(ByVal Target As Range)
 Dim VT As Long
 'Do all cells in the validation range
 'still have validation?

 On Error Resume Next
 VT = Range("InputRange").Validation.Type

 If Err.Number <> 0 Then
 Application.Undo
 MsgBox "Your last operation was canceled." & _
 "It would have deleted data validation rules.",
vbCritical
 End If
End Sub

Chapter 6: Understanding Excel’s Events

203

6

This event procedure checks the validation type of InputRange, the range that is sup-
posed to contain the data validation rules. If the VT variable contains an error, one or more
cells in the InputRange no longer contain data validation. In other words, the worksheet
changes probably resulted from data being copied into the range that contains data vali-
dation. If that’s the case, the code executes the Undo method of the Application object
and reverses the user’s action. Then it displays the message box shown in Figure 6.8.

The SelectionChange event
The following procedure demonstrates the SelectionChange event. It’s executed when-
ever the user makes a new selection in the worksheet.

Private Sub Worksheet_SelectionChange(ByVal Target As Range)
 Cells.Interior.ColorIndex = xlNone
 With ActiveCell
 .EntireRow.Interior.Color = RGB(219, 229, 241)

Note
This procedure works correctly only if all cells in the validation range contain the same type of data validation.

Note
A nice side benefit to using this procedure is that the Undo stack isn’t destroyed.

oN the Web
This example, named validate entry3.xlsm, is available on the book’s website.

FIGURE 6.8

The Worksheet_Change procedure ensures that data validation isn’t deleted.

Part I: Introduction to Excel VBA

204

 .EntireColumn.Interior.Color = RGB(219, 229, 241)
 End With
End Sub

This procedure shades the row and column of the active cell, which makes identifying the
active cell easy. The first statement removes the background color for all cells in the work-
sheet. Next, the entire row and column of the active cell is shaded. Figure 6.9 shows the
shading in effect.

You won’t want to use the procedure if your worksheet contains any background shading
because the shading will be wiped out. The exceptions are tables with a style applied
and background colors resulting from conditional formatting. In both of these instances,
the background color is maintained. Keep in mind, however, that executing the Work
sheet_SelectionChange macro destroys the Undo stack, so using this technique
essentially disables Excel’s Undo feature.

The BeforeDoubleClick event
You can set up a VBA procedure to be executed when the user double-clicks a cell. In the
following example (which is stored in the code window for a Sheet object), double-clicking
a cell toggles the cell’s style. If the cell style is "Normal", it applies the "Good" style. If
the style is "Good", it applies the "Normal" style.

Private Sub Worksheet_BeforeDoubleClick _
 (ByVal Target As Range, Cancel As Boolean)
 If Target.Style = "Good" Then
 Target.Style = "Normal"

oN the Web
This example, named shade active row and column.xlsm, is available on the book’s website.

FIGURE 6.9

Moving the cell cursor shades the active cell’s row and column.

Chapter 6: Understanding Excel’s Events

205

6

 Else
 Target.Style = "Good"
 End If
 Cancel = True
End Sub

If Cancel is set to True, the default double-click action doesn’t occur. In other words,
double-clicking the cell won’t put Excel into cell edit mode. Keep in mind that every-double
click also destroys the Undo stack.

The BeforeRightClick event
When the user right-clicks in a worksheet, Excel displays a shortcut menu. If, for some
reason, you’d like to prevent the shortcut menu from appearing in a particular sheet, you
can trap the RightClick event. The following procedure sets the Cancel argument to
True, which cancels the RightClick event and thereby cancels the shortcut menu and
then displays a message box:

Private Sub Worksheet_BeforeRightClick _
 (ByVal Target As Range, Cancel As Boolean)
 Cancel = True
 MsgBox "The shortcut menu is not available."
End Sub

Keep in mind that the user can still access the shortcut menu by using Shift+F10. However,
only a tiny percentage of Excel users are aware of that keystroke combination.

The following is another example that uses the BeforeRightClick event. This procedure
checks to see whether the cell that was right-clicked contains a numeric value. If so, the
code displays the Number tab of the Format Cells dialog box and sets the Cancel argument
to True (avoiding the normal shortcut menu display). If the cell doesn’t contain a numeric
value, nothing special happens—the shortcut menu is displayed as usual.

Private Sub Worksheet_BeforeRightClick _
 (ByVal Target As Range, Cancel As Boolean)
 If IsNumeric(Target) And Not IsEmpty(Target) Then
 Application.CommandBars.ExecuteMso ("NumberFormatsDialog")
 Cancel = True
 End If
End Sub

Note that the code makes an additional check to determine whether the cell is not empty.
This check is added because VBA considers empty cells to be numeric.

To find out how to intercept the Shift+F10 key combination, see “The OnKey event” later in this chapter.
Chapter 18, “Working with Shortcut Menus,” describes other methods for disabling shortcut menus.

Part I: Introduction to Excel VBA

206

Monitoring with Application Events
In earlier sections, we discussed Workbook events and Worksheet events. Those events
are monitored for a particular workbook. If you want to monitor events for all open work-
books or all worksheets, you use Application-level events.

Table 6.3 lists commonly used Application events with a brief description of each. Con-
sult the Help system for details.

Enabling Application-level events
To use Application-level events, you need to do the following:

1. Insert a new class module.

2. Set a name for this class module in the Properties window under Name. By default,
VBA gives each new class module a default name like Class1, Class2, and so on.
You may want to give your class module a more meaningful name, such as clsApp.

3. In the class module, declare a public Application object by using the With
Events keyword. Here’s an example:

Public WithEvents XL As Application

4. Create a variable that you’ll use to refer to the declared Application object in the
class module. It should be a module-level object variable declared in a regular VBA
module (not in the class module). Here’s an example:

Dim X As New

Note
Creating event-handler procedures to handle Application events always requires a class module and some
setup work.

Using the Object Browser to locate events
The Object Browser is a useful tool that can help you learn about objects and their properties and
methods. It can also help you find out which objects support a particular event. For example, say you’d
like to find out which objects support the MouseMove event. Activate VBE and press F2 to display the
Object Browser window. Make sure that <All Libraries> is selected; then type MouseMove and click
the binoculars icon.

The Object Browser displays a list of matching items. Events are indicated with a small yellow lightning
bolt icon next to the event name. Click the event you are looking for and check the status bar at the
bottom of the list for the appropriate usage syntax.

Chapter 6: Understanding Excel’s Events

207

6

TABLE 6.3 Commonly Used Events Recognized by the
Application Object

Event Action That Triggers the Event

AfterCalculate A calculation has been completed, and no outstanding
queries exist.

NewWorkbook A new workbook is created.

SheetActivate Any sheet is activated.

SheetBeforeDoubleClick Any worksheet is double-clicked. This event occurs before the
default double-click action.

SheetBeforeRightClick Any worksheet is right-clicked. This event occurs before the
default right-click action.

SheetCalculate Any worksheet is calculated (or recalculated).

SheetChange Cells in any worksheet are changed by the user or by an
external link.

SheetDeactivate Any sheet is deactivated.

SheetFollowHyperlink A hyperlink is clicked.

SheetPivotTableUpdate Any pivot table is updated.

SheetSelectionChange The selection changes on any worksheet except a chart sheet.

WindowActivate Any workbook window is activated.

WindowDeactivate Any workbook window is deactivated.

WindowResize Any workbook window is resized.

WorkbookActivate Any workbook is activated.

Workbook AddinInstall A workbook is installed as an add-in.

WorkbookAdd inUninstall Any add-in workbook is uninstalled.

WorkbookBeforeClose Any open workbook is closed.

WorkbookBeforePrint Any open workbook is printed.

WorkbookBeforeSave Any open workbook is saved.

WorkbookDeactivate Any open workbook is deactivated.

WorkbookNewSheet A new sheet is created in any open workbook.

WorkbookOpen A workbook is opened.

Part I: Introduction to Excel VBA

208

5. Connect the declared object with the Application object. This step is often done
in a Workbook _Open procedure. Here’s an example:

Set X.XL = Application

6. Write event-handler procedures for the XL object in the class module.

Determining when a workbook is opened
The example in this section keeps track of every workbook that is opened by storing infor-
mation in a comma-separated variable (CSV) text file. You can import this file into Excel.

We start by inserting a new class module and naming it clsApp. The code in the class
module is as follows:

Public WithEvents AppEvents As Application
Private Sub AppEvents_WorkbookOpen (ByVal Wb As Excel.Workbook)
 Call UpdateLogFile(Wb)
End Sub

This code declares AppEvents as an Application object with events. The AppEvents_
WorkbookOpen procedure will be called whenever a workbook is opened. This event-
handler procedure calls UpdateLogFile and passes the Wb variable, which represents the
workbook that was opened. We then added a VBA module and inserted the following code:

Dim AppObject As New clsApp
Sub Init()
' Called by Workbook_Open
 Set AppObject.AppEvents = Application
End Sub
Sub UpdateLogFile(Wb)
 Dim txt As String
 Dim Fname As String
 txt = Wb.FullName
 txt = txt & "," & Date & "," & Time
 txt = txt & "," & Application.UserName
 Fname = Application.DefaultFilePath & "\logfile.csv"
 Open Fname For Append As #1
 Print #1, txt
 Close #1
 MsgBox txt
End Sub

Note at the top that the AppObject variable is declared as type clsApp (the name of the
class module). The call to Init is in the Workbook_Open procedure, which is in the code
module for ThisWorkbook. This procedure is as follows:

Private Sub Workbook_Open()
 Call Init
End Sub

Chapter 6: Understanding Excel’s Events

209

6

The UpdateLogFile procedure opens a text file, or it creates the text file if it doesn’t
exist. The procedure then writes key information about the workbook that was opened: the
filename and full path, the date, the time, and the username.

The Workbook_Open procedure calls the Init procedure. Therefore, when the workbook
opens, the Init procedure creates the object variable. The final statement uses a message
box to display the information that was written to the CSV file. You can delete this state-
ment if you prefer not to see that message.

Monitoring Application-Level events
To get a feel for the event-generation process, you may find it helpful to see a list of events
that get generated as you go about your work.

Figure 6.10 illustrates a workbook (ApplicationEventTracker.xlsm) found with
the sample files for this chapter. This workbook displays descriptions for various
Application- level events as they occur. You might find this workbook helpful when
learning about the types and sequence of events that occur.

oN the Web
This example, named log workbook open.xlsm, is available on the book’s website.

oN the Web
This example is available on the book’s website in the ApplicationEventTracker.xlsm file.

FIGURE 6.10

This workbook uses a class module to monitor all Application-level events.

Part I: Introduction to Excel VBA

210

The workbook contains a class module with 21 procedures defined—one for each of the
commonly used Application-level events.

Accessing events not associated with an object
The events that we discussed earlier in this chapter are all associated with an object
(Application, Workbook, Sheet, and so on). In this section, we discuss two additional
rogue events: OnTime and OnKey. Instead of being associated with an object, these events
are accessed by using methods of the Application object.

The OnTime event
The OnTime event occurs at a specified time of day. The following example demonstrates
how to program Excel so that it beeps and displays a message at 3 p.m.:

Sub SetAlarm()
 Application.OnTime TimeValue("15:00:00"), "DisplayAlarm"
End Sub

Sub DisplayAlarm()
 Beep
 MsgBox "Wake up. It's time for your afternoon break!"
End Sub

In this example, the SetAlarm procedure uses the OnTime method of the Application
object to set up the OnTime event. This method takes two arguments: the time (3 p.m., in
the example) and the procedure to execute when the time occurs (DisplayAlarm in the
example). After SetAlarm is executed, the DisplayAlarm procedure will be called at 3
p.m., displaying the message shown in Figure 6.11.

tip
As you explore the application events in the sample file, be sure to leave the Application Event Monitor dialog box
open so that you can see the events being logged.

Note
Unlike the other events discussed in this chapter, you program these On events in a general VBA module.

FIGURE 6.11

This message box was programmed to display at a particular time of day.

Chapter 6: Understanding Excel’s Events

211

6

If you want to schedule an event relative to the current time—for example, 20 minutes
from now—you can write an instruction like this:

Application.OnTime Now + TimeValue("00:20:00"), "DisplayAlarm"

You can also use the OnTime method to schedule a procedure on a particular day. The fol-
lowing statement runs the DisplayAlarm procedure at 12:01 a.m. on April 1, 2020:

Application.OnTime DateSerial(2020, 4, 1) + _
 TimeValue("00:00:01"), "DisplayAlarm"

The two procedures that follow demonstrate how to program a repeated event. In this case,
cell A1 is updated with the current time every five seconds. Executing the UpdateClock
procedure writes the time to cell A1 and also programs another event five seconds later.
This event reruns the UpdateClock procedure. To stop the events, execute the Stop
Clock procedure (which cancels the event). Note that NextTick is a module-level variable
that stores the time for the next event.

Dim NextTick As Date
Sub UpdateClock()
' Updates cell A1 with the current time
 ThisWorkbook.Sheets(1).Range("A1") = Time
' Set up the next event five seconds from now
 NextTick = Now + TimeValue("00:00:05")
 Application.OnTime NextTick, "UpdateClock"
End Sub

Sub StopClock()
' Cancels the OnTime event (stops the clock)
 On Error Resume Next
 Application.OnTime NextTick, "UpdateClock", , False
End Sub

Call StopClock

Note
The OnTime method has two additional arguments. If you plan to use this method, you should refer to the online
help for complete details.

oN the Web
This example, named ontime event demo.xlsm, is available on the book’s website.

CautioN
The OnTime event persists even after the workbook is closed. In other words, if you close the workbook without
running the StopClock procedure, the workbook will reopen itself in five seconds (assuming that Excel is still
running). To prevent this, use a Workbook_BeforeClose event procedure that contains the following statement:

Part I: Introduction to Excel VBA

212

The OnKey event
While you’re working, Excel constantly monitors what you type. Because of this monitoring,
you can set up a keystroke or a key combination that, when pressed, executes a particular
procedure. The only time that these keystrokes won’t be recognized is when you’re entering
a formula or working with a dialog box.

An OnKey event example
The following example uses the OnKey method to set up an OnKey event. This event
reassigns the PgDn and PgUp keys. After the Setup_OnKey procedure is executed, press-
ing PgDn executes the PgDn_Sub procedure, and pressing PgUp executes the PgUp_Sub
procedure. The net effect is that pressing PgDn moves the cursor down one row and press-
ing PgUp moves the cursor up one row. Key combinations that use PgUp and PgDn aren’t
affected. So, for example, Ctrl+PgDn will continue to activate the next worksheet in
a workbook.

Sub Setup_OnKey()
 Application.OnKey "{PgDn}", "PgDn_Sub"
 Application.OnKey "{PgUp}", "PgUp_Sub"
End Sub
Sub PgDn_Sub()
 On Error Resume Next
 ActiveCell.Offset(1, 0).Activate
End Sub
Sub PgUp_Sub()
 On Error Resume Next
 ActiveCell.Offset(1, 0).Activate
End Sub

In the previous examples, we use On Error Resume Next to ignore any errors that are
generated. For example, if the active cell is in the first row, trying to move up one row
causes an error. Also, if the active sheet is a chart sheet, an error will occur because there
is no such thing as an active cell in a chart sheet.

CautioN
It’s important to understand that creating a procedure to respond to an OnKey event isn’t limited to a single
workbook. The re-mapped keystroke is valid in all open workbooks, not just the one in which you created the event
procedure.

Also, if you set up an OnKey event, make sure that you provide a way to cancel the event. A common way to do this
is to use the Workbook_BeforeClose event procedure.

oN the Web
This example, named onkey event demo.xlsm, is available on the book’s website.

Chapter 6: Understanding Excel’s Events

213

6

By executing the following procedure, you cancel the OnKey events and return these keys
to their normal functionality:

Sub Cancel_OnKey()
 Application.OnKey "{PgDn}"
 Application.OnKey "{PgUp}"
End Sub

Contrary to what you might expect, using an empty string as the second argument for the
OnKey method does not cancel the OnKey event. Rather, it causes Excel to simply ignore
the keystroke and do nothing. For example, the following instruction tells Excel to ignore
Alt+F4 (the percent sign represents the Alt key):

Application.OnKey "%{F4}", ""

Key Codes
In the previous section, note that the PgDn keystroke appears in braces. Table 6.4 shows
the key codes that you can use in your OnKey procedures.

Although you can use the OnKey method to assign a shortcut key for executing a macro, it’s better to
use the Macro Options dialog box for this task. For more details, see Chapter 4, “Working with VBA Sub
Procedures.”

TABLE 6.4 Key Codes for the OnKey Event

Key Code

Backspace {BACKSPACE} or {BS}

Break {BREAK}

Caps Lock {CAPSLOCK}

Delete or Del {DELETE} or {DEL}

Down Arrow {DOWN}

End {END}

Enter ∼ (tilde)

Enter (on the numeric keypad) {ENTER}

Escape {ESCAPE} or {ESC}

Home {HOME}

Ins {INSERT}

Left Arrow {LEFT}

NumLock {NUMLOCK}

PgDn {PGDN}

Continues

Part I: Introduction to Excel VBA

214

You can also specify keys combined with Shift, Ctrl, and Alt. To specify a key combined
with another key or keys, use the following symbols:

Shift: Plus sign (+)

Ctrl: Caret (^)

Alt: Percent sign (%)

For example, to assign a procedure to the Ctrl+Shift+A key, use this code:

Application.OnKey "^+A", "SubName"

To assign a procedure to Alt+F11 (which is normally used to switch to the VB Editor
window), use this code:

Application.OnKey "%{F11}", "SubName"

Disabling shortcut menus
Earlier in this chapter, we discussed a Worksheet_BeforeRightClick procedure that
disabled the right-click shortcut menu. The following procedure is placed in the This
Workbook code module:

Private Sub Worksheet_BeforeRightClick _
(ByVal Target As Range, Cancel As Boolean)Cancel = True
 MsgBox "The shortcut menu is not available."
End Sub

The user could still display the shortcut menu by pressing Shift+F10. To intercept the
Shift+F10 key combination, add these procedures to a standard VBA module:

Sub SetupNoShiftF10()
 Application.OnKey "+{F10}", "NoShiftF10"
End Sub
Sub TurnOffNoShiftF10()
 Application.OnKey "+{F10}"
End Sub
Sub NoShiftF10()
 MsgBox "Nice try, but that doesn't work either."
End Sub

Key Code

PgUp {PGUP}

Right Arrow {RIGHT}

Scroll Lock {SCROLLLOCK}

Tab {TAB}

Up Arrow {UP}

F1 through F15 {F1} through {F15}

TABLE 6.4 (continued)

Chapter 6: Understanding Excel’s Events

215

6

After the SetupNoShiftF10 procedure is executed, pressing Shift+F10 displays the mes-
sage box shown in Figure 6.12. Remember that the Worksheet_BeforeRightClick
procedure is valid only in its own workbook. The Shift+F10 key event, on the other hand,
applies to all open workbooks.

oN the Web
The book’s website contains a workbook that includes all the OnKey procedures. The file, named no shortcut
menus.xlsm, includes workbook event-handler procedures: Workbook_Open executes the SetupNo
ShiftF10 procedure, and Workbook_BeforeClose calls the TurnOffNoShiftF10 procedure.

FIGURE 6.12

Pressing Shift+F10 displays this message.

217

CHAP T ER

7
VBA Programming Examples
and Techniques

IN THIS CHAPTER
Using VBA to work with ranges

Using VBA to work with workbooks and sheets

Creating custom functions for use in your VBA procedures and in worksheet formulas

Trying miscellaneous VBA tricks and techniques

Using Windows application programming interface (API) functions

Learning by Example
Most beginning VBA programmers benefit from hands-on examples. A well-thought-out example
usually communicates a concept much better than a description of the underlying theory. There-
fore, instead of taking you through a painful review of every nuance of VBA, this chapter guides
you through demonstrations of useful Excel programming techniques.

Here, you will walk through examples that solve practical problems while furthering your
knowledge of VBA. This includes the following:

 ■ Working with ranges
 ■ Working with workbooks and sheets
 ■ VBA techniques
 ■ Functions that are useful in your VBA procedures
 ■ Functions that you can use in worksheet formulas
 ■ Windows API calls

Subsequent chapters in this book present additional feature-specific examples: charts, pivot tables,
events, UserForms, and so on.

Excel® 2019 Power Programming with VBA, First Edition. Michael Alexander and Dick Kusleika.
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.

Part I: Introduction to Excel VBA

218

Working with Ranges
The examples in this section demonstrate how to manipulate worksheet ranges with VBA.

Specifically, we provide examples of copying a range, moving a range, selecting a range,
identifying types of information in a range, prompting for a cell value, determining the
first empty cell in a column, pausing a macro to allow the user to select a range, counting
cells in a range, looping through the cells in a range, and several other commonly used
range-related operations.

Copying a range
Excel’s macro recorder is useful not so much for generating usable code but for discov-
ering the names of relevant objects, methods, and properties. The code that’s generated
by the macro recorder isn’t always the most efficient, but it can usually provide you with
several clues.

For example, recording a simple copy-and-paste operation generates five lines of VBA code.

Sub Macro1()
 Range("A1").Select
 Selection.Copy
 Range("B1").Select
 ActiveSheet.Paste
 Application.CutCopyMode = False
End Sub

Note that the generated code selects cell A1, copies it, and then selects cell B1 and performs
the paste operation. But in VBA, you don’t need to select an object to work with it. You would
never learn this important point by mimicking the preceding recorded macro code, where
two statements incorporate the Select method. You can replace this procedure with the
following much simpler routine, which doesn’t select any cells. It also takes advantage of
the fact that the Copy method can use an argument that represents the destination for the
copied range.

Sub CopyRange()
 Range("A1").Copy Range("B1")
End Sub

Both macros assume that a worksheet is active and that the operation takes place on the
active worksheet. To copy a range to a different worksheet or workbook, simply qualify the
range reference for the destination. The following example copies a range from Sheet1 in
File1.xlsx to Sheet2 in File2.xlsx. Because the references are fully qualified, this
example works regardless of which workbook is active.

Sub CopyRange2()
 Workbooks("File1.xlsx").Sheets("Sheet1").Range("A1").Copy _
 Workbooks("File2.xlsx").Sheets("Sheet2").Range("A1")
End Sub

Chapter 7: VBA Programming Examples and Techniques

219

7

Another way to approach this task is to use object variables to represent the ranges, as
shown in the code that follows. Using object variables is especially useful when your code
will use the ranges at some other point.

Sub CopyRange3()
 Dim Rng1 As Range, Rng2 As Range
 Set Rng1 = Workbooks("File1.xlsx").Sheets("Sheet1").Range("A1")
 Set Rng2 = Workbooks("File2.xlsx").Sheets("Sheet2").Range("A1")
 Rng1.Copy Rng2
End Sub

As you might expect, copying isn’t limited to one single cell at a time. The following proce-
dure, for example, copies a large range. Note that the destination consists of only a single
cell (which represents the upper-left cell of the destination range). Using a single cell for
the destination works just like it does when you copy and paste a range manually in Excel.

Sub CopyRange4()
 Range("A1:C800").Copy Range("D1")
End Sub

Moving a range
The VBA instructions for moving a range are similar to those for copying a range, as the
following example demonstrates. The difference is that you use the Cut method instead of
the Copy method. Note that you need to specify only the upper-left cell for the destina-
tion range.

The following example moves 18 cells (in A1:C6) to a new location, beginning at cell H1:

Sub MoveRange1()
 Range("A1:C6").Cut Range("H1")
End Sub

Copying a variably sized range
In many cases, you need to copy a range of cells, but you don’t know the exact row and
column dimensions of the range. For example, you might have a workbook that tracks
weekly sales, and the number of rows changes weekly when you add new data.

Figure 7.1 shows a common type of worksheet. This range consists of several rows, and the
number of rows changes each week. Because you don’t know the exact range address at any
given time, writing a macro to copy the range requires additional coding.

The following macro demonstrates how to copy this range from Sheet1 to Sheet2
(beginning at cell A1). It uses the CurrentRegion property, which returns a Range
object that corresponds to the block of cells around a particular cell (in this case, A1).

Sub CopyCurrentRegion2()
 Range("A1").CurrentRegion.Copy Sheets("Sheet2").Range("A1")
End Sub

Part I: Introduction to Excel VBA

220

If the range to be copied is a table (specified by choosing Insert ⇨ Tables ⇨ Table), you can
use code like this (assuming the table is named Table1):

Sub CopyTable()
 Range("Table1[#All]").Copy Sheets("Sheet2").Range("A1")
End Sub

Tips for working with ranges
When you work with ranges, keep the following points in mind:

 ■ Your code doesn’t need to select a range to work with it.

 ■ You can’t select a range that’s not on the active worksheet. So, if your code does select a
range, its worksheet must be active. You can use the Activate method of the Worksheets
collection to activate a particular sheet.

 ■ Remember that the macro recorder doesn’t always generate the most efficient code. Often,
you can create your macro by using the recorder and then edit the code to make it more
efficient.

 ■ Using named ranges in your VBA code is a good idea. For example, refer to Range("Total")
rather than Range("D45"). In the latter case, if you add a row above row 45, the cell address
will change. You would then need to modify the macro so that it uses the correct range
address (D46).

FIGURE 7.1

The number of rows in the data range changes every week.

Note
Using the CurrentRegion property is equivalent to choosing the Home ⇨ Editing ⇨ Find & Select ⇨ Go To
Special command and selecting the Current Region option (or by using the Ctrl+Shift+* shortcut to select the current
region). To see how the CurrentRegion selection works, record your actions while you issue that command. Gen-
erally, the CurrentRegion property setting consists of a rectangular block of cells surrounded by one or more
blank rows or columns.

Chapter 7: VBA Programming Examples and Techniques

221

7
Selecting or otherwise identifying various types of ranges
Much of the work that you’ll do in VBA will involve working with ranges—either selecting
a range or identifying a range so that you can do something with the cells.

In addition to the CurrentRegion property (which we discussed earlier), you should also
be aware of the End method of the Range object. The End method takes one argument,
which determines the direction in which the selection is extended. The following statement
selects a range from the active cell to the last nonempty cell in that column:

Range(ActiveCell, ActiveCell.End(xlDown)).Select

Here’s a similar example that uses a specific cell as the starting point:

Range(Range("A2"), Range("A2").End(xlDown)).Select

As you might expect, three other constants, xlUp, xlToLeft, and xlToRight, can be
used as an argument to the End method to extend a range in the three other directions.

The following macro is in the example workbook. The SelectCurrentRegion macro sim-
ulates pressing Ctrl+Shift+*.

oN the Web
This book’s website includes a workbook that demonstrates several common types of range selections. When you
open this workbook, named range selections.xlsm, the code adds a new menu item to the shortcut menu
that appears when you right-click a cell: Selection Demo. This menu contains commands that enable the user to
make various types of selections, as shown in Figure 7.2.

CautioN
Be careful when using the End method with the ActiveCell property. If the active cell is at the perimeter of a
range or if the range contains one or more empty cells, the End method may not produce the desired results.

 ■ If you rely on the macro recorder when selecting ranges, make sure that you record the
macro using relative references. Choose Developer ⇨ Code ⇨ Use Relative References to
toggle this setting.

 ■ When running a macro that works on each cell in the current range selection, the user might
select entire columns or rows. In most cases, you don’t want to loop through every cell in the
selection. Your macro should create a subset of the selection consisting of only the nonblank
cells. See the section “Looping through a selected range efficiently” later in this chapter.

 ■ Excel allows multiple selections. For example, you can select a range, press Ctrl, and select
another range. You can test for multiple selections in your macro and take appropriate action.
See the section “Determining the type of selected range” later in this chapter.

Part I: Introduction to Excel VBA

222

Sub SelectCurrentRegion()
 ActiveCell.CurrentRegion.Select
End Sub

Often, you won’t want to select the cells. Rather, you’ll want to work with them in some
way (for example, format them). You can easily adapt the cell-selecting procedures. The fol-
lowing procedure was adapted from SelectCurrentRegion. This procedure doesn’t select
cells; it applies formatting to the range defined as the current region around the active
cell. You can adapt the other procedures in the example workbook in this manner.

Sub FormatCurrentRegion()
 ActiveCell.CurrentRegion.Font.Bold = True
End Sub

FIGURE 7.2

This workbook uses a custom shortcut menu to demonstrate how to select variably sized
ranges by using VBA.

Another way to refer to a range
If you look at VBA code written by others, you may notice a different way to reference a range. For
example, the following statement selects a range:

[C2:D8].Select

The range address is surrounded by square brackets, and the range address is not enclosed in quote
marks. The preceding statement is equivalent to

Range("C2:D8").Select

Using square brackets is a shortcut for the Evaluate method of the Application object. In this
example, it’s a shortcut for the following:

Application.Evaluate("C2:D8").Select

This may save a few keystrokes when entering the code, but it ends up being a bit slower than the
normal type of referencing because it takes time to evaluate a text string and determine that it’s a
range reference.

Chapter 7: VBA Programming Examples and Techniques

223

7

Resizing a range
The Resize property of a Range object makes it easy to change the size of a range. The
Resize property takes two arguments, RowSize and ColumnSize, that represent the
total number of rows and the total number of columns in the resized range.

For example, after executing the following statement, the MyRange object variable is 20
rows by 5 columns (range A1:E20):

Set MyRange = Range("A1")
Set MyRange = MyRange.Resize(20, 5)

After the following statement is executed, the size of MyRange is increased by one row.
Note that the second argument is omitted, so the number of columns does not change.

Set MyRange = MyRange.Resize(MyRange.Rows.Count + 1)

A more practical example involves changing the definition of a range name. Assume a work-
book has a range named Data. Your code needs to extend the named range by adding an
additional row. This code snippet will do the job:

With Range("Data")
 .Resize(.Rows.Count + 1).Name = "Data"
End With

Prompting for a cell value
The following procedure demonstrates how to ask the user for a value and then insert it
into cell A1 of the active worksheet:

Sub GetValue1()
 Range("A1").Value = InputBox("Enter the value")
End Sub

Figure 7.3 shows how the input box looks.

FIGURE 7.3

The InputBox function gets a value from the user to be inserted into a cell.

Part I: Introduction to Excel VBA

224

This procedure has a problem, however. If the user clicks the Cancel button in the input box,
the procedure deletes any data already in the cell. The following modification takes no action
if the Cancel button is clicked (which results in an empty string for the UserEntry variable):

Sub GetValue2()
 Dim UserEntry As Variant
 UserEntry = InputBox("Enter the value")
 If UserEntry <> "" Then Range("A1").Value = UserEntry
End Sub

In many cases, you’ll need to validate the user’s entry in the input box. For example, you may
require a number between 1 and 12. The following example demonstrates one way to validate
the user’s entry. In this example, an invalid entry is ignored, and the input box is displayed
again. This cycle keeps repeating until the user enters a valid number or clicks Cancel.

Sub GetValue3()
 Dim UserEntry As Variant
 Dim Msg As String
 Const MinVal As Integer = 1
 Const MaxVal As Integer = 12
 Msg = "Enter a value between " & MinVal & " and " & MaxVal
 Do
 UserEntry = InputBox(Msg)
 If UserEntry = "" Then Exit Sub
 If IsNumeric(UserEntry) Then
 If UserEntry >= MinVal And UserEntry <= MaxVal Then Exit Do
 End If
 Msg = "Your previous entry was INVALID."
 Msg = Msg & vbNewLine
 Msg = Msg & "Enter a value between " & MinVal & " and " & MaxVal
 Loop
 ActiveSheet.Range("A1").Value = UserEntry
End Sub

As you can see in Figure 7.4, the code also changes the message displayed if the user makes
an invalid entry.

FIGURE 7.4

Validate a user’s entry with the VBA InputBox function.

Chapter 7: VBA Programming Examples and Techniques

225

7

Entering a value in the next empty cell
A common requirement is to enter a value into the next empty cell in a column or row. The
following example prompts the user for a name and a value and then enters the data into
the next empty row (see Figure 7.5).

Sub GetData()
 Dim NextRow As Long
 Dim Entry1 As String, Entry2 As String
 Do
' Determine next empty row
 NextRow = Cells(Rows.Count, 1).End(xlUp).Row + 1

' Prompt for the data
 Entry1 = InputBox("Enter the name")
 If Entry1 = "" Then Exit Sub
 Entry2 = InputBox("Enter the amount")
 If Entry2 = "" Then Exit Sub

' Write the data
 Cells(NextRow, 1) = Entry1
 Cells(NextRow, 2) = Entry2
 Loop
End Sub

oN the Web
The three GetValue procedures are available on this book’s website in the inputbox demo.xlsm file.

FIGURE 7.5

A macro for inserting data into the next empty row in a worksheet

Part I: Introduction to Excel VBA

226

To keep things simple, this procedure doesn’t perform any validation. The loop continues
indefinitely. We use Exit Sub statements to get out of the loop when the user clicks
Cancel in the input box.

Note the statement that determines the value of the NextRow variable. If you don’t under-
stand how this statement works, try the manual equivalent: activate the last cell in column
A (cell A1048576), press End, and then press the up-arrow key. At this point, the last non-
blank cell in column A will be selected. The Row property returns this row number, which
is incremented by 1 to get the row of the cell below it (the next empty row). Rather than
hard-code the last cell in column A, we used Rows.Count so that this procedure will be
compatible with all versions of Excel (including versions before Excel 2007 where the rows
on a worksheet were capped at 65,536).

This technique of selecting the next empty cell has a slight glitch. If the column is empty,
it will calculate row 2 as the next empty row. Writing additional code to account for this
possibility would be fairly easy.

Pausing a macro to get a user-selected range
In some situations, you may need an interactive macro. For example, you can create a
macro that pauses while the user specifies a range of cells. The procedure in this section
describes how to do this with Excel’s InputBox method.

The Sub procedure that follows demonstrates how to pause a macro and let the user select
a range. The code then inserts a formula into each cell of the specified range.

Sub GetUserRange()
 Dim UserRange As Range

 Prompt = "Select a range for the random numbers."
 Title = "Select a range"

' Display the Input Box
 On Error Resume Next
 Set UserRange = Application.InputBox(_

oN the Web
The GetData procedure is available on the book’s website in the next empty cell.xlsm file.

Note
Don’t confuse Excel’s InputBox method with VBA’s InputBox function. Although these two items have the same
name, they’re not the same. For example, the InputBox method includes a Type argument that allows you to
limit what sort of data can be input. See Chapter 12, “Leveraging Custom Dialog Boxes,” for a complete discussion
of both the method and the function.

Chapter 7: VBA Programming Examples and Techniques

227

7

 Prompt:=Prompt, _
 Title:=Title, _
 Default:=ActiveCell.Address, _
 Type:=8) 'Range selection
 On Error GoTo 0

' Was the Input Box canceled?
 If UserRange Is Nothing Then
 MsgBox "Canceled."
 Else
 UserRange.Formula = "=RAND()"
 End If
End Sub

Figure 7.6 shows the input box.

Specifying a Type argument of 8 for the InputBox method is the key to this procedure.
Type argument 8 tells Excel that the input box should accept only a valid range.

Also note the use of On Error Resume Next. This statement ignores the error that
occurs if the user clicks the Cancel button. If the user clicks Cancel, the UserRange object
variable isn’t defined. This example displays a message box with the text Canceled.
If the user clicks OK, the macro continues. Using On Error GoTo 0 resumes normal
error handling.

oN the Web
This example, named prompt for a range.xlsm, is available on this book’s website.

FIGURE 7.6

Use an input box to pause a macro.

Part I: Introduction to Excel VBA

228

By the way, you don’t need to check for a valid range selection. Excel takes care of this
task for you. If the user types an invalid range address, Excel displays a message box with
instructions on how to select a range.

Counting selected cells
You can create a macro that works with the range of cells selected by the user. Use the
Count property of the Range object to determine how many cells are contained in a range
selection (or any range, for that matter). For example, the following statement displays a
message box that contains the number of cells in the current selection:

MsgBox Selection.Count

If the active sheet contains a range named Data, the following statement assigns the
number of cells in the Data range to a variable named CellCount:

CellCount = Range("Data").Count

You can also determine how many rows or columns are contained in a range. The following
expression calculates the number of columns in the currently selected range:

Selection.Columns.Count

And, of course, you can use the Rows property to determine the number of rows in a range.
The following statement counts the number of rows in a range named Data and assigns the
number to a variable named RowCount:

RowCount = Range("Data").Rows.Count

Determining the type of selected range
Excel supports several types of range selections.

 ■ A single cell
 ■ A contiguous range of cells
 ■ One or more entire columns
 ■ One or more entire rows
 ■ An entire worksheet
 ■ Any combination of the preceding (that is, a multiple selection)

CautioN
With the larger worksheet size introduced in Excel 2007, the Count property can generate an error. The Count
property uses the Long data type, so the largest value that it can store is 2,147,483,647. For example, if the user
selects 2,048 complete columns (2,147,483,648 cells), the Count property generates an error. Fortunately, Micro-
soft added a new property beginning with Excel 2007: CountLarge. CountLarge uses the Double data type,
which can handle values up to 1.79+E^308.

The bottom line? In the vast majority of situations, the Count property will work fine. If there’s a chance that you
may need to count more cells (such as all cells in a worksheet), use CountLarge instead of Count.

Chapter 7: VBA Programming Examples and Techniques

229

7

As a result, when your VBA procedure processes a user-selected range, you can’t make any
presumptions about what that range might be. For example, the range selection might con-
sist of two areas, say A1:A10 and C1:C10. (To make a multiple selection, press Ctrl while you
select the ranges with your mouse.)

In the case of a multiple range selection, the Range object comprises separate areas.
To determine whether a selection is a multiple selection, use the Areas method, which
returns an Areas collection. This collection represents all of the ranges in a multiple range
selection.

You can use an expression such as the following to determine whether a selected range has
multiple areas:

NumAreas = Selection.Areas.Count

If the NumAreas variable contains a value greater than 1, the selection is a multiple
selection.

The following is a function named AreaType, which returns a text string that describes
the type of range selection:

Function AreaType(RangeArea As Range) As String
' Returns the type of a range in an area
 Select Case True
 Case RangeArea.Cells.CountLarge = 1
 AreaType = "Cell"
 Case RangeArea.CountLarge = Cells.CountLarge
 AreaType = "Worksheet"
 Case RangeArea.Rows.Count = Cells.Rows.Count
 AreaType = "Column"
 Case RangeArea.Columns.Count = Cells.Columns.Count
 AreaType = "Row"
 Case Else
 AreaType = "Block"
 End Select
End Function

This function accepts a Range object as its argument and returns one of five strings
that describe the area: Cell, Worksheet, Column, Row, or Block. The function uses a
Select Case construct to determine which of five comparison expressions is True. For
example, if the range consists of a single cell, the function returns Cell. If the number of
cells in the range is equal to the number of cells in the worksheet, it returns Worksheet.
If the number of rows in the range equals the number of rows in the worksheet, it returns
Column. If the number of columns in the range equals the number of columns in the work-
sheet, the function returns Row. If none of the Case expressions is True, the function
returns Block.

Note that we used the CountLarge property when counting cells. As we noted previ-
ously in this chapter, the number of selected cells could potentially exceed the limit of the
Count property.

Part I: Introduction to Excel VBA

230

Looping through a selected range efficiently
A common task is to create a macro that evaluates each cell in a range and performs an
operation if the cell meets a certain criterion. The procedure that follows is an example of
such a macro. The ColorNegative procedure sets the cell’s background color to red for
cells that contain a negative value. For non-negative value cells, it sets the background
color to none.

oN the Web
This example is available on this book’s website in a file named about range selection.xlsm. The work-
book contains a procedure (named RangeDescription) that uses the AreaType function to display a
message box that describes the current range selection. Figure 7.7 shows an example. Understanding how this
routine works will give you a good foundation for working with Range objects.

Note
You might be surprised to discover that Excel allows multiple selections to be identical. For example, if you hold down
Ctrl and click five times in cell A1, the selection will have five identical areas. The RangeDescription procedure
takes this possibility into account and doesn’t count the same cell multiple times. Also note that Excel displays pro-
gressively darker shading for overlapping range selections.

Note
This example is for educational purposes only. Using Excel’s conditional formatting feature is a much better
approach.

FIGURE 7.7

A VBA procedure analyzes the currently selected range.

Chapter 7: VBA Programming Examples and Techniques

231

7

Sub ColorNegative()
' Makes negative cells red
 Dim cell As Range
 If TypeName(Selection) <> "Range" Then Exit Sub
 Application.ScreenUpdating = False
 For Each cell In Selection
 If cell.Value < 0 Then
 cell.Interior.Color = RGB(255, 0, 0)
 Else
 cell.Interior.Color = xlNone
 End If
 Next cell
End Sub

The ColorNegative procedure certainly works, but it has a serious flaw. For example,
what if the used area on the worksheet were small, but the user selects an entire column?
Or ten columns? Or the entire worksheet? You don’t need to process all of those empty cells,
and the user would probably give up long before your code churns through all those cells.

A better solution (ColorNegative2) follows. In this revised procedure, we create a Range
object variable, WorkRange, which consists of the intersection of the user’s selected range
and the worksheet’s used range.

Sub ColorNegative2()
' Makes negative cells red
 Dim WorkRange As Range
 Dim cell As Range
 If TypeName(Selection) <> "Range" Then Exit Sub
 Application.ScreenUpdating = False
 Set WorkRange = Application.Intersect(Selection, ActiveSheet
.UsedRange)
 For Each cell In WorkRange
 If cell.Value < 0 Then
 cell.Interior.Color = RGB(255, 0, 0)
 Else
 cell.Interior.Color = xlNone
 End If
 Next cell
End Sub

Figure 7.8 shows an example; the entire column D is selected (1,048,576 cells). The range
used by the worksheet, however, is B2:I16. Therefore, the intersection of these ranges is
D2:D16, which is a much smaller range than the original selection. Needless to say, the time
difference between processing 15 cells versus processing 1,048,576 cells is significant.

The ColorNegative2 procedure is an improvement, but it’s still not as efficient as it
could be because it processes empty cells. A third revision, ColorNegative3, is quite a bit
longer but much more efficient. We use the SpecialCells method to generate two sub-
sets of the selection: one subset (ConstantCells) includes only the cells with numeric

Part I: Introduction to Excel VBA

232

constants, and the other subset (FormulaCells) includes only the cells with numeric
formulas. The code processes the cells in these subsets by using two For Each-Next con-
structs. The net effect is that only nonblank, nontext cells are evaluated, thus speeding up
the macro considerably.

Sub ColorNegative3()
' Makes negative cells red
 Dim FormulaCells As Range, ConstantCells As Range
 Dim cell As Range
 If TypeName(Selection) <> "Range" Then Exit Sub
 Application.ScreenUpdating = False

' Create subsets of original selection
 On Error Resume Next
 Set FormulaCells = Selection.SpecialCells(xlFormulas, xlNumbers)
 Set ConstantCells = Selection.SpecialCells(xlConstants, xlNumbers)
 On Error GoTo 0

' Process the formula cells
 If Not FormulaCells Is Nothing Then
 For Each cell In FormulaCells
 If cell.Value < 0 Then
 cell.Interior.Color = RGB(255, 0, 0)
 Else
 cell.Interior.Color = xlNone
 End If

FIGURE 7.8

Using the intersection of the used range and the selected ranged results in fewer cells
to process.

Chapter 7: VBA Programming Examples and Techniques

233

7

 Next cell
 End If

' Process the constant cells
 If Not ConstantCells Is Nothing Then
 For Each cell In ConstantCells
 If cell.Value < 0 Then
 cell.Interior.Color = RGB(255, 0, 0)
 Else
 cell.Interior.Color = xlNone
 End If
 Next cell
 End If
End Sub

Deleting all empty rows
The following procedure deletes all empty rows in the active worksheet. This routine is fast
and efficient because it doesn’t check all rows. It checks only the rows in the used range,
which is determined by using the UsedRange property of the Worksheet object.

Sub DeleteEmptyRows()
 Dim LastRow As Long
 Dim r As Long
 Dim Counter As Long
 Application.ScreenUpdating = False
 LastRow = ActiveSheet.UsedRange.Rows.Count+ActiveSheet.UsedRange
.Rows(1).Row-1
 For r = LastRow To 1 Step -1
 If Application.WorksheetFunction.CountA(Rows(r)) = 0 Then
 Rows(r).Delete
 Counter = Counter + 1
 End If
 Next r
 Application.ScreenUpdating = True
 MsgBox Counter & " empty rows were deleted."
End Sub

Note
The On Error statement is necessary because the SpecialCells method generates an error if no cells qualify.

oN the Web
A workbook that contains the three ColorNegative procedures is available on this book’s website in the
efficient looping.xlsm file.

Part I: Introduction to Excel VBA

234

The first step is to determine the last used row and then assign this row number to the
LastRow variable. This calculation isn’t as simple as you might think because the used
range may or may not begin in row 1. Therefore, LastRow is calculated by determining the
number of rows in the used range, adding the first row number in the used range, and sub-
tracting 1.

The procedure uses Excel’s COUNTA worksheet function to determine whether a row is
empty. If this function returns 0 for a particular row, the row is empty. Note that the pro-
cedure works on the rows from bottom to top and also uses a negative step value in the
For-Next loop. This negative step value is necessary because deleting rows causes all sub-
sequent rows to move up in the worksheet. If the looping occurred from top to bottom, the
counter in the loop wouldn’t be accurate after a row is deleted.

The macro uses another variable, Counter, to keep track of how many rows were deleted.
This number is displayed in a message box when the procedure ends.

Duplicating rows a variable number of times
The example in this section demonstrates how to use VBA to create duplicates of a row.
Figure 7.9 shows a worksheet for an office raffle. Column A contains the name, and column
B contains the number of tickets purchased by each person. Column C contains a random
number (generated by the RAND function). The winner will be determined by sorting the
data based on column C (the highest random number wins).

oN the Web
A workbook that contains this example is available on this book’s website in a file named delete empty
rows.xlsm.

FIGURE 7.9

The goal is to duplicate rows based on the value in column B.

Chapter 7: VBA Programming Examples and Techniques

235

7

The macro duplicates the rows so that each person will have a row for each ticket pur-
chased. For example, Barbara purchased two tickets, so she should have two rows (and two
chances to win).

The procedure to insert the new rows is shown here:

Sub DupeRows()
 Dim cell As Range
' First cell with number of tickets
 Set cell = Range("B2")
 Do While Not IsEmpty(cell)
 If cell > 1 Then
 Range(cell.Offset(1, 0), cell.Offset(cell.Value - 1, _
 0)).EntireRow.Insert
 Range(cell, cell.Offset(cell.Value - 1, 1)).EntireRow.FillDown
 End If
 Set cell = cell.Offset(cell.Value, 0)
 Loop
 End Sub

The cell object variable is initialized to cell B2, the first cell that has a number. The loop
inserts new rows and then copies the row using the FillDown method. The cell variable
is incremented to the next person, and the loop continues until an empty cell is encoun-
tered. Figure 7.10 shows a portion of the worksheet after running this procedure.

FIGURE 7.10

New rows were added, according to the value in column B.

Part I: Introduction to Excel VBA

236

Determining whether a range is contained in another range
The following InRange function accepts two arguments, both Range objects. The function
returns True if the first range is contained in the second range. This function can be used
in a worksheet formula, but it’s more useful when called by another procedure.

Function InRange(rng1, rng2) As Boolean
' Returns True if rng1 is a subset of rng2
 On Error GoTo ErrHandler
 If Union(rng1, rng2).Address = rng2.Address Then
 InRange = True
 Exit Function
 End If
ErrHandler:
 InRange = False
End Function

The Union method of the Application object returns a Range object that represents the
union of two Range objects. The union consists of all the cells from both ranges. If the
address of the union of the two ranges is the same as the address of the second range, the
first range is contained in the second range.

If the two ranges are in different worksheets, the Union method generates an error. The On
Error statement handles this situation by directing execution to the error handler where
the function is set to False.

Determining a cell’s data type
Excel provides a number of built-in functions that can help determine the type of data
contained in a cell. Examples of these functions are ISTEXT, ISLOGICAL, and ISERROR.
In addition, VBA includes functions such as IsEmpty, IsDate, and IsNumeric.

The following function, named CellType, accepts a range argument and returns a string
(Blank, Text, Logical, Error, Date, Time, or Number) that describes the data type of
the upper-left cell in the range.

Function CellType(Rng) As String
' Returns the cell type of the upper-left cell in a range
 Dim TheCell As Range
 Set TheCell = Rng.Range("A1")

oN the Web
A workbook that contains this example is available on this book’s website in the duplicate rows.xlsm file.

oN the Web
A workbook that contains this function is available on this book’s website in the inrange function.xlsm file.

Chapter 7: VBA Programming Examples and Techniques

237

7

 Select Case True
 Case IsEmpty(TheCell)
 CELLTYPE = "Blank"
 Case TheCell.NumberFormat = "@"
 CELLTYPE = "Text"
 Case Application.IsText(TheCell)
 CELLTYPE = "Text"
 Case Application.IsLogical(TheCell)
 CELLTYPE = "Logical"
 Case Application.IsErr(TheCell)
 CELLTYPE = "Error"
 Case IsDate(TheCell)
 CELLTYPE = "Date"
 Case InStr(1, TheCell.Text, ":") <> 0
 CELLTYPE = "Time"
 Case IsNumeric(TheCell)
 CELLTYPE = "Number"
 End Select
End Function

You can use this function in a worksheet formula or from another VBA procedure. In
Figure 7.11, the function is used in formulas in column B. These formulas use data in
column A as the argument. Column C is just a description of the data.

Note the use of the Set TheCell statement. The CellType function accepts a range
argument of any size, but this statement causes it to operate on only the upper-left cell in
the range (which is represented by the TheCell variable).

FIGURE 7.11

Using a function to determine the type of data in a cell

Part I: Introduction to Excel VBA

238

Reading and writing ranges
Many VBA tasks involve transferring values either from an array to a range or from a range
to an array. Excel reads from ranges much faster than it writes to ranges because (presum-
ably) the latter operation involves the calculation engine. The WriteReadRange procedure
that follows demonstrates the relative speeds of writing and reading a range.

This procedure creates an array and then uses For-Next loops to write the array to a range
and then read the range back into the array. It calculates the time required for each opera-
tion by using the VBA Timer function.

Sub WriteReadRange()
 Dim MyArray()
 Dim Time1 As Double
 Dim NumElements As Long, i As Long
 Dim WriteTime As String, ReadTime As String
 Dim Msg As String

 NumElements = 250000
 ReDim MyArray(1 To NumElements)

' Fill the array
 For i = 1 To NumElements
 MyArray(i) = i
 Next i

' Write the array to a range
 Time1 = Timer
 For i = 1 To NumElements
 Cells(i, 1) = MyArray(i)
 Next i
 WriteTime = Format(Timer - Time1, "00:00")

' Read the range into the array
 Time1 = Timer
 For i = 1 To NumElements
 MyArray(i) = Cells(i, 1)
 Next i
 ReadTime = Format(Timer - Time1, "00:00")

oN the Web
A workbook that contains this function is available on this book’s website in the celltype function.xlsm
file.

Chapter 7: VBA Programming Examples and Techniques

239

7

' Show results
 Msg = "Write: " & WriteTime
 Msg = Msg & vbCrLf
 Msg = Msg & "Read: " & ReadTime
 MsgBox Msg, vbOKOnly, NumElements & " Elements"
End Sub

The results of the timed test will be presented in the form of a message box telling you how
long it took to write and read 250,000 elements to and from an array (see Figure 7.12).

A better way to write to a range
The example in the preceding section uses a For-Next loop to transfer the contents of an
array to a worksheet range. In this section, we demonstrate a more efficient way to accom-
plish this task.

Start with the example that follows, which illustrates the most obvious (but not the
most efficient) way to fill a range. This example uses a For-Next loop to insert its values
in a range.

Sub LoopFillRange()
' Fill a range by looping through cells

 Dim CellsDown As Long, CellsAcross As Integer
 Dim CurrRow As Long, CurrCol As Integer
 Dim StartTime As Double
 Dim CurrVal As Long

' Get the dimensions
 CellsDown = InputBox("How many cells down?")
 If CellsDown = 0 Then Exit Sub

FIGURE 7.12

Displaying the time to write to a range and read from a range, using a loop

Part I: Introduction to Excel VBA

240

 CellsAcross = InputBox("How many cells across?")
 If CellsAcross = 0 Then Exit Sub

' Record starting time
 StartTime = Timer

' Loop through cells and insert values
 CurrVal = 1
 Application.ScreenUpdating = False
 For CurrRow = 1 To CellsDown
 For CurrCol = 1 To CellsAcross
 ActiveCell.Offset(CurrRow - 1, _
 CurrCol - 1).Value = CurrVal
 CurrVal = CurrVal + 1
 Next CurrCol
 Next CurrRow

' Display elapsed time
 Application.ScreenUpdating = True
 MsgBox Format(Timer - StartTime, "00.00") & " seconds"
End Sub

The example that follows demonstrates a much faster way to produce the same result. This
code inserts the values into an array and then uses a single statement to transfer the con-
tents of an array to the range.

Sub ArrayFillRange()
' Fill a range by transferring an array

 Dim CellsDown As Long, CellsAcross As Integer
 Dim i As Long, j As Integer
 Dim StartTime As Double
 Dim TempArray() As Long
 Dim TheRange As Range
 Dim CurrVal As Long

' Get the dimensions
 CellsDown = InputBox("How many cells down?")
 If CellsDown = 0 Then Exit Sub
 CellsAcross = InputBox("How many cells across?")
 If CellsAcross = 0 Then Exit Sub

 ' Record starting time
 StartTime = Timer

' Redimension temporary array
 ReDim TempArray(1 To CellsDown, 1 To CellsAcross)

Chapter 7: VBA Programming Examples and Techniques

241

7

' Set worksheet range
 Set TheRange = ActiveCell.Range(Cells(1, 1), _
 Cells(CellsDown, CellsAcross))

' Fill the temporary array
 CurrVal = 0
 Application.ScreenUpdating = False
 For i = 1 To CellsDown
 For j = 1 To CellsAcross
 TempArray(i, j) = CurrVal + 1
 CurrVal = CurrVal + 1
 Next j
 Next i

' Transfer temporary array to worksheet
 TheRange.Value = TempArray

' Display elapsed time
 Application.ScreenUpdating = True
 MsgBox Format(Timer - StartTime, "00.00") & " seconds"
End Sub

On the author’s system, using the loop method to fill a 1000 × 250-cell range (250,000 cells)
took 15.80 seconds. The array transfer method took only 0.15 seconds to generate the same
results—more than 100 times faster! The moral of this story? If you need to transfer large
amounts of data to a worksheet, avoid looping whenever possible.

Transferring one-dimensional arrays
The example in the preceding section involves a two-dimensional array, which works out
nicely for row-and-column-based worksheets.

When transferring a one-dimensional array to a range, the range must be horizontal—that
is, one row with multiple columns. If you need the data in a vertical range instead, you

Note
The timing results are highly dependent on the presence of formulas. Generally, you’ll get faster transfer times if no
workbooks are open that contain formulas or if you set the calculation mode to Manual.

oN the Web
A workbook that contains the WriteReadRange, LoopFillRange, and ArrayFillRange procedures is
available on this book’s website. The file is named loop vs array fill range.xlsm.

Part I: Introduction to Excel VBA

242

must first transpose the array to make it vertical. You can use Excel’s TRANSPOSE function
to do this. The following example transfers a 100-element array to a vertical worksheet
range (A1:A100):

Range("A1:A100").Value = Application.WorksheetFunction.
Transpose(MyArray)

Transferring a range to a variant array
This section discusses yet another way to work with worksheet data in VBA. The following
example transfers a range of cells to a two-dimensional variant array. Then message boxes
display the upper bounds for each dimension of the variant array.

Sub RangeToVariant()
 Dim x As Variant
 x = Range("A1:L600").Value
 MsgBox UBound(x, 1)
 MsgBox UBound(x, 2)
End Sub

In this example, the first message box displays 600 (the number of rows in the original
range), and the second message box displays 12 (the number of columns). You’ll find that
transferring the range data to a variant array is virtually instantaneous.

The following example reads a range (named data) into a variant array, performs a simple
multiplication operation on each element in the array, and then transfers the variant array
back to the range:

Sub RangeToVariant2()
 Dim x As Variant
 Dim r As Long, c As Integer

' Read the data into the variant
 x = Range("data").Value

' Loop through the variant array
 For r = 1 To UBound(x, 1)
 For c = 1 To UBound(x, 2)
' Multiply by 2
 x(r, c) = x(r, c) * 2
 Next c
 Next r

' Transfer the variant back to the sheet
 Range("data") = x
End Sub

You’ll find that this procedure runs amazingly fast. Working with 30,000 cells took less
than 1 second on this author’s computer.

Chapter 7: VBA Programming Examples and Techniques

243

7

Selecting cells by value
The example in this section demonstrates how to select cells based on their value. Oddly,
Excel doesn’t provide a direct way to perform this operation. The SelectByValue proce-
dure follows. In this example, the code selects cells that contain a negative value, but you
can easily change the code to select cells based on other criteria.

Sub SelectByValue()
 Dim Cell As Object
 Dim FoundCells As Range
 Dim WorkRange As Range

 If TypeName(Selection) <> "Range" Then Exit Sub

' Check all or selection?
 If Selection.CountLarge = 1 Then
 Set WorkRange = ActiveSheet.UsedRange
 Else
 Set WorkRange = Application.Intersect(Selection, ActiveSheet
.UsedRange)
 End If

' Reduce the search to numeric cells only
 On Error Resume Next
 Set WorkRange = WorkRange.SpecialCells(xlConstants, xlNumbers)
 If WorkRange Is Nothing Then Exit Sub
 On Error GoTo 0

' Loop through each cell, add to the FoundCells range if it qualifies
 For Each Cell In WorkRange
 If Cell.Value < 0 Then
 If FoundCells Is Nothing Then
 Set FoundCells = Cell
 Else
 Set FoundCells = Union(FoundCells, Cell)
 End If
 End If
 Next Cell

' Show message, or select the cells
 If FoundCells Is Nothing Then

oN the Web
A workbook that contains this example is available on this book’s website in the variant transfer.xlsm file.

Part I: Introduction to Excel VBA

244

 MsgBox "No cells qualify."
 Else
 FoundCells.Select
 MsgBox "Selected " & FoundCells.Count & " cells."
 End If
End Sub

The procedure starts by checking the selection. If it’s a single cell, the used range of the
worksheet is searched. If the selection is at least two cells, only the selected range is
searched. The range to be searched is further refined by using the SpecialCells method
to create a Range object that consists only of the numeric constants.

The code in the For-Next loop examines the cell’s value. If it meets the criterion (less
than 0), the cell is added to the FoundCells Range object by using the Union method.
Note that you can’t use the Union method for the first cell. If the FoundCells range con-
tains no cells, attempting to use the Union method will generate an error. Therefore, the
code checks whether FoundCells is Nothing.

When the loop ends, the FoundCells object will consist of the cells that meet the cri-
terion (or will be Nothing if no cells were found). If no cells are found, a message box
appears saying so. Otherwise, the cells are selected, and a message box displays the number
of cells selected.

Copying a noncontiguous range
If you’ve ever attempted to copy a noncontiguous range selection, you discovered that
Excel doesn’t support such an operation. Attempting to do so displays the following
error message:

That command cannot be used on multiple selections.

An exception is when you attempt to copy a multiple selection that consists of entire rows
or columns or when the multiple selections are in the same row(s) or same column(s). Excel
does allow those operations. But when you paste the copied cells, all blanks are removed.

When you encounter a limitation in Excel, you can often circumvent it by creating a macro.
The example in this section is a VBA procedure that allows you to copy a multiple selection
to another location.

Sub CopyMultipleSelection()
 Dim SelAreas() As Range
 Dim PasteRange As Range
 Dim UpperLeft As Range
 Dim NumAreas As Long, i As Long
 Dim TopRow As Long, LeftCol As Long

oN the Web
This example is available on this book’s website in the select by value.xlsm file.

Chapter 7: VBA Programming Examples and Techniques

245

7

 Dim RowOffset As Long, ColOffset As Long

 If TypeName(Selection) <> "Range" Then Exit Sub

' Store the areas as separate Range objects
 NumAreas = Selection.Areas.Count
 ReDim SelAreas(1 To NumAreas)
 For i = 1 To NumAreas
 Set SelAreas(i) = Selection.Areas(i)
 Next

' Determine the upper-left cell in the multiple selection
 TopRow = ActiveSheet.Rows.Count
 LeftCol = ActiveSheet.Columns.Count
 For i = 1 To NumAreas
 If SelAreas(i).Row < TopRow Then TopRow = SelAreas(i).Row
 If SelAreas(i).Column < LeftCol Then LeftCol = SelAreas(i)
.Column
 Next
 Set UpperLeft = Cells(TopRow, LeftCol)

' Get the paste address
 On Error Resume Next
 Set PasteRange = Application.InputBox _
 (Prompt:="Specify the upper-left cell for the paste range:", _
 Title:="Copy Multiple Selection", _
 Type:=8)
 On Error GoTo 0
' Exit if canceled
 If TypeName(PasteRange) <> "Range" Then Exit Sub

' Make sure only the upper-left cell is used
 Set PasteRange = PasteRange.Range("A1")

' Copy and paste each area
 For i = 1 To NumAreas
 RowOffset = SelAreas(i).Row - TopRow
 ColOffset = SelAreas(i).Column - LeftCol
 SelAreas(i).Copy PasteRange.Offset(RowOffset, ColOffset)
 Next i
End Sub

Figure 7.13 shows the prompt to select the destination location.

oN the Web
This book’s website contains a workbook with this example, plus another version that warns the user if data will be
overwritten. The file is named copy multiple selection.xlsm.

Part I: Introduction to Excel VBA

246

Working with Workbooks and Sheets
The examples in this section demonstrate various ways to use VBA to work with workbooks
and worksheets.

Saving all workbooks
The following procedure loops through all of the workbooks in the Workbooks collection
and saves each file that has been saved previously:

Public Sub SaveAllWorkbooks()
 Dim Book As Workbook
 For Each Book In Workbooks
 If Book.Path <> "" Then Book.Save
 Next Book
End Sub

Note the use of the Path property. If a workbook’s Path property is empty, the file has
never been saved (it’s a newly created workbook). This procedure ignores such workbooks
and saves only the workbooks that have a nonempty Path property.

FIGURE 7.13

Using Excel’s InputBox method to prompt for a cell location

Chapter 7: VBA Programming Examples and Techniques

247

7

A more efficient approach also checks the Saved property. This property is True if the
workbook has not been changed since it was last saved. The SaveAllWorkbooks2 proce-
dure doesn’t save files that don’t need to be saved.

Public Sub SaveAllWorkbooks2()
 Dim Book As Workbook
 For Each Book In Workbooks
 If Book.Path <> "" Then
 If Book.Saved <> True Then
 Book.Save
 End If
 End If
 Next Book
End Sub

Saving and closing all workbooks
The following procedure loops through the Workbooks collection. The code saves and
closes all workbooks.

Sub CloseAllWorkbooks()
 Dim Book As Workbook
 For Each Book In Workbooks
 If Book.Name <> ThisWorkbook.Name Then
 Book.Close savechanges:=True
 End If
 Next Book
 ThisWorkbook.Close savechanges:=True
End Sub

The procedure uses an If statement in the For-Next loop to determine whether the work-
book is the one that contains the code. This statement is necessary because closing the
workbook that contains the procedure would end the code, and subsequent workbooks
wouldn’t be affected. After all the other workbooks are closed, the workbook that contains
the code closes itself.

Hiding all but the selection
The example in this section hides all rows and columns in a worksheet except those in the
current range selection:

Sub HideRowsAndColumns()
 Dim row1 As Long, row2 As Long
 Dim col1 As Long, col2 As Long

 If TypeName(Selection) <> "Range" Then Exit Sub

' If last row or last column is hidden, unhide all and quit
 If Rows(Rows.Count).EntireRow.Hidden Or _
 Columns(Columns.Count).EntireColumn.Hidden Then

Part I: Introduction to Excel VBA

248

 Cells.EntireColumn.Hidden = False
 Cells.EntireRow.Hidden = False
 Exit Sub
 End If

 row1 = Selection.Rows(1).Row
 row2 = row1 + Selection.Rows.Count - 1
 col1 = Selection.Columns(1).Column
 col2 = col1 + Selection.Columns.Count - 1

 Application.ScreenUpdating = False
 On Error Resume Next
' Hide rows
 Range(Cells(1, 1), Cells(row1 - 1, 1)).EntireRow.Hidden = True
 Range(Cells(row2 + 1, 1), Cells(Rows.Count, 1)).EntireRow
.Hidden = True
' Hide columns
 Range(Cells(1, 1), Cells(1, col1 - 1)).EntireColumn.Hidden = True
 Range(Cells(1, col2 + 1), Cells(1, Columns.Count)).EntireColumn
.Hidden = True
End Sub

Figure 7.14 shows an example. If the range selection consists of a noncontiguous range, the
first area is used as the basis for hiding rows and columns. Note that it’s a toggle. Executing
the procedures when the last row or last column is hidden unhides all rows and columns.

oN the Web
A workbook with this example is available on this book’s website in the hide rows and columns.xlsm file.

FIGURE 7.14

All rows and columns are hidden, except for a range (G7:L19).

Chapter 7: VBA Programming Examples and Techniques

249

7

Creating a hyperlink table of contents
The CreateTOC procedure inserts a new worksheet at the beginning of the active work-
book. It then creates a table of contents, in the form of a list of hyperlinks to each
worksheet.

Sub CreateTOC()
 Dim i As Integer
 Sheets.Add Before:=Sheets(1)
 For i = 2 To Worksheets.Count
 ActiveSheet.Hyperlinks.Add _
 Anchor:=Cells(i, 1), _
 Address:="", _
 SubAddress:="'" & Worksheets(i).Name & "'!A1", _
 TextToDisplay:=Worksheets(i).Name
 Next i
End Sub

It’s not possible to create a hyperlink to a chart sheet, so the code uses the Worksheet col-
lection rather than the Sheets collection.

Figure 7.15 shows an example of a hyperlink table of contents that contains worksheets
composed of month names.

oN the Web
A workbook with this example is available on this book’s website in the create hyperlinks.xlsm file.

FIGURE 7.15

Hyperlinks to each worksheet, created by a macro

Part I: Introduction to Excel VBA

250

Synchronizing worksheets
If you use multisheet workbooks, you probably know that Excel can’t synchronize the
sheets in a workbook. In other words, there is no automatic way to force all sheets to
have the same selected range and upper-left cell. The VBA macro that follows uses the
active worksheet as a base and then performs the following on all other worksheets in
the workbook:

 ■ Selects the same range as the active sheet
 ■ Makes the upper-left cell the same as the active sheet

The following is the listing for the procedure:

Sub SynchSheets()
' Duplicates the active sheet's active cell and upper-left cell
' Across all worksheets
 If TypeName(ActiveSheet) <> "Worksheet" Then Exit Sub
 Dim UserSheet As Worksheet, sht As Worksheet
 Dim TopRow As Long, LeftCol As Integer
 Dim UserSel As String

 Application.ScreenUpdating = False

' Remember the current sheet
 Set UserSheet = ActiveSheet

' Store info from the active sheet
 TopRow = ActiveWindow.ScrollRow
 LeftCol = ActiveWindow.ScrollColumn
 UserSel = ActiveWindow.RangeSelection.Address

' Loop through the worksheets
 For Each sht In ActiveWorkbook.Worksheets
 If sht.Visible Then 'skip hidden sheets
 sht.Activate
 Range(UserSel).Select
 ActiveWindow.ScrollRow = TopRow
 ActiveWindow.ScrollColumn = LeftCol
 End If
 Next sht

' Restore the original position
 UserSheet.Activate
 Application.ScreenUpdating = True
End Sub

oN the Web
A workbook with this example is available on this book’s website in the synchronize sheets.xlsm file.

Chapter 7: VBA Programming Examples and Techniques

251

7

VBA Techniques
The examples in this section illustrate common VBA techniques that you might be able to
adapt for your own projects.

Toggling a Boolean property
A Boolean property is one that is either True or False. The easiest way to toggle a Boolean
property is to use the Not operator, as shown in the following example, which toggles the
WrapText property of a selection:

Sub ToggleWrapText()
' Toggles text wrap alignment for selected cells
 If TypeName(Selection) = "Range" Then
 Selection.WrapText = Not ActiveCell.WrapText
 End If
End Sub

You can modify this procedure to toggle other Boolean properties.

Note that the active cell is used as the basis for toggling. When a range is selected and the
property values in the cells are inconsistent (for example, some cells are bold and others
are not), Excel uses the active cell to determine how to toggle. If the active cell is bold, for
example, all cells in the selection are made not bold when you click the Bold button. This
simple procedure mimics the way Excel works, which is usually the best practice.

Note also that this procedure uses the TypeName function to check whether the selection
is a range. If the selection isn’t a range, nothing happens.

You can use the Not operator to toggle many other properties. For example, to toggle the
display of row and column borders in a worksheet, use the following code:

ActiveWindow.DisplayHeadings = Not ActiveWindow.DisplayHeadings

To toggle the display of gridlines in the active worksheet, use the following code:

ActiveWindow.DisplayGridlines = Not ActiveWindow.DisplayGridlines

Displaying the date and time
If you understand the serial number system that Excel uses to store dates and times, you
won’t have any problems using dates and times in your VBA procedures.

The DateAndTime procedure displays a message box with the current date and time, as
depicted in Figure 7.16. This example also displays a personalized message in the message
box’s title bar.

The procedure uses the Date function as an argument for the Format function. The result
is a string with a nicely formatted date. We used the same technique to get a nicely for-
matted time.

Part I: Introduction to Excel VBA

252

Sub DateAndTime()
' Displays the current date and time
 Dim TheDate As String, TheTime As String
 Dim Greeting As String
 Dim FullName As String, FirstName As String
 Dim SpaceInName As Long

 TheDate = Format(Date, "Long Date")
 TheTime = Format(Time, "Medium Time")

' Determine greeting based on time
 Select Case Time
 Case Is < TimeSerial(12, 0, 0): Greeting = "Good Morning, "
 Case Is >= TimeSerial(17, 0, 0): Greeting = "Good Evening, "
 Case Else: Greeting = "Good Afternoon, "
 End Select

' Last saved
 LastSaved = "Document Last Saved: " & _
 ActiveWorkbook.BuiltinDocumentProperties(12)

' Append user's first name to greeting
 FullName = Application.UserName
 SpaceInName = InStr(1, FullName, " ", 1)

' Handle situation when name has no space
 If SpaceInName = 0 Then SpaceInName = Len(FullName)
 FirstName = Left(FullName, SpaceInName)
 Greeting = Greeting & FirstName

' Show the message
 MsgBox TheDate & vbCrLf & vbCrLf & "It's " & TheTime, vbOKOnly,
Greeting
End Sub

FIGURE 7.16

A message box displaying the date and time

Chapter 7: VBA Programming Examples and Techniques

253

7

In the preceding example, we used named formats (Long Date and Medium Time) to
ensure that the macro will work properly regardless of the user’s international settings. You
can, however, use other formats. For example, to display the date in mm/dd/yy format, you
can use a statement like the following:

TheDate = Format(Date, "mm/dd/yy")

We used a Select Case construct to base the greeting displayed in the message box’s
title bar on the time of day. VBA time values work just as they do in Excel. If the time is
less than .5 (noon), it’s morning. If it’s greater than .7083 (5 p.m.), it’s evening. Other-
wise, it’s afternoon. We took the easy way out and used VBA’s TimeValue function, which
returns a time value from a string.

The next series of statements determines the user’s first name, as recorded in the General
tab in Excel’s Options dialog box. We used the VBA InStr function to locate the first space
in the user’s name. The MsgBox function concatenates the date and time but uses the
built-in vbCrLf constant to insert a line break between them. vbOKOnly is a predefined
constant that returns 0, causing the message box to appear with only an OK button. The
final argument is the Greeting, constructed earlier in the procedure.

Displaying friendly time
If you’re not a stickler for 100 percent accuracy, you might like the FT function, listed
here. FT, which stands for friendly time, displays a time difference in words.

Function FT(t1, t2)
 Dim SDif As Double, DDif As Double

 If Not (IsDate(t1) And IsDate(t2)) Then
 FT = CVErr(xlErrValue)
 Exit Function
 End If

 DDif = Abs(t2 - t1)
 SDif = DDif * 24 * 60 * 60

 If DDif < 1 Then
 If SDif < 10 Then FT = "Just now": Exit Function
 If SDif < 60 Then FT = SDif & " seconds ago": Exit Function
 If SDif < 120 Then FT = "a minute ago": Exit Function
 If SDif < 3600 Then FT = Round(SDif / 60, 0) & _
 "minutes ago": Exit Function
 If SDif < 7200 Then FT = "An hour ago": Exit Function
 If SDif < 86400 Then FT = Round(SDif / 3600, 0) & _
 " hours ago": Exit Function

Note
The DateAndTime procedure is available on this book’s website, in a file named date and time.xlsm.

Part I: Introduction to Excel VBA

254

 End If
 If DDif = 1 Then FT = "Yesterday": Exit Function
 If DDif < 7 Then FT = Round(DDif, 0) & " days ago": Exit Function
 If DDif < 31 Then FT = Round(DDif / 7, 0) & " weeks ago": Exit
Function
 If DDif < 365 Then FT = Round(DDif / 30, 0) & " months ago": Exit
Function
 FT = Round(DDif / 365, 0) & " years ago"
End Function

Figure 7.17 shows examples of this function used in formulas. If you actually have a need for
such a way to display time differences, this procedure leaves lots of room for improvement.
For example, you can write code to prevent displays such as 1 months ago and 1 years ago.

Getting a list of fonts
If you need to get a list of all installed fonts, you’ll find that Excel doesn’t provide a direct
way to retrieve that information. The technique described here takes advantage of the fact
that Excel still supports the old CommandBar properties and methods for compatibility
with pre–Excel 2007 versions. These properties and methods were used to work with tool-
bars and menus.

The ShowInstalledFonts macro displays a list of the installed fonts in column A of the
active worksheet. It creates a temporary toolbar (a CommandBar object), adds the Font
control, and reads the font names from that control. The temporary toolbar is then deleted.

Sub ShowInstalledFonts()
 Dim FontList As CommandBarControl
 Dim TempBar As CommandBar
 Dim i As Long

Note
This example is available on this book’s website. The file is named friendly time.xlsm.

FIGURE 7.17

Using a function to display time differences in a friendly manner

Chapter 7: VBA Programming Examples and Techniques

255

7

' Create temporary CommandBar
 Set TempBar = Application.CommandBars.Add
 Set FontList = TempBar.Controls.Add(ID:=1728)

' Put the fonts into column A
 Range("A:A").ClearContents
 For i = 0 To FontList.ListCount - 1
 Cells(i + 1, 1) = FontList.List(i + 1)
 Next i

' Delete temporary CommandBar
 TempBar.Delete
End Sub

tip
As an option, you can display each font name in the actual font (as shown in Figure 7.18). To do so, add this state-
ment inside the For-Next loop:

Cells(i + 1, 1).Font.Name = FontList.List(i + 1)

Be aware, however, that using many fonts in a workbook can eat up lots of system resources and could even crash
your system.

oN the Web
This procedure is available on the book’s website in the list fonts.xlsm file.

FIGURE 7.18

Listing font names in the actual fonts

Part I: Introduction to Excel VBA

256

Sorting an array
Although Excel has a built-in command to sort worksheet ranges, VBA doesn’t offer a
method to sort arrays. One viable (but cumbersome) work-around is to transfer your array
to a worksheet range, sort it by using Excel’s commands, and then return the result to your
array. This method is surprisingly fast, but if you need something faster, use a sorting rou-
tine written in VBA.

In this section, we cover four different sorting techniques.

Worksheet sort A worksheet sort transfers an array to a worksheet range, sorts
it, and transfers it back to the array. This procedure accepts an array as its
only argument.

Bubble sort A bubble sort is a simple sorting technique (also used in the Chapter 4
sheet-sorting example). Although easy to program, the bubble-sorting algorithm
tends to be slow, especially with many elements.

Quick sort A quick sort is a much faster sorting routine than bubble sort, but it is
also more difficult to understand. This technique works only with Integer and
Long data types.

Counting sort A counting sort is lightning fast but difficult to understand. Like the
quick sort, this technique works only with Integer and Long data types.

The worksheet sort algorithm is amazingly fast, especially when you consider that the array
is transferred to the sheet, sorted, and then transferred back to the array.

The bubble sort algorithm is the simplest and is reasonably fast with small arrays, but for
larger arrays (more than 10,000 elements), forget it. The quick sort and counting sort algo-
rithms are blazingly fast, but they’re limited to Integer and Long data types.

Figure 7.19 shows the dialog box for this project.

Processing a series of files
One common use for macros is to perform repetitive tasks. The example in this section
demonstrates how to execute a macro that operates on several different files stored on
disk. This example, which may help you set up your own routine for this type of task,
prompts the user for a file specification and then processes all matching files. In this case,
processing consists of importing the file and entering a series of summary formulas that
describe the data in the file.

oN the Web
The book’s website includes a workbook application that demonstrates these sorting methods. This workbook,
named sorting demo.xlsm, is useful for comparing these techniques with arrays of varying sizes. However, you
can also copy the procedures and use them in your code.

Chapter 7: VBA Programming Examples and Techniques

257

7

Sub BatchProcess()
 Dim FileSpec As String
 Dim i As Integer
 Dim FileName As String
 Dim FileList() As String
 Dim FoundFiles As Integer

' Specify path and file spec
 FileSpec = ThisWorkbook.Path & "\" & "text??.txt"
 FileName = Dir(FileSpec)

' Was a file found?
 If FileName <> "" Then
 FoundFiles = 1
 ReDim Preserve FileList(1 To FoundFiles)
 FileList(FoundFiles) = FileName
 Else
 MsgBox "No files were found that match " & FileSpec
 Exit Sub
 End If

' Get other filenames
 Do
 FileName = Dir
 If FileName = "" Then Exit Do
 FoundFiles = FoundFiles + 1
 ReDim Preserve FileList(1 To FoundFiles)
 FileList(FoundFiles) = FileName & "*"
 Loop

FIGURE 7.19

Comparing the time required to perform sorts of various array sizes

Part I: Introduction to Excel VBA

258

' Loop through the files and process them
 For i = 1 To FoundFiles
 Call ProcessFiles(FileList(i))
 Next i
End Sub

The matching filenames are stored in an array named FoundFiles, and the procedure uses
a For-Next loop to process the files. Within the loop, the processing is done by calling
the ProcessFiles procedure, which follows. This simple procedure uses the OpenText
method to import the file and then inserts five formulas. You may, of course, substitute
your own routine in place of this one.

Sub ProcessFiles(FileName As String)
' Import the file
 Workbooks.OpenText FileName:=FileName, _
 Origin:=xlWindows, _
 StartRow:=1, _
 DataType:=xlFixedWidth, _
 FieldInfo:= _
 Array(Array(0, 1), Array(3, 1), Array(12, 1))
' Enter summary formulas
 Range("D1").Value = "A"
 Range("D2").Value = "B"
 Range("D3").Value = "C"
 Range("E1:E3").Formula = "=COUNTIF(B:B,D1)"
 Range("F1:F3").Formula = "=SUMIF(B:B,D1,C:C)"
End Sub

Some Useful Functions for Use in Your Code
In this section, we present some custom utility functions that you may find useful in
your own applications and that may provide inspiration for creating similar functions.
These functions are most useful when called from another VBA procedure. Therefore,
they’re declared by using the Private keyword so that they won’t appear in Excel’s Insert
Function dialog box.

oN the Web
This example, named batch processing.xlsm, is available on the book’s website. It uses three additional
files (also available for download): text01.txt, text02.txt, and text03.txt. You’ll need to modify the rou-
tine to import other text files.

For more information about working with files using VBA, refer to Chapter 11, “Working with External
Data and Files.”

Chapter 7: VBA Programming Examples and Techniques

259

7

The FileExists function
The FileExists function takes one argument (a path with a filename) and returns True
if the file exists.

Private Function FileExists(fname) As Boolean
' Returns TRUE if the file exists
 FileExists = (Dir(fname) <> "")
End Function

The FileNameOnly function
The FileNameOnly function accepts one argument (a path with a filename) and returns
only the filename. In other words, it strips out the path.

Private Function FileNameOnly(pname) As String
' Returns the filename from a path/filename string
 Dim temp As Variant
 length = Len(pname)
 temp = Split(pname, Application.PathSeparator)
 FileNameOnly = temp(UBound(temp))
End Function

The function uses the VBA Split function, which accepts a string (that includes delimiter
characters) and returns a variant array that contains the elements between the delimiter
characters. In this case, the temp variable contains an array that consists of each text
string between the Application.PathSeparator (usually a backslash character). For
another example of the Split function, see the section “Extracting the nth element from
a string” later in this chapter.

If the argument is c:\excel files\backup\budget.xlsx, the function returns the
string budget.xlsx.

The FileNameOnly function works with any path and filename (even if the file does
not exist). If the file exists, the following function is a simpler way to strip the path and
return only the filename:

Private Function FileNameOnly2(pname) As String
 FileNameOnly2 = Dir(pname)
End Function

The PathExists function
The PathExists function accepts one argument (a path) and returns True if the
path exists.

oN the Web
The examples in this section are available on the book’s website in the vba utility functions.xlsm file.

Part I: Introduction to Excel VBA

260

Private Function PathExists(pname) As Boolean
' Returns TRUE if the path exists
 If Dir(pname, vbDirectory) = "" Then
 PathExists = False
 Else
 PathExists = (GetAttr(pname) And vbDirectory) = vbDirectory
 End If
End Function

The RangeNameExists function
The RangeNameExists function accepts a single argument (a range name) and returns
True if the range name exists in the active workbook.

Private Function RangeNameExists(nname) As Boolean
' Returns TRUE if the range name exists
 Dim n As Name
 RangeNameExists = False
 For Each n In ActiveWorkbook.Names
 If UCase(n.Name) = UCase(nname) Then
 RangeNameExists = True
 Exit Function
 End If
 Next n
End Function

Another way to write this function follows. This version attempts to create an object vari-
able using the name. If doing so generates an error, the name doesn’t exist.

Private Function RangeNameExists2(nname) As Boolean
' Returns TRUE if the range name exists
 Dim n As Range
 On Error Resume Next
 Set n = Range(nname)
 If Err.Number = 0 Then RangeNameExists2 = True _
 Else RangeNameExists2 = False
End Function

The SheetExists function
The SheetExists function accepts one argument (a worksheet name) and returns True if
the worksheet exists in the active workbook.

Private Function SheetExists(sname) As Boolean
' Returns TRUE if sheet exists in the active workbook
 Dim x As Object
 On Error Resume Next
 Set x = ActiveWorkbook.Sheets(sname)

Chapter 7: VBA Programming Examples and Techniques

261

7

 If Err.Number = 0 Then SheetExists = True Else SheetExists = False
End Function

The WorkbookIsOpen function
The WorkbookIsOpen function accepts one argument (a workbook name) and returns
True if the workbook is open.

Private Function WorkbookIsOpen(wbname) As Boolean
' Returns TRUE if the workbook is open
 Dim x As Workbook
 On Error Resume Next
 Set x = Workbooks(wbname)
 If Err.Number = 0 Then WorkbookIsOpen = True _
 Else WorkbookIsOpen = False
End Function

Testing for membership in a collection
The following function procedure is a generic function that you can use to determine whether an
object is a member of a collection:

Private Function IsInCollection_
 (Coln As Object, Item As String) As Boolean
 Dim Obj As Object
 On Error Resume Next
 Set Obj = Coln(Item)
 IsInCollection = Not Obj Is Nothing
End Function

This function accepts two arguments: the collection (an object) and the item (a string) that might or
might not be a member of the collection. The function attempts to create an object variable that rep-
resents the item in the collection. If the attempt is successful, the function returns True; otherwise,
it returns False.

You can use the IsInCollection function in place of three other functions listed in this chapter:
RangeNameExists, SheetExists, and WorkbookIsOpen. To determine whether a range named Data
exists in the active workbook, call the IsInCollection function with this statement:

MsgBox IsInCollection(ActiveWorkbook.Names, "Data")

To determine whether a workbook named Budget is open, use this statement:

MsgBox IsInCollection(Workbooks, "budget.xlsx")

To determine whether the active workbook contains a sheet named Sheet1, use this statement:

MsgBox IsInCollection(ActiveWorkbook.Worksheets, "Sheet1")

Part I: Introduction to Excel VBA

262

Retrieving a value from a closed workbook
VBA doesn’t include a method to retrieve a value from a closed workbook file. You can, how-
ever, take advantage of Excel’s capability to work with linked files. This section contains
a custom VBA function (GetValue, which follows) that retrieves a value from a closed
workbook. It does so by calling an XLM macro, which is an old-style macro used in versions
before Excel 5. Fortunately, Excel still supports this old macro system.

Private Function GetValue(path, file, sheet, ref)
' Retrieves a value from a closed workbook
 Dim arg As String

' Make sure the file exists
 If Right(path, 1) <> "\" Then path = path & "\"
 If Dir(path & file) = "" Then
 GetValue = "File Not Found"
 Exit Function
 End If

' Create the argument
 arg = "'" & path & "[" & file & "]" & sheet & "'!" & _
 Range(ref).Range("A1").Address(, , xlR1C1)

' Execute an XLM macro
 GetValue = ExecuteExcel4Macro(arg)
End Function

The GetValue function takes four arguments.

path: The drive and path to the closed file (for example, "d:\files")

file: The workbook name (for example, "budget.xlsx")

sheet: The worksheet name (for example, "Sheet1")

ref: The cell reference (for example, "C4")

The following Sub procedure demonstrates how to use the GetValue function. It dis-
plays the value in cell A1 in Sheet1 of a file named 2019budget.xlsx, located in the
XLFiles\Budget directory on drive C.

Sub TestGetValue()
 Dim p As String, f As String
 Dim s As String, a As String

 p = "c:\XLFiles\Budget"
 f = "2019budget.xlsx"
 s = "Sheet1"
 a = "A1"
 MsgBox GetValue(p, f, s, a)
End Sub

Chapter 7: VBA Programming Examples and Techniques

263

7

Another example follows. This procedure reads 1,200 values (100 rows and 12 columns) from
a closed file and then places the values into the active worksheet.

Sub TestGetValue2()
 Dim p As String, f As String
 Dim s As String, a As String
 Dim r As Long, c As Long

 p = "c:\XLFiles\Budget"
 f = "2019Budget.xlsx"
 s = "Sheet1"
 Application.ScreenUpdating = False
 For r = 1 To 100
 For c = 1 To 12
 a = Cells(r, c).Address
 Cells(r, c) = GetValue(p, f, s, a)
 Next c
 Next r
End Sub

An alternative is to write code that turns off screen updating, opens the file, gets the
value, and then closes the file. Unless the file is very large, the user won’t even notice that
a file is being opened.

Some Useful Worksheet Functions
The examples in this section are custom functions that you can use in worksheet formulas.
Remember, you must define these Function procedures in a VBA module (not a code
module associated with ThisWorkbook, a Sheet, or a UserForm).

Note
The GetValue function doesn’t work in a worksheet formula. However, there is no need to use this function in a
formula. You can simply create a link formula to retrieve a value from a closed file.

oN the Web
This example is available on this book’s website in the value from a closed workbook.xlsm file. The
example uses a file named myworkbook.xlsx for the closed file.

oN the Web
The examples in this section are available on the book’s website in the worksheet functions.xlsm file.

Part I: Introduction to Excel VBA

264

Returning cell formatting information
This section contains a number of custom functions that return information about a cell’s
formatting. These functions are useful if you need to sort data based on formatting (for
example, sort in such a way that all bold cells are together).

The following function returns TRUE if its single-cell argument has bold formatting. If a
range is passed as the argument, the function uses the upper-left cell of the range.

Function ISBOLD(cell) As Boolean
' Returns TRUE if cell is bold
 ISBOLD = cell.Range("A1").Font.Bold
End Function

Note that this function works only with explicitly applied formatting. It doesn’t work for
formatting applied using conditional formatting. Excel 2010 introduced DisplayFormat,
a new object that takes conditional formatting into account. Here’s the ISBOLD function
rewritten so that it works also with bold formatting applied as a result of conditional
formatting:

Function ISBOLD(cell) As Boolean
' Returns TRUE if cell is bold, even if from conditional formatting
 ISBOLD = cell.Range("A1").DisplayFormat.Font.Bold
End Function

The following function returns TRUE if its single-cell argument has italic formatting:

Function ISITALIC(cell) As Boolean
' Returns TRUE if cell is italic
 ISITALIC = cell.Range("A1").Font.Italic
End Function

Both functions will return an error if the cell has mixed formatting—for example, if only
some characters are bold. The following function returns TRUE only if all characters in the
cell are bold:

Function ALLBOLD(cell) As Boolean
' Returns TRUE if all characters in cell are bold
 If IsNull(cell.Font.Bold) Then
 ALLBOLD = False
 Else
 ALLBOLD = cell.Font.Bold

CautioN
You’ll find that these functions aren’t always updated automatically because changing formatting doesn’t trigger
Excel’s recalculation engine. To force a global recalculation (and update all custom functions), press Ctrl+Alt+F9.

Alternatively, you can add the following statement to your function:

Application.Volatile

When this statement is present, pressing F9 will recalculate the function.

Chapter 7: VBA Programming Examples and Techniques

265

7

 End If
End Function

You can simplify the ALLBOLD function as follows:

Function ALLBOLD (cell) As Boolean
' Returns TRUE if all characters in cell are bold
 ALLBOLD = Not IsNull(cell.Font.Bold)
End Function

The FILLCOLOR function returns an integer that corresponds to the color index of the
cell’s interior. The actual color depends on the applied workbook theme. If the cell’s interior
isn’t filled, the function returns –4142. This function doesn’t work with fill colors applied
in tables (created with Insert ➪ Tables ➪ Table) or pivot tables. You need to use the
DisplayFormat object to detect that type of fill color, as we described previously.

Function FILLCOLOR(cell) As Integer
' Returns an integer corresponding to
' cell's interior color
 FILLCOLOR = cell.Range("A1").Interior.ColorIndex
End Function

A talking worksheet
The SAYIT function uses Excel’s text-to-speech generator to “speak” its argument (which
can be literal text or a cell reference):

Function SAYIT(txt)
 Application.Speech.Speak (txt)
 SAYIT = txt
End Function

This function has some amusing possibilities, but it can also be useful. For example, use
the function in a formula like this:

=IF(SUM(A:A)>25000,SAYIT("Goal Reached"))

If the sum of the values in column A exceeds 25,000, you’ll hear the synthesized voice tell
you that the goal has been reached. You can use the Speak method also at the end of a
lengthy procedure. That way, you can do something else and get an audible notice when
the procedure ends.

Displaying the date when a file was saved or printed
An Excel workbook contains several built-in document properties, accessible from the
BuiltinDocumentProperties property of the Workbook object. The following function
returns the date and time that the workbook was last saved:

Function LASTSAVED()
 Application.Volatile
 LASTSAVED = ThisWorkbook. _
 BuiltinDocumentProperties("Last Save Time")
End Function

Part I: Introduction to Excel VBA

266

The date and time returned by this function are the same date and time that appear in the
Related Dates section of Backstage view when you choose File ➪ Info. Note that the Auto-
Save feature also affects this value. In other words, the "Last Save Time" value is not
necessarily the last time the file was saved by the user.

The following function is similar to LASTSAVED, but it returns the date and time when the
workbook was last printed or previewed. If the workbook has never been printed or pre-
viewed, the function returns a #VALUE error.

Function LASTPRINTED()
 Application.Volatile
 LASTPRINTED = ThisWorkbook. _
 BuiltinDocumentProperties("Last Print Date")
End Function

If you use these functions in a formula, you might need to force a recalculation (by press-
ing F9) to get the current values of these properties.

The preceding LASTSAVED and LASTPRINTED functions are designed to be stored in
the workbook in which they’re used. In some cases, you may want to store the function
in a different workbook (for example, personal.xlsb) or in an add-in. Because these
functions reference ThisWorkbook, they won’t work correctly. The following are more
general-purpose versions of these functions. These functions use Application.Caller,
which returns a Range object that represents the cell that calls the function. The use of
Parent.Parent returns the workbook (that is, the parent of the parent of the Range
object—a Workbook object). This topic is explained further in the next section.

Function LASTSAVED2()
 Application.Volatile
 LASTSAVED2 = Application.Caller.Parent.Parent. _
 BuiltinDocumentProperties("Last Save Time")
End Function

Understanding object parents
As you know, Excel’s object model is a hierarchy: objects are contained in other objects.
At the top of the hierarchy is the Application object. Excel contains other objects, and
these objects contain other objects, and so on. The following hierarchy depicts how a
Range object fits into this scheme:

Application object

Workbook object

Note
Quite a few additional built-in properties are available, but Excel doesn’t use all of them. For example, attempting to
access the Number of Bytes property will generate an error. For a list of all built-in properties, consult the Help
system.

Chapter 7: VBA Programming Examples and Techniques

267

7

Worksheet object

Range object

In the lingo of object-oriented programming, a Range object’s parent is the Worksheet
object that contains it. A Worksheet object’s parent is the Workbook object that contains
the worksheet, and a Workbook object’s parent is the Application object.

How can you put this information to use? Examine the SheetName VBA function that
follows. This function accepts a single argument (a range) and returns the name of the
worksheet that contains the range. It uses the Parent property of the Range object. The
Parent property returns an object: the object that contains the Range object.

Function SHEETNAME(ref) As String
 SHEETNAME = ref.Parent.Name
End Function

The next function, WORKBOOKNAME, returns the name of the workbook for a particular
cell. Note that it uses the Parent property twice. The first Parent property returns a
Worksheet object, and the second Parent property returns a Workbook object.

Function WORKBOOKNAME(ref) As String
 WORKBOOKNAME = ref.Parent.Parent.Name
End Function

The APPNAME function that follows carries this exercise to the next logical level, accessing
the Parent property three times (the parent of the parent of the parent). This function
returns the name of the Application object for a particular cell. It will, of course, always
return Microsoft Excel.

Function APPNAME(ref) As String
 APPNAME = ref.Parent.Parent.Parent.Name
End Function

Counting cells between two values
The following function, named COUNTBETWEEN, returns the number of values in a
range (first argument) that fall between the values represented by the second and third
arguments:

Function COUNTBETWEEN(InRange, num1, num2) As Long
' Counts number of values between num1 and num2
 With Application.WorksheetFunction
 If num1 <= num2 Then
 COUNTBETWEEN = .CountIfs(InRange, ">=" & num1, _
 InRange, "<=" & num2)
 Else
 COUNTBETWEEN = .CountIfs(InRange, ">=" & num2, _
 InRange, "<=" & num1)
 End If
 End With
End Function

Part I: Introduction to Excel VBA

268

Note that this function uses Excel’s COUNTIFS function. The CountBetween function is
essentially a wrapper that can simplify your formulas.

The following is an example formula that uses the COUNTBETWEEN function. The formula
returns the number of cells in A1:A100 that are greater than or equal to 10 and less than or
equal to 20.

=COUNTBETWEEN(A1:A100,10,20)

The function accepts the two numeric arguments in either order. The following formula is
equivalent to the preceding one:

=COUNTBETWEEN(A1:A100,20,10)

Using this VBA function is simpler than entering the following (somewhat con-
fusing) formula:

=COUNTIFS(A1:A100,">=10",A1:A100,"<=20")

The formula approach is faster, however.

Determining the last nonempty cell in a column or row
In this section, we present two useful functions: LASTINCOLUMN returns the contents of
the last nonempty cell in a column, and LASTINROW returns the contents of the last non-
empty cell in a row. Each function accepts a range as its single argument. The range argu-
ment can be a complete column (for LASTINCOLUMN) or a complete row (for LASTINROW).
If the supplied argument isn’t a complete column or row, the function uses the column or
row of the upper-left cell in the range. For example, the following formula returns the last
value in column B:

=LASTINCOLUMN(B5)

The following formula returns the last value in row 7:

=LASTINROW(C7:D9)

The LASTINCOLUMN function follows:

Function LASTINCOLUMN(rng As Range)
' Returns the contents of the last non-empty cell in a column
 Dim LastCell As Range
 Application.Volatile
 With rng.Parent
 With .Cells(.Rows.Count, rng.Column)
 If Not IsEmpty(.Value) Then
 LASTINCOLUMN = .Value

Note
COUNTIFS was introduced in Excel 2007, so this function won’t work with previous versions of Excel.

Chapter 7: VBA Programming Examples and Techniques

269

7

 ElseIf IsEmpty(.End(xlUp)) Then
 LASTINCOLUMN = ""
 Else
 LASTINCOLUMN = .End(xlUp).Value
 End If
 End With
 End With
End Function

This function is complicated, so here are a few points that may help you understand it:

 ■ Application.Volatile causes the function to be executed whenever the sheet is
calculated.

 ■ Rows.Count returns the number of rows in the worksheet. We used the Count
property rather than hard-coding the value because not all worksheets have the
same number of rows.

 ■ rng.Column returns the column number of the upper-left cell in the
rng argument.

 ■ Using rng.Parent causes the function to work properly even if the rng argument
refers to a different sheet or workbook.

 ■ The End method (with the xlUp argument) is equivalent to activating the last cell
in a column, pressing End, and then pressing the up-arrow key.

 ■ The IsEmpty function checks whether the cell is empty. If so, it returns an empty
string. Without this statement, an empty cell would be returned as 0.

The LASTINROW function follows. This function is similar to the LASTINCOLUMN
function.

Function LASTINROW(rng As Range)
' Returns the contents of the last non-empty cell in a row
 Application.Volatile
 With rng.Parent
 With .Cells(rng.Row, .Columns.Count)
 If Not IsEmpty(.Value) Then
 LASTINROW = .Value
 ElseIf IsEmpty(.End(xlToLeft)) Then
 LASTINROW = ""
 Else
 LASTINROW = .End(xlToLeft).Value
 End If
 End With
 End With
End Function

Does a string match a pattern?
The ISLIKE function is simple but also useful. This function returns TRUE if a text string
matches a specified pattern.

Part I: Introduction to Excel VBA

270

Function ISLIKE(text As String, pattern As String) As Boolean
' Returns true if the first argument is like the second
 ISLIKE = text Like pattern
End Function

The function is remarkably simple. It is essentially a wrapper that lets you take advantage
of VBA’s powerful Like operator in your formulas.

This ISLIKE function takes two arguments:

text: A text string or a reference to a cell that contains a text string

pattern: A string that contains wildcard characters according to the following list:

Character(s) in Pattern Matches in Text

? Any single character

* Zero or more characters

Any single digit (0–9)

[charlist] Any single character in charlist

[!charlist] Any single character not in charlist

The following formula returns TRUE because * matches any number of characters. The for-
mula returns TRUE if the first argument is any text that begins with g.

=ISLIKE("guitar","g*")

The following formula returns TRUE because ? matches any single character. If the first
argument were "Unit12", the function would return FALSE.

=ISLIKE("Unit1","Unit?")

The next formula returns TRUE because the first argument is a single character in the sec-
ond argument:

=ISLIKE("a","[aeiou]")

The following formula returns TRUE if cell A1 contains a, e, i, o, u, A, E, I, O, or U. Using
the UPPER function for the arguments makes the formula not case-sensitive.

=ISLIKE(UPPER(A1), UPPER("[aeiou]"))

The following formula returns TRUE if cell A1 contains a value that begins with 1 and has
exactly three digits (that is, any integer between 100 and 199):

=ISLIKE(A1,"1##")

Extracting the nth element from a string
EXTRACTELEMENT is a custom worksheet function (which you can also call from a VBA
procedure) that extracts an element from a text string. For example, if a cell contains the
following text, you can use the EXTRACTELEMENT function to extract any of the sub-
strings between the hyphens.

Chapter 7: VBA Programming Examples and Techniques

271

7

123-456-787-0133-8844

The following formula, for example, returns 0133, which is the fourth element in the
string. The string uses a hyphen (-) as the separator.

=EXTRACTELEMENT("123-456-787-0133-8844",4,"-")

The EXTRACTELEMENT function uses three arguments.

Txt: The text string from which you’re extracting. It can be a literal string or a cell
reference.

n: An integer that represents the element to extract.

Separator: A single character used as the separator.

The VBA code for the EXTRACTELEMENT function follows:

Function EXTRACTELEMENT(Txt, n, Separator) As String
' Returns the nth element of a text string, where the
' elements are separated by a specified separator character
 Dim AllElements As Variant
 AllElements = Split(Txt, Separator)
 EXTRACTELEMENT = AllElements(n - 1)
End Function

This function uses the VBA Split function, which returns a variant array that contains
each element of the text string. This array begins with 0 (not 1), so using n - 1 refer-
ences the desired element.

Spelling out a number
The SPELLDOLLARS function returns a number spelled out in text, as on a check.
For example, the following formula returns the string One hundred twenty-three and
45/100 dollars:

=SPELLDOLLARS(123.45)

Figure 7.20 shows some additional examples of the SPELLDOLLARS function. Column C
contains formulas that use the function. For example, the formula in C1 is

=SPELLDOLLARS(A1)

Note that negative numbers are spelled out and enclosed in parentheses.

Note
If you specify a space as the Separator argument, multiple spaces are treated as a single space, which is almost
always what you want. If n exceeds the number of elements in the string, the function returns an empty string.

oN the Web
The SPELLDOLLARS function is too lengthy to list here, but you can view the complete listing in spelldollars
function.xlsm on the book’s website.

Part I: Introduction to Excel VBA

272

A multifunctional function
The next example describes a technique that may be helpful in some situations: making
a single worksheet function act like multiple functions. The following VBA listing is for a
custom function called STATFUNCTION, which takes two arguments: the range (rng) and
the operation (op). Depending on the value of op, the function returns a value computed
using any of the following worksheet functions: AVERAGE, COUNT, MAX, MEDIAN, MIN,
MODE, STDEV, SUM, or VAR.

For example, you can use this function in your worksheet as follows:

=STATFUNCTION(B1:B24,A24)

The result of the formula depends on the contents of cell A24, which should be a string
such as Average, Count, or Max. You can adapt this technique for other types of
functions.

Function STATFUNCTION (rng, op)
 Select Case UCase(op)
 Case "SUM"
 STATFUNCTION = WorksheetFunction.Sum(rng)
 Case "AVERAGE"
 STATFUNCTION = WorksheetFunction.Average(rng)
 Case "MEDIAN"
 STATFUNCTION = WorksheetFunction.Median(rng)
 Case "MODE"
 STATFUNCTION = WorksheetFunction.Mode(rng)
 Case "COUNT"
 STATFUNCTION = WorksheetFunction.Count(rng)

FIGURE 7.20

Examples of the SPELLDOLLARS function

Chapter 7: VBA Programming Examples and Techniques

273

7

 Case "MAX"
 STATFUNCTION = WorksheetFunction.Max(rng)
 Case "MIN"
 STATFUNCTION = WorksheetFunction.Min(rng)
 Case "VAR"
 STATFUNCTION = WorksheetFunction.Var(rng)
 Case "STDEV"
 STATFUNCTION = WorksheetFunction.StDev(rng)
 Case Else
 STATFUNCTION = CVErr(xlErrNA)
 End Select
End Function

The SHEETOFFSET function
You probably know that Excel’s support for 3D workbooks is limited. For example, if you
need to refer to a different worksheet in a workbook, you must include the worksheet’s
name in your formula. Adding the worksheet name isn’t a big problem . . . until you
attempt to copy the formula across other worksheets. The copied formulas continue to refer
to the original worksheet name, and the sheet references aren’t adjusted as they would be
in a true 3D workbook.

The example discussed in this section is the VBA SHEETOFFSET function, which enables
you to address worksheets in a relative manner. For example, you can refer to cell A1 on the
previous worksheet by using this formula:

=SHEETOFFSET(-1,A1)

The first argument represents the relative sheet, and it can be positive, negative, or
zero. The second argument must be a reference to a single cell. You can copy this formula
to other sheets, and the relative referencing will be in effect in all the copied formulas.

The VBA code for the SHEETOFFSET function follows:

Function SHEETOFFSET (Offset As Long, Optional Cell As Variant)
' Returns cell contents at Ref, in sheet offset
 Dim WksIndex As Long, WksNum As Long
 Dim wks As Worksheet
 Application.Volatile
 If IsMissing(Cell) Then Set Cell = Application.Caller
 WksNum = 1
 For Each wks In Application.Caller.Parent.Parent.Worksheets
 If Application.Caller.Parent.Name = wks.Name Then
 SHEETOFFSET = Worksheets(WksNum + Offset).Range(Cell(1)
.Address)
 Exit Function
 Else
 WksNum = WksNum + 1
 End If
 Next wks
End Function

Part I: Introduction to Excel VBA

274

Returning the maximum value across all worksheets
If you need to determine the maximum value in cell B1 across a number of worksheets, you
would use a formula such as this:

=MAX(Sheet1:Sheet4!B1)

This formula returns the maximum value in cell B1 for Sheet1, Sheet4, and all of the
sheets in between. But what if you add a new sheet (Sheet5) after Sheet4? Your for-
mula won’t adjust automatically, so you need to edit the formula to include the new sheet
reference.

=MAX(Sheet1:Sheet5!B1)

The MaxAllSheets function accepts a single-cell argument and returns the maximum
value in that cell across all worksheets in the workbook. The formula that follows, for
example, returns the maximum value in cell B1 for all sheets in the workbook:

=MAXALLSHEETS(B1)

If you add a new sheet, you don’t need to edit the formula.

Function MAXALLSHEETS (cell)
 Dim MaxVal As Double
 Dim Addr As String
 Dim Wksht As Object
 Application.Volatile
 Addr = cell.Range("A1").Address
 MaxVal = -9.9E+307
 For Each Wksht In cell.Parent.Parent.Worksheets
 If Wksht.Name = cell.Parent.Name And _
 Addr = Application.Caller.Address Then
 ' avoid circular reference
 Else
 If IsNumeric(Wksht.Range(Addr)) Then
 If Wksht.Range(Addr) > MaxVal Then _
 MaxVal = Wksht.Range(Addr).Value
 End If
 End If
 Next Wksht
 If MaxVal = -9.9E+307 Then MaxVal = 0
 MAXALLSHEETS = MaxVal
End Function

The For Each statement uses the following expression to access the workbook:

cell.Parent.Parent.Worksheets

The parent of the cell is a worksheet, and the parent of the worksheet is the workbook.
Therefore, the For Each-Next loop cycles among all worksheets in the workbook. The first
If statement inside the loop performs a check to see whether the cell being checked is the
cell that contains the function. If so, that cell is ignored to avoid a circular reference error.

Chapter 7: VBA Programming Examples and Techniques

275

7

Returning an array of nonduplicated random integers
The function in this section, RANDOMINTEGERS, returns an array of nonduplicated inte-
gers. The function is intended to be used in a multicell array formula.

{=RANDOMINTEGERS()}

Select a range and then enter the formula by pressing Ctrl+Shift+Enter. The formula returns
an array of nonduplicated integers, arranged randomly. For example, if you enter the for-
mula into a 50-cell range, the formulas will return nonduplicated integers from 1 to 50.

The code for RANDOMINTEGERS follows:

Function RANDOMINTEGERS()
 Dim FuncRange As Range
 Dim V() As Variant, ValArray() As Variant
 Dim CellCount As Double
 Dim i As Integer, j As Integer
 Dim r As Integer, c As Integer
 Dim Temp1 As Variant, Temp2 As Variant
 Dim RCount As Integer, CCount As Integer

' Create Range object
 Set FuncRange = Application.Caller

' Return an error if FuncRange is too large
 CellCount = FuncRange.Count
 If CellCount > 1000 Then
 RANDOMINTEGERS = CVErr(xlErrNA)
 Exit Function
 End If

' Assign variables
 RCount = FuncRange.Rows.Count
 CCount = FuncRange.Columns.Count
 ReDim V(1 To RCount, 1 To CCount)
 ReDim ValArray(1 To 2, 1 To CellCount)

' Fill array with random numbers
' and consecutive integers
 For i = 1 To CellCount
 ValArray(1, i) = Rnd
 ValArray(2, i) = i
 Next i

Note
You can easily modify this function to perform other cross-worksheet calculations, such as minimum, average,
and sum.

Part I: Introduction to Excel VBA

276

' Sort ValArray by the random number dimension
 For i = 1 To CellCount
 For j = i + 1 To CellCount
 If ValArray(1, i) > ValArray(1, j) Then
 Temp1 = ValArray(1, j)
 Temp2 = ValArray(2, j)
 ValArray(1, j) = ValArray(1, i)
 ValArray(2, j) = ValArray(2, i)
 ValArray(1, i) = Temp1
 ValArray(2, i) = Temp2
 End If
 Next j
 Next i

' Put the randomized values into the V array
 i = 0
 For r = 1 To RCount
 For c = 1 To CCount
 i = i + 1
 V(r, c) = ValArray(2, i)
 Next c
 Next r
 RANDOMINTEGERS = V
End Function

Randomizing a range
The RANGERANDOMIZE function, which follows, accepts a range argument and returns an
array that consists of the input range—in random order:

Function RANGERANDOMIZE(rng)
 Dim V() As Variant, ValArray() As Variant
 Dim CellCount As Double
 Dim i As Integer, j As Integer
 Dim r As Integer, c As Integer
 Dim Temp1 As Variant, Temp2 As Variant
 Dim RCount As Integer, CCount As Integer

' Return an error if rng is too large
 CellCount = rng.Count
 If CellCount > 1000 Then
 RANGERANDOMIZE = CVErr(xlErrNA)
 Exit Function
 End If

' Assign variables
 RCount = rng.Rows.Count
 CCount = rng.Columns.Count

Chapter 7: VBA Programming Examples and Techniques

277

7

 ReDim V(1 To RCount, 1 To CCount)
 ReDim ValArray(1 To 2, 1 To CellCount)

' Fill ValArray with random numbers
' and values from rng
 For i = 1 To CellCount
 ValArray(1, i) = Rnd
 ValArray(2, i) = rng(i)
 Next i

' Sort ValArray by the random number dimension
 For i = 1 To CellCount
 For j = i + 1 To CellCount
 If ValArray(1, i) > ValArray(1, j) Then
 Temp1 = ValArray(1, j)
 Temp2 = ValArray(2, j)
 ValArray(1, j) = ValArray(1, i)
 ValArray(2, j) = ValArray(2, i)
 ValArray(1, i) = Temp1
 ValArray(2, i) = Temp2
 End If
 Next j
 Next i

' Put the randomized values into the V array
 i = 0
 For r = 1 To RCount
 For c = 1 To CCount
 i = i + 1
 V(r, c) = ValArray(2, i)
 Next c
 Next r
 RANGERANDOMIZE = V
End Function

The code is similar to that for the RANDOMINTEGERS function. Remember to enter this
function as an array formula (by pressing Ctrl+Shift+Enter).

{=RANGERANDOMIZE(A2:A11)}

This formula returns the contents of A2:A11, but in a random order.

Sorting a range
The SORTED function accepts a single-column range argument and returns the
range, sorted:

Function SORTED(Rng)
 Dim SortedData() As Variant
 Dim Cell As Range

Part I: Introduction to Excel VBA

278

 Dim Temp As Variant, i As Long, j As Long
 Dim NonEmpty As Long

' Transfer data to SortedData
 For Each Cell In Rng
 If Not IsEmpty(Cell) Then
 NonEmpty = NonEmpty + 1
 ReDim Preserve SortedData(1 To NonEmpty)
 SortedData(NonEmpty) = Cell.Value
 End If
 Next Cell

' Sort the array
 For i = 1 To NonEmpty
 For j = i + 1 To NonEmpty
 If SortedData(i) > SortedData(j) Then
 Temp = SortedData(j)
 SortedData(j) = SortedData(i)
 SortedData(i) = Temp
 End If
 Next j
 Next i

' Transpose the array and return it
 SORTED = Application.Transpose(SortedData)
End Function

Enter the SORTED function as an array formula (by pressing Ctrl+Shift+Enter). The SORTED
function returns the contents of a range, sorted.

The SORTED function starts by creating an array named SortedData. This array con-
tains all nonblank values in the argument range. Next, the array is sorted using a bubble
sort algorithm. Because the array is a horizontal array, it must be transposed before it is
returned by the function.

The SORTED function works with a range of any size, as long as it’s in a single column
or row. If the unsorted data is in a row, your formula needs to use Excel’s TRANSPOSE
function to display the sorted data horizontally. Here’s an example:

=TRANSPOSE(SORTED(A16:L16))

Windows API Calls
VBA has the capability to use functions that are stored in Dynamic Link Libraries (DLLs).
DLLs expose functions and procedures used by the Windows operating system so that other
programs can reach out and call these functions and procedures programmatically. This is
referred to as making an application programming interface call. The examples in this sec-
tion illustrate the use of some common Windows API calls to DLLs.

Chapter 7: VBA Programming Examples and Techniques

279

7

Understanding API declarations
When making Windows API calls, you’ll need to use an API declaration. An API declaration
essentially tells Excel which Windows function or procedure you want to leverage, where it
can be found, the parameters it takes, and what it returns.

For instance, the following API declaration calls the ability to play a sound file:

Public Declare Function PlayWavSound Lib "winmm.dll" _
 Alias "sndPlaySoundA" (ByVal LpszSoundName As String, _
 ByVal uFlags As Long) As Long

This tells Excel that the following:

 ■ The function is public (it can be used from any module).
 ■ The function is going to be referred to in the code as PlayWavSound.
 ■ The function is found in the winmm.dll file.
 ■ It goes by the name of sndPlaySoundA in the DLL. (This is case sensitive.)
 ■ It takes two parameters: a String that specifies the name of the sound file and a

Long number value that specifies any special method for playing the sound.

API declarations can be used just like any standard VBA function or procedure. The follow-
ing example demonstrates how you would use the PlayWavSound API in a macro:

Public Declare PtrSafe Function PlayWavSound Lib "winmm.dll" _
 Alias "sndPlaySoundA"(ByVal LpszSoundName As String, _
 ByVal uFlags As Long) As LongPtr
Sub PlayChimes ()
 PlayWavSound "C:\Windows\Media\Chimes.wav", 0
End Sub

32-bit vs. 64-bit declarations
With the introduction of 64-bit versions of Microsoft Office, many of the Windows API dec-
larations had to be adjusted to account for the 64-bit platform. This means that a user with
a 64-bit version of Excel installed will not be able to run code with older API declarations.

To avoid compatibility issues, you can use an extended declaration technique that ensures
your API calls will work on both 32-bit and 64-bit Excel. Take a moment to review this
example, which conditionally calls the ShellExecute API:

#If VBA7 Then
Private Declare PtrSafe Function ShellExecute Lib "shell32.dll" Alias _
 "ShellExecuteA" (ByVal hwnd As LongPtr, ByVal lpOperation As String, _
 ByVal lpFile As String, ByVal lpParameters As String, ByVal lpDirectory _
 As String, ByVal nShowCmd As Long) As LongPtr
#Else

Part I: Introduction to Excel VBA

280

Private Declare Function ShellExecute Lib "shell32.dll" Alias "Shell-
ExecuteA" _
 (ByVal hwnd As Long, ByVal lpOperation As String, ByVal lpFile As _
 String, ByVal lpParameters As String, ByVal lpDirectory As String, _
 ByVal nShowCmd As Long) As Long
#End If

The pound sign (#) is used to mark conditional compilation. In this case, the first declara-
tion will compile if the code is running on a 64-bit version of Excel. If the code is running
on a 32-bit version of Excel, the second declaration will compile.

Determining file associations
In Windows, many file types are associated with a particular application. This association
makes it possible to double-click the file to load it into its associated application.

The following function, named GetExecutable, uses a Windows API call to get the full
path to the application associated with a particular file. For example, your system has
many files with a .txt extension—one named Readme.txt is probably in your Windows
directory right now. You can use the GetExecutable function to determine the full path
of the application that opens when the file is double-clicked.

Private Declare PtrSafe Function FindExecutableA Lib "shell32.dll" _
 (ByVal lpFile As String, ByVal lpDirectory As String, _
 ByVal lpResult As String) As Long
Function GetExecutable(strFile As String) As String
 Dim strPath As String
 Dim intLen As Integer
 strPath = Space(255)
 intLen = FindExecutableA(strFile, "\", strPath)
 GetExecutable = Trim(strPath)
End Function

Figure 7.21 shows the result of calling the GetExecutable function, with an argument
of the filename for an MP3 audio file. The function returns the full path of the application
associated with the file.

Note
Windows API declarations must appear at the top of your VBA module.

oN the Web
This example is available on this book’s website in the file association.xlsm file.

Chapter 7: VBA Programming Examples and Techniques

281

7Determining default printer information
The example in this section uses a Windows API function to return information about the
active printer. The information is contained in a single text string. The example parses the
string and displays the information in a more readable format.

Private Declare PtrSafe Function GetProfileStringA Lib "kernel32" _
 (ByVal lpAppName As String, ByVal lpKeyName As String, _
 ByVal lpDefault As String, ByVal lpReturnedString As _
 String, ByVal nSize As Long) As Long

Sub DefaultPrinterInfo()
 Dim strLPT As String * 255
 Dim Result As String
 Dim ResultLength As Integer
 Dim Comma1 As Integer
 Dim Comma2 As Integer
 Dim Printer As String
 Dim Driver As String
 Dim Port As String
 Dim Msg As String
 Call GetProfileStringA _
 ("Windows", "Device", "", strLPT, 254)

 Result = Application.Trim(strLPT)
 ResultLength = Len(Result)

 Comma1 = InStr(1, Result, ",", 1)
 Comma2 = InStr(Comma1 + 1, Result, ",", 1)

' Gets printer's name
 Printer = Left(Result, Comma1 - 1)

' Gets driver
 Driver = Mid(Result, Comma1 + 1, Comma2 - Comma1 - 1)

FIGURE 7.21

Determining the path and name of the application associated with a particular file

Part I: Introduction to Excel VBA

282

' Gets last part of device line
 Port = Right(Result, ResultLength - Comma2)

' Build message
 Msg = "Printer:" & Chr(9) & Printer & Chr(13)
 Msg = Msg & "Driver:" & Chr(9) & Driver & Chr(13)
 Msg = Msg & "Port:" & Chr(9) & Port

' Display message
 MsgBox Msg, vbInformation, "Default Printer Information"
End Sub

Determining video display information
The example in this section uses Windows API calls to determine a system’s current video
mode for the primary display monitor. If your application needs to display a certain
amount of information on one screen, knowing the display size helps you scale the text
accordingly. In addition, the code determines the number of monitors. If more than one
monitor is installed, the procedure reports the virtual screen size.

Declare PtrSafe Function GetSystemMetrics Lib "user32" _
 (ByVal nIndex As Long) As Long

Public Const SM_CMONITORS = 80
Public Const SM_CXSCREEN = 0
Public Const SM_CYSCREEN = 1
Public Const SM_CXVIRTUALSCREEN = 78
Public Const SM_CYVIRTUALSCREEN = 79

Sub DisplayVideoInfo()
 Dim numMonitors As Long
 Dim vidWidth As Long, vidHeight As Long
 Dim virtWidth As Long, virtHeight As Long
 Dim Msg As String

 numMonitors = GetSystemMetrics(SM_CMONITORS)
 vidWidth = GetSystemMetrics(SM_CXSCREEN)
 vidHeight = GetSystemMetrics(SM_CYSCREEN)

Note
The ActivePrinter property of the Application object returns the name of the active printer (and lets you
change it), but there’s no direct way to determine what printer driver or port is being used. That’s why this function
may be useful.

oN the Web
This example is available on this book’s website in the printer info.xlsm file.

Chapter 7: VBA Programming Examples and Techniques

283

7

 virtWidth = GetSystemMetrics(SM_CXVIRTUALSCREEN)
 virtHeight = GetSystemMetrics(SM_CYVIRTUALSCREEN)

 If numMonitors > 1 Then
 Msg = numMonitors & " display monitors" & vbCrLf
 Msg = Msg & "Virtual screen: " & virtWidth & " X "
 Msg = Msg & virtHeight & vbCrLf & vbCrLf
 Msg = Msg & "The video mode on the primary display is: "
 Msg = Msg & vidWidth & " X " & vidHeight
 Else
 Msg = Msg & "The video display mode: "
 Msg = Msg & vidWidth & " X " & vidHeight
 End If
 MsgBox Msg
End Sub

Reading from and writing to the Registry
Most Windows applications use the Windows Registry database to store settings. Your VBA
procedures can read values from the Registry and write new values to the Registry. Doing
so requires the following Windows API declarations:

Private Declare PtrSafe Function RegOpenKeyA Lib "ADVAPI32.DLL" _
 (ByVal hKey As Long, ByVal sSubKey As String, _
 ByRef hkeyResult As Long) As Long

Private Declare PtrSafe Function RegCloseKey Lib "ADVAPI32.DLL" _
 (ByVal hKey As Long) As Long

Private Declare PtrSafe Function RegSetValueExA Lib "ADVAPI32.DLL" _
 (ByVal hKey As Long, ByVal sValueName As String, _
 ByVal dwReserved As Long, ByVal dwType As Long, _
 ByVal sValue As String, ByVal dwSize As Long) As Long

Private Declare PtrSafe Function RegCreateKeyA Lib "ADVAPI32.DLL" _
 (ByVal hKey As Long, ByVal sSubKey As String, _
 ByRef hkeyResult As Long) As Long

Private Declare PtrSafe Function RegQueryValueExA Lib "ADVAPI32.DLL" _
 (ByVal hKey As Long, ByVal sValueName As String, _
 ByVal dwReserved As Long, ByRef lValueType As Long, _
 ByVal sValue As String, ByRef lResultLen As Long) As Long

oN the Web
This example is available on the book’s website in the video mode.xlsm file.

Part I: Introduction to Excel VBA

284

Reading from the Registry
The GetRegistry function returns a setting from the specified location in the Registry. It
takes three arguments.

RootKey: A string that represents the branch of the Registry to address. This string
can be one of the following:

HKEY _ CLASSES _ ROOT

HKEY _ CURRENT _ USER

HKEY _ LOCAL _ MACHINE

HKEY _ USERS

HKEY _ CURRENT _ CONFIG

Path: The full path of the Registry category being addressed.

RegEntry: The name of the setting to retrieve.

Here’s an example. If you’d like to find which graphic file, if any, is being used for the desk-
top wallpaper, you can call GetRegistry as follows. (Note that the arguments aren’t case-
sensitive.)

RootKey = "hkey_current_user"
 Path = "Control Panel\Desktop"
 RegEntry = "Wallpaper"
 MsgBox GetRegistry(RootKey, Path, RegEntry), _
 vbInformation, Path & "\RegEntry"

The message box will display the path and filename of the graphic file (or an empty string
if wallpaper isn’t used).

Writing to the Registry
The WriteRegistry function writes a value to the Registry at a specified location. If the
operation is successful, the function returns True; otherwise, it returns False. Write-
Registry takes the following arguments (all of which are strings):

RootKey: A string that represents the branch of the Registry to address. This string
may be one of the following:

HKEY _ CLASSES _ ROOT

HKEY _ CURRENT _ USER

HKEY _ LOCAL _ MACHINE

oN the Web
On this book’s website, in a file named windows registry.xlsm, you will find two wrapper functions that
greatly simplify the task of working with the Registry: GetRegistry and WriteRegistry. You will also find
examples on how to put these wrapper functions to use.

Chapter 7: VBA Programming Examples and Techniques

285

7

HKEY _ USERS

HKEY _ CURRENT _ CONFIG

Path: The full path in the Registry. If the path doesn’t exist, it is created.

RegEntry: The name of the Registry category to which the value will be written. If it
doesn’t exist, it is added.

RegVal: The value that you’re writing.

Here’s an example that writes to the Registry a value representing the time and date Excel
was started. The information is written in the area that stores Excel’s settings.

Sub Workbook_Open()
 RootKey = "hkey_current_user"
 Path = "software\microsoft\office\15.0\excel\LastStarted"
 RegEntry = "DateTime"
 RegVal = Now()
 If WriteRegistry(RootKey, Path, RegEntry, RegVal) Then
 msg = RegVal & " has been stored in the registry."
 Else
 msg = "An error occurred"
 End If
 MsgBox msg
End Sub

If you store this routine in the ThisWorkbook module in your Personal Macro Workbook,
the setting is automatically updated whenever you start Excel.

An easier way to access the Registry
If you want to use the Windows Registry to store and retrieve settings for your Excel applications,
you don’t have to bother with the Windows API calls. Rather, you can use the VBA GetSetting and
SaveSetting functions. Using these functions is much easier than using the API calls.

These two functions are described in the Help system, so we won’t cover the details here. However,
it’s important to understand that these functions work only with the following key name:

HKEY_CURRENT_USER\Software\VB and VBA Program Settings

In other words, you can’t use these functions to access any key in the Registry. Rather, these functions
are most useful for storing information about your Excel application that you need to maintain
between sessions.

IN THIS PART
Chapter 8
Working with Pivot Tables

Chapter 9
Working with Charts

Chapter 10
Interacting with Other Applications

Chapter 11
Working with External Data and Files

Advanced VBA Techniques

Part II

Excel® 2019 Power Programming with VBA, First Edition. Michael Alexander and Dick Kusleika.
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.

289

CHAP T ER

8
Working with Pivot Tables

IN THIS CHAPTER
Creating pivot tables with VBA

Looking at examples of VBA procedures that create pivot tables

Using VBA to create a worksheet table from a summary table

An Introductory Pivot Table Example
Excel’s pivot table feature is, arguably, the most innovative and powerful feature in Excel. Pivot ta-
bles first appeared in Excel 5, and the feature has been improved in every subsequent version. This
chapter is not an introduction to pivot tables. We assume that you’re familiar with this feature and
its terminology and that you know how to create and modify pivot tables manually.

As you probably know, creating a pivot table from a database or list enables you to summarize data
in ways that otherwise would not be possible—and is amazingly fast and requires no formulas. You
also can write VBA code to generate and modify pivot tables.

This section gets the ball rolling with a simple example of using VBA to create a pivot table.

Figure 8.1 shows a simple worksheet range that contains four fields: SalesRep, Region, Month,
and Sales. Each record describes the sales for a particular sales representative in a partic-
ular month.

On the Web
This workbook, named simple pivot table.xlsm, is available on the book’s website.

Excel® 2019 Power Programming with VBA, First Edition. Michael Alexander and Dick Kusleika.
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.

Part II: Advanced VBA Techniques

290

Creating a pivot table
Figure 8.2 shows a pivot table created from the data, along with the PivotTable Fields
task pane. This pivot table summarizes the sales performance by sales representative and
month. This pivot table is set up with the following fields:

Region: A report filter field in the pivot table

SalesRep: A row field in the pivot table

Month: A column field in the pivot table

Sales: A values field in the pivot table that uses the SUM function

If you were to record a macro while building the pivot table in Figure 8.2, the macro
recorder would generate code similar to the following:

Sub CreatePivotTable()
 Sheets.Add
 ActiveWorkbook.PivotCaches.Create _
 (SourceType:=xlDatabase, _
 SourceData:="Sheet1!R1C1:R13C4", _
 Version:=6).CreatePivotTable _
 TableDestination:="Sheet2!R3C1", _
 TableName:="PivotTable1", _
 DefaultVersion:=6
 Sheets("Sheet2").Select
 Cells(3, 1).Select
 With ActiveSheet.PivotTables("PivotTable1").PivotFields("Region")
 .Orientation = xlPageField
 .Position = 1
 End With

FIGURE 8.1

This table is a good candidate for a pivot table.

Chapter 8: Working with Pivot Tables

291

8 With ActiveSheet.PivotTables("PivotTable1").PivotFields("SalesRep")
 .Orientation = xlRowField
 .Position = 1
 End With
 With ActiveSheet.PivotTables("PivotTable1").PivotFields("Month")
 .Orientation = xlColumnField
 .Position = 1
 End With
 ActiveSheet.PivotTables("PivotTable1").AddDataField _
 ActiveSheet.PivotTables("PivotTable1").PivotFields("Sales"), _
 "Sum of Sales", xlSum
End Sub

If you execute this macro, it will almost certainly end with an error. Examine the code, and
you’ll see that the macro recorder hard-coded the worksheet name (Sheet2) for the pivot
table. If that sheet already exists (or if the new sheet that’s added has a different name),
the macro ends with an error. But a more serious problem is that the macro recorder also
hard-coded the pivot table name. The new pivot table’s name won’t be PivotTable1 if the
workbook has other pivot tables.

But even though the recorded macro doesn’t work, it’s not completely useless. The code pro-
vides lots of insight for writing code to generate pivot tables.

FIGURE 8.2

A pivot table created from the data in Figure 8.1

Part II: Advanced VBA Techniques

292

Examining the recorded code for the pivot table
VBA code that works with pivot tables can be confusing. To make any sense of the recorded
macro, you need to know about a few relevant objects, all of which are explained in the
Help system.

PivotCaches: A collection of PivotCache objects in a Workbook object (the data
used by a pivot table is stored in a pivot cache)

PivotTables: A collection of PivotTable objects in a Worksheet object

PivotFields: A collection of fields in a PivotTable object

PivotItems: A collection of individual data items within a field category

CreatePivotTable: A method that creates a pivot table by using the data in a
pivot cache

Cleaning up the recorded pivot table code
As with most recorded macros, the preceding example isn’t as efficient as it could be. And,
as noted, it’s likely to generate an error. You can simplify the code to make it more under-
standable and also to prevent the error. The hand-crafted code that follows generates the
same pivot table as the procedure previously listed:

Sub CreatePivotTable()
 Dim PTCache As PivotCache
 Dim PT As PivotTable

Data appropriate for a pivot table
A pivot table requires that your data be in the form of a rectangular database. You can store
the database either in a worksheet range (which can be a table or just a normal range) or in an external
database file. Although Excel can generate a pivot table from any database, not all databases benefit
from this treatment.

In general, fields in a database table consist of two types.

Data Contains a value or data to be summarized. For the sales example, the Sales field is a
data field.

Category Describes the data. For the sales data, the SalesRep, Region, and Month fields are
category fields because they describe the data in the Sales field.

A database table that’s appropriate for a pivot table is said to be normalized. In other words, each
record (or row) contains information that describes the data.

A single database table can have any number of data fields and category fields. When you create a
pivot table, you usually want to summarize one or more of the data fields. Conversely, the values in the
category fields appear in the pivot table as rows, columns, or filters.

If you’re not clear on the concept, check out the normalized data.xlsx workbook on this book’s
website. This workbook contains an example of a range of data before and after being normalized to
make it suitable for a pivot table.

Chapter 8: Working with Pivot Tables

293

8

' Create the cache
 Set PTCache = ActiveWorkbook.PivotCaches.Create(_
 SourceType:=xlDatabase, _
 SourceData:=Range("A1").CurrentRegion)

' Add a new sheet for the pivot table
 Worksheets.Add

' Create the pivot table
 Set PT = ActiveSheet.PivotTables.Add(_
 PivotCache:=PTCache, _
 TableDestination:=Range("A3"))

' Specify the fields
 With PT
 .PivotFields("Region").Orientation = xlPageField
 .PivotFields("Month").Orientation = xlColumnField
 .PivotFields("SalesRep").Orientation = xlRowField
 .PivotFields("Sales").Orientation = xlDataField

 'no field captions
 .DisplayFieldCaptions = False
 End With
End Sub

The CreatePivotTable procedure is simplified (and might be easier to understand)
because it declares two object variables: PTCache and PT. A new PivotCache object is
created by using the Create method. A worksheet is added, and it becomes the active
sheet (the destination for the pivot table). Then a new PivotTable object is created by
using the Add method of the PivotTables collection. The last section of the code adds
the four fields to the pivot table and specifies their location within it by assigning a value
to the Orientation property.

The original macro hard-coded both the data range used to create the PivotCache object
('Sheet1!R1C1:R13C4') and the pivot table location (Sheet2). In the CreatePivot-
Table procedure, the pivot table is based on the current region surrounding cell A1. This
ensures that the macro will continue to work properly if more data is added.

Adding the worksheet before the pivot table is created eliminates the need to hard-code
the sheet reference. Yet another difference is that the handwritten macro doesn’t specify a
pivot table name. Because the PT object variable is created, your code doesn’t ever have to
refer to the pivot table by name.

nOte
The code could be made more general through the use of indices rather than literal strings for the PivotFields
collections. This way, if the user changes the column headings, the code will still work. For example, more general
code would use PivotFields(1) rather than PivotFields('Region').

Part II: Advanced VBA Techniques

294

As always, the best way to master this topic is to record your actions in a macro to find out
its relevant objects, methods, and properties. Then study the Help topics to understand
how everything fits together. In almost every case, you’ll need to modify the recorded
macros. Or, after you understand how to work with pivot tables, you can write code from
scratch and avoid the macro recorder.

Pivot table compatibility
If you plan to share a workbook that contains a pivot table with users of previous versions of Excel,
you need to pay careful attention to compatibility. If you look at the recorded macro in the “Creating
a pivot table” section, you see the following statement:

DefaultVersion:=6

If your workbook is in compatibility mode, the recorded statement is as follows:

DefaultVersion:=xlPivotTableVersion10

You’ll also find that the recorded code is completely different because Microsoft has made significant
changes in pivot tables beginning with Excel 2007.

Assume that you create a pivot table in Excel 2019 and give the workbook to a co-worker who has
Excel 2003. The co-worker will see the pivot table, but it will not be refreshable. In other words, it’s
just a dead table of numbers.

To create a backward-compatible pivot table in Excel 2019, you must save your file in XLS format and
then reopen it. After doing so, pivot tables that you create will work with versions prior to Excel 2007.
But, of course, you won’t be able to take advantage of all of the new pivot table features introduced
in later versions of Excel.

Fortunately, Excel’s Compatibility Checker will alert you regarding this type of compatibility issue (see
the accompanying figure). However, it won’t check your pivot table-related macros for compatibility.
The macros in this chapter do not generate backward-compatible pivot tables.

Chapter 8: Working with Pivot Tables

295

8

Creating a More Complex Pivot Table
In this section, we present VBA code to create a relatively complex pivot table.

Figure 8.3 shows part of a large worksheet table. This table has 15,840 rows and consists of
hierarchical budget data for a corporation. The corporation has 5 divisions, and each divi-
sion contains 11 departments. Each department has 4 budget categories, and each budget
category contains several budget items. Budgeted and actual amounts are included for each
of the 12 months. The goal is to summarize this information with a pivot table.

Figure 8.4 shows a pivot table created from the data. Note that the pivot table contains a
calculated field named Variance. This field is the difference between the Budget amount
and the Actual amount.

On the Web
This workbook is available on the book’s website in a file named budget pivot table.xlsm.

nOte
Another option is to insert a new column in the table and create a formula to calculate the difference between the
budget and actual amounts. If the data is from an external source (rather than in a worksheet), that option may not
be possible.

FIGURE 8.3

The data in this workbook will be summarized in a pivot table.

Part II: Advanced VBA Techniques

296

The code that created the pivot table
Here’s the VBA code that created the pivot table:

Sub CreatePivotTable()
 Dim PTcache As PivotCache
 Dim PT As PivotTable

 Application.ScreenUpdating = False
' Delete PivotSheet if it exists
 On Error Resume Next
 Application.DisplayAlerts = False
 Sheets("PivotSheet").Delete
 On Error GoTo 0

' Create a Pivot Cache
 Set PTcache = ActiveWorkbook.PivotCaches.Create(_
 SourceType:=xlDatabase, _
 SourceData:=Range("A1").CurrentRegion.Address)

' Add new worksheet
 Worksheets.Add
 ActiveSheet.Name = "PivotSheet"
 ActiveWindow.DisplayGridlines = False

FIGURE 8.4

A pivot table created from the budget data

Chapter 8: Working with Pivot Tables

297

8

' Create the Pivot Table from the Cache
 Set PT = ActiveSheet.PivotTables.Add(_
 PivotCache:=PTcache, _
 TableDestination:=Range("A1"), _
 TableName:="BudgetPivot")

 With PT
' Add fields
 .PivotFields("Category").Orientation = xlPageField
 .PivotFields("Division").Orientation = xlPageField
 .PivotFields("Department").Orientation = xlRowField
 .PivotFields("Month").Orientation = xlColumnField
 .PivotFields("Budget").Orientation = xlDataField
 .PivotFields("Actual").Orientation = xlDataField
 .DataPivotField.Orientation = xlRowField

' Add a calculated field to compute variance
 .CalculatedFields.Add "Variance", "=Budget-Actual"
 .PivotFields("Variance").Orientation = xlDataField

' Specify a number format
 .DataBodyRange.NumberFormat = "0,000"

' Apply a style
 .TableStyle2 = "PivotStyleMedium2"

' Hide Field Headers
 .DisplayFieldCaptions = False

' Change the captions
 .PivotFields("Sum of Budget").Caption = " Budget"
 .PivotFields("Sum of Actual").Caption = " Actual"
 .PivotFields("Sum of Variance").Caption = " Variance"
 End With
End Sub

How the more complex pivot table works
The CreatePivotTable procedure starts by deleting the PivotSheet worksheet if it
already exists. It then creates a PivotCache object, inserts a new worksheet named
PivotSheet, and creates the pivot table from the PivotCache. The code then adds the
following fields to the pivot table:

Category: A report filter (page) field

Division: A report filter (page) field

Department: A row field

Month: A column field

Part II: Advanced VBA Techniques

298

Budget: A data field

Actual: A data field

Note that the Orientation property of the DataPivotField is set to xlRowField in
the following statement:

.DataPivotField.Orientation = xlRowField

This statement determines the overall orientation of the pivot table, and it represents the
Sum Values field in the Pivot Table Fields task pane (see Figure 8.5). Try moving that field
to the Columns section to see how it affects the pivot table layout.

Next, the procedure uses the Add method of the CalculatedFields collection to cre-
ate the calculated field Variance, which subtracts the Actual amount from the Budget
amount. This calculated field is assigned as a data field.

nOte
To add a calculated field to a pivot table manually, use the PivotTable ➪ Options ➪ Calculations ➪ Fields, Items, &
Sets ⇨ Calculated Field command, which displays the Insert Calculated Field dialog box.

FIGURE 8.5

The Pivot Table Fields task pane

Chapter 8: Working with Pivot Tables

299

8

Finally, the code makes a few cosmetic adjustments.

 ■ It applies a number format to the DataBodyRange (which represents the entire
pivot table data).

 ■ It applies a style.
 ■ It hides the captions (equivalent to the PivotTable Tools ➪ Analyze ➪ Show ➪ Field

Headers command).
 ■ It changes the captions displayed in the pivot table. For example, Sum of Budget

is replaced by Budget. Note that the Budget string is preceded by a space. Excel
doesn’t allow you to change a caption that corresponds to a field name, so adding a
space gets around this restriction.

Creating Multiple Pivot Tables
The final example creates a series of pivot tables that summarize data collected in a cus-
tomer survey. That survey data consists of 150 rows. Each row contains the respondent’s
sex plus a numerical rating using a 1–5 scale for each of the 14 survey items.

Figure 8.6 shows a few of the 28 pivot tables produced by the macro. Each survey item is
summarized in two pivot tables (one showing percentages, and one showing the actual
frequencies).

The VBA code that created the pivot tables follows:

Sub MakePivotTables()
' This procedure creates 28 pivot tables
 Dim PTCache As PivotCache
 Dim PT As PivotTable
 Dim SummarySheet As Worksheet
 Dim ItemName As String
 Dim Row As Long, Col As Long, i As Long

 Application.ScreenUpdating = False

nOte
Remember to take full advantage of the macro recorder to learn about the various properties. Performing actions
while recording a macro is an excellent way to expose the correct coding syntax that you need. The macro recorder,
combined with the information in the Help system (and a fair amount of trial and error), will give you all of the infor-
mation you need to create your own custom code.

On the Web
This workbook, named survey data pivot tables.xlsm, is available on the book’s website.

Part II: Advanced VBA Techniques

300

' Delete Summary sheet if it exists
 On Error Resume Next
 Application.DisplayAlerts = False
 Sheets("Summary").Delete
 On Error GoTo 0

' Add Summary sheet
 Set SummarySheet = Worksheets.Add
 ActiveSheet.Name = "Summary"

' Create Pivot Cache
 Set PTCache = ActiveWorkbook.PivotCaches.Create(_
 SourceType:=xlDatabase, _
 SourceData:=Sheets("SurveyData").Range("A1"). _
 CurrentRegion)

 Row = 1
 For i = 1 To 14
 For Col = 1 To 6 Step 5 '2 columns
 ItemName = Sheets("SurveyData").Cells(1, i + 2)
 With Cells(Row, Col)
 .Value = ItemName
 .Font.Size = 16
 End With

FIGURE 8.6

Several pivot tables created by a VBA procedure

Chapter 8: Working with Pivot Tables

301

8

' Create pivot table
 Set PT = ActiveSheet.PivotTables.Add(_
 PivotCache:=PTCache, _
 TableDestination:=SummarySheet.Cells(Row + 1, Col))

' Add the fields
 If Col = 1 Then 'Frequency tables
 With PT.PivotFields(ItemName)
 .Orientation = xlDataField
 .Name = "Frequency"
 .Function = xlCount
 End With
 Else ' Percent tables
 With PT.PivotFields(ItemName)
 .Orientation = xlDataField
 .Name = "Percent"
 .Function = xlCount
 .Calculation = xlPercentOfColumn
 .NumberFormat = "0.0%"
 End With
 End If

 PT.PivotFields(ItemName).Orientation = xlRowField
 PT.PivotFields("Sex").Orientation = xlColumnField
 PT.TableStyle2 = "PivotStyleMedium2"
 PT.DisplayFieldCaptions = False
 If Col = 6 Then
' add data bars to the last column
 PT.ColumnGrand = False
 PT.DataBodyRange.Columns(3).FormatConditions. _
 AddDatabar
 With pt.DataBodyRange.Columns(3).FormatConditions(1)
 .BarFillType = xlDataBarFillSolid
 .MinPoint.Modify newtype:=xlConditionValueNumber,
newvalue:=0
 .MaxPoint.Modify newtype:=xlConditionValueNumber,
newvalue:=1
 End With
 End If
 Next Col
 Row = Row + 10
 Next i

' Replace numbers with descriptive text
 With Range("A:A,F:F")
 .Replace "1", "Strongly Disagree"
 .Replace "2", "Disagree"

Part II: Advanced VBA Techniques

302

 .Replace "3", "Undecided"
 .Replace "4", "Agree"
 .Replace "5", "Strongly Agree"
 End With
End Sub

Note that all of these pivot tables were created from a single PivotCache object.

The pivot tables are created in a nested loop. The Col loop counter goes from 1 to 6 by
using the Step parameter. The instructions vary a bit for the second column of pivot ta-
bles. Specifically, the pivot tables in the second column do the following:

 ■ Display the count as a percent of the column
 ■ Do not show grand totals for the rows
 ■ Are assigned a number format
 ■ Display conditional formatting data bars

The Row variable keeps track of the starting row of each pivot table. The final step is to
replace the numeric categories in columns A and F with text. For example, 1 is replaced
with Strongly Disagree.

Creating a Reverse Pivot Table
A pivot table is a summary of data in a table. But what if you have a summary table and
you’d like to create a normalized table from the summary? Figure 8.7 shows an example.
Range B2:F14 contains a summary table—similar to a simple pivot table. Columns I:K con-
tain a 48-row table created from the summary table. In the table, each row contains one
data point, and the first two columns describe that data point. In other words, the trans-
formed data is normalized. (See the sidebar “Data appropriate for a pivot table,” earlier in
this chapter.)

FIGURE 8.7

The summary table on the left will be converted to the table on the right.

Chapter 8: Working with Pivot Tables

303

8

Excel doesn’t provide a way to transform a summary table into a normalized table, so it’s
a good job for a VBA macro. For example, the UserForm shown in Figure 8.8 gets the input
and output ranges, and it also has an option to convert the output range to a table.

When the user clicks the OK button in the UserForm, VBA code validates the ranges and
then calls the ReversePivot procedure with this statement:

Call ReversePivot(SummaryTable, OutputRange, cbCreateTable)

The statement passes three arguments.

SummaryTable: A Range object that represents the summary table

OutputRange: A Range object that represents the upper-left cell of the output range

cbCreateTable: The Checkbox object on the UserForm

This procedure will work for any size summary table. The number of data rows in the
output table will be equal to (r-1) * (c-1), where r and c represent the number of rows
and columns in SummaryTable.

On the Web
This workbook, named reverse pivot table.xlsm, is available on the book’s website.

FIGURE 8.8

This dialog box asks the user for the ranges.

Part II: Advanced VBA Techniques

304

The code for the ReversePivot procedure follows:

Sub ReversePivot(SummaryTable As Range, _
 OutputRange As Range, CreateTable As Boolean)
 Dim r As Long, c As Long
 Dim OutRow As Long, OutCol As Long

' Convert the range
 OutRow = 2
 Application.ScreenUpdating = False
 OutputRange.Range("A1:C3") = Array("Column1", "Column2",
"Column3")
 For r = 2 To SummaryTable.Rows.Count
 For c = 2 To SummaryTable.Columns.Count
 OutputRange.Cells(OutRow, 1) = SummaryTable.Cells(r, 1)
 OutputRange.Cells(OutRow, 2) = SummaryTable.Cells(1, c)
 OutputRange.Cells(OutRow, 3) = SummaryTable.Cells(r, c)
 OutputRange.Cells(OutRow, 3).NumberFormat = _
 SummaryTable.Cells(r, c).NumberFormat
 OutRow = OutRow + 1
 Next c
 Next r

' Make it a table?
 On Error Resume Next
 If CreateTable Then _
 ActiveSheet.ListObjects.Add xlSrcRange, _
 OutputRange.CurrentRegion, , xlYes
 On Error Goto 0
End Sub

The procedure is fairly simple. The code loops through the rows and columns in the input
range and then writes the data to the output range. The output range will always have
three columns. The OutRow variable keeps track of the current row in the output range.
Finally, if the user checked the check box, the output range is converted to a table by using
the Add method of the ListObjects collection.

305

CHAP T ER

9
Working with Charts

IN THIS CHAPTER
Discovering essential background information on Excel charts

Knowing the difference between embedded charts and chart sheets

Understanding the Chart object model

Using methods other than the macro recorder to help you learn about Chart objects

Exploring examples of common charting tasks that use VBA

Navigating more complex charting macros

Finding out some interesting (and useful) chart-making tricks

Working with Sparkline charts

Getting the Inside Scoop on Charts
Excel’s charting feature lets you create a wide variety of charts using data that’s stored in a
worksheet. You have a great deal of control over nearly every aspect of each chart.

An Excel chart is simply packed with objects, each of which has its own properties and methods.
Because of this, manipulating charts with Visual Basic for Applications (VBA) can be a bit of a
challenge. In this chapter, we discuss the key concepts that you need to understand to write VBA
code that generates or manipulates charts. The secret, as you’ll see, is a good understanding of the
object hierarchy for charts.

Chart locations
In Excel, a chart can be located in either of two places in a workbook.

 ■ As an embedded object on a worksheet: A worksheet can contain any number of
embedded charts.

 ■ In a separate chart sheet: A chart sheet normally holds a single chart.

Most users create charts manually by using the commands in the Insert ➪ Charts group. But you
can also create charts by using VBA. And, of course, you can use VBA to modify existing charts.

Excel® 2019 Power Programming with VBA, First Edition. Michael Alexander and Dick Kusleika.
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.

Part II: Advanced VBA Techniques

306

A key concept when working with charts is the active chart, that is, the chart that’s
currently selected. When the user clicks an embedded chart or activates a chart sheet,
a Chart object is activated. In VBA, the ActiveChart property returns the activated
Chart object (if any). You can write code to work with this Chart object, much like
you can write code to work with the Workbook object returned by the ActiveWork-
book property.

Here’s an example: if a chart is activated, the following statement will display the Name
property for the Chart object:

MsgBox ActiveChart.Name

If a chart isn’t activated, the preceding statement generates an error.

The macro recorder and charts
As you have read in other chapters, you know that we often recommend using the macro
recorder to learn about objects, properties, and methods. As always, recorded macros are
best viewed as a learning tool. The recorded code will almost always steer you to the rele-
vant objects, properties, and methods.

The Chart object model
When you first start exploring the object model for a Chart object, you’ll probably be con-
fused—which isn’t surprising because the object model is confusing. It’s also deep.

For example, assume you want to change the title displayed in an embedded chart. The
top-level object, of course, is the Application object (Excel). The Application object
contains a Workbook object, and the Workbook object contains a Worksheet object. The

Tip
The fastest way to create a chart manually is to select your data and then press Alt+F1. Excel creates an embedded
chart and uses the default chart type. To create a new default chart on a chart sheet, select the data and press F11.

NoTe
As you will see later in this chapter, you don’t need to activate a chart to manipulate it with VBA.

Compatibility note
The VBA code in this chapter uses the chart-related properties and methods that were introduced in
Excel 2013. For example, Excel 2013 introduced the AddChart2 method. The AddChart method still
works, but we focus on the most recent changes, which are often much easier to use. As a result, some
of the code presented here won’t work with versions prior to Excel 2013.

Chapter 9: Working with Charts

307

9

Worksheet object contains a ChartObject object, which contains a Chart object. The
Chart object has a ChartTitle object, and the ChartTitle object has a Text property
that stores the text displayed as the chart’s title.

Here’s another way to look at this hierarchy for an embedded chart:

Application
 Workbook
 Worksheet
 ChartObject
 Chart
 ChartTitle

Your VBA code must, of course, follow this object model precisely. For example, to set a
chart’s title to YTD Sales, you can write a VBA instruction like this:

Worksheets(1).ChartObjects(1).Chart.ChartTitle.Text = "YTD Sales"

This statement assumes the active workbook is the Workbook object. The statement works
with the first object in the ChartObjects collection on the first worksheet. The Chart
property returns the actual Chart object, and the ChartTitle property returns the
ChartTitle object. Finally, you get to the Text property.

Note that the preceding statement will fail if the chart doesn’t have a title. To add a default
title (which displays the text Chart Title) to the chart, use this statement:

Worksheets("Sheet1").ChartObjects(1).Chart.HasTitle = True

For a chart sheet, the object hierarchy is a bit different because it doesn’t involve the
Worksheet object or the ChartObject object. For example, here’s the hierarchy for the
ChartTitle object for a chart in a chart sheet:

Application
 Workbook
 Chart
 ChartTitle

You can use this VBA statement to set the chart title in a chart sheet to YTD Sales:

Sheets("Chart1").ChartTitle.Text = "YTD Sales"

A chart sheet is essentially a Chart object, and it has no containing ChartObject object.
Put another way, the parent object for an embedded chart is a ChartObject object, and
the parent object for a chart on a separate chart sheet is a Workbook object.

Both of the following statements will display a message box that displays the word Chart:

MsgBox TypeName(Sheets("Sheet1").ChartObjects(1).Chart)
Msgbox TypeName(Sheets("Chart1"))

NoTe
When you create a new embedded chart, you’re adding to the ChartObjects collection and the Shapes collec-
tion contained in a particular worksheet. (There is no Charts collection for a worksheet.) When you create a new
chart sheet, you’re adding to the Charts collection and the Sheets collection for a particular workbook.

Part II: Advanced VBA Techniques

308

Creating an Embedded Chart
A ChartObject is a special type of Shape object. Therefore, it’s a member of the Shapes
collection. To create a new chart, use the AddChart2 method of the Shapes collection.
The following statement creates an empty embedded chart with all default settings:

ActiveSheet.Shapes.AddChart2

The AddChart2 method can use seven arguments (all are optional):

Style A numeric code that specifies the style (or overall look) of the chart.

xlChartType The type of chart. If omitted, the default chart type is used. Constants
for all of the chart types are provided (for example, xlArea and xlColumn-
Clustered).

Left The left position of the chart, in points. If omitted, Excel centers the chart
horizontally.

Top The top position of the chart, in points. If omitted, Excel centers the chart
vertically.

Width The width of the chart, in points. If omitted, Excel uses 354.

Height The height of the chart, in points. If omitted, Excel uses 210.

NewLayout A numeric code that specifies the layout of the chart.

Here’s a statement that creates a clustered column chart, using Style 201 and Layout
5, positioned 50 pixels from the left, 60 pixels from the top, 300 pixels wide, and 200
pixels high:

ActiveSheet.Shapes.AddChart2 201, xlColumnClustered, 50, 60,
300, 200, 5

In many cases, you may find it efficient to create an object variable when the chart is cre-
ated. The following procedure creates a line chart that you can reference in code by using
the MyChart object variable. Note that the AddChart2 method specifies only the first
two arguments. The other five arguments use default values.

Sub CreateChart()
 Dim MyChart As Chart
 Set MyChart = ActiveSheet.Shapes.AddChart2(212, xlLineMarkers)
.Chart
End Sub

A chart without data isn’t useful. You can specify data for a chart in two ways.

 ■ Select cells before your code creates the chart
 ■ Use the SetSourceData method of the Chart object after the chart is created

Here’s a simple procedure that selects a range of data and then creates a chart:

Sub CreateChart2()
 Range("A1:B6").Select

Chapter 9: Working with Charts

309

9

 ActiveSheet.Shapes.AddChart2 201, xlColumnClustered
End Sub

The procedure that follows demonstrates the SetSourceData method. This procedure uses
two object variables: DataRange (for the Range object that holds the data) and MyChart
(for the Chart object). The MyChart object variable is set at the same time the chart
is created.

Sub CreateChart3()
 Dim MyChart As Chart
 Dim DataRange As Range
 Set DataRange = ActiveSheet.Range("A1:B6")
 Set MyChart = ActiveSheet.Shapes.AddChart2.Chart
 MyChart.SetSourceData Source:=DataRange
End Sub

Note that the AddChart2 method has no arguments, so a default chart is created.

Creating a Chart on a Chart Sheet
The preceding section describes the basic procedures for creating an embedded chart. To
create a chart directly on a chart sheet, use the Add2 method of the Charts collection.
The Add2 method of the Charts collection uses several optional arguments, but these
arguments specify the position of the chart sheet—not chart-related information.

The example that follows creates a chart on a chart sheet and specifies the data range and
chart type:

Sub CreateChartSheet()
 Dim MyChart As Chart
 Dim DataRange As Range
 Set DataRange = ActiveSheet.Range("A1:C7")
 Set MyChart = Charts.Add2
 MyChart.SetSourceData Source:=DataRange
 ActiveChart.ChartType = xlColumnClustered
End Sub

Modifying Charts
Enhancements introduced with Excel 2013 make it easier than ever for end users to cre-
ate and modify charts. For example, when a chart is activated, Excel displays three icons
on the right side of the chart: Chart Elements (used to add or remove elements from the
chart), Style & Color (used to select a chart style or change the color palette), and Chart
Filters (used to hide series or data points).

Your VBA code can perform all the actions available from the new chart controls. For
example, if you turn on the macro recorder while you add or remove elements from a chart,

Part II: Advanced VBA Techniques

310

you’ll see that the relevant method is SetElement (a method of the Chart object). This
method takes one argument, and predefined constants are available. For example, to add
primary horizontal gridlines to the active chart, use this statement:

ActiveChart.SetElement msoElementPrimaryValueGridLinesMajor

To remove the primary horizontal gridlines from the active chart, use this statement:

ActiveChart.SetElement msoElementPrimaryValueGridLinesNone

All of the constants are listed in the Help system, or you can use the macro recorder to dis-
cover them.

Use the ChartStyle property to change the chart to a predefined style. The styles are
numbers, and no descriptive constants are available. For example, this statement changes
the style of the active chart to Style 215:

ActiveChart.ChartStyle = 215

Valid values for the ChartStyle property are 1–48 and 201–248. The latter group consists
of styles introduced in Excel 2013. Also, keep in mind that the actual appearance of the
styles isn’t consistent across Excel versions. For example, applying style 48 looks different
in Excel 2010.

To change the color scheme used by a chart, set its ChartColor property to a value
between 1 and 26. Here’s an example:

ActiveChart.ChartColor = 12

When you combine the 96 ChartStyle values with the 26 ChartColor options, you have
2,496 combinations—enough to satisfy just about anyone. And if those prebuilt choices
aren’t enough, you have control over every element in a chart. For example, the following
code changes the fill color for one point in a chart series:

With ActiveChart.FullSeriesCollection(1).Points(2).Format.Fill
 .Visible = msoTrue
 .ForeColor.ObjectThemeColor = msoThemeColorAccent2
 .ForeColor.TintAndShade = 0.4
 .ForeColor.Brightness = -0.25
 .Solid
End With

Again, recording your actions while you make changes to a chart will give you the object
model information you need to write your code.

Using VBA to Activate a Chart
When a user clicks any area of an embedded chart, the chart is activated. Your VBA code
can activate an embedded chart with the Activate method. Here’s a VBA statement that’s
the equivalent of clicking an embedded chart to activate it:

ActiveSheet.ChartObjects("Chart 1").Activate

Chapter 9: Working with Charts

311

9

If the chart is on a chart sheet, use a statement like this:

Sheets("Chart1").Activate

Alternatively, you can activate a chart by selecting its containing shape:

ActiveSheet.Shapes("Chart 1").Select

When a chart is activated, you can refer to it in your code by using the ActiveChart
property (which returns a Chart object). For example, the following instruction displays
the name of the active chart. If no active chart exists, the statement generates an error.

MsgBox ActiveChart.Name

To modify a chart with VBA, it’s not necessary to activate it. The two procedures that
follow have the same effect. That is, they change the embedded chart named Chart 1 to
an area chart. The first procedure activates the chart before performing the manipulations;
the second one doesn’t.

Sub ModifyChart1()
 ActiveSheet.ChartObjects("Chart 1").Activate
 ActiveChart.ChartType = xlArea
End Sub

Sub ModifyChart2()
 ActiveSheet.ChartObjects("Chart 1").Chart.ChartType = xlArea
End Sub

Moving a Chart
A chart embedded on a worksheet can be converted to a chart sheet. To do so manually,
just activate the embedded chart and choose Chart Tools ➪ Design ➪ Location ➪ Move
Chart. In the Move Chart dialog box, select the New Sheet option and specify a name.

You can also convert an embedded chart to a chart sheet by using VBA. Here’s an example
that converts the first ChartObject on a worksheet named Sheet1 to a chart sheet
named MyChart:

Sub MoveChart1()
 Sheets("Sheet1").ChartObjects(1).Chart. _
 Location xlLocationAsNewSheet, "MyChart"
End Sub

Unfortunately, you can’t undo this action once the macro is triggered. However, you can
use the following code to do the opposite of the preceding procedure, which converts
the chart on a chart sheet named MyChart to an embedded chart on the worksheet
named Sheet1.

Sub MoveChart2()
 Charts("MyChart").Location xlLocationAsObject, "Sheet1"
End Sub

Part II: Advanced VBA Techniques

312

Using VBA to Deactivate a Chart
You can use the Activate method to activate a chart, but how do you deactivate (that is,
deselect) a chart?

The only way to deactivate a chart using VBA is to select something other than the chart. For
an embedded chart, you can use the RangeSelection property of the ActiveWindow object
to deactivate the chart and select the range that was selected before the chart was activated.

ActiveWindow.RangeSelection.Select

To deactivate a chart on a chart sheet, just write code that activates a different sheet.

NoTe
Using the Location method also activates the relocated chart.

Understanding Chart Names
Every ChartObject object has a name, and every Chart object contained in a ChartObject has a
name. That statement seems straightforward, but chart names can be confusing. Create a new chart
on Sheet1 and activate it. Then activate the VBA Immediate window and type a few commands,
shown here:

? ActiveSheet.Shapes(1).Name
Chart 1
? ActiveSheet.ChartObjects(1).Name
Chart 1
? ActiveChart.Name
Sheet1 Chart 1
? ActiveSheet.ChartObjects(1).Chart.Name
Sheet1 Chart 1

If you change the name of the worksheet, the name of the chart also changes to include the new sheet
name. You can also use the Name box (to the left of the Formula bar) to change a Chart object’s name
and also change the name using VBA.

ActiveSheet.ChartObjects(1).Name = "New Name"

However, you can’t change the name of a Chart object contained in a ChartObject. This statement
generates an inexplicable “out of memory” error:

ActiveSheet.ChartObjects(1).Chart.Name = "New Name"

Oddly, Excel allows you to use the name of an existing ChartObject. In other words, you could have a
dozen embedded charts on a worksheet, and every one of them can be named Chart 1. If you make
a copy of an embedded chart, the new chart has the same name as the source chart.

Bottom line? Be aware of this quirk. If you find that your VBA charting macro isn’t working, make sure
you don’t have two, identically named charts.

Chapter 9: Working with Charts

313

9

Determining Whether a Chart Is Activated
A common type of macro performs some manipulations on the active chart (the chart
selected by a user). For example, a macro might change the chart’s type, apply a style, add
data labels, or export the chart to a graphics file.

The question is, how can your VBA code determine whether the user has actually selected
a chart? By selecting a chart, we mean either activating a chart sheet or activating an
embedded chart by clicking it. Your first inclination might be to check the TypeName
property of the Selection, as in this expression:

TypeName(Selection) = "Chart"

In fact, this expression never evaluates to True. When a chart is activated, the actual
selection will be an object within the Chart object. For example, the selection might be a
Series object, a ChartTitle object, a Legend object, or a PlotArea object.

The solution is to determine whether ActiveChart is Nothing. If so, a chart isn’t
active. The following code checks to ensure that a chart is active. If not, the user sees a
message and the procedure ends:

If ActiveChart Is Nothing Then
 MsgBox "Select a chart."
 Exit Sub
Else
 'other code goes here
End If

You may find it convenient to use a VBA function procedure to determine whether a chart
is activated. The ChartIsSelected function, which follows, returns True if a chart
sheet is active or if an embedded chart is activated, but it returns False if a chart isn’t
activated.

Private Function ChartIsActivated() As Boolean
 ChartIsActivated = Not ActiveChart Is Nothing
End Function

Deleting from the ChartObjects or Charts Collection
To delete a chart on a worksheet, you must know the name or index of the ChartObject
or the Shape object. This statement deletes the ChartObject named Chart 1 on the
active worksheet:

ActiveSheet.ChartObjects("Chart 1").Delete

Keep in mind that multiple ChartObjects can have the same name. If that’s the case, you
can delete a chart by using its index number.

ActiveSheet.ChartObjects(1).Delete

Part II: Advanced VBA Techniques

314

To delete all ChartObject objects on a worksheet, use the Delete method of the
ChartO bjects collection.

ActiveSheet.ChartObjects.Delete

You can also delete embedded charts by accessing the Shapes collection. The following
statement deletes the shape named Chart 1 on the active worksheet:

ActiveSheet.Shapes("Chart 1").Delete

This code deletes all embedded charts (and all other shapes) on the active sheet:

Dim shp as Shape
For Each shp In ActiveSheet.Shapes
 shp.Delete
Next shp

To delete a single chart sheet, you must know the chart sheet’s name or index. The follow-
ing statement deletes the chart sheet named Chart1:

Charts("Chart1").Delete

To delete all chart sheets in the active workbook, use the following statement:

ActiveWorkbook.Charts.Delete

Deleting sheets causes Excel to display a warning that data could be lost. The user must
confirm the deletion before the macro can continue. You probably won’t want to inundate
the user with this warning prompt. To eliminate the prompt, use the DisplayAlerts
property to temporarily turn alerts off before deleting.

Application.DisplayAlerts = False
ActiveWorkbook.Charts.Delete
Application.DisplayAlerts = True

Looping Through All Charts
In some cases, you may need to perform an operation on all charts. The following example
applies changes to every embedded chart on the active worksheet. The procedure uses a
loop to cycle through each object in the ChartObjects collection and then accesses the
Chart object in each and changes several properties.

Sub FormatAllCharts()
 Dim ChtObj As ChartObject
 For Each ChtObj In ActiveSheet.ChartObjects
 With ChtObj.Chart
 .ChartType = xlLineMarkers
 .ApplyLayout 3
 .ChartStyle = 12
 .ClearToMatchStyle
 .SetElement msoElementChartTitleAboveChart
 .SetElement msoElementLegendNone

Chapter 9: Working with Charts

315

9

 .SetElement msoElementPrimaryValueAxisTitleNone
 .SetElement msoElementPrimaryCategoryAxisTitleNone
 .Axes(xlValue).MinimumScale = 0
 .Axes(xlValue).MaximumScale = 1000
 With .Axes(xlValue).MajorGridlines.Format.Line
 .ForeColor.ObjectThemeColor = msoThemeColorBackground1
 .ForeColor.TintAndShade = 0
 .ForeColor.Brightness = -0.25
 .DashStyle = msoLineSysDash
 .Transparency = 0
 End With
 End With
 Next ChtObj
End Sub

Figure 9.1 shows four charts that use a variety of different formatting; Figure 9.2 shows the
same charts after running the FormatAllCharts macro.

oN The Web
This example is available on the book’s website in the format all charts.xlsm file.

400

Product A

Product A

350
300
250
200
150
100
50
0
Jan Feb Mar Apr May Jun

Jun

May

Apr

Mar

Feb

Jan

195 200 205 210 215 220 225 230 235 240

Product C

Jan Feb Mar Apr May Jun

Product D
700

600
500
400
300
200
100

0
Jan Feb Mar Apr May Jun

Product D

1000
900
800
700
600
500
400
300
200
100

0
Jan

745

566 602
732

812
934

Feb Mar Apr May Jun

FIGURE 9.1

These charts use different formatting.

Part II: Advanced VBA Techniques

316

The following macro performs the same operation as the preceding FormatAllCharts
procedure, but it works on all of the chart sheets in the active workbook:

Sub FormatAllCharts2()
 Dim cht as Chart
 For Each cht In ActiveWorkbook.Charts
 With cht
 .ChartType = xlLineMarkers
 .ApplyLayout 3
 .ChartStyle = 12
 .ClearToMatchStyle
 .SetElement msoElementChartTitleAboveChart
 .SetElement msoElementLegendNone
 .SetElement msoElementPrimaryValueAxisTitleNone
 .SetElement msoElementPrimaryCategoryAxisTitleNone
 .Axes(xlValue).MinimumScale = 0
 .Axes(xlValue).MaximumScale = 1000
 With .Axes(xlValue).MajorGridlines.Format.Line
 .ForeColor.ObjectThemeColor = msoThemeColorBackground1
 .ForeColor.TintAndShade = 0
 .ForeColor.Brightness = -0.25
 .DashStyle = msoLineSysDash
 .Transparency = 0

1000
900
800
700
600
500
400
300
200
100

0
Jan Feb Mar Apr

Product A

May Jun

1000
900
800
700
600
500
400
300
200
100

0
Jan Feb Mar Apr

Product B

May Jun

1000
900
800
700
600
500
400
300
200
100

0
Jan Feb Mar Apr

Product C

May Jun

1000
900
800
700
600
500
400
300
200
100

0
Jan Feb Mar Apr

Product D

May Jun

FIGURE 9.2

A simple macro applied consistent formatting to the four charts.

Chapter 9: Working with Charts

317

9

 End With
 End With
 Next cht
End Sub

Sizing and Aligning ChartObjects
A ChartObject object has standard positional (Top and Left) and sizing (Width and
Height) properties that you can access with your VBA code. The Excel Ribbon has con-
trols (in the Chart Tools ➪ Format ➪ Size group) to set the Height and Width, but not the
Top and Left.

The following example resizes all ChartObject objects on a sheet so that they match the
dimensions of the active chart. It also arranges the ChartObject objects into a user-
specified number of columns.

Sub SizeAndAlignCharts()
 Dim W As Long, H As Long
 Dim TopPosition As Long, LeftPosition As Long
 Dim ChtObj As ChartObject
 Dim i As Long, NumCols As Long

 If ActiveChart Is Nothing Then
 MsgBox "Select a chart to be used as the base for the sizing"
 Exit Sub
 End If

 'Get columns
 On Error Resume Next
 NumCols = InputBox("How many columns of charts?")
 If Err.Number <> 0 Then Exit Sub
 If NumCols < 1 Then Exit Sub
 On Error GoTo 0

 'Get size of active chart
 W = ActiveChart.Parent.Width
 H = ActiveChart.Parent.Height

 'Change starting positions, if necessary
 TopPosition = 100
 LeftPosition = 20
 For i = 1 To ActiveSheet.ChartObjects.Count
 With ActiveSheet.ChartObjects(i)
 .Width = W
 .Height = H
 .Left = LeftPosition + ((i - 1) Mod NumCols) * W
 .Top = TopPosition + Int((i - 1) / NumCols) * H

Part II: Advanced VBA Techniques

318

 End With
 Next i
End Sub

If no chart is active, the user is prompted to activate a chart that will be used as the basis
for sizing the other charts. We use an InputBox function to get the number of columns.
The values for the Left and Top properties are calculated within the loop.

Creating Lots of Charts
The example in this section demonstrates how to automate the task of creating multiple
charts. Figure 9.3 shows part of the data to be charted. The worksheet contains data for 50
people, and the goal is to create 50 charts, consistently formatted and nicely aligned.

oN The Web
This workbook, named size and align charts.xlsm, is available on the book’s website.

FIGURE 9.3

Each row of data will be used to create a chart.

Chapter 9: Working with Charts

319

9

We start out by creating the CreateChart procedure, which accepts the following
arguments:

rng: The range to be used for the chart

l: The left position for the chart

t: The top position for the chart

w: The width of the chart

h: The height of the chart

The CreateChart procedure uses these arguments to create a line chart with axis scale
values ranging from 0 to 100.

Sub CreateChart(rng, l, t, w, h)
 With Worksheets("Sheet2").Shapes. _
 AddChart2(332, xlLineMarkers, l, t, w, h).Chart
 .SetSourceData Source:=rng
 .Axes(xlValue).MinimumScale = 0
 .Axes(xlValue).MaximumScale = 100
 End With
End Sub

Next, we can apply the procedure Make50Charts, which uses a For-Next loop to call
CreateChart 50 times. Note that the chart data consists of the first row (the headers),
plus data in a row from 2 through 50. We used the Union method to join these two ranges
into one Range object, which is passed to the CreateChart procedure. The other tricky
part is to determine the top and left position for each chart. This code does just that:

Sub Make50Charts()
 Dim ChartData As Range
 Dim i As Long
 Dim leftPos As Long, topPos As Long
' Delete existing charts if they exist
 With Worksheets("Sheet2").ChartObjects
 If .Count > 0 Then .Delete
 End With

' Initialize positions
 leftPos = 0
 topPos = 0

' Loop through the data
 For i = 2 To 51
' Determine the data range
 With Worksheets("Sheet1")
 Set ChartData = Union(.Range("A1:F1"), _

Part II: Advanced VBA Techniques

320

 .Range(.Cells(i, 1), .Cells(i, 6)))
 End With

' Create a chart
 Call CreateChart(ChartData, leftPos, topPos, 180, 120)

' Adjust positions
 If (i - 1) Mod 5 = 0 Then
 leftPos = 0
 topPos = topPos + 120
 Else
 leftPos = leftPos + 180
 End If
 Next i
End Sub

Figure 9.4 shows some of the 50 charts.

FIGURE 9.4

A sampling of the 50 charts created by the macro

Chapter 9: Working with Charts

321

9

Exporting a Chart
In some cases, you may need an Excel chart in the form of a graphics file. For example,
you may want to post the chart on a website. One option is to use a screen capture pro-
gram and copy the pixels directly from the screen. Another choice is to write a simple
VBA macro.

The procedure that follows uses the Export method of the Chart object to save the active
chart as a GIF file:

Sub SaveChartAsGIF()
 Dim Fname as String
 If ActiveChart Is Nothing Then Exit Sub
 Fname = ThisWorkbook.Path & "\" & ActiveChart.Name & ".gif"
 ActiveChart.Export FileName:=Fname, FilterName:="GIF"
End Sub

Other choices for the FilterName argument are "JPEG" and "PNG". Usually, GIF and PNG
files look better. The Help system lists a third argument for the Export method: Inter-
active. If this argument is True, you’re supposed to see a dialog box in which you can
specify export options. However, this argument has no effect.

Keep in mind that the Export method will fail if the user doesn’t have the specified
graphics export filter installed. These filters are installed in the Office setup program.

Exporting all graphics
One way to export all graphic images from a workbook is to save the file in HTML format.
Doing so creates a directory that contains GIF and PNG images of the charts, shapes, clip
art, and even copied range images (created with Home ➪ Clipboard ➪ Paste ➪ Picture (U)).

Here’s a VBA procedure that automates the process. It works with the active workbook.

Sub SaveAllGraphics()
 Dim FileName As String
 Dim TempName As String
 Dim DirName As String
 Dim gFile As String

 FileName = ActiveWorkbook.FullName
 TempName = ActiveWorkbook.Path & "\" & _
 ActiveWorkbook.Name & "graphics.htm"
 DirName = Left(TempName, Len(TempName) - 4) & "_files"

' Save active workbookbook as HTML, then reopen original
 ActiveWorkbook.Save
 ActiveWorkbook.SaveAs FileName:=TempName, FileFormat:=xlHtml

Part II: Advanced VBA Techniques

322

 Application.DisplayAlerts = False
 ActiveWorkbook.Close
 Workbooks.Open FileName

' Delete the HTML file
 Kill TempName

' Delete all but *.PNG files in the HTML folder
 gFile = Dir(DirName & "*.*")
 Do While gFile <> ""
 If Right(gFile, 3) <> "png" Then Kill DirName & "\" & gFile
 gFile = Dir
 Loop

' Show the exported graphics
 Shell "explorer.exe " & DirName, vbNormalFocus
End Sub

The procedure starts by saving the active workbook. Then it saves the workbook as an
HTML file, closes the file, and reopens the original workbook. Next, it deletes the HTML file
because we’re just interested in the folder that it creates (because that folder contains the
images). The code then loops through the folder and deletes everything except the PNG
files. Finally, it uses the Shell function to display the folder.

Changing the Data Used in a Chart
The examples presented so far in this chapter have used the SourceData property to spec-
ify the complete data range for a chart. In many cases, you’ll want to adjust the data used
by a particular chart series. To do so, access the Values property of the Series object.
The Series object also has an XValues property that stores the category axis values.

See Chapter 11, “Working with External Data and Files,” for more information about the file manipulation
commands.

oN The Web
This example is available on the book’s website in the export all graphics.xlsm file.

NoTe
The Values property corresponds to the third argument of the SERIES formula, and the XValues property
corresponds to the second argument of the SERIES formula. See the sidebar “Understanding a chart’s SERIES
formula.”

Chapter 9: Working with Charts

323

9

Understanding a chart’s SERIES formula
The data used in each series in a chart is determined by its SERIES formula. When you select a data
series in a chart, the SERIES formula appears in the formula bar. This is not a real formula. In other
words, you can’t use it in a cell, and you can’t use worksheet functions within the SERIES formula. You
can, however, edit the arguments in the SERIES formula.

A SERIES formula has the following syntax:

=SERIES(series_name, category_labels, values, order, sizes)

The arguments that you can use in the SERIES formula are

 ■ series _ name: Optional. A reference to the cell that contains the series name used in the
legend. If the chart has only one series, the name argument is used as the title. This argu-
ment can also consist of text in quotation marks. If omitted, Excel creates a default series
name (for example, Series 1).

 ■ category _ labels: Optional. A reference to the range that contains the labels for the
category axis. If omitted, Excel uses consecutive integers beginning with 1. For XY charts,
this argument specifies the X values. A noncontiguous range reference is also valid. The
ranges’ addresses are separated by a comma and enclosed in parentheses. The argument
could also consist of an array of comma-separated values (or text in quotation marks)
enclosed in curly brackets.

 ■ values: Required. A reference to the range that contains the values for the series. For XY
charts, this argument specifies the Y values. A noncontiguous range reference is also valid.
The ranges’ addresses are separated by a comma and enclosed in parentheses. The argu-
ment could also consist of an array of comma-separated values enclosed in curly brackets.

 ■ order: Required. An integer that specifies the plotting order of the series. This argument is
relevant only if the chart has more than one series. For example, in a stacked column chart,
this parameter determines the stacking order. Using a reference to a cell is not allowed.

 ■ sizes: Only for bubble charts. A reference to the range that contains the values for the
size of the bubbles in a bubble chart. A noncontiguous range reference is also valid. The
ranges’ addresses are separated by a comma and enclosed in parentheses. The argument
could also consist of an array of values enclosed in curly brackets.

Range references in a SERIES formula are always absolute, and they always include the sheet name.
For example:

=SERIES(Sheet1!B1,,Sheet1!B2:B7,1)

A range reference can consist of a noncontiguous range. If so, each range is separated by a comma,
and the argument is enclosed in parentheses. In the following SERIES formula, the values range
consists of B2:B3 and B5:B7:

=SERIES(,,(Sheet1!B2:B3,Sheet1!B5:B7),1)

You can substitute range names for the range references. If you do so (and the name is a
workbook-level name), Excel changes the reference in the SERIES formula to include
the workbook. Here’s an example:

=SERIES(Sheet1!B1,,budget.xlsx!CurrentData,1)

Part II: Advanced VBA Techniques

324

Changing chart data based on the active cell
Figure 9.5 shows a chart that’s based on the data in the row of the active cell. When the
user moves the cell pointer, the chart is updated automatically.

This example uses an event handler for the Sheet1 object. The SelectionChange event
occurs whenever the user changes the selection by moving the cell pointer. The event-
handler procedure for this event (which is located in the code module for the Sheet1
object) is as follows:

Private Sub Worksheet_SelectionChange(ByVal Target As Excel.Range)
 If CheckBox1 Then Call UpdateChart
End Sub

In other words, every time the user moves the cell cursor, the Worksheet _ Selection-
Change procedure is executed. If the Auto Update Chart check box (an ActiveX control on
the sheet) is checked, this procedure calls the UpdateChart procedure, which follows:

Sub UpdateChart()
 Dim ChtObj As ChartObject
 Dim UserRow As Long
 Set ChtObj = ActiveSheet.ChartObjects(1)

FIGURE 9.5

This chart always displays the data from the row of the active cell.

Chapter 9: Working with Charts

325

9

 UserRow = ActiveCell.Row
 If UserRow < 4 Or IsEmpty(Cells(UserRow, 1)) Then
 ChtObj.Visible = False
 Else
 ChtObj.Chart.SeriesCollection(1).Values = _
 Range(Cells(UserRow, 2), Cells(UserRow, 6))
 ChtObj.Chart.ChartTitle.Text = Cells(UserRow, 1).Text
 ChtObj.Visible = True
 End If
End Sub

The UserRow variable contains the row number of the active cell. The If statement checks
that the active cell is in a row that contains data. (The data starts in row 4.) If the cell
cursor is in a row that doesn’t have data, the ChartObject object is hidden, and the
underlying text is visible (“Cannot display chart”). Otherwise, the code sets the Values
property for the Series object to the range in columns 2–6 of the active row. It also sets
the ChartTitle object to correspond to the text in column A.

Using VBA to determine the ranges used in a chart
The previous example demonstrated how to use the Values property of a Series object to
specify the data used by a chart series. This section discusses using VBA macros to identify
the ranges used by a series in a chart. For example, you might want to increase the size of
each series by adding a new cell to the range.

The following are the three properties that are relevant to this task:

 ■ Formula property: Returns or sets the SERIES formula for the series. When you
select a series in a chart, its SERIES formula is displayed in the formula bar. The
Formula property returns this formula as a string.

 ■ Values property: Returns or sets a collection of all the values in the series. This
property can be specified as a range on a worksheet or as an array of constant
values, but not as a combination of both.

 ■ XValues property: Returns or sets an array of X values for a chart series. The
XValues property can be set to a range on a worksheet or to an array of values,
but it can’t be a combination of both. The XValues property can also be empty.

If you create a VBA macro that needs to determine the data range used by a particular
chart series, you might think that the Values property of the Series object is just the
ticket. Similarly, the XValues property seems to be the way to get the range that contains
the X values (or category labels). In theory, that way of thinking certainly seems correct.
But in practice, it doesn’t work.

oN The Web
This example, named chart active cell.xlsm, is available on the book’s website.

Part II: Advanced VBA Techniques

326

When you set the Values property for a Series object, you can specify a Range object or
an array. But when you read this property, an array is always returned. Unfortunately, the
object model provides no way to get a Range object used by a Series object.

One possible solution is to write code to parse the SERIES formula and extract the range
addresses. This task sounds simple, but it’s actually difficult because a SERIES formula can
be complex. The following are a few examples of valid SERIES formulas:

=SERIES(Sheet1!B1,Sheet1!A2:A4,Sheet1!B2:B4,1)
=SERIES(,,Sheet1!B2:B4,1)
=SERIES(,Sheet1!A2:A4,Sheet1!B2:B4,1)
=SERIES("Sales Summary",,Sheet1!B2:B4,1)
=SERIES(,{"Jan","Feb","Mar"},Sheet1!B2:B4,1)
=SERIES(,(Sheet1!A2,Sheet1!A4),(Sheet1!B2,Sheet1!B4),1)
=SERIES(Sheet1!B1,Sheet1!A2:A4,Sheet1!B2:B4,1,Sheet1!$
C$2:$C$4)

As you can see, a SERIES formula can have missing arguments, use arrays, and even use
noncontiguous range addresses. And, to confuse the issue even more, a bubble chart has an
additional argument (for example, the last SERIES formula in the preceding list). Attempt-
ing to parse the arguments is certainly not a trivial programming task.

The solution is to use four custom VBA functions, each of which accepts one argument (a refer-
ence to a Series object) and returns a two-element array. These functions are the following:

 ■ SERIESNAME _ FROM _ SERIES: The first array element contains a string that
describes the data type of the first SERIES argument (Range, Empty, or String).
The second array element contains a range address, an empty string, or a string.

 ■ XVALUES _ FROM _ SERIES: The first array element contains a string that
describes the data type of the second SERIES argument (Range, Array, Empty,
or String). The second array element contains a range address, an array, an empty
string, or a string.

 ■ VALUES _ FROM _ SERIES: The first array element contains a string that describes
the data type of the third SERIES argument (Range or Array). The second array
element contains a range address or an array.

 ■ BUBBLESIZE _ FROM _ SERIES: The first array element contains a string that
describes the data type of the fifth SERIES argument (Range, Array, or Empty).
The second array element contains a range address, an array, or an empty string.
This function is relevant only for bubble charts.

Note you can get the fourth SERIES argument (plot order) directly by using the Plot-
Order property of the Series object.

oN The Web
The VBA code for these functions is too lengthy to be listed here, but the code is available on the book’s website in a
file named get series ranges.xlsm. These functions are documented in such a way that they can be easily
adapted to other situations.

Chapter 9: Working with Charts

327

9

The following example demonstrates the VALUES _ FROM _ SERIES function. It displays
the address of the values range for the first series in the active chart.

Sub ShowValueRange()
 Dim Ser As Series
 Dim x As Variant
 Set Ser = ActiveChart.SeriesCollection(1)
 x = VALUES_FROM_SERIES(Ser)
 If x(1) = "Range" Then
 MsgBox Range(x(2)).Address
 End If
End Sub

The variable x is defined as a variant and will hold the two-element array that’s returned
by the VALUES _ FROM _ SERIES function. The first element of the x array contains a
string that describes the data type. If the string is Range, the message box displays the
address of the range contained in the second element of the x array.

The ContractAllSeries procedure follows. This procedure loops through the
SeriesCollection collection and uses the XVALUE _ FROM _ SERIES and VALUES _
FROM _ SERIES functions to retrieve the current ranges. It then uses the Resize method
to decrease the size of the ranges.

Sub ContractAllSeries()
 Dim s As Series
 Dim Result As Variant
 Dim DRange As Range
 For Each s In ActiveSheet.ChartObjects(1).Chart.SeriesCollection
 Result = XVALUES_FROM_SERIES(s)
 If Result(1) = "Range" Then
 Set DRange = Range(Result(2))
 If DRange.Rows.Count > 1 Then
 Set DRange = DRange.Resize(DRange.Rows.Count - 1)
 s.XValues = DRange
 End If
 End If
 Result = VALUES_FROM_SERIES(s)
 If Result(1) = "Range" Then
 Set DRange = Range(Result(2))
 If DRange.Rows.Count > 1 Then
 Set DRange = DRange.Resize(DRange.Rows.Count - 1)
 s.Values = DRange
 End If
 End If
 Next s
End Sub

The ExpandAllSeries procedure is similar. When executed, it expands each range
by one cell.

Part II: Advanced VBA Techniques

328

Using VBA to Display Custom Data Labels on a Chart
Here’s how to specify a range of data labels for a chart series:

1. Create your chart and select the data series that will contain labels from a range.

2. Click the Chart Elements icon to the right of the chart and choose Data Labels.

3. Click the arrow to right of the Data Labels item and choose More Options.

The Label Options section of the Format Data Labels task pane is displayed.

4. Select Value From Cells.

Excel prompts you for the range that contains the labels.

Figure 9.6 shows an example. We specify range C2:C7 as the data labels for the series. In the
past, specifying a range as data labels had to be done manually or with a VBA macro.

This feature is great but is not completely backward compatible. Figure 9.7 shows how the
chart looks when opened in Excel 2010.

FIGURE 9.6

Data labels from an arbitrary range show the percent change for each week.

Chapter 9: Working with Charts

329

9

The remainder of this section describes how to use VBA to apply data labels using the
values in a range. The data labels applied in this manner are compatible with previous ver-
sions of Excel.

Figure 9.8 shows an XY chart. It would be useful to display the associated name for each
data point.

1400

1200

1000

800

600

400

200

0
Week 1

[CELLRANGE]

Week 2

[CELLRANGE]

Week 3

Weekly Amount

[CELLRANGE]

Week 4 Week 5 Week 6

[CELLRANGE]
[CELLRANGE]

[CELLRANGE]

FIGURE 9.7

Data labels created from a range of data are not compatible with versions of Excel
before 2013.

300

250

200Af
te

r

150

100
100 150 200 250 300 350

Before And After Results

Before

FIGURE 9.8

An XY chart that would benefit by having data labels

Part II: Advanced VBA Techniques

330

The DataLabelsFromRange procedure works with the first chart on the active sheet. It
prompts the user for a range and then loops through the Points collection and changes
the Text property to the values found in the range.

Sub DataLabelsFromRange()
 Dim DLRange As Range
 Dim Cht As Chart
 Dim i As Integer, Pts As Integer

' Specify chart
 Set Cht = ActiveSheet.ChartObjects(1).Chart

' Prompt for a range
 On Error Resume Next
 Set DLRange = Application.InputBox _
 (prompt:="Range for data labels?", Type:=8)
 If DLRange Is Nothing Then Exit Sub
 On Error GoTo 0

' Add data labels
 Cht.SeriesCollection(1).ApplyDataLabels _
 Type:=xlDataLabelsShowValue, _
 AutoText:=True, _
 LegendKey:=False

' Loop through the Points, and set the data labels
 Pts = Cht.SeriesCollection(1).Points.Count
 For i = 1 To Pts
 Cht.SeriesCollection(1). _
 Points(i).DataLabel.Text = DLRange(i)
 Next i
End Sub

Figure 9.9 shows the chart after running the DataLabelsFromRange procedure and spec-
ifying A2:A9 as the data range.

A data label in a chart can also consist of a link to a cell. To modify the DataLabels-
FromRange procedure so that it creates cell links, just change the statement in the For-
Next loop to the following:

Cht.SeriesCollection(1).Points(i).DataLabel.Text = _
 "=" & "'" & DLRange.Parent.Name & "'!" & _
 DLRange(i).Address(ReferenceStyle:=xlR1C1)

oN The Web
This example, named data labels.xlsm, is available on the book’s website.

Chapter 9: Working with Charts

331

9

Displaying a Chart in a UserForm
In Chapter 15, “Advanced UserForm Techniques,” we describe a way to display a chart in
a UserForm. The technique saves the chart as a GIF file and then loads the GIF file into an
Image control on the UserForm.

The example in this section uses that same technique but adds a new twist: the chart is
created on the fly, and it uses the data in the row of the active cell.

The UserForm for this example is simple. It contains an Image control and a Command-
Button (Close). The worksheet that contains the data has a button that executes the
following procedure:

Sub ShowChart()
 Dim UserRow As Long
 UserRow = ActiveCell.Row
 If UserRow < 2 Or IsEmpty(Cells(UserRow, 1)) Then
 MsgBox "Move the cell pointer to a row that contains data."
 Exit Sub
 End If
 CreateChart (UserRow)
 UserForm1.Show
End Sub

Because the chart is based on the data in the row of the active cell, the procedure warns
the user if the cell pointer is in an invalid row. If the active cell is appropriate, ShowChart
calls the CreateChart procedure to create the chart and then displays the UserForm.

300
Paul

John

Chuck
George

Vera

Dave Brian

Richard

250

200Af
te

r

150

100
100 150 200 250 300 350

Before And After Results

Before

FIGURE 9.9

This XY chart has data labels, thanks to a VBA procedure.

Part II: Advanced VBA Techniques

332

The CreateChart procedure accepts one argument, which represents the row of the active
cell. This procedure originated from a macro recording and was cleaned up to make it
more general.

Sub CreateChart(r)
 Dim TempChart As Chart
 Dim CatTitles As Range
 Dim SrcRange As Range, SourceData As Range
 Dim FName As String

 Set CatTitles = ActiveSheet.Range("A2:F2")
 Set SrcRange = ActiveSheet.Range(Cells(r, 1), Cells(r, 6))
 Set SourceData = Union(CatTitles, SrcRange)

' Add a chart
 Application.ScreenUpdating = False
 Set TempChart = ActiveSheet.Shapes.AddChart2.Chart
 TempChart.SetSourceData Source:=SourceData

' Fix it up
 With TempChart
 .ChartType = xlColumnClustered
 .SetSourceData Source:=SourceData, PlotBy:=xlRows
 .ChartStyle = 25
 .HasLegend = False
 .PlotArea.Interior.ColorIndex = xlNone
 .Axes(xlValue).MajorGridlines.Delete
 .ApplyDataLabels Type:=xlDataLabelsShowValue, LegendKey:=False
 .Axes(xlValue).MaximumScale = 0.6
 .ChartArea.Format.Line.Visible = False
 End With

' Adjust the ChartObject's size
 With ActiveSheet.ChartObjects(1)
 .Width = 300
 .Height = 200
 .Activate
 End With

' Save chart as GIF

 FName = Application.DefaultFilePath & Application.PathSeparator &
"temp.gif"

 TempChart.Export Filename:=FName, filterName:="GIF"
 ActiveSheet.ChartObjects(1).Delete
 Application.ScreenUpdating = True
End Sub

Chapter 9: Working with Charts

333

9

When the CreateChart procedure ends, the worksheet contains a ChartObject with
a chart of the data in the row of the active cell. However, the ChartObject isn’t visible
because ScreenUpdating is turned off. The chart is exported and deleted, and Screen-
Updating is turned back on.

The final instruction of the ShowChart procedure loads the UserForm. The follow-
ing is the UserForm _ Initialize procedure, which simply loads the GIF file into the
Image control:

Private Sub UserForm_Initialize()
 Dim FName As String
 FName = Application.DefaultFilePath & _
 Application.PathSeparator & "temp.gif"
 UserForm1.Image1.Picture = LoadPicture(FName)
End Sub

Figure 9.10 illustrates the resulting UserForm when the macro is run.

oN The Web
This workbook, named chart in userform.xlsm, is available on the book’s website.

FIGURE 9.10

A chart within a UserForm

Part II: Advanced VBA Techniques

334

Understanding Chart Events
Excel supports several events associated with charts. For example, when a chart is
activated, it generates an Activate event. The Calculate event occurs after the chart
receives new or changed data. You can, of course, write VBA code that gets executed when
a particular event occurs.

Table 9.1 lists all the chart events.

An example of using Chart events
To program an event handler for an event taking place on a chart sheet, your VBA code
must reside in the code module for the Chart object. To activate this code module, double-
click the Chart item in the Project window. Then, in the code module, select Chart from the
Object drop-down list on the left and select the event from the Procedure drop-down list on
the right (see Figure 9.11).

Refer to Chapter 6, “Understanding Excel’s Events,” for additional information about events.

NoTe
Because an embedded chart doesn’t have its own code module, the procedure that we describe in this section works
only for chart sheets. You can also handle events for embedded charts, but you must do some initial setup work that
involves creating a class module. This procedure is described later in “Enabling events for an embedded chart.”

TABLE 9.1 Events Recognized by the Chart Object

Event Action That Triggers the Event

Activate A chart sheet or embedded chart is activated.

Before-
DoubleClick

An embedded chart is double-clicked. This event occurs before the
default double-click action.

BeforeRightClick An embedded chart is right-clicked. The event occurs before the
default right-click action.

Calculate New or changed data is plotted on a chart.

Deactivate A chart is deactivated.

MouseDown A mouse button is pressed while the pointer is over a chart.

MouseMove The position of the mouse pointer changes over a chart.

MouseUp A mouse button is released while the pointer is over a chart.

Resize A chart is resized.

Select A chart element is selected.

SeriesChange The value of a chart data point is changed.

Chapter 9: Working with Charts

335

9

The example that follows simply displays a message when the user activates a chart sheet,
deactivates a chart sheet, or selects any element on the chart. This is made possible with
three event-handler procedures named as follows:

 ■ Chart _ Activate: Executed when the chart sheet is activated
 ■ Chart _ Deactivate: Executed when the chart sheet is deactivated
 ■ Chart _ Select: Executed when an element on the chart sheet is selected

The Chart _ Activate procedure follows:

Private Sub Chart_Activate()
 Dim msg As String
 msg = "Hello " & Application.UserName & vbCrLf & vbCrLf
 msg = msg & "You are now viewing the six-month sales "
 msg = msg & "summary for Products 1-3." & vbCrLf & vbCrLf
 msg = msg & _
 "Click an item in the chart to find out what it is."
 MsgBox msg, vbInformation, ActiveWorkbook.Name
End Sub

This procedure displays a message whenever the chart is activated.

The Chart _ Deactivate procedure that follows also displays a message, but only when
the chart sheet is deactivated:

Private Sub Chart_Deactivate()
 Dim msg As String
 msg = "Thanks for viewing the chart."
 MsgBox msg, , ActiveWorkbook.Name
End Sub

oN The Web
This workbook, named events – chart sheet.xlsm, is available on the book’s website.

FIGURE 9.11

Selecting an event in the code module for a Chart object

Part II: Advanced VBA Techniques

336

The Chart _ Select procedure that follows is executed whenever an item on the chart
is selected:

Private Sub Chart_Select(ByVal ElementID As Long, _
 ByVal Arg1 As Long, ByVal Arg2 As Long)
 Dim Id As String
 Select Case ElementID
 Case xlAxis: Id = "Axis"
 Case xlAxisTitle: Id = "AxisTitle"
 Case xlChartArea: Id = "ChartArea"
 Case xlChartTitle: Id = "ChartTitle"
 Case xlCorners: Id = "Corners"
 Case xlDataLabel: Id = "DataLabel"
 Case xlDataTable: Id = "DataTable"
 Case xlDownBars: Id = "DownBars"
 Case xlDropLines: Id = "DropLines"
 Case xlErrorBars: Id = "ErrorBars"
 Case xlFloor: Id = "Floor"
 Case xlHiLoLines: Id = "HiLoLines"
 Case xlLegend: Id = "Legend"
 Case xlLegendEntry: Id = "LegendEntry"
 Case xlLegendKey: Id = "LegendKey"
 Case xlMajorGridlines: Id = "MajorGridlines"
 Case xlMinorGridlines: Id = "MinorGridlines"
 Case xlNothing: Id = "Nothing"
 Case xlPlotArea: Id = "PlotArea"
 Case xlRadarAxisLabels: Id = "RadarAxisLabels"
 Case xlSeries: Id = "Series"
 Case xlSeriesLines: Id = "SeriesLines"
 Case xlShape: Id = "Shape"
 Case xlTrendline: Id = "Trendline"
 Case xlUpBars: Id = "UpBars"
 Case xlWalls: Id = "Walls"
 Case xlXErrorBars: Id = "XErrorBars"
 Case xlYErrorBars: Id = "YErrorBars"
 Case Else:: Id = "Some unknown thing"
 End Select

 MsgBox "Selection type:" & Id & vbCrLf & Arg1 & vbCrLf & Arg2
End Sub

This procedure displays a message box that contains a description of the selected item, plus
the values for Arg1 and Arg2. When the Select event occurs, the ElementID argument
contains an integer that corresponds to what was selected. The Arg1 and Arg2 arguments
provide additional information about the selected item (see the Help system for details).
The Select Case structure converts the built-in constants to descriptive strings.

Chapter 9: Working with Charts

337

9

Enabling events for an embedded chart
As we note in the preceding section, Chart events are automatically enabled for chart
sheets but not for charts embedded in a worksheet. To use events with an embedded chart,
you need to perform the following steps.

Create a class module
In the Visual Basic Editor (VBE) window, select your project in the Project window and
choose Insert ➪ Class Module. This step adds a new (empty) class module to your project.
Then use the Properties window to give the class module a more descriptive name (such as
clsChart). Renaming the class module isn’t necessary but is a good practice.

Declare a public Chart object
The next step is to declare a Public variable that will represent the chart. The variable
should be of type Chart and must be declared in the class module by using the With-
Events keyword. If you omit the WithEvents keyword, the object will not respond to
events. The following is an example of such a declaration:

Public WithEvents clsChart As Chart

Connect the declared object with your chart
Before your event-handler procedures will run, you must connect the declared object in
the class module with your embedded chart. You do this by declaring an object of type
clsChart (or whatever your class module is named). This should be a module-level object
variable, declared in a regular VBA module (not in the class module). Here’s an example:

Dim MyChart As New clsChart

Then you must write code to associate the clsChart object with a particular chart. The
following statement accomplishes this task:

Set MyChart.clsChart = ActiveSheet.ChartObjects(1).Chart

After this statement is executed, the clsChart object in the class module points to the
first embedded chart on the active sheet. Consequently, the event-handler procedures in
the class module will execute when the events occur.

Write event-handler procedures for the chart class
In this section, we describe how to write event-handler procedures in the class module.
Recall that the class module must contain a declaration such as the following:

Public WithEvents clsChart As Chart

NoTe
Because the code doesn’t contain a comprehensive listing of all items that could appear in a Chart object, we
included the Case Else statement.

Part II: Advanced VBA Techniques

338

After this new object has been declared with the WithEvents keyword, it appears in
the Object drop-down list box in the class module. When you select the new object in the
Object box, the valid events for that object are listed in the Procedure drop-down box on
the right.

The following example is a simple event-handler procedure that is executed when the
embedded chart is activated. This procedure simply pops up a message box that displays the
name of the Chart object’s parent (which is a ChartObject object).

Private Sub clsChart_Activate()
 MsgBox clsChart.Parent.Name & " was activated!"
End Sub

Example: Using Chart events with an embedded chart
The example in this section provides a practical demonstration of the information pre-
sented in the previous section. The example shown in Figure 9.12 consists of an embedded
chart that functions as a clickable image map. When chart events are enabled, clicking one
of the chart columns activates a worksheet that shows detailed data for the region.

The workbook is set up with four worksheets. The sheet named Main contains the
embedded chart. The other sheets are named North, South, and West. Formulas in B2:B4
sum the data in the respective sheets, and this summary data is plotted in the chart.

oN The Web
The book’s website contains a workbook that demonstrates the concepts that we describe in this section. The file is
events – embedded chart.xlsm.

FIGURE 9.12

This chart serves as a clickable image map.

Chapter 9: Working with Charts

339

9

Clicking a column in the chart triggers an event, and the event-handler procedure activates
the appropriate sheet so that the user can view the details for the desired region.

The workbook contains both a class module named EmbChartClass and a normal VBA
module named Module1. For demonstration purposes, the Main worksheet also contains
a check box control (from the Forms group). Clicking the check box executes the Check-
Box1 _ Click procedure, which turns event monitoring on and off:

In addition, each of the other worksheets contains a button that executes the ReturnTo-
Main macro that reactivates the Main sheet.

The complete listing of Module1 follows:

Dim SummaryChart As New EmbChartClass

Sub CheckBox1_Click()
 If Worksheets("Main").CheckBoxes("Check Box 1") = xlOn Then
 'Enable chart events
 Range("A1").Select
 Set SummaryChart.myChartClass = _
 Worksheets(1).ChartObjects(1).Chart
 Else
 'Disable chart events
 Set SummaryChart.myChartClass = Nothing
 Range("A1").Select
 End If
End Sub

Sub ReturnToMain()
' Called by worksheet button
 Sheets("Main").Activate
 ActiveWindow.RangeSelection.Select
End Sub

The first instruction declares a new object variable SummaryChart to be of type Emb-
ChartClass. As you will recall, this is the name of the class module. When the user clicks
the Enable Chart Events button, the embedded chart is assigned to the SummaryChart
object, which, in effect, enables the events for the chart. The contents of the class module
for EmbChartClass follow:

Public WithEvents myChartClass As Chart

Private Sub myChartClass_MouseDown(ByVal Button As Long, _
 ByVal Shift As Long, ByVal X As Long, ByVal Y As Long)

 Dim IDnum As Long
 Dim a As Long, b As Long

' The next statement returns values for
' IDnum, a, and b

Part II: Advanced VBA Techniques

340

 myChartClass.GetChartElement X, Y, IDnum, a, b

' Was a series clicked?
 If IDnum = xlSeries Then
 Select Case b
 Case 1
 Sheets("North").Activate
 Case 2
 Sheets("South").Activate
 Case 3
 Sheets("West").Activate
 End Select
 End If
 Range("A1").Select
End Sub

Clicking the chart generates a MouseDown event, which executes the myChartClass _
MouseDown procedure. This procedure uses the GetChartElement method to determine
what element of the chart was clicked. The GetChartElement method returns informa-
tion about the chart element at specified X and Y coordinates (information that is available
through the arguments for the myChartClass _ MouseDown procedure).

Discovering VBA Charting Tricks
This section contains a few charting tricks that might be useful in your applications.
Others are simply for fun, or at the very least studying them could give you some new
insights into the object model for charts.

Printing embedded charts on a full page
When an embedded chart is selected, you can print the chart by choosing File ➪ Print. The
embedded chart will be printed on a full page by itself (just as if it were on a chart sheet),
yet it will remain an embedded chart.

The following macro prints all embedded charts on the active sheet, and each chart is
printed on a full page:

Sub PrintEmbeddedCharts()
 Dim ChtObj As ChartObject
 For Each ChtObj In ActiveSheet.ChartObjects
 ChtObj.Chart.PrintOut
 Next ChtObj
End Sub

oN The Web
This workbook, named chart image map.xlsm, is available on the book’s website.

Chapter 9: Working with Charts

341

9

Creating unlinked charts
Normally, an Excel chart uses data stored in a range. Change the data in the range, and
the chart is updated automatically. In some cases, you might want to unlink the chart from
its data ranges and produce a dead chart (a chart that never changes). For example, if you
plot data generated by various what-if scenarios, you might want to save a chart that
represents some baseline so that you can compare it with other scenarios.

The three ways to create such a chart are as follows:

 ■ Copy the chart as a picture. Activate the chart, and choose Home ➪ Clipboard ➪
Copy ➪ Copy As Picture. Accept the defaults in the Copy Picture dialog box. Then
click a cell and choose Home ➪ Clipboard ➪ Paste. The result will be a picture of
the copied chart.

 ■ Convert the range references to arrays. Click a chart series and then click the
formula bar. Press F9 to convert the ranges to an array, and press Enter. Repeat
these steps for each series in the chart.

 ■ Use VBA to assign an array rather than a range to the XValues or Values
properties of the Series object. This technique is described next.

The following procedure creates a chart by using arrays. The data isn’t stored in the work-
sheet. As you can see, the SERIES formula contains arrays and not range references.

Sub CreateUnlinkedChart()
 Dim MyChart As Chart
 Set MyChart = ActiveSheet.Shapes.AddChart2.Chart
 With MyChart
 .SeriesCollection.NewSeries
 .SeriesCollection(1).Name = "Sales"
 .SeriesCollection(1).XValues = Array("Jan", "Feb", "Mar")
 .SeriesCollection(1).Values = Array(125, 165, 189)
 .ChartType = xlColumnClustered
 .SetElement msoElementLegendNone
 End With
End Sub

Because Excel imposes a limit to the length of a chart’s SERIES formula, this technique
works for only relatively small data sets.

The following procedure creates a picture of the active chart. (The original chart isn’t
deleted.) It works only with embedded charts.

Sub ConvertChartToPicture()
 Dim Cht As Chart
 If ActiveChart Is Nothing Then Exit Sub
 If TypeName(ActiveSheet) = "Chart" Then Exit Sub
 Set Cht = ActiveChart
 Cht.CopyPicture Appearance:=xlPrinter, _
 Size:=xlScreen, Format:=xlPicture
 ActiveWindow.RangeSelection.Select

Part II: Advanced VBA Techniques

342

 ActiveSheet.Paste
End Sub

When a chart is converted to a picture, you can create some interesting displays by choos-
ing Picture Tools ➪ Format ➪ Picture Styles. See Figure 9.13 for an example.

oN The Web
The two examples in this section are available on the book’s website in the unlinked chart.xlsm file.

4,500

Southern
Western

Sales by Region

4,000

3,500

3,000

2,500

2,000

1,500

1,000

500

0
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

4,500

Southern
Western

Sales by Region

4,000

3,500

3,000

2,500

2,000

1,500

1,000

500

0
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

FIGURE 9.13

After converting a chart to a picture, you can manipulate it by using a variety of format-
ting options.

Chapter 9: Working with Charts

343

9

Displaying text with the MouseOver event
A common charting question deals with modifying chart tips. A chart tip is the small mes-
sage that appears next to the mouse pointer when you move the mouse over an activated
chart. The chart tip displays the chart element name and (for series) the value of the data
point. The Chart object model does not expose these chart tips, so there is no way to
modify them.

This section describes an alternative to chart tips. Figure 9.14 shows a column chart that
uses the MouseOver event. When the mouse pointer is positioned over a column, the text
box (a Shape object) in the upper-left corner displays information about the data point.
The information is stored in a range and can consist of anything you like.

Tip
To turn chart tips on or off, choose File ⇨ Options to display the Excel Options dialog box. Click the Advanced tab
and locate the Chart section. You can check or uncheck the Show Chart Element Names on Hover checkbox and the
Show Data Point Values on Hover checkbox.

6,000,000

5,000,000

4,000,000

3,000,000

2,000,000

January

1st Quarter Performance

February March

1,000,000

-

Region 1, February =
$5,546,523
Two-week sales
promotion in effect.

FIGURE 9.14

A text box displays information about the data point under the mouse pointer.

Part II: Advanced VBA Techniques

344

The event procedure that follows is located in the code module for the Chart sheet that con-
tains the chart:

Private Sub Chart_MouseMove(ByVal Button As Long, ByVal Shift
As Long, _
 ByVal X As Long, ByVal Y As Long)
 Dim ElementId As Long
 Dim arg1 As Long, arg2 As Long
 On Error Resume Next
 ActiveChart.GetChartElement X, Y, ElementId, arg1, arg2
 If ElementId = xlSeries Then
 ActiveChart.Shapes(1).Visible = msoCTrue
 ActiveChart.Shapes(1).TextFrame.Characters.Text = _
 Sheets("Sheet1").Range("Comments").Offset(arg2, arg1)
 Else
 ActiveChart.Shapes(1).Visible = msoFalse
 End If
End Sub

This procedure monitors all mouse movements on the Chart sheet. The mouse coordinates
are contained in the X and Y variables, which are passed to the procedure. The Button and
Shift arguments aren’t used in this procedure.

As in the previous example, the key component in this procedure is the GetChart-
Element method. If ElementId is xlSeries, the mouse pointer is over a series. The
TextBox control is made visible and displays the text in a particular cell. This text con-
tains descriptive information about the data point (see Figure 9.15). If the mouse pointer
isn’t over a series, the text box is hidden.

FIGURE 9.15

Range B7:C9 contains data point information that’s displayed in the text box on the chart.

Chapter 9: Working with Charts

345

9

The example workbook also contains a Chart _ Activate event procedure that turns off
the normal ChartTip display, as well as a Chart _ Deactivate procedure that turns the
settings back on. The Chart _ Activate procedure is as follows:

Private Sub Chart_Activate()
 Application.ShowChartTipNames = False
 Application.ShowChartTipValues = False
End Sub

Scrolling a chart
Figure 9.16 illustrates the example chart found in the scrolling chart.xlsm sample
workbook. This chart displays only a portion of the source data, but it can be scrolled to
show additional values.

oN The Web
The book’s website contains this example set up for an embedded chart (mouseover event - embedded
.xlsm) and for a chart sheet (mouseover event - chart sheet.xlsm).

FIGURE 9.16

An example of a scrollable chart

Part II: Advanced VBA Techniques

346

The workbook contains six names.

StartDay: A name for cell F1

NumDays: A name for cell F2

Increment: A name for cell F3 (used for automatic scrolling)

Date: A named formula:

=OFFSET(Sheet1!A1,StartDay,0,NumDays,1)

ProdA: A named formula:

=OFFSET(Sheet1!B1,StartDay,0,NumDays,1)

ProdB: A named formula:

=OFFSET(Sheet1!C1,StartDay,0,NumDays,1)

Each SERIES formula in the chart uses names for the category values and the data. The
SERIES formula for the Product A series is as follows (note the workbook name and sheet
name have been eliminated for clarity):

=SERIES(B1,Date,ProdA,1)

The SERIES formula for the Product B series is as follows:

=SERIES(C1,Date,ProdB,2)

Using these names enables the user to specify a value for StartDay and NumDays. The
chart will display a subset of the data.

A relatively simple macro makes the chart scroll. The button in the worksheet executes the
following macro that scrolls (or stops scrolling) the chart:

Public AnimationInProgress As Boolean

Sub AnimateChart()
 Dim StartVal As Long, r As Long
 If AnimationInProgress Then
 AnimationInProgress = False
 End
 End If
 AnimationInProgress = True
 StartVal = Range("StartDay")
 For r = StartVal To 5219 - Range("NumDays") Step Range("Increment")
 Range("StartDay") = r
 DoEvents
 Next r

oN The Web
The book’s website contains a workbook that includes this animated chart. The filename is scrolling chart
.xlsm.

Chapter 9: Working with Charts

347

9

 AnimationInProgress = False
End Sub

The AnimateChart procedure uses a public variable (AnimationInProgress) to keep
track of the animation status. The animation results from a loop that changes the value in
the StartDay cell. Because the two chart series use this value, the chart is continually
updated with a new starting value. The Scroll Increment setting determines how quickly
the chart scrolls.

To stop the animation, we use an End statement rather than an Exit Sub statement. The
Exit Sub statement doesn’t work reliably in this scenario and may even crash Excel.

Working with Sparkline Charts
We conclude this chapter with a brief discussion of Sparkline charts, a feature introduced
in Excel 2010. A Sparkline is a small chart displayed in a cell. A Sparkline lets the viewer
quickly spot time-based trends or variations in data. Because they’re so compact, Spark-
lines are often used in a group.

Figure 9.17 shows examples of the three types of Sparklines supported by Excel.

FIGURE 9.17

Sparkline examples

Part II: Advanced VBA Techniques

348

As with most features, Microsoft added Sparklines to Excel’s object model, which means you
can work with Sparklines using VBA. At the top of the object hierarchy is the Sparkline-
Groups collection, which is a collection of all SparklineGroup objects. A Sparkline-
Group object contains Sparkline objects. Contrary to what you might expect, the parent
of the SparklineGroups collection is a Range object, not a Worksheet object. There-
fore, the following statement generates an error:

MsgBox ActiveSheet.SparklineGroups.Count

Rather, you need to use the Cells property (which returns a range object).

MsgBox Cells.SparklineGroups.Count

The following example lists the address of each Sparkline group on the active worksheet:

Sub ListSparklineGroups()
 Dim sg As SparklineGroup
 Dim i As Long
 For i = 1 To Cells.SparklineGroups.Count
 Set sg = Cells.SparklineGroups(i)
 MsgBox sg.Location.Address
 Next i
End Sub

Unfortunately, you can’t use the For Each construct to loop through the objects in the
SparklineGroups collection. You need to refer to the objects by their index number.

The following is another example of working with Sparklines in VBA. The Sparkline-
Report procedure lists information about each Sparkline on the active sheet.

Sub SparklineReport()
 Dim sg As SparklineGroup
 Dim sl As Sparkline
 Dim SGType As String
 Dim SLSheet As Worksheet
 Dim i As Long, j As Long, r As Long

 If Cells.SparklineGroups.Count = 0 Then
 MsgBox "No sparklines were found on the active sheet."
 Exit Sub
 End If

 Set SLSheet = ActiveSheet
' Insert new worksheet for the report
 Worksheets.Add

Chapter 9: Working with Charts

349

9

' Headings
 With Range("A1")
 .Value = "Sparkline Report: " & SLSheet.Name & " in " _
 & SLSheet.Parent.Name
 .Font.Bold = True
 .Font.Size = 16
 End With
 With Range("A3:F3")
 .Value = Array("Group #", "Sparkline Grp Range", _
 "# in Group", "Type", "Sparkline #", "Source Range")
 .Font.Bold = True
 End With
 r = 4

 'Loop through each sparkline group
 For i = 1 To SLSheet.Cells.SparklineGroups.Count
 Set sg = SLSheet.Cells.SparklineGroups(i)
 Select Case sg.Type
 Case 1: SGType = "Line"
 Case 2: SGType = "Column"
 Case 3: SGType = "Win/Loss"
 End Select
 ' Loop through each sparkline in the group
 For j = 1 To sg.Count
 Set sl = sg.Item(j)
 Cells(r, 1) = i 'Group #
 Cells(r, 2) = sg.Location.Address
 Cells(r, 3) = sg.Count
 Cells(r, 4) = SGType
 Cells(r, 5) = j 'Sparkline # within Group
 Cells(r, 6) = sl.SourceData
 r = r + 1
 Next j
 r = r + 1
 Next i
End Sub

Figure 9.18 shows a sample report generated from this procedure.

oN The Web
This workbook, named sparkline report.xlsm, is available on the book’s website.

Part II: Advanced VBA Techniques

350

FIGURE 9.18

The result of running the SparklineReport procedure

351

CHAP T ER

10
Interacting with Other
Applications

IN THIS CHAPTER
Understanding Microsoft Office Automation

Automating Access from Excel

Automating Word from Excel

Automating PowerPoint from Excel

Automating Outlook from Excel

Starting other applications from Excel

Understanding Microsoft Office Automation
Throughout this book, you’ve discovered how to leverage VBA to automate tasks, processes, and
program flow. In this chapter, automation will take on a different meaning. Automation here will
define the means of manipulating or controlling one application with another.

Why would you even want to control one application with another? Data-oriented processes quite
often involve a succession of applications. It’s not uncommon to see data being analyzed and aggre-
gated in Excel, used in a PowerPoint presentation, and then e-mailed via Outlook.

The reality is that each Microsoft Office application has strengths that you routinely leverage
through manual processes. With VBA, you can go further and automate the interactions between
Excel and other Office applications.

Understanding the concept of binding
Each program in the Microsoft Office suite comes with its own Object Library. As you know, the
Object Library is a kind of encyclopedia of all the objects, methods, and properties available in each
Office application. Excel has its own object library, just as all the other Office applications have
their own object library.

Excel® 2019 Power Programming with VBA, First Edition. Michael Alexander and Dick Kusleika.
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.

Part II: Advanced VBA Techniques

352

In order for Excel to be able to speak to another Office program, you have to bind it to that
program. Binding is the process of exposing the Object Library for a server application to a
client application. There are two types of binding: early binding and late binding.

Early binding
With early binding, you explicitly point a client application to the server application’s
Object Library to expose the server application’s object model during design time or while
programming. Then you use the exposed objects in your code to call a new instance of the
server application as such:

Dim XL As Excel.Application
 Set XL = New Excel.Application

Early binding has several advantages.

 ■ Because the objects are exposed at design time, the client application can compile
your code before execution. This allows your code to run considerably faster than
with late binding.

 ■ Since the object library is exposed during design time, you have full access to the
server application’s object model in the Object Browser.

 ■ You have the benefit of using IntelliSense. IntelliSense is the functionality you
experience when you type a keyword and a dot (.) or an equal sign (=) and you see
a pop-up list of the methods and properties available to you.

 ■ You automatically have access to the server application’s built-in constants.

To use early binding, you will need to create a reference to the appropriate object library
by choosing the Tools ➪ References command in the Visual Basic Editor (VBE). In the Refer-
ences dialog box (shown in Figure 10.1), find the Office application that you want to auto-
mate and then place a check next to it. The version of the available library on your system
will be equal to your version of Office. So, for instance, if you are working with Office 2019,
you will have the PowerPoint 17.0 library. If you have Office 2013, you will have the Power-
Point 15.0 library.

Late binding
Late binding is different in that you don’t point a client application to a specific Object
Library. Instead, you purposely keep things ambiguous, only using the CreateObject
function to bind to the needed library at run-time or during program execution.

Dim XL As Object
 Set XL = CreateObject("Excel.Application")

Note
In the context of this discussion, a client application is the application that is doing the controlling, while the
server application is the application being controlled.

Chapter 10: Interacting with Other Applications

353

10

Late binding has one primary advantage. Late binding allows your automation procedures
to be version-independent. That is to say, your automation procedure will not fail because
of compatibility issues between multiple versions of a component.

For example, suppose you decide to use early binding and set a reference to the Excel Object
Library on your system. The version of the available library on your system will be equal
to your version of Excel. The problem is that if your users have a lower version of Excel
on their machine, your automation procedure will fail. You do not have this problem with
late binding.

FIGURE 10.1

Add a reference to the object library for the application that you are automating.

GetObject vs. CreateObject
The VBA GetObject and CreateObject functions both return a reference to an object but work in
different ways.

The CreateObject function creates an interface to a new instance of an application. Use this function
when the application isn’t running. If an instance of the application is already running, a new instance
is started. For example, the following statement starts Excel, and the object returned in XLApp is a
reference to the Excel.Application object that it created:

Set XLApp = CreateObject("Excel.Application")

The GetObject function is used either with an application that’s already running or to start an
application with a file already loaded. The following statement, for example, starts Excel with the file
Myfile.xls already loaded. The object returned in XLBook is a reference to the Workbook object
(the Myfile.xlsx file).

Set XLBook = GetObject("C:\Myfile.xlsx")

Part II: Advanced VBA Techniques

354

A simple automation example
The following example demonstrates how to create a Word object by using late binding.
This procedure creates an instance of Word, displays the current version number, closes the
Word application, and then destroys the object (thus freeing the memory that it used).

Sub GetWordVersion()
 Dim WordApp As Object
 Set WordApp = CreateObject("Word.Application")
 MsgBox WordApp.Version
 WordApp.Quit
 Set WordApp = Nothing
End Sub

This example can be adjusted to use early binding. Before doing so, we will need to acti-
vate the References dialog box in VBE (Tools ➪ References) and set a reference to the Word
object library. Once we set the appropriate reference, we can use the following code:

Sub GetWordVersion()
 Dim WordApp As New Word.Application
 MsgBox WordApp.Version
 WordApp.Quit
 Set WordApp = Nothing
End Sub

Automating Access from Excel
It typically doesn’t occur to most Excel users to automate Access using Excel. Indeed, it’s
difficult for most of us to think of situations where this would even be necessary. Although
there are admittedly few mind-blowing reasons to automate Access from Excel, you may
find some of the automation tricks found in this section strangely appealing. Who knows?
You may even implement a few of them.

Running an Access query from Excel
Here’s a nifty macro for those of you who often copy and paste the results of your Microsoft
Access queries into Excel. In this macro, you use a Data Access Object (DAO) to open and
run an Access query in the background and output the results into Excel.

Note
The Word object that’s created in this procedure is invisible. If you’d like to see the object’s window while it’s being
manipulated, set its Visible property to True, as follows:

WordApp.Visible = True

Chapter 10: Interacting with Other Applications

355

10

In this macro, you are pointing Excel to an Access database and pulling data from an exist-
ing Access query. You then store that query in a Recordset object, which you can use to
populate your Excel spreadsheet.

Sub RunAccessQuery()

'Declare your variables
 Dim MyDatabase As DAO.Database
 Dim MyQueryDef As DAO.QueryDef
 Dim MyRecordset As DAO.Recordset
 Dim i As Integer
'Identify the database and query
 Set MyDatabase = DBEngine.OpenDatabase _
 ("C:\Temp\YourAccessDatabase.accdb")

 Set MyQueryDef = MyDatabase.QueryDefs("Your Query Name")

'Open the query
 Set MyRecordset = MyQueryDef.OpenRecordset

'Clear previous contents
 Sheets("Sheet1").Select
 ActiveSheet.Range("A6:K10000").ClearContents

'Copy the recordset to Excel
 ActiveSheet.Range("A7").CopyFromRecordset MyRecordset

'Add column heading names to the spreadsheet
 For i = 1 To MyRecordset.Fields.Count
 ActiveSheet.Cells(6, i).Value = MyRecordset.Fields(i - 1).Name
 Next i

End Sub

oN the Web
This workbook, named Running an Access Query from Excel.xlsm, is available on the book’s
 website.

Note
Since you are automating Access, you will need to set a reference to the Microsoft Access Object Library. To do so,
open the VBE in Excel and select Tools ➪ References. The Reference dialog box will activate. Scroll down until you
find the entry Microsoft Access XX Object Library, where the XX is your version of Access. Place a check in the check
box next to the entry.

Part II: Advanced VBA Techniques

356

Running an Access macro from Excel
You can run Access macros from Excel using automation to fire the macro without opening
Access. Not only is this technique useful for running those epic macros that involve a mul-
tistep series of 20 queries, but it can also come in handy for everyday tasks such as output-
ting Access data to an Excel file.

The following macro is a simple way to trigger an Access macro programmatically.

Sub RunAccessMacro()

'Declare your variables
 Dim AC As Access.Application

'Start Access and open the target database
 Set AC = New Access.Application
 AC.OpenCurrentDatabase _
 ("C:\Temp\YourAccessDatabase.accdb")

'Run the Target Macro
 With AC
 .DoCmd.RunMacro "MyMacro"
 .Quit
 End With

End Sub

Automating Word from Excel
It’s not unusual to see a Word document that contains a table that originated in Excel. In
most cases, that table was simply copied and pasted directly into Word. While copying and
pasting data from Excel into Word is indeed a valid form of integration, there are count-
less ways to integrate Excel and Word that go beyond copying and pasting data. This sec-
tion offers a few examples that demonstrate techniques that you can leverage to integrate
Excel and Word.

oN the Web
This workbook, named Running an Access Macro from Excel.xlsm, is available on the book’s
 website.

Note
You will need to set a reference to the Microsoft Access Object Library. To do so, open the VBE in Excel and select
Tools ➪ References. The Reference dialog box will activate. Scroll down until you find the entry Microsoft Access XX
Object Library, where the XX is your version of Access. Place a check in the check box next to the entry.

Chapter 10: Interacting with Other Applications

357

10

Sending Excel data to a Word document
If you find that you are constantly copying and pasting Excel data into Microsoft Word, you
can use a macro to automate this task.

Before walking through the macro, it’s important to go over a few set up steps:

1. To set up for a process like this, you must have a template Word document already
created. In that document, create a bookmark tagging the location where you want
your Excel data to be copied.

2. To create a bookmark in a Word document, place your cursor where you want the
bookmark, select the Insert tab, and select Bookmark (found under the Links
group). This will activate the Bookmark dialog box where you assign a name for
your bookmark. Once the name has been assigned, click the Add button.

Sub SendDataToWord()

'Declare your variables
 Dim MyRange As Excel.Range
 Dim wd As Word.Application
 Dim wdDoc As Word.Document
 Dim wdRange As Word.Range

'Copy the defined range
 Sheets("Revenue Table").Range("B4:F10").Copy

'Open the target Word document
 Set wd = New Word.Application
 Set wdDoc = wd.Documents.Open _
 (ThisWorkbook.Path & "\" & "PasteTable.docx")
 wd.Visible = True

'Set focus on the target bookmark
 Set wdRange = wdDoc.Bookmarks("DataTableHere").Range

oN the Web
This workbook, named Sending Excel Data to a Word Document.xlsm, is available on the book’s
website. You will also find a document called PasteTable.docx. This document is a simple template that
 contains one bookmark called DataTableHere. In this example code, you copy a range to that PasteTable
.docx template, using the DataTableHere bookmark to specify where to paste the copied range.

Note
You will need to set a reference to the Microsoft Word Object Library. To do so, open the Visual Basic Editor in Excel
and select Tools ➪ References. The Reference dialog box will activate. Scroll down until you find the entry Microsoft
Word XX Object Library, where the XX is your version of Word. Place a check in the check box next to the entry.

Part II: Advanced VBA Techniques

358

'Delete the old table and paste new
 On Error Resume Next
 wdRange.Tables(1).Delete
 wdRange.Paste 'paste in the table
 On Error Goto 0

'Adjust column widths
 wdRange.Tables(1).Columns.SetWidth _
 (MyRange.Width / MyRange.Columns.Count), wdAdjustSameWidth

'Reinsert the bookmark
 wdDoc.Bookmarks.Add "DataTableHere", wdRange

'Memory cleanup
 Set wd = Nothing
 Set wdDoc = Nothing
 Set wdRange = Nothing

End Sub

Simulating Mail Merge with a Word document
One of the most requested forms of integration with Word is the mail merge. In most cases,
mail merge refers to the process of creating one letter or document for each customer in a
list of customers. For example, suppose you had a list of customers and you wanted to com-
pose a letter to each customer. With mail merge, you can write the body of the letter one
time and then run the Mail Merge feature in Word to create a letter for each customer auto-
matically, affixing the appropriate, address, name, and other information to each letter.

If you are an automation buff, you can use a macro to simulate the Word Mail Merge
function from Excel. The idea is relatively simple. You start with a template that contains
bookmarks identifying where each element of contact information will go. With the tem-
plate set to go, the idea is simply to loop through each contact in your contact list, assign-
ing the component pieces of their contact information to the respective bookmarks.

oN the Web
This workbook, named Simulating Mail Merge with a Word Document.xlsm, is available on the
book’s website. You will also find a document called MailMerge.docx. This document has all the bookmarks
needed to run the sample code shown here.

Note
You will need to set a reference to the Microsoft Word Object Library. To do so, open the Visual Basic Editor in Excel
and select Tools ➪ References. The Reference dialog box will activate. Scroll down until you find the entry Microsoft
Word XX Object Library, where the XX is your version of Word. Place a check in the check box next to the entry.

Chapter 10: Interacting with Other Applications

359

10

Sub WordMailMerge()

'Declare your variables
 Dim wd As Word.Application
 Dim wdDoc As Word.Document
 Dim MyRange As Excel.Range
 Dim MyCell As Excel.Range
 Dim txtAddress As String
 Dim txtCity As String
 Dim txtState As String
 Dim txtPostalCode As String
 Dim txtFname As String
 Dim txtFullname As String

'Start Word and add a new document
 Set wd = New Word.Application
 Set wdDoc = wd.Documents.Add
 wd.Visible = True

'Set the range of your contact list
 Set MyRange = Sheets("Contact List").Range("A5:A24")

'Start the loop through each cell
 For Each MyCell In MyRange.Cells

'Assign values to each component of the letter
 txtAddress = MyCell.Value
 txtCity = MyCell.Offset(, 1).Value
 txtState = MyCell.Offset(, 2).Value
 txtPostalCode = MyCell.Offset(, 3).Value
 txtFname = MyCell.Offset(, 5).Value
 txtFullname = MyCell.Offset(, 6).Value

'Insert the structure of template document
 wd.Selection.InsertFile _
 ThisWorkbook.Path & "\" & "MailMerge.docx"

'Fill each relevant bookmark with respective value
 wd.Selection.Goto What:=wdGoToBookmark, Name:="Customer"
 wd.Selection.TypeText Text:=txtFullname

 wd.Selection.Goto What:=wdGoToBookmark, Name:="Address"
 wd.Selection.TypeText Text:=txtAddress

Part II: Advanced VBA Techniques

360

 wd.Selection.Goto What:=wdGoToBookmark, Name:="City"
 wd.Selection.TypeText Text:=txtCity

 wd.Selection.Goto What:=wdGoToBookmark, Name:="State"
 wd.Selection.TypeText Text:=txtState

 wd.Selection.Goto What:=wdGoToBookmark, Name:="Zip"
 wd.Selection.TypeText Text:=txtPostalCode

 wd.Selection.Goto What:=wdGoToBookmark, Name:="FirstName"
 wd.Selection.TypeText Text:=txtFname

'Clear any remaining bookmarks
 On Error Resume Next
 wdDoc.Bookmarks("Address").Delete
 wdDoc.Bookmarks("Customer").Delete
 wdDoc.Bookmarks("City").Delete
 wdDoc.Bookmarks("State").Delete
 wdDoc.Bookmarks("FirstName").Delete
 wdDoc.Bookmarks("Zip").Delete
 On Error Goto 0

'Go to the end, insert new page, and start with the next cell
 wd.Selection.EndKey Unit:=wdStory
 wd.Selection.InsertBreak Type:=wdPageBreak
 Next MyCell

'Set cursor to beginning and clean up memory
 wd.Selection.HomeKey Unit:=wdStory
 wd.Activate
 Set wd = Nothing
 Set wdDoc = Nothing

End Sub

Automating PowerPoint from Excel
It has been estimated that up to 50 percent of PowerPoint presentations contain data that
has been copied straight out of Excel. This is not difficult to believe. It’s often much easier
to analyze and create charts and data views in Excel than in PowerPoint. Once those charts
and data views have been created, why wouldn’t you simply copy them into PowerPoint?
The time and effort saved by copying directly from Excel is too good to pass up.

This section offers up a few techniques that can help you automate the process of getting
your Excel data into PowerPoint.

Chapter 10: Interacting with Other Applications

361

10

Sending Excel data to a PowerPoint presentation
To help get a few fundamentals down, let’s start simple and automate the creation of a
PowerPoint presentation containing one slide with a title. In this example, you are copying
a range from an Excel file and pasting that range into a slide in a newly created PowerPoint
presentation.

Sub CopyRangeToPresentation()

'Declare your variables
 Dim PP As PowerPoint.Application
 Dim PPPres As PowerPoint.Presentation
 Dim PPSlide As PowerPoint.Slide
 Dim SlideTitle As String

'Open PowerPoint and create new presentation
 Set PP = New PowerPoint.Application
 Set PPPres = PP.Presentations.Add
 PP.Visible = True
'Add new slide as slide 1 and set focus to it
 Set PPSlide = PPPres.Slides.Add(1, ppLayoutTitleOnly)
 PPSlide.Select

'Copy the range as a picture
 Sheets("Slide Data").Range("A2:J28").CopyPicture _
 Appearance:=xlScreen, Format:=xlPicture

'Paste the picture and adjust its position
 PPSlide.Shapes.Paste.Select
 PP.ActiveWindow.Selection.ShapeRange.Align msoAlignCenters, True
 PP.ActiveWindow.Selection.ShapeRange.Align msoAlignMiddles, True

'Add the title to the slide
 SlideTitle = "My First PowerPoint Slide"
 PPSlide.Shapes.Title.TextFrame.TextRange.Text = SlideTitle

oN the Web
This workbook, named Sending Excel Data to a PowerPoint Presentation.xlsm, is available
on the book’s website.

Note
You will need to set a reference to the Microsoft PowerPoint Object Library. Again, you can set the reference by
 opening the Visual Basic Editor in Excel and selecting Tools ➪ References. Scroll down until you find the entry
 Microsoft PowerPoint XX Object Library, where the XX is your version of PowerPoint. Place a check in the check box
next to the entry.

Part II: Advanced VBA Techniques

362

'Memory Cleanup
 PP.Activate
 Set PPSlide = Nothing
 Set PPPres = Nothing
 Set PP = Nothing

End Sub

Sending all Excel charts to a PowerPoint presentation
It’s not uncommon to see multiple charts on one worksheet. Many people have the need to
copy charts to PowerPoint presentations. The macro here assists in that task, effectively
automating the process of copying each one of these charts into its own slide.

In this macro, we loop through the Activesheet.ChartObjects collection to copy each
chart as a picture into its own slide in a newly created PowerPoint presentation.

Sub CopyAllChartsToPresentation()

'Declare your variables
 Dim PP As PowerPoint.Application
 Dim PPPres As PowerPoint.Presentation
 Dim PPSlide As PowerPoint.Slide
 Dim ppSlideCount As Long
 Dim i As Long

'Check for charts; exit if no charts exist
 Sheets("Slide Data").Select
 If ActiveSheet.ChartObjects.Count < 1 Then
 MsgBox "No charts exist in the active sheet"
 Exit Sub
 End If

'Open PowerPoint and create new presentation
 Set PP = New PowerPoint.Application

oN the Web
This workbook, named Sending All Excel Charts to a PowerPoint Presentation.xlsm, is
available on the book’s website.

Note
You will need to set a reference to the Microsoft PowerPoint Object Library. Again, you can set the reference by
 opening the Visual Basic Editor in Excel and selecting Tools ➪ References. Scroll down until you find the entry
 Microsoft PowerPoint XX Object Library, where the XX is your version of PowerPoint. Place a check in the check box
next to the entry.

Chapter 10: Interacting with Other Applications

363

10

 Set PPPres = PP.Presentations.Add
 PP.Visible = True

'Start the loop based on chart count
 For i = 1 To ActiveSheet.ChartObjects.Count

 'Copy the chart as a picture
 ActiveSheet.ChartObjects(i).Chart.CopyPicture _
 Size:=xlScreen, Format:=xlPicture
 Application.Wait (Now + TimeValue("0:00:1"))

 'Count slides and add new slide as next available slide number
 ppSlideCount = PPPres.Slides.Count
 Set PPSlide = PPPres.Slides.Add(ppSlideCount + 1, ppLayoutBlank)
 PPSlide.Select

 'Paste the picture and adjust its position; Go to next chart
 PPSlide.Shapes.Paste.Select
 PP.ActiveWindow.Selection.ShapeRange.Align msoAlignCenters, True
 PP.ActiveWindow.Selection.ShapeRange.Align msoAlignMiddles, True
 Next i

'Memory Cleanup
 Set PPSlide = Nothing
 Set PPPres = Nothing
 Set PP = Nothing

End Sub

Convert a workbook into a PowerPoint Presentation
This last macro takes the concept of using Excel data in PowerPoint to the extreme. Open
the sample workbook called Convert a Workbook into a PowerPoint Presenta-
tion.xlsm. In this workbook, you will notice that each worksheet contains its own data
about a region. It’s almost as if each worksheet is its own separate slide, providing informa-
tion on a particular region.

The idea here is that you can build a workbook in such a way that it mimics a PowerPoint
presentation; the workbook is the presentation itself, and each worksheet becomes a slide
in the presentation. Once you do that, you can easily convert that workbook into an actual
PowerPoint presentation using a bit of automation.

With this technique, you can build entire presentations in Excel where you have better
analytical and automation tools. Then you can simply convert the Excel version of your
pres entation to a PowerPoint presentation.

Part II: Advanced VBA Techniques

364

Sub SendWorkbookToPowerPoint()

'Declare your variables
 Dim pp As PowerPoint.Application
 Dim PPPres As PowerPoint.Presentation
 Dim PPSlide As PowerPoint.Slide
 Dim xlwksht As Excel.Worksheet
 Dim MyRange As String
 Dim MyTitle As String

'Open PowerPoint, add a new presentation and make visible
 Set pp = New PowerPoint.Application
 Set PPPres = pp.Presentations.Add
 pp.Visible = True

'Set the ranges for your data and title
 MyRange = "A1:I27"

'Start the loop through each worksheet
 For Each xlwksht In ActiveWorkbook.Worksheets
 xlwksht.Select
 Application.Wait (Now + TimeValue("0:00:1"))
 MyTitle = xlwksht.Range("C19").Value

'Copy the range as picture
 xlwksht.Range(MyRange).CopyPicture _
 Appearance:=xlScreen, Format:=xlPicture

'Count slides and add new slide as next available slide number
 SlideCount = PPPres.Slides.Count
 Set PPSlide = PPPres.Slides.Add(SlideCount + 1, ppLayoutTitleOnly)
 PPSlide.Select

'Paste the picture and adjust its position
 PPSlide.Shapes.Paste.Select

oN the Web
This workbook, named Convert a Workbook into a PowerPoint Presentation.xlsm, is
 available on the book’s website.

Note
You will need to set a reference to the Microsoft PowerPoint Object Library. Again, you can set the reference by
 opening the Visual Basic Editor in Excel and selecting Tools ➪ References. Scroll down until you find the entry
 Microsoft PowerPoint XX Object Library, where the XX is your version of PowerPoint. Place a check in the check box
next to the entry.

Chapter 10: Interacting with Other Applications

365

10

 pp.ActiveWindow.Selection.ShapeRange.Align msoAlignCenters, True
 pp.ActiveWindow.Selection.ShapeRange.Top = 100

'Add the title to the slide then move to next worksheet
 PPSlide.Shapes.Title.TextFrame.TextRange.Text = MyTitle
 Next xlwksht

'Memory Cleanup
 pp.Activate
 Set PPSlide = Nothing
 Set PPPres = Nothing
 Set pp = Nothing

End Sub

Automating Outlook from Excel
In this section, you’ll discover a few examples of how you can integrate Excel and Outlook
in a more automated fashion.

Mailing the active workbook as an attachment
The most fundamental Outlook task that we can perform through automation is sending an
e-mail. In the example code shown here, the active workbook is sent to two e-mail recipi-
ents as an attachment.

Sub EmailWorkbook()

'Declare your variables
 Dim OLApp As Outlook.Application
 Dim OLMail As Object

'Open Outlook start a new mail item
 Set OLApp = New Outlook.Application

oN the Web
This workbook, named Mailing the Active Workbook as Attachment.xlsm, is available on the
book’s website.

Note
You will need to set a reference to the Microsoft Outlook Object Library. You can set the reference by opening the
Visual Basic Editor in Excel and selecting Tools ➪ References. Scroll down until you find the entry Microsoft Outlook
XX Object Library, where the XX is your version of Outlook. Place a check in the check box next to the entry.

Part II: Advanced VBA Techniques

366

 Set OLMail = OLApp.CreateItem(0)
 OLApp.Session.Logon

'Build your mail item and send
 With OLMail
 .To = "admin@datapigtechnologies.com; mike@datapigtech nologies
.com"
 .CC = ""
 .BCC = ""
 .Subject = "This is the Subject line"
 .Body = "Sample File Attached"
 .Attachments.Add ActiveWorkbook.FullName
 .Display 'Change to .Send to send without reviewing
 End With

'Memory cleanup
 Set OLMail = Nothing
 Set OLApp = Nothing

End Sub

Mailing a specific range as an attachment
You can imagine that you may not always want to send your entire workbook through
e-mail. This macro demonstrates how you would send a specific range of data rather than
the entire workbook.

Sub EmailRange()

'Declare your variables
 Dim OLApp As Outlook.Application
 Dim OLMail As Object

'Copy range, paste to new workbook, and save it
 Sheets("Revenue Table").Range("A1:E7").Copy
 Workbooks.Add

oN the Web
This workbook, named Mailing a Specific Range as Attachment.xlsm, is available on the book’s
website.

Note
You will need to set a reference to the Microsoft Outlook Object Library. You can set the reference by opening the
Visual Basic Editor in Excel and selecting Tools ➪ References. Scroll down until you find the entry Microsoft Outlook
XX Object Library, where the XX is your version of Outlook. Place a check in the check box next to the entry.

Chapter 10: Interacting with Other Applications

367

10

 Range("A1").PasteSpecial xlPasteValues
 Range("A1").PasteSpecial xlPasteFormats
 ActiveWorkbook.SaveAs ThisWorkbook.Path & "\TempRangeForEmail.xlsx"

'Open Outlook start a new mail item
 Set OLApp = New Outlook.Application
 Set OLMail = OLApp.CreateItem(0)
 OLApp.Session.Logon

'Build your mail item and send
 With OLMail
 .To = "admin@datapigtechnologies.com; mike@datapigtech nologies
.com"
 .CC = ""
 .BCC = ""
 .Subject = "This is the Subject line"
 .Body = "Sample File Attached"
 .Attachments.Add (ThisWorkbook.Path & "\TempRangeForEmail.xlsx")
 .Display 'Change to .Send to send without reviewing
 End With

'Delete the temporary Excel file
 ActiveWorkbook.Close SaveChanges:=True
 Kill ThisWorkbook.Path & "\TempRangeForEmail.xlsx"

'Memory cleanup
 Set OLMail = Nothing
 Set OLApp = Nothing

End Sub

Mailing a Single Sheet as an Attachment
This example demonstrates how you would send a specific worksheet of data rather than
the entire workbook.

oN the Web
This workbook, named Mailing a Single Sheet as an Attachment.xlsm, is available on the book’s
website.

Note
You will need to set a reference to the Microsoft Outlook Object Library. You can set the reference by opening the
Visual Basic Editor in Excel and selecting Tools ➪ References. Scroll down until you find the entry Microsoft Outlook
XX Object Library, where the XX is your version of Outlook. Place a check in the check box next to the entry.

Part II: Advanced VBA Techniques

368

Sub EmailWorkSheet()

'Declare your variables
 Dim OLApp As Outlook.Application
 Dim OLMail As Object

'Copy Worksheet, paste to new workbook, and save it
 Sheets("Revenue Table").Copy
 ActiveWorkbook.SaveAs ThisWorkbook.Path & "\TempRangeForEmail.xlsx"

'Open Outlook start a new mail item
 Set OLApp = New Outlook.Application
 Set OLMail = OLApp.CreateItem(0)
 OLApp.Session.Logon

'Build your mail item and send
 With OLMail
 .To = "admin@datapigtechnologies.com; mike@datapigtechnologies.com"
 .CC = ""
 .BCC = ""
 .Subject = "This is the Subject line"
 .Body = "Sample File Attached"
 .Attachments.Add (ThisWorkbook.Path & "\TempRangeForEmail.xlsx")
 .Display 'Change to .Send to send without reviewing
 End With

'Delete the temporary Excel file
 ActiveWorkbook.Close SaveChanges:=True
 Kill ThisWorkbook.Path & "\TempRangeForEmail.xlsx"

'Memory cleanup
 Set OLMail = Nothing
 Set OLApp = Nothing

End Sub

Mailing All E-mail Addresses in Your Contact List
Ever need to send out a mass mailing such as a newsletter or a memo? Instead of manually
entering each of your contacts’ e-mail addresses, you can run the following procedure. In
this procedure, you send out one e-mail, automatically adding all the e-mail addresses in
your contact list to the e-mail.

oN the Web
This workbook, named Mailing All Email Addresses in Your Contact List, is available on the
book’s website.

Chapter 10: Interacting with Other Applications

369

10

Sub EmailContactList()

'Declare your variables
 Dim OLApp As Outlook.Application
 Dim OLMail As Object
 Dim MyCell As Range
 Dim MyContacts As Range

'Define the range to loop through
 Set MyContacts = Sheets("Contact List").Range("H2:H21")

'Open Outlook
 Set OLApp = New Outlook.Application
 Set OLMail = OLApp.CreateItem(0)
 OLApp.Session.Logon

'Add each address in the contact list
 With OLMail
 For Each MyCell In MyContacts
 .BCC = .BCC & MyCell.Value & ";"
 Next MyCell

 .Subject = "Sample File Attached"
 .Body = "Sample file is attached"
 .Attachments.Add ActiveWorkbook.FullName
 .Display 'Change to .Send to send without reviewing

 End With

'Memory cleanup
 Set OLMail = Nothing
 Set OLApp = Nothing

End Sub

Starting Other Applications from Excel
You may find it necessary to launch other applications from Excel. For example, you might
want to call up a Windows dialog box, open Internet Explorer, or execute a DOS batch file
from Excel. Or, as an application developer, you may want to make it easy for a user to
access the Windows Control Panel to adjust system settings.

Note
You will need to set a reference to the Microsoft Outlook Object Library. You can set the reference by opening the
Visual Basic Editor in Excel and selecting Tools ➪ References. Scroll down until you find the entry Microsoft Outlook
XX Object Library, where the XX is your version of Outlook. Place a check in the check box next to the entry.

Part II: Advanced VBA Techniques

370

In this section, you’ll learn the fundamental functions needed to launch all kinds of pro-
grams from Excel.

Using the VBA Shell function
The VBA Shell function makes launching other programs relatively easy. The following is
an example of VBA code that launches the Windows Calculator:

Sub StartCalc()
 Dim Program As String
 Dim TaskID As Double
 On Error Resume Next
 Program = "calc.exe"
 TaskID = Shell(Program, 1)
 If Err <> 0 Then
 MsgBox "Cannot start " & Program, vbCritical, "Error"
 End If
End Sub

The Shell function returns a task identification number for the application specified in
the first argument. You can use this number later to activate the task. The second argu-
ment for the Shell function determines how the application is displayed. (1 is the code
for a normal-size window that has the focus.) Refer to the Help system for other values for
this argument.

If the Shell function isn’t successful, it generates an error. Therefore, this procedure uses
an On Error statement to display a message if the executable file can’t be found or if
some other error occurs.

It’s important to understand that your VBA code doesn’t pause while the application that
was started with the Shell function is running. In other words, the Shell function runs
the application asynchronously. If the procedure has more instructions after the Shell
function is executed, these instructions are executed concurrently with the newly-loaded
program. If any instruction requires user intervention (for example, displaying a message
box), Excel’s title bar flashes while the other application is active.

In some cases, you may want to launch an application with the Shell function, but you
need your VBA code to pause until the application is closed. For example, the launched
application might generate a file that is used later in your code. Although you can’t pause
the execution of your code, you can create a loop that does nothing except monitor the
application’s status. The example that follows displays a message box when the application
launched by the Shell function has ended:

Declare PtrSafe Function OpenProcess Lib "kernel32" _
 (ByVal dwDesiredAccess As Long, _
 ByVal bInheritHandle As Long, _
 ByVal dwProcessId As Long) As Long

Chapter 10: Interacting with Other Applications

371

10

Declare PtrSafe Function GetExitCodeProcess Lib "kernel32" _
 (ByVal hProcess As Long, _
 lpExitCode As Long) As Long

Sub StartCalc2()
 Dim TaskID As Long
 Dim hProc As Long
 Dim lExitCode As Long
 Dim ACCESS_TYPE As Integer, STILL_ACTIVE As Integer
 Dim Program As String

 ACCESS_TYPE = &H400
 STILL_ACTIVE = &H103

 Program = "Calc.exe"
 On Error Resume Next

' Shell the task
 TaskID = Shell(Program, 1)

' Get the process handle
 hProc = OpenProcess(ACCESS_TYPE, False, TaskID)

 If Err <> 0 Then
 MsgBox "Cannot start " & Program, vbCritical, "Error"
 Exit Sub
 End If

 Do 'Loop continuously
' Check on the process
 GetExitCodeProcess hProc, lExitCode
' Allow event processing
 DoEvents
 Loop While lExitCode = STILL_ACTIVE

' Task is finished, so show message
 MsgBox Program & " was closed"
End Sub

While the launched program is running, this procedure continually calls the GetExit-
CodeProcess function from a Do Loop structure, testing for its returned value (lExit-
Code). When the program is finished, lExitCode returns a different value, the loop ends,
and the VBA code resumes executing.

oN the Web
Both of the previous examples are available on the book’s website. The filename is start calculator.xlsm.

Part II: Advanced VBA Techniques

372

Using the Windows ShellExecute API function
ShellExecute is a Windows application programming interface (API) function that is
useful for starting other applications. Importantly, this function can start an application
only if an associated filename is known (assuming that the file type is registered with Win-
dows). For example, you can use ShellExecute to display a web document by starting the
default web browser. Or, you can use an e-mail address to start the default e-mail client.

The API declaration follows (this code works only with Excel 2010 or later):

Private Declare PtrSafe Function ShellExecute Lib "shell32.dll" _
 Alias "ShellExecuteA" (ByVal hWnd As Long, _
 ByVal lpOperation As String, ByVal lpFile As String, _
 ByVal lpParameters As String, ByVal lpDirectory As String, _
 ByVal nShowCmd As Long) As Long

The following procedure demonstrates how to call the ShellExecute function. In this
example, it opens a graphics file by using the graphics program that’s set up to handle JPG
files. If the result returned by the function is less than 32, an error occurred.

Sub ShowGraphic()
 Dim FileName As String
 Dim Result As Long
 FileName = ThisWorkbook.Path & "\flower.jpg"

tip
Another way to launch an app is to create a hyperlink in a cell (VBA not required). For example, this formula creates a
hyperlink in a cell that, when clicked, runs the Windows Calculator program:

=HYPERLINK("C:\Windows\System32\calc.exe","Windows Calculator")

You need to make sure that the link points to the correct location. And you’ll probably get at least one security
warning when you click the link. This technique also works for files, and it loads the file into the default application
for the file type. For example, clicking the hyperlink created by the following formula loads the file into the default
app for text files:

=HYPERLINK("C:\files\data.txt","Open the data file")

Displaying a folder window
The Shell function is also handy if you need to display a particular directory using File Explorer. For
example, the statement that follows displays the folder of the active workbook (but only if the work-
book has been saved):

If ActiveWorkbook.Path <> "" Then _
 Shell "explorer.exe " & ActiveWorkbook.Path, vbNormalFocus

Chapter 10: Interacting with Other Applications

373

10

 Result = ShellExecute(0&, vbNullString, FileName, _
 vbNullString, vbNullString, vbNormalFocus)
 If Result < 32 Then MsgBox "Error"
End Sub

The next procedure opens a text file, using the default text file program:

Sub OpenTextFile()
 Dim FileName As String
 Dim Result As Long
 FileName = ThisWorkbook.Path & "\textfile.txt"
 Result = ShellExecute(0&, vbNullString, FileName, _
 vbNullString, vbNullString, vbNormalFocus)
 If Result < 32 Then MsgBox "Error"
End Sub

The following example is similar, but it opens a web URL by using the default browser:

Sub OpenURL()
 Dim URL As String
 Dim Result As Long
 URL = "http://spreadsheetpage.com"
 Result = ShellExecute(0&, vbNullString, URL, _
 vbNullString, vbNullString, vbNormalFocus)
 If Result < 32 Then MsgBox "Error"
End Sub

You can also use this technique with an e-mail address. The following example opens the
default e-mail client (if one exists) and then addresses an e-mail to the recipient:

Sub StartEmail()
 Dim Addr As String
 Dim Result As Long
 Addr = "mailto:nobody@example.com"
 Result = ShellExecute(0&, vbNullString, Addr, _
 vbNullString, vbNullString, vbNormalFocus)
 If Result < 32 Then MsgBox "Error"
End Sub

Using AppActivate
You may find that if an application is already running, using the Shell function may start
another instance of it. In most cases, however, you want to activate the instance that’s
running, not start another instance of it.

oN the Web
These examples are available on the book’s website in a file named shellexecute examples.xlsm in a
folder called shellexecute. This file uses API declarations that are compatible with all versions of Excel.

Part II: Advanced VBA Techniques

374

The following StartCalculator procedure uses the AppActivate statement to activate
an application (in this case, the Windows Calculator) if it’s already running. The argument
for AppActivate is the caption of the application’s title bar. If the AppActivate state-
ment generates an error, Calculator is not running, and the routine starts the application.

Sub ActivateCalc()
 Dim AppFile As String
 Dim CalcTaskID As Double

 AppFile = "Calc.exe"
 On Error Resume Next
 AppActivate "Calculator"
 If Err <> 0 Then
 Err = 0
 CalcTaskID = Shell(AppFile, 1)
 If Err <> 0 Then MsgBox "Can't start Calculator"
 End If
End Sub

Running Control Panel Dialog Boxes
Windows provides quite a few system dialog boxes and wizards, most of which are acces-
sible from the Windows Control Panel. You might need to display one or more of these from
your Excel application. For example, you might want to display the Windows Date and Time
dialog box.

The key to running other system dialog boxes is to execute the rundll32.exe application
by using the VBA Shell function.

The following procedure displays the Date and Time dialog box:

Sub ShowDateTimeDlg()
 Dim Arg As String
 Dim TaskID As Double
 Arg = "rundll32.exe shell32.dll,Control_RunDLL timedate.cpl"
 On Error Resume Next
 TaskID = Shell(Arg)
 If Err <> 0 Then
 MsgBox ("Cannot start the application.")
 End If
End Sub

The following is the general format for the rundll32.exe application:

rundll32.exe shell32.dll,Control_RunDLL filename.cpl, n,t

oN the Web
This example is available on the book’s website. The filename is start calculator.xlsm.

Chapter 10: Interacting with Other Applications

375

10

where:

 ■ filename.cpl: The name of one of the Control Panel *.CPL files
 ■ n: The zero-based number of the applet in the *.CPL file
 ■ t: The number of the tab (for multitabbed applets)

oN the Web
A workbook that displays 12 additional Control Panel applets is available on this book’s website. The filename is
control panel dialogs.xlsm.

377

CHAP T ER

11
Working with External
Data and Files

IN THIS CHAPTER
Working with external data connections

Using ActiveX Data Objects to get external data

Performing common file operations

Working with text files

Working with External Data Connections
External data is exactly what it sounds like: data that isn’t located in the Excel workbook in which
you’re operating. Some examples of external data sources are text files, Access tables, SQL Server
tables, and even other Excel workbooks.

There are numerous ways to get data into Excel. In fact, between the functionality found in the UI
and the VBA/code techniques, there are too many techniques to focus on in one chapter. Instead,
then, in this chapter we’ll focus on a handful of techniques that can be implemented in most situa-
tions and that don’t come with a lot of pitfalls and gotchas.

The first of those techniques is to use Excel’s Power Query feature.

Power Query Basics
Power Query offers an intuitive mechanism to extract data from a wide variety of sources, perform
complex transformations on that data, and then load the data into a workbook.

To start this basic review of Power Query, let’s walk through a simple example. Imagine that you
need to import Microsoft Corporation stock prices into Excel using Yahoo Finance. For this scenario,
you need to perform a web query to pull the data needed from Yahoo Finance.

To start your query, follow these steps:

1. In a new Excel workbook, select the Get Data command in the Get & Transform Data group
on the Data tab and then select From Other Sources ➪ From Web (see Figure 11.1).

Excel® 2019 Power Programming with VBA, First Edition. Michael Alexander and Dick Kusleika.
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.

Part II: Advanced VBA Techniques

378

2. In the dialog box that appears, as shown in Figure 11.2, enter the URL for the data
that you need; in this case, enter http://finance.yahoo.com/q/hp?s=MSFT.

3. After a bit of gyrating, the Navigator pane shown in Figure 11.3 appears. Here you
select the data source you want to be extracted. You can click each table to see
a preview of the data. In this case, the table labeled Table 2 holds the historical
stock data you need, so click Table 2 and then click the Edit button.

FIGURE 11.1

Starting a Power Query web query

FIGURE 11.2

Enter the target URL containing the data you need.

http://finance.yahoo.com/q/hp?s=MSFT

Chapter 11: Working with External Data and Files

379

11

Note
You may have noticed that the Navigator pane shown in Figure 11.3 offers a Load button (next to the Edit button).
The Load button allows you to skip any editing and import your targeted data as is. If you are sure that you will not
need to transform or shape your data in any way, you can opt to click the Load button to import the data directly into
the Data Model or a spreadsheet in your workbook.

CautioN
Excel has another From Web command button on the Data tab next to the Get Data command. This unfortunate dupli-
cate command is actually the legacy web-scraping capability found in all Excel versions going back to Excel 2000.

The Power Query version of the From Web command (found under the Get Data drop-down) goes beyond simple web
scraping. Power Query is able to pull data from advanced web pages, and it is able to manipulate the data. Make
sure you are using the correct feature when pulling data from the Web.

FIGURE 11.3

Select the correct data source and then click the Edit button.

Part II: Advanced VBA Techniques

380

When you click the Edit button, a Power Query Editor window opens, which con-
tains its own Ribbon and a preview pane that shows a preview of the data (see
Figure 11.4). Here you can apply certain actions to shape, clean, and transform the
data before importing.

The idea is to work with each column shown in the Power Query Editor, applying
the necessary actions that will give you the data and structure that you need.
You’ll dive deeper into column actions later in this chapter. For now, you need to
continue toward the goal of getting the last 30 days of stock prices for Microsoft
Corporation.

4. Remove all the columns that you do not need by right-clicking each one and click-
ing Remove. (Besides the Date field, the only other columns that you need are the
High, Low, and Close fields.) Alternatively, you can hold down the Ctrl key on your
keyboard, select the columns that you want to keep, right-click any of the selected
columns, and then choose Remove Other Columns (see Figure 11.5).

5. Make sure that the High, Low, and Close fields are formatted as proper numbers. To
do this, hold down the Ctrl key on your keyboard, select the three columns, right-
click one of the column headings, and then select Change Type ➪ Decimal Number.
After you do this, you may notice that some of the rows show the word Error. These
are rows that contained text values that could not be converted.

6. Remove the Error rows by selecting Remove Errors from the Column Actions list
(next to the High field), as shown in Figure 11.6.

Preview Pane

Formula Bar

Query Settings

FIGURE 11.4

The Power Query Editor window allows you to shape, clean, and transform data.

Chapter 11: Working with External Data and Files

381

11

7. Once all the errors are removed, add a Week Of field that displays the week to
which each date in the table belongs. To do this, right-click the Date field and
select the Duplicate Column option. A new column (named Date – Copy) is added to
the preview.

8. Right-click the newly added column, select the Rename option, and then rename
the column Week Of.

9. Right-click the Week Of column that you just created, and select Transform ➪ Week
➪ Start of Week, as shown in Figure 11.7. Excel transforms the dates to display the
start of the week for a given date.

10. When you’ve finished configuring your Power Query feed, save and output the
results. To do this, click the Close & Load drop-down found on the Home tab of the
Power Query Ribbon to reveal two options: Close & Load and Close & Load To.

FIGURE 11.5

Select the columns that you want to keep and then select Remove Other Columns to get rid
of the other columns.

FIGURE 11.6

You can click the Column Actions icon to select actions (such as Remove Errors) that you want
applied to the entire data table.

Part II: Advanced VBA Techniques

382

The Close & Load option saves your query and outputs the results to a new work-
sheet in your workbook as an Excel table. The Close & Load To option activates the
Import Data dialog box, as shown in Figure 11.8, where you can choose to output
the results to a specific worksheet or to the internal Data Model.

The Import Data dialog box also enables you to save the query as a query connec-
tion only, which means you will be able to use the query in various in-memory
processes without actually needing to output the results anywhere.

11. Select the New Worksheet option button to output your results as a table on a new
worksheet in the active workbook.

FIGURE 11.7

The Power Query Editor can be used to apply transformation actions such as displaying the
start of the week for a given date.

FIGURE 11.8

The Import Data dialog box gives you more control over how the results of queries are used.

Chapter 11: Working with External Data and Files

383

11

At this point, you will have a table similar to the one shown in Figure 11.9, which can be
used to produce the PivotTable you need.

Take a moment to appreciate what Power Query allowed you to do just now. With a few
clicks, you searched the Internet, found some base data, shaped the data to keep only the
columns that you needed, and even manipulated that data to add an extra Week Of dimen-
sion to the base data. This is what Power Query is about: enabling you easily to extract,
filter, and reshape data without the need for any programmatic coding skills.

The best part is that Power Query has the ability to connect to a wide array of data sources.
Whether you need to pull data from an external website, a text file, a database system,
Facebook, or a web service, Power Query can accommodate most, if not all, of your source
data needs. You can see all of the available connection types by clicking the Get Data drop-
down menu on the Data tab.

Power Query offers the ability to pull from a wide array of data sources.

From File Pulls data from a specified Excel files, text files, CSV files, XML files,
or folders

From Database Pulls data from a database such as Microsoft Access, SQL Server, or
SQL Server Analysis Services

From Azure Pulls data from Microsoft’s Azure Cloud services

From Online Services Pulls data from cloud-based application services such as Face-
book, Salesforce, and Microsoft Dynamics online

From Other Sources Pulls data from a wide array of Internet, cloud, and other ODBC
data sources

Understanding query steps
Power Query uses its own formula language, known as the M language, to codify your
queries. As with macro recording, each action you take when working with Power Query

FIGURE 11.9

Your final query pulled from the Internet: transformed, put into an Excel table, and ready to
use in a PivotTable

Part II: Advanced VBA Techniques

384

results in code being written into a query step. Query steps are embedded M code, which
allows your actions to be repeated each time you refresh your Power Query data.

You can see the query steps for your queries by activating the Query Settings pane in the
Power Query Editor window (see Figure 11.10). Simply click the Query Settings command on
the View tab of the Ribbon.

Note the Name box illustrated in Figure 11.10, where you can give your query a friendly
name. In this example, we called our query StockData.

You can also check View ➪ Layout ➪ Formula Bar to enhance your analysis of each step
with a formula bar that displays the syntax for a selected step.

Each query step represents an action that you took to get to a data table. You can click any
step to see the underlying M code in the Power Query formula bar. For example, clicking
the step called Removed Errors reveals the code for that step in the formula bar.

Note
When you click on a query step, the data shown in the preview pane is a preview of what the data looked like up to
and including the step you clicked. For example, in Figure 11.10, clicking the step before the Removed Other Col-
umns step lets you see what the data looked like before you removed the nonessential columns.

FIGURE 11.10

Query steps can be viewed and managed in the Applied Steps section of the Query Set-
tings pane.

Chapter 11: Working with External Data and Files

385

11

Refreshing Power Query data
It’s important to note that Power Query data is not in any way connected to the source
data used to extract it. A Power Query data table is merely a snapshot. In other words, as
the source data changes, Power Query will not automatically keep up with the changes; you
need to refresh your data manually.

If you chose to load your Power Query results to an Excel table in the existing workbook,
you can manually refresh by right-clicking the table and selecting the Refresh option.

If you chose to load your Power Query data to the internal Data Model, you need to click
Data ➪ Queries & Connections ➪ Queries & Connections and then right-click the target
query in the task pane and select the Refresh option.

To get a bit more automated with the refreshing of your queries, you can configure your
data sources to refresh your Power Query data automatically. To do so, follow these steps:

1. Go to the Data tab in the Excel Ribbon and select the Queries & Connections
command. The Queries & Connections task pane appears.

2. Right-click the Power Query data connection that you want to refresh and then
select the Properties option.

3. With the Properties dialog box open, select the Usage tab.

4. Set the options to refresh the chosen data connection.

Refresh Every X Minutes Placing a check next to this option tells Excel to refresh the
chosen data automatically every specified number of minutes. Excel will refresh all ta-
bles associated with that connection.

Refresh Data When Opening the File Placing a check next to this option tells Excel
to refresh the chosen data connection automatically upon opening the workbook.
Excel will refresh all tables associated with that connection as soon as the workbook
is opened.

These refresh options are useful when you want to ensure that your customers are working
with the latest data. Of course, setting these options does not preclude the ability to
refresh the data manually.

Managing existing queries
As you add various queries to a workbook, you will need a way to manage them. Excel
accommodates this need by offering the Queries & Connections pane, which enables you to
edit, duplicate, refresh, and generally manage all of the existing queries in the workbook.
Activate the Queries & Connections pane by selecting the Queries & Connections command
on the Data tab of the Excel ribbon.

You need to find the query with which you want to work and then right-click it to take any
one of these actions:

Edit: Open the Query Editor, where you can modify the query steps.

Delete: Delete the selected query.

Part II: Advanced VBA Techniques

386

Refresh: Refresh the data in the selected query.

Load To: Activate the Import Data dialog box, where you can redefine where the
selected query’s results are used.

Duplicate: Create a copy of the query.

Reference: Create a new query that references the output of the original query.

Merge: Merge the selected query with another query in the workbook by matching
specified columns.

Append: Append the results of another query in the workbook to the selected query.

Export Connection File: Create an .odc file to move or share the selected query.

Move to Group: Move the selected query into a logical group you create for better
organization.

Move Up: Move the selected query up in the Queries & Connections pane.

Move Down: Move the selected query down in the Queries & Connections pane.

Show the Peek: Show a preview of the query results for the selected query.

Properties: Rename the query and add a friendly description.

The Queries & Connections pane is especially useful when your workbook contains several
queries. Think of it as a kind of table of contents that allows you to easily find and interact
with the queries in your workbook.

Using VBA to create dynamic connections
When building a custom query in Power Query, you are essentially doing nothing more than
recording the syntax needed to return some desired result. Any syntax Power Query wrote
for your query can be copied from the Advanced Editor and then used in VBA.

You can get to the Advanced Editor while in the Query Editor window (click the View tab of
the ribbon and select Advanced Editor).

If you’ve followed along the with the first exercise, the Advanced Editor should look similar
to Figure 11.11.

The takeaway here is that you don’t have to be an expert on Power Query’s M language to
create and build external data queries dynamically with VBA.

For example, in Figure 11.12, you can select a stock symbol to change the Power Query
Syntax in cell C6. Clicking the Refresh button will rebuild the Power Query connection with
the new syntax.

Chapter 11: Working with External Data and Files

387

11

FIGURE 11.11

The Advanced Editor window

FIGURE 11.12

Designate a cell that will trap the criteria selection.

Part II: Advanced VBA Techniques

388

The following macro uses the Workbook.Query and Workbook.Connection objects to
rebuild the query based on new syntax given:

Sub RefreshPowerQuery()
 Dim Qry As WorkbookQuery
 Dim QryName As String
 Dim QrySyntax As String
 Dim QryDesc As String
 Dim OutputSheet As Worksheet
 Dim ws As Worksheet

'Set variables
 QryName = ThisWorkbook.Sheets("Query Changer").Range("C5").Value
 QrySyntax = ThisWorkbook.Sheets("Query Changer").Range("C6").Value
 QryDesc = ThisWorkbook.Sheets("Query Changer").Range("C5").Value

'Delete Existing Query
 For Each Qry In ThisWorkbook.Queries
 If Qry.Name = QryName Then
 Set Qry = ThisWorkbook.Queries(QryName)
 Qry.Delete
 End If
 Next Qry

'Add New Query
 Set Qry = ThisWorkbook.Queries.Add(QryName, QrySyntax, QryDesc)

'Remove Old Sheet
 Application.DisplayAlerts = False
 For Each ws In ThisWorkbook.Worksheets
 If ws.Name = QryName Then ws.Delete
 Next ws
 Application.DisplayAlerts = True

'Add to New Sheet
 Set OutputSheet = Sheets.Add(After:=ActiveSheet)
 OutputSheet.Name = QryName

 With OutputSheet.ListObjects.Add(SourceType:=0, Source:= _
 "OLEDB;Provider=Microsoft.Mashup.OleDb.1;Data " & _
 "Source=$Workbook$;Location=" & Qry.Name _
 , Destination:=Range("A1")).QueryTable
 .CommandType = xlCmdDefault
 .CommandText = Array("SELECT * FROM [" & Qry.Name & "]")
 .RefreshOnFileOpen = False
 .BackgroundQuery = True
 End With
End Sub

Chapter 11: Working with External Data and Files

389

11

If all went smoothly, you will have a nifty mechanism that allows for dynamic edits to the
Power Query syntax for more flexible reporting.

Iterating through all connections in a workbook
You can also use the Workbook.Connections collection to iterate through all of the con-
nection objects in a workbook and examine or modify their properties. For instance, the
following macro populates a worksheet with a list of all connection objects in the current
workbook, along with their associated connection strings and command texts:

Sub ListConnections()

 Dim i As Long
 Dim Cn As WorkbookConnection

 Worksheets.Add
 With ActiveSheet.Range("A1:C1")
 .Value = Array("Cn Name", "Connection String", "Command Text")
 .EntireColumn.AutoFit
 End With

 For Each Cn In ThisWorkbook.Connections
 i = i + 1

 Select Case Cn.Type
 Case Is = xlConnectionTypeODBC
 With ActiveSheet
 .Range("A1").Offset(i, 0).Value = Cn.Name
 .Range("A1").Offset(i, 1).Value = _
 Cn.ODBCConnection.Connection
 .Range("A1").Offset(i, 2).Value = _
 Cn.ODBCConnection.CommandText
 End With

 Case Is = xlConnectionTypeOLEDB
 With ActiveSheet
 .Range("A1").Offset(i, 0).Value = Cn.Name
 .Range("A1").Offset(i, 1).Value = _
 Cn.OLEDBConnection.Connection

oN the Web
You will find a working version of this sample exercise available for download on this book’s website. The file is
named PowerQuery.xlsm.

Part II: Advanced VBA Techniques

390

 .Range("A1").Offset(i, 2).Value = _
 Cn.OLEDBConnection.CommandText
 End With
 End Select
 Next Cn
End Sub

Using ADO and VBA to Pull External Data
Another technique for working with external data is to use VBA with ActiveX Data Objects
(ADO). Using the combination of ADO with VBA will allow you to work with external data
sets in memory. This comes in handy when you need to perform complex, multilayered pro-
cedures and checks on external data sets but you don’t want to create workbook connec-
tions or return those external data sets to the workbook.

When trying to grasp the basics of ADO, it helps to think of ADO as a tool that will help
you accomplish two tasks: connect to a data source and specify the data set with which to
work. In the following section, you will explore the fundamental syntax that you will need
to know to do just that.

The connection string
The first thing you must do is to connect to a data source. To do this, you must give VBA
few pieces of information. This information is passed to VBA in the form of a connection
string. Here is an example connection string that points to an Access database:

"Provider=Microsoft.ACE.OLEDB.12.0;" & _
"Data Source= C:\MyDatabase.accdb;" & _
"User ID=Administrator;" & _
"Password=AdminPassword"

Don’t be intimidated by all of the syntax here. A connection string is fundamentally
nothing more than a text string that holds a series of variables (also called arguments),
which VBA uses to identify and open a connection to a data source. Although connection
strings can get pretty fancy, with a myriad of arguments and options, there are a handful
of arguments that are commonly used when connecting to either Access or Excel.

Note
When working with complex Excel workbooks that pull data from external sources, you will periodically encounter
code (written by others) that utilizes ADO. It’s important that you recognize and understand the basics of ADO so that
you can deal with this kind of code.

The next few sections will walk you through some of the fundamental concepts of ADO and will show you how to con-
struct your own ADO procedures to pull data. Keep in mind that ADO programming is a broad topic that cannot be
fully covered here. If you find that you need to work extensively with ADO and external data in your Excel application,
you’ll probably want to invest in one or more books that cover this topic in detail.

Chapter 11: Working with External Data and Files

391

11

For novices of ADO, it helps to focus on these commonly used arguments when working
with connection strings: Provider, Data Source, Extended Properties, User ID,
and Password.

Provider The Provider argument tells VBA what type of data source with which you
are working. When using Access or Excel as the data source, the Provider syntax will
read as follows:

Provider=Microsoft.ACE.OLEDB.12.0

Data Source The Data Source argument tells VBA where to find the database or
workbook that contains the data needed. With the Data Source argument, you will pass
the full path of the database or workbook. Here’s an example:

Data Source=C:\Mydirectory\MyDatabaseName.accdb

Extended Properties The Extended Properties argument is typically used when
connecting to an Excel workbook. This argument tells VBA that the data source is some-
thing other than a database. When working with an Excel workbook, this argument
reads as follows:

Extended Properties=Excel 12.0

User ID The User ID argument is optional and used only if a user ID is required to
connect to the data source.

User Id=MyUserId

Password The Password argument is optional and used only if a password is required
to connect to the data source.

Password=MyPassword

Take a moment now to examine a few examples of how these arguments are used in differ-
ent connection strings.

Here’s how to connect to an Access database:

"Provider=Microsoft.ACE.OLEDB.12.0;" & _
"Data Source= C:\MyDatabase.accdb"

Here’s how to connect to an Access database with Password and User ID:

"Provider=Microsoft.ACE.OLEDB.12.0;" & _
"Data Source= C:\MyDatabase.accdb;" & _
"User ID=Administrator;" & _
"Password=AdminPassword"

Here’s how to connect to an Excel workbook:

"Provider=Microsoft.ACE.OLEDB.12.0;" & _
"Data Source=C:\MyExcelWorkbook.xlsx;" & _
"Extended Properties=Excel 12.0"

Part II: Advanced VBA Techniques

392

Declaring a Recordset
In addition to building a connection to your data source, you will need to define the data
set with which you need to work. In ADO, this data set is referred to as the recordset. A
Recordset object is essentially a container for the records and fields returned from the
data source. The most common way to define a Recordset object is to open an existing
table or query using the following arguments:

Recordset.Open Source, ConnectString, CursorType, LockType

The Source argument specifies the data that is to be extracted. This is typically a table,
a query, or a SQL statement that retrieves records. The ConnectString argument spec-
ifies the connection string used to connect to your chosen data source. The CursorType
argument defines how a Recordset object allows you to move through the data to be
extracted. The CursorType argument that are commonly used are as follows:

adOpenForwardOnly This is the default setting; if you don’t specify a CursorType,
the Recordset object will automatically be adOpenForwardOnly. This Cursor
Type argument is the most efficient type because it allows you to move through the
Recordset object in only one way: from beginning to end. This is ideal for reporting
processes where data only needs to be retrieved and not traversed. Keep in mind that
you cannot make changes to data when using this CursorType.

adOpenDynamic This CursorType is typically used in processes where there is a
need for looping, moving up and down through the data set, or the ability to see any
edits made to the data set dynamically. This CursorType is typically memory- and
resource-intensive, and it should be used only when needed.

adOpenStatic This CursorType is ideal for the quick return of results, as it essen-
tially returns a snapshot of your data. However, this is different from the adOpen
ForwardOnly CursorType, as it allows you to navigate the returned records. In
addition, when using this CursorType, the data returned can be made updateable by
setting its LockType to something other than adLockReadOnly.

The LockType argument lets you specify whether the data returned by the Recordset
object can be changed. This argument is typically set to adLockReadOnly (the default
setting) to indicate that there is no need to edit the data returned. Alternatively, you
can set this argument to adLockOptimistic, which allows for the free editing of the
data returned.

Referencing the ADO object library
With these basic ADO fundamentals under your belt, you’re ready to create your own ADO
procedure. However, before you do anything with ADO, you first need to set a reference to
the ADO object library. Just as each Microsoft Office application has its own set of objects,

Chapter 11: Working with External Data and Files

393

11

properties, and methods, so does ADO. Since Excel does not inherently know the ADO object
model, you will need to point Excel to the ADO reference library.

Start by opening a new Excel workbook and opening the Visual Basic Editor.

Once you are in the Visual Basic Editor, go up to the application menu and select Tools ➪
References. This will open the References dialog box illustrated here in Figure 11.13. Scroll
down until you locate the latest version of the Microsoft ActiveX Data Objects Library. Place
a check mark beside this entry and click OK.

After you click the OK button, you can open the References dialog box again to ensure
that your reference is set. You will know that your selection took effect when the Micro-
soft ActiveX Data Objects Library is displayed at the top of the Reference dialog box with a
check next to it.

Note
It is normal to have several versions of the same library displayed in the References dialog box. It’s generally best to
select the latest version available. Note that versions after 2.8 are called the Microsoft ActiveX Data Objects Record-
set Library.

FIGURE 11.13

Select the latest version of the Microsoft ActiveX Data Objects Library.

Part II: Advanced VBA Techniques

394

Putting it all together in code
Now that you understand a few of the basics of ADO, take a look at how they come together
in VBA. The following example code uses ADO to connect to an Access database and retrieve
the Products table:

Sub GetAccessData()
 Dim MyConnect As String
 Dim MyRecordset As ADODB.Recordset

 MyConnect = "Provider=Microsoft.ACE.OLEDB.12.0;" & _
 "Data Source= C:\MyDir\MyDatabaseName.accdb"

 Set MyRecordset = New ADODB.Recordset

 MyRecordset.Open "Products", _
 MyConnect, adOpenStatic, adLockReadOnly

 Sheets("MySheetName").Range("A2").CopyFromRecordset _
 MyRecordset

 With ActiveSheet.Range("A1:C1")
 .Value = Array("Product", "Description", "Segment")
 .EntireColumn.AutoFit
 End With

End Sub

Now take a moment to understand what this macro is doing.

You first declare two variables: a string variable to hold the connection string and a
Recordset object to hold the results of the data pull. In this example, the variable called
MyConnect will hold the connection string identifying the data source. Meanwhile, the
variable called MyRecordset will hold the data that is returned by the procedure.

Next, you define the connection string for the ADO procedure. In this scenario, you are
connecting to the MyDatabaseName.accdb file found in the C:\MyDir\ directory. Once
you have defined the data source, you can open the recordset and use MyConnect to
return static read-only data.

Now you can use Excel’s CopyFromRecordset method to get the data out of the record-
set and into the spreadsheet. This method requires two pieces of information: the location
of the data output and the Recordset object that holds the data. In this example, you
are copying the data in the MyRecordset object onto the sheet called MySheetName
(starting at cell A2).

Note
Keep in mind that the references you set in any given workbook or database are not applied at the application level.
This means you will need to repeat these steps with each new workbook or database that you create.

Chapter 11: Working with External Data and Files

395

11

Interestingly enough, the CopyFromRecordset method does not return column headers
or field names. This forces one final action where you add column headers by simply
defining them in an array and writing them to the active sheet.

With ADO and VBA, you can build all the necessary components one time in a nicely pack-
aged macro and then simply forget about it. As long as the defined variables in your code
(in other words, the data source path, the Recordset, the output path) do not change, then
your ADO-based procedures will require virtually zero maintenance.

Using ADO with the active workbook
There are countless ways that you can use the fundamentals you have learned in this chap-
ter. Of course, it would be impossible to go through every possibility here. However, there
are some common scenarios where VBA can greatly enhance integration between Excel
and Access.

Querying data from an Excel workbook
You can use an Excel workbook as a data source for your ADO procedures. To do so, you sim-
ply build a SQL statement that references the data within the Excel workbook. The idea is
to pinpoint the data set in Excel to query by passing either a sheet name, a range of cells,
or a named range to the SQL statement.

To query all the data on a specific worksheet, you pass the name of that worksheet followed
by the dollar sign ($) as the table name in your SQL statement. Be sure to encapsulate the
worksheet name with square brackets. Here’s an example:

SELECT * FROM [MySheet$]

If the worksheet name contains spaces or characters that are not alphanumeric, you need
to wrap the worksheet name in single quotes. Here’s an example:

Select * from ['January; Forecast vs. Budget$']

To query a range of cells within a given worksheet, you first identify the sheet as described
above and then add the target range. Here’s an example:

SELECT * FROM [MySheet$A1:G17]

To query a named range, simply use the name of the range as the table name in your SQL
statement. Here’s an example:

SELECT * FROM MyNamedRange

In the following example, the entire used range in the SampleData worksheet is queried to
return only those records that belong to the North Region.

Sub GetData_From_Excel_Sheet()

 Dim MyConnect As String
 Dim MyRecordset As ADODB.Recordset
 Dim MySQL As String

Part II: Advanced VBA Techniques

396

 MyConnect = "Provider=Microsoft.ACE.OLEDB.12.0;" & _
 "Data Source=" & ThisWorkbook.FullName & ";" & _
 "Extended Properties=Excel 12.0"

 MySQL = " SELECT * FROM [SampleData$]" & _
 " WHERE Region ='NORTH'"

 Set MyRecordset = New ADODB.Recordset
 MyRecordset.Open MySQL, MyConnect, adOpenStatic, adLockReadOnly

 ThisWorkbook.Sheets.Add
 ActiveSheet.Range("A2").CopyFromRecordset MyRecordset

 With ActiveSheet.Range("A1:F1")
 .Value = Array("Region", "Market", "Branch_Number", _
 "Invoice_Number", "Sales_Amount", "Contracted Hours")
 .EntireColumn.AutoFit
 End With

End Sub

Appending records to an existing Excel table
There are often times when you don’t necessarily want to overwrite the data in your Excel
worksheet when you bring in fresh data. Instead, you may want to simply add or append
data to the existing table. In a typical scenario, you hard-code the location or range where
you want a given recordset to be copied. In these situations, this location must dynami-
cally change to reflect the first empty cell in your worksheet. The following example code
demonstrates this technique:

Sub Append_Results()

 Dim MyConnect As String
 Dim MyRecordset As ADODB.Recordset
 Dim MyRange As String

 MyConnect = "Provider=Microsoft.ACE.OLEDB.12.0;" & _
 "Data Source= C:\MyDir\MyDatabase.accdb"

 Set MyRecordset = New ADODB.Recordset

oN the Web
A working example of this code is available on the book’s website in the workbook called QueryDataFrom
Excel.xlsm.

Chapter 11: Working with External Data and Files

397

11

 MyRecordset.Open "Products", MyConnect, adOpenStatic

 Sheets("AppendData").Select
 MyRange = "A" & _
 ActiveSheet.Cells.SpecialCells(xlCellTypeLastCell).Row + 1

 ActiveSheet.Range(MyRange).CopyFromRecordset MyRecordset
End Sub

Because you want to append data to an existing table, you need to determine dynamically
the first available empty cell that can be used as the output location for the data pull. The
first step in accomplishing this goal is to find the first empty row. This is relatively easy to
do thanks to Excel’s SpecialCells method.

Using the SpecialCells method, you can find the last used cell in the worksheet and
then extract the row number of that cell. This gives you the last used row. To get the row
number of the first empty row, you simply add 1; the next row down from the last used row
will inherently be empty.

The idea is to concatenate the SpecialCells routine with a column letter (in this case A)
to create a string that represents a range. For example, if the first empty row turns out to
be 10, then the following code returns A10:

 "A" & ActiveSheet.Cells.SpecialCells(xlCellTypeLastCell).Row + 1

Trapping this answer in the MyRange string variable allows you to pass the answer to the
CopyFromRecordset.

Working with Text Files
VBA contains a number of statements that allow low-level manipulation of files. These
input/output (I/O) statements give you much more control over files than Excel’s normal
text file import and export options.

You can access a file in any of three ways.

Sequential access By far the most common method. This type allows reading and
writing individual characters or entire lines of data.

Random access Used only if you’re programming a database application, which is not
often done using VBA.

Binary access Used to read or write to any byte position in a file, such as when stor-
ing or displaying a bitmap image. This access method is rarely used in VBA.

Part II: Advanced VBA Techniques

398

Because random and binary access files are rarely used with VBA, this chapter focuses on
sequential access files. In sequential access, your code starts reading from the beginning
of the file and reads each line sequentially. For output, your code writes data to the end of
the file.

Opening a text file
The VBA Open statement (not to be confused with the Open method of the Workbooks
object) opens a file for reading or writing. Before you can read from or write to a file, you
must open it.

The Open statement is versatile and has a complex syntax.

Open pathname For mode [Access access] [lock] _
 As [#]filenumber [Len=reclength]

pathname: Required. The pathname part of the Open statement is straightforward. It
simply contains the name and path (optional) of the file to be opened.

mode: Required. The file mode must be one of the following:

Append: A sequential access mode that either allows the file to be read or allows
data to be appended to the end of the file.

Input: A sequential access mode that allows the file to be read but not written to.

Output: A sequential access mode that allows the file to be read or written to. In
this mode, a new file is always created. (An existing file with the same name
is deleted.)

Binary: A random access mode that allows data to be read or written to on a byte-
by-byte basis.

Random: A random access mode that allows data to be read or written in units
determined by the reclength argument of the Open statement.

access: Optional. The access argument determines what can be done with the file. It
can be Read, Write, or Read Write.

lock: Optional. The lock argument is useful for multiuser situations. The options are
Shared, Lock Read, Lock Write, and Lock Read Write.

Note
The method of reading and writing text files discussed in this book is the traditional data-channel approach. Another
option is to use the object approach. The FileSystemObject object contains a TextStream object that can
be used to read and write text files. The FileSystemObject object is part of Windows Scripting Host, which is
disabled on some systems because of the malware potential associated with it.

Chapter 11: Working with External Data and Files

399

11

filenumber: Required. A file number ranging from 1 to 511. You can use the
FreeFile function to get the next available file number. (Read about FreeFile in the
upcoming section “Getting a file number.”)

reclength: Optional. The record length (for random access files) or the buffer size (for
sequential access files).

Reading a text file
The basic procedure for reading a text file with VBA consists of the following steps:

1. Open the file by using the Open statement.

2. Optional. Specify the position in the file by using the Seek function.

3. Read data from the file by using the Input, Input #, or Line Input #
statement.

4. Close the file by using the Close statement.

Writing a text file
The basic procedure for writing a text file is as follows:

1. Open or create the file by using the Open statement.

2. Optional. Specify the position in the file by using the Seek function.

3. Write data to the file by using the Write # or Print # statement.

4. Close the file by using the Close statement.

Getting a file number
Most VBA programmers simply designate a file number in their Open statement. Here’s
an example:

Open "myfile.txt" For Input As #1

Then you can refer to the file in subsequent statements as #1.

If a second file is opened while the first is still open, you’d designate the second file as #2.

Open "another.txt" For Input As #2

Another approach is to use the VBA FreeFile function to get a file handle. Then you can
refer to the file by using a variable. Here’s an example:

FileHandle = FreeFile
Open "myfile.txt" For Input As FileHandle

Determining or setting the file position
For sequential file access, you rarely need to know the current location in the file. If for
some reason you need to know this information, you can use the Seek function.

Part II: Advanced VBA Techniques

400

Statements for reading and writing
VBA provides several statements to read and write data to a file.

Three statements are used for reading data from a sequential access file.

Input: Reads a specified number of characters from a file

Input #: Reads data as a series of variables, with variables separated by a comma

Line Input #: Reads a complete line of data (delineated by a carriage return
character, a linefeed character, or both)

Two statements are used for writing data to a sequential access file.

Write #: Writes a series of values, with each value separated by a comma and enclosed
in quotes. If you end the statement with a semicolon, a carriage return/linefeed
sequence is not inserted after each value. Data written with Write # is usually read
from a file with an Input # statement.

Print #: Writes a series of values, with each value separated by a tab character. If you
end the statement with a semicolon, a carriage return/linefeed sequence isn’t inserted
after each value. Data written with Print # is usually read from a file with a Line
Input # or an Input statement.

Excel’s text file import and export features
Excel can directly read and write three types of text files.

Comma-separated value (CSV) files Columns of data are separated by a comma, and each
row of data ends in a carriage return character. For some non-English versions of Excel, a semi-
colon rather than a comma is used.

PRN Columns of data are aligned by character position, and each row of data ends in a
carriage return. These files are also known as fixed-width files.

TXT (tab-delimited) files Columns of data are separated by tab characters, and each row of
data ends in a carriage return.

When you attempt to open a text file with the File ➪ Open command, the Text Import Wizard might
appear to help you delineate the columns. If the text file is tab-delimited or comma-delimited, Excel
usually opens the file without displaying the Text Import Wizard. If the data isn’t interpreted correctly,
close the file and try renaming it to use a .txt extension.

The Text to Columns Wizard (accessed by choosing Data ➪ Data Tools ➪ Text to Columns) is identical
to the Text Import Wizard, but it works with data stored in a single worksheet column.

Chapter 11: Working with External Data and Files

401

11

Text File Manipulation Examples
This section contains a number of examples that demonstrate various techniques that
manipulate text files.

Importing data in a text file
The code in the following example reads a text file and then places each line of data in a
single cell (beginning with the active cell):

Sub ImportData()
 Open "c:\data\textfile.txt" For Input As #1
 r = 0
 Do Until EOF(1)
 Line Input #1, data
 ActiveCell.Offset(r, 0) = data
 r = r + 1
 Loop
 Close #1
End Sub

In most cases, this procedure won’t be very useful because each line of data is sim-
ply dumped into a single cell. It is easier just to open the text file directly by using
File ➪ Open.

Exporting a range to a text file
The example in this section writes the data in a selected worksheet range to a CSV text file.
Although Excel can export data to a CSV file, it exports the entire worksheet. This macro
works with a specified range of cells.

Sub ExportRange()
 Dim Filename As String
 Dim NumRows As Long, NumCols As Integer
 Dim r As Long, c As Integer
 Dim Data
 Dim ExpRng As Range

 Set ExpRng = Selection
 NumCols = ExpRng.Columns.Count
 NumRows = ExpRng.Rows.Count
 Filename = Application.DefaultFilePath & "\textfile.csv"
 Open Filename For Output As #1
 For r = 1 To NumRows

Part II: Advanced VBA Techniques

402

 For c = 1 To NumCols
 Data = ExpRng.Cells(r, c).Value
 If IsNumeric(Data) Then Data = Val(Data)
 If IsEmpty(ExpRng.Cells(r, c)) Then Data = ""
 If c <> NumCols Then
 Write #1, Data;
 Else
 Write #1, Data
 End If
 Next c
 Next r
 Close #1
 MsgBox ExpRng.Count & " cells were exported to " _
 & Filename, vbInformation
End Sub

Note that the procedure uses two Write # statements. The first statement ends with a
semicolon, so a return/linefeed sequence isn’t written. For the last cell in a row, however,
the second Write # statement doesn’t use a semicolon, which causes the next output to
appear on a new line.

You used a variable named Data to store the contents of each cell. If the cell is numeric,
the variable is converted to a value. This step ensures that numeric data won’t be stored
with quotation marks. If a cell is empty, its Value property returns 0. Therefore, the code
also checks for a blank cell (by using the IsEmpty function) and substitutes an empty
string instead of a 0.

Importing a text file to a range
The example in this section reads the CSV file created in the preceding example and then
stores the values beginning at the active cell in the active worksheet. The code reads each
character and essentially parses the line of data, ignoring quote characters and looking for
commas to delineate the columns.

Sub ImportRange()
 Dim ImpRng As Range
 Dim Filename As String
 Dim r As Long, c As Integer
 Dim txt As String, Char As String * 1
 Dim Data
 Dim i As Integer

oN the Web
These exporting and importing examples are available on the book’s website in the export and import csv
.xlsm file.

Chapter 11: Working with External Data and Files

403

11

 Set ImpRng = ActiveCell
 On Error Resume Next
 Filename = Application.DefaultFilePath & "\textfile.csv"
 Open Filename For Input As #1
 If Err <> 0 Then
 MsgBox "Not found: " & Filename, vbCritical, "ERROR"
 Exit Sub
 End If
 r = 0
 c = 0
 txt = ""
 Application.ScreenUpdating = False
 Do Until EOF(1)
 Line Input #1, Data
 For i = 1 To Len(Data)
 Char = Mid(Data, i, 1)
 If Char = "," Then 'comma
 ActiveCell.Offset(r, c) = txt
 c = c + 1
 txt = ""
 ElseIf i = Len(Data) Then 'end of line
 If Char <> Chr(34) Then txt = txt & Char
 ActiveCell.Offset(r, c) = txt
 txt = ""
 ElseIf Char <> Chr(34) Then
 txt = txt & Char
 End If
 Next i
 c = 0
 r = r + 1
 Loop
 Close #1
 Application.ScreenUpdating = True
End Sub

Logging Excel usage
The example in this section writes data to a text file every time Excel is opened and closed.
For this example to work reliably, the procedure must be located in a workbook that’s
opened every time you start Excel. Storing the macro in your Personal Macro Workbook is
an excellent choice.

Note
The preceding procedure works with most data, but it has a flaw: it doesn’t handle data that contains a comma or
a quote character. But commas resulting from formatting are handled correctly (they’re ignored). In addition, an
imported date will be surrounded by number signs, for example, #20190512#.

Part II: Advanced VBA Techniques

404

The following procedure, stored in the code module for the ThisWorkbook object, is exe-
cuted when the file is opened:

Private Sub Workbook_Open()
 Open Application.DefaultFilePath & "\excelusage.txt" For
Append As #1
 Print #1, "Started " & Now
 Close #1
End Sub

The procedure appends a new line to a file named excelusage.txt. The new line contains
the current date and time and might look something like this:

Started 11/16/2013 9:27:43 PM

The following procedure is executed before the workbook is closed. It appends a new line
that contains the word Stopped along with the current date and time.

Private Sub Workbook_BeforeClose(Cancel As Boolean)
 Open Application.DefaultFilePath & "\excelusage.txt" _
 For Append As #1
 Print #1, "Stopped " & Now
 Close #1
End Sub

Filtering a text file
The example in this section demonstrates how to work with two text files at once. The
FilterFile procedure that follows reads a text file (infile.txt) and copies only the
rows that contain a specific text string ("January") to a second text file (output.txt):

Sub FilterFile()

 Dim TextToFind As String
 Dim Filtered As Long
 Dim data As String

 Open ThisWorkbook.Path & "\infile.txt" For Input As #1
 Open Application.DefaultFilePath & "\output.txt" For Output As #2
 If Err <> 0 Then

oN the Web
A workbook that contains these procedures is available on the book’s website in the excel usage log.xlsm
file.

 Refer to Chapter 6, “Understanding Excel’s Events,” for more information about event-handler procedures,
such as Workbook _ Open and Workbook _ BeforeClose.

Chapter 11: Working with External Data and Files

405

11

 MsgBox "Error reading or writing a file."
 Exit Sub
 End If
 TextToFind = "January"
 Filtered = 0
 Do While Not EOF(1)
 Line Input #1, data
 If InStr(1, data, TextToFind) Then
 Filtered = Filtered + 1
 Print #2, data
 End If
 Loop
 Close 'Close all files
 MsgBox Filtered & " lines were written to:" & vbNewLine & _
 Application.DefaultFilePath & "\output.txt"

End Sub

Performing Common File Operations
Many applications that you develop for Excel require working with external files. For exam-
ple, you might need to get a listing of files in a directory, delete files, or rename files. Excel
can import and export several types of text files. In many cases, however, Excel’s built-in
text file handling isn’t sufficient. For example, you might want to paste a list of filenames
into a range or export a range of cells to a simple Hypertext Markup Language (HTML) file.

In this chapter, you explore how to use Visual Basic for Applications (VBA) to perform
common (and not so common) file operations and work directly with text files.

Excel provides two ways to perform common file operations.

 ■ Use traditional VBA statements and functions: This method works for all ver-
sions of Excel.

 ■ Use the FileSystemObject object, which uses the Microsoft Scripting Library:
This method works for Excel 2000 and later.

In the sections that follow, you explore these two methods and some examples.

oN the Web
This example, named filter text file.xlsm, is available on the book’s website.

CautioN
Some earlier versions of Excel also supported the use of the FileSearch object. That feature was removed,
beginning with Excel 2007. If you execute an old macro that uses the FileSearch object, the macro will fail.

Part II: Advanced VBA Techniques

406

Using VBA file-related statements
The VBA statements that you can use to work with files are summarized in Table 11.1. Most
of these statements are straightforward, and all are described in the Help system.

The remainder of this section consists of examples that demonstrate some of the file
manipulation commands.

A VBA function to determine whether a file exists
The following function returns True if a particular file exists and False if it doesn’t exist.
If the Dir function returns an empty string, the file couldn’t be found, so the function
returns False.

Function FileExists(fname) As Boolean
 FileExists = Dir(fname) <> ""
End Function

The argument for the FileExists function consists of a full path and filename. The
function can be used in a worksheet or called from a VBA procedure. Here’s an example:

MyFile = "c:\budgeting\budget notes.docx"
Msgbox FileExists(MyFile)

A VBA function to determine whether a path exists
The following function returns True if a specified path exists and False otherwise:

Function PathExists(pname) As Boolean
' Returns TRUE if the path exists

TABLE 11.1 VBA File-Related Statements

Command What It Does

ChDir Changes the current directory

ChDrive Changes the current drive

Dir Returns a filename or directory that matches a specified pattern or
file attribute

FileCopy Copies a file

FileDateTime Returns the date and time when a file was last modified

FileLen Returns the size of a file in bytes

GetAttr Returns a value that represents an attribute of a file

Kill Deletes a file

MkDir Creates a new directory

Name Renames a file or directory

RmDir Removes an empty directory

SetAttr Changes an attribute for a file

Chapter 11: Working with External Data and Files

407

11

 On Error Resume Next
 PathExists = (GetAttr(pname) And vbDirectory) = vbDirectory
End Function

The pname argument is a string that contains a directory (without a filename). The trailing
backslash in the pathname is optional. Here’s an example of calling the function:

MyFolder = "c:\users\john\desktop\downloads\"
MsgBox PathExists(MyFolder)

A VBA procedure to display a list of files in a directory
The following procedure displays (in the active worksheet) a list of files in a particular
directory, along with the file size and date:

Sub ListFiles()
 Dim Directory As String
 Dim r As Long
 Dim f As String
 Dim FileSize As Double
 Directory = "f:\excelfiles\budgeting\"
 r = 1
' Insert headers
 Cells(r, 1) = "FileName"
 Cells(r, 2) = "Size"
 Cells(r, 3) = "Date/Time"
 Range("A1:C1").Font.Bold = True
' Get first file
 f = Dir(Directory, vbReadOnly + vbHidden + vbSystem)
 Do While f <> ""
 r = r + 1
 Cells(r, 1) = f
 'Adjust for filesize > 2 gigabytes
 FileSize = FileLen(Directory & f)
 If FileSize < 0 Then FileSize = FileSize + 4294967296#
 Cells(r, 2) = FileSize

 Cells(r, 3) = FileDateTime(Directory & f)
 ' Get next file
 f = Dir()
 Loop
End Sub

oN the Web
The FileExists and PathExists functions are available on the book’s website in the file functions
.xlsm file.

Part II: Advanced VBA Techniques

408

Note that the procedure uses the Dir function twice. The first time (used with an argu-
ment), it retrieves the first matching filename found. Subsequent calls (without an argu-
ment) retrieve additional matching filenames. When no more files are found, the Dir
function returns an empty string.

The Dir function also accepts wildcard file specifications in its first argument. To get a list
of Excel files, for example, you could use a statement such as this:

f = Dir(Directory & "*.xl??", vbReadOnly + vbHidden + vbSystem)

This statement retrieves the name of the first *.xl?? file in the specified directory. The
wildcard specification returns a four-character extension that begins with XL. For exam-
ple, the extension could be .xlsx, .xltx, or .xlam. The second argument for the Dir
function lets you specify the attributes of the files (in terms of built-in constants). In this
example, the Dir function retrieves filenames that have no attributes, read-only files,
hidden files, and system files.

To also retrieve Excel files in earlier formats (for example, .xls and .xla files), use the
following wildcard specification:

.xl

Table 11.2 lists the built-in constants for the Dir function.

Note
The VBA FileLen function uses the Long data type. Consequently, it will return an incorrect size (a negative
number) for files larger than about 2GB. The code checks for a negative value from the FileLen function and
makes an adjustment if necessary.

oN the Web
The book’s website contains a version of this procedure that allows you to select a directory from a dialog box. The
filename is create file list.xlsm.

TABLE 11.2 File Attribute Constants for the Dir Function

Constant Value Description

vbNormal 0 Files with no attributes. This is the default setting and is always
in effect.

vbReadOnly 1 Read-only files.

vbHidden 2 Hidden files.

vbSystem 4 System files.

Chapter 11: Working with External Data and Files

409

11

A recursive VBA procedure to display a list of files in nested directories
The example in this section creates a list of files in a specified directory, including its sub-
directories. This procedure is unusual because it calls itself—a method known as recursion.

Public Sub RecursiveDir(ByVal CurrDir As String)

 Dim Dirs() As String
 Dim NumDirs As Long
 Dim FileName As String
 Dim PathAndName As String
 Dim i As Long
 Dim Filesize As Double

' Make sure path ends in backslash
 If Right(CurrDir, 1) <> "\" Then CurrDir = CurrDir & "\"

' Put column headings on active sheet
 Cells(1, 1) = "Path"
 Cells(1, 2) = "Filename"
 Cells(1, 3) = "Size"
 Cells(1, 4) = "Date/Time"
 Range("A1:D1").Font.Bold = True

' Get files
 On Error Resume Next
 FileName = Dir(CurrDir & "*.*", vbDirectory)
 Do While Len(FileName) <> 0
 If Left(FileName, 1) <> "." Then 'Current dir
 PathAndName = CurrDir & FileName
 If (GetAttr(PathAndName) And vbDirectory) = vbDirectory Then
 'store found directories
 ReDim Preserve Dirs(0 To NumDirs) As String
 Dirs(NumDirs) = PathAndName

CautioN
If you use the Dir function to loop through files and call another procedure to process the files, make sure that the
other procedure doesn’t use the Dir function. Only one “set” of Dir calls can be active at any time.

Constant Value Description

vbVolume 8 Volume label. If any other attribute is specified, this attribute
is ignored.

vbDirectory 16 Directories. This attribute doesn’t work. Calling the Dir function with
the vbDirectory attribute doesn’t continually return subdirectories.

Part II: Advanced VBA Techniques

410

 NumDirs = NumDirs + 1
 Else
 'Write the path and file to the sheet
 Cells(WorksheetFunction.CountA(Range("A:A")) + 1, 1) = CurrDir
 Cells(WorksheetFunction.CountA(Range("B:B")) + 1, 2) = FileName
 'adjust for filesize > 2 gigabytes
 Filesize = FileLen(PathAndName)
 If Filesize < 0 Then Filesize = Filesize + 4294967296#
 Cells(WorksheetFunction.CountA(Range("C:C")) + 1, 3) = Filesize
 Cells(WorksheetFunction.CountA(Range("D:D")) + 1, 4) = _
 FileDateTime(PathAndName)
 End If
 End If
 FileName = Dir()
 Loop
 ' Process the found directories, recursively
 For i = 0 To NumDirs 1
 RecursiveDir Dirs(i)
 Next i
End Sub

The procedure takes one argument, CurrDir, which is the directory being examined.
Information for each file is displayed in the active worksheet. As the procedure loops
through the files, it stores the subdirectory names in an array named Dirs. When no more
files are found, the procedure calls itself using an entry in the Dirs array for its argument.
When all directories in the Dirs array have been processed, the procedure ends.

Because the RecursiveDir procedure uses an argument, it must be executed from another
procedure by using a statement like this:

Call RecursiveDir("c:\directory\")

Using the FileSystemObject object
The FileSystemObject object is a member of Windows Scripting Host and provides access
to a computer’s file system. This object is often used in script-oriented web pages (for
example, VBScript and JavaScript) and can be used with Excel 2000 and later versions.

oN the Web
The book’s website contains a version of this procedure that allows you to select a directory from a dialog box. The
filename is recursive file list.xlsm.

Chapter 11: Working with External Data and Files

411

11

The name FileSystemObject is a bit misleading because it includes a number of objects,
each designed for a specific purpose.

Drive: A drive or a collection of drives

File: A file or a collection of files

Folder: A folder or a collection of folders

TextStream: A stream of text that is read from, written to, or appended to a text file

The first step in using the FileSystemObject object is to create an instance of the
object. You can perform this task in two ways: early binding or late binding.

The late binding method uses two statements like this:

Dim FileSys As Object
 Set FileSys = CreateObject("Scripting.FileSystemObject")

Note that the FileSys object variable is declared as a generic Object rather than as an
actual object type. The object type is resolved at run-time.

The early binding method of creating the object requires that you set up a reference to Win-
dows Script Host Object Model. You do this by using Tools ➪ References in VBE. After you’ve
established the reference, create the object by using statements like these:

Dim FileSys As FileSystemObject
Set FileSys = CreateObject("Scripting.FileSystemObject")

Using the early binding method enables you to take advantage of the VBE Auto List Mem-
bers feature to help you identify properties and methods as you type. In addition, you can
use Object Browser (by pressing F2) to learn more about the object model.

The examples that follow demonstrate various tasks using the FileSystemObject object.

Using FileSystemObject to determine whether a file exists
The Function procedure that follows accepts one argument (the path and filename) and
returns True if the file exists:

Function FileExists3(fname) As Boolean
 Dim FileSys As Object 'FileSystemObject
 Set FileSys = CreateObject("Scripting.FileSystemObject")
 FileExists3 = FileSys.FileExists(fname)
End Function

CautioN
Windows Scripting Host can potentially be used to spread computer viruses and other malware, so it may be disabled
on some systems. In addition, some antivirus software products have been known to interfere with Windows Scripting
Host. Therefore, use caution if you’re designing an application that will be used on many different systems.

Part II: Advanced VBA Techniques

412

The function creates a new FileSystemObject object named FileSys and then accesses
the FileExists property for that object.

Using FileSystemObject to determine whether a path exists
The Function procedure that follows accepts one argument (the path) and returns True if
the path exists:

Function PathExists2(path) As Boolean
 Dim FileSys As Object 'FileSystemObject
 Set FileSys = CreateObject("Scripting.FileSystemObject")
 PathExists2 = FileSys.FolderExists(path)
End Function

Using FileSystemObject to list information about all available disk drives
The example in this section uses FileSystemObject to retrieve and display information
about all disk drives. The procedure loops through the Drives collection and writes var-
ious property values to a worksheet.

Sub ShowDriveInfo()
 Dim FileSys As FileSystemObject
 Dim Drv As Drive
 Dim Row As Long
 Set FileSys = CreateObject("Scripting.FileSystemObject")
 Cells.ClearContents
 Row = 1
' Column headers
 Range("A1:F1") = Array("Drive", "Ready", "Type", "Vol. Name", _
 "Size", "Available")
 On Error Resume Next
' Loop through the drives
 For Each Drv In FileSys.Drives
 Row = Row + 1
 Cells(Row, 1) = Drv.DriveLetter
 Cells(Row, 2) = Drv.IsReady
 Select Case Drv.DriveType
 Case 0: Cells(Row, 3) = "Unknown"
 Case 1: Cells(Row, 3) = "Removable"
 Case 2: Cells(Row, 3) = "Fixed"
 Case 3: Cells(Row, 3) = "Network"
 Case 4: Cells(Row, 3) = "CDROM"
 Case 5: Cells(Row, 3) = "RAM Disk"
 End Select

oN the Web
This workbook, named show drive info.xlsm, is available on the book’s website.

Chapter 11: Working with External Data and Files

413

11

 Cells(Row, 4) = Drv.VolumeName
 Cells(Row, 5) = Drv.TotalSize
 Cells(Row, 6) = Drv.AvailableSpace
 Next Drv
 'Make a table
 ActiveSheet.ListObjects.Add xlSrcRange, _
 Range("A1").CurrentRegion, , xlYes
End Sub

Zipping and Unzipping Files
Perhaps the most commonly used type of file compression is the zip format. Even Excel 2007
(and later) files are stored in the zip format (although they don’t use the .zip extension).
A zip file can contain any number of files and even complete directory structures. The con-
tent of the files determines the degree of compression. For example, JPG image files and
MP3 audio files are already compressed, so zipping these file types has little effect on the
file size. Text files, on the other hand, usually shrink quite a bit when compressed.

Zipping files
The example in this section demonstrates how to create a zip file from a group of user-
selected files. The ZipFiles procedure displays a dialog box so that the user can select the
files. It then creates a zip file named compressed.zip in Excel’s default directory.

Sub ZipFiles()
 Dim ShellApp As Object
 Dim FileNameZip As Variant
 Dim FileNames As Variant
 Dim i As Long, FileCount As Long

' Get the file names
 FileNames = Application.GetOpenFilename _
 (FileFilter:="All Files (*.*),*.*", _
 FilterIndex:=1, _
 Title:="Select the files to ZIP", _
 MultiSelect:=True)

 Chapter 7, “VBA Programming Examples and Techniques,” describes another method of getting drive
information by using Windows API functions.

oN the Web
The examples in this section are available on the book’s website in files named zip files.xlsm and unzip a
file.xlsm.

Part II: Advanced VBA Techniques

414

' Exit if dialog box canceled
 If Not IsArray(FileNames) Then Exit Sub

 FileCount = UBound(FileNames)
 FileNameZip = Application.DefaultFilePath & "\compressed.zip"

 'Create empty Zip File with zip header
 Open FileNameZip For Output As #1
 Print #1, Chr$(80) & Chr$(75) & Chr$(5) & Chr$(6) & String(18, 0)
 Close #1

 Set ShellApp = CreateObject("Shell.Application")
 'Copy the files to the compressed folder

 For i = LBound(FileNames) To UBound(FileNames)
 DoEvents
 ShellApp.Namespace(FileNameZip).CopyHere FileNames(i)

 'Keep script waiting until Compressing is done
 On Error Resume Next
 Do Until ShellApp.Namespace(FileNameZip).items.Count = i
 DoEvents
 Application.Wait (Now + TimeValue("0:00:01"))
 Loop
 Application.StatusBar = "File " & i & " of " & UBound(FileNames)
 Next i

 If MsgBox(FileCount & " files were zipped to:" & _
 vbNewLine & FileNameZip & vbNewLine & vbNewLine & _
 "View the zip file?", vbQuestion + vbYesNo) = vbYes Then _
 Shell "Explorer.exe /e," & FileNameZip, vbNormalFocus
End Sub

The ZipFiles procedure creates a file named compressed.zip and writes a string of
characters, which identify it as a zip file. Next, a Shell.Application object is created,
and the code uses its CopyHere method to copy the files to the zip archive. The next sec-
tion of the code is a Do Until loop, which checks the number of files in the zip archive
every second. This step is necessary because copying the files could take some time, and
if the procedure ends before the files are copied, the zip file will be incomplete (and prob-
ably corrupt).

When the number of files in the zip archive matches the number that should be there, the
loop ends, and users are presented with a message box asking if they want to see the files.
Clicking the Yes button opens a Windows Explorer window that shows the zipped files.

Chapter 11: Working with External Data and Files

415

11

Unzipping a file
The example in this section performs the opposite function of the preceding example. It
asks the user for a ZIP filename and then unzips the files and puts them in a directory
named Unzipped, located in Excel’s default file directory.

Sub UnzipAFile()
 Dim ShellApp As Object
 Dim TargetFile
 Dim ZipFolder

' Target file & temp dir
 TargetFile = Application.GetOpenFilename _
 (FileFilter:="Zip Files (*.zip), *.zip")
 If TargetFile = False Then Exit Sub

 ZipFolder = Application.DefaultFilePath & "\Unzipped\"

' Create a temp folder
 On Error Resume Next
 RmDir ZipFolder
 MkDir ZipFolder
 On Error GoTo 0

' Copy the zipped files to the newly created folder
 Set ShellApp = CreateObject("Shell.Application")
 ShellApp.Namespace(ZipFolder).CopyHere _
 ShellApp.Namespace(TargetFile).items

 If MsgBox("The file was unzipped to:" & _
 vbNewLine & ZipFolder & vbNewLine & vbNewLine & _
 "View the folder?", vbQuestion + vbYesNo) = vbYes Then _
 Shell "Explorer.exe /e," & ZipFolder, vbNormalFocus
End Sub

The UnzipAFile procedure uses the GetOpenFilename method to get the zip file. It
then creates the new folder and uses the Shell.Application object to copy the contents
of the zip file to the new folder. Finally, the user can choose to display the new directory.

CautioN
The ZipFiles procedure presented here was kept simple to make it easy to understand. The code does no error
checking and is not flexible. For example, there is no option to choose the zip filename or location, and the current
compressed.zip file is always overwritten without warning. It’s certainly no replacement for the zipping tools
built into Windows, but it’s an interesting demonstration of what you can do with VBA.

Part III

Working with UserForms

IN THIS PART
Chapter 12
Leveraging Custom Dialog Boxes

Chapter 13
Introducing UserForms

Chapter 14
Looking at UserForm Examples

Chapter 15
Implementing Advanced UserForm Techniques

Excel® 2019 Power Programming with VBA, First Edition. Michael Alexander and Dick Kusleika.
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.

419

CHAP T ER

12
Leveraging Custom Dialog Boxes

IN THIS CHAPTER
Using an input box to get user input

Using a message box to display messages or to get a simple response

Selecting a file from a dialog box

Selecting a directory

Displaying Excel’s built-in dialog boxes

Alternatives to UserForms
Dialog boxes are a key user interface element in many Windows programs. Virtually every Windows
program uses them, and most users have a good understanding of how they work. UserForms are
one way for Excel developers to create custom dialog boxes. However, VBA provides alternative
methods to display built-in dialog boxes with minimal programming required.

Before we get into creating UserForms (beginning with Chapter 13, “Introducing UserForms”), you
might find it helpful to understand some of Excel’s built-in tools that display dialog boxes. The sec-
tions that follow describe various dialog boxes that you can display using VBA without creating a
UserForm.

Using an Input Box
An input box is a simple dialog box that allows the user to make a single entry. For example, you
can use an input box to let the user enter text or a number or even select a range. You can gener-
ate an input box in two ways: by using the VBA InputBox function and by using the InputBox
method of the Application object. We explain each method in the sections that follow.

Using the VBA InputBox function
The syntax for VBA’s InputBox function is as follows:

InputBox(prompt[,title][,default][,xpos][,ypos][,helpfile, context])

Excel® 2019 Power Programming with VBA, First Edition. Michael Alexander and Dick Kusleika.
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.

420

Part III: Working with UserForms

 ■ Prompt: Required. The text displayed in the input box.
 ■ Title: Optional. The caption displayed in the title bar of the input box. If you

omit it, “Microsoft Excel” is displayed.
 ■ Default: Optional. The default value to be displayed in the input box.
 ■ XPos, YPos: Optional. The screen coordinates of the upper-left corner of the

input box.
 ■ HelpFile, Context: Optional. The help file and help topic.

The InputBox function prompts the user for a single piece of information. The function
always returns a String, so your code may need to convert the results to a value, if that’s
what your procedure expects.

The prompt tells the user what to enter in the entry field. It can be up to 1,024 characters
long, but generally a shorter prompt is more user-friendly. In addition to the prompt, you
can provide a title for the dialog box. The title should tell the user the purpose of the
dialog box, and the prompt should tell the user how to use the dialog box. If you provide
a default value, the dialog box will display with that value, and that can help speed data
entry. You can specify the dialog box’s display position on the screen and a custom help
topic, although these are lesser-used parameters. If you include the help parameters, the
input box displays a Help button.

The following example, which generates the dialog box shown in Figure 12.1, uses the VBA
InputBox function to ask the user for his or her full name. The code then extracts the
first name and displays a greeting in a message box.

[c12Sub GetName()
 Dim UserName As String
 Dim FirstSpace As Long
 Do Until Len(UserName) > 0
 UserName = InputBox("Enter your full name: ", _
 "Identify Yourself")
 Loop
 FirstSpace = InStr(UserName, Space(1))
 If FirstSpace > 0 Then
 UserName = Left$(UserName, FirstSpace - 1)
 End If
 MsgBox "Hello " & UserName
End Sub

FIGURE 12.1

The VBA InputBox function at work

421

Chapter 12: Leveraging Custom Dialog Boxes

12

Note that this InputBox function is written in a Do Until loop to ensure that something
is entered when the input box appears. If the user clicks Cancel or doesn’t enter any text,
UserName contains an empty string, and the input box reappears. The procedure then
attempts to extract the first name by searching for the first space character (by using the
InStr function) and then using the Left function to extract all characters before the first
space. If a space character isn’t found, the entire name is used as entered.

The following code shows the same procedure with two changes. First, the UserName prop-
erty of the Application object is supplied as the default value to the dialog box. If the
name with which the user has signed into Office is correct, they only have to click OK and
don’t have to enter anything. If not, they can change the default property to whatever they
want. Next, the Split function is used to split the text into an array wherever there is a
space. Then the first array element (the (0) in the code) is returned. If the user enters Joe
Smith, Joe is the first element of the array, and Smith is the second.

Sub GetNameSplit()
 Dim UserName As String
 Do Until Len(UserName) > 0
 UserName = InputBox("Enter your full name: ", _
 "Identify Yourself", Application.UserName)
 Loop
 MsgBox "Hello " & Split(UserName, Space(1))(0)
End Sub

If the user enters a name with no space, the array created by Split will have only one
element. The code will still work because it uses the first element. If you wanted to use a
different element, you would have to make sure that it existed first. Using Split isn’t nec-
essarily a better way than InStr to split up a name, just a different one.

The following is another example of the VBA InputBox function, with the result shown in
Figure 12.2. The user is asked to fill in the missing word. This example also illustrates the
use of named arguments. The prompt text is retrieved from a worksheet cell and is assigned
to a variable (Prompt).

[c12Sub GetWord()
 Dim TheWord As String
 Dim Prompt As String
 Dim Title As String
 Prompt = Range("A1").Value
 Title = "What's the missing word?"
 TheWord = InputBox(Prompt:=Prompt, Title:=Title)
 If UCase(TheWord) = "BATTLEFIELD" Then
 MsgBox "Correct."
 Else
 MsgBox "That is incorrect."
 End If
End Sub

422

Part III: Working with UserForms

FIGURE 12.2

Using the VBA InputBox function with a long prompt

As we mentioned, the InputBox function always returns a string. If the string returned by
the InputBox function looks like a number, you can convert it to a value by using the VBA
Val function or just perform a mathematical operation on the string.

The following code uses the InputBox function to prompt for a numeric value. It uses the
built-in IsNumeric function to determine whether the string can be interpreted as a
number. If so, it displays the user’s input multiplied by 12.

Sub GetValue()
 Dim Monthly As String
 Monthly = InputBox("Enter your monthly salary:")
 If Len(Monthly) > 0 And IsNumeric(Monthly) Then
 MsgBox "Annualized: " & Monthly * 12
 Else
 MsgBox "Invalid input"
 End If
End Sub

Using the Application.InputBox method
Using Excel’s InputBox method rather than the VBA InputBox function offers three
advantages.

 ■ You can specify the data type returned. (It doesn’t have to be a String.)

On the Web
The four examples in this section are available on the book’s website in the InputBox Function.xlsm file.

423

Chapter 12: Leveraging Custom Dialog Boxes

12

 ■ The user can specify a worksheet range by dragging in the worksheet.
 ■ Input validation is performed automatically.

The syntax for the InputBox method is as follows:

InputBox(Prompt [,Title][,Default][,Left][,Top][,HelpFile,
HelpContextID][,Type])

 ■ Prompt: Required. The text displayed in the input box.
 ■ Title: Optional. The caption in the title bar of the input box. If you omit it,

“Microsoft Excel” is displayed.
 ■ Default: Optional. The value that is prefilled in the input box.
 ■ Left, Top: Optional. The screen coordinates of the upper-left corner of the

window.
 ■ HelpFile, HelpContextID: Optional. The help file and help topic.
 ■ Type: Optional. A code for the data type returned, as listed in Table 12.1.

The Left, Top, HelpFile, and HelpContextID arguments are no longer supported. You can specify these
arguments, but they have no effect.

TABLE 12.1 Codes to Determine the Data Type Returned by Excel’s
InputBox Method

Code Meaning

0 A formula

1 A number

2 A string (text)

4 A logical value (True or False)

8 A cell reference, as a range object

16 An error value, such as #N/A

64 An array of values

The InputBox method is versatile. To allow more than one data type to be returned, use
the sum of the pertinent codes. For example, to display an input box that can accept text
or numbers, set type equal to 3 (that is, 1 + 2, or number plus text). If you use 8 for the
type argument, the user can enter a cell or range address (or a named cell or range) manu-
ally or point to a range in the worksheet.

The EraseRange procedure, which follows, uses the InputBox method to allow the user to
select a range to erase (see Figure 12.3). The user can either type the range address manu-
ally or use the mouse to select the range in the sheet.

424

Part III: Working with UserForms

FIGURE 12.3

Using the InputBox method to specify a range

The InputBox method with a Type argument of 8 returns a Range object (note the Set
keyword). This range is then erased (by using the ClearContents method). The default
value displayed in the input box is the current selection’s address. If the user clicks Cancel
instead of selecting a range, the InputBox method returns the Boolean value False. A
Boolean value can’t be assigned to a range, so On Error Resume Next is used to ignore
the error. Finally, the contents are cleared, and the range is selected only if a range was
entered; that is, the UserRange variable isn’t Nothing.

Sub EraseRange()
 Dim UserRange As Range
 On Error Resume Next
 Set UserRange = Application.InputBox _
 (Prompt:="Select the range to erase:", _
 Title:="Range Erase", _
 Default:=Selection.Address, _
 Type:=8)
 On Error GoTo 0
 If Not UserRange Is Nothing Then
 UserRange.ClearContents
 UserRange.Select
 End If
End Sub

425

Chapter 12: Leveraging Custom Dialog Boxes

12

Yet another advantage of using the InputBox method is that Excel performs input valida-
tion automatically. If you enter something other than a range address in the GetRange
example, Excel displays a message and lets the user try again (see Figure 12.4).

FIGURE 12.4

Excel’s InputBox method performs validation automatically

The following code is similar to the GetValue procedure in the preceding section, but this
procedure uses the Inputbox method rather than the InputBox function. Although the
type argument is set to 1 (a numeric value), the Monthly variable is declared as a variant.
That way, the Monthly variable can hold False without causing an error if the user clicks
Cancel. If the user makes a non-numeric entry, Excel displays a message and lets the user
try again (see Figure 12.5).

Sub GetValue2()
 Dim Monthly As Variant
 Monthly = Application.InputBox _
 (Prompt:="Enter your monthly salary:", _
 Type:=1)
 If Monthly <> False Then
 MsgBox "Annualized: " & Monthly * 12
 End If
End Sub

FIGURE 12.5

Another example of validating an entry in Excel’s InputBox

426

Part III: Working with UserForms

Note in Figure 12.5 that the user prefixed the number with USD for U.S. dollars. Excel doesn’t recognize that as a
number and correctly reported that it’s not valid. However, because USD1024 is a valid range reference, that range is
selected. Excel attempts to process the entry before it validates it against the Type argument.

Using the VBA MsgBox Function
VBA’s MsgBox function is an easy way to display a message to the user or to get a simple
response (such as OK or Cancel). We use the MsgBox function in many of the examples in
this book as a way to display a variable’s value.

Keep in mind that MsgBox is a function, and your code stops running until the message
box is dismissed by the user.

When a message box is displayed, you can press Ctrl+C to copy the contents of the message box to the Windows
Clipboard.

The syntax for MsgBox is as follows:

MsgBox(prompt[,buttons][,title][,helpfile, context])

 ■ Prompt: Required. The text displayed in the message box.
 ■ Buttons: Optional. A numeric expression that determines which buttons and icon

are displayed in the message box (see Table 12.2).
 ■ Title: Optional. The caption in the message box window. If you omit it, “Microsoft

Excel” is displayed.
 ■ HelpFile, Context: Optional. The help file and help topic.

You can easily customize your message boxes because of the flexibility of the buttons
argument. (Table 12.2 lists some of the constants that you can use for this argument.) You
can specify which buttons to display, whether an icon appears, and which button is the
default.

On the Web
The two examples in this section are available on the book’s website in a file named Inputbox Method.xlsm.

427

Chapter 12: Leveraging Custom Dialog Boxes

12

TABLE 12.2 Constants Used for Buttons in the MsgBox Function

Constant Value Description

vbOKOnly 0 Display only an OK button.

vbOKCancel 1 Display OK and Cancel buttons.

vbAbortRetryIgnore 2 Display Abort, Retry, and Ignore buttons.

vbYesNoCancel 3 Display Yes, No, and Cancel buttons.

vbYesNo 4 Display Yes and No buttons.

vbRetryCancel 5 Display Retry and Cancel buttons.

vbCritical 16 Display Critical Message icon.

vbQuestion 32 Display Warning Query icon.

vbExclamation 48 Display Warning Message icon.

vbInformation 64 Display Information Message icon.

vbDefaultButton1 0 First button is default.

vbDefaultButton2 256 Second button is default.

vbDefaultButton3 512 Third button is default.

vbDefaultButton4 768 Fourth button is default.

vbSystemModal 4096 All applications are suspended until the user responds to
the message box (might not work under all conditions).

vbMsgBoxHelpButton 16384 Display a Help button. To display help when this button is
clicked, use the helpfile and context arguments.

You can use the MsgBox function by itself (simply to display a message) or assign its result to
a variable. The MsgBox function returns a value representing the button clicked by the user.
The following example displays a message and an OK button, but it doesn’t return a result:

Sub MsgBoxDemo()
 MsgBox "Macro finished with no errors."
End Sub

Note that the single argument is not enclosed in parentheses because the MsgBox result is
not assigned to a variable.

To get a response from a message box, you can assign the results of the MsgBox function
to a variable. In this situation, the arguments must be in parentheses. The following code
uses some built-in constants (described in Table 12.3) to make it easier to work with the
values returned by MsgBox:

Sub GetAnswer()
 Dim Ans As Long

428

Part III: Working with UserForms

 Ans = MsgBox("Continue?", vbYesNo)
 Select Case Ans
 Case vbYes
' ...[code if Ans is Yes]...
 Case vbNo
' ...[code if Ans is No]...
 End Select
End Sub

TABLE 12.3 Constants Used for MsgBox Return Value

Constant Value Button Clicked

vbOK 1 OK

vbCancel 2 Cancel

vbAbort 3 Abort

vbRetry 4 Retry

vbIgnore 5 Ignore

vbYes 6 Yes

vbNo 7 No

The variable returned by the MsgBox function is a Long data type. Actually, you don’t
even need to use a variable to use the result of a message box. The following procedure is
another way of coding the GetAnswer procedure:

Sub GetAnswer2()
 If MsgBox("Continue?", vbYesNo) = vbYes Then
' ...[code if Ans is Yes]...
 Else
' ...[code if Ans is No]...
 End If
End Sub

The following function example uses a combination of constants to display a message box
with a Yes button, a No button, and a question mark icon; the second button is designated
as the default button (see Figure 12.6). For simplicity, I assigned these constants to the
Config variable.

Private Function ContinueProcedure() As Boolean
 Dim Config As Long
 Dim Ans As Long
 Config = vbYesNo + vbQuestion + vbDefaultButton2
 Ans = MsgBox("An error occurred. Continue?", Config)
 ContinueProcedure = Ans = vbYes
End Function

429

Chapter 12: Leveraging Custom Dialog Boxes

12

FIGURE 12.6

The button argument of the MsgBox function determines which buttons appear.

You can call the ContinueProcedure function from another procedure. For example, the
following statement calls the ContinueProcedure function (which displays the mes-
sage box). If the function returns False (that is, the user selects No), the procedure ends.
Otherwise, the next statement is executed.

If Not ContinueProcedure() Then Exit Sub

The width of the message box depends on your video resolution. Figure 12.7 shows a mes-
sage box displaying lengthy text with no forced line breaks.

FIGURE 12.7

Displaying lengthy text in a message box

If you’d like to force a line break in the message, use the vbNewLine constant in the text.
The following example displays the message in three lines:

Sub MultiLine()
 Dim Msg As String
 Msg = "This is the first line." & vbNewLine & vbNewLine
 Msg = Msg & "This is the second line." & vbNewLine

430

Part III: Working with UserForms

 Msg = Msg & "And this is the last line."
 MsgBox Msg
End Sub

You can also insert a tab character by using the vbTab constant. The following procedure
uses a message box to display the values in a 12 × 3 range of cells in A1:C12 (see Figure
12.8). It separates the columns by using a vbTab constant and inserts a new line by using
the vbNewLine constant. The MsgBox function accepts a maximum string length of 1,023
characters, which will limit the number of cells that you can display. Also, note that the
tab stops are fixed, so if a cell contains more than 11 characters, the columns won’t be
aligned.

Sub ShowRange()
 Dim Msg As String
 Dim r As Long, c As Long
 Msg = ""
 For r = 1 To 12
 For c = 1 To 3
 Msg = Msg & Cells(r, c).Text
 If c <> 3 Then Msg = Msg & vbTab
 Next c
 Msg = Msg & vbNewLine
 Next r
 MsgBox Msg
End Sub

FIGURE 12.8

This message box displays text with tabs and line breaks.

431

Chapter 12: Leveraging Custom Dialog Boxes

12

 Chapter 14, “Looking at UserForm Examples,” includes a UserForm example that emulates the
MsgBox function.

Using the Excel GetOpenFilename Method
If your application needs to ask the user for a filename, you can use the InputBox func-
tion. But this approach is tedious and error-prone because the user must type (or paste) the
filename (with no browsing capability). A better approach is to use the Application
.GetOpenFilename method, which ensures that your application gets a valid filename
(as well as its complete path).

This method displays the normal Open dialog box, but it does not actually open the selected
file. Rather, the method returns a string that contains the filename and path selected by
the user. Then you can write code to do whatever you want with the filename.

The syntax for the GetOpenFilename method is as follows:

Application.GetOpenFilename(FileFilter, FilterIndex, Title,
ButtonText, MultiSelect)

 ■ FileFilter: Optional. A string that limits what types of files are shown in the
Open dialog.

 ■ FilterIndex: Optional. The index number of the default file-filtering criteria.
 ■ Title: Optional. The title of the dialog box. If omitted, the title is Open.
 ■ ButtonText: For Macintosh only.
 ■ MultiSelect: Optional. If True, you can select multiple files. The default value is
False.

The FileFilter argument determines what file types appear in the dialog box’s Files of
Type drop-down list. The argument consists of pairs of file filter strings followed by the
wildcard file filter specification, with each part and each pair separated by commas. If
omitted, this argument defaults to the following:

"All Files (*.*),*.*"

Note that the first part of this string (All Files (*.*)) is the text displayed in the Files
of Type drop-down list. The second part (*.*) determines which files are displayed.

The following instruction assigns a string to a variable named Filt. You can then use this
string as a FileFilter argument for the GetOpenFilename method. In this case, the
dialog box will allow the user to select from four file types (plus an All Files option). Note

On the Web
Examples from this section are available on the book’s website in a file named MsgBox Function.xlsm.

432

Part III: Working with UserForms

that we used the VBA line continuation sequence to set up the Filt variable; doing so
makes it much easier to work with this rather complicated argument.

Filt = "Text Files (*.txt),*.txt," & _
 "Lotus Files (*.prn),*.prn," & _
 "Comma Separated Files (*.csv),*.csv," & _
 "ASCII Files (*.asc),*.asc," & _
 "All Files (*.*),*.*"

The FilterIndex argument specifies which FileFilter is the default, and the Title
argument is text that is displayed in the title bar. If the MultiSelect argument is True,
the user can select multiple files, all of which are returned in an array.

The following example prompts the user for a filename. It defines five file filters.

Sub GetImportFileName()
 Dim Filt As String
 Dim FilterIndex As Long
 Dim Title As String
 Dim FileName As Variant

' Set up list of file filters
 Filt = "Text Files (*.txt),*.txt," & _
 "Lotus Files (*.prn),*.prn," & _
 "Comma Separated Files (*.csv),*.csv," & _
 "ASCII Files (*.asc),*.asc," & _
 "All Files (*.*),*.*"

' Display *.* by default
 FilterIndex = 5

' Set the dialog box caption
 Title = "Select a File to Import"

' Get the file name
 FileName = Application.GetOpenFilename _
 (FileFilter:=Filt, _
 FilterIndex:=FilterIndex, _
 Title:=Title)

' Exit if dialog box canceled
 If FileName <> False Then
 ' Display full path and name of the file
 MsgBox "You selected " & FileName
 Else
 MsgBox "No file was selected."
 End If
End Sub

433

Chapter 12: Leveraging Custom Dialog Boxes

12

Figure 12.9 shows the dialog box that appears when this procedure is executed and the user
selects the Text Files filter.

FIGURE 12.9

The GetOpenFilename method displays a dialog box used to specify a file.

The following example is similar to the preceding one. The difference is that the user can
press Ctrl or Shift and select multiple files when the dialog box is displayed. The code
checks for the Cancel button click by determining whether FileName is an array. If the
user doesn’t click Cancel, the result is an array that consists of at least one element. In this
example, a list of the selected files is displayed in a message box.

Sub GetImportFileName2()
 Dim Filt As String
 Dim FilterIndex As Long
 Dim FileName As Variant
 Dim Title As String
 Dim Msg As String
' Set up list of file filters
 Filt = "Text Files (*.txt),*.txt," & _
 "Lotus Files (*.prn),*.prn," & _
 "Comma Separated Files (*.csv),*.csv," & _
 "ASCII Files (*.asc),*.asc," & _
 "All Files (*.*),*.*"

434

Part III: Working with UserForms

' Display *.* by default
 FilterIndex = 5

' Set the dialog box caption
 Title = "Select a File to Import"

' Get the file name
 FileName = Application.GetOpenFilename _
 (FileFilter:=Filt, _
 FilterIndex:=FilterIndex, _
 Title:=Title, _
 MultiSelect:=True)

 If IsArray(FileName) Then
 ' Display full path and name of the files
 Msg = Join(FileName, vbNewLine)
 MsgBox "You selected:" & vbNewLine & Msg
 Else
 ' Exit if dialog box canceled
 MsgBox "No file was selected."
 End If
End Sub

When MultiSelect is True, the FileName variable will be an array, even if only one file
was selected.

Using the Excel GetSaveAsFilename Method
The GetSaveAsFilename method displays a Save As dialog box and lets the user
select (or specify) a location and filename as if the user were saving a file. Like the
GetOpenFilename method, the GetSaveAsFilename method returns a filename and
path but doesn’t take any action.

The syntax for this method is as follows:

Application.GetSaveAsFilename(InitialFilename, FileFilter,
FilterIndex, Title, ButtonText)

The arguments are as follows:

 ■ InitialFilename: Optional. A string that is prefilled in the File name box.
 ■ FileFilter: Optional. A string that determines what shows in the Save as type

dropdown.

On the Web
The two examples in this section are available on the book’s website in the Prompt for File.xlsm file.

435

Chapter 12: Leveraging Custom Dialog Boxes

12

 ■ FilterIndex: Optional. The index number of the default file-filtering criteria.
 ■ Title: Optional. The title of the dialog box.
 ■ ButtonText: For Macintosh only.

Prompting for a Folder
If you need to get a filename, the simplest solution is to use the GetOpenFileName
method, as we described earlier. But if you need to get a folder name only (no file), you can
use Excel’s FileDialog object.

The following procedure displays a dialog box that allows the user to select a folder. The
selected folder name (or Canceled) is then displayed by using the MsgBox function.

Sub GetAFolder ()
 With Application.FileDialog(msoFileDialogFolderPicker)
 .InitialFileName = Application.DefaultFilePath & "\"
 .Title = "Select a location for the backup"
 .Show
 If .SelectedItems.Count = 0 Then
 MsgBox "Canceled"
 Else
 MsgBox .SelectedItems(1)
 End If
 End With
End Sub

The FileDialog object lets you specify the starting folder by providing a value for the
InitialFileName property. In this example, the code uses Excel’s default file path as the
starting folder.

Displaying Excel’s Built-in Dialog Boxes
Code that you write in VBA can execute many Excel Ribbon commands. And, if the com-
mand normally leads to a dialog box, your code can “make choices” in the dialog box
(although the dialog box itself isn’t displayed). For example, the following VBA statement is
equivalent to choosing the Home ➪ Editing ➪ Find & Select ➪ Go To command, specifying
the range A1:C3, and clicking OK:

Application.Goto Reference:=Range("A1:C3")

But when you execute this statement, the Go To dialog box never appears (which is almost
always what you want).

In some cases, however, you may want to display one of Excel’s built-in dialog boxes so
that the user can make the choices. You can do so by writing code that executes a Ribbon
command.

436

Part III: Working with UserForms

Using the Dialogs collection of the Application object is another way to display an Excel dialog box. However,
Microsoft has not kept this feature up-to-date, so we don’t even discuss it. The method we describe in this section is
a much better solution.

In early versions of Excel, programmers created custom menus and toolbars by using the
CommandBar object. In Excel 2007 and newer versions, the CommandBar object is still
available, but it doesn’t work like it has in the past.

The CommandBar object has also been enhanced, beginning with Excel 2007. You can use
the CommandBar object to execute Ribbon commands using VBA. Many of the Ribbon com-
mands display a dialog box. For example, the following statement displays the Unhide dia-
log box (see Figure 12.10):

Application.CommandBars.ExecuteMso "SheetUnhide"

FIGURE 12.10

This dialog box was displayed with a VBA statement.

Keep in mind that your code cannot get any information about the user’s action. For exam-
ple, when this statement is executed, there is no way to know which sheet was selected or
whether the user clicked the Cancel button. And, of course, code that executes a Ribbon
command is not compatible with versions prior to Excel 2007.

The ExecuteMso method accepts one argument: an idMso parameter, which represents a
Ribbon control. Unfortunately, these parameters aren’t listed in the Help system.

If you try to display a built-in dialog box in an incorrect context, Excel displays an error
message. For example, here’s a statement that displays the Format Number dialog box:

Application.CommandBars.ExecuteMso "NumberFormatsDialog"

If you execute this statement when it’s not appropriate (for example, when a shape is
selected), Excel displays an error message because that dialog box is appropriate only for
worksheet cells.

437

Chapter 12: Leveraging Custom Dialog Boxes

12

Excel has thousands of commands. How can you find the name of the one you need? One
way is to use the Customize Ribbon tab of the Excel Options dialog box (right-click any
Ribbon control and choose Customize the Ribbon from the shortcut menu). Virtually every
command available in Excel is listed in the left panel. Find the command you need, hover
your mouse cursor over it, and you’ll see its command name in parentheses in the tooltip.
Figure 12.11 shows how to find the idMso command in order to display the Define Name
dialog box.

FIGURE 12.11

Using the Customize Ribbon panel to identify a command name

Here’s the command to display the Define Name dialog box:

Application.CommandBars.ExecuteMso "NameDefine"

438

Part III: Working with UserForms

Executing An Old Menu Item Directly
You can display a built-in dialog box by using the ExecuteMso method. Another way to display a built-in
dialog box requires knowledge of the pre–Excel 2007 toolbars, which are officially known as CommandBar
objects. Although Excel no longer uses CommandBar objects, they’re still supported for compatibility.

The following statement, for example, is equivalent to selecting the Format ➪ Sheet ➪ Unhide com-
mand in the Excel 2003 menu:

Application.CommandBars("Worksheet Menu Bar"). _
 Controls("Format").Controls("Sheet"). _
 Controls("Unhide...").Execute

When executed, this statement displays the Unhide dialog box. Note that the menu item captions
must match exactly (including the three dots following Unhide).

Here’s another example. This statement displays the Format Cells dialog box:

Application.CommandBars("Worksheet Menu Bar"). _
 Controls("Format").Controls("Cells...").Execute

It’s probably not a good idea to rely on CommandBar objects because they may be removed from a
future version of Excel.

Displaying a Data Form
Many people use Excel to manage lists in which the information is arranged in tabular
form. Excel offers a simple way to work with this type of data through the use of a built-
in data entry form that Excel can create automatically. This data form works with either a
normal range of data or a range that has been designated as a table (by choosing the Insert
➪ Tables ➪ Table command). Figure 12.12 shows an example of a data form in use.

Making the data form accessible
For some reason, the command to access the data form isn’t on the Excel Ribbon. To access
the data form from Excel’s user interface, you must add it to your Quick Access toolbar or
to the Ribbon. The following are instructions to add this command to the Quick Access
toolbar.

439

Chapter 12: Leveraging Custom Dialog Boxes

12

FIGURE 12.12

Some users prefer to use Excel’s built-in data form for data-entry tasks.

Adding the Form Command to the Quick Access
Toolbar
 1. Right-click the Quick Access toolbar, and choose Customize Quick Access Toolbar.

The Customize the Quick Access Toolbar panel of the Excel Options dialog box appears.

 2. In the Choose Commands From drop-down list, select Commands Not in the Ribbon.

 3. In the list box on the left, select Form.

 4. Click the Add button to add the selected command to your Quick Access toolbar.

 5. Click OK to close the Excel Options dialog box.

After performing these steps, a new icon will appear on your Quick Access toolbar.

440

Part III: Working with UserForms

To use a data form, you must arrange your data so that Excel can recognize it as a table.
Start by entering headings for the columns in the first row of your data entry range. Select
any cell in the table, and click the Form button on your Quick Access toolbar. Excel then
displays a dialog box customized to your data. You can use the Tab key to move between
text boxes and supply information. If a cell contains a formula, the formula result appears
as text (not as an edit box). In other words, you can’t modify formulas from the data entry
form.

When you complete the data form, click the New button. Excel enters the data into a row in
the worksheet and clears the dialog box for the next row of data.

Displaying a data form by using VBA
Use the ShowDataForm method to display Excel’s data form. The only requirement is that
the data table must begin in cell A1. Alternatively, the data range can have a range name of
Database.

The following code displays the data form:

Sub DisplayDataForm()
 ActiveSheet.ShowDataForm
End Sub

This macro will work even if the Form command has not been added to the Ribbon or the
Quick Access toolbar.

On the Web
A workbook with this example is available on the book’s website in the Data Form Example.xlsm file.

441

CHAP T ER

13
Introducing UserForms

IN THIS CHAPTER
Creating, showing, and unloading UserForms

Exploring the UserForm controls available to you

Setting the properties of UserForm controls

Controlling UserForms with VBA procedures

Creating a UserForm

Introducing the types of events relevant to UserForms and controls

Customizing your control Toolbox

Going over a handy checklist for creating UserForms

How Excel Handles Custom Dialog Boxes
Excel makes creating custom dialog boxes for your applications relatively easy. In fact, you can
duplicate the look and feel of many of Excel’s dialog boxes. You use a UserForm to create a custom
dialog box, and you access UserForms in the Visual Basic Editor (VBE).

This is the typical sequence you’ll follow when you create a UserForm:

 1. Insert a new UserForm into your workbook’s VBA project.

 2. Add controls to the UserForm.

 3. Adjust some of the properties of the controls that you added.

 4. Write event-handler procedures for some of the controls.

An event-handler procedure is a one tied to a particular event, such as a button click.
When the user clicks the button, the procedure runs. You create these procedures in the
UserForm’s code module.

 5. Write a procedure that will display the UserForm.

This procedure will be located in a standard VBA module (not in the code module for the
UserForm).

 6. Add a way to make it easy for the user to execute the procedure that you created in step 5.

You can add a button to a worksheet, create a shortcut menu command, and so on.

Excel® 2019 Power Programming with VBA, First Edition. Michael Alexander and Dick Kusleika.
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.

442

Part III: Working with UserForms

Inserting a New UserForm
To insert a new UserForm, activate the VBE (press Alt+F11), select your workbook’s project
from the Project Explorer, and then choose Insert ➪ UserForm. The VBE gives each new
UserForm a default name, such as UserForm1, UserForm2, and so on.

You should change the name of your UserForm to something more descriptive to make it easier to identify. Select
the form and use the Properties window to change the Name property. (Press F4 if the Properties window isn’t dis-
played.) Figure 13.1 shows the Properties window when an empty UserForm is selected.

FIGURE 13.1

The Properties window for an empty UserForm

A workbook can have any number of UserForms, and each UserForm holds a single custom
dialog box.

443

Chapter 13: Introducing UserForms

13

Adding Controls to a UserForm
To add controls to a UserForm, use the Toolbox, as shown in Figure 13.2. (VBE doesn’t have
menu commands that add controls.) If the Toolbox isn’t displayed, choose View ➪ Toolbox.
The Toolbox is a floating window, so you can move it to a convenient location.

FIGURE 13.2

Use the Toolbox to add controls to a UserForm.

Click the Toolbox button that corresponds to the control that you want to add and then
click inside the dialog box to create the control (using its default size). Or, you can click
the control and then drag in the dialog box to specify the dimensions for the control.

When you add a new control, it’s assigned a name that combines the control type with
the numeric sequence for that type of control. For example, if you add a CommandButton
control to an empty UserForm, it’s named CommandButton1. If you then add a second
CommandButton control, it’s named CommandButton2.

Renaming all the controls that you’ll be manipulating with your VBA code is a good idea. Doing so lets you refer to
meaningful names (such as lbxProducts) rather than generic names (such as ListBox1). To change the name
of a control, use the Properties window in VBE. Just select the object and change the (Name) property.

Toolbox Controls
In the sections that follow, we briefly describe the controls available to you in the Toolbox.

On the Web
Figure 13.3 shows a UserForm that contains one of each control. This workbook, named All Userform
Controls.xlsm, is available on the book’s website.

444

Part III: Working with UserForms

FIGURE 13.3

This UserForm displays all of the controls.

Your UserForms can also use other ActiveX controls that aren’t included with Excel. See “Customizing the Toolbox”
later in this chapter.

CheckBox
A CheckBox control is useful for getting a binary choice: yes or no, true or false, on or off,
and so on. When a check box is checked, it has a value of True; when it’s not checked, the
check box value is False.

CheckBox controls have a TripleState property that when set to True causes the check
box to have one of three values: True, False, or Null. This is useful when you don’t want
to influence a user’s choice by having the check box initially set to either True or False.

445

Chapter 13: Introducing UserForms

13

ComboBox
A ComboBox control presents a list of items in a drop-down box and displays only one item
at a time. Unlike a ListBox control, you can set up a combo box to allow the user to enter
a value that doesn’t appear in the list of items.

CommandButton
Every dialog box that you create will probably have at least one CommandButton control.
Usually, your UserForms will have one button labeled OK and another labeled Cancel.

Frame
A Frame control is used to enclose other controls. You enclose controls either for aesthetic
purposes or to group a set of controls logically. A Frame control is particularly useful when
the dialog box contains more than one set of OptionButton controls.

Image
You can use an Image control to display a graphic image, which can come from a file or can
be pasted from the Clipboard. You may want to use an Image control to display your com-
pany’s logo in a dialog box. The graphics image is stored in the workbook. That way, if you
distribute your workbook to someone else, you don’t have to include a copy of the graphics
file.

Label
A Label control simply displays text in your dialog box.

ListBox
The ListBox control presents a list of items, and the user can select an item (or multiple
items). ListBox controls are very flexible. For example, you can specify a worksheet range
that holds the list box items, and this range can consist of multiple columns. Or, you can
fill the list box with items by using VBA.

MultiPage
A MultiPage control lets you create tabbed dialog boxes. Excel’s built-in Format Cells dia-
log box uses a MultiPage control. By default, a MultiPage control has two pages, but you
can add any number of additional pages.

CautiOn
Some graphics files are very large, and using such images can make your workbook increase dramatically in size. For
best results, use graphics sparingly or use small graphics files.

446

Part III: Working with UserForms

OptionButton
OptionButton controls are useful when the user needs to select one item from a small
number of choices. Option buttons are always used in groups of at least two. When one
option button is selected, the other option buttons in its group are deselected.

If your UserForm contains more than one set of option buttons, the option buttons in each
set must share a unique GroupName property value. Otherwise, all option buttons become
part of the same set. Alternatively, you can enclose the option buttons in a Frame control,
which automatically groups the option buttons contained in the frame.

RefEdit
The RefEdit control is used when you need to let the user select a range in a worksheet.
This control accepts a typed range address or a range address generated by pointing to the
range in a worksheet.

ScrollBar
The ScrollBar control is similar to a SpinButton control. The difference is that the
user can drag the scroll bar button to change the control’s value in larger increments. The
ScrollBar control is most useful for selecting a value that extends across a wide range of
possible values.

SpinButton
The SpinButton control lets the user select a value by clicking either of two arrows: one
to increase the value and the other to decrease the value. A spin button is often used with
a text box or label, which displays the current value of the spin button. A spin button can
be oriented horizontally or vertically.

TabStrip
A TabStrip control is similar to a MultiPage control, but it’s not as easy to use. A
TabStrip control, unlike a MultiPage control, doesn’t serve as a container for other
objects. Generally, if the layout of your form is the same for each page and only the data
changes, a tab strip is appropriate. If your layout changes for each page, use a multi page.

TextBox
A TextBox control lets the user type text or a value.

ToggleButton
A ToggleButton control has two states: on and off. Clicking the button toggles between
these two states, and the button changes its appearance. Its value is either True (pressed)

447

Chapter 13: Introducing UserForms

13

or False (not pressed). Like check boxes, toggle buttons have a TripleState property
that allows a Null value.

Using controls on a worksheet
You can embed many of the UserForm controls directly into a worksheet. You can access these con-
trols by using Excel’s Developer ➪ Controls ➪ Insert command. Adding such controls to a worksheet
requires much less effort than creating a UserForm. In addition, you may not have to create any macros
because you can link a control to a worksheet cell. For example, if you insert a CheckBox control on a
worksheet, you can link it to a particular cell by setting its LinkedCell property. When the check box is
checked, the linked cell displays TRUE. When the check box is unchecked, the linked cell displays FALSE.

The accompanying figure shows a worksheet that contains some ActiveX controls. This workbook,
named ActiveX Worksheet Controls.xlsx, is available on this book’s website. The workbook uses
linked cells and contains no macros.

Adding controls to a worksheet can be a bit confusing because controls can come from two sources.

Form controls These controls are insertable objects.

ActiveX controls These controls are a subset of those that are available for use on UserForms.

You can use the controls from either of these sources, but it’s important that you understand the dis-
tinctions between them. The Form controls work much differently than the ActiveX controls.

Continues

448

Part III: Working with UserForms

When you add an ActiveX control to a worksheet, Excel goes into design mode. In this mode, you can
adjust the properties of any controls on your worksheet, add or edit event-handler procedures for
the control, or change its size or position. To display the Properties window for an ActiveX control,
use the Developer ➪ Controls ➪ Properties command.

You can attach any macro to a Form control button. If you use an ActiveX CommandButton, clicking it
will execute its event-handler procedure (for example, CommandButton1_Click) in the code module
for the sheet it’s on—you can’t attach just any macro to it.

When Excel is in design mode, you can’t try the controls. To test the controls, you must exit design
mode by clicking the Developer ➪ Controls ➪ Design mode button (which is a toggle).

Adjusting UserForm Controls
After you place a control in a UserForm, you can move and resize the control by using stan-
dard mouse techniques.

You can select multiple controls by holding down the Ctrl key while selecting individual controls, Shift-clicking to
select all controls between the first control and last control, or by clicking and dragging to lasso a group of controls.

A UserForm can contain vertical and horizontal gridlines (displayed as dots) that help you
align the controls that you add. When you add or move a control, it snaps to the grid to
help you line up the controls. If you don’t like to see these gridlines, you can turn them off
by choosing Tools ➪ Options in VBE. In the Options dialog box, select the General tab and
set your desired options in the Form Grid Settings section. These gridlines are for design
only and do not appear when the dialog box is displayed to the user.

The Format menu in the VBE window provides several commands to help you precisely align
and space the controls in a dialog box. The Align and Make Same Size menus also appear
on the context menu when you right-click a control. Before you use these commands, select
the controls with which you want to work. These commands work just as you’d expect, so
we don’t explain them here. Figure 13.4 shows a dialog box with several OptionButton
controls about to be aligned. Figure 13.5 shows the controls after they are aligned and
assigned equal vertical spacing.

continued

449

Chapter 13: Introducing UserForms

13

FIGURE 13.4

Use the Format ➪ Align command to change the alignment of controls.

FIGURE 13.5

The OptionButton controls, aligned and evenly spaced

450

Part III: Working with UserForms

When you select multiple controls, one of the controls that you select appears with white handles rather than the
normal black handles. The control with the white handles is used as the basis for sizing or positioning.

Adjusting a Control’s Properties
Every control has a number of properties that determine how the control looks and
behaves. You can change a control’s properties as follows:

 ■ At design time, when you’re developing the UserForm. You use the Properties win-
dow to make design time changes.

 ■ During run-time, when the UserForm is being displayed for the user. You use VBA
instructions to change a control’s properties at run-time.

Whether you set a property at design time or run-time is highly dependent on what your
application is trying to do. Generally, though, set properties at design time when you can
and at run-time when you have to. While having values set at design time is faster, most
speed gains won’t be noticeable. The best reason to set properties at design time is because
the less code you have, the fewer bugs you can have.

Using the Properties window
In the VBE, the Properties window adjusts to display the properties of the selected item
(which can be a control or the UserForm itself). In addition, you can select a control from
the drop-down list at the top of the Properties window. Figure 13.6 shows the Properties
window for an OptionButton control.

The Properties window has two tabs. The Alphabetic tab displays the properties for the selected object in alphabeti-
cal order, and the Categorized tab displays the properties grouped into logical categories. Both tabs contain the
same properties but in a different order.

To change a property, just click it and enter the desired value. For some properties a
downward-pointing arrow appears when that property is selected, allowing you to select a
value from a list. For example, the TextAlign property can have any of the following val-
ues: 1 - fmTextAlignLeft, 2 - fmTextAlignCenter, or 3 - fmTextAlignRight.

You can double-click a property’s value to cycle through the available values for certain properties.

A few properties (for example, Font and Picture) display a small button with an ellipsis
when selected. Click the button to display a dialog box associated with the property.

451

Chapter 13: Introducing UserForms

13

FIGURE 13.6

The Properties window for an OptionButton control

The Image control’s Picture property is worth mentioning because you can either select a
graphic file that contains the image or paste an image from the Clipboard. When pasting an
image, first copy it to the Clipboard and then select the Picture property for the Image
control and press Ctrl+V to paste the Clipboard contents.

If you select two or more controls at once, the Properties window displays only the properties that are common to the
selected controls.

452

Part III: Working with UserForms

The UserForm itself has many properties that you can adjust. Some of these properties are then used as defaults
for controls that you add to the UserForm. For example, if you change the UserForm Font property, all controls you
subsequently add to the UserForm will use that font. Note, however, that controls already on the UserForm aren’t
affected.

Common properties
Although each control has its own unique set of properties, many controls have some
common properties. For example, every control has a (Name) property and properties that
determine its size and position (Height, Width, Left, and Right).

You will see the Me keyword used in code samples in this chapter and others. In a class module, such
as a UserForm, the Me keyword is a shortcut reference to the instance of the class. That is, Me refers to
the UserForm that contains it.

Instead of typing Userform1.CheckBox1.Value, you can type Me.CheckBox1.Value. Of course,
you don’t have to specify the UserForm at all inside of its own code module, so you could also simply
type CheckBox1.Value. The main advantage of using Me is that it brings up IntelliSense, allowing you
easier access to all of the form’s properties and controls.

If you’re going to manipulate a control by using VBA, you’ll want to provide a meaning-
ful name for the control. For example, the first OptionButton control that you add to a
UserForm has a default name of OptionButton1. You refer to this object in your code with
a statement such as the following:

Me.OptionButton1.Value = True

But if you give the OptionButton control a more meaningful name (such as optLand-
scape), you can use a statement such as this one:

Me.optLandscape.Value = True

Many people find it helpful to use a name that also identifies the type of object. The preceding example uses opt as
the prefix to identify the control as an OptionButton control. See the “Using a Naming Convention” sidebar later
in this chapter for more information.

You can adjust the properties of several controls at once. For example, you might have sev-
eral OptionButton controls that you want left-aligned. You can simply select all of them
and then change the Left property in the Properties box. All of the selected controls will
then take on that new Left property value.

453

Chapter 13: Introducing UserForms

13

The best way to learn about the various properties for a control is to use the Help system.
Simply click a property in the Properties window and press F1.

Using a naming convention
Many developers use a naming convention when assigning names to controls on a UserForm. It’s not
necessary, but it makes referring to the controls easier when you write code and identifying controls
easier when you set the tab order (explained later in the chapter). If you share a code base or if someone
else is tasked with maintaining your code, a naming convention can help the other person navigate
your code more easily.

The most common naming conventions use a prefix that indicates the control’s type followed by a
descriptive name. There are no standard prefixes, so pick what works for you and use it consistently.
The following example naming convention uses a three-letter prefix and a descriptive name:

Control Prefix Example

CheckBox chk chkActive

ComboBox cbx cbxLocations

CommandButton cmd cmdCancel

Frame frm frmType

Image img imgLogo

Label lbl lblLocations

ListBox lbx lbxMonths

MultiPage mpg mpgPages

OptionButton opt optOrientation

RefEdit ref refRange

ScrollBar scr scrLevel

SpinButton spb spbAmount

TabStrip tab tabTabs

TextBox tbx tbxName

ToggleButton tgb tgbActive

One advantage to using a naming convention is to get a list of controls with the Auto List Members
feature. You can use the Me keyword in a UserForm’s code module to refer to the UserForm. When you
type Me followed by a dot, the VBE lists all the properties of the UserForm and all of its controls. You
can begin typing a control’s name to limit the list based on what you type.

The following figure shows the Auto List Members window when you type me.tbx. You can see in the
figure that five text boxes are listed next to each other (because they have the same prefix) and their
descriptive names makes it easy for you to know which control to select.

Continues

454

Part III: Working with UserForms

Accommodating keyboard users
Many users prefer to navigate through a dialog box by using the keyboard: the Tab and
Shift+Tab keystrokes cycle through the controls, and pressing a hot key (an underlined let-
ter) operates the control. To make sure that your dialog box works properly for keyboard
users, you must consider two issues: tab order and accelerator keys.

Changing the tab order of controls
The tab order determines the sequence in which the controls are activated when the user
presses Tab or Shift+Tab. It also determines which control has the initial focus. If a user is
entering text in a TextBox control, for example, the TextBox has the focus. If the user
clicks an OptionButton control, the OptionButton has the focus. The control that’s first
in the tab order has the focus when a dialog box is first displayed.

To set the tab order of your controls, choose View ➪ Tab Order or right-click the UserForm
and choose Tab Order from the shortcut menu. In either case, Excel displays the Tab Order
dialog box, which lists all of the controls in the same order in which controls pass the focus
between each other in the UserForm. To move a control, select it and click the Move Up or
Move Down button. You can choose more than one control (by Shift- or Ctrl-clicking) and
move them all at once.

Alternatively, you can set an individual control’s position in the tab order by using the
Properties window. The first control in the tab order has a TabIndex property of 0.
Changing the TabIndex property for a control may also affect the TabIndex property of
other controls. These adjustments are made automatically to ensure that no control has a

continued

455

Chapter 13: Introducing UserForms

13

TabIndex value greater than the number of controls. If you want to remove a control from
the tab order, set its TabStop property to False.

Some controls, such as Frame and MultiPage, act as containers for other controls. The controls inside a con-
tainer have their own tab order. To set the tab order for a group of OptionButton controls inside a Frame con-
trol, select the Frame control before you choose the View ➪ Tab Order command. Figure 13.7 shows the Tab Order
dialog box when a Frame is selected.

FIGURE 13.7

Use the Tab Order dialog box to specify the tab order of the controls in a Frame control.

Setting hot keys
You can assign an accelerator key, or hot key, to most dialog box controls. An accelera-
tor key allows the user to access the control by pressing Alt and the hot key. Use the
Accelerator property in the Properties window for this purpose.

Some controls, such as a TextBox, don’t have an Accelerator property because they don’t display a caption.
You still can allow direct keyboard access to these controls by using a Label control. Assign an accelerator key to
the label, and put it before the text box in the tab order.

456

Part III: Working with UserForms

Testing a UserForm
You’ll usually want to test your UserForm while you’re developing it. You can test a UserForm in three
ways, without actually calling it from a VBA procedure.

 ■ Choose the Run ➪ Run Sub/UserForm command.

 ■ Press F5.

 ■ Click the Run Sub/UserForm button on the Standard toolbar.

These three techniques all trigger the UserForm’s Initialize event. When a dialog box is displayed
in this test mode, you can try the tab order and the accelerator keys.

Displaying a UserForm
To display a UserForm from VBA, you create a procedure that uses the Userform.Show
method. If your UserForm is named UContacts, the following procedure displays the dia-
log box on that form:

Sub AddEditContacts()
 UContacts.Show
End Sub

This procedure must be in a standard VBA module and not in the code module for the
UserForm.

When the UserForm is displayed, it remains visible on-screen until it’s dismissed. Usually,
you’ll add a CommandButton control to the UserForm that executes a procedure that dis-
misses the UserForm. The procedure can either unload the UserForm (with the Unload com-
mand) or hide the UserForm (with the UserForm.Hide method). This concept will become
clearer as you work through various examples in this and subsequent chapters. The follow-
ing examples demonstrate two ways to dismiss a UserForm:

Private Sub cmdOK_Click()
 Unload Me
 'The form is removed from memory
End Sub

Private Sub cmdOK_Click()
 Me.Hide
 'The calling procedure can still access the form's properties
End Sub

Adjusting the display position
The StartUpPosition property of the UserForm object determines where on the screen
the dialog box will be displayed. You can specify this property in the Properties box or at

457

Chapter 13: Introducing UserForms

13

run-time. The default value is 1 – CenterOwner, which displays the dialog box in the
center of the Excel window.

If you use a dual-monitor system, however, you’ll find that sometimes the
StartUpPosition property seems to be ignored. Specifically, if the Excel window is on
the secondary monitor, the UserForm may appear on the left edge of the primary window.

The following code ensures that the UserForm is always displayed in the center of the Excel
window:

With UserForm1
 .StartUpPosition = 0
 .Left = Application.Left + (0.5 * Application.Width) - (0.5 *
.Width)
 .Top = Application.Top + (0.5 * Application.Height) - (0.5 *
.Height)
 .Show
End With

Displaying a modeless UserForm
By default, UserForms are displayed modally. This means the UserForm must be dis-
missed before the user can do anything in the worksheet. You can also display a mode-
less UserForm. When a modeless UserForm is displayed, the user can continue working in
Excel, and the UserForm remains visible. To display a modeless UserForm, use the following
syntax:

UserForm1.Show vbModeless

There are several examples in the following chapters demonstrating modal and modeless
UserForms.

The single-document interface introduced in Excel 2013 affects modeless UserForms. In versions prior to 2013, a
modeless UserForm is visible regardless of which workbook window is active. In Excel 2013 and later, a modeless
UserForm is associated with the workbook window that’s active when the UserForm appears. If you switch to a differ-
ent workbook window, the UserForm may not be visible. Chapter 15, “Implementing Advanced UserForm Techniques,”
has an example that demonstrates how to make a modeless UserForm visible in all workbook windows.

Displaying a UserForm based on a variable
In some cases, you may have several UserForms, and your code makes a decision regarding
which of them to display. If the name of the UserForm is stored as a string variable, you
can use the Add method to add the UserForm to the UserForms collection and then use
the Show method of the UserForms collection. Here’s an example that assigns the name
of a UserForm to the MyForm variable and then displays the UserForm:

MyForm = "UserForm1"
UserForms.Add(MyForm).Show

458

Part III: Working with UserForms

Loading a UserForm
VBA also has a Load statement. Loading a UserForm loads it into memory and triggers the
UserForm’s Initialize event. However, the dialog box is not visible until you use the
Show method. To load a UserForm, use a statement like this:

Load UserForm1

If you have a complex UserForm that takes a bit of time to initialize, you might want to
load it into memory before it’s needed so that it will appear more quickly when you use
the Show method. In the majority of situations, however, you don’t need to use the Load
statement. Like the Show method, the Load statement should be used in a standard mod-
ule, not in the code module of the UserForm you’re trying to load.

About event-handler procedures
After the UserForm is displayed, the user interacts with it—selecting an item from a
list box, clicking a command button, and so on. In official terminology, the user trig-
gers an event. For example, clicking a command button triggers the Click event for the
CommandButton control. You need to write procedures that execute when these events
occur. These procedures are sometimes known as event-handler procedures.

Event-handler procedures must be located in the code module for the UserForm. However, your event-handler proce-
dure can call another procedure that’s located in a standard VBA module.

Your VBA code can change the properties of the controls while the UserForm is displayed
(that is, at run-time). For example, you could assign to a ListBox control a procedure that
changes the text in a label when an item is selected. This type of manipulation is the key
to making dialog boxes interactive and will become clearer later in this chapter.

Closing a UserForm
To close a UserForm, use the Unload command, as shown in this example:

Unload UserForm1

Or, if the code is located in the code module for the UserForm, you can use the following:

Unload Me

In this case, the keyword Me refers to the UserForm. Using Me rather than the UserForm’s
name eliminates the need to modify your code if you change the name of the UserForm.

Normally, your VBA code should include the Unload command after the UserForm has
performed its actions. For example, your UserForm may have a CommandButton control

459

Chapter 13: Introducing UserForms

13

that functions as an OK button. Clicking this button executes a procedure, and one of the
statements in the procedure will unload the UserForm. The UserForm remains visible on the
screen until the procedure that contains the Unload statement finishes.

When a UserForm is unloaded, its controls are reset to their original values. In other words,
your code won’t be able to access the user’s choices after the UserForm is unloaded. If the
user’s choice must be used later (after the UserForm is unloaded), you need to store the
value in a Public variable, declared in a standard VBA module. Or, you could store
the value in a worksheet cell or even in the Windows registry.

A UserForm is automatically unloaded when the user clicks the Close button (the X in the UserForm title bar). This
action also triggers a UserForm QueryClose event, followed by a UserForm Terminate event.

UserForms also have a Hide method. When you invoke this method, the UserForm disap-
pears, but it remains loaded in memory so that your code can still access the various prop-
erties of the controls. Here’s an example of a statement that hides a UserForm:

UserForm1.Hide

Or, if the code is in the code module for the UserForm, you can use the following:

Me.Hide

If you’d like your UserForm to disappear immediately while its macro is executing, use the
Hide method at the top of the procedure. For example, in the following procedure, the
UserForm disappears immediately when CommandButton1 is clicked. The last statement in
the procedure unloads the UserForm.

Private Sub CommandButton1_Click()
 Me.Hide
 Application.ScreenUpdating = True
 For r = 1 To 10000
 ActiveSheet.Cells(r, 1) = r
 Next r
 Unload Me
End Sub

In this example, ScreenUpdating is set to True to force Excel to hide the UserForm com-
pletely. Without that statement, the UserForm may actually remain visible.

 In Chapter 15, we describe how to display a progress indicator, which takes advantage of the fact that a
UserForm remains visible while the macro executes.

460

Part III: Working with UserForms

Creating a UserForm: An Example
If you’ve never created a UserForm, you might want to walk through the example in this
section. The example includes step-by-step instructions for creating a simple dialog box
and the VBA procedures necessary for it to function.

This example uses a UserForm to obtain two pieces of information: a person’s name and
gender. The dialog box uses a text box to get the name and three option buttons to get
the gender (Male, Female, or Unknown). The information collected in the dialog box is then
sent to the next blank row in a worksheet.

Creating the UserForm
Figure 13.8 shows the completed UserForm for this example.

FIGURE 13.8

This dialog box asks the user to enter a name and a gender.

For best results, start with a new workbook with only one worksheet in it. Then follow
these steps:

 1. Press Alt+F11 to activate VBE.

 2. In the Project Explorer, select the workbook’s project and choose Insert ➪ UserForm
to add an empty UserForm.

The UserForm’s (Name) and Caption properties will have their default value:
UserForm1.

 3. Use the Properties window to change the UserForm’s (Name) property to
ufGetData and its Caption property to Get Name and Gender.

 (If the Properties window isn’t visible, press F4.)

 4. Add a Label control, and adjust the properties as follows:

461

Chapter 13: Introducing UserForms

13

Property Value

Name lblName

Accelerator N

Caption Name:

TabIndex 0

 5. Add a TextBox control, and adjust the properties as follows:

Property Value

Name tbxName

TabIndex 1

 6. Add a Frame control, and adjust the properties as follows:

Property Value

Name frmGender

Caption Gender

TabIndex 2

 7. Add an OptionButton control inside the frame, and adjust the properties as
follows:

Property Value

Accelerator M

Caption Male

Name optMale

TabIndex 0

 8. Add another OptionButton control inside the frame, and adjust the properties as
follows:

Property Value

Accelerator F

Caption Female

Name optFemale

TabIndex 1

462

Part III: Working with UserForms

 9. Add yet another OptionButton control inside the frame, and adjust the proper-
ties as follows:

Property Value

Accelerator U

Caption Unknown

Name optUnknown

TabIndex 2

Value True

 10. Add a CommandButton control outside the frame, and adjust the properties as
follows:

Property Value

Accelerator O

Caption OK

Default True

Name cmdOK

TabIndex 3

 11. Add another CommandButton control, and adjust the properties as follows:

Property Value

Accelerator C

Caption Close

Cancel True

Name cmdClose

TabIndex 4

When you’re creating several controls that are similar, you may find it easier to copy an existing control rather than
create a new one. To copy a control, press Ctrl while you drag the control to make a new copy of it. Then adjust the
properties for the copied control.

463

Chapter 13: Introducing UserForms

13

Writing code to display the dialog box
Next, you add an ActiveX CommandButton control to the worksheet. This button will exe-
cute a procedure that displays the UserForm. Here’s how to do this:

` 1. Activate Excel.

 (Alt+F11 is the shortcut key combination.)

 2. Choose Developer ➪ Controls ➪ Insert, and click CommandButton from the ActiveX
Controls section (the bottom group of controls).

 3. Drag in the worksheet to create the button.

If you like, you can change the caption for the worksheet button. To do so, right-
click the button and choose CommandButton Object ➪ Edit from the shortcut
menu. You can then edit the text that appears on the button. To change other
properties of the object, right-click and choose Properties. Then make the changes
in the Properties box.

 4. Double-click the CommandButton control.

This step activates VBE. More specifically, the code module for the worksheet will
be displayed, with an empty event-handler procedure for the Click event of the
worksheet’s CommandButton control.

 5. Enter a single statement in the CommandButton1_Click procedure (see
Figure 13.9).

This short procedure uses the Show method of ufGetData to display the UserForm.

FIGURE 13.9

The CommandButton1_Click procedure is executed when the button on the worksheet is
clicked.

464

Part III: Working with UserForms

Testing the dialog box
The next step is to reactivate Excel and try the procedure that displays the dialog box.

When you click the command button on the worksheet, you’ll find that nothing happens. Instead, the button is
selected. That’s because Excel is still in design mode—which happens automatically when you insert an ActiveX con-
trol. To exit design mode, click the Design Mode button in the Developer ➪ Controls group. To make any changes to
your CommandButton control, you’ll need to put Excel back into design mode.

When you exit design mode, clicking the button will display the UserForm (see
Figure 13.10).

FIGURE 13.10

The CommandButton’s Click event procedure displays the UserForm.

When the dialog box is displayed, enter some text in the text box and click OK. Nothing
happens, which is understandable because you haven’t yet created an event-handler proce-
dure for the OK button.

Click the X (Close) button in the UserForm title bar to dismiss the dialog box.

465

Chapter 13: Introducing UserForms

13

Adding event-handler procedures
In this section, we explain how to write the procedures that will handle the events that
occur while the UserForm is displayed. To continue the example, do the following:

 1. Press Alt+F11 to activate VBE.

 2. Make sure that the UserForm is displayed, and double-click the CommandButton
control captioned Close.

This step activates the code window for the UserForm and inserts an empty pro-
cedure named cmdClose_Click. Note that this procedure consists of the object’s
name, an underscore character, and the event that it handles.

 3. Modify the procedure as follows. (This is the event handler for the Click event of
the cmdClose CommandButton control.)

Private Sub cmdClose_Click()
 Unload Me
End Sub

This procedure, which is executed when the user clicks the Close button, simply
unloads the UserForm.

 4. Press Shift+F7 to redisplay UserForm1 (or click the View Object icon at the top of
the Project Explorer window).

 5. Double-click the OK button, and enter the following procedure. (This is the event
handler for the cmdOK button’s Click event.)

Private Sub cmdOK_Click()
 Dim lNextRow As Long
 Dim wf As WorksheetFunction

 Set wf = Application.WorksheetFunction

' Make sure a name is entered
 If Len(Me.tbxName.Text) = 0 Then
 MsgBox "You must enter a name."
 Me.tbxName.SetFocus
 Else
 ' Determine the next empty row
 lNextRow = wf.CountA(Sheet1.Range("A:A")) + 1
 ' Transfer the name
 Sheet1.Cells(lNextRow, 1) = Me.tbxName.Text

 ' Transfer the gender
 With Sheet1.Cells(lNextRow, 2)
 If Me.optMale.Value Then .Value = "Male"
 If Me.optFemale.Value Then .Value = "Female"
 If Me.optUnknown.Value Then .Value = "Unknown"
 End With

466

Part III: Working with UserForms

 ' Clear the controls for the next entry
 Me.tbxName.Text = vbNullString
 Me.optUnknown.Value = True
 Me.tbxName.SetFocus
 End If
End Sub

 6. Activate Excel and click the button again to display the UserForm and then run the
procedure again.

You’ll find that the UserForm controls now function correctly. You can use them to
add new names to the two-column list in the worksheet.

Here’s how the cmdOK_Click procedure works: First, the procedure makes sure
that something was entered in the text box. If nothing is entered (the length of the
text is 0), it displays a message and sets the focus back to the text box. If something was
entered, it uses the Excel COUNTA function to determine the next blank cell in column
A. Next, it transfers the text from the text box to column A. It then uses a series of If
statements to determine which option button was selected and writes the appropriate
text (Male, Female, or Unknown) to column B. Finally, the dialog box is reset to make it
ready for the next entry. Note that clicking OK doesn’t close the dialog box. To end data
entry (and unload the UserForm), click the Close button.

The finished dialog box
After you’ve entered the two event-handler procedures, you’ll find that the dialog box
works flawlessly. (Don’t forget to test the hot keys.) In real life, you’d probably need to col-
lect more information than just the name and gender. The same basic principles apply; you
would just need to deal with more UserForm controls.

Each UserForm control (as well as the UserForm itself) is designed to respond to certain
types of events, and a user or Excel can trigger these events. For example, clicking a button
generates a Click event for the control. You can write code that is executed when a par-
ticular event occurs.

Some actions generate multiple events. For example, clicking the up arrow of a
SpinButton control generates a SpinUp event and also a Change event. When a
UserForm is displayed by using the Show method, Excel generates an Initialize event
and an Activate event for the UserForm. (Actually, the Initialize event occurs when
the UserForm is loaded into memory and before it’s actually displayed.)

 Excel also supports events associated with a Sheet object, Chart objects, and the
ThisWorkbook object. We discuss these types of events in Chapter 6, “Understanding Excel’s
Events.”

On the Web
A workbook with this example is available on this book’s website in the Get Name and Gender.xlsm file.

467

Chapter 13: Introducing UserForms

13

Learning about events
To find out which events are supported by a particular control, do the following:

 1. Add a control to a UserForm.

 2. Double-click the control to activate the code module for the UserForm.

VBE inserts an empty event-handler procedure for the default event for the control.

 3. Click the drop-down list in the upper-right corner of the module window.

You see a complete list of events for the control. Figure 13.11 shows the list of
events for a CheckBox control.

FIGURE 13.11

The event list for a CheckBox control

 4. Select an event from the list.

VBE creates an empty event-handler procedure for you.

To find out specific details about an event, consult the Help system. The Help system also
lists the events available for each control.

CautiOn
Event-handler procedures incorporate the name of the object in the procedure’s name. If you change the name of a
control, you’ll also need to make the appropriate changes to the control’s event-handler procedure(s), because the
name changes aren’t performed automatically. To make things easy on yourself, it’s a good idea to provide names for
your controls before you begin creating event-handler procedures.

468

Part III: Working with UserForms

A UserForm has quite a few events. Here are the events associated with showing and
unloading a UserForm:

Initialize Occurs when a UserForm is loaded but before it’s shown. It doesn’t occur if
the UserForm was previously hidden.

Activate Occurs when a UserForm is shown.

Deactivate Occurs when a UserForm is deactivated but doesn’t occur if the form is
hidden.

QueryClose Occurs before a UserForm is unloaded.

Terminate Occurs after the UserForm is unloaded.

Sometimes, it’s important that you choose the appropriate event for your event-handler procedure and that
you understand the order in which the events occur. Using the Show method invokes the Initialize and
Activate events (in that order). Using the Load command invokes only the Initialize event. Using the
Unload command triggers the QueryClose and Terminate events (in that order), but using the Hide method
doesn’t trigger either event.

SpinButton events
To help clarify the concept of events, this section takes a close look at the events associ-
ated with a SpinButton control. Some of these events are associated with other controls,
and some are unique to the SpinButton control.

Table 13.1 lists all the events for the SpinButton control.

On the Web
The book’s website contains the Userform Events.xlsm workbook, which monitors all of these events and
displays a message box when an event occurs. If you’re confused about UserForm events, studying the code in this
workbook should clear things up.

On the Web
The book’s website contains a workbook that demonstrates the sequence of events that occur for a SpinButton
control and the UserForm that contains it. The workbook, named Spinbutton Events.xlsm, contains a series
of event-handler routines—one for each SpinButton and UserForm event. Each routine simply displays a mes-
sage box that tells you which event just fired.

469

Chapter 13: Introducing UserForms

13

TABLE 13.1 SpinButton Events

Event Description

AfterUpdate Occurs after the control is changed through the user interface

BeforeDragOver Occurs when a drag-and-drop operation is in progress

BeforeDropOrPaste Occurs when the user is about to drop or paste data onto the control

BeforeUpdate Occurs before the control is changed

Change Occurs when the Value property changes

Enter Occurs before the control receives the focus from a control on the
same UserForm

Error Occurs when the control detects an error and can’t return the error
information to a calling program

Exit Occurs immediately before a control loses the focus to another con-
trol on the same form

KeyDown Occurs when the user presses a key and the object has the focus

KeyPress Occurs when the user presses any key that produces a typeable
character

KeyUp Occurs when the user releases a key and the object has the focus

SpinDown Occurs when the user clicks the lower (or left) SpinButton arrow

SpinUp Occurs when the user clicks the upper (or right) SpinButton arrow

A user can operate a spin button by clicking it with the mouse or (if the control has the
focus) by using the arrow keys.

Mouse-initiated events
When the user clicks the upper spin button arrow, the following events occur in this order:

 1. Enter (triggered only if the spin button did not already have the focus)

 2. Change

 3. SpinUp

Keyboard-initiated events
The user can also press Tab to set the focus to the spin button and then use the arrow keys
to increment or decrement the control. If so, the following events occur (in this order):

 1. Enter (occurs when the spin button gets the focus)

 2. KeyUp (from releasing the Tab key)

470

Part III: Working with UserForms

 3. KeyDown

 4. Change

 5. SpinUp (or SpinDown)

 6. KeyUp

What about code-initiated events?
The SpinButton control can also be changed by VBA code, which also triggers the appro-
priate event(s). For example, the following statement sets the spbDemo.Value property to
0 and also triggers the Change event for the SpinButton control, but only if its value
was not already 0:

Me.spbDemo.Value = 0

You might think that you could disable events by setting the EnableEvents property of
the Application object to False. Unfortunately, this property applies only to events
that involve true Excel objects: Workbooks, Worksheets, and Charts.

Pairing a SpinButton with a TextBox
A SpinButton controlhas a Value property, but this control doesn’t have a caption in
which to display its value. In many cases, however, you’ll want the user to see the spin but-
ton value. And sometimes you’ll want the user to be able to change the spin button value
directly instead of clicking the spin button repeatedly.

The solution is to pair a spin button with a text box, which enables the user to specify a
value either by typing it in the text box directly or by clicking the spin button to incre-
ment or decrement the value in the text box.

Figure 13.12 shows a simple example. The SpinButton control’s Min property is -10, and
its Max property is 10. Clicking the spin button’s arrows will change its value to an integer
between –10 and 10.

FIGURE 13.12

This SpinButton is paired with a TextBox.

On the Web
The example is available on the book’s website in the Spinbutton and Textbox.xlsm file.

471

Chapter 13: Introducing UserForms

13

The code required to link a spin button with a text box is relatively simple. It’s basically
a matter of writing event-handler procedures to ensure that the SpinButton control’s
Value property is always in sync with the TextBox control’s Text property. In the fol-
lowing code, the controls have their default names (SpinButton1 and TextBox1).

The following procedure is executed whenever the SpinButton control’s Change event
is triggered. That is, the procedure is executed when the user clicks the spin button or
changes its value by pressing an arrow key.

Private Sub SpinButton1_Change()
 Me.TextBox1.Text = Me.SpinButton1.Value
End Sub

The procedure assigns the SpinButton control’s Value to the Text property of the
TextBox control. If the user enters a value directly in the text box, its Change event is
triggered and the following procedure is executed:

Private Sub TextBox1_Change()
 Dim NewVal As Long

 If IsNumeric(Me.TextBox1.Text) Then
 NewVal = Val(Me.TextBox1.Text)
 If NewVal >= Me.SpinButton1.Min And _
 NewVal <= Me.SpinButton1.Max Then _
 Me.SpinButton1.Value = NewVal
 End If
End Sub

This procedure starts by determining whether the entry in the text box is a number. If so,
the procedure continues and the text is assigned to the NewVal variable. The next state-
ment determines whether the value is within the proper range for the spin button. If so,
the SpinButton control’s Value property is set to the value entered in the text box.
If the entry is not numeric or is out of range, nothing happens.

The example is set up so that clicking the OK button (which is named OKButton) transfers
the spin button value to the active cell. The event handler for this CommandButton con-
trol’s Click event is as follows:

Private Sub OKButton_Click()
' Enter the value into the active cell
 If CStr(Me.SpinButton1.Value) = Me.TextBox1.Text Then
 ActiveCell = Me.SpinButton1.Value
 Unload Me
 Else
 MsgBox "Invalid entry.", vbCritical
 Me.TextBox1.SetFocus
 Me.TextBox1.SelStart = 0
 Me.TextBox1.SelLength = Len(Me.TextBox1.Text)
 End If
End Sub

472

Part III: Working with UserForms

This procedure does one final check: it makes sure that the text entered in the text box
matches the spin button’s value. This check is necessary in the case of an invalid entry. For
example, if the user enters 3r in the text box, the spin button’s value would not be changed
and the result placed in the active cell would not be what the user intended. Note that the
SpinButton’s Value property is converted to a string by using the CStr function. This
conversion ensures that the comparison won’t generate an error if a value is compared with
text. If the spin button’s value doesn’t match the text box’s contents, a message box is dis-
played. Notice that the focus is set to the TextBox object, and the contents are selected
(by using the SelStart and SelLength properties). This setup makes it easy for the
user to correct the entry.

About the Tag property
Every UserForm and control has a Tag property. This property doesn’t represent anything specific and,
by default, is empty. You can use the Tag property to store information for your own use.

For example, you may have a series of TextBox controls in a UserForm. The user may be required to
enter text in some but not all of them. You can use the Tag property to identify (for your own use)
which fields are required. In this case, you can set the Tag property to a string such as Required. Then
when you write code to validate the user’s entries, you can refer to the Tag property.

The following example is a function that examines all TextBox controls on UserForm1 and returns the
number of required TextBox controls that are empty: if the function returns a number greater than
0, it means that all required fields were not completed.

Function EmptyCount() As Long
 Dim ctl As Control

 EmptyCount= 0
 For Each ctl In UserForm1.Controls
 If TypeName(ctl) = "TextBox" Then
 If ctl.Tag = "Required" Then
 If Len(ctl.Text) = 0 Then
 EmptyCount = EmptyCount + 1
 End If
 End If
 End If
 Next ctl
End Function

As you work with UserForms, you’ll probably think of other uses for the Tag property.

473

Chapter 13: Introducing UserForms

13

Referencing UserForm Controls
When working with controls on a UserForm, the event-handler VBA code is usually con-
tained in the code window for the UserForm. In such a case, you do not need to qualify ref-
erences to the controls because the controls are assumed to belong to the UserForm.

You can also refer to UserForm controls from a general VBA module. To do so, you need to
qualify the reference to the control by specifying the UserForm name. For example, con-
sider the following procedure, which is located in a standard module. It simply displays the
UserForm named UserForm1.

Sub GetData()
 UserForm1.Show
End Sub

Assume that UserForm1 contains a text box (named TextBox1), and you want to provide
a default value for the text box. You could modify the procedure as follows:

Sub GetData()
 UserForm1.TextBox1.Value = "John Doe"
 UserForm1.Show
End Sub

Another way to set the default value is to take advantage of the UserForm’s Initialize
event. You can write code in the UserForm_Initialize procedure, which is located in
the code module for the UserForm. Here’s an example:

Private Sub UserForm_Initialize()
 Me.TextBox1.Value = "John Doe"
End Sub

Note that when the control is referenced in the code module for the UserForm, you can use
the Me keyword instead of the UserForm name. In fact, when you’re in the UserForm’s code
module, you aren’t required to use the Me keyword. If you omit it, VBA assumes that you’re
referencing the control on the form you’re in. However, qualifying references to controls
does have an advantage: it allows you to take advantage of the Auto List Members feature,
which lets you choose the control names from a drop-down list.

Rather than use the actual name of the UserForm, it’s preferable to use Me. Then, if you change the name of the
UserForm, you won’t need to replace the references in your code.

474

Part III: Working with UserForms

Understanding the controls collection
The controls on a UserForm make up a collection. For example, the following statement displays the
number of controls on UserForm1:

MsgBox UserForm1.Controls.Count

VBA does not maintain a collection of each control type. For example, there is no collection of
CommandButton controls. However, you can determine the type of control by using the TypeName
function. The following procedure uses a For Each structure to loop through the Controls collection
and then displays the number of CommandButton controls on UserForm1:

Sub CountButtons()
 Dim cbCount As Long
 Dim ctl as Control

 cbCount = 0
 For Each ctl In UserForm1.Controls
 If TypeName(ctl) = "CommandButton" Then cbCount = cbCount + 1
 Next ctl
 MsgBox cbCount
End Sub

Customizing the Toolbox
When a UserForm is active in VBE, the Toolbox displays the controls that you can add to
the UserForm. If the Toolbox isn’t visible, choose View ➪ Toolbox to display it. This section
describes ways to customize the Toolbox.

Adding new pages to the Toolbox
The Toolbox initially contains a single tab named Controls. Right-click this tab and choose
New Page to add a new tab to the Toolbox. You can also change the text displayed on the
tab by choosing Rename from the shortcut menu.

Customizing or combining controls
A handy feature lets you customize a control and then save it for future use. You can, for
example, create a command button that’s set up to serve as an OK button. Set the fol-
lowing properties to customize the CommandButton control: Width, Height, Caption,
Default, and Name. Then drag the customized button to the Toolbox to create a new con-
trol. Right-click the new control to rename it or change its icon.

475

Chapter 13: Introducing UserForms

13

You can also create a new Toolbox entry that consists of multiple controls. For example,
you can create two command buttons that represent a UserForm’s OK and Cancel buttons.
Customize them as you like and then select them both and drag them to the Toolbox. Then,
you can use this new Toolbox control to add two customized buttons in one fell swoop.

This type of customization also works with controls that act as containers. For example,
create a Frame control and add four customized option buttons, neatly spaced and aligned.
Then drag the frame to the Toolbox to create a customized Frame control.

To help identify customized controls, right-click the control and choose Customize xxx from
the shortcut menu (where xxx is the control’s name). You see a new dialog box that lets you
change the tooltip text, edit the icon, or load a new icon image from a file.

You may want to place your customized controls on a separate page in the Toolbox. Then you can export the entire
page so that you can share it with other Excel users. To export a Toolbox page, right-click the tab and choose Export
Page.

Figure 13.13 shows a new page with eight customized controls:

 ■ A frame with four option buttons
 ■ A text box and spinner
 ■ Six check boxes
 ■ A “critical” red X icon
 ■ An exclamation point icon
 ■ A question mark icon
 ■ An Information icon
 ■ Two command buttons

The four icons are the same images displayed by the MsgBox function.

Adding other ActiveX controls
UserForms can use other ActiveX controls developed by Microsoft or other vendors. To add
an additional ActiveX control to the Toolbox, right-click the Toolbox and choose Additional
Controls. You see the dialog box shown in Figure 13.14.

On the Web
You can find these customized controls on the book’s website in the newcontrols.pag file. To import the PAG file
as a new page in your Toolbox, right-click a tab, choose Import Page, and then locate and choose the file.

476

Part III: Working with UserForms

FIGURE 13.13

The Toolbox, with a new page of controls

FIGURE 13.14

The Additional Controls dialog box lets you add other ActiveX controls.

477

Chapter 13: Introducing UserForms

13

The Additional Controls dialog box lists all ActiveX controls installed on your system.
Select the control(s) that you want to add and then click OK to add an icon for each
selected control.

Creating UserForm Templates
You may find that when you design a new UserForm, you tend to add the same controls
each time. For example, every UserForm might have two command buttons that serve as OK
and Cancel buttons. In the preceding section, we describe how to create a new control that
combines these two (customized) buttons into a single control. Another option is to create
your UserForm template and then export it so that you can import it into other projects. An
advantage is that the event-handler code for the controls is stored with the template.

Start by creating a UserForm that contains all of the controls and customizations that you’d
need to reuse in other projects. Then make sure that the UserForm is selected and choose
File ➪ Export File (or press Ctrl+E). You’ll be prompted for a filename.

Then, when you start your next project, choose File ➪ Import File to load the saved
UserForm.

Emulating Excel’s dialog boxes
The look and feel of Windows dialog boxes differs from program to program. When developing appli-
cations for Excel, it’s best to try to mimic Excel’s dialog box style whenever possible.

A good way to learn how to create effective dialog boxes is to try to copy one of Excel’s dialog boxes
down to the smallest detail. For example, make sure that you get all the hot keys defined and be sure
that the tab order is the same. To re-create one of Excel’s dialog boxes, you need to test it under
various circumstances and see how it behaves. Analyzing Excel’s dialog boxes will definitely improve
your own dialog boxes.

On the other hand, you’ll find that it’s impossible to duplicate some of Excel’s dialog boxes. For
example, it’s not possible to duplicate the Convert Text to Columns Wizard dialog box, which is dis-
played when you choose Data ➪ Data Tools ➪ Text to Columns. This dialog box uses controls that
are not available to VBA users.

CautiOn
Most ActiveX controls installed on your system will probably not work in Excel UserForms. Also, some controls require
a license to use them in an application. If you (or the users of your application) aren’t licensed to use a particular
control, an error will occur.

478

Part III: Working with UserForms

A UserForm Checklist
Before you unleash a UserForm on end users, be sure that everything is working correctly.
The following checklist should help you identify potential problems:

 ■ Are similar controls the same size?
 ■ Are the controls evenly spaced?
 ■ Is the dialog box overwhelming? If so, you may want to group the controls by using

a MultiPage control.
 ■ Can every control be accessed with a hot key?
 ■ Are any hot keys duplicated?
 ■ Is the tab order set correctly?
 ■ Will your VBA code take appropriate action if the user presses Esc or clicks the

Close button on the UserForm?
 ■ Is any text misspelled?
 ■ Does the dialog box have an appropriate caption?
 ■ Will the dialog box display properly at all video resolutions?
 ■ Are the controls grouped logically (by function)?
 ■ Do ScrollBar and SpinButton controls allow only valid values?
 ■ Does the UserForm use any controls that might not be installed on every system?
 ■ Are ListBox controls set properly (single, multi, or extended)?

If you have a smaller group of users who can test your form before you send it to a wider
group, this can be helpful in finding problems.

479

CHAP T ER

14
Looking at UserForm Examples

IN THIS CHAPTER
Using a UserForm for a simple menu

Selecting ranges from a UserForm

Using a UserForm as a splash screen

Changing the size of a UserForm while it’s displayed

Zooming and scrolling a sheet from a UserForm

Understanding various techniques that involve a ListBox control

Using an external control

Using the MultiPage control

Animating a Label control

Creating a UserForm “Menu”
Sometimes, you might want to use a UserForm as a type of menu. In other words, the UserForm
presents some options, and the user makes a choice. This section presents two ways to do this: by
using command buttons and by using a list box.

 Chapter 15 contains additional examples of more advanced UserForm techniques.

Using CommandButtons in a UserForm
Figure 14.1 shows an example of a UserForm that uses command buttons as a simple menu.

Excel® 2019 Power Programming with VBA, First Edition. Michael Alexander and Dick Kusleika.
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.

480

Part III: Working with UserForms

FIGURE 14.1

This dialog box uses command buttons as a menu.

Setting up this sort of UserForm is easy, and the code behind the UserForm is straightfor-
ward. Each command button has its own procedure for its Click event. For example, the
following procedure is executed when CommandButton1 is clicked:

Private Sub CommandButton1_Click()
 Me.Hide
 Macro1
 Unload Me
End Sub

This procedure hides the UserForm, runs a procedure called Macro1, and then closes the
UserForm. The other buttons have similar event-handler procedures.

Using a list box in a UserForm
Figure 14.2 shows another example that uses a list box as a menu.

FIGURE 14.2

This dialog box uses a list box as a menu.

This style is easier to maintain because you can easily add new menu items without adjust-
ing the size of the UserForm. Before the UserForm is displayed, its Initialize event-
handler procedure is called. This procedure, which follows, uses the AddItem method to
add six items to the list box:

Private Sub UserForm_Initialize()
 With Me.ListBox1

481

Chapter 14: Looking at UserForm Examples

14

 .AddItem "Macro1"
 .AddItem "Macro2"
 .AddItem "Macro3"
 .AddItem "Macro4"
 .AddItem "Macro5"
 .AddItem "Macro6"
 End With
End Sub

The Execute button also has a procedure to handle its Click event, shown here:

Private Sub ExecuteButton_Click()
 Select Case Me.ListBox1.ListIndex
 Case -1
 MsgBox "Select a macro from the list."
 Exit Sub
 Case 0: Macro1
 Case 1: Macro2
 Case 2: Macro3
 Case 3: Macro4
 Case 4: Macro5
 Case 5: Macro6
 End Select
 Unload Me
End Sub

This procedure accesses the ListIndex property of the ListBox control to determine
which item is selected. The procedure uses a Select Case structure to execute the appro-
priate macro. If ListIndex is -1, nothing is selected in the list box, and the user sees a
message.

In addition, this UserForm has a procedure to handle the double-click event for the list
box. Double-clicking an item in the list box executes the corresponding macro.

 Chapter 15 shows a similar example in which you can use a UserForm to simulate a toolbar.

Selecting Ranges from a UserForm
Many of Excel’s built-in dialog boxes allow the user to specify a range. For example, the
Goal Seek dialog box (displayed by choosing Data ➪ Forecast ➪ What-If Analysis ➪ Goal
Seek) asks the user to select two single-cell ranges. The user can either type the range

On the Web
The two examples in this section are available on the book’s website in the Userform Menus.xlsm file.

482

Part III: Working with UserForms

addresses (or names) directly or use the mouse to point and click in a sheet to make a range
selection.

Your UserForms can also provide this type of functionality, thanks to the RefEdit control.
The RefEdit control doesn’t look exactly like the range selection control used in Excel’s
built-in dialog boxes, but it works in a similar manner. If the user clicks the small button
on the right side of the control, the dialog box disappears temporarily and a small range
selector is displayed—which is exactly what happens with Excel’s built-in dialog boxes.

Unfortunately, the RefEdit control has a few quirks that still haven’t been fixed. You’ll find that this control doesn’t
allow the user to use shortcut range-selection keys (for example, pressing End, followed by Shift and the down arrow,
will not select cells to the end of the column). In addition, the control is mouse-centric. After clicking the small but-
ton on the right side of the control (to hide the dialog box temporarily), you’re limited to mouse selections only. You
can’t use the keyboard to make a selection.

Figure 14.3 shows a UserForm that contains a RefEdit control. This dialog box enables the
user to perform a simple mathematical operation on all nonformula (and nonempty) cells
in the selected range. The operation that’s performed corresponds to the selected option
button.

FIGURE 14.3

The RefEdit control allows the user to select a range.

On the Web
This example is available on the book’s website in a file named Range Selection Demo.xlsm.

483

Chapter 14: Looking at UserForm Examples

14

The following are a few things to keep in mind when using a RefEdit control:

 ■ The RefEdit control returns a text string that represents a range address. You can
convert this string to a Range object by using a statement such as the following:

Set UserRange = Range(Me.RefEdit1.Text)

 ■ Initializing the RefEdit control to display the current range selection is good
practice. You can do so in the UserForm_Initialize procedure by using a state-
ment such as the following:

Me.RefEdit1.Text = ActiveWindow.RangeSelection.Address

 ■ For best results, avoid using a RefEdit control inside a Frame or MultiPage con-
trol. Doing so may cause Excel to crash.

 ■ Don’t assume that RefEdit will always return a valid range address. Pointing to
a range isn’t the only way to get text into this control. The user can type any text
and can also edit or delete the displayed text. Therefore, you need to make sure
that the range is valid. The following code is an example of a way to check for a
valid range. If an invalid range is detected, the user is given a message, and the
focus is set to the RefEdit control so that the user can try again.

On Error Resume Next
Set UserRange = Range(Me.refRange.Text)
If Err.Number <> 0 Then
 MsgBox "Invalid range selected"
 Me.refRange.SetFocus
 Exit Sub
End If
On Error GoTo 0

 ■ The user can also click the worksheet tabs while selecting a range with the
RefEdit control. Therefore, you can’t assume that the selection is on the active
sheet. However, if a different sheet is selected, the range address is preceded by a
sheet name. Here’s an example:

Sheet2!A1:C4

 ■ If you need to get a single cell selection from the user, you can isolate the upper-
left cell of a selected range by using a statement such as the following:

Set OneCell = Range(Me.RefEdit1.Text).Cells(1)

 As we discuss in Chapter 12, you can also use Excel’s InputBox method to allow the user to select a
range.

Creating a Splash Screen
Some developers like to display introductory information when their application is opened.
This display is commonly known as a splash screen.

484

Part III: Working with UserForms

You can create a splash screen for your Excel application with a UserForm. This example is
essentially a UserForm that is displayed automatically when the workbook is opened and
then dismisses itself after five seconds.

Follow these instructions to create a splash screen for your project:

 1. Create your workbook.

 2. Activate the Visual Basic Editor (VBE) and insert a new UserForm into the project.

The code in this example assumes that this form is named frmSplash.

 3. Place any controls that you like on frmSplash.

For example, you may want to insert an Image control that has your company’s
logo. Figure 14.4 shows an example.

FIGURE 14.4

This splash screen is displayed briefly when the workbook is opened.

On the Web
This book’s website contains a workbook that demonstrates this procedure in a file named Splash Screen
.xlsm.

485

Chapter 14: Looking at UserForm Examples

14

 4. Insert the following procedure into the code module for the ThisWorkbook object:

Private Sub Workbook_Open()
 frmSplash.Show
End Sub

 5. Insert the following procedure into the code module for frmSplash.

For a delay other than five seconds, change the argument for the TimeSerial
function.

Private Sub UserForm_Activate()
 Application.OnTime Now + _
 TimeSerial(0,0,5), "KillTheForm"
End Sub

 6. Insert the following procedure into a general VBA module:

Private Sub KillTheForm()
 Unload frmSplash
End Sub

When the workbook is opened, the Workbook_Open procedure is executed. The
procedure in step 4 displays the UserForm. At that time, the UserForm’s Activate
event occurs, which triggers the UserForm_Activate procedure (see step 5). This
procedure uses the Application.OnTime method to execute a procedure named
KillTheForm at a particular time. In this case, the time is five seconds after the
activation event. The KillTheForm procedure simply unloads the UserForm.

 7. As an option, you can add a small command button named cmdCancel, set its
Cancel property to True, and insert the following event-handler procedure in the
UserForm’s code module:

Private Sub cmdCancel_Click()
 Unload Me
End Sub

Doing so lets the user cancel the splash screen before the time has expired by
pressing Esc. In the example, a small button is placed behind another object so that
it’s not visible.

CautiOn
Keep in mind that the splash screen isn’t displayed until the workbook is entirely loaded. In other words, if you’d like
to display the splash screen to give the user something to look at while a large workbook is loading, this technique
won’t fill the bill.

486

Part III: Working with UserForms

If your application needs to run some VBA procedures at startup, you can display the UserForm modeless so that the
code will continue running while the UserForm is displayed. To do so, change the Workbook_Open procedure as
follows:
Private Sub Workbook_Open()
 frmSplash.Show vbModeless
 ' other code goes here
End Sub

Disabling a UserForm’s Close Button
When a UserForm is displayed, clicking the Close button (the X in the upper-right corner)
will unload the form. You might have a situation in which you don’t want the Close button
to unload the form. For example, you might require that the UserForm be closed only by
clicking a particular command button.

Although you can’t actually disable the Close button, you can prevent the UserForm from
closing if the user clicks it. You can do so by monitoring the UserForm’s QueryClose event.

The following procedure, which is located in the code module for the UserForm, is executed
before the form is closed (that is, when the QueryClose event occurs):

Private Sub UserForm_QueryClose _
 (Cancel As Integer, CloseMode As Integer)
 If CloseMode = vbFormControlMenu Then
 MsgBox "Click the OK button to close the form."
 Cancel = True
 End If
End Sub

The UserForm_QueryClose procedure uses two arguments. The CloseMode argument
contains a value that indicates the cause of the QueryClose event. If CloseMode is equal
to vbFormControlMenu (a built-in constant), the user clicked the Close button. If a
message is displayed, the Cancel argument is set to True, and the form isn’t actually
closed.

On the Web
The example in this section is available on the book’s website in a file named QueryClose Demo.xlsm.

487

Chapter 14: Looking at UserForm Examples

14

Preventing Breaking Out of the Macro
Keep in mind that a user can press Ctrl+Break to break out of the macro. In this example, pressing
Ctrl+Break while the UserForm is displayed dismisses the UserForm. To prevent this occurrence, execute
the following statement prior to displaying the UserForm:

Application.EnableCancelKey = xlDisabled

Make sure that your application is debugged before you add this statement. Otherwise, you’ll find
that it’s impossible to break out of an accidental endless loop.

Changing a UserForm’s Size
Many applications use dialog boxes that change their own size. For example, Excel’s Find
and Replace dialog box (displayed when you choose Home ➪ Editing ➪ Find & Select ➪
Replace) adjusts its height when the user clicks the Options button.

The example in this section demonstrates how to get a UserForm to change its size dynami-
cally. Changing a dialog box’s size is done by altering the Width or Height property of the
UserForm object. This example displays a list of worksheets in the active workbook and lets
the user select which sheets to print.

 Refer to Chapter 15 for an example that allows the user to change the UserForm’s size by dragging the
lower-right corner.

Figure 14.5 shows the two states of the dialog box: as it is first displayed and after the user
clicks the Options button. Note that the button’s caption changes, depending on the size of
the UserForm.

FIGURE 14.5

A dialog box before and after displaying options

488

Part III: Working with UserForms

While you’re creating the UserForm, set it to its largest size to enable you to work with
the controls. Then use the UserForm_Initialize procedure to set the UserForm to its
default (smaller) size.

The code uses two constants, defined at the top of the module:

Const SmallSize As Long = 124
Const LargeSize As Long = 164

The following is the event handler that’s executed when the CommandButton named
cmdOptions is clicked:

Private Sub cmdOptions_Click()
 Const OptionsHidden As String = "Options >>"
 Const OptionsShown As String = "<< Options"

 If Me.cmdOptions.Caption = OptionsHidden Then
 Me.Height = LargeSize
 Me.cmdOptions.Caption = OptionsShown
 Else
 Me.Height = SmallSize
 Me.cmdOptions.Caption = OptionsHidden
 End If
End Sub

This procedure examines the Caption property of the command button and sets the
UserForm’s Height property accordingly.

When controls aren’t displayed because they’re outside the visible portion of the UserForm, the accelerator keys for
such controls continue to function. In this example, the user can press the Alt+L hot key (to select landscape mode)
even if that option isn’t visible. To block access to nondisplayed controls, you can write code to disable the controls
when they aren’t displayed.

Zooming and Scrolling a Sheet from a UserForm
The example in this section demonstrates how to use ScrollBar controls to allow sheet
scrolling and zooming while a dialog box is displayed. Figure 14.6 shows how the example
dialog box is set up. When the UserForm is displayed, the user can adjust the worksheet’s
zoom factor (from 10% to 400%) by using the scroll bar at the top. The two scroll bars in

On the Web
The example in this section is available on the book’s website in the file named Change Userform Size
.xlsm.

489

Chapter 14: Looking at UserForm Examples

14

the bottom section of the dialog box allow the user to scroll the worksheet horizontally and
vertically.

FIGURE 14.6

Here, scroll bars allow zooming and scrolling of the worksheet.

The code for this example is remarkably simple. The controls are initialized in the
UserForm_Initialize procedure, which follows:

Private Sub UserForm_Initialize()
 Me.lblZoom.Caption = ActiveWindow.Zoom & "%"
' Zoom
 With Me.scbZoom
 .Min = 10
 .Max = 400
 .SmallChange = 1
 .LargeChange = 10
 .Value = ActiveWindow.Zoom
 End With

' Horizontally scrolling
 With Me.scbColumns
 .Min = 1
 .Max = ActiveSheet.UsedRange.Columns.Count
 .Value = ActiveWindow.ScrollColumn
 .LargeChange = 25
 .SmallChange = 1
 End With

' Vertically scrolling
 With Me.scbRows
 .Min = 1

On the Web
This example, named Zoom and Scroll Sheet.xlsm, is available on the book’s website.

490

Part III: Working with UserForms

 .Max = ActiveSheet.UsedRange.Rows.Count
 .Value = ActiveWindow.ScrollRow
 .LargeChange = 25
 .SmallChange = 1
 End With
End Sub

This procedure sets various properties of the ScrollBar controls by using values based on
the active window.

When the scbZoom control is used, the scbZoom_Change procedure (which fol-
lows) is executed. This procedure sets the ScrollBar control’s Value property to the
ActiveWindow’s Zoom property value. It also changes a label to display the current zoom
factor.

Private Sub scbZoom_Change()
 With ActiveWindow
 .Zoom = Me.scbZoom.Value
 Me.lblZoom = .Zoom & "%"
 .ScrollColumn = Me.scbColumns.Value
 .ScrollRow = Me.scbRows.Value
 End With
End Sub

Worksheet scrolling is accomplished by the two procedures that follow. These procedures
set the ScrollRow or ScrollColumn property of the ActiveWindow object equal to the
appropriate ScrollBar control value.

Private Sub scbColumns_Change()
 ActiveWindow.ScrollColumn = Me.scbColumns.Value
End Sub

Private Sub scbRows_Change()
 ActiveWindow.ScrollRow = Me.scbRows.Value
End Sub

If you use the Scroll event rather than the Change event in the preceding procedures, the event will be triggered
when the scroll bars are dragged—resulting in smooth zooming and scrolling. To use the Scroll event, just make
the procedure names scbColumns_Scroll and scbRows_Scroll(), respectively.

Exploring ListBox Techniques
The ListBox control is versatile, but it can be tricky to work with. This section contains
a number of examples that demonstrate common techniques that involve the ListBox
control.

491

Chapter 14: Looking at UserForm Examples

14

In most cases, the techniques described in this section work also with a ComboBox control.

The following are a few points to keep in mind when working with ListBox controls.
Examples in the sections that follow demonstrate many of these points:

 ■ You can retrieve the items in a list box from a range of cells (specified by the
RowSource property), or you can add them by using VBA code (using the AddItem
or List methods).

 ■ You can set up a list box to allow a single selection or multiple selections. You use
the MultiSelect property to specify whether the user can select more than one
item.

 ■ If a list box isn’t set up for a multiple selection, you can link the value of the list
box to a worksheet cell by using the ControlSource property.

 ■ You can display a list box with no items selected (the ListIndex property will
be -1). However, after an item is selected, the user can’t deselect all items. The
exception is if the MultiSelect property is True.

 ■ A list box can contain multiple columns (controlled by the ColumnCount property)
and even a descriptive header (controlled by the ColumnHeads property).

 ■ The vertical height of a list box displayed in a UserForm window at design time isn’t
always the same as the vertical height when the UserForm is displayed.

 ■ You can display the items in a list box either as check boxes (if multiple selections
are allowed) or as option buttons (if a single selection is allowed). The display type
is controlled by the ListStyle property.

For complete details on the properties and methods for a ListBox control, consult the Help
system.

Adding items to a ListBox control
Before displaying a UserForm that uses a ListBox control, you need to fill the list box
with items. You can fill a listbox at design time using items stored in a worksheet range or
at run-time using VBA.

The two examples in this section presume the following:

 ■ You have a UserForm named UserForm1.
 ■ This UserForm contains a ListBox control named ListBox1.
 ■ The workbook contains a sheet named Sheet1, and range A1:A12 contains the

items to be displayed in the list box.

Adding items to a list box at design time
To add items to a list box at design time, the list box items must be stored in a worksheet
range. Use the RowSource property to specify the range that contains the list box items.

492

Part III: Working with UserForms

Figure 14.7 shows the Properties window for a ListBox control. The RowSource property
is set to Sheet1!A1:A12. When the UserForm is displayed, the list box will contain the 12
items in this range. The items appear in the list box at design time as soon as you specify
the range for the RowSource property.

FIGURE 14.7

Setting the RowSource property at design time

Ensuring the Proper Range Is Used
In most cases, you’ll want to include the worksheet name when you specify the RowSource property;
otherwise, the list box will use the specified range on the active worksheet. In some cases, you may
need to qualify the range fully by including the workbook name. Here’s an example:

[budget.xlsx]Sheet1!A1:A12

A better practice is to define a workbook-level name for the range and use that name in your code.
This habit will ensure that the proper range is used even if rows above the range are added or deleted.

Adding items to a list box at run-time
To add list box items at run-time, you have three choices.

 ■ Set the RowSource property to a range address by using code.
 ■ Write code that uses the AddItem method to add the list box items.
 ■ Assign an array to the List property of the ListBox control.

493

Chapter 14: Looking at UserForm Examples

14

As you might expect, you can set the RowSource property through code rather than with
the Properties window. For example, the following procedure sets the RowSource property
for a list box before displaying the UserForm. In this case, the items consist of the cell
entries in a range named Categories in the Budget worksheet.

UserForm1.ListBox1.RowSource = "Budget!Categories"
 UserForm1.Show

If the list box items aren’t contained in a worksheet range, you can write VBA code to
fill the list box before the dialog box appears. The following procedure fills the list box
with the names of the months by using the AddItem method:

Sub ShowUserForm2()
' Fill the list box
 With UserForm1.ListBox1
 .RowSource=""
 .AddItem "January"
 .AddItem "February"
 .AddItem "March"
 .AddItem "April"
 .AddItem "May"
 .AddItem "June"
 .AddItem "July"
 .AddItem "August"
 .AddItem "September"
 .AddItem "October"
 .AddItem "November"
 .AddItem "December"
 End With
 UserForm1.Show
End Sub

You can also retrieve items from a range and use the AddItem method to add them to the
list box. Here’s an example that fills a list box with the contents of A1:A12 on Sheet1:

For Row = 1 To 12
 UserForm1.ListBox1.AddItem Sheets("Sheet1").Cells(Row, 1)
Next Row

Using the List property is even simpler. The statement that follows has the same effect as
the preceding For Next loop:

UserForm1.ListBox1.List = _
 Application.Transpose(Sheets("Sheet1").Range("A1:A12"))

CautiOn
In the preceding code, note that the RowSource property is set to an empty string. This setting avoids a potential
error that occurs if the Properties window has a nonempty RowSource setting. If you try to add items to a list box
that has a non-null RowSource setting, you’ll get a “Permission denied” error.

494

Part III: Working with UserForms

This example uses the Transpose function because the List property expects a horizon-
tal array, and the range is in a column rather than a row.

You can use the List property also if your data is stored in a one-dimensional array. For
example, assume that you have an array named MyList that contains 50 elements. The
following statement will create a 50-item list in ListBox1:

UserForm1.ListBox1.List = MyList

VBA has an Array function and a Split function, both of which return a one-dimensional
array. You can assign the results of one of those functions to the List property, as in these
examples:

UserForm1.ListBox1.List = Array("January", "February", _
 "March", "April", "May", "June", "July", "August", _
 "September", "October", "November", "December")
UserForm1.ListBox1.List = Split("Mon Tue Wed Thu Fri Sat Sun")

Adding only unique items to a list box
In some cases, you may need to fill a list box with unique (nonduplicated) items from a list.
For example, assume that you have a worksheet that contains customer data. One of the
columns might contain the state (see Figure 14.8). You’d like to fill a list box with the state
names of your customers, but you don’t want to include duplicate state names.

One fast and efficient technique involves using a Collection object. After creating a new
Collection object, you can add items to the object with the following syntax:

object.Add item, key, before, after

The key argument, if used, must be a unique text string that you can later use to access
that member of the collection. The important word here is unique. If you attempt to add
a nonunique key to a collection, an error occurs, and the item isn’t added. You can take
advantage of this situation and use it to create a collection that consists only of unique
items.

The following procedure starts by declaring a Collection object named NoDupes. It
assumes that a range named States contains a list of items, some of which may be
duplicated.

On the Web
The examples in this section are available on the book’s website in the file named Listbox Fill.xlsm.

495

Chapter 14: Looking at UserForm Examples

14

FIGURE 14.8

A Collection object is used to fill a list box with the unique items from column B.

The code loops through the cells in the range and attempts to add the cell’s value to the
NoDupes collection. It also uses the cell’s value (converted to a string) for the key argu-
ment. Using the On Error Resume Next statement causes VBA to ignore the error that
occurs if the key isn’t unique. When an error occurs, the item isn’t added to the collection,
which is just what you want. The procedure then transfers the items in the NoDupes col-
lection to the list box. The UserForm also contains a label that displays the number of
unique items.

Sub RemoveDuplicates1()
 Dim AllCells As Range, Cell As Range
 Dim NoDupes As Collection
 Dim Item As Variant

 Set NoDupes = New Collection

 On Error Resume Next
 For Each Cell In Range("State").Cells
 NoDupes.Add Cell.Value, CStr(Cell.Value)
 Next Cell
 On Error GoTo 0

496

Part III: Working with UserForms

' Add the non-duplicated items to a ListBox
 For Each Item In NoDupes
 UserForm1.ListBox1.AddItem Item
 Next Item

' Display the count
 UserForm1.Label1.Caption = "Unique items: " & NoDupes.Count

' Show the UserForm
 UserForm1.Show
End Sub

Determining the selected item in a list box
The examples in the preceding sections merely display a UserForm with a list box filled with
various items. These procedures omit a key point: how to determine which item or items
were selected by the user.

The example in this section assumes a single-selection ListBox object—one whose MultiSelect property is set
to 0.

To determine which item was selected, access the ListBox control’s Value property. The
statement that follows, for example, displays the text of the selected item in ListBox1.

MsgBox Me.ListBox1.Value

If no item is selected, this statement will generate an error.

If you need to know the position of the selected item in the list (rather than the content
of that item), you can access the ListBox control’s ListIndex property. The following
example uses a message box to display the item number of the selected list box item:

MsgBox "You selected item #" & Me.ListBox1.ListIndex

If no item is selected, the ListIndex property will return -1.

The numbering of items in a list box begins with 0, not 1. Therefore, the ListIndex of the first item is 0, and the
ListIndex of the last item is equivalent to the value of the ListCount property minus 1.

On the Web
This example, named Listbox Unique Items1.xlsm, is available on the book’s website. A workbook named
Listbox Unique Items2.xlsm has a slightly more sophisticated version of this technique and displays the
items sorted.

497

Chapter 14: Looking at UserForm Examples

14

Determining multiple selections in a list box
A ListBox control’s MultiSelect property can be any of three values:

0 (fmMultiSelectSingle): Only one item can be selected. This setting is the
default.

1 (fmMultiSelectMulti): One or more items can be selected. Press the spacebar or
click an item to select or deselect it.

2 (fmMultiSelectExtended): Press Ctrl and click to select multiple items. Shift-
clicking extends the selection from the previously selected item to the current item.
You can also use Shift and one of the arrow keys to extend the selected items.

If the list box allows multiple selections (that is, if its MultiSelect property is either 1
or 2), trying to access the ListIndex or Value property will result in an error. Instead,
you need to use the Selected property, which returns an array whose first item has an
index of 0. For example, the following statement displays True if the first item in the list
box list is selected:

MsgBox ListBox1.Selected(0)

The following code, from the example workbook on the website, loops through each item in
the list box. If the item was selected, the item’s text is appended to a variable called Msg.
Finally, the names of all selected items are displayed in a message box.

Private Sub cmdOK_Click()
 Dim Msg As String
 Dim i As Long

 If Me.ListBox1.ListIndex = -1 Then
 Msg = "Nothing"
 Else
 For i = 0 To Me.ListBox1.ListCount - 1
 If ListBox1.Selected(i) Then _
 Msg = Msg & Me.ListBox1.List(i) & vbNewLine
 Next i
 End If
 MsgBox "You selected: " & vbNewLine & Msg
 Unload Me
End Sub

Figure 14.9 shows the result when multiple list box items are selected.

On the Web
This book’s website contains a workbook that demonstrates how to identify the selected item(s) in a list box. It works
for single-selection and multiple-selection list boxes. The file is named Listbox Selected Items.xlsm.

498

Part III: Working with UserForms

FIGURE 14.9

This message box displays a list of items selected in a list box.

Multiple lists in a single list box
This example demonstrates how to create a list box in which the contents change depend-
ing on the user’s selection from a group of OptionButtons.

The list box gets its items from a worksheet range. The procedures that handle the Click
event for the OptionButton controls simply set the ListBox control’s RowSource
property to a different range. One of these procedures follows:

Private Sub optMonths_Click()
 Me.ListBox1.RowSource = "Sheet1!Months"
End Sub

Figure 14.10 shows the UserForm.

Clicking the option button named optMonths changes the RowSource property of the
ListBox control to use a range named Months on Sheet1.

List box item transfer
Some applications require a user to select several items from a list. It’s often useful to cre-
ate a new list of the selected items and display the new list in another list box. For an
example of this situation, check out the Quick Access Toolbar tab of the Excel Options dia-
log box.

On the Web
This example, named Listbox Multiple Lists.xlsm, is available on the book’s website.

499

Chapter 14: Looking at UserForm Examples

14

Figure 14.11 shows a dialog box with two list boxes. The Add button adds the item selected
in the left list box to the right list box. The Remove button removes the selected item from
the list on the right. A check box determines the behavior when a duplicate item is added
to the list. Namely, if the Allow Duplicates checkbox isn’t marked, the item is removed from
the From list so that it can’t be added again.

FIGURE 14.10

The contents of this list box depend on the option button selected.

FIGURE 14.11

Building a list from another list

The code for this example is simple. Here’s the procedure that is executed when the user
clicks the Add button:

Private Sub cmdAdd_Click()
 'Add the value

500

Part III: Working with UserForms

 Me.lbxTo.AddItem Me.lbxFrom.Value
 If Not Me.chkDuplicates.Value Then
 'If duplicates aren't allowed, remove the value
 Me.lbxFrom.RemoveItem Me.lbxFrom.ListIndex
 End If
 EnableButtons
End Sub

The code for the Remove button is similar.

Private Sub cmdRemove_Click()
 If Not Me.chkDuplicates.Value Then
 Me.lbxFrom.AddItem Me.lbxTo.Value
 End If
 Me.lbxTo.RemoveItem Me.lbxTo.ListIndex
 EnableButtons
End Sub

Note that neither routine checks to make sure that an item is actually selected. Instead,
each button’s Enabled property is set to False at design time. Another procedure,
EnableButtons, is called to enable the buttons only when it’s appropriate.

In addition to calling EnableButtons from cmdAdd_Click and cmdRemove_Click, both
ListBox’s Change events also call it. The ListBox control’s Change event procedures and
the EnableButtons procedure are shown here:

Private Sub lbxFrom_Change()
 EnableButtons
End Sub

Private Sub lbxTo_Change()
 EnableButtons
End Sub

Private Sub EnableButtons()
 Me.cmdAdd.Enabled = Me.lbxFrom.ListIndex > -1
 Me.cmdRemove.Enabled = Me.lbxTo.ListIndex > -1
End Sub

The ListIndex property is compared to -1, which returns True or False. That value is
assigned to the Enabled property to allow the user to click a button only when an item is
selected.

Moving items in a list box
Often, the order of items in a list is important. The example in this section demonstrates
how to allow the user to move items up or down in a list box. The VBE uses this type

On the Web
This example, named Listbox Item Transfer.xlsm, is available on the book’s website.

501

Chapter 14: Looking at UserForm Examples

14

of technique to let you control the tab order of the items in a UserForm. (Right-click a
UserForm, and choose Tab Order from the shortcut menu.)

Figure 14.12 shows a dialog box that contains a list box and two CommandButtons. Clicking
the Move Up button moves the selected item up in the ListBox; clicking the Move Down
button moves the selected item down.

FIGURE 14.12

The buttons allow the user to move items up or down in the ListBox.

The event-handler procedures for the two CommandButtons follow:

Private Sub cmdUp_Click()
 Dim lSelected As Long
 Dim sSelected As String

' Store the currently selected item
 lSelected = Me.lbxItems.ListIndex
 sSelected = Me.lbxItems.Value

' Remove the selected item
 Me.lbxItems.RemoveItem lSelected
' Add back the item one above
 Me.lbxItems.AddItem sSelected, lSelected - 1
' Reselect the moved item
 Me.lbxItems.ListIndex = lSelected - 1
End Sub

Private Sub cmdDown_Click()
 Dim lSelected As Long
 Dim sSelected As String

On the Web
This example, named Listbox Move Items.xlsm, is available on the book’s website.

502

Part III: Working with UserForms

' Store the currently selected item
 lSelected = Me.lbxItems.ListIndex
 sSelected = Me.lbxItems.Value

' Remove the selected item
 Me.lbxItems.RemoveItem lSelected
' Add back the item one below
 Me.lbxItems.AddItem sSelected, lSelected + 1
' Reselect the moved item
 Me.lbxItems.ListIndex = lSelected + 1
End Sub

The up and down buttons are disabled by default (their Enabled properties are set to
False at design time). The Click event of the ListBox control is used to enable the but-
tons only when it’s appropriate for them to be clicked. The cmdDown button is enabled only
when something is selected (the ListIndex property is 0 or greater) and the item selected
is not the last item. The cmdUp control is similarly enabled, except that it tests that the
item selected isn’t the first item. The event procedure follows:

Private Sub lbxItems_Click()
 Me.cmdDown.Enabled = Me.lbxItems.ListIndex > -1 _
 And Me.lbxItems.ListIndex < Me.lbxItems.ListCount - 1
 Me.cmdUp.Enabled = Me.lbxItems.ListIndex > -1 _
 And Me.lbxItems.ListIndex > 0
End Sub

Rapid clicking of the Move Up or the Move Down button doesn’t reliably register as multiple
clicks because VBA recognizes it as a double-click instead of two single clicks. To accom-
modate this, two more procedures that respond to the DblClick event for each button
were added. These procedures simply call the appropriate Click event procedure listed
previously.

Working with multicolumn ListBox controls
The list box examples so far have had only a single column for their items. You can, how-
ever, create a list box that displays multiple columns and (optionally) column headers.
Figure 14.13 shows an example of a multicolumn list box that gets its data from a work-
sheet range.

On the Web
This example, named Listbox Multicolumn1.xlsm, is available on the book’s website.

503

Chapter 14: Looking at UserForm Examples

14

FIGURE 14.13

This ListBox displays a three-column list with column headers.

To set up a multicolumn list box that uses data stored in a worksheet range, follow these
steps:

 1. Make sure that the ListBox control’s ColumnCount property is set to the correct
number of columns.

 2. Specify the correct multicolumn range in the Excel worksheet as the ListBox con-
trol’s RowSource property.

 3. If you want to display column headers, set the ColumnHeads property to True.

Do not include the column headings on the worksheet in the range setting for the
RowSource property. VBA will instead automatically use the row directly above the
first row of the RowSource range.

 4. Adjust the column widths by assigning a series of values, specified in points (1/72
of 1 inch) and separated by semicolons, to the ColumnWidths property. This will
almost always require some trial and error.

For example, for a three-column list box, the ColumnWidths property might be set
to the following text string:

110 pt;40 pt;30 pt

 5. Specify the appropriate column as the BoundColumn property.

The bound column specifies which column is referenced when an instruction polls
the ListBox control’s Value property.

504

Part III: Working with UserForms

To fill a list box with multicolumn data without using a range, you first create a two-
dimensional array and then assign the array to the ListBox control’s List property. The
following statements demonstrate this using a 12-row-by-2-column array named Data. The
two-column list box shows the month names in column 1 and the number of the days in
the month in column 2 (see Figure 14.14). Note that the procedure sets the ColumnCount
property to 2.

Private Sub UserForm_Initialize()
 Dim i As Long
 Dim Data(1 To 12, 1 To 2) As String
 Dim ThisYear As Long
 ThisYear = Year(Now)
' Fill the list box
 For i = 1 To 12
 Data(i, 1) = Format(DateSerial(ThisYear, i, 1), "mmmm")
 Data(i, 2) = Day(DateSerial(ThisYear, i + 1, 0))
 Next i
 Me.ListBox1.ColumnCount = 2
 Me.ListBox1.List = Data
End Sub

FIGURE 14.14

A two-column ListBox filled with data stored in an array

There is no way to specify column headers for the ColumnHeads property when the list source is a VBA array.

On the Web
This example is available on the book’s website in the file named Listbox Multicolumn2.xlsm.

505

Chapter 14: Looking at UserForm Examples

14

Using a list box to select worksheet rows
The example in this section displays a list box that consists of the entire used range
of the active worksheet (see Figure 14.15). The user can select multiple items in the list
box. Clicking the All button selects all items, and clicking the None button deselects all
items. Clicking OK selects those corresponding rows in the worksheet. You might find
that selecting multiple noncontiguous rows is easier when using this method rather than
by pressing Ctrl while you click the row borders.

FIGURE 14.15

This list box makes selecting rows in a worksheet easy.

Selecting multiple items is possible because the ListBox control’s MultiSelect property
is set to 1 - fmMultiSelectMulti. The checkboxes on each item are displayed because
the ListBox control’s ListStyle property is set to 1 - fmListStyleOption.

The UserForm’s Initialize procedure follows. This procedure creates a Range
object named rng that consists of the active sheet’s used range. Additional code sets

On the Web
This example, named Listbox Select Rows.xlsm, is available on the book’s website.

506

Part III: Working with UserForms

the ListBox control’s ColumnCount and RowSource properties and adjusts the
ColumnWidths property so that the list box columns are proportional to the column
widths in the worksheet.

Private Sub UserForm_Initialize()
 Dim ColCnt As Long
 Dim rng As Range
 Dim ColWidths As String
 Dim i As Long

 ColCnt = ActiveSheet.UsedRange.Columns.Count
 Set rng = ActiveSheet.UsedRange
 With Me.lbxRange
 .ColumnCount = ColCnt
 .RowSource = _
 rng.Offset(1).Resize(rng.Rows.Count - 1).Address
 For i = 1 To .ColumnCount
 ColWidths = ColWidths & rng.Columns(i).Width & ";"
 Next i
 .ColumnWidths = ColWidths
 .ListIndex = 0
 End With
End Sub

The All and None buttons (named cmdAll and cmdNone, respectively) have simple event-
handler procedures.

Private Sub cmdAll_Click()
 Dim i As Long
 For i = 0 To Me.lbxRange.ListCount - 1
 Me.lbxRange.Selected(i) = True
 Next i
End Sub

Private Sub cmdNone_Click()
 Dim i As Long
 For i = 0 To Me.lbxRange.ListCount - 1
 Me.lbxRange.Selected(i) = False
 Next i
End Sub

The cmdOK_Click procedure follows. This procedure creates a Range object named
RowRange that consists of the rows that correspond to the selected items in the list box.
To determine whether a row was selected, the code examines the Selected property of
the ListBox control. Note that it uses the Union function to add ranges to the RowRange
object.

Private Sub cmdOK_Click()
 Dim RowRange As Range
 Dim i As Long

507

Chapter 14: Looking at UserForm Examples

14

 For i = 0 To Me.lbxRange.ListCount - 1
 If Me.lbxRange.Selected(i) Then
 If RowRange Is Nothing Then
 Set RowRange = ActiveSheet.UsedRange.Rows(i + 2)
 Else
 Set RowRange = Union(RowRange, _
 ActiveSheet.UsedRange.Rows(i + 2))
 End If
 End If
 Next i
 If Not RowRange Is Nothing Then RowRange.Select
 Unload Me
End Sub

Using a list box to activate a sheet
The example in this section is just as useful as it is instructive. This example uses a mul-
ticolumn list box to display a list of sheets in the active workbook. The columns represent
the following:

 ■ The sheet’s name
 ■ The type of sheet (worksheet, chart sheet, or Excel 5/95 dialog sheet)
 ■ The number of nonempty cells in the sheet
 ■ Whether the sheet is visible

Figure 14.16 shows an example of the dialog box.

The code in the UserForm_Initialize procedure (which follows) creates a two-
dimensional array and collects the information by looping through the sheets in the active
workbook. It then transfers this array to the list box.

Public OriginalSheet As Object

Private Sub UserForm_Initialize()
 Dim SheetData() As String, Sht As Object
 Dim ShtCnt As Long, ShtNum As Long, ListPos As Long

 Set OriginalSheet = ActiveSheet
 ShtCnt = ActiveWorkbook.Sheets.Count
 ReDim SheetData(1 To ShtCnt, 1 To 4)
 ShtNum = 1
 For Each Sht In ActiveWorkbook.Sheets
 If Sht.Name = ActiveSheet.Name Then _
 ListPos = ShtNum - 1
 SheetData(ShtNum, 1) = Sht.Name
 Select Case TypeName(Sht)
 Case "Worksheet"
 SheetData(ShtNum, 2) = "Sheet"
 SheetData(ShtNum, 3) = _
 Application.CountA(Sht.Cells)

508

Part III: Working with UserForms

 Case "Chart"
 SheetData(ShtNum, 2) = "Chart"
 SheetData(ShtNum, 3) = "N/A"
 Case "DialogSheet"
 SheetData(ShtNum, 2) = "Dialog"
 SheetData(ShtNum, 3) = "N/A"
 End Select
 If Sht.Visible Then
 SheetData(ShtNum, 4) = "True"
 Else
 SheetData(ShtNum, 4) = "False"
 End If
 ShtNum = ShtNum + 1
 Next Sht
 With Me.lbxSheets
 .ColumnWidths = "100 pt;30 pt;40 pt;50 pt"
 .List = SheetData
 .ListIndex = ListPos
 End With
End Sub

FIGURE 14.16

This dialog box lets the user activate a sheet.

509

Chapter 14: Looking at UserForm Examples

14

The lbxSheets_Click procedure follows:

Private Sub lbxSheets_Click()
 If Me.chkPreview.Value Then _
 Sheets(Me.lbxSheets.Value).Activate
End Sub

The value of the CheckBox control (named chkPreview) determines whether the selected
sheet is previewed when the user clicks an item in the list box.

Clicking the OK button (named cmdOK) executes the cmdOK_Click procedure, which
follows:

Private Sub cmdOK_Click()
 Dim UserSheet As Object
 Set UserSheet = Sheets(Me.lbxSheets.Value)
 If UserSheet.Visible Then
 UserSheet.Activate
 Else
 If MsgBox("Unhide sheet?", _
 vbQuestion + vbYesNoCancel) = vbYes Then
 UserSheet.Visible = True
 UserSheet.Activate
 Else
 OriginalSheet.Activate
 End If
 End If
 Unload Me
End Sub

The cmdOK_Click procedure creates an object variable that represents the selected sheet.
If the sheet is visible, it’s activated. If it’s not visible, the user is presented with a
message box asking whether it should be unhidden. If the user responds in the affirma-
tive, the sheet is unhidden and activated. Otherwise, the original sheet (stored in a public
object variable named OriginalSheet) is activated.

Double-clicking an item in the ListBox has the same result as clicking the OK button.
The lbxSheets_DblClick procedure, which follows, simply calls the cmdOK_Click
procedure:

Private Sub lbxSheets_DblClick(ByVal Cancel As MSForms.ReturnBoolean)
 cmdOK_Click
End Sub

On the Web
This example is available on the book’s website in the file named Listbox Activate Sheet.xlsm.

510

Part III: Working with UserForms

Using a text box to filter a list box
If your list box has a large number of items, you can provide a way to filter the list box so
that you don’t have to scroll through so many entries. Figure 14.17 shows a list box whose
entries have been filtered by a text box.

FIGURE 14.17

Use a text box to filter a list box.

The UserForm uses a procedure named FillContacts, shown next, to add items to the list
box. FillContacts accepts an optional argument that’s used to filter the contacts. If you
don’t supply the sFilter argument, all 1,000 contacts are shown; otherwise, only those
contacts that match the filter are shown.

Private Sub FillContacts(Optional sFilter As String = "*")
 Dim i As Long, j As Long

 'Clear any existing entries in the ListBox
 Me.lbxContacts.Clear
 'Loop through all the rows and columns of the contact list
 For i = LBound(maContacts, 1) To UBound(maContacts, 1)
 For j = 1 To 4
 'Compare the contact to the filter
 If UCase(maContacts(i, j)) Like _
 UCase("*" & sFilter & "*") Then

 'Add it to the ListBox
 With Me.lbxContacts
 .AddItem maContacts(i, 1)
 .List(.ListCount - 1, 1) = maContacts(i, 2)

511

Chapter 14: Looking at UserForm Examples

14

 .List(.ListCount - 1, 2) = maContacts(i, 3)
 .List(.ListCount - 1, 3) = maContacts(i, 4)
 End With
 'If any column matched, skip the rest of the columns
 'and move to the next contact
 Exit For
 End If
 Next j
 Next i
 'Select the first contact
 If Me.lbxContacts.ListCount > 0 Then Me.lbxContacts.ListIndex = 0
End Sub

First, FillContacts clears any existing entries out of the list box. Next, the procedure
loops through all of the rows and the four columns of an array and compares each value to
sFilter. The procedure uses the Like operator and surrounds sFilter with asterisks so
that you can type any part of the value and still get a match. To make the filter case-
insensitive, it converts both values to uppercase using the UCase function. If any of the
values (first name, last name, email, or department) matches the filter, that contact is
added to the list box.

The maContacts array that FillContacts uses is created in the UserForm_
Initialize event. The event’s code fills the array using a table on Sheet1 called
tblContacts. Then it calls FillContacts with no filter argument so that all contacts
are shown initially. The code for the Initialize event follows:

Private maContacts As Variant

Private Sub UserForm_Initialize()
 maContacts = Sheet1.ListObjects("tblContacts").DataBodyRange
.Value
 FillContacts
End Sub

Finally, the Change event for the text box also calls FillContacts. But instead of
omitting the filter, this event supplies whatever text is currently in the text box. The
Change event is one simple line of code.

Private Sub tbxSearch_Change()
 FillContacts Me.tbxSearch.Text
End Sub

This is a good example of using something other than an event procedure in the UserForm
code module to do the work. Instead of duplicating code in the UserForm_Initialize
event and the tbxSearch_Change event, the two events simply call FillContacts.

On the Web
This example is available on the book’s website in the file named Listbox Filter.xlsm.

512

Part III: Working with UserForms

Using the MultiPage Control in a UserForm
The MultiPage control is useful for UserForms that must display many controls because it
enables you to group choices and place each group on a separate tab.

Figure 14.18 shows an example of a UserForm that contains a MultiPage control. In this
case, the control has three pages, each with its own tab.

FIGURE 14.18

MultiPage groups your controls on pages, making them accessible from a tab.

The Toolbox also contains a control named TabStrip, which resembles a MultiPage control. However, unlike the
MultiPage control, the TabStrip control isn’t a container for other objects. If the layout of your controls doesn’t
change when the user clicks a tab (but the values do), use a TabStrip. If the layout changes, use a MultiPage.

On the Web
This example is available on the book’s website in the file named Multipage Control Demo.xlsm.

513

Chapter 14: Looking at UserForm Examples

14

Using a MultiPage control can be tricky. The following are some things to keep in mind
when using this control:

 ■ The tab (or page) that’s displayed up front is determined by the control’s Value
property. A value of 0 displays the first tab, a value of 1 displays the second tab,
and so on.

 ■ By default, a MultiPage control has two pages. To add a new page in the VBE,
right-click a tab and choose New Page from the shortcut menu.

 ■ When you’re working with a MultiPage control, just click a tab to set the proper-
ties for that particular page. The Properties window will display the properties that
you can adjust.

 ■ You may find it difficult to select the actual MultiPage control because click-
ing the control selects a page within the control. To select the control itself,
click its border. Or, you can use the Tab key to cycle among all the controls. Yet
another option is to choose the MultiPage control from the drop-down list in the
Properties window.

 ■ If your MultiPage control has lots of tabs, you can set its MultiRow property to
True to display the tabs in more than one row.

 ■ If you prefer, you can display buttons instead of tabs. Just change the Style
property to 1. If the Style property value is 2, the MultiPage control won’t
display tabs or buttons and you’ll have to write code that provides a means for
switching tabs.

 ■ The TabOrientation property determines the location of the tabs on the
MultiPage control.

Using an External Control
The example in this section uses the Windows Media Player ActiveX control. Although this
control isn’t an Excel control (it’s installed with Windows), it works fine in a UserForm.

To make this control available, add a UserForm to a workbook and follow these steps:

 1. Activate the VBE.

 2. Right-click the Toolbox and choose Additional Controls.

Choose View ➪ Toolbox if the Toolbox isn’t visible.

CautiOn
ActiveX controls contain code. If that code is malicious, it could damage your computer. For that reason, Excel warns
you when add an external ActiveX control to your UserForm. If you don’t trust the control’s author, don’t add the
control.

514

Part III: Working with UserForms

 3. In the Additional Controls dialog box, scroll down and place a check mark next to
Windows Media Player.

 4. Click OK.

Your Toolbox will display a new control.

Figure 14.19 shows the Windows Media Player control in a UserForm, along with the
Property window. The URL property represents the media item being played (music or
video). If the item is on your hard drive, the URL property will contain the full path along
with the filename.

FIGURE 14.19

The Windows Media Player control in a UserForm

Figure 14.20 shows this control being used. The video is showing a visualization that
changes in time to the audio. A list box is filled with MP3 audio filenames. Clicking the
Play button plays the selected file. Clicking the Close button stops the sound and closes the
UserForm. This UserForm is displayed modeless, so the user can continue working when the
dialog box is displayed.

On the Web
This example is available on the book’s website in the Mediaplayer.xlsm file, which is in a separate directory
that includes public domain MP3 sound files.

515

Chapter 14: Looking at UserForm Examples

14

FIGURE 14.20

The Windows Media Player control

This example was easy to create. The UserForm_Initialize procedure adds the MP3
filenames to the ListBox. To keep things simple, it reads the files that are in the same
directory as the workbook. A more versatile approach is to let the user select a directory.

Private Sub UserForm_Initialize()
 Dim FileName As String
' Fill listbox with MP3 files
 FileName = Dir(ThisWorkbook.Path & "*.mp3", vbNormal)
 Do While Len(FileName) > 0
 Me.lbxMedia.AddItem FileName
 FileName = Dir()
 Loop
 Me.lbxMedia.ListIndex = 0
End Sub

The cmdPlay_Click event-handler code consists of a single statement, which assigns the
selected filename to the URL property of the WindowsMediaPlayer1 object.

Private Sub cmdPlay_Click()
' URL property loads track, and starts player
 WindowsMediaPlayer1.URL = _
 ThisWorkbook.Path & "\" & _
 Me.lbxMedia.List(Me.lbxMedia.ListIndex)
End Sub

You can probably think of lots of enhancements for this simple application. Also note that
this control responds to many events.

516

Part III: Working with UserForms

Animating a Label
The final example in this chapter demonstrates how to animate a Label control. The
UserForm shown in Figure 14.21 is an interactive random number generator.

FIGURE 14.21

Generating a random number

Two text boxes hold the lower and upper values for the random number. A label
initially displays four question marks, but the text is animated to show random numbers
when the user clicks the Start button. The Start button changes to a Stop button, and
clicking it again stops the animation and displays the random number. Figure 14.22 shows
the dialog box displaying a random number between -1,000 and 1000.

FIGURE 14.22

A random number has been chosen.

517

Chapter 14: Looking at UserForm Examples

14

The code that’s attached to the button is as follows:

Private Stopped As Boolean

Private Sub cmdStartStop_Click()
 Dim Low As Double, Hi As Double
 Dim wf As WorksheetFunction

 Set wf = Application.WorksheetFunction

 If Me.cmdStartStop.Caption = "Start" Then
' validate low and hi values
 If Not IsNumeric(Me.tbxStart.Text) Then
 MsgBox "Non-numeric starting value.", vbInformation
 With Me.tbxStart
 .SelStart = 0
 .SelLength = Len(.Text)
 .SetFocus
 End With
 Exit Sub
 End If

 If Not IsNumeric(Me.tbxEnd.Text) Then
 MsgBox "Non-numeric ending value.", vbInformation
 With Me.tbxEnd
 .SelStart = 0
 .SelLength = Len(.Text)
 .SetFocus
 End With
 Exit Sub
 End If

' Make sure they aren't in the wrong order
 Low = wf.Min(Val(Me.tbxStart.Text), Val(Me.tbxEnd.Text))
 Hi = wf.Max(Val(Me.tbxStart.Text), Val(Me.tbxEnd.Text))

' Adjust font size, if necessary
 Select Case _
 wf.Max(Len(Me.tbxStart.Text), Len(Me.tbxEnd.Text))

 Case Is < 5: Me.lblRandom.Font.Size = 72
 Case 5: Me.lblRandom.Font.Size = 60
 Case 6: Me.lblRandom.Font.Size = 48
 Case Else: Me.lblRandom.Font.Size = 36
 End Select

 Me.cmdStartStop.Caption = "Stop"
 Stopped = False
 Randomize

518

Part III: Working with UserForms

 Do Until Stopped
 Me.lblRandom.Caption = _
 Int((Hi - Low + 1) * Rnd + Low)
 DoEvents ' Causes the animation
 Loop
 Else
 Stopped = True
 Me.cmdStartStop.Caption = "Start"
 End If
End Sub

Because the button serves two purposes (starting and stopping), the procedure uses a
module-level variable, Stopped, to keep track of the state. The first part of the procedure
consists of two If-Then structures to validate the contents of the text box. Two more
statements ensure that the low value is in fact less than the high value. The next section
adjusts the label’s font size, based on the maximum value. The Do Until loop is respon-
sible for generating and displaying the random numbers.

Note the DoEvents statement. This statement causes Excel to “yield” to the operating
system. Without the statement, the label wouldn’t display each random number as it’s
generated. In other words, the DoEvents statement makes the animation possible.

The UserForm also contains a command button that serves as a Cancel button. This control
is positioned off the UserForm so that it’s not visible. This CommandButton control has
its Cancel property set to True, so pressing Esc is equivalent to clicking the button. Its
click event-handler procedure simply sets the Stopped variable to True and unloads the
UserForm.

Private Sub cmdCancel_Click()
 Stopped = True
 Unload Me
End Sub

On the Web
This example, named Random Number Generator.xlsm, is available on the book’s website.

519

CHAP T ER

15
Implementing Advanced
UserForm Techniques

IN THIS CHAPTER
Using modeless UserForms

Displaying a progress indicator

Creating a wizard—an interactive series of dialog boxes

Creating a function that emulates VBA’s MsgBox function

Allowing users to move UserForm controls

Displaying a UserForm with no title bar

Simulating a toolbar with a UserForm

Emulating a task pane with a UserForm

Allowing users to resize a UserForm

Handling multiple controls with a single event handler

Using a dialog box to select a color

Displaying a chart in a UserForm

Creating puzzles and games with UserForms

A Modeless Dialog Box
Most dialog boxes that you encounter are modal dialog boxes, which you must dismiss from the
screen before the user can do anything with the underlying application. Some dialog boxes, how-
ever, are modeless, which means that the user can continue to work in the application while the
dialog box is displayed.

To display a modeless UserForm, use a statement such as the following:

UserForm1.Show vbModeless

The keyword vbModeless is a built-in constant that has a value of 0. Therefore, the following
statement works identically:

UserForm1.Show 0

Excel® 2019 Power Programming with VBA, First Edition. Michael Alexander and Dick Kusleika.
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.

Part III: Working with UserForms

520

Figure 15.1 shows a modeless dialog box that displays information about the active cell.
When the dialog box is displayed, the user is free to move the cell cursor, activate other
sheets, and perform other Excel actions. The information displayed in the dialog box
changes when the active cell changes.

The key to making this UserForm work is determining when to update the information in
the dialog box. To do so, the code in the example monitors two workbook events: Sheet-
SelectionChange and SheetActivate. These event-handler procedures are located in
the code module for the ThisWorkbook object.

The event-handler procedures are simple.

Private Sub Workbook_SheetSelectionChange _
 (ByVal Sh As Object, ByVal Target As Range)
 UpdateBox
End Sub

FIGURE 15.1

This modeless dialog box remains visible while the user continues working.

On the Web
This example, named Modeless Userform1.xlsm, is available on the book’s website.

Refer to Chapter 6, “Understanding Excel’s Events,” for additional information about events.

Chapter 15: Implementing Advanced UserForm Techniques

521

15

Private Sub Workbook_SheetActivate(ByVal Sh As Object)
 UpdateBox
End Sub

The two previous procedures call the UpdateBox procedure, which follows:

Sub UpdateBox()
 With UserForm1
' Make sure a worksheet is active
 If TypeName(ActiveSheet) <> "Worksheet" Then
 .lblFormula.Caption = "N/A"
 .lblNumFormat.Caption = "N/A"
 .lblLocked.Caption = "N/A"
 Else
 .Caption = "Cell: " & _
 ActiveCell.Address(False, False)
 ' Formula
 If ActiveCell.HasFormula Then
 .lblFormula.Caption = ActiveCell.Formula
 Else
 .lblFormula.Caption = "(none)"
 End If
 ' Number format
 .lblNumFormat.Caption = ActiveCell.NumberFormat
 ' Locked
 .lblLocked.Caption = ActiveCell.Locked
 End If
 End With
End Sub

The UpdateBox procedure changes the UserForm’s caption to show the active cell’s
address; then it updates the three Label controls (lblFormula, lblNumFormat, and
lblLocked).

The following are a few points to help you understand how this example works:

 ■ The UserForm is displayed modeless so that you can still access the worksheet while
it’s displayed.

 ■ Code at the top of the procedure checks to make sure that the active sheet is
a worksheet. If the sheet isn’t a worksheet, the Label controls are assigned
the text N/A.

 ■ The workbook monitors the active cell by using the SheetSelectionChange
event (which is located in the ThisWorkbook code module).

 ■ The information is displayed in Label controls on the UserForm.

Figure 15.2 shows a more sophisticated version of this example. This version displays quite
a bit of additional information about the selected cell. The code is too lengthy to display
here, but you can view the well-commented code in the example workbook.

Part III: Working with UserForms

522

The following are some key points about this more sophisticated version:

 ■ The UserForm has a check box (Auto Update). When this check box is selected, the
UserForm is updated automatically. When Auto Update isn’t turned on, the user can
use the Update button to refresh the information.

 ■ The workbook uses a class module to monitor two events for all open workbooks: the
SheetSelectionChange event and the SheetActivate event. As a result,
the code to display the information about the current cell is executed automatically
whenever these events occur in any workbook (assuming that the Auto Update option
is in effect). Some actions (such as changing a cell’s number format) do not trigger
either of these events. Therefore, the UserForm also contains an Update button.

FIGURE 15.2

This modeless UserForm displays various pieces of information about the active cell.

On the Web
This example, named Modeless Userform2.xlsm, is available on the book’s website.

Chapter 15: Implementing Advanced UserForm Techniques

523

15

 ■ The counts displayed for the cell precedents and dependents fields include cells in
the active sheet only because of a limitation of the Precedents and Dependents
properties.

 ■ Because the length of the information will vary, VBA code is used to size and verti-
cally space the labels—and also to change the height of the UserForm if necessary.

Displaying a Progress Indicator
One of the most common requests among Excel developers is to create a progress indicator.
A typical progress indicator is a graphical thermometer-type display that shows how much of
a task is remaining, such as a lengthy macro.

In this section, we describe how to create three types of progress indicators:

 ■ A progress bar on a UserForm that’s called by a separate macro (a stand-alone prog-
ress indicator)

 ■ A progress bar that’s integrated into the same UserForm that initiates the macro
 ■ A progress bar on a UserForm that shows tasks being completed, rather than a

graphical bar

Using a progress indicator requires that your code gauge how far along your macro is in
completing its given task. How you do this will vary depending on the macro. For example,
if your macro writes data to cells and you know the number of cells that will be written to,
it’s a simple matter to write code that calculates the percent completed. Even if you can’t
accurately gauge the progress of a macro, it’s a good idea to give the user some indication
that the macro is still running and Excel hasn’t crashed.

Refer to Chapter 20, “Leveraging Class Modules,” for more information about class modules.

Modeless UserForms in Excel 2019
The single-document interface, which was introduced in Excel 2013, adds a new wrinkle to modeless
UserForms. When a modeless UserForm is displayed, it’s associated with the active workbook window.
So, if you switch to a different workbook window, the modeless dialog box may not be visible. Even if
it is visible, it will not work as you intended if a different workbook is active.

If you would like a modeless UserForm to be available in all workbook windows, you need to do some
extra work. A workbook (Modeless SDI.xlsm) on the book’s website demonstrates this technique.

The example uses a Windows API function to get the Windows handle of the modeless UserForm. The
workbook uses a class module to monitor all Window Activate events. When a window is activated,
another Windows API function sets the UserForm’s parent to the new workbook window. As a result,
the UserForm always appears on top of the active window.

Windows API functions vary depending on whether you use 32-bit or 64-bit Excel. See Chapter 21,
“Understanding Compatibility Issues,” for more information.

Part III: Working with UserForms

524

Creating a stand-alone progress indicator
This section describes how to set up a stand-alone progress indicator—that is, one that isn’t
initiated by displaying a UserForm—to show the progress of a macro. The macro in the fol-
lowing example clears the worksheet and writes 20,000 random numbers to a range of cells:

Sub GenerateRandomNumbers()
' Inserts random numbers on the active worksheet
 Const RowMax As Long = 500
 Const ColMax As Long = 40
 Dim r As Long, c As Long
 If TypeName(ActiveSheet) <> "Worksheet" Then Exit Sub
 Cells.Clear

CautiOn
A progress indicator will slow down your macro a bit because of the extra overhead of having to update it. If speed is
absolutely critical, you might prefer not to use one.

Displaying progress in the status bar
A simple way to display the progress of a macro is to use Excel’s status bar. The advantage is that
a status bar is easy to program. However, the disadvantage is that most users aren’t accustomed to
watching the status bar and may not see the indicator.

To write text to the status bar, use a statement such as the following:

Application.StatusBar = "Please wait..."

You can, of course, update the status bar while your macro progresses. For example, if you have a
variable named Pct that represents the percent completed, you can write code that periodically exe-
cutes a statement such as this:

Application.StatusBar = "Processing... " & Pct & "% Completed"

You can also display information about where the code is. If you’re working with a number of cells, you can
display each cell’s address in the status bar. Or, if you’re opening some files, you can display the file name.
It doesn’t necessarily tell the user how far along the code is, but it does tell them that it’s still running.

You can simulate a graphical progress indicator in the status bar by repeating a character as your code
progresses. The VBA function Chr$(149) produces a solid dot character, and the String() function
will repeat any character a specified number of times. The following statement shows up to 50 dots:

Application.StatusBar = String(Int(Pct * 50), Chr$(149))

When your macro finishes, you must reset the status bar to its normal state with the following statement:

Application.StatusBar = False

If you don’t reset the status bar, the final message will continue to be displayed.

Chapter 15: Implementing Advanced UserForm Techniques

525

15

 For r = 1 To RowMax
 For c = 1 To ColMax
 Cells(r, c) = Int(Rnd * 1000)
 Next c
 Next r
End Sub

After you make a few modifications to this macro (described in the next section), the User-
Form, shown in Figure 15.3, displays the progress.

Building the stand-alone progress indicator UserForm
Follow these steps to create the UserForm that will be used to display the progress of
your task:

1. Insert a new UserForm, change its Name property to UProgress, and change its
Caption property to Progress.

2. Add a Frame control, and name it frmProgress.

FIGURE 15.3

A UserForm displays the progress of a macro.

On the Web
This example, named Progress Indicator1.xlsm, is available on the book’s website.

Part III: Working with UserForms

526

3. Add a Label control inside the frame, name it lblProgress, remove the label’s
caption, and make its background color (BackColor property) something that will
stand out.

The label’s size doesn’t matter for now.

4. (Optional) Add another label above the frame to describe what’s going on.

5. Adjust the UserForm and controls so that they look something like Figure 15.4.

You can, of course, apply any other type of formatting to the controls. For example, the
SpecialEffect property for the Frame control was changed to make it appear sunken.

Creating the code that increments the progress bar
When the form is first called, its Initialize event is triggered. The following event pro-
cedure sets the color of the progress bar to red and sets its initial width to 0:

Private Sub UserForm_Initialize()
 With Me
 .lblProgress.BackColor = vbRed
 .lblProgress.Width = 0
 End With
End Sub

The form’s SetDescription method is used to add some text above the progress bar to
let the user know what’s going on. If you chose not to include this label on your form, you
don’t need to include this procedure.

Public Sub SetDescription(Description As String)
 Me.lblDescription.Caption = Description
End Sub

FIGURE 15.4

This UserForm will serve as a progress indicator.

Chapter 15: Implementing Advanced UserForm Techniques

527

15

The form’s UpdateProgress method sets the frame’s caption and increases the width of
the progress label. As the calling procedure progresses, higher percentages are passed into
UpdateProgress, and the label widens. Note that the UpdateProgress method uses
the Repaint method of the UserForm object. Without this statement, the changes to the
label would not be updated.

Public Sub UpdateProgress(PctDone As Double)
 With Me
 .frmProgress.Caption = Format(PctDone, "0%")
 .lblProgress.Width = PctDone * (.frmProgress.Width - 10)
 .Repaint
 End With
End Sub

Calling the stand-alone progress indicator from your code
The modified version of the GenerateRandomNumbers procedure (which was presented
earlier) follows. Note that additional code shows the form and updates its controls to indi-
cate progress.

Sub GenerateRandomNumbers()
' Inserts random numbers on the active worksheet
 Dim Counter As Long
 Dim r As Long, c As Long
 Dim PctDone As Double
 Const RowMax As Long = 500
 Const ColMax As Long = 40

 If TypeName(ActiveSheet) <> "Worksheet" Then Exit Sub
 ActiveSheet.Cells.Clear
 UProgress.SetDescription "Generating random numbers..."
 UProgress.Show vbModeless
 Counter = 1
 For r = 1 To RowMax
 For c = 1 To ColMax
 ActiveSheet.Cells(r, c) = Int(Rnd * 1000)
 Counter = Counter + 1
 Next c
 PctDone = Counter / (RowMax * ColMax)
 UProgress.UpdateProgress PctDone

tip
An additional accoutrement is to make the progress bar color match the workbook’s current theme. To do so, just add
this statement to the ShowUserForm procedure:

.lblProgress.BackColor = ActiveWorkbook.Theme. _
 ThemeColorScheme.Colors(msoThemeAccent1)

Part III: Working with UserForms

528

 Next r
 Unload UProgress
End Sub

The GenerateRandomNumbers procedure calls the form’s SetDescription property and
shows the form modeless so that the remaining code continues to run. The procedure then
executes two loops to write random values to cells, keeping count as it goes. In the outer
loop, the procedure calls the form’s UpdateProgress method, which takes one argument
(the PctDone variable, which represents the progress of the macro). PctDone will contain
a value between 0 and 1. At the end of the procedure, the form is unloaded.

Benefits of a stand-alone progress indicator
You now have a UserForm that you can call from any procedure where you want to show
progress. Simply show the form modeless, and call the UpdateProgress method in the
appropriate place in your code. There’s nothing in this UserForm that ties it to a particu-
lar calling procedure. The only requirement is that you send it increasing percentages, and
the form takes care of the rest.

In the calling procedure, you need to figure out how to determine the percentage completed
and assign it to the PctDone variable. In this example, you know how many cells you are going
to fill and you only need to keep a count of how many have already been filled to calculate the
progress. This calculation will be different for other calling procedures. If your code runs in a
loop (as in this example), determining the percentage completed is easy. If your code is not in a
loop, you might need to estimate the progress completed at various points in your code.

Showing a progress indicator that’s integrated into a UserForm
In the preceding example, you called a progress indicator UserForm that was completely
separate from your calling procedure. You may prefer to include the progress indicator
directly on the UserForm that’s running the code. In this section, we’ll show you a couple
of options for including a professional-looking progress indicator right on your form.

As in the previous example, this one enters random numbers into a worksheet. The
difference here is that the application contains a UserForm that allows the user to specify
the number of rows and columns for the random numbers (see Figure 15.5).

Modifying your UserForm for a progress indicator with a MultiPage control
The first technique will display a progress indicator on another page of a MultiPage con-
trol. This step assumes you have a UserForm all set up. You’ll add a MultiPage control. The
first page of the MultiPage control will contain all of your original UserForm controls. The
second page will contain the controls that display the progress indicator. When the macro
begins executing, VBA code will change the Value property of the MultiPage control,
effectively to hide the original controls and display the progress indicator.

On the Web
This book’s website demonstrates this technique in the Progress Indicator2.xlsm file.

Chapter 15: Implementing Advanced UserForm Techniques

529

15

The first step is to add a MultiPage control to your UserForm. Next, move all the existing
controls on the UserForm to Page1 of the MultiPage control.

Then activate Page2 of the MultiPage control, and set it up as shown in Figure 15.6. This
is essentially the same combination of controls used in the example in the previous section.

FIGURE 15.5

The user specifies the number of rows and columns for the random numbers.

FIGURE 15.6

Page2 of the MultiPage control will display the progress indicator.

Part III: Working with UserForms

530

Follow these steps to set up the MultiPage control:

1. Add a Frame control, and name it frmProgress.

2. Add a Label control inside the frame, name it lblProgress, remove the label’s
caption, and make its background color red.

3. (Optional) Add another label to describe what’s going on.

4. Next, activate the MultiPage control itself (not a page on the control) and set its
Style property to 2 – fmTabStyleNone. (This will hide the tabs.) You’ll prob-
ably need to adjust the size of the MultiPage control to account for the fact that
the tabs aren’t displayed.

Inserting the UpdateProgress procedure for a progress indicator with a MultiPage control
Insert the following procedure in the code module for the UserForm:

Sub UpdateProgress(Pct)
 With Me
 .frmProgress.Caption = Format(Pct, "0%")
 .frmProgress.Width = Pct * (.frmProgress.Width - 10)
 .Repaint
 End With
End Sub

The UpdateProgress procedure is called from the macro that’s executed when the user
clicks the OK button and performs the updating of the progress indicator.

Modifying your procedure for a progress indicator with a MultiPage control
You need to modify the procedure that is executed when the user clicks the OK button—the
Click event-handler procedure for the button named cmdOK_Click. First, insert the fol-
lowing statement at the top of your procedure:

Me.mpProgress.Value = 1

This statement activates Page2 of the MultiPage control (the page that displays
the progress indicator). If you named your MultiPage control something other than
mpProgress, you’ll need to adjust the code to use your name.

In the next step, you’re pretty much on your own. You need to write code to calculate the
percent completed and assign this value to a variable named PctDone. Most likely, this
calculation will be performed inside a loop. Then insert the following statement, which will
update the progress indicator:

UpdateProgress PctDone

tip
The easiest way to select the MultiPage control when the tabs are hidden is to use the drop-down list in the
Properties window. To select a particular page, specify a Value for the MultiPage control: 0 for Page1, 1 for
Page2, and so on.

Chapter 15: Implementing Advanced UserForm Techniques

531

15

How a progress indicator with a MultiPage control works
Using a MultiPage control as a progress indicator is straightforward, and, as you’ve seen, it
involves only one UserForm. The code switches pages of the MultiPage control and con-
verts your normal dialog box into a progress indicator. Because the MultiPage tabs are
hidden, it doesn’t even resemble a MultiPage control.

Showing a progress indicator without using a MultiPage control
The second technique is simpler because it doesn’t use a MultiPage control. Rather, the
progress indicator is stored at the bottom of the UserForm, but the UserForm’s height is
reduced so that the progress indicator controls aren’t visible. When it’s time to display the
progress indicator, the UserForm’s height is increased, which makes the progress indica-
tor visible.

Figure 15.7 shows the UserForm in the VBE.

The Height property of the UserForm is 177. However, before the UserForm is displayed,
the VBA code changes the Height property to 130 (which means that the progress indica-
tor controls aren’t visible to the user). When the user clicks OK, the VBA code changes the
Height property to 177 with the following statement:

Me.Height = 177

Figure 15.8 shows the UserForm with the progress indicator section unhidden.

FIGURE 15.7

The progress indicator will be hidden by reducing the height of the UserForm.

Part III: Working with UserForms

532

Creating a nongraphical progress indicator
The preceding examples showed graphical progress indicators by increasing the width of a
label. If you have a smaller number of steps, you may prefer to show a description of the
steps as they’re completed. The following procedure processes a small number of text files
in a folder. Instead of showing a progress bar, you can list the names of the files as they are
processed.

Sub ProcessFiles()

 Dim sFile As String, lFile As Long
 Const sPATH As String = "C:\Test Files\"

 sFile = Dir(sPATH & "*.txt")
 Do While Len(sFile) > 0
 ImportFile sFile
 sFile = Dir
 Loop

End Sub

FIGURE 15.8

The progress indicator in action

On the Web
This book’s website demonstrates this technique in the Progress Indicator3.xlsm file.

Chapter 15: Implementing Advanced UserForm Techniques

533

15

The procedure finds all of the text files in a directory and calls another procedure that
imports them. What happens to the file isn’t important, merely that there are a finite
number of steps to be completed.

Creating the UserForm to display the steps
Figure 15.9 shows the simple UserForm in the VBE. It has only two controls: a label to
describe what’s happening and a list box to list the steps.

The code behind the UserForm is equally simple. You change the descriptive label by
calling the SetDescription procedure. As the calling procedure progresses, you call the
AddStep procedure to add an item to the ListBox. The TopIndex property of the List-
Box object keeps the most recent steps visible if the ListBox isn’t tall enough.

Public Sub AddStep(sStep As String)
 With Me.lbxSteps
 .AddItem sStep
 .TopIndex = Application.Max(.ListCount, .ListCount - 6)
 End With
 Me.Repaint
End Sub

Modifying the calling procedure to use the progress indicator
The ProcessFiles procedure shown next has been modified to use the progress indicator
as it processes files. First, the UserForm’s Caption property is set to indicate what process
is occurring. Next, the SetDescription method is called so that the user knows what’s
appearing in the ListBox control. The Show method includes the vbModeless parameter

FIGURE 15.9

The steps are listed in a ListBox control.

Part III: Working with UserForms

534

that allows the calling procedure to continue executing. Inside the loop, the AddStep
method adds filenames to indicate progress. Figure 15.10 shows the UserForm in action.

Sub ProcessFiles()
 Dim sFile As String, lFile As Long
 Const sPATH As String = "C:\Text Files\"

 sFile = Dir(sPATH & "*.txt")
 UProgress.Caption = "Processing File Progress"
 UProgress.SetDescription "Completed files..."
 UProgress.Show vbModeless

 Do While Len(sFile) > 0
 ImportFile sFile
 UProgress.AddStep sPATH & sFile
 sFile = Dir
 Loop
 Unload UProgress
End Sub

This progress indicator is similar to the stand-alone progress indicator shown in a previous
section. It doesn’t care about what are the steps to your procedure. You can process files, fill
ranges on a worksheet, or perform any number of steps. By changing the Caption property
and calling the SetDescription method, you can customize this progress indicator for
whatever process you’re completing.

Creating Wizards
Many applications incorporate wizards to guide users through an operation. Excel’s Text
Import Wizard is a good example. A wizard is essentially a series of dialog boxes that solicit
information from the user. Sometimes, the user’s choices in earlier dialog boxes influ-
ence the contents of later dialog boxes. In most wizards, the user is free to go forward

FIGURE 15.10

Files are added to the list to show progress.

Chapter 15: Implementing Advanced UserForm Techniques

535

15

or backward through the dialog box sequence or to click the Finish button to accept
all defaults.

You can create wizards by using VBA and a series of UserForms. However, it’s more efficient
to create a wizard using a single UserForm and a MultiPage control with the tabs hidden.

Figure 15.11 shows an example of a simple four-step wizard, which consists of a single User-
Form that contains a MultiPage control. Each step of the wizard displays a different page
in the MultiPage control.

The sections that follow describe how we created the sample wizard.

Setting up the MultiPage control for the wizard
Start with a new UserForm and add a MultiPage control. By default, this control con-
tains two pages. Right-click the MultiPage tab and insert enough new pages to handle
your wizard (one page for each wizard step). This example is a four-step wizard, so the

FIGURE 15.11

This four-step wizard uses a MultiPage control.

On the Web
The wizard example in this section is available on the book’s website in a file named Wizard Demo.xlsm.

Part III: Working with UserForms

536

MultiPage control has four pages. The captions of the MultiPage tabs are irrelevant
because they won’t be seen. The MultiPage control’s Style property will eventually be set
to 2 - fmTabStyleNone.

Next, add the desired controls to each page of the MultiPage control. These controls will,
of course, vary depending on your application. You may need to resize the MultiPage con-
trol while you work to have room for the controls.

Adding the buttons to the wizard’s UserForm
Now add the buttons that control the progress of the wizard. These buttons are placed
outside the MultiPage control because they’re used while any of the pages are displayed.
Most wizards have four buttons.

Cancel Cancels the wizard and performs no action.

Back Returns to the previous step. During step 1 of the wizard, this button should
be disabled.

Next Advances to the next step. During the last wizard step, this button should
be disabled.

Finish Finishes the wizard.

In the example, these command buttons are named cmdCancel, cmdBack, cmdNext, and
cmdFinish.

Programming the wizard’s buttons
Each of the four wizard buttons requires a procedure to handle its Click event. The event
handler for the cmdCancel control follows:

Private Sub cmdCancel_Click()
 Dim Msg As String
 Dim Ans As Long
 Msg = "Cancel the wizard?"

tip
While working on the UserForm, you’ll want to keep the MultiPage tabs visible to make it easier to access
various pages.

nOte
In some cases, the user is allowed to click the Finish button at any time and accept the defaults for items that were
skipped. In other cases, the wizard requires a user response for some items, so the Finish button is disabled until all
required input is made. This example requires an entry in the text box in step 1.

Chapter 15: Implementing Advanced UserForm Techniques

537

15

 Ans = MsgBox(Msg, vbQuestion + vbYesNo, APPNAME)
 If Ans = vbYes Then Unload Me
End Sub

This procedure uses a MsgBox function (see Figure 15.12) to verify that the user really
wants to exit. If the user clicks the Yes button, the UserForm is unloaded with no action
taken. This type of verification, of course, is optional.

The event-handler procedures for the Back and Next buttons follow:

Private Sub cmdBack_Click()
 Me.mpgWizard.Value = Me.mpgWizard.Value - 1
 UpdateControls
End Sub

Private Sub cmdNext_Click()
 Me.mpgWizard.Value = Me.mpgWizard.Value + 1
 UpdateControls
End Sub

These two procedures are simple. They change the Value property of the MultiPage con-
trol and then call another procedure named UpdateControls (which follows).

The UpdateControls procedure is responsible for enabling and disabling the cmdBack
and cmdNext controls.

Sub UpdateControls()
' Enable back if not on page 1
 Me.cmdBack.Enabled = Me.mpgWizard.Value > 0

FIGURE 15.12

Clicking the Cancel button displays a confirmation message box.

Part III: Working with UserForms

538

' Enable next if not on the last page
 Me.cmdNext.Enabled = Me.mpgWizard.Value < Me.mpgWizard.Pages.Count - 1

' Update the caption
 Me.Caption = APPNAME & " Step " _
 & Me.mpgWizard.Value + 1 & " of " _
 & Me.mpgWizard.Pages.Count

' the Name field is required
 Me.cmdFinish.Enabled = Len(Me.tbxName.Text) > 0
End Sub

The procedure checks the Value property of the MultiPage control to see what page is
showing. If the first page is showing, the Enabled property of cmdBack is set to False.
If the last page is showing, the Enabled property of cmdNext is set to False. Next, the
procedure changes the UserForm’s caption to display the current step and the total number
of steps. APPNAME is a public constant, defined in Module1. The procedure then examines
the name field on the first page (a text box named tbxName). This field is required, so if
it’s empty, the user can’t click the Finish button. If the text box is empty (the length of its
contents is zero), cmdFinish is disabled; otherwise, it’s enabled.

Programming dependencies in a wizard
In some wizards, a user’s response on a particular step can affect what’s displayed in a
subsequent step. In this example, the user indicates which products they use in step 3 and
then rate those products in step 4. The option buttons for a product’s rating are visible only
if the user has indicated a particular product.

Programmatically, you accomplish this task by monitoring the MultiPage control’s
Change event. Whenever the value of the MultiPage control is changed (by clicking the
Back button or the Next button), the mpgWizard_Change procedure is executed. If the
MultiPage control is on the last tab (step 4), the procedure examines the values of the
CheckBox controls in step 3 and makes the appropriate adjustments in step 4.

In this example, the code uses two arrays of controls—one for the product CheckBox
controls (step 3) and one for the Frame controls (step 4). The code uses a For-Next loop
to hide the frames for the products that aren’t used and then adjusts their vertical posi-
tioning. If none of the check boxes in step 3 are checked, everything in step 4 is hidden
except a label that displays Click Finish to exit (if a name is entered in step 1) or A
name is required in Step 1 (if a name isn’t entered in step 1). The mpgWizard_
Change procedure follows:

Private Sub mpgWizard_Change()
 Dim TopPos As Long
 Dim FSpace As Long
 Dim AtLeastOne As Boolean
 Dim i As Long

Chapter 15: Implementing Advanced UserForm Techniques

539

15

' Set up the Ratings page?
 If Me.mpgWizard.Value = 3 Then
' Create an array of CheckBox controls
 Dim ProdCB(1 To 3) As MSForms.CheckBox
 Set ProdCB(1) = Me.chkExcel
 Set ProdCB(2) = Me.chkWord
 Set ProdCB(3) = Me.chkAccess

' Create an array of Frame controls
 Dim ProdFrame(1 To 3) As MSForms.Frame
 Set ProdFrame(1) = Me.frmExcel
 Set ProdFrame(2) = Me.frmWord
 Set ProdFrame(3) = Me.frmAccess

 TopPos = 22
 FSpace = 8
 AtLeastOne = False

' Loop through all products
 For i = 1 To 3
 If ProdCB(i).Value Then
 ProdFrame(i).Visible = True
 ProdFrame(i).Top = TopPos
 TopPos = TopPos + ProdFrame(i).Height + FSpace
 AtLeastOne = True
 Else
 ProdFrame(i).Visible = False
 End If
 Next i

' Uses no products?
 If AtLeastOne Then
 Me.lblHeadings.Visible = True
 Me.imgRating.Visible = True
 Me.lblFinishMsg.Visible = False
 Else
 Me.lblHeadings.Visible = False
 Me.imgRating.Visible = False
 Me.lblFinishMsg.Visible = True
 If Len(Me.tbxName.Text) = 0 Then
 Me.lblFinishMsg.Caption = _
 "A name is required in Step 1."
 Else
 Me.lblFinishMsg.Caption = _
 "Click Finish to exit."
 End If
 End If
 End If
End Sub

Part III: Working with UserForms

540

Performing the task with the wizard
When the user clicks the Finish button, the wizard performs its task: transferring the
information from the UserForm to the next empty row in the worksheet. This procedure,
named cmdFinish_Click, is straightforward. It starts by determining the next empty
worksheet row and assigns this value to a variable (r). The remainder of the procedure sim-
ply translates the values of the controls and enters data into the worksheet.

Private Sub cmdFinish_Click()
 Dim r As Long

 r = Application.WorksheetFunction. _
 CountA(Range("A:A")) + 1

' Insert the name
 Cells(r, 1) = Me.tbxName.Text

' Insert the gender
 Select Case True
 Case Me.optMale.Value: Cells(r, 2) = "Male"
 Case Me.optFemale: Cells(r, 2) = "Female"
 Case Me.optNoAnswer: Cells(r, 2) = "Unknown"
 End Select

' Insert usage
 Cells(r, 3) = Me.chkExcel.Value
 Cells(r, 4) = Me.chkWord.Value
 Cells(r, 5) = Me.chkAccess.Value

' Insert ratings
 If Me.optExcelNo.Value Then Cells(r, 6) = ""
 If Me.optExcelPoor.Value Then Cells(r, 6) = 0
 If Me.optExcelGood.Value Then Cells(r, 6) = 1
 If Me.optExcelExc.Value Then Cells(r, 6) = 2
 If Me.optWordNo.Value Then Cells(r, 7) = ""
 If Me.optWordPoor.Value Then Cells(r, 7) = 0
 If Me.optWordGood.Value Then Cells(r, 7) = 1
 If Me.optWordExc.Value Then Cells(r, 7) = 2
 If Me.optAccessNo.Value Then Cells(r, 8) = ""
 If Me.optAccessPoor.Value Then Cells(r, 8) = 0
 If Me.optAccessGood.Value Then Cells(r, 8) = 1
 If Me.optAccessExc.Value Then Cells(r, 8) = 2

 Unload Me
End Sub

After you test your wizard and everything is working properly, you can set the MultiPage
control’s Style property to 2 - fmTabStyleNone to hide the tabs.

Chapter 15: Implementing Advanced UserForm Techniques

541

15

Emulating the MsgBox Function
The VBA MsgBox function (discussed in Chapter 12, “Leveraging Custom Dialog Boxes”) is
a bit unusual because, unlike most functions, it displays a dialog box. But, similar to other
functions, it also returns a value: an integer that represents which button the user clicked.

This section describes a custom function that emulates the VBA MsgBox function. On first
thought, creating such a function might seem easy. Think again! The MsgBox function is
extraordinarily versatile because of the arguments that it accepts. Consequently, creating a
function to emulate MsgBox is no small feat.

The pseudo-MsgBox function is named MyMsgBox. The emulation is close but not
perfect. The MyMsgBox function has the following limitations:

 ■ It does not support the Helpfile argument (which adds a Help button that, when
clicked, opens a help file).

 ■ It does not support the Context argument (which specifies the context ID for the
help file).

 ■ It does not support the system modal option, which puts everything in Windows on
hold until you respond to the dialog box.

 ■ It does not play a sound when it is called.

The syntax for MyMsgBox is as follows:

MyMsgBox(prompt[, buttons] [, title])

This syntax is the same as the MsgBox syntax except that it doesn’t use the last two
optional arguments (Helpfile and Context). MyMsgBox also uses the same predefined
constants as MsgBox: vbOKOnly, vbQuestion, vbDefaultButton1, and so on.

nOte
The point of this exercise is not to create an alternative messaging function. Rather, it’s to demonstrate how to
develop a complex function that also incorporates a UserForm. However, some people might like the idea of being
able to customize their messages. If so, you’ll find that this function is easy to customize. For example, you can
change the font, colors, button text, and so on.

nOte
If you’re not familiar with the VBA MsgBox function, consult the Help system to become acquainted with
its arguments.

Part III: Working with UserForms

542

MsgBox emulation: MyMsgBox code
The MyMsgBox function uses a UserForm named UMsgBox. The function itself, which
follows, sets up the UserForm according to the arguments passed to the function. It calls
several other procedures to make many of the settings.

Function MyMsgBox(ByVal Prompt As String, _
 Optional ByVal Buttons As Long, _
 Optional ByVal Title As String) As Long
' Emulates VBA's MsgBox function
' Does not support the HelpFile or Context arguments
 With UMsgBox
 ' Do the Caption
 If Len(Title) > 0 Then .Caption = Title _
 Else .Caption = Application.Name
 SetImage Buttons
 SetPrompt Prompt
 SetButtons Buttons
 .Height = .cmdLeft.Top + 64
 SetDefaultButton Buttons
 .Show
 End With
 MyMsgBox = UMsgBox.UserClick
End Function

Figure 15.13 shows MyMsgBox in use. It looks similar to the VBA message box, but we used
a different font for the message text and also used some different icons.

On the Web
The complete code for the MyMsgBox function is too lengthy to list here, but it’s available in a workbook named
Msgbox Emulation.xlsm, available on the book’s website. The workbook is set up so that you can easily try
various options.

FIGURE 15.13

The result of the MsgBox emulation function

Chapter 15: Implementing Advanced UserForm Techniques

543

15

If you use a multiple monitor system, the position of the displayed UserForm may not be cen-
tered in Excel’s window. To solve that problem, use the following code to display UMsgBox:

With UMsgBox
 .StartUpPosition = 0
 .Left = Application.Left + (0.5 * Application.Width) -
(0.5 * .Width)
 .Top = Application.Top + (0.5 * Application.Height) - (0.5
* .Height)
 .Show
End With

Here’s the code to execute the function:

Prompt = "You have chosen to save this workbook" & vbCrLf
Prompt = Prompt & "on a drive that is not available to" & vbCrLf
Prompt = Prompt & "all employees." & vbCrLf & vbCrLf
Prompt = Prompt & "OK to continue?"
Buttons = vbQuestion + vbYesNo
Title = "Network Location Notice"
Ans = MyMsgBox(Prompt, Buttons, Title)

How the MyMsgBox function works
The MyMsgBox function examines the arguments and does the following:

 ■ Determines which, if any, image to display (and hides the others)
 ■ Determines which button(s) to display (and hides the others)
 ■ Determines which button is the default button
 ■ Centers the buttons in the dialog box
 ■ Determines the captions for the command buttons
 ■ Determines the position of the text within the dialog box
 ■ Determines the width and height of the dialog box (by using an API function call

to get the video resolution)
 ■ Displays the UserForm

Interpreting the second argument (buttons) is challenging. This argument can consist of
a number of constants added together. For example, the second argument can be something
like this:

VbYesNoCancel + VbQuestion + VbDefaultButton3

This argument creates a three-button MsgBox (with Yes, No, and Cancel buttons), displays
the question mark icon, and makes the third button the default button. The actual argu-
ment is 547 (3 + 32 + 512).

To determine what to display on the UserForm, the function uses a technique called Bit-
wise And. Each of the three arguments can be one of a series of numbers, and those num-
bers don’t overlap with the other arguments. The six types of buttons that you can display
are numbered 0 to 5. If you add up all of the numbers 0 to 5, you get 15. The lowest value of
the possible icon values is 16, which is one more than all of the buttons put together.

Part III: Working with UserForms

544

One of the procedures called by MyMsgBox is named SetDefaultButtons and is shown
next. It uses Bitwise And by comparing the Buttons argument to a constant, such as
vbDefaultButton3. If the result of the Bitwise And is equal to vbDefaultButton3,
then you can be sure that vbDefaultButton3 was one of the choices that made up the
Buttons argument, regardless of any other choices included in that argument.

Private Sub SetDefaultButton(Buttons As Long)
 With UMsgBox
 Select Case True
 Case (Buttons And vbDefaultButton4) = vbDefaultButton4
 .cmdLeft.Default = True
 .cmdLeft.TabIndex = 0
 Case (Buttons And vbDefaultButton3) = vbDefaultButton3
 .cmdRight.Default = True
 .cmdRight.TabIndex = 0
 Case (Buttons And vbDefaultButton2) = vbDefaultButton2
 .cmdMiddle.Default = True
 .cmdMiddle.TabIndex = 0
 Case Else
 .cmdLeft.Default = True
 .cmdLeft.TabIndex = 0
 End Select
 End With
End Sub

The UserForm (shown in Figure 15.14) contains four Label controls. Each of these Label
controls has an image, which was pasted into the Picture property. The UserForm also has
three CommandButton controls and a TextBox control.

FIGURE 15.14

The UserForm for the MyMsgBox function

Chapter 15: Implementing Advanced UserForm Techniques

545

15

Three additional event-handler procedures are included (one for each CommandButton).
These routines determine which button was clicked and return a value for the function by
setting a value for the UserClick variable.

Using the MyMsgBox function
To use this function in your own project, export the MyMsgBoxMod module and the
UMsgBox UserForm. Then import these two files into your project. You can then use the
MyMsgBox function in your code just as you’d use the MsgBox function.

A UserForm with Movable Controls
The UserForm shown in Figure 15.15 contains three Image controls. The user can use the
mouse to drag these images around in the dialog box. The example in this section will help
you understand mouse-related events.

nOte
Image controls display with a faint outline, so Label controls are used.

FIGURE 15.15

You can drag and rearrange the three Image controls by using the mouse.

On the Web
This example is available on the book’s website in a file named Move Controls.xlsm.

Part III: Working with UserForms

546

Each Image control has two associated event procedures: MouseDown and MouseMove.
The event procedures for the Image1 control are shown here. (The others are identical
except for the control names.)

Private Sub Image1_MouseDown(ByVal Button As Integer, _
 ByVal Shift As Integer, ByVal X As Single, ByVal Y As Single)
' Starting position when button is pressed
 OldX = X
 OldY = Y
 Image1.ZOrder 0
End Sub

Private Sub Image1_MouseMove(ByVal Button As Integer, _
 ByVal Shift As Integer, ByVal X As Single, ByVal Y As Single)
' Move the image
 If Button = 1 Then
 Image1.Left = Image1.Left + (X - OldX)
 Image1.Top = Image1.Top + (Y - OldY)
 End If
End Sub

When the mouse button is pressed, the MouseDown event occurs, and the X and Y positions
of the mouse pointer are stored. Two public variables are used to keep track of the original
position of the controls: OldX and OldY. This procedure also sets the ZOrder property to
zero, which puts the image on top of the others.

When the mouse is being moved, the MouseMove event occurs repeatedly. The event proce-
dure checks the mouse button. If the Button argument is 1, it means that the left mouse
button is depressed. If so, then the Image control is shifted relative to its old position.

Also note that the mouse pointer changes when it’s over an image. That’s because the
MousePointer property is set to 15 - fmMousePointerSizeAll, a mouse pointer
style that’s commonly used to indicate that an item can be dragged.

A UserForm with No Title Bar
Excel provides no direct way to display a UserForm without its title bar. But this feat is pos-
sible with the help of a few API functions. Figure 15.16 shows a UserForm with no title bar.

FIGURE 15.16

This UserForm lacks a title bar.

Chapter 15: Implementing Advanced UserForm Techniques

547

15

Figure 15.17 shows another example of a UserForm without a title bar. This dialog box con-
tains an Image control and a CommandButton control.

Displaying a UserForm without a title bar requires four windows API functions: Get-
WindowLong, SetWindowLong, DrawMenuBar, and FindWindowA (see the example
file for the function declarations). The UserForm_Initialize procedure calls these
functions:

Private Sub UserForm_Initialize()
 Dim lngWindow As Long, lFrmHdl As Long
 lFrmHdl = FindWindowA(vbNullString, Me.Caption)
 lngWindow = GetWindowLong(lFrmHdl, GWL_STYLE)
 lngWindow = lngWindow And (Not WS_CAPTION)
 Call SetWindowLong(lFrmHdl, GWL_STYLE, lngWindow)
 Call DrawMenuBar(lFrmHdl)
End Sub

One problem is that the user has no way to reposition a dialog box without a title bar.
The solution is to use the MouseDown and MouseMove events, as described in the pre-
ceding section.

FIGURE 15.17

Another UserForm without a title bar

On the Web
Both examples are in a workbook named No Title Bar.xlsm, which is available on the book’s website. Also
available is another version of the splash screen example presented in Chapter 14, “Looking at UserForm Examples.”
This version, named Splash Screen2.xlsm, displays the UserForm without a title bar.

Part III: Working with UserForms

548

Simulating a Toolbar with a UserForm
This section describes how to create an alternative to the Ribbon: a modeless UserForm that
simulates a floating toolbar. Figure 15.18 shows a UserForm that you can use to allow your
users to interact with your application. It uses Windows API calls to make the title bar a bit
shorter than normal, and it also displays the UserForm with square (rather than rounded)
corners. The Close button is also smaller.

The UserForm contains eight Image controls, and each executes a macro. Figure 15.19
shows the UserForm in the VBE. Note the following:

 ■ The controls aren’t aligned.
 ■ The images displayed are not necessarily the final images.

nOte
Because the FindWindowA function uses the UserForm’s caption, this technique won’t work if the Caption prop-
erty is set to an empty string.

FIGURE 15.18

A UserForm set up to function as a toolbar

On the Web
This example, named Simulated Toolbar.xlm, is available on the book’s website.

Chapter 15: Implementing Advanced UserForm Techniques

549

15

 ■ The UserForm isn’t the final size.
 ■ The title bar is the standard size.

The VBA code takes care of the cosmetic details, including borrowing images from Excel’s
Ribbon. For example, this statement assigns an image to the Image1 control:

Image1.Picture = Application.CommandBars. _
 GetImageMso("ReviewAcceptChange", 32, 32)

The code also aligns the controls and adjusts the size of the UserForm to eliminate wasted
space. In addition, the code uses Windows API functions to make the UserForm’s title bar
smaller—just like a real toolbar. To make the UserForm look even more like a toolbar, the
ControlTipText property of each Image control has been set so that a toolbar-like
tooltip displays when the mouse cursor is hovered over the control.

If you open the example file, you’ll also notice that the images increase in size slightly
when the mouse cursor is hovered over them. That’s because each Image control has an

FIGURE 15.19

The UserForm that simulates a toolbar

See Chapter 17, “Working with the Ribbon,” for more information about accessing images from
the Ribbon.

Part III: Working with UserForms

550

associated MouseMove event handler that changes the size. Here’s the MouseMove event
handler procedure for Image1 (the others are identical):

Private Sub Image1_MouseMove(ByVal Button As Integer, _
 ByVal Shift As Integer, ByVal X As Single, ByVal Y As Single)
 Call NormalSize
 Image1.Width = 26
 Image1.Height = 26
End Sub

This procedure calls the NormalSize procedure, which returns each image to its
normal size:

Private Sub NormalSize()
' Make all controls normal size
 Dim ctl As Control
 For Each ctl In Controls
 ctl.Width = 24
 ctl.Height = 24
 Next ctl
End Sub

The net effect is that the user gets some visual feedback when the mouse cursor moves
over a control—just like a real toolbar. The toolbar simulation only goes so far, however.
You can’t resize the UserForm (for example, to make the images display vertically rather
than horizontally). And, of course, you can’t dock the pseudo-toolbar to one of the Excel
window borders.

Emulating a Task Pane with a UserForm
The UserForm in Figure 15.20 is an attempt to emulate the look of a built-in task pane. The
example is the same as the modeless UserForm example at the beginning of the chapter
(refer to Figure 15.2). You can move the UserForm by dragging its title (the same way you
move a task pane). The UserForm also has an X (Close) button in the upper-right corner.
And, like a task pane, it displays a vertical scrollbar only when needed.

The task pane shown in the figure has a white background. The color of the task pane
background varies, depending on the Office theme (specified in the General tab of the Excel
Options dialog box). The background of the control is transparent, and the following code
sets the background color:

Me.BackColor = RGB(255, 255, 255)
Frame1.BackColor = RGB(255, 255, 255)
Frame2.BackColor = RGB(255, 255, 255)

Frame controls cannot have a transparent background, so the background color of the two
Frame controls had to be set separately.

Chapter 15: Implementing Advanced UserForm Techniques

551

15

To create a UserForm that has a background color that matches the Light Gray theme, use
this expression:

RGB(240, 240, 240)

To emulate the Dark Gray theme, use this expression:

RGB(222, 222, 222)

The UserForm has the basic look of a task pane, but it falls short in terms of behavior.
For example, the sections cannot be collapsed, and it’s not possible to dock the UserForm
to the side of the screen. Also, it’s not resizable by the user—but it could be (see the
next section).

A Resizable UserForm
Excel uses several resizable dialog boxes. For example, you can resize the Name Manager
dialog box by clicking and dragging the bottom-right corner.

FIGURE 15.20

A UserForm designed to look like a task pane

On the Web
This example, named Emulate Task Pane.xlsm, is available on the book’s website.

Part III: Working with UserForms

552

If you’d like to create a resizable UserForm, you’ll eventually discover that there’s no direct
way to do it. One solution is to resort to Windows API calls. That method works, but it’s
complicated to set up and doesn’t generate any events, so your code can’t respond when the
UserForm is resized. In this section, we present a much simpler technique for creating a
user-resizable UserForm.

Figure 15.21 shows the UserForm that’s described in this section. It contains a ListBox
control that displays data from a worksheet. The scrollbars on the list box indicate that the
list box contains information that doesn’t fit. In addition, a (perhaps) familiar sizing con-
trol appears in the bottom-right corner of the dialog box.

Figure 15.22 shows the same UserForm after the user resized it. The size of the list box is
also increased, and the Close button remains in the same relative position. You can stretch
this UserForm to the limits of your monitor.

The sizing control at the bottom-right corner is actually a Label control that displays a
single character: the letter o (character 111) from the Marlett font, character set 2. This
control (named objResizer) is added to the UserForm in the UserForm_Initialize
procedure at run-time.

nOte
Credit for this technique goes to Andy Pope, an Excel expert and Microsoft MVP who lives in the United Kingdom.
Andy is one of the most creative Excel developers we’ve ever met. For a real treat (and lots of interesting downloads),
visit his website at http://andypope.info.

FIGURE 15.21

This UserForm is resizable.

On the Web
This example is available on the book’s website in the Resizable Userform.xlsm file.

http://andypope.info

Chapter 15: Implementing Advanced UserForm Techniques

553

15

Private Sub UserForm_Initialize()
' Add a resizing control to bottom right corner of UserForm
 Set objResizer = Me.Controls.Add("Forms.label.1", MResizer, True)
 With objResizer
 .Caption = Chr(111)
 .Font.Name = "Marlett"
 .Font.Charset = 2
 .Font.Size = 14
 .BackStyle = fmBackStyleTransparent
 .AutoSize = True
 .ForeColor = RGB(100, 100, 100)
 .MousePointer = fmMousePointerSizeNWSE
 .ZOrder
 .Top = Me.InsideHeight - .Height
 .Left = Me.InsideWidth - .Width
 End With
End Sub

FIGURE 15.22

The UserForm after it was increased

Part III: Working with UserForms

554

This technique relies on these facts:

 ■ The user can move a control on a UserForm (see “A UserForm with Movable Con-
trols,” earlier in this chapter).

 ■ Events exist that can identify mouse movements and pointer coordinates. Specifi-
cally, these events are MouseDown and MouseMove.

 ■ VBA code can change the size of a UserForm at run-time, but a user cannot.

Do a bit of creative thinking about these facts, and you see that it’s possible to trans-
late the user’s movement of a Label control into information that you can use to resize
a UserForm.

When the user clicks the objResizer Label object, the objResizer_MouseDown event-
handler procedure is executed.

Private Sub objResizer_MouseDown(ByVal Button As Integer, _
 ByVal Shift As Integer, ByVal X As Single, ByVal Y As Single)
 If Button = 1 Then
 LeftResizePos = X
 TopResizePos = Y
 End If
End Sub

This procedure executes only if the left mouse button is pressed (that is, the Button argu-
ment is 1) and the cursor is on the objResizer label. The X and Y mouse coordinates at
the time of the button click are stored in module-level variables: LeftResizePos and
TopResizePos.

Subsequent mouse movements fire the MouseMove event, and the objResizer_Mouse-
Move event handler kicks into action. Here’s an initial take on this procedure:

Private Sub objResizer_MouseMove(ByVal Button As Integer, _
 ByVal Shift As Integer, ByVal X As Single, ByVal Y As Single)
 If Button = 1 Then
 With objResizer
 .Move .Left + X - LeftResizePos, .Top + Y - TopResizePos
 Me.Width = Me.Width + X - LeftResizePos
 Me.Height = Me.Height + Y - TopResizePos
 .Left = Me.InsideWidth - .Width
 .Top = Me.InsideHeight - .Height
 End With
 End If
End Sub

nOte
Although the Label control is added at run-time, the event-handler code for the object is contained in the module.
Including code for an object that doesn’t exist is not a problem.

Chapter 15: Implementing Advanced UserForm Techniques

555

15

If you study the code, you’ll see that the UserForm’s Width and Height properties are
adjusted based on the movement of the objResizer Label control. Figure 15.23 shows
how the UserForm looks after the user moves the Label control down and to the right.

The problem, of course, is that the other controls in the UserForm don’t respond to the
UserForm’s new size. The list box should be expanded, and the command button should be
relocated so that it remains in the lower-right corner.

More VBA code is needed to adjust the controls in the UserForm when the UserForm size is
changed. The location for this new code is in the objResizer_MouseMove event-handler
procedure. The statements that follow do the job:

' Adjust the ListBox
 On Error Resume Next
 With ListBox1
 .Width = Me.Width - 37
 .Height = Me.Height - 100
 End With
 On Error GoTo 0

' Adjust the Close Button
 With CloseButton
 .Left = Me.Width - 85
 .Top = Me.Height - 54
 End With

These two controls are adjusted relative to the UserForm’s size (the Me keyword is used to
refer to the UserForm). After adding this new code, the dialog box works like a charm. The
user can make the dialog box as large as needed, and the controls correspondingly adjust.

FIGURE 15.23

The VBA code converts Label control movements into new Width and Height properties
for the UserForm.

Part III: Working with UserForms

556

It should be clear that the most challenging part of creating a resizable dialog box is fig-
uring out how to adjust the controls. When you have more than two or three controls, the
code can get complicated.

Handling Multiple UserForm Controls with One
Event Handler
Every command button on a UserForm must have its own procedure to handle its events. For
example, if you have two command buttons, you’ll need two event-handler procedures for
the controls’ Click events.

Private Sub CommandButton1_Click()
' Code goes here
End Sub

Private Sub CommandButton2_Click()
' Code goes here
End Sub

In other words, you can’t assign a macro to execute when any command button is clicked.
Each Click event handler is hardwired to its command button. You can, however, have
each event handler call another all-inclusive macro in the event-handler procedures, but
you’ll need to pass an argument to indicate which button was clicked. In the following
examples, clicking either CommandButton1 or CommandButton2 executes the Button-
Click procedure, and the single argument tells the ButtonClick procedure which button
was clicked.

Private Sub CommandButton1_Click()
 Call ButtonClick(1)
End Sub

Private Sub CommandButton2_Click()
 Call ButtonClick(2)
End Sub

If your UserForm has many command buttons, setting up all of these event handlers can get
tedious. You might prefer to have a single procedure that can determine which button was
clicked and take the appropriate action.

This section describes a way around this limitation by using a class module to define a
new class.

On the Web
This example, named Multiple Buttons.xlsm, is available on the book’s website.

Chapter 15: Implementing Advanced UserForm Techniques

557

15

The following steps describe how to re-create the example UserForm shown in Figure 15.24:

1. Create your UserForm as usual and add several command buttons. (The example
contains 16 CommandButton controls.) This example assumes that the form is
named UserForm1.

2. Insert a class module into your project (choose Insert ➪ Class Module), give it the
name BtnClass, and enter the following code:

Public WithEvents ButtonGroup As MsForms.CommandButton

Private Sub ButtonGroup_Click()
 Dim Msg As String
 Msg = "You clicked " & ButtonGroup.Name & vbCrLf & vbCrLf
 Msg = Msg & "Caption: " & ButtonGroup.Caption & vbCrLf
 Msg = Msg & "Left Position: " & ButtonGroup.Left & vbCrLf
 Msg = Msg & "Top Position: " & ButtonGroup.Top
 MsgBox Msg, vbInformation, ButtonGroup.Name
End Sub

You will need to customize the ButtonGroup_Click procedure.

3. Insert a standard VBA module, and enter the following code:

Sub ShowDialog()
 UserForm1.Show
End Sub

FIGURE 15.24

Multiple command buttons with a single event-handler procedure

tip
You can adapt this technique to work with other types of controls. You need to change the type name in the Public
WithEvents declaration. For example, if you have option buttons instead of command buttons, use a declaration
statement like this:

Public WithEvents ButtonGroup As MsForms.OptionButton

Part III: Working with UserForms

558

This routine simply displays the UserForm.

4. In the code module for the UserForm, enter the UserForm_Initialize code
that follows:

Dim Buttons() As New BtnClass

Private Sub UserForm_Initialize()
 Dim ButtonCount As Long
 Dim ctl As Control

' Create the Button objects
 ButtonCount = 0
 For Each ctl In Me.Controls
 If TypeName(ctl) = "CommandButton" Then
 'Skip the OK Button
 If ctl.Name <> "cmdOK" Then
 ButtonCount = ButtonCount + 1
 ReDim Preserve Buttons(1 To ButtonCount)
 Set Buttons(ButtonCount).ButtonGroup = ctl
 End If
 End If
 Next ctl
End Sub

This procedure is triggered by the UserForm’s Initialize event. Note that the code
excludes the button named cmdOK from the button group. Therefore, clicking the OK
button doesn’t execute the ButtonGroup_Click procedure.

After performing these steps, you can execute the ShowDialog procedure to display the
UserForm. Clicking any CommandButton (except the OK button) executes the Button-
Group_Click procedure. Figure 15.25 shows an example of the message displayed when a
button is clicked.

FIGURE 15.25

The ButtonGroup_Click procedure describes the button that was clicked.

Chapter 15: Implementing Advanced UserForm Techniques

559

15

Selecting a Color in a UserForm
The example in this section is a function that displays a dialog box (similar in concept to
the MyMsgBox function, presented earlier). The function, named GetAColor, returns a
color value.

Function GetAColor() As Variant
 UGetAColor.Show
 GetAColor = UGetAColor.ColorValue
 Unload UGetAColor
End Function

You can use the GetAColor function with a statement like the following:

UserColor = GetAColor()

Executing this statement displays the UserForm. The user selects a color and clicks OK. The
function then assigns the user’s selected color value to the UserColor variable.

The UserForm, shown in Figure 15.26, contains three ScrollBar controls—one for each
of the color components (red, green, and blue). The value range for each scroll bar is from 0
to 255. The module contains procedures for the ScrollBar Change events. For example,
here’s the procedure that’s executed when the first scroll bar is changed:

Private Sub scbRed_Change()
 Me.lblRed.BackColor = RGB(Me.scbRed.Value, 0, 0)
 UpdateColor
End Sub

The UpdateColor procedure adjusts the color sample displayed, and it also updates the
RGB values.

FIGURE 15.26

This dialog box lets the user select a color by specifying the red, green, and blue
components.

On the Web
This example, named GetaColor Function.xlsm, is available on the book’s website.

Part III: Working with UserForms

560

The GetAColor UserForm has another twist: it remembers the last color that was selected.
When the function ends, the three scroll bar values are stored in the Windows Registry,
using this code (APPNAME is a string defined in Module1):

SaveSetting APPNAME, "Colors", "RedValue", Me.scbRed.Value
SaveSetting APPNAME, "Colors", "BlueValue", Me.scbBlue.Value
SaveSetting APPNAME, "Colors", "GreenValue", Me.scbGreen.Value

SaveSetting will create the folders and keys in the registry if they don’t already exist.
The UserForm_Initialize procedure retrieves these values and assigns them to the
scroll bars:

Me.scbRed.Value = GetSetting(APPNAME, "Colors", "RedValue", 128)
Me.scbGreen.Value = GetSetting(APPNAME, "Colors", "GreenValue", 128)
Me.scbBlue.Value = GetSetting(APPNAME, "Colors", "BlueValue", 128)

The last argument for the GetSetting function is the default value, which is used if
the Registry key is not found. In this case, each color defaults to 128, which produces
middle gray.

The SaveSetting and GetSetting functions always use this Registry key:

HKEY_CURRENT_USER\Software\VB and VBA Program Settings\

Figure 15.27 shows the Registry data, displayed with the Windows Regedit.exe program.

FIGURE 15.27

The user’s scroll bar values are stored in the Windows Registry and retrieved the next time
the GetAColor function is used.

Chapter 15: Implementing Advanced UserForm Techniques

561

15

Displaying a Chart in a UserForm
Excel provides no direct way to display a chart in a UserForm. You can, of course, copy the
chart and paste it to the Picture property of an Image control, but this creates a static
image of the chart, so it won’t display any changes that are made to the chart.

This section describes a technique to display a chart in a UserForm. Figure 15.28 shows a
UserForm with a chart displayed in an Image object. The chart resides on a worksheet, and
the UserForm always displays the current chart. This technique works by copying the chart
to a temporary graphics file and then uses the LoadPicture function to specify that file
for the Image control’s Picture property.

To display a chart in a UserForm, follow these general steps:

1. Create your chart or charts as usual.

2. Insert a UserForm and then add an Image control.

3. Write VBA code to save the chart as a GIF file and then set the Image control’s
Picture property to the GIF file. You need to use VBA’s LoadPicture function to
do this task.

4. Add other bells and whistles as desired. For example, the UserForm in the demo file
contains controls that let you change the chart type. Alternatively, you could write
code to display multiple charts.

FIGURE 15.28

A UserForm can display "live" charts.

On the Web
This workbook is available on the book’s website in the Chart in Userform.xlsm file.

Part III: Working with UserForms

562

Saving a chart as a GIF file
The following code demonstrates how to create a GIF file (named temp.gif) from a chart
(in this case, the first chart object on the sheet named Data):

Set CurrentChart = Sheets("Data").ChartObjects(1).Chart
Fname = ThisWorkbook.Path & "\temp.gif"
CurrentChart.Export FileName:=Fname, FilterName:="GIF"

Changing the Image control’s Picture property
If the Image control on the UserForm is named Image1, the following statement loads the
image (represented by the Fname variable) into the Image control:

Me.Image1.Picture = LoadPicture(Fname)

Making a UserForm Semitransparent
Normally, a UserForm is opaque—it completely hides whatever is underneath it. However,
you can make a UserForm semitransparent, such that the user can see the worksheet under
the UserForm.

Creating a semitransparent UserForm requires a number of Windows API functions. You can
set the transparency level using values that range from 0 (UserForm is invisible) to 255
(UserForm is completely opaque, as usual). Values in between 0 and 255 specify a level of
semitransparency.

Figure 15.29 shows an example of a UserForm with a transparency level of about 128.

What good is a semitransparent UserForm? You’ve probably seen websites that use the
light-box effect. The web page is dimmed (as if the lights are lowered), and an image or a
pop-up is displayed. This effect serves to focus the user’s attention on a specific item on
the screen.

nOte
This technique works fine, but you may notice a slight delay when the chart is saved and then retrieved. On a fast
system, however, this delay is hardly noticeable.

On the Web
This workbook is available on the book’s website. The filename is Semitransparent Userform.xlsm.

Chapter 15: Implementing Advanced UserForm Techniques

563

15

Figure 15.30 shows an Excel workbook that uses the light-box effect. Excel’s window is
dimmed, but the message box is displayed normally. How does it work? It starts with a
UserForm with a black background. Then there is code to resize and position the UserForm
so that it covers the entire Excel window. Here’s the code to accomplish the cover-up:

With Me
 .Height = Application.Height
 .Width = Application.Width
 .Left = Application.Left
 .Top = Application.Top
End With

Then, the semitransparent UserForm is made transparent, which gives Excel’s window a
dimmed appearance. The message box (or another UserForm) is displayed on top of the
semitransparent UserForm.

A Puzzle on a UserForm
The example in this section is a familiar sliding puzzle, displayed on a UserForm (see
Figure 15.31). This puzzle was invented by Noyes Chapman in the late 1800s. In addition to
providing a few minutes of amusement, you may find the coding instructive.

FIGURE 15.29

A semitransparent UserForm

On the Web
This workbook is available on the book’s website in the Excel Light-box.xlsm file.

Part III: Working with UserForms

564

FIGURE 15.30

Creating a light-box effect in Excel

FIGURE 15.31

A sliding tile puzzle in a UserForm

Chapter 15: Implementing Advanced UserForm Techniques

565

15

The goal is to arrange the shuffled tiles (CommandButton controls) in numerical order.
Click a button next to the empty space, and the button moves to the empty space. The
ComboBox control lets the user choose from three configurations: 3 × 3, 4 × 4, and 5 × 5.
The New button shuffles the tiles, and a Label control keeps track of the number of moves.

This application uses a class module to handle all button events (see “Handling Multiple
UserForm Controls with One Event Handler,” earlier in this chapter).

The VBA code is lengthy, so it’s not listed here. Here are a few points to keep in mind when
examining the code:

 ■ The CommandButton controls are added to the UserForm via code. The number and
size of the buttons are determined by the combo box value.

 ■ The tiles are shuffled by simulating a few thousand random clicks on the buttons.
Another option is simply to assign random numbers, but that could result in some
unsolvable games.

 ■ The blank space in the tile grid is actually a CommandButton control with its
Visible property set to False.

 ■ The class module contains one event procedure (MouseUp), which is executed
whenever the user clicks a tile.

 ■ When the user clicks a command button tile, its Caption is swapped with the
hidden button. The code doesn’t actually move any buttons.

Video Poker on a UserForm
Finally, here is proof that Excel doesn’t have to be boring. Figure 15.32 shows a UserForm
set up as a casino-style video poker game.

On the Web
This workbook, named Sliding Tile Puzzle.xlsm, is available on the book’s website.

FIGURE 15.32

A feature-packed video poker game

Part III: Working with UserForms

566

The game features the following:

 ■ A choice between two games: Joker’s Wild and Jacks or Better
 ■ A chart that shows your winning (or losing) history
 ■ The capability to change the payoffs
 ■ Help (displayed on a worksheet)
 ■ An emergency button that quickly hides the UserForm

All that’s missing is the casino noise.

As you might expect, the code is much too lengthy to list here, but if you examine the
workbook, you’ll find lots of useful UserForm tips—including a class module example.

On the Web
This workbook, named Video Poker.xlsm, is available on the book’s website.

IN THIS PART
Chapter 16
Creating and Using Add-Ins

Chapter 17
Working with the Ribbon

Chapter 18
Working with Shortcut Menus

Chapter 19
Providing Help for Your Applications

Chapter 20
Leveraging Class Modules

Chapter 21
Understanding Compatibility Issues

Part IV

Developing Excel
Applications

Excel® 2019 Power Programming with VBA, First Edition. Michael Alexander and Dick Kusleika.
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.

569

CHAP T ER

16
Creating and Using Add-Ins

IN THIS CHAPTER
Understanding the concept of add-ins

Exploring Excel’s Add-in Manager

Creating an add-in

Comparing XLAM add-in files to XLSM files

Viewing VBA code that manipulates add-ins

Detecting whether an add-in is installed properly

What Is an Add-In?
One of Excel’s most useful features for developers is the capability to create add-ins. Creating add-
ins adds a professional touch to your work, and add-ins offer several key advantages over standard
workbook files.

Generally speaking, a spreadsheet add-in is something added to a spreadsheet application to give
it additional functionality. Excel ships with several add-ins. Examples include the Analysis ToolPak
(which adds statistical and analysis capabilities) and Solver (which performs advanced optimization
calculations).

Some add-ins also provide new worksheet functions that you can use in formulas. With a well-
designed add-in, the new features blend in well with the original interface, so they appear to be
part of Excel.

Comparing an add-in with a standard workbook
Any knowledgeable Excel user can create an add-in from an Excel workbook file; no additional soft-
ware or programming tools are required. You can convert any workbook file to an add-in, but not

Excel® 2019 Power Programming with VBA, First Edition. Michael Alexander and Dick Kusleika.
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.

Part IV: Developing Excel Applications

570

every workbook is appropriate for an add-in. An Excel add-in is basically a normal XLSM
workbook with the following differences:

 ■ The IsAddin property of the ThisWorkbook object is True. By default, this
property is False.

 ■ The workbook window is hidden in such a way that it can’t be unhidden by choos-
ing the View ➪ Window ➪ Unhide command. This means you can’t display work-
sheets or chart sheets contained in an add-in unless you write code to copy the
sheet to a standard workbook.

 ■ An add-in isn’t a member of the Workbooks collection. Rather, it’s a member of
the AddIns collection. However, you can access an add-in through the Workbooks
collection (see “XLAM file VBA collection membership,” later in this chapter).

 ■ You install and uninstall add-ins by using the Add-ins dialog box. When an add-in
is installed, it remains installed across Excel sessions.

 ■ The Macro dialog box (invoked by choosing Developer ➪ Code ➪ Macros or View ➪
Macros ➪ Macros) doesn’t display the names of the macros contained in an add-in.

 ■ When you write formulas, you can use a custom worksheet function stored in
an add-in without having to precede the function’s name with the source add-
in’s filename.

Why create add-ins?
You might decide to convert your Excel application into an add-in for any of the
following reasons:

To restrict access to your code and worksheets When you distribute an applica-
tion as an add-in and you protect its VBA project with a password, users can’t
view or modify the sheets or the VBA code in the workbook. Therefore, if you use

Note
In the past, Excel allowed you to use any extension for an add-in. Beginning with Excel 2007, you can still use any
extension for an add-in, but if the extension is not XLA or XLAM, you will see the warning shown in Figure 16.1. This
prompt occurs even if the add-in is an installed add-in that opens automatically when Excel starts, and even if the
file is in a trusted location.

FIGURE 16.1

Excel warns you if an add-in uses a nonstandard file extension.

Chapter 16: Creating and Using Add-Ins

571

16

proprietary techniques in your application, you can prevent anyone from copying
the code—or at least make it more difficult to do so.

To separate your VBA code from your data If you send a macro-enabled workbook
to a user that contains both code and data, it’s difficult to update the code. The user
may have added data or changed existing data. If you send another workbook with
updated code, the data changes will be lost.

To make deploying your application easier You can put an add-in on a network
share and have users load it from there. If changes are required, you can replace
the add-in on the network share, and when the users restart Excel, the new add-in
will load.

To avoid confusion If a user loads your application as an add-in, the file isn’t visible,
and it is, therefore, less likely to confuse novice users or get in the way. Unlike a
hidden workbook, an add-in can’t be unhidden.

To simplify access to worksheet functions Custom worksheet functions stored in
an add-in do not need to include the add-in’s filename. For example, if you store a
custom function named MOVAVG in a workbook named Newfuncs.xlsm, you must
use syntax like the following to use this function in a formula that’s in a differ-
ent workbook:

=Newfuncs.xlsm!MOVAVG(A1:A50)

But if this function is stored in an add-in file that’s open, you can use much simpler syntax
because you don’t need to include the file reference.

=MOVAVG(A1:A50)

To provide easier access for users After you identify the location of your add-in,
it appears in the Add-ins dialog box with a friendly name and a description of
what it does.

To gain better control over loading Add-ins can be opened automatically when Excel
starts, regardless of the directory in which they are stored.

To avoid displaying prompts when unloading When an add-in is closed, the user is
never prompted to save changes.

Note
The capability to use add-ins is determined by the user’s security settings in the Add-ins tab of the Trust Center
dialog box (see Figure 16.2). To display this dialog box, choose Developer ➪ Code ➪ Macro Security. Or, if the Devel-
oper tab isn’t displayed, choose File ➪ Options ➪ Trust Center and then click the Trust Center Settings button.

Part IV: Developing Excel Applications

572

Understanding Excel’s Add-in Manager
The most efficient way to load and unload add-ins is with Excel’s Add-ins dialog box, which
you access by using any of the following methods:

 ■ Choose File ➪ Options ➪ Add-ins. Then, in the Excel Options dialog box, choose
Excel Add-ins from the Manage drop-down box and click Go.

FIGURE 16.2

These settings affect whether add-ins can be used.

About COM add-ins
Excel also supports Component Object Model (COM) add-ins. These files have a .dll or .exe file
extension. A COM add-in can be written so that it works with all Office applications that support add-
ins. An additional advantage is that the code is compiled, so the original source isn’t viewable. Unlike
XLAM add-ins, a COM add-in can’t contain Excel sheets or charts. COM add-ins are developed in
Visual Basic .NET. Discussion of creating COM add-in procedures is well beyond the scope of this book.

Chapter 16: Creating and Using Add-Ins

573

16

 ■ Choose Developer ➪ Add-Ins ➪ Excel Add-ins. Note that, by default, the Devel-
oper tab is not visible. At least one file must be open for this Ribbon button to
be enabled.

 ■ Press Alt+TI, a shortcut key sequence used in earlier versions of Excel that still
works. At least one file must be open for this shortcut to work.

Figure 16.3 shows the Add-ins dialog box. The list contains the names of all add-ins that
Excel knows about, and check marks identify installed add-ins. You can open (install) and
close (uninstall) add-ins from this dialog box by selecting or deselecting the check boxes.
When you uninstall an add-in, it is not removed from your system. It remains in the list in
case you want to install it later. Use the Browse button to locate additional add-ins and add
them to the list.

When you open an add-in, you might notice something different about Excel. In almost
every case, the user interface changes in some way: Excel displays either a new command
on the Ribbon or new menu items on a shortcut menu. For example, when the Analysis

FIGURE 16.3

The Add-ins dialog box

CautioN
You can open most add-in files also by choosing the File ➪ Open command. Because an add-in is never the active
workbook, however, you can’t close an add-in by choosing File ➪ Close. You can remove the add-in only by exiting
and restarting Excel or by executing VBA code to close the add-in. Here’s an example:

Workbooks("myaddin.xlam").Close

Opening an add-in with the File ➪ Open command opens the file but does not officially install the add-in.

Part IV: Developing Excel Applications

574

ToolPak add-in is installed, it gives you a new command: Data ➪ Analysis ➪ Data Analysis.
When you install Excel’s Euro Currency Tools add-in, you get a new group in the Formulas
tab: Solutions.

If the add-in contains only custom worksheet functions, the new functions appear in the
Insert Function dialog box.

Creating an Add-In
You can convert any workbook to an add-in, but not all workbooks are appropriate candi-
dates for add-ins. First, an add-in must contain macros. (Otherwise, it’s useless.)

Generally, a workbook that benefits most from being converted to an add-in is one that
contains general-purpose macro procedures. A workbook that consists only of worksheets
would be inaccessible as an add-in because worksheets within add-ins are hidden from the
user. You can, however, write code that copies all or part of a sheet from your add-in to a
visible workbook.

Creating an add-in from a workbook is simple. The following steps describe the procedure
for creating an add-in from a normal workbook file:

1. Develop your application, and make sure that everything works properly.

2. Include a way to execute the macro or macros in the add-in.

3. Activate the Visual Basic Editor (VBE), and select the workbook in the
Project window.

4. Choose Tools ➪ xxx Properties (where xxx represents the name of the project), click
the Protection tab, and select the Lock Project for Viewing check box. Then enter a
password (twice), and click OK.

This step is necessary only if you want to prevent others from viewing or modifying
your macros or UserForms.

5. Reactivate Excel, and choose File ➪ Info to display the properties of the workbook.

6. Enter a brief descriptive title in the Title field and a longer description in the Com-
ments field.

See Chapter 17, “Working with the Ribbon,” and Chapter 18, “Working with Shortcut Menus,” for more
information about modifying Excel’s user interface.

Note
If you open an add-in created in a version before Excel 2007, any user interface modifications made by the add-in
won’t appear as they were intended to appear. Rather, you must access the user interface items (menus and tool-
bars) by choosing Add-Ins ➪ Menu Commands or Add-Ins ➪ Custom Toolbars.

Chapter 16: Creating and Using Add-Ins

575

16

This step isn’t required, but it makes the add-in easier to use by displaying descrip-
tive text in the Add-ins dialog box.

7. Choose File ➪ Save As ➪ Browse to display the Save As dialog box.

8. In the Save As dialog box, select Excel Add-In (*.xlam) from the Save as Type
 drop-down list.

Excel proposes the standard add-ins directory, but you can save the add-in to
any location.

9. Click Save.

A copy of the workbook is saved (with an .xlam extension), and the original work-
book remains open.

10. Close the original workbook and then install the add-in version.

11. Test the add-in to make sure that it works correctly.

If your add-in doesn’t work, make changes to your code—and don’t forget to save
your changes. Because an add-in doesn’t appear in an Excel window, you must save it
from the VBE.

An Add-In Example
In this section, we discuss the steps involved in creating a useful add-in. The example uses
a utility that exports charts to separate graphic files. The utility adds a new group (Export
Charts) to the Home tab (and can be accessed also by pressing Ctrl+Shift+E). Figure 16.4
shows the main dialog box for this utility. This is a fairly complicated utility, and you
might want to take some time to see how it works.

CautioN
A workbook being converted to an add-in must have at least one worksheet, and a worksheet must be the active
sheet when you create the add-in. If a chart sheet is active, the option to save the workbook as an add-in does not
appear in the Save As dialog box.

A few words about passwords
Microsoft has never promoted Excel as a product that creates applications in which the source code
is secure. The password feature provided in Excel is sufficient to prevent casual users from accessing
parts of your application that you’d like to keep hidden. However, if you must be absolutely sure that
no one ever sees your code or formulas, Excel isn’t your best choice as a development platform.

Part IV: Developing Excel Applications

576

In this example, you’ll be working with an application that has already been developed and
debugged. The workbook consists of the following items:

A worksheet named Sheet1 This sheet is not used, but it must be present because
every add-in must have at least one worksheet.

A UserForm named UExport This dialog box serves as the primary user interface.
The code module for this UserForm contains several event-handler procedures.

A UserForm named URename This dialog box is displayed when the user clicks the
Rename button to change the filename of a chart to be exported.

A UserForm named USplash This dialog box is displayed when the workbook is
opened. It briefly describes how to access the Export Charts utility, and it also con-
tains a Don’t Show This Message Again check box.

A VBA module named Module1 This module contains several procedures, including
the main procedure (named StartExportCharts), which displays the UExport
dialog box.

ThisWorkbook code module This module contains a Workbook_Open procedure
that reads the saved settings and displays a start-up message.

XML code to customize the Ribbon This customization was done outside Excel. See
Chapter 17 for more information about customizing the Ribbon by using RibbonX.

oN the Web
The XLSM version of the Export Charts utility (named Export Charts.xlsm) is available on the book’s website.
You can use this file to create the described add-in.

FIGURE 16.4

The Export Charts workbook will make a useful add-in.

Chapter 16: Creating and Using Add-Ins

577

16

Adding descriptive information for the example add-in
To enter a title and description for your add-in, choose File ➪ Info. Enter a title, such as
Export Charts, for the add-in in the Title field. This text will appear in the list in the Add-
ins dialog box. In the Comments field, enter a description of the add-in. If you don’t see the
Comments field, click the Show All Properties link. This information will appear at the bot-
tom of the Add-ins dialog box when the add-in is selected.

Adding a title and description for the add-in is optional, but it is highly recommended.

Creating an add-in
To create an add-in, do the following:

1. Activate the VBE, and select the future add-in workbook in the Project window.

2. Choose Debug ➪ Compile.

This step forces a compilation of the VBA code, and it also identifies any syntax
errors so that you can correct them. When you save a workbook as an add-in, Excel
creates the add-in even if it contains syntax errors.

3. Choose Tools ➪ xxx Properties (where xxx represents the name of the project) to dis-
play the Project Properties dialog box, click the General tab, and enter a new name
for the project.

By default, all VB projects are named VBProject. In this example, the project name is
changed to ExpCharts. This step is optional but recommended.

4. Save the workbook one last time using its *.XLSM name.

Strictly speaking, this step isn’t necessary, but it gives you an XLSM backup (with
no password) of your XLAM add-in file.

5. With the Project Properties dialog box still displayed, click the Protec-
tion tab, select the Lock Project for Viewing check box, and enter a password
(twice). Click OK.

The code will remain viewable, and the password protection will take effect the
next time the file is opened. If you don’t need to protect the project, you can skip
this step.

6. In Excel, choose File ➪ Save As ➪ Browse.

Excel displays its Save As dialog box.

7. In the Save as Type drop-down list, select Excel Add-In (*.xlam).

8. Click Save.

A new add-in file is created, and the original XLSM version remains open.

When you create an add-in, Excel proposes the standard add-ins directory, but add-ins can
be located in any directory.

Part IV: Developing Excel Applications

578

Installing an add-in
To avoid confusion, close the XLSM workbook before installing the add-in created from
that workbook.

To install an add-in, do the following:

1. Choose File ➪ Options, and click the Add-Ins tab.

2. Choose Excel Add-Ins from the Manage drop-down list and then click Go
(or press Alt+TI).

Excel displays the Add-ins dialog box.

3. Click the Browse button, and locate and double-click the add-in that you
just created.

After you find your new add-in, the Add-ins dialog box displays the add-in in its
list. As shown in Figure 16.5, the Add-ins dialog box also displays the descriptive
information that you provided in the Document Properties panel.

4. Click OK to close the dialog box and open the add-in.

About Excel’s Add-in Manager
You install and uninstall add-ins by using Excel’s Add-ins dialog box. This dialog box lists the names
of all available add-ins. Those with check marks are installed.

In VBA terms, the Add-ins dialog box lists the Title property of each AddIn object in the AddIns
collection. Each add-in that appears with a check mark has its Installed property set to True.

You can install an add-in by selecting its check box, and you can uninstall an installed add-in by removing
the check mark. To add an add-in to the list, use the Browse button to locate its file. By default, the
Add-ins dialog box lists files of the following types:

XLAM: An Excel 2007 or newer add-in created from an XLSM file

XLA: A pre–Excel 2007 add-in created from an XLS file

XLL: A stand-alone compiled DLL file

If you click the Automation button, you can browse for COM add-ins. Note that the Automation Servers
dialog box will probably list many files, including COM add-ins that don’t work with Excel.

You can include an add-in file in the AddIns collection with the Add method of the VBA AddIns col-
lection, but you can’t remove one by using VBA. You can also open an add-in from within VBA code
by setting the AddIn object’s Installed property to True. Setting it to False closes the add-in.

The Add-in Manager stores the installed status of the add-ins in the Windows Registry when you exit
Excel. Therefore, all add-ins that are installed when you close Excel are automatically opened the next
time you start Excel.

Chapter 16: Creating and Using Add-Ins

579

16

When the Export Charts add-in is installed, a new tab named Power Chart is created with
two controls. One control displays the Export Charts dialog box; the other displays the
help file.

You can use the add-in also by pressing its shortcut key combination: Ctrl+Shift+E.

Testing the add-in
After installing the add-in, it’s a good idea to perform some additional testing. For this
example, open a new workbook and create some charts to try the various features in the
Export Charts utility. Do everything you can think of to try to make the add-in fail. Better
yet, seek the assistance of someone unfamiliar with the application to give it a crash test.

If you discover any errors, you can correct the code in the add-in (the original file is not
required). After making changes, save the file by choosing File ➪ Save in the VBE.

Distributing an add-in
You can distribute this add-in to other Excel users simply by giving them a copy of the
XLAM file (they don’t need the XLSM version) along with instructions on how to install it.
If you locked the file with a password, your macro code cannot be viewed or modified by
others unless they know the password.

FIGURE 16.5

The Add-ins dialog box with the new add-in selected

Part IV: Developing Excel Applications

580

Modifying an add-in
If you need to modify an add-in, first open it and then unlock the VB project if you applied
a password. To unlock it, activate VBE and then double-click its project’s name in the
Project window. You’ll be prompted for the password. Make your changes and then save the
file from VBE (choose File ➪ Save).

If you create an add-in that stores its information in a worksheet, you must set its
Is AddIn property to False before you can view that workbook in Excel. You do this in
the Properties window shown in Figure 16.6 when the ThisWorkbook object is selected.
After you make your changes, set the IsAddIn property back to True before you save the
file. If you leave the IsAddIn property set to False, Excel won’t let you save the file with
the XLAM extension.

FIGURE 16.6

Making an add-in not an add-in

Creating an add-in: a checklist
Before you release your add-in to the world, take a few minutes to run through this checklist:

 ■ Did you test your add-in with all supported platforms and Excel versions?

 ■ Did you give your VB project a new name? By default, every project is named VBProject.
It’s a good idea to give your project a more meaningful name.

 ■ Does your add-in make any assumptions about the user’s directory structure or
directory names?

Chapter 16: Creating and Using Add-Ins

581

16

Comparing XLAM and XLSM Files
This section begins by comparing an XLAM add-in file with its XLSM source file. Later
in this chapter, we discuss methods that you can use to optimize the performance of
your add-in.

For starters, an add-in based on an XLSM source file is the same size as the original. The
VBA code in XLAM files isn’t optimized, so faster performance isn’t among the benefits of
using an add-in.

XLAM file VBA collection membership
An add-in is a member of the AddIns collection, but it isn’t an official member of the
Workbooks collection. However, you can refer to an add-in by using the Workbooks
method of the Application object and supplying the add-in’s filename as its index.
The following instruction creates an object variable that represents an add-in named
myaddin.xlam:

Dim TestAddin As Workbook
Set TestAddin = Workbooks("myaddin.xlam")

Add-ins cannot be referenced by an index number in the Workbooks collection. If you use
the following code to loop through the Workbooks collection, the myaddin.xlam work-
book isn’t displayed:

Dim w as Workbook

For Each w in Application.Workbooks
 MsgBox w.Name
Next w

 ■ When you use the Add-ins dialog box to load your add-in, is its name and description
correct and appropriate?

 ■ If your add-in uses VBA functions that aren’t designed to be used in a worksheet, have you
declared the functions as Private? If not, these functions will appear in the Insert Function
dialog box.

 ■ Did you remember to remove all Debug.Print statements from your code?

 ■ Did you force a recompile of your add-in to ensure that it contains no syntax errors?

 ■ Did you account for any international issues?

 ■ Is your add-in file optimized for speed? See “Optimizing the Performance of Add-Ins” later
in this chapter.

Part IV: Developing Excel Applications

582

The following For-Next loop, on the other hand, displays myaddin.xlam—assuming that
Excel “knows” about it—in the Add-ins dialog box:

Dim a as Addin

For Each a in Application.AddIns
 MsgBox a.Name
Next a

Visibility of XLSM and XLAM files
Ordinary workbooks are displayed in one or more windows. For example, the following
statement displays the number of windows for the active workbook:

MsgBox ActiveWorkbook.Windows.Count

You can manipulate the visibility of each window for a workbook by choosing the View ➪
Window ➪ Hide command (in Excel) or by changing the Visible property using VBA. The
following code hides all windows for the active workbook:

Dim Win As Window

For Each Win In ActiveWorkbook.Windows
 Win.Visible = False
Next Win

Add-in files are never visible, and they don’t have windows, even though they have unseen
worksheets. Consequently, add-ins don’t appear in the windows list when you choose the
View ➪ Window ➪ Switch Windows command. If myaddin.xlam is open, the following
statement returns 0:

MsgBox Workbooks("myaddin.xlam").Windows.Count

Worksheets and chart sheets in XLSM and XLAM files
Add-in files, like normal workbook files, can have any number of worksheets or chart
sheets. But to convert an XLSM file to an add-in, the file must have at least one worksheet.
In many cases, this worksheet will be empty.

When an add-in is open, your VBA code can access its sheets as if they were in an ordinary
workbook. Because add-in files aren’t part of the Workbooks collection, however, you must
always reference an add-in by its name and not by an index number. The following example
displays the value in cell A1 of the first worksheet in myaddin.xla, which is assumed
to be open:

MsgBox Workbooks("myaddin.xlam").Worksheets(1).Range("A1").Value

If your add-in contains a worksheet that you’d like the user to see, you can either copy the
sheet to an open workbook or create a new workbook from the sheet.

Chapter 16: Creating and Using Add-Ins

583

16

The following code, for example, copies the first worksheet from an add-in and places it in
the active workbook (as the last sheet):

Sub CopySheetFromAddin()
 Dim AddinSheet As Worksheet
 Dim NumSheets As Long
 Set AddinSheet = Workbooks("myaddin.xlam").Sheets(1)
 NumSheets = ActiveWorkbook.Sheets.Count
 AddinSheet.Copy After:=ActiveWorkbook.Sheets(NumSheets)
End Sub

Note that this procedure works even if the VBA project for the add-in is protected with
a password.

Creating a new workbook from a sheet within an add-in is even simpler.

Sub CreateNewWorkbook()
 Workbooks("myaddin.xlam").Sheets(1).Copy
End Sub

Accessing VBA procedures in an add-in
Accessing the VBA procedures in an add-in is a bit different from accessing procedures in a
normal XLSM workbook. First, when you choose the View ➪ Macros ➪ Macros command, the
Macro dialog box doesn’t display the names of macros that are in open add-ins. It’s almost
as if Excel were trying to prevent you from accessing them.

Because procedures contained in an add-in aren’t listed in the Macro dialog box, you must
provide other means to access them. Your choices include direct methods (such as shortcut
keys and Ribbon commands) as well as indirect methods (such as event handlers). One such
candidate, for example, may be the OnTime method, which executes a procedure at a spe-
cific time of day.

Note
The previous examples assume that the code is in a file other than the add-in file. VBA code within an add-in
should always use ThisWorkbook to qualify references to sheets or ranges within the add-in. For example, the
following statement is assumed to be in a VBA module in an add-in file. This statement displays the value in cell A1
on Sheet 1.

MsgBox ThisWorkbook.Sheets("Sheet1").Range("A1").Value

tip
If you know the name of the procedure in the add-in, you can enter it directly in the Macro dialog box and click Run to
execute it. The Sub procedure must be in a standard VBA module and not in a code module for an object.

Part IV: Developing Excel Applications

584

You can use the Run method of the Application object to execute a procedure in an add-
in. Here’s an example:

Application.Run "myaddin.xlam!DisplayNames"

Another option is to use the Tools ➪ References command in VBE to enable a reference to
the add-in. Then you can refer directly to one of its procedures in your VBA code without
the filename qualifier. In fact, you don’t need to use the Run method; you can call the pro-
cedure directly as long as it’s not declared as Private. The following procedure executes a
procedure named DisplayNames in an add-in that has been added as a reference:

Sub RunTheAddingCode()
 DisplayNames
End Sub

Function procedures defined in an add-in work just like those defined in an XLSM work-
book. They’re easy to access because Excel displays their names in the Insert Function
dialog box under the User Defined category (by default). The only exception is if the
Function procedure was declared with the Private keyword; then the function doesn’t
appear there. That’s why it’s a good idea to declare custom functions as Private if
they will be used only by other VBA procedures and aren’t designed to be used in work-
sheet formulas.

You can use worksheet functions contained in add-ins without the workbook name quali-
fier. For example, if you have a custom function named MOVAVG stored in the file new-
funcs.xlsm, you’d use the following instruction to address the function from a worksheet
in a different workbook:

=newfuncs.xlsm!MOVAVG(A1:A50)

But if this function is stored in an add-in file that’s open, you can omit the file reference
and write the following instead:

=MOVAVG(A1:A50)

Keep in mind that a workbook that uses a function defined in an add-in will have a link to
that add-in. Therefore, the add-in must be available whenever that workbook is used.

Note
Even when a reference to the add-in has been established, its macro names don’t appear in the Macro dialog box.

Chapter 16: Creating and Using Add-Ins

585

16

Sleuthing a protected add-in
The Macro dialog box doesn’t display the names of procedures contained in add-ins. But what if you’d
like to run such a procedure? You can’t run a procedure if you don’t know its name, but you can find
its name by using the Object Browser.

To illustrate, install the Euro Currency Tools add-in. This add-in is distributed with Excel, and it is
password-protected so you can’t view the code. When installed, the add-in creates a new group, called
Solutions, on the Formulas tab of the Ribbon. When you click the Euro Conversion button, the Euro
Conversion dialog box is displayed. This dialog box lets you convert a range that contains currencies.

To determine the name of the procedure that displays this dialog box, follow these steps:

1. Activate VBE and then select the EUROTOOL.XLAM project in the Project window.

2. Press F2 to activate Object Browser.

3. In the Libraries drop-down list, select EuroTool, which displays all of the classes in the
EUROTOOL.XLAM add-in, as depicted here.

Continues

Part IV: Developing Excel Applications

586

4. Select various items in the Classes list to see what class they are and the members that
they contain.

You see that this add-in has quite a few worksheets. Excel allows you to copy sheets from protected
add-ins, so if you’d like to take a look at one of the worksheets, use the Immediate window and copy
the worksheet to a new workbook using a statement like this:

Workbooks("eurotool.xlam").Sheets(1).Copy

Or, to examine all of the worksheets, execute this statement, which converts the add-in to a stan-
dard workbook:

Workbooks("eurotool.xlam").IsAddin = False

The following figure shows a portion of the workbook. This sheet (and the others) contains information
used to localize the add-in for different languages.

(continued)

Chapter 16: Creating and Using Add-Ins

587

16

Manipulating Add-Ins with VBA
In this section, we present information that can help you write VBA procedures that manip-
ulate add-ins.

The AddIns collection consists of all of the add-ins that Excel knows about. These add-ins
can be either installed or not. The Add-ins dialog box lists all members of the AddIns col-
lection. Those entries accompanied by a check mark are installed.

Adding an item to the AddIns collection
The add-in files that make up the AddIns collection can be stored anywhere. Excel main-
tains a partial list of these files and their locations in the Windows Registry. For Excel
2019, this list is stored here:

HKEY_CURRENT_USER\Software\Microsoft\Office\16.0\Excel\Add-in Manager

You can use the Windows Registry Editor (regedit.exe) to view this Registry key.
Note that the standard add-ins shipped with Excel do not appear in this Registry key. In
addition, add-in files stored in the following directory also appear in the list but aren’t
listed in the Registry:

C:\Program Files\Microsoft Office\root\Office16\Library

Note
Beginning with Excel 2010, an additional collection is available: AddIns2. This collection is the same as the Add-
Ins collection, but it also includes add-ins that were opened using the File ➪ Open command. In the past, access-
ing these add-ins required an XLM macro.

That’s interesting, but it doesn’t help identify the procedure name we’re seeking.

This add-in has a lot of procedures, but none of the ones in the standard modules displays the dialog
box. There is a member listed in the ThisWorkbook code module called EuroConversionWizard.
You can’t execute that directly because it’s an object’s code module. You can, however, use the Run
method to execute it, as shown in the following statement:

Application.Run "eurotool.xlam!ThisWorkbook.EuroConversionWizard"

Executing this statement displays the Euro Conversion dialog box, just as if you’d clicked the button
on the Ribbon.

Armed with this information, you can write VBA code to display the Euro Conversion dialog box—
assuming, of course, that you can think of a reason to do so.

Part IV: Developing Excel Applications

588

Note that the path on your system may be different depending on the version of Windows
you are using. You can add a new AddIn object to the AddIns collection either manually
or programmatically. To add a new add-in to the collection manually, display the Add-ins
dialog box, click the Browse button, and locate the add-in.

To add a new member to the AddIns collection with VBA, use the collection’s Add method.
Here’s an example:

Application.AddIns.Add "c:\files\newaddin.xlam"

After the preceding instruction is executed, the AddIns collection has a new member, and
the Add-ins dialog box shows a new item in its list. If the add-in already exists in the col-
lection, nothing happens, and an error isn’t generated.

If the add-in is on removable media (for example, a CD-ROM), you can also copy the file to
Excel’s library directory with the Add method. The following example copies myaddin
.xlam from drive E and adds it to the AddIns collection. The second argument (set to
True, in this case) specifies whether the add-in should be copied. If the add-in resides on a
hard drive, the second argument can be ignored.

Application.AddIns.Add "e:\myaddin.xla", True

Removing an item from the AddIns collection
Oddly, there is no direct way to remove an add-in from the AddIns collection. The AddIns
collection doesn’t have a Delete or Remove method. One way to remove an add-in from
the Add-ins dialog box is to edit the Windows Registry database (using regedit.exe).

CautioN
When using regedit.exe to edit the registry, first make a backup of the registry. To do this, select the top node
in the tree view called Computer, and choose File ➪ Export. Editing the registry demands extreme caution because
one mistake can cause serious problems with your computer. Restoring from the back might be the only way you can
undo your unwanted changes.

Note
Adding a new file to the AddIns collection does not install it. To install the add-in, set its Installed property
to True.

CautioN
The Windows Registry doesn’t get updated until Excel closes normally. Therefore, if Excel ends abnormally (that is, if
it crashes), the add-in’s name won’t get added to the Registry, and the add-in won’t be part of the AddIns collec-
tion when Excel restarts.

Chapter 16: Creating and Using Add-Ins

589

16

After you do this, the add-in won’t appear in the Add-ins dialog box the next time you
start Excel. Note that this method isn’t guaranteed to work with all add-in files.

Another way to remove an add-in from the AddIns collection is to delete, move, or rename
its XLAM (or XLA) file. You’ll get a warning like the one shown in Figure 16.7 the next time
you try to install or uninstall the add-in, along with an opportunity to remove it from the
AddIns collection.

AddIn object properties
An AddIn object is a single member of the AddIns collection. For example, to display the
filename of the first member of the AddIns collection, use the following:

Msgbox AddIns(1).Name

An AddIn object has 15 properties, which you can read about in the Help system. Of these
properties, 5 are hidden. Some of the terminology is a bit confusing, so we discuss a few of
the more important properties in the sections that follow.

The Name property of an AddIn object
The Name property holds the filename of the add-in. Name is a read-only property, so you
can’t change the name of the file by changing the Name property.

The Path property of an AddIn object
The Path property holds the drive and path where the add-in file is stored. It doesn’t
include a final backslash or the filename.

The FullName property of an AddIn object
The FullName property holds the add-in’s drive, path, and filename. This property is
redundant because this information is also available from the Name and Path properties.
The following instructions produce the same message:

MsgBox AddIns(1).Path & "\" & AddIns(1).Name
MsgBox AddIns(1).FullName

FIGURE 16.7

One way to remove a member of the AddIns collection

Part IV: Developing Excel Applications

590

The Title property of an AddIn object
The Title property is a hidden property that holds a descriptive name for the add-in. The
Title property is what appears in the Add-ins dialog box. This property is set when Excel
reads the file’s Title property from Windows and can’t be changed in code. You can add or
change the Title property of an add-in by first setting the IsAddin property to False
(so the add-in will appear as a normal workbook in Excel) and then choosing File ➪ Info
and changing Title in the Backstage area. Don’t forget to set the IsAddin property back
to True and save the add-in from the VBE. Because Excel reads file properties only when
an add-in is installed, it won’t know about this change until you uninstall and reinstall the
add-in (or restart Excel).

Of course, you can also change any file property (including Title) through Windows
Explorer. Right-click the add-in file in Windows Explorer and choose Properties from the
shortcut menu. Then click the Details tab and make the change. If the file is open in Excel,
changes you make in Windows Explorer won’t be saved, so uninstall it or close Excel before
using this method.

Typically, a member of a collection is addressed by way of its Name property setting. The
AddIns collection is different; it uses the Title property instead. The following example
displays the filename for the Analysis ToolPak add-in (that is, analys32.xll), whose
Title property is Analysis ToolPak.

Sub ShowName()
 MsgBox AddIns("Analysis Toolpak").Name
End Sub

You can also reference a particular add-in with its index number if you happen to know
it. In the vast majority of cases, however, you will want to refer to an add-in by using its
Title property.

The Comments property of an AddIn object
The Comments property stores text that is displayed in the Add-ins dialog box when a par-
ticular add-in is selected. Like Title, Comments is read from the file property of the same
name and can’t be changed in code. To change it, use either of the methods described in
the preceding section. Comments can be as long as 255 characters, but the Add-ins dialog
box can display only about 100 characters.

The Installed property of an AddIn object
The Installed property is True if the add-in is currently installed, that is, if it has a
check mark in the Add-ins dialog box. Setting the Installed property to True opens the
add-in. Setting it to False unloads it. Here’s an example of how to install (that is, open)
the Analysis ToolPak add-in with VBA:

Sub InstallATP()
 AddIns("Analysis ToolPak").Installed = True
End Sub

Chapter 16: Creating and Using Add-Ins

591

16

After this procedure is executed, the Add-ins dialog box displays a check mark next to
Analysis ToolPak. If the add-in is already installed, setting its Installed property to
True has no effect. To remove this add-in (uninstall it), simply set the Installed prop-
erty to False.

The ListAllAddIns procedure that follows creates a table that lists all members of the
AddIns collection and displays the following properties: Name, Title, Installed, Com-
ments, and Path.

Sub ListAllAddins()
 Dim ai As AddIn
 Dim Row As Long
 Dim Table1 As ListObject
 Dim sh As Worksheet

 Set sh = ActiveSheet
 sh.Cells.Clear
 sh.Range("A1:E1") = Array("Name", "Title", "Installed", _
 "Comments", "Path")
 Row = 2
 On Error Resume Next
 For Each ai In Application.AddIns
 sh.Cells(Row, 1) = ai.Name
 sh.Cells(Row, 2) = ai.Title
 sh.Cells(Row, 3) = ai.Installed
 sh.Cells(Row, 4) = ai.Comments
 sh.Cells(Row, 5) = ai.Path
 Row = Row + 1
 Next ai
 On Error GoTo 0
 sh.Range("A1").Select
 sh.ListObjects.Add
 sh.ListObjects(1).TableStyle = _
 "TableStyleMedium2"
 sh.ListObjects(1).Range.EntireColumn.AutoFit
End Sub

Figure 16.8 shows the result of executing this procedure. If you modify the code to use the
AddIns2 collection, the table will also include add-ins that were opened using the File ➪
Open command (if any). The AddIns2 collection is available only in Excel 2010 and newer.

CautioN
If an add-in was opened with the File ➪ Open command, it isn’t considered to be installed. Consequently, its
Installed property is False. An add-in is installed only if it appears in the Add-ins dialog box, with a check
mark next to its name.

Part IV: Developing Excel Applications

592

Accessing an add-in as a workbook
You can open an XLAM add-in file by using the Add-ins dialog box or by choosing the File
➪ Open command. The former method is preferred because when you open an add-in with
the File ➪ Open command, its Installed property is not set to True. Therefore, you can’t
close the file by using the Add-ins dialog box. In fact, the only way to close such an add-in
is with a VBA statement such as the following:

Workbooks("myaddin.xlam").Close

FIGURE 16.8

A table that lists information about all members of the AddIns collection

oN the Web
This procedure is available on the book’s website in the List Add-in Information.xlsm file.

Note
You can determine whether a particular workbook is an add-in by accessing its IsAddIn property. This property
isn’t read-only, so you can also convert a workbook to an add-in by setting the IsAddIn property to True. Con-
versely, you can convert an add-in to a workbook by setting the IsAddIn property to False. After doing so, the
add-in’s worksheets will be visible in Excel—even if the add-in’s VBA project is protected. By using this technique,
you can see that most of the dialog boxes in SOLVER.XLAM are old Excel 5/95 dialog sheets, not UserForms. Also,
SOLVER.XLAM contains more than 15,000 defined names.

CautioN
Using the Close method on an installed add-in removes the add-in from memory, but it does not set its
Installed property to False. Therefore, the Add-ins dialog box still lists the add-in as installed, which can be
confusing. The proper way to remove an installed add-in is to set its Installed property to False.

Chapter 16: Creating and Using Add-Ins

593

16

As you may have surmised, Excel’s add-in capability is quirky. This component (except for
the addition of the AddIns2 collection) hasn’t been improved in many years. Therefore, as
a developer, you need to pay particular attention to issues involving installing and unin-
stalling add-ins.

AddIn object events
An AddIn object has two events: AddInInstall (occurs when the add-in is installed) and
AddInUninstall (occurs when it is uninstalled). You can write event-handler procedures
for these events in the ThisWorkbook code module for the add-in.

The following example is displayed as a message when the add-in is installed:

Private Sub Workbook_AddInInstall()
 MsgBox ThisWorkbook.Name & " add-in has been installed."
End Sub

Optimizing the Performance of Add-Ins
If you ask a dozen Excel programmers to automate a particular task, chances are that you’ll
get a dozen different approaches. Most likely, not all of these approaches will perform
equally well.

You can use the following tips to ensure that your code runs as quickly as possible. These
tips apply to all VBA code, not just the code in add-ins.

 ■ Set the Application.ScreenUpdating property to False when writing data
to a worksheet or performing any other actions that cause changes to the display.

 ■ Declare the data type for all variables used and avoid variants whenever pos-
sible. Use an Option Explicit statement at the top of each module to force
yourself to declare all variables.

 ■ Create object variables to avoid lengthy object references. For example, if you’re
working with a Series object for a chart, create an object variable by using code
like this:

Dim S1 As Series
Set S1 = ActiveWorkbook.Sheets(1).ChartObjects(1). _
 Chart.SeriesCollection(1)

CautioN
Don’t confuse the AddInInstall event with the Open event. The AddInInstall event occurs only when the
add-in is first installed—not every time it is opened. If you need to execute code every time the add-in is opened, use
a Workbook _ Open procedure.

For additional information about events, see Chapter 6, “Understanding Excel’s Events.”

Part IV: Developing Excel Applications

594

 ■ Whenever possible, declare object variables as a specific object type—not
As Object.

 ■ Use the With-End With construct, when appropriate, to set multiple properties
or call multiple methods for a single object.

 ■ Remove all extraneous code. This tip is especially important if you’ve used the
macro recorder to create procedures.

 ■ Manipulate data with VBA arrays rather than worksheet ranges, if possible.
Reading and writing to a worksheet usually takes much longer than manipulating
data in memory. However, for best results, test both options.

 ■ Consider setting the calculation mode to Manual if your code writes lots of data
to worksheets. Doing so may increase the speed significantly. Here is code that
changes the calculation mode to manual and back to its original setting after the
code is run:

lCalcMode = Application.Calculation
Application.Calculation = xlCalculationManual
'Your code goes here
Application.Calculation = lCalcMode

 ■ Avoid linking UserForm controls to worksheet cells. Doing so may trigger a recal-
culation whenever the user changes the UserForm control.

 ■ Compile your code before creating the add-in. Doing so may increase the file size
slightly, but it eliminates the need for Excel to compile the code before executing
the procedures.

Special Problems with Add-Ins
Add-ins are great, but you should realize by now that there’s no free lunch. Add-ins pres-
ent their share of problems—or should we say challenges? In this section, we discuss
some issues you need to know about if you’ll be developing add-ins for widespread user
distribution.

Ensuring that an add-in is installed
In some cases, you may need to ensure that your add-in is installed properly—that is,
opened using the Add-ins dialog box and not the File ➪ Open command. This section
describes a technique that determines how an add-in was opened and gives the user an
opportunity to install the add-in if it is not properly installed.

If the add-in isn’t properly installed, the code displays a message (see Figure 16.9). Click-
ing Yes installs the add-in. Clicking No leaves the file open but doesn’t install it. Clicking
Cancel closes the file.

Chapter 16: Creating and Using Add-Ins

595

16

The code that follows is the code module for the add-in’s ThisWorkbook object. This tech-
nique relies on the fact that the AddInInstall event occurs before the Open event for
the workbook.

Dim InstalledProperly As Boolean

Private Sub Workbook_AddinInstall()
 InstalledProperly = True
End Sub

Private Sub Workbook_Open()
 Dim ai As AddIn, newAi As AddIn
 Dim msg As String
 Dim ans As Long

 'Was just installed using the Add-ins dialog box?
 If InstalledProperly Then Exit Sub

 'Is it in the AddIns collection?
 For Each ai In AddIns
 If ai.Name = ThisWorkbook.Name Then
 If ai.Installed Then
 MsgBox "This add-in is properly installed.", _
 vbInformation, ThisWorkbook.Name
 Exit Sub
 End If
 End If
 Next ai

 'It's not in AddIns collection, prompt user.
 msg = "You just opened an add-in. Do you want to install it?"
 msg = msg & vbNewLine

FIGURE 16.9

When attempting to open the add-in incorrectly, the user sees this message.

Part IV: Developing Excel Applications

596

 msg = msg & vbNewLine & "Yes - Install the add-in. "
 msg = msg & vbNewLine & "No - Open it, but don't install it."
 msg = msg & vbNewLine & "Cancel - Close the add-in"
 ans = MsgBox(msg, vbQuestion + vbYesNoCancel, ThisWorkbook.Name)

 Select Case ans
 Case vbYes
 ' Add it to the AddIns collection and install it.
 Set newAi = Application.AddIns.Add(ThisWorkbook.FullName)
 newAi.Installed = True
 Case vbNo
 'no action, leave it open
 Case vbCancel
 ThisWorkbook.Close
 End Select
End Sub

The procedure covers the following possibilities:

 ■ The add-in was opened automatically because it was installed in a previous session
(it was listed in the Add-ins dialog and displayed a check mark). The user doesn’t
see a message.

 ■ The user uses the Add-ins dialog box to install the add-in. The user doesn’t see
a message.

 ■ The add-in was opened manually (by using File ➪ Open) and is not a member
of the AddIns collection. The user sees the message and must take one of the
three actions.

 ■ The add-in was opened manually, is a member of the AddIns collection, but it is
not installed (not displayed with a check mark). The user sees the message and
must take one of the three actions.

By the way, you can also use this code as a way to simplify the installation of an add-in
that you give to someone. Just tell them to double-click the add-in’s filename (which opens
it in Excel) and respond Yes to the prompt. Better yet, modify the code so that the add-in is
installed without a prompt.

Referencing other files from an add-in
If your add-in uses other files, you need to be especially careful when distributing the
application. You can’t assume anything about the storage structure of the system on
which users will run the application. The easiest approach is to insist that all files for the

oN the Web
This add-in, named Check Addin.xlam, is available on the book’s website. Try opening it using both methods
(with the Add-ins dialog box and by choosing File ➪ Open).

Chapter 16: Creating and Using Add-Ins

597

16

application be copied to a single directory. Then you can use the Path property of your
application’s workbook to build path references to all other files.

For example, if your application uses a custom help file, be sure that the help file is copied
to the same directory as the application itself. Then you can use a procedure like the fol-
lowing to make sure that the help file can be located:

Sub GetHelp()
 Application.Help ThisWorkbook.Path & "\userhelp.chm"
End Sub

If your application uses application programming interface (API) calls to standard Win-
dows DLLs, you can assume that these can be found by Windows. But if you use custom
DLLs, the best practice is to make sure that they’re installed in the Windows\System
directory (which might or might not be named Windows\System). You’ll need to use the
GetSystemDirectory Windows API function to determine the exact path of the System
directory.

599

CHAP T ER

17
Working with the Ribbon

IN THIS CHAPTER
Looking at the Excel Ribbon UI from a user’s perspective

Using VBA to work with the Ribbon

Customizing the Ribbon with RibbonX code

Looking at examples of workbooks that modify the Ribbon

Using boilerplate code for creating an old-style toolbar

Ribbon Basics
Beginning with Microsoft Office 2007, the primary user interface was changed from menus and
toolbars to the Ribbon. While there are similarities between toolbars and the Ribbon, the Ribbon is
radically different, particularly when it comes to VBA.

The Ribbon consists of a hierarchy of tabs, groups, and controls. The tabs appear across the top.
Each tab consists of one or more groups, and each group consists of one or more controls.

Tabs These are the top objects in the Ribbon hierarchy. You use tabs to separate the most
fundamental operations into logical groups. The default Ribbon contains the Home, Insert,
Page Layout, Formulas, Data, Review, View, and Help tabs. You can add controls to existing
tabs or create new tabs. For example, you might make a new tab with your company’s name
that contains controls for code that’s specific to your company’s operations.

Groups These are the second highest objects in the Ribbon hierarchy. Groups contain any of
the number of different types of controls, and they are used to separate operations logically
that are supported by a Ribbon tab. The default Formulas tab contains the Function Library,
Defined Names, Formula Auditing, and Calculation groups. You don’t have to include only
related controls in a group, but it helps the user navigate the Ribbon more easily if you do.

Controls This level of the Ribbon hierarchy is where the action is. You interact with Excel or
your custom VBA code through controls. The Ribbon supports a variety of controls, many of
which are discussed in this chapter.

Excel® 2019 Power Programming with VBA, First Edition. Michael Alexander and Dick Kusleika.
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.

Part IV: Developing Excel Applications

600

The Ribbon supports many types of controls. While we don’t discuss every type of con-
trol in this chapter, we do discuss the ones that you are likely to use. If you’re used to the
older menus and toolbars, you’ll appreciate the flexibility that the Ribbon controls offer.
Figure 17.1 shows the default Page Layout tab with a good selection of control types.

Here is a brief description of some of the controls:

Button The Button control is the most basic Ribbon control, and it will be most
familiar to you if you used the older toolbar user interface. You click a button and
it performs an action. The Cut button on the Home tab performs the built-in cut
action. Your custom buttons can be used to execute a macro that you’ve written.

SplitButton The SplitButton control is similar to the Button control, but with an
added feature. It is split, either horizontally or vertically, into a button part and a
list part. You can click the button part to perform an action, just like the Button
control. The list part, represented by an arrow, shows a list of similar buttons. The
Paste SplitButton on the Home tab is a good example. The button part performs
the normal paste operation. If you click the arrow to show the list, you can choose a
different paste operation such as Paste Values or Paste Formatting.

CheckBox The CheckBox control is similar to a check box on a UserForm. It appears
as an empty box when unchecked and contains a check mark when checked. The View
Gridlines controls in the Page Layout ⇨ Sheet Options group is a good example of
a checkbox.

ComboBox The ComboBox control is another familiar control if you’ve used User-
Forms. Like the UserForm control with the same name, you can type text into the
text box part of a ComboBox (called an EditBox in the Ribbon) or select an item
from a list. The NumberFormat control in the Home ⇨ Number group is a good exam-
ple of a ComboBox control. For example, you can type Currency directly in the text
box portion or click the drop-down arrow and select a number format from the list.

A Menu control

A Button control

A ComboBox
control

A SpinButton control

A CheckBox control

FIGURE 17.1

The Page Layout tab contains many different control types.

Chapter 17: Working with the Ribbon

601

17

Menu The Menu control displays a list of other controls. You can include a Button,
SplitButton, CheckBox, or even another Menu control in the list. It differs from
a SplitButton because when you click it, it always displays the list. That is, it
does not have the option of having a default control. The Conditional Formatting
control on the Home tab is an example of a Menu control.

There are several other controls offered by the Ribbon, including the ToggleButton,
Gallery, EditBox, dynamicMenu, and Label controls. Some of these controls are used
in this chapter. To learn more about these and the other controls, visit Microsoft’s website
at https://msdn.microsoft.com/en-us/library/bb386089.aspx.

Customizing the Ribbon
Excel provides a couple of ways to add your macros to the Ribbon. These methods don’t give
you the flexibility that creating a custom Ribbon does, but what they lack in customiza-
tion, they make up for in simplicity.

Adding a button to the Ribbon
The simplest way to use the Ribbon to execute your code is to add your macro to a custom
group using Excel’s Customize Ribbon interface. In a new workbook, insert a module and
add the following simple procedure:

Public Sub HelloWorld()
 MsgBox "Hello World!"
End Sub

Return to Excel, right-click anywhere on the Ribbon, and choose Customize the Ribbon to
display the Customize Ribbon tab in the Excel Options dialog box. The Customize Ribbon
tab primarily consists of two lists. The list on the left contains all of the possible com-
mands, and the list on the right shows what the Ribbon currently looks like.

At the top of these lists are drop-down boxes that allow you to filter them, making the
command you’re looking for easier to find. From the drop-down above the commands
list, choose Macros, as shown in Figure 17.2. Now the left list shows all of the macros
that are available to add to the Ribbon, including the HelloWorld procedure that you
just created.

You can’t add your macro to just anywhere on the Ribbon. Excel prevents you from chang-
ing its built-in groups. To add your macro, you must create a custom group.

On the Web
This workbook, named Custom Ribbon and QAT.xlsm, is available on the book’s website.

https://msdn.microsoft.com/en-us/library/bb386089.aspx

Part IV: Developing Excel Applications

602

FIGURE 17.2

The Customize Ribbon tab allows you to add macros to the Ribbon.

Adding your macro to a custom group on
the Ribbon
Follow these steps to add the HelloWorld procedure to a custom group on the Home tab:

1. Select the Home tab in the right list of the Customize Ribbon tab. If you don’t see the Home
tab, select Main Tabs from the drop-down above this list.

2. Click the New Group button below the list to add a custom group to the Home tab.

3. The new group is named New Group (Custom) by default. Click the Rename button to
change the group’s name to MyGroup.

Chapter 17: Working with the Ribbon

603

17

The Home tab now contains a custom group called MyGroup, and that group contains one
control labeled Hello World. Figure 17.4 shows the new control and the message box that’s
displayed when it’s clicked.

4. With the custom group selected, choose the HelloWorld entry in the left list and click the
Add>> button. Your HelloWorld macro now appears below the custom group.

5. Select the HelloWorld entry in the right list and click the Rename button. In the Rename
dialog box, you can change the label of the control and change the icon from the default
macro icon. Figure 17.3 shows the Rename dialog box where the blue information icon is
selected and the Display Name value is changed to include a space between Hello and World.

6. Click OK to close the Excel Options dialog box.

FIGURE 17.3

The Rename dialog lets you choose an icon for your Ribbon button.

Part IV: Developing Excel Applications

604

Adding a button to the Quick Access toolbar
Another method for accessing your macros is to add them to the Quick Access toolbar (QAT).
The QAT is a list of buttons that’s always visible regardless of which tab is showing on the
Ribbon. By default, the QAT appears above the tabs on the Ribbon, but it can also be shown
below the Ribbon. If you prefer to show the QAT below the Ribbon, click the small down
arrow on the right of the QAT and choose Show Below the Ribbon from the menu. Or, you
can, right-click anywhere on the QAT or the Ribbon and choose Show Quick Access Toolbar
below the Ribbon from the shortcut menu.

By default, the QAT shows the AutoSave, Save, Undo, and Redo commands. In this example,
we’ll add the HelloWorld procedure from the preceding section to the QAT. The steps are
similar to adding a button to the Ribbon.

Click the QAT down arrow, and choose More Commands from the menu to display the Quick
Access Toolbar tab of the Excel Options dialog. Note how similar this tab is to the Cus-
tomize Ribbon tab from the preceding section. It has a list of commands on the left and the
current state of the QAT on the right.

Next, select Macros from the drop-down box above the left list. The HelloWorld procedure
now appears in the list. Select HelloWorld from the left list, and click the Add>> button
to add it to the QAT (see Figure 17.5). Unlike customizing the Ribbon, there is no Rename
button. To customize a QAT button, click the Modify button to choose an icon and change

FIGURE 17.4

The custom Ribbon button executes the HelloWorld macro.

Chapter 17: Working with the Ribbon

605

17

the name. The QAT doesn’t actually display names. Changing Display Name in the Modify
Button dialog changes what’s shown in the tooltip when you hover over the button.

When you return to Excel’s main window, the QAT will include a new button that executes
your HelloWorld procedure. Figure 17.6 shows the QAT and the results of clicking the
new button.

Understanding the limitations of Ribbon customization
Now that you have a custom button on both the Ribbon and the QAT, you can easily
execute the HelloWorld procedure. When you save and close the workbook that contains
 HelloWorld, the buttons on the Ribbon and QAT may still be there under certain cir-
cumstances. If you click either of those buttons when the workbook is closed, Excel will
attempt to open the workbook. If Excel can’t find it because you moved or renamed the
workbook, you get a message that Excel can’t find your macro (see Figure 17.7).

FIGURE 17.5

You can add a macro to the Quick Access toolbar.

Part IV: Developing Excel Applications

606

One way to prevent this message is include your macro in an add-in that’s always loaded.
See Chapter 16, “Creating and Using Add-Ins,” for how to create an add-in. If you want the
buttons to appear only when the workbook is opened or you want to use Ribbon controls
other than the Button control, you have to create a custom Ribbon in your workbook.

Unlike the Ribbon, the QAT has a method for showing a control only when a particular
workbook is open. There is a drop-down on the right side of the Customize the Quick Access
Toolbar dialog. If you choose the default “For all documents,” the control will stay on the
QAT regardless of what workbooks are open or active. The other option in the drop-down is
For ActiveWorkbook.xlsm, where ActiveWorkbook.xlsm is the name of the active work-
book. If you choose this option, the control will show on the QAT only when that particular
workbook is active.

Creating a Custom Ribbon
You can’t modify the Ribbon solely using VBA. Rather, you must write RibbonX code and
insert the code into the workbook file—outside of Excel. You can, however, create VBA
macros that are executed when a custom Ribbon control is activated.

FIGURE 17.6

The new QAT button executes your macro.

FIGURE 17.7

Excel can’t find the macro associated with the Ribbon button.

Chapter 17: Working with the Ribbon

607

17

RibbonX code is Extensible Markup Language (XML) that describes the controls, including
where on the Ribbon they’re displayed, what they look like, and what happens when they’re
activated. This book covers only a small portion of RibbonX—the topic is complex enough
to be the subject of an entire book.

Adding a button to an existing tab
This section contains a step-by-step walk-through that will create two controls in a custom
group on the Data tab of the Ribbon. You’ll use the Custom UI Editor for Microsoft Office, an
application created by Microsoft, to insert the XML for the new Ribbon into a workbook.

On the Web
You can download a free copy of the Custom UI Editor for Microsoft Office from here:

http://openxmldeveloper.org/blog/b/openxmldeveloper/archive/2006/05/26/customuieditor

.aspx

The Custom UI Editor requires .NET version 3.0, which is not available via the normal Microsoft channels. If you don’t
have version 3.0 installed on your computer, you can still download it from Microsoft’s website at the following location:

https://www.microsoft.com/en-us/download/details.aspx?id=3005

See your errors
Before you do any work with Ribbon customization, you should enable the display of RibbonX errors.
Access the Excel Options dialog box (File ⇨ Options) and click the Advanced tab. Scroll down to the
General section, and select Show Add-in User Interface Errors.

When this setting is enabled, RibbonX errors (if any) are displayed when the workbook opens, which
is helpful for debugging.

Using RibbonX code to modify the Ribbon
Follow these steps to create a workbook that contains RibbonX code that modifies the Ribbon:

1. Create a new Excel workbook, and insert a standard module.

2. Save the workbook as macro-enabled, and name it Ribbon Modification.xlsm.

3. Close the workbook.

4. Launch the Custom UI Editor for Microsoft Office.

5. Open Ribbon Modification.xlsm by clicking the Open button on the Custom UI Editor
toolbar and navigating to the file.

Continues

http://openxmldeveloper.org/blog/b/openxmldeveloper/archive/2006/05/26/customuieditor.aspx
http://openxmldeveloper.org/blog/b/openxmldeveloper/archive/2006/05/26/customuieditor.aspx
https://www.microsoft.com/en-us/download/details.aspx?id=3005

Part IV: Developing Excel Applications

608

6. From the Insert menu, choose Office 2010 Custom UI Part. This will add a customUI14.xml
entry under your workbook in the tree view on the left.

7. In the main window, type the code shown in Figure 17.8. XML is case-sensitive, so be sure
to type it exactly as displayed.

8. Click the Validate button on the toolbar to make sure that the XML is valid. The editor will
display a Custom UI is well formed message if there are no errors.

9. Click the Generate Callbacks button on the toolbar. Figure 17.9 shows the procedures that
you’ll need for the buttons to work. Copy these procedures to the Clipboard so that you
can paste them into the workbook later.

(continued)

FIGURE 17.8

XML to create two buttons in a custom group

Chapter 17: Working with the Ribbon

609

17

10. Double-click the customUI.xml entry in the tree view to return to the XML window.

11. Choose File ⇨ Save and then choose File ⇨ Close.

12. Activate Excel and open the workbook.

13. Press Alt+F11 to open the VBE, and paste the callback procedures that you copied in step 9
into the module you created in step 1.

14. Add a MsgBox line to each procedure, as shown in Figure 17.10.

FIGURE 17.9

The editor generates VBA code to use in your workbook.

FIGURE 17.10

Modify the callback procedures in the VBE.

Part IV: Developing Excel Applications

610

It’s important to understand that the Ribbon modification is document-specific. In other
words, the new Ribbon group is displayed only when the workbook that contains the Rib-
bonX code is the active workbook. This is a major departure from how UI modifications
worked in versions before Excel 2007.

On the Web
This workbook, named Ribbon Modification.xlsm, is available on the book’s website.

15. Return to Excel, activate the Data tab, and click your new buttons to test that they work
(see Figure 17.11).

FIGURE 17.11

Two new buttons added to the Data tab

tip
To display Ribbon customizations when any workbook is active, convert the workbook to an add-in file or add the
 RibbonX code to your Personal Macro Workbook.

Chapter 17: Working with the Ribbon

611

17

The RibbonX code
The RibbonX code used in this example is XML. Excel can read this XML and convert it into
UI elements, such as tabs, groups, and buttons. XML consists of data between opening and
closing tags (or, in some cases, within self-closing tags). The first line defines the schema
in a customUI tag—this tells Excel how to read the XML. The last line is the closing tag for
the customUI tag.

<customUI xmlns="http://schemas.microsoft.com/office/2009/07/
customui">

</customUI>

Everything between these two tags is interpreted as RibbonX code by Excel. The next line,
the ribbon tag, defines that you want to work with the Ribbon. Its closing tag is the
second-to-last line. The XML is hierarchical, just like the Ribbon. You can see in Figure 17.8
that the button tags are contained in the group tag, the group tag is contained in a tab tag,
the tab tag is contained in the tabs tag, and the tabs tag is contained in the ribbon tag.

Tags also contain attributes. The tab tag contains an idMso attribute that tells Excel
which tab to use.

<tab idMso="TabData">

Each built-in tab and group has a unique idMso. In this example, TabData tells Excel that
you want to work in the built-in Data tab.

Custom elements, like the group and button tags, use the id attribute rather than idMso.
You can use any value for the id attribute, such as Group1 and Button1 in this example,
as long as it’s unique. The following lists the attributes used in the example and a brief
description of what they do:

idMso: The unique identifier of a built-in UI element.

id: A unique identifier, created by you, for custom elements.

label: The text that accompanies the control in the Ribbon.

size: Button controls can be large, normal, or small.

onAction: The name of the VBA procedure to run when the button is clicked.

imageMso: The identifier of a built-in image. You can use built-in images on your
custom buttons. See the “Using imageMso images” sidebar for more information.

A complete list of attributes for all the UI elements would be too long to show here. You can
find many examples of RibbonX on the Web and change them to suit your needs.

On the Web
You can get a complete list of idMso values for built-in Ribbon elements on Microsoft’s website at www.microsoft
.com/en-us/download/confirmation.aspx?id=727.

http://www.microsoft.com/en-us/download/confirmation.aspx?id=727
http://www.microsoft.com/en-us/download/confirmation.aspx?id=727

Part IV: Developing Excel Applications

612

Callback procedures
VBA responds to user actions using events (see Chapter 6, “Understanding Excel’s Events”).
The Ribbon uses a different technique: callback procedures. The buttons in this example are
tied to the VBA code via the OnAction attribute. Most controls have an OnAction attri-
bute, and the action is different for different controls. A button’s action is a click, but a
check box’s action is a check or uncheck.

Most attributes have a corresponding callback attribute, generally with a get prefix. For
example, the label attribute sets the text that displays for the control. There is also a
getLabel attribute. You set the getLabel attribute to the name of a VBA procedure that
determines what text is displayed. We’ll discuss dynamic controls later in this chapter, but
for now understand that callback procedures are not limited to OnAction.

Both VBA procedures in this example contain an argument named control, which is
an IRibbonControl object. This object has three properties, which you can access in
your VBA code.

 ■ Context: A handle to the active window containing the Ribbon that triggered the
callback. For example, use the following expression to get the name of the work-
book that contains the RibbonX code:

control.Context.Caption
 ■ Id: Contains the name of the control, specified as its Id parameter.
 ■ Tag: Contains any arbitrary text associated with the control.

The VBA callback procedures can be as simple or as complex as necessary.

The CUSTOM UI part
In step 6 of the “Using RibbonX code to modify the Ribbon” instructions, you inserted a
customUI part for Office 2010. This choice makes the workbook incompatible with Excel
2007 and earlier. The other option on the Insert menu is Office 2007 Custom UI Part. Put
the RibbonX code in an Office 2007 Custom UI part if you know that you need to support
Excel 2007.

Microsoft makes new Custom UI Parts available when it changes the Ribbon in a way that
requires one. Don’t look for a 2019 Custom UI Part. This version of Office continues to use
the Office 2010 Custom UI Part.

nOte
RibbonX code is case-sensitive. For example, if you use IMAGEMSO instead of imageMso, your RibbonX code
won’t work properly.

Chapter 17: Working with the Ribbon

613

17

Adding a check box to an existing tab
This section contains another example of using RibbonX to modify the UI. This workbook
creates a new group on the Page Layout tab and adds a check box that toggles the display
of page breaks.

Using imageMso images
Microsoft Office provides more than 1,000 named images that are associated with various commands.
You can specify any of these images for your custom Ribbon controls—if you know the image’s name.

The accompanying figure shows a workbook that contains the names of all of the imageMso images for
various versions of Office. Scroll through the image names, and you’ll see 50 images at a time (in small
or large size), beginning with the image name in the active cell. This workbook, named Mso Image
Browser.xlsm, is available on the book’s website.

You can also use these images in an Image control placed on a UserForm. The following statement
assigns the imageMso image named ReviewAcceptChanges to the Picture property of a UserForm
Image control named Image1. The size of the image is specified as 32×32 pixels.

Image1.Picture = Application.CommandBars. _
 GetImageMso("ReviewAcceptChange", 32, 32)

Part IV: Developing Excel Applications

614

This example is a bit tricky because it requires that the new Ribbon control be in sync
with the active sheet. For example, if you activate a worksheet that doesn’t display page
breaks, the check box should be in its deselected state. If you activate a worksheet that
displays page breaks, the check box should be selected. Furthermore, page breaks aren’t rel-
evant for a chart sheet, so the control should be disabled if you activate a chart sheet.

The RibbonX code
The RibbonX code that adds a new group (with a CheckBox control) to the Page Layout
tab follows:

<customUI
 xmlns="http://schemas.microsoft.com/office/2006/01/customui"
 onLoad="Initialize">
 <ribbon>
 <tabs>
 <tab idMso="TabPageLayoutExcel">
 <group id="Group1" label="Custom">
 <checkBox id="Checkbox1"
 label="Page Breaks"
 onAction="TogglePageBreakDisplay"
 getPressed="GetPressed"
 getEnabled="GetEnabled"/>
 </group>
 </tab>
 </tabs>
 </ribbon>
</customUI>

This RibbonX code references four VBA callback procedures (each of which is
described later).

 ■ Initialize: Executed when the workbook is opened
 ■ TogglePageBreakDisplay: Executed when the user clicks the check box
 ■ GetPressed: Executed when the control is invalidated (the user activates a dif-

ferent sheet)
 ■ GetEnabled: Executed when the control is invalidated (the user activates a dif-

ferent sheet)

Figure 17.12 shows the new control, placed in a group named Custom.

nOte
Although Excel has more than 1,700 commands, it doesn’t have a command that toggles the page break display. After
printing or previewing a worksheet, the only way to hide the page break display is to use the Excel Options dialog box.
Therefore, the example in this section has some practical value.

Chapter 17: Working with the Ribbon

615

17

The VBA code
The CustomUI tag includes an onLoad parameter, which specifies the Initialize VBA
callback procedure, as follows (this code is in a standard VBA module):

Public MyRibbon As IRibbonUI

Sub Initialize(Ribbon As IRibbonUI)
 'Executed when the workbook loads
 Set MyRibbon = Ribbon
End Sub

The Initialize procedure creates an IRibbonUI object named MyRibbon. Note that
MyRibbon is a Public variable, so it’s accessible from other procedures in the module.

The ThisWorkbook module contains a simple event procedure that is executed whenever a
worksheet is activated. It calls the CheckPageBreakDisplay procedure.

Private Sub Workbook_SheetActivate(ByVal Sh As Object)
 CheckPageBreakDisplay
End Sub

The CheckPageBreakDisplay procedure invalidates the check box. In other words, it
destroys any data associated with that control.

Sub CheckPageBreakDisplay()
 'Executed when a sheet is activated
 MyRibbon.InvalidateControl ("Checkbox1")
End Sub

When a control is invalidated, the GetPressed and GetEnabled procedures are called.

Sub GetPressed(control As IRibbonControl, ByRef returnedVal)
 'Executed when the control is invalidated
 On Error Resume Next

FIGURE 17.12

This check box control is always in sync with the page break display of the active sheet.

Part IV: Developing Excel Applications

616

 returnedVal = ActiveSheet.DisplayPageBreaks
End Sub

Sub GetEnabled(control As IRibbonControl, ByRef returnedVal)
 'Executed when the control is invalidated
 returnedVal = TypeName(ActiveSheet) = "Worksheet"
End Sub

Note that the returnedVal argument is passed ByRef. This means that your code is able
to change the value—and that’s exactly what happens. In the GetPressed procedure, the
returnedVal variable is set to the status of the DisplayPageBreaks property of the
active sheet. The result is that the control’s Pressed parameter is True if page breaks are
displayed (and the control is selected). Otherwise, the control isn’t selected.

In the GetEnabled procedure, the returnedVal variable is set to True if the active
sheet is a worksheet (as opposed to a chart sheet). Therefore, the control is enabled only
when the active sheet is a worksheet.

The only other VBA procedure is the onAction procedure, TogglePageBreakDisplay,
which is executed when the user selects or deselects the check box.

Sub TogglePageBreakDisplay(control As IRibbonControl, pressed
As Boolean)
 'Executed when check box is clicked
 On Error Resume Next
 ActiveSheet.DisplayPageBreaks = pressed
End Sub

The pressed argument is True if the user selects the check box and False if the user
deselects the check box. The code sets the DisplayPageBreaks property accordingly.

Ribbon controls demo
Figure 17.13 shows a custom Ribbon tab (My Stuff) with five groups of controls. In this
 section, we briefly describe the RibbonX code and the VBA callback procedures.

On the Web
This workbook, named Page Break Display.xlsm, is available on the book’s website. The site also contains
an add-in version of this workbook (named Page Break Display Add-in.xlam), which makes the new UI
command available for all workbooks. The add-in version uses a class module to monitor sheet activation events
for all workbooks. Refer to Chapter 6 for more information about events, and refer to Chapter 20, “Leveraging Class
Modules,” for more information about class modules.

Chapter 17: Working with the Ribbon

617

17
Creating a new tab
The following RibbonX code creates the new tab:

<ribbon>
 <tabs>
 <tab id="CustomTab" label="My Stuff">
 </tab>
 </tabs>
</ribbon>

Creating a Ribbon group
The code in the Ribbon Controls Demo.xlsm example creates five groups on the My
Stuff tab. Here’s the code that creates the five groups:

<group id="grpInfo" label="Information">
</group>

<group id="grpMath" label="Math">
</group>

<group id="grpFeedback" label="Feedback">
</group>

<group id="grpBuiltIn" label="Built In Stuff">
</group>

<group id="grpGalleries" label="Galleries">
</group>

FIGURE 17.13

A new Ribbon tab with five groups of controls

On the Web
This workbook, named Ribbon Controls Demo.xlsm, is available on the book’s website.

tip
If you’d like to create a minimal UI, the ribbon tag has a startFromScratch attribute. If set to True, all of
the built-in tabs are hidden.

<ribbon startFromScratch="true" >

Part IV: Developing Excel Applications

618

These pairs of <group> and </group> tags are located between the <tab> and </tab>
tags that create the new tab.

Creating controls
The following is the RibbonX code that creates the controls in the first group (Information).
Figure 17.14 shows these controls on the Ribbon.

<group id="grpInfo" label="Information">
 <labelControl id="lblUser" getLabel="getlblUser"/>
 <labelControl id="lblDate" getLabel="getlblDate"/>
</group>

Two label controls each have an associated VBA callback procedure (named getlblUser
and getlblDate). These procedures are as follows:

Sub getlblUser(control As IRibbonControl, ByRef returnedVal)
 returnedVal = "Hello " & Application.UserName
End Sub

Sub getlblDate(control As IRibbonControl, ByRef returnedVal)
 returnedVal = "Today is " & Date
End Sub

When the RibbonX code is loaded, these two procedures are executed, and the captions of
the label controls are dynamically updated with the user’s name and the date.

Figure 17.15 shows the controls in the second group, labeled Math.

FIGURE 17.14

A Ribbon group with two labels.

FIGURE 17.15

An editBox control in a custom Ribbon group

Chapter 17: Working with the Ribbon

619

17

The RibbonX for the Math group follows:

<group id="grpMath" label="Math">
 <editBox id="ebxSquare"
 showLabel="true"
 label="The square of"
 onChange="ebxSquare_Change"/>

 <labelControl id="lblSquare"
 getLabel="getlblSquare"/>
 <separator id="sepMath"/>
 <button id="btnCalc"
 label="Calculator"
 size="large"
 onAction="ShowCalculator"
 imageMso="Calculator"/>
</group>

The editBox control has an onChange callback procedure named ebxSquare _ Change,
which updates a label to display the square of the number entered. The ebxSquare _ Change
procedure is as follows:

Private sq As Double

Sub ebxSquare_Change(control As IRibbonControl, text As String)
 sq = Val(text) ^ 2
 MyRibbon.Invalidate
End Sub

The label control showing the result is updated when MyRibbon is invalidated. Invalidat-
ing the Ribbon causes all of the controls to reinitialize. This procedure sets the sq variable
to the square of the number entered, which is used by the label in the next procedure.

The label control has a getLabel callback procedure named getlblSquare. When
the Ribbon is invalidated, this procedure is run. For an example of how to invalidate the
Ribbon, see the “Adding a check box to an existing tab” section earlier in this chapter.

Sub getlblSquare(control As IRibbonControl, ByRef returnedVal)
 returnedVal = "is " & sq
End Sub

The separator control, sepMath, adds a vertical line to separate the squaring controls
from the last control. The last control in this group is a simple button. Its onAction
parameter executes a VBA procedure named ShowCalculator, which uses the VBA Shell
function to display the Windows calculator.

Sub ShowCalculator(control As IRibbonControl)
 On Error Resume Next
 Shell "calc.exe", vbNormalFocus
 If Err.Number <> 0 Then MsgBox "Can't start calc.exe"
End Sub

Part IV: Developing Excel Applications

620

Figure 17.16 shows the controls in the third group, labeled Feedback.

The RibbonX code for the third group is as follows:

<group id="grpFeedback" label="Feedback">
 <toggleButton id="ToggleButton1"
 size="large"
 imageMso="FileManageMenu"
 label="Toggle Me"
 onAction="ToggleButton1_Click"/>

 <checkBox id="Checkbox1"
 label="Checkbox"
 onAction="Checkbox1_Change"/>

 <comboBox id="Combo1"
 label="Month"
 onChange="Combo1_Change">
 <item id="Month1" label="January"/>
 <item id="Month2" label="February"/>
 <item id="Month3" label="March"/>
 <item id="Month4" label="April"/>
 <item id="Month5" label="May"/>
 <item id="Month6" label="June"/>
 <item id="Month7" label="July"/>
 <item id="Month8" label="August"/>
 <item id="Month9" label="September"/>
 <item id="Month10" label="October"/>
 <item id="Month11" label="November"/>
 <item id="Month12" label="December"/>
 </comboBox>
</group>

The group contains a toggleButton, a checkBox, and a comboBox control. These con-
trols are straightforward. Each has an associated callback procedure that simply displays
the status of the control.

Sub ToggleButton1_Click(control As IRibbonControl, pressed
As Boolean)
 MsgBox "Toggle value: " & pressed
End Sub

FIGURE 17.16

Three controls in a custom Ribbon group.

Chapter 17: Working with the Ribbon

621

17

Sub Checkbox1_Change(control As IRibbonControl, pressed As Boolean)
 MsgBox "Checkbox value: " & pressed
End Sub

Sub Combo1_Change(control As IRibbonControl, text As String)
 MsgBox text
End Sub

The controls in the fourth group consist of built-in controls, as shown in Figure 17.17. To include
a built-in control in a custom group, you just need to know its name (the idMso parameter).

The RibbonX code is as follows:

<group id="grpBuiltIn" label="Built In Stuff">
 <control idMso="Copy" label="Copy"/>
 <control idMso="Paste" label="Paste" enabled="true"/>
 <control idMso="WindowSwitchWindowsMenuExcel"
 label="Switch Window"/>
 <control idMso="Italic"/>
 <control idMso="Bold"/>
 <control idMso="FileOpen"/>
 </group>

These controls don’t have callback procedures because they perform the standard action.

Figure 17.18 shows the final group of controls, which consists of two galleries.

On the Web
The comboBox control also accepts user-entered text. If you want to limit the choices to those that you provide,
use a dropDown control.

FIGURE 17.17

This group contains built-in controls.

FIGURE 17.18

This Ribbon group contains two galleries.

Part IV: Developing Excel Applications

622

The RibbonX code for these two gallery controls is as follows:

<group id="grpGalleries" label="Galleries">
 <gallery id="galAppointments"
 imageMso="ViewAppointmentInCalendar"
 label="Pick a Month:"
 columns="2" rows="6"
 onAction="MonthSelected">
 <item id="January" label="January"
 imageMso="QuerySelectQueryType"/>
 <item id="February" label="February"
 imageMso="QuerySelectQueryType"/>
 <item id="March" label="March"
 imageMso="QuerySelectQueryType"/>
 <item id="April" label="April"
 imageMso="QuerySelectQueryType"/>
 <item id="May" label="May"
 imageMso="QuerySelectQueryType"/>
 <item id="June" label="June"
 imageMso="QuerySelectQueryType"/>
 <item id="July" label="July"
 imageMso="QuerySelectQueryType"/>
 <item id="August" label="August"
 imageMso="QuerySelectQueryType"/>
 <item id="September" label="September"
 imageMso="QuerySelectQueryType"/>
 <item id="October" label="October"
 imageMso="QuerySelectQueryType"/>
 <item id="November" label="November"
 imageMso="QuerySelectQueryType"/>
 <item id="December" label="December"
 imageMso="QuerySelectQueryType"/>
 <button id="Today"
 label="Today..."
 imageMso="ViewAppointmentInCalendar"
 onAction="ShowToday"/>
 </gallery>
 <gallery id="galPictures"
 label="Sample Pictures"
 columns="4"
 itemWidth="100" itemHeight="125"
 imageMso="Camera"
 onAction="galPictures_Click"
 getItemCount="galPictures_ItemCount"
 getItemImage="galPictures_ItemImage"
 size="large"/>
</group>

Chapter 17: Working with the Ribbon

623

17

Figure 17.19 shows the first gallery, a list of month names in two columns.

The onAction parameter executes the MonthSelected callback procedure, which dis-
plays the selected month (which is stored as the id parameter).

Sub MonthSelected(control As IRibbonControl, _
 id As String, index As Integer)

 MsgBox "You selected " & id
End Sub

The Pick a Month gallery also contains a button control with its own callback procedure
(labeled Today) at the bottom.

Sub ShowToday(control As IRibbonControl)
 MsgBox "Today is " & Date
End Sub

The second gallery, shown in Figure 17.20, displays eight images, saved as JPG files.

These images are stored in a folder named demopics in the same folder as the workbook.
The gallery uses the getItemImage callback procedure to fill the images. When the Ribbon
is first loaded, the onLoad callback procedure, shown next, creates an array of image
files in the directory, counts them, and stores the information in module-level variables,
aFiles() and ImgCnt, so that the other callback procedures can read them.

Private ImgCnt As Long
Private aFiles() As String
Private sPath As String

Sub ribbonLoaded(ribbon As IRibbonUI)
 Set MyRibbon = ribbon

FIGURE 17.19

A gallery that displays month names, plus a button

Part IV: Developing Excel Applications

624

 Dim sFile As String
 sPath = ThisWorkbook.Path & "\demopics\"
 sFile = Dir(sPath & "*.jpg")

 Do While Len(sFile) > 0
 ImgCnt = ImgCnt + 1
 ReDim Preserve aFiles(1 To ImgCnt)
 aFiles(ImgCnt) = sFile
 sFile = Dir
 Loop
End Sub

When the gallery is clicked, the getItemCount callback procedure, named galPictures_
ItemCount, reads the ImgCnt variable, and galPictures_ItemImage is called
that many times. Each time it’s called, the index argument is increased by one. VBA’s
 LoadPicture function is used to insert the images into the gallery.

Sub galPictures_ItemCount(control As IRibbonControl, _
 ByRef returnedVal)

 returnedVal = ImgCnt
End Sub

FIGURE 17.20

A gallery of images

Chapter 17: Working with the Ribbon

625

17

Sub galPictures_ItemImage(control As IRibbonControl, _
 index As Integer, ByRef returnedVal)

 Set returnedVal = LoadPicture(sPath & aFiles(index + 1))
End Sub

Note that dynamic controls, such as galleries, start their index at zero.

A dynamicMenu control example
One of the most interesting Ribbon controls is the dynamicMenu control. This control lets
your VBA code feed XML data into the control, which provides the basis for menus that
change based on context.

Setting up a dynamicMenu control isn’t a simple task, but this control probably offers the
most flexibility in terms of using VBA to modify the Ribbon dynamically.

This section describes a simple dynamicMenu control demo that displays a different
menu for each of the three worksheets in a workbook. Figure 17.21 shows the menu that
appears when Sheet1 is active. When a sheet is activated, a VBA procedure sends XML code
specific to the sheet. For this demo, the XML code is stored directly in the worksheets to
make it easier to read. Alternatively, the XML markup can be stored as a string variable in
your code.

FIGURE 17.21

The dynamicMenu control lets you create a menu that varies depending on the context.

Part IV: Developing Excel Applications

626

The RibbonX code that creates the new tab, the new group, and the dynamicMenu con-
trol follows:

<customUI xmlns="http://schemas.microsoft.com/
office/2009/07/customui"
 onLoad="ribbonLoaded">
 <ribbon>
 <tabs>
 <tab id="CustomTab" label="Dynamic">
 <group id="group1" label="Dynamic Menu Demo">
 <dynamicMenu id="DynamicMenu"
 getContent="dynamicMenuContent"
 imageMso="RegionLayoutMenu"
 size = "large"
 label="Sheet-Specific Menu"/>
 </group>
 </tab>
 </tabs>
 </ribbon>
</customUI>

This example needs a way to invalidate the Ribbon whenever the user activates a new
sheet. You can use the same method used for the page break display example earlier in
this chapter (see “Adding a check box to an existing tab”). Specifically, you declare a
Public variable, MyRibbon, of type IRibbonUI. Use the Workbook _ SheetActivate
event procedure to call the UpdateDynamicRibbon procedure whenever a new sheet is
activated.

Sub UpdateDynamicRibbon()
 'Invalidate the Ribbon to force a call to dynamicMenuContent
 On Error Resume Next
 MyRibbon.Invalidate
 If Err.Number <> 0 Then
 MsgBox "Lost the Ribbon object. Save and reload."
 End If
End Sub

The UpdateDynamicRibbon procedure invalidates the MyRibbon object, which forces a
call to the VBA callback procedure named dynamicMenuContent (a procedure referenced
by the getContent parameter in the RibbonX code). Note the error-handling code. Some
edits to your VBA code destroy the MyRibbon object, which is created when the workbook
is opened. Attempting to invalidate an object that doesn’t exist causes an error, and the
message box informs the user that the workbook must be saved and reopened.

The dynamicMenuContent procedure follows. This procedure loops through the cells
in column A of the active sheet, reads the XML code, and stores it in a variable named
 XMLcode. When all of the XML has been appended, it’s passed to the returnedVal argu-
ment. The net effect is that the dynamicMenu control has new code, so it displays a dif-
ferent set of menu options.

Chapter 17: Working with the Ribbon

627

17

Sub dynamicMenuContent(control As IRibbonControl, _
 ByRef returnedVal)

 Dim r As Long
 Dim XMLcode As String
 'Read the XML markup from the active sheet
 For r = 1 To Application.CountA(Range("A:A"))
 XMLcode = XMLcode & ActiveSheet.Cells(r, 1).Value & " "
 Next r
 returnedVal = XMLcode
End Sub

More on Ribbon customization
This section concludes with some additional points to keep in mind as you explore the won-
derful world of Excel Ribbon customization.

 ■ When you’re working with the Ribbon, make sure you turn on the display of error
messages. Refer to the “See your errors” sidebar, earlier in this chapter.

 ■ Remember that RibbonX code is case-sensitive.
 ■ All of the named control IDs are in English, and they’re the same across all lan-

guage versions of Excel. Therefore, Ribbon modifications work regardless of what
language version of Excel is used.

 ■ Ribbon modifications appear only when the workbook that contains the RibbonX
code is active. To make Ribbon modifications appear for all workbooks, the
RibbonX code must be in an add-in.

 ■ The built-in controls scale themselves when the Excel window is resized. Custom
controls do not scale in Excel 2007, but they do in Excel 2010 and later.

 ■ You cannot add or remove controls from a built-in Ribbon group.
 ■ You can, however, hide tabs. The RibbonX code that follows hides three tabs.
<customUI xmlns="http://schemas.microsoft.com/office/2009/07/customui">
<ribbon>
 <tabs>
 <tab idMso="TabPageLayoutExcel" visible="false"/>
 <tab idMso="TabData" visible="false"/>
 <tab idMso="TabReview" visible="false"/>
 </tabs>
</ribbon>
</customUI>

 ■ You can also hide groups within a tab. Here’s the RibbonX code that hides four
groups on the Insert tab:

On the Web
The workbook that contains this example is available on the book’s website in the Dynamic Menu.xlsm file.

Part IV: Developing Excel Applications

628

<customUI xmlns="http://schemas.microsoft.com/office/2009/07/customui">
<ribbon>
 <tabs>
 <tab idMso="TabInsert">
 <group idMso="GroupInsertTablesExcel" visible="false"/>
 <group idMso="GroupInsertIllustrations" visible="false"/>
 <group idMso="GroupInsertLinks" visible="false"/>
 <group idMso="GroupInsertText" visible="false"/>
 </tab>
 </tabs>
</ribbon>
</customUI>

 ■ You can assign your own macro to a built-in control. This is known as repurposing
the control. The RibbonX code that follows intercepts three built-in commands:

<customUI xmlns="http://schemas.microsoft.com/office/2009/07/customui">
<commands>
 <command idMso="FileSave" onAction="mySave"/>
 <command idMso="FilePrint" onAction="myPrint"/>
 <command idMso="FilePrintQuick" onAction="myPrint"/>
</commands>
</customUI>

 ■ You can also write RibbonX code to disable one or more built-in controls. The code
that follows disables the Insert ClipArt command:

<customUI xmlns="http://schemas.microsoft.com/office/2009/07/customui">
<commands>
 <command idMso="ClipArtInsert" enabled="false"/>
</commands>
</customUI>

 ■ If you have two or more workbooks (or add-ins) that add controls to the same
custom Ribbon group, you must make sure they both use the same namespace.
Do this in the <CustomUI> tag at the top of the RibbonX code.

Using VBA with the Ribbon
As you’ve seen in this chapter, the typical workflow when working with the Ribbon is to
create the RibbonX code and use callback procedures to respond to user actions. There are
other ways to interact with the Ribbon with VBA, but they are limited.

The following is a list of what you can do with the Ribbon using VBA:

 ■ Determine whether a particular control is enabled
 ■ Determine whether a particular control is visible
 ■ Determine whether a particular control is pressed (for toggle buttons and check boxes)
 ■ Get a control’s label, screen tip, or supertip (a more detailed description of the control)
 ■ Display the image associated with a control
 ■ Execute the command associated with a particular control

Chapter 17: Working with the Ribbon

629

17

Accessing a Ribbon control
All told, Excel has more than 1,700 Ribbon controls. Every Ribbon control has a name, and
you use that name when you work with the control using VBA.

For example, the statement that follows displays a message box that shows the Enabled status of
the ViewCustomViews control. (This control is located in the View ⇨ Workbook Views group.)

MsgBox Application.CommandBars.GetEnabledMso("ViewCustomViews")

Normally, this control is enabled. But if the workbook contains a table (created by choos-
ing Insert ⇨ Tables ⇨ Table), the ViewCustomViews control is disabled. In other words, a
workbook can use either the Custom Views feature or the Tables feature but not both.

Determining the name of a particular control is a manual task. First, display the Customize
Ribbon tab of the Excel Options dialog box. Locate the control in the list box on the left
and then hover the mouse pointer over the item. The control’s name appears in a pop-up
screen tip, in parentheses (see Figure 17.22).

FIGURE 17.22

Using the Customize Ribbon tab of the Excel Options dialog box to determine the name
of a control

Part IV: Developing Excel Applications

630

Unfortunately, it’s not possible to write VBA code to loop through all of the controls on the
Ribbon and display a list of their names.

Working with the Ribbon
The preceding section provided an example of using the GetEnabledMso method of the
CommandBars object. The following is a list of all methods relevant to working with the
Ribbon via the CommandBars object. All of these methods take one argument: idMso,
which is a String data type and represents the name of the command. You must know the
name—using index numbers is not possible.

 ■ ExecuteMso: Executes a control
 ■ GetEnabledMso: Returns True if the specified control is enabled
 ■ GetImageMso: Returns the image for a control
 ■ GetLabelMso: Returns the label for a control
 ■ GetPressedMso: Returns True if the specified control is pressed (applies to check

box and toggle button controls)
 ■ GetScreentipMso: Returns the screen tip for a control (the text that appears in

the control)
 ■ GetSupertipMso: Returns the supertip for a control (the description of the con-

trol that appears when you hover the mouse pointer over the control)

The VBA statement that follows toggles the Selection task pane (a feature introduced in
Excel 2007 that facilitates selecting objects on a worksheet):

Application.CommandBars.ExecuteMso "SelectionPane"

The following statement displays the Paste Special dialog box (and will display an error
message if the Windows Clipboard is empty):

Application.CommandBars.ExecuteMso "PasteSpecialDialog"

Here’s a command that tells you whether the formula bar is visible (it corresponds to the
state of the Formula Bar control in the View ⇨ Show group):

MsgBox Application.CommandBars.GetPressedMso "ViewFormulaBar"

To toggle the formula bar, use this statement:

Application.CommandBars.ExecuteMso "ViewFormulaBar"

To make sure that the formula bar is visible, use this code:

With Application.CommandBars
 If Not .GetPressedMso("ViewFormulaBar") Then .ExecuteMso
"ViewFormulaBar"
End With

To make sure that the formula bar is not visible, use this code:

With Application.CommandBars
 If .GetPressedMso("ViewFormulaBar") Then .ExecuteMso
"ViewFormulaBar"
End With

Chapter 17: Working with the Ribbon

631

17

Or don’t bother with the Ribbon and set the DisplayFormulaBar property of the
Application object either to True or False. This statement displays the formula
bar (or has no effect if the formula bar is already visible):

Application.DisplayFormulaBar = True

The statement that follows displays True if the Merge & Center control is enabled. (This
control is disabled if the sheet is protected or if the active cell is in a table.)

MsgBox Application.CommandBars.GetEnabledMso("MergeCenter")

The following VBA code adds an ActiveX Image control to the active worksheet and uses the
GetImageMso method to display the binoculars icon from the Find & Select control in the
Home ⇨ Editing group:

Sub ImageOnSheet()
 Dim MyImage As OLEObject

 Set MyImage = ActiveSheet.OLEObjects.Add _
 (ClassType:="Forms.Image.1", _
 Left:=50, _
 Top:=50)
 With MyImage.Object
 .AutoSize = True
 .BorderStyle = 0
 .Picture = Application.CommandBars. _
 GetImageMso("FindDialog", 32, 32)
 End With
End Sub

To display the Ribbon icon in an Image control (named Image1) on a UserForm, use this
procedure:

Private Sub UserForm_Initialize()
 With Image1
 .Picture = Application.CommandBars.GetImageMso _
 ("FindDialog", 32, 32)
 .AutoSize = True
 End With
End Sub

Activating a tab
Microsoft provides no direct way to activate a Ribbon tab from VBA. But if you really need
to do so, using SendKeys is your only option. The SendKeys method simulates key-
strokes. The keystrokes required to activate the Home tab are Alt+H. These keystrokes dis-
play the keytips in the Ribbon. To hide the keytips, press F6. Using this information, the
following statement sends the keystrokes required to activate the Home tab:

Application.SendKeys "%h{F6}"

To avoid the display of keytips, turn off screen updating:

Application.ScreenUpdating = False

Part IV: Developing Excel Applications

632

Application.SendKeys "%h{F6}"
Application.ScreenUpdateing=True

Creating an Old-Style Toolbar
Excel 2019 will still display menus and toolbars written using pre-2007 methods. We
strongly recommend that you use the Ribbon in your projects for many reasons, not the
least of which is the richer controls that the Ribbon offers. But if you have to maintain
existing code that uses the old-style toolbars, you will have to know how they work.

In this section, we provide boilerplate code that you can adapt as needed. We don’t offer
much in the way of explanation. For more information about CommandBar objects, search
the Web or consult the Excel 2003 edition of this book. CommandBar objects can be much
more powerful than the example presented here.

Limitations of old-style toolbars
If you decide to create a toolbar, be aware of the following limitations:

 ■ The toolbar can’t be free-floating.
 ■ The toolbar will always appear in the Add-Ins ⇨ Custom Toolbars group (along with

any other toolbars).
 ■ Excel ignores some CommandBar properties and methods.

Code to create a toolbar

The code in this section assumes you have a workbook with two macros (named Macro1
and Macro2). It also assumes that you want the toolbar to be created when the workbook is
opened and deleted when the workbook is closed.

In the ThisWorkbook code module, enter the following procedures. The first one calls the
procedure that creates the toolbar when the workbook is opened. The second calls the pro-
cedure to delete the toolbar when the workbook is closed.

CautiOn
As always, use SendKeys as a last resort and understand that SendKeys may not be perfectly reliable. For
example, if you execute the previous example while a UserForm is displayed, the keystrokes will be sent to the User-
Form, not to the Ribbon.

nOte
In versions prior to Excel 2013, custom toolbars are visible regardless of which workbook is active. Since Excel 2013,
however, a custom toolbar is visible only in the workbook in which it was created—and also in new workbooks created
while the original workbook is active.

Chapter 17: Working with the Ribbon

633

17

Private Sub Workbook_Open()
 CreateToolbar
End Sub

Private Sub Workbook_BeforeClose(Cancel As Boolean)
 DeleteToolbar
End Sub

The CreateToolbar procedure follows:

Const TOOLBARNAME As String = "MyToolbar"

Sub CreateToolbar()
 Dim TBar As CommandBar
 Dim Btn As CommandBarButton

' Delete existing toolbar (if it exists)
 On Error Resume Next
 CommandBars(TOOLBARNAME).Delete
 On Error GoTo 0

' Create toolbar
 Set TBar = CommandBars.Add
 With TBar
 .Name = TOOLBARNAME
 .Visible = True
 End With

' Add a button
 Set Btn = TBar.Controls.Add(Type:=msoControlButton)
 With Btn
 .FaceId = 300
 .OnAction = "Macro1"
 .Caption = "Macro1 Tooltip goes here"
 End With

' Add another button
 Set Btn = TBar.Controls.Add(Type:=msoControlButton)
 With Btn
 .FaceId = 25
 .OnAction = "Macro2"
 .Caption = "Macro2 Tooltip goes here"
 End With
End Sub

In Chapter 6, we describe a potentially serious problem with the Workbook _ BeforeClose event.
Excel’s Do you want to save ... prompt is displayed after the Workbook _ BeforeClose
event handler runs. So if the user clicks Cancel, the workbook remains open but the custom menu items
have already been deleted. In Chapter 6, we also present a way to get around this problem.

Part IV: Developing Excel Applications

634

Figure 17.23 shows the two-button toolbar.

The module-level constant, TOOLBARNAME, stores the toolbar’s name. This name is used
also in the DeleteToolbar procedure, so using a constant ensures that both procedures
work with the same name.

The procedure starts by deleting the existing toolbar that has the same name (if such a
toolbar exists). Including this statement is useful during development and also eliminates
the error you get if you attempt to create a toolbar using a duplicate name.

The toolbar is created by using the Add method of the CommandBars object. The two but-
tons are added by using the Add method of the Controls object. Each button has three
properties.

 ■ FaceID: A number that determines the image displayed on the button. Chapter 18,
“Working with Shortcut Menus,” contains more information about FaceID images.

 ■ OnAction: The macro executed when the button is clicked.
 ■ Caption: The screen tip that appears when you hover the mouse pointer over

the button.

On the Web
A workbook that contains this code is available on the book’s website in the Old-style Toolbar.xlsm file.

tip
Rather than set the FaceID property, you can set the Picture property using any of the imageMso images.
For example, the following statement displays a green check mark:

.Picture = Application.CommandBars.GetImageMso _
 ("AcceptInvitation", 16, 16)

For more information about imageMso images, see the sidebar “Using imageMso images.”

FIGURE 17.23

An old-style toolbar, located in the Custom Toolbars group of the Add-Ins tab

Chapter 17: Working with the Ribbon

635

17

When the workbook is closed, the Workbook _ BeforeClose event procedure fires, which
calls DeleteToolbar.

Sub DeleteToolbar()
 On Error Resume Next
 CommandBars(TOOLBARNAME).Delete
 On Error GoTo 0
End Sub

Note that the toolbar is not deleted from workbook windows that were opened after the
toolbar was created.

637

CHAP T ER

18
Working with Shortcut Menus

IN THIS CHAPTER
Identifying shortcut menus

Customizing the shortcut menus

Disabling shortcut menus

Using events with shortcut menus

Creating a new shortcut menu

CommandBar Overview
A CommandBar object is used for three Excel user interface elements.

 ■ Custom toolbars
 ■ Custom menus
 ■ Customs shortcut (right-click) menus

When you write VBA code to customize a menu or a toolbar, Excel intercepts that code and ignores
many of your commands. Menu and toolbar customizations performed with the CommandBar
object appear in the Add-Ins ➪ Menu Commands group or the Add-Ins ➪ Custom Toolbars group.
So, for all practical purposes, the CommandBar object in Excel is now limited to shortcut menu
operations.

In this section, we provide some background information about CommandBar objects.

CommandBar types
Excel supports three types of CommandBar objects, differentiated by their Type property. The
Type property can be any of these three values:

 ■ msoBarTypeNormal: A toolbar (Type = 0)
 ■ msoBarTypeMenuBar: A menu bar (Type = 1)
 ■ msoBarTypePopUp: A shortcut menu (Type = 2)

Excel® 2019 Power Programming with VBA, First Edition. Michael Alexander and Dick Kusleika.
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.

Part IV: Developing Excel Applications

638

Even though toolbars and menu bars aren’t used in Excel 2007 and later, these UI elements
are still included in the object model for compatibility with older applications. However,
attempting to display a CommandBar object of type 0 or 1 has no effect in Excel versions
after Excel 2003. In Excel 2003, for example, the following statement displays the Stan-
dard toolbar:

CommandBars("Standard").Visible = True

In later versions of Excel, that statement is ignored.

This chapter focuses exclusively on type 2 CommandBar objects (shortcut menus).

Listing shortcut menus
The ShowShortcutMenuNames procedure that follows, which loops through all
CommandBar objects, lists the 67 shortcut menus that exist in Excel 2019. To limit the
list only to shortcut menus, the code checks the Type property to see whether its value
is msoBarTypePopUp (a built-in constant that has a value of 2).

Sub ShowShortcutMenuNames()
 Dim Row As Long
 Dim cbar As CommandBar

 Row = 1
 For Each cbar In CommandBars
 If cbar.Type = msoBarTypePopup Then
 Cells(Row, 1) = cbar.Index
 Cells(Row, 2) = cbar.Name
 Cells(Row, 3) = cbar.Controls.Count
 Row = Row + 1
 End If
 Next cbar
End Sub

Figure 18.1 shows part of the output from this procedure. The shortcut menu index
values range from 22 to 156. Also, note that not all of the names are unique. For example,
CommandBar objects 36 and 39 both have a Name value of Cell because right-clicking a
cell gives a different shortcut menu when the worksheet is in page break preview mode.

On the Web
This example is available on the book’s website in the Show Shortcut Menu Names.xlsm file.

Chapter 18: Working with Shortcut Menus

639

18Referring to CommandBars
You can reference a particular CommandBar object by its Index or Name property. For
example, the expressions that follow both refer to the shortcut menu that is displayed
when you right-click a column letter in Excel 2019:

Application.CommandBars(37)
Application.CommandBars("Column")

The CommandBars collection is a member of the Application object. When you refer-
ence this collection in a regular VBA module or in a module for a sheet, you can omit the
reference to the Application object. For example, the following statement (contained in
a standard VBA module) displays the name of the object in the CommandBars collection
that has an index of 42:

MsgBox CommandBars(42).Name

When you reference the CommandBars collection from a code module for a This
Workbook object, you must precede it with a reference to the Application object,
like this:

MsgBox Application.CommandBars(42).Name

CautiOn
Unfortunately, the index numbers for CommandBar objects have not always remained constant across the different
Excel versions. Therefore, using names rather than index numbers is more reliable. Names are also more readable
and lead to more maintainable code.

FIGURE 18.1

A simple macro generates a list of all shortcut menus.

Part IV: Developing Excel Applications

640

Referring to Controls in a CommandBar
A CommandBar object contains Control objects, which are buttons or menus. You can
refer to a control by its Index property or by its Caption property. Here’s a simple proce-
dure that displays the caption of the first menu item on the Cell shortcut menu:

Sub ShowCaption()
 MsgBox CommandBars("Cell").Controls(1).Caption
End Sub

The following procedure displays the Caption property for each control in the shortcut
menu that appears when you right-click a sheet tab (that shortcut menu is named Ply):

Sub ShowCaptions()
 Dim txt As String
 Dim ctl As CommandBarControl

 For Each ctl In CommandBars("Ply").Controls
 txt = txt & ctl.Caption & vbNewLine
 Next ctl
 MsgBox txt
End Sub

When you execute this procedure, you see the message box shown in Figure 18.2. The
ampersand is used to indicate the underlined letter in the text—the keystroke that will
execute the menu item.

FIGURE 18.2

Displaying the Caption property for controls

Chapter 18: Working with Shortcut Menus

641

18

In some cases, Control objects on a shortcut menu contain other Control objects. For
example, the Filter control on the Cell right-click menu contains other controls. The Filter
control is a submenu, and the additional items are submenu items.

The statement that follows displays the first submenu item in the Filter submenu:

MsgBox CommandBars("Cell").Controls("Filter").Controls(1).Caption

Properties of CommandBar Controls
CommandBar controls have a number of properties that determine how the controls look
and work. This list contains some of the more useful properties for CommandBar controls:

 ■ Caption: The text displayed for the control. If the control shows only an image,
the Caption property appears when you move the mouse pointer over the control.

 ■ ID: A unique numeric identifier for the control.
 ■ FaceID: A number that represents a built-in graphic image displayed next to the

control’s text.
 ■ Type: A value that determines whether a control is a button (msoControl
Button) or a submenu (msoControlPopup).

 ■ Picture: A graphics image displayed next to the control’s text. This property is
useful if you want to display a graphic from the Ribbon.

Finding a control
If you’re writing code that will be used by a different language version of Excel, avoid using the Cap
tion property to access a particular shortcut menu item. The Caption property is language-specific,
so your code will fail if the user has a different language version of Excel.

Instead, use the FindControl method with the ID of the control (which is language-independent). For
example, assume that you want to disable the Cut menu on the shortcut menu that appears when you
right-click a column letter. If your workbook will be used only by people who have the English version
of Excel, this statement will do the job:

CommandBars("Column").Controls("Cut").Enabled = False

To ensure that the command will work with non-English versions, you need to know the ID of the con-
trol. The following statement will tell you that the ID is 21:

MsgBox CommandBars("Column").Controls("Cut").ID

Then, to disable that control, use this statement:

CommandBars("Column").FindControl(ID:=21).Enabled = False

The CommandBar names are not regionalized, so a reference to CommandBars("Column") will always
work. If two or more command bars have the same name, the first one is used.

Part IV: Developing Excel Applications

642

 ■ BeginGroup: True if a separator bar appears before the control.
 ■ OnAction: The name of a VBA macro that executes when the user clicks

the control.
 ■ BuiltIn: True if the control is an Excel built-in control.
 ■ Enabled: True if the control can be clicked.
 ■ Visible: True if the control is visible. Many of the shortcut menus contain

hidden controls.
 ■ ToolTipText: Text that appears when the user moves the mouse pointer over the

control. (This is not applicable for shortcut menus.)

Displaying All Shortcut Menu Items
The ShowShortcutMenuItems procedure that follows creates a table that lists all
the first-level controls on every shortcut menu. For each control, the table includes the
shortcut menu’s Index and Name values, plus the ID, Caption, Type, Enabled, and
Visible property values.

Sub ShowShortcutMenuItems()
 Dim Row As Long
 Dim Cbar As CommandBar
 Dim ctl As CommandBarControl

 Range("A1:G1") = Array("Index", "Name", "ID", "Caption", _
 "Type", "Enabled", "Visible")
 Row = 2
 Application.ScreenUpdating = False

 For Each Cbar In Application.CommandBars
 If Cbar.Type = 2 Then
 For Each ctl In Cbar.Controls
 Cells(Row, 1) = Cbar.Index
 Cells(Row, 2) = Cbar.Name
 Cells(Row, 3) = ctl.ID
 Cells(Row, 4) = ctl.Caption
 If ctl.Type = 1 Then
 Cells(Row, 5) = "Button"
 Else
 Cells(Row, 5) = "Submenu"
 End If
 Cells(Row, 6) = ctl.Enabled
 Cells(Row, 7) = ctl.Visible
 Row = Row + 1

Chapter 18: Working with Shortcut Menus

643

18

 Next ctl
 End If
 Next Cbar

 ActiveSheet.ListObjects.Add(xlSrcRange, _
 Range("A1").CurrentRegion, , xlYes).Name = "Table1"
End Sub

Figure 18.3 shows a portion of the output.

On the Web
This example, named Show Shortcut Menu Items.xlsm, is available on the book’s website.

FIGURE 18.3

Listing the items in all shortcut menus

Part IV: Developing Excel Applications

644

Using VBA to Customize Shortcut Menus
In this section, we present some practical examples of VBA code that manipulates Excel’s
shortcut menus. These examples, which can be modified to suit your needs, will give you an
idea of the types of things you can do with shortcut menus.

Shortcut menu and the single-document interface
In Excel versions prior to 2013, if your code modified a shortcut menu, that modification
was in effect for all workbooks. For example, if you added a new item to the Cell right-click
menu, that new item would appear when you right-clicked a cell in any workbook. In other
words, shortcut menu modifications were at the application level.

Beginning in Excel 2013, Excel uses a single-document interface, which affects shortcut
menus. Changes that you make to shortcut menus affect only the active workbook window.
When you execute the code that modifies the shortcut menu, the shortcut menu for win-
dows other than the active window will not be changed. This behavior is a radical depar-
ture from how things worked in previous versions of Excel.

And another twist: if the user opens a workbook (or creates a new workbook) when the
active window displays the modified shortcut menu, the new workbook will also display
the modified shortcut menu. In other words, new windows display the same shortcut menus
as the window that was active when the new window was opened. If you write code to
delete the shortcut menus, they are deleted only in the original workbook.

Even if a shortcut menu modification is intended to be used only in a single workbook,
there’s still a potential problem: if the user opens a new workbook, that new workbook will
display the customized shortcut menus. Therefore, you might need to modify your code so
that the macros executed by the shortcut menus work only in the workbook for which they
were designed.

If you want to use a custom shortcut menu as a way to execute a macro in an add-in, that
menu item will be available only in workbooks that are opened after the add-in is opened.

Customizing shortcut menus with RibbonX code
You can also use RibbonX code to customize shortcut menus. When a workbook is opened that con-
tains such code, the shortcut menu changes affect only that workbook. To make shortcut menu mod-
ifications in all workbooks, place the RibbonX code in an add-in.

Here’s a simple example of RibbonX code that modifies the Cell right-click menu. As shown in the
accompanying figure, the code adds a shortcut menu item after the Hyperlink menu item.

<customUI xmlns="http://schemas.microsoft.com/office/2009/07/
customui">
 <contextMenus>
 <contextMenu idMso="ContextMenuCell">
 <button id="FileName_MyMenuItem"
 label="Run My Macro..."

Chapter 18: Working with Shortcut Menus

645

18

 insertAfterMso="HyperlinkInsert"
 onAction="MyMacro"
 imageMso="AdvancedFileProperties"/>
 </contextMenu>
 </contextMenus>
</customUI>

Using RibbonX to modify shortcut menus was introduced in Excel 2010, so this technique doesn’t
work with Excel 2007.

As we explain in Chapter 17, “Working with the Ribbon,” you need to use a separate program to add
RibbonX code.

Part IV: Developing Excel Applications

646

Resetting a Shortcut Menu
The Reset method restores a shortcut menu to its original, default condition. The following
procedure resets the Cell shortcut menu to its normal state:

Sub ResetCellMenu()
 CommandBars("Cell").Reset
End Sub

In the current version of Excel, the Reset method affects the Cell shortcut menu only in
the active window.

As noted previously, Excel has two shortcut menus named Cell. The preceding code resets
only the first one (index of 36). To reset the second Cell shortcut menu, you can use its
index number (39) instead of its name. Remember, however, the index numbers aren’t con-
sistent across Excel versions. Here’s a better procedure to reset both instances of the Cell
shortcut menu in the active window:

Sub ResetCellMenu()
 Dim cbar As CommandBar

 For Each cbar In Application.CommandBars
 If cbar.Name = "Cell" Then cbar.Reset
 Next cbar
End Sub

The following procedure resets all built-in shortcut menus to their original states:

Sub ResetAllShortcutMenus()
 Dim cbar As CommandBar

 For Each cbar In Application.CommandBars
 If cbar.Type = msoBarTypePopup Then
 cbar.Reset
 cbar.Enabled = True
 End If
 Next cbar
End Sub

In Excel 2019, the ResetAllShortcutMenus procedure works only with the active
window. To reset the shortcut menus in all open windows, the code gets a bit more complex.

Sub ResetAllShortcutMenus2()
 ' Works with all windows
 Dim cbar As CommandBar
 Dim activeWin As Window
 Dim win As Window

 ' Remember current active window
 Set activeWin = ActiveWindow

Chapter 18: Working with Shortcut Menus

647

18

 ' Loop through each visible window
 Application.ScreenUpdating = False
 For Each win In Windows
 If win.Visible Then
 win.Activate
 For Each cbar In Application.CommandBars
 If cbar.Type = msoBarTypePopup Then
 cbar.Reset
 cbar.Enabled = True
 End If
 Next cbar
 End If
 Next win
 ' Activate original window
 activeWin.Activate
 Application.ScreenUpdating = True
End Sub

The code starts by keeping track of the active window and storing it as an object variable
(activeWin). The code then loops through all open windows and activates each one, but it
skips hidden windows because activating a hidden window makes it visible. For each active
window, it loops through each CommandBar object and resets those that are shortcut
menus. Finally, the code reactivates the original window.

Disabling a shortcut menu
The Enabled property lets you disable an entire shortcut menu. For example, you can set
this property so that right-clicking a cell does not display the normal shortcut menu. The
following statement disables the Cell shortcut menu for the workbook in the active window:

Application.CommandBars("Cell").Enabled = False

To reenable the shortcut menu, set its Enabled property to True. Resetting a shortcut
menu does not enable it.

If you want to disable all shortcut menus in the active window, use the following
procedure:

Sub DisableAllShortcutMenus()
 Dim cb As CommandBar

 For Each cb In CommandBars
 If cb.Type = msoBarTypePopup Then _
 cb.Enabled = False
 Next cb
End Sub

On the Web
Both versions of the ResetAllShortcutMenus procedure are available on the book’s website in the Reset
All Shortcut Menus.xlsm file.

Part IV: Developing Excel Applications

648

Disabling shortcut menu items
You may want to disable one or more items on certain shortcut menus while your applica-
tion is running. When an item is disabled, its text appears in light gray, and clicking it has
no effect. The following procedure disables the Hide menu item from the Row and Column
shortcut menus in the active window:

Sub DisableHideMenuItems()
 CommandBars("Column").Controls("Hide").Enabled = False
 CommandBars("Row").Controls("Hide").Enabled = False
End Sub

This procedure doesn’t prevent a user from using other methods to hide rows or columns,
such as the Format command in the Home ➪ Cells group.

Adding a new item to the Cell shortcut menu
The AddToShortcut procedure that follows adds a new menu item to the Cell shortcut
menu: Toggle Wrap Text. Recall that Excel has two Cell shortcut menus. This procedure
modifies the normal right-click menu but not the right-click menu that appears in page
break preview mode.

Sub AddToShortCut()
' Adds a menu item to the Cell shortcut menu (active workbook)
 Dim Bar As CommandBar
 Dim NewControl As CommandBarButton

 DeleteFromShortcut
 Set Bar = CommandBars("Cell")
 Set NewControl = Bar.Controls.Add _
 (Type:=msoControlButton)

 With NewControl
 .Caption = "Toggle &Wrap Text"
 .OnAction = "ToggleWrapText"
 .Picture = Application.CommandBars.GetImageMso _
 ("WrapText", 16, 16)
 .Style = msoButtonIconAndCaption
 End With
End Sub

Figure 18.4 shows the new menu item displayed after right-clicking a cell.

The first command, after the declaration of a couple of variables, calls the DeleteFrom
Shortcut procedure (listed later in this section). This statement ensures that only one
Toggle Wrap Text menu item appears on the shortcut Cell menu. Note that the underlined
hot key for this menu item is W, not T, because T is already used by the Cut menu item.

Chapter 18: Working with Shortcut Menus

649

18

The Picture property is set by referencing the image used on the Ribbon for the
Wrap Text command. Refer to Chapter 17 for more information about images used in
Ribbon commands.

The macro executed when the menu item is selected is specified by the OnAction property.
In this case, the macro is named ToggleWrapText.

Sub ToggleWrapText()
 On Error Resume Next
 CommandBars.ExecuteMso "WrapText"
 If Err.Number <> 0 Then MsgBox "Could not toggle Wrap Text"
End Sub

This procedure simply executes the WrapText Ribbon command. If an error occurs (for
example, the worksheet is protected), the user gets a message.

FIGURE 18.4

The Cell shortcut menu with a custom menu item

Part IV: Developing Excel Applications

650

The DeleteFromShortcut procedure removes the new menu item from the Cell
shortcut menu.

Sub DeleteFromShortcut()
 On Error Resume Next
 CommandBars("Cell").Controls("Toggle &Wrap Text").Delete
End Sub

In most cases, you want to add and remove the shortcut menu additions automatically:
add the shortcut menu item when the workbook is opened and delete the menu item
when the workbook is closed. Just add these two event procedures to the ThisWorkbook
code module:

Private Sub Workbook_Open()
 AddToShortCut
End Sub

Private Sub Workbook_BeforeClose(Cancel As Boolean)
 DeleteFromShortcut
End Sub

The Workbook_Open procedure is executed when the workbook is opened, and the Work
book_BeforeClose procedure is executed when you close the workbook but before the
workbook is actually closed. It’s just what the doctor ordered.

By the way, if shortcut menus are used only in Excel 2019, you don’t need to remove them
when the workbook closes because the shortcut menu modifications are applied only to the
active workbook window.

Adding a submenu to a shortcut menu
The example in this section adds a submenu with three options to the Cell shortcut menu
of the active window. Figure 18.5 shows the worksheet after right-clicking a cell. Each sub-
menu item executes a macro that changes the case of text in the selected cells.

The code that creates the submenu and submenu items is as follows:

Sub AddSubmenu()
 Dim Bar As CommandBar
 Dim NewMenu As CommandBarControl
 Dim NewSubmenu As CommandBarButton

 DeleteSubmenu
 Set Bar = CommandBars("Cell")

On the Web
The workbook described in this section is available on the book’s website in the Add to Cell Shortcut
.xlsm file. The file also includes a version of the macro that adds the new shortcut menu item to all open windows.

Chapter 18: Working with Shortcut Menus

651

18

' Add submenu
 Set NewMenu = Bar.Controls.Add _
 (Type:=msoControlPopup, _
 temporary:=True)
 NewMenu.Caption = "Ch&ange Case"
 NewMenu.BeginGroup = True

' Add first submenu item
 Set NewSubmenu = NewMenu.Controls.Add _
 (Type:=msoControlButton)
 With NewSubmenu

FIGURE 18.5

This shortcut menu has a submenu with three submenu items.

Part IV: Developing Excel Applications

652

 .FaceId = 38
 .Caption = "&Upper Case"
 .OnAction = "MakeUpperCase"
 End With

' Add second submenu item
 Set NewSubmenu = NewMenu.Controls.Add _
 (Type:=msoControlButton)
 With NewSubmenu
 .FaceId = 40
 .Caption = "&Lower Case"
 .OnAction = "MakeLowerCase"
 End With

' Add third submenu item
 Set NewSubmenu = NewMenu.Controls.Add _
 (Type:=msoControlButton)
 With NewSubmenu
 .FaceId = 476
 .Caption = "&Proper Case"
 .OnAction = "MakeProperCase"
 End With
End Sub

The submenu is added first, and its Type property is msoControlPopup. Then the three
submenu items are added, and each has a different OnAction property.

The code to delete the submenu is much simpler, as shown here:

Sub DeleteSubmenu()
 On Error Resume Next
 CommandBars("Cell").Controls("Cha&nge Case").Delete
End Sub

Limiting a shortcut menu to a single workbook
As previously noted, in Excel 2019, shortcut menu modifications are applied only to the
active workbook window (workbook A). For example, you might add a new item to the Cell
right-click menu in workbook A. But if the user opens a new workbook when workbook
A is active, the new workbook will also display the modified shortcut menu. If you want
the shortcut menu to work only when workbook A is active, you can add some code to the
macro that’s executed by the shortcut menu.

On the Web
The workbook described in this section is available on the book’s website in the Shortcut with Submenu
.xlsm file.

Chapter 18: Working with Shortcut Menus

653

18

Assume that you wrote code that adds a shortcut menu that, when clicked, executes the
MyMacro procedure. To limit this procedure to only the workbook in which it’s defined, use
code like this:

Sub MyMacro()
 If Not ActiveWorkbook Is ThisWorkbook Then
 MsgBox "This shortcut menu doesn't work here."
 Else
 ' [Macro code goes here]
 End If
End Sub

Finding FaceID images
The icon that’s displayed on a shortcut menu item is determined by one of two property settings.

 ■ Picture: This option lets you use an imageMso from the Ribbon. For an example, see
“Adding a new item to the Cell shortcut menu” earlier in this chapter.

 ■ FaceID: This option is the easiest because the FaceID property is just a numeric value that
represents one of hundreds of images.

But how do you find out which number corresponds to a particular FaceID image? Excel doesn’t provide
a way, so this book’s website contains a workbook that lets you enter beginning and ending FaceID
numbers. Click a button, and the images are displayed in the worksheet. Each image has a name that
corresponds to its FaceID value. See the accompanying figure, which shows FaceID values from 1 to
500. The workbook is named Show Faceids.xlsm.

Part IV: Developing Excel Applications

654

Shortcut Menus and Events
The examples in this section demonstrate various shortcut menu programming techniques
used with events.

Adding and deleting menus automatically
If you need to modify a shortcut menu when a workbook is opened, use the Workbook_
Open event. The following code, stored in the code module for the ThisWorkbook object,
executes the ModifyShortcut procedure (not shown here):

Private Sub Workbook_Open()
 ModifyShortcut
End Sub

To return the shortcut to its state before the modification, use a procedure such as the fol-
lowing. This procedure, which is executed before the workbook closes, calls the Restore
Shortcut procedure (not shown here):

Private Sub Workbook_BeforeClose(Cancel As Boolean)
 RestoreShortcut
End Sub

If this code is used exclusively in Excel 2013 or later, it’s not necessary to restore the
shortcut menus when the workbook is closed because the modifications are applied only to
the active workbook and disappear when the workbook is closed.

Disabling or hiding shortcut menu items
When a shortcut menu item is disabled, its text appears in a faint shade of gray, and click-
ing it has no effect. When a menu item is hidden, it doesn’t appear on the shortcut menu.
You can, of course, write VBA code to enable or disable shortcut menu items. Similarly, you
can write code to hide shortcut menu items. The key is tapping into the correct event.

The following code, for example, disables the Change Case shortcut menu item (which was
added to the Cells menu) when Sheet2 is activated. This procedure is located in the code
module for Sheet2.

Private Sub Worksheet_Activate()
 CommandBars("Cell").Controls("Change Case").Enabled = False
End Sub

To enable the menu item when Sheet2 is deactivated, add the following procedure to its
code module. The net effect is that the Change Case menu item is available at all times
except when Sheet2 is active.

We discuss event programming in Chapter 6, “Understanding Excel’s Events.”

Chapter 18: Working with Shortcut Menus

655

18

Private Sub Worksheet_Deactivate()
 CommandBars("Cell").Controls("Change Case").Enabled = True
End Sub

To hide the menu item rather than disable it, simply set the Visible property to False
instead of the Enabled property.

Creating a context-sensitive shortcut menu
You can create a new shortcut menu and display it in response to a particular event. The
code that follows creates a shortcut menu named MyShortcut and adds six menu items to it.
Each menu item has its OnAction property set to execute a simple procedure that displays
one of the tabs in the Format Cells dialog box (see Figure 18.6).

Sub CreateShortcut()
 Dim myBar As CommandBar
 Dim myItem As CommandBarControl

 DeleteShortcut
 Set myBar = CommandBars.Add _
 (Name:="MyShortcut", Position:=msoBarPopup, Temporary:=True)

 Set myItem = myBar.Controls.Add(Type:=msoControlButton)
 With myItem
 .Caption = "&Number Format..."
 .OnAction = "ShowFormatNumber"
 .FaceId = 1554
 End With

FIGURE 18.6

A new shortcut menu appears only when the user right-clicks a cell in the shaded area of
the worksheet.

Part IV: Developing Excel Applications

656

 Set myItem = myBar.Controls.Add(Type:=msoControlButton)
 With myItem
 .Caption = "&Alignment..."
 .OnAction = "ShowFormatAlignment"
 .FaceId = 194
 End With

 Set myItem = myBar.Controls.Add(Type:=msoControlButton)
 With myItem
 .Caption = "&Font..."
 .OnAction = "ShowFormatFont"
 .FaceId = 309
 End With

 Set myItem = myBar.Controls.Add(Type:=msoControlButton)
 With myItem
 .Caption = "&Borders..."
 .OnAction = "ShowFormatBorder"
 .FaceId = 149
 .BeginGroup = True
 End With

 Set myItem = myBar.Controls.Add(Type:=msoControlButton)
 With myItem
 .Caption = "&Fill..."
 .OnAction = "ShowFormatPatterns"
 .FaceId = 687
 End With

 Set myItem = myBar.Controls.Add(Type:=msoControlButton)
 With myItem
 .Caption = "&Protection..."
 .OnAction = "ShowFormatProtection"
 .FaceId = 225
 End With
End Sub

After the shortcut menu is created, you can display it by using the ShowPopup method.
The following procedure, located in the code module for a Worksheet object, is executed
when the user right-clicks in a cell within the range named data:

Private Sub Worksheet_BeforeRightClick _
 (ByVal Target As Excel.Range, Cancel As Boolean)

 If Union(Target.Range("A1"), Range("data")).Address = _
 Range("data").Address Then
 CommandBars("MyShortcut").ShowPopup
 Cancel = True
 End If
End Sub

Chapter 18: Working with Shortcut Menus

657

18

If the active cell is within a range named data when the user right-clicks, the MyShort
cut menu appears. Setting the Cancel argument to True ensures that the normal
shortcut menu isn’t displayed. Note that the mini toolbar isn’t displayed.

You can also display this shortcut menu without even using the mouse. Create a simple pro-
cedure and assign a shortcut key by using the Options button in the Macro dialog box.

Sub ShowMyShortcutMenu()
 ' Ctrl+Shift+M shortcut key
 CommandBars("MyShortcut").ShowPopup
End Sub

On the Web
The book’s website contains an example (named Contextsensitive Shortcut Menu.xlsm) that creates
a new shortcut menu and displays it in place of the normal Cell shortcut menu.

659

CHAP T ER

19
Providing Help for Your
Applications

IN THIS CHAPTER
Providing user help for your applications

Using only the components supplied with Excel to provide help

Displaying help files created with the HTML Help system

Associating a help file with your application

Displaying HTML Help in other ways

Help for Your Excel Applications
If you develop a nontrivial application in Excel, you may want to consider building in some sort of
help for end users. Doing so makes the users feel more comfortable with the application and could
eliminate some support e-mails from users with basic questions. Another advantage is that help is
always available. That is, the instructions for using your application can’t be misplaced or buried
under a pile of books.

You can provide help for your Excel applications in a number of ways, ranging from simple to com-
plex. The method you choose depends on your application’s scope and complexity and how much
effort you’re willing to put into this phase of development. Some applications might require only a
brief set of instructions on how to start them. Others may benefit from a full-blown searchable Help
system. Most often, applications need something in between.

This chapter classifies user help into two categories.

Unofficial Help system This method of displaying help uses standard Excel components
(such as a UserForm). Or you can simply display the support information in a text file, Word
document, or PDF file.

Official Help system This Help system uses a compiled HTML file (with a .chm extension)
produced by Microsoft’s HTML Help Workshop.

Creating a compiled help file isn’t a trivial task, but it is worth the effort if your application is com-
plex or if it will be used by a large number of people.

Excel® 2019 Power Programming with VBA, First Edition. Michael Alexander and Dick Kusleika.
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.

Part IV: Developing Excel Applications

660

About the examples in this chapter
Many of the examples in this chapter use a common workbook application to demonstrate various ways
of providing help. The application uses data stored in a worksheet to generate and print form letters.

As you can see in the following figure, cells display the total number of records in the database (C2,
calculated by a formula), the current record number (C3), the first record to print (C4), and the last
record to print (C5). To display a particular record, the user enters a value in cell C3. To print a series
of form letters, the user specifies the first and last record numbers in cells C4 and C5.

Chapter 19: Providing Help for Your Applications

661

19

Help Systems That Use Excel Components
Perhaps the most straightforward method of providing help to your users is to use the fea-
tures in Excel itself. The primary advantage of this method is that you don’t need to learn
how to create HTML help files, which can be a major undertaking and might take longer to
develop than your application.

In this section, we provide an overview of some help techniques that use the following
built-in Excel components:

Cell comments Using comments is about as simple as it gets.

A text box control A short macro is all it takes to toggle the display of a text box
that shows help information.

A worksheet An easy way to add help is to insert a worksheet, enter your help
information, and name its tab Help. When the user clicks the tab, the worksheet is
activated.

A custom UserForm A number of techniques involve displaying help text in
a UserForm.

Using cell comments for help
Perhaps the simplest way to provide user help is to use cell comments. This technique is
most appropriate for describing the type of input that’s expected in a cell. When the user

The application is simple, but it does consist of several discrete components. We use this example to
demonstrate various ways of displaying context-sensitive help.

The form letter workbook consists of the following components:

 ■ Form: A worksheet that contains the text of the form letter.

 ■ Data: A worksheet that contains a seven-field table of customer information.

 ■ HelpSheet: A worksheet that’s present only in the examples that store help text on
a worksheet.

 ■ PrintMod: A VBA module that contains macros to print the form letters.

 ■ HelpMod: A VBA module that contains macros that control the help display. The content of
this module varies depending on the type of help being demonstrated.

 ■ UHelp: Present only if the help technique involves a UserForm.

On the Web
All of the examples in this chapter are available on the book’s website. Because most examples consist of multiple
files, each example is in a separate directory.

Part IV: Developing Excel Applications

662

moves the mouse pointer over a cell that contains a comment, the comment appears in a
small window, like a tooltip (see Figure 19.1). Another advantage is that this technique
doesn’t require macros.

The automatic display of cell comments is an option. The following VBA instruction, which
can be placed in a Workbook_Open procedure, ensures that cell comment indicators are
displayed for cells that contain comments:

Application.DisplayCommentIndicator = xlCommentIndicatorOnly

As an alternative to cell comments, you can use Excel’s Data ➪ Data Tools ➪ Data Validation
command, which displays a dialog box that lets you specify validation criteria for a cell or

FIGURE 19.1

Using cell comments to display help

On the Web
A workbook that demonstrates the use of cell comments is available on the book’s website in the cell
comments\formletter.xlsm file.

tip
Cell comments can also display images. Right-click the comment’s border, and choose Format Comment from the
shortcut menu. In the Format Comment dialog box, select the Colors and Lines tab. Click the Color drop-down list
and select Fill Effects. In the Fill Effects dialog box, click the Picture tab and then click the Select Picture button to
choose the image file.

Chapter 19: Providing Help for Your Applications

663

19

range. You can just ignore the data validation aspect and use the Input Message tab of the
Data Validation dialog box to specify a message that’s displayed when the cell is activated.
This text is limited to 255 characters.

Using a text box for help
Using a text box to display help information is also easy to implement. Simply create
a text box by choosing Insert ➪ Text ➪ Text Box, enter the help text, and format it to
your liking.

Figure 19.2 shows an example of a shape set up to display help information. A shadow
effect makes the object appear to float above the worksheet.

tip
In lieu of a text box, you can use a different shape and add text to it. Choose Insert ➪ Illustrations ➪ Shapes and
choose a shape. Then just starting typing the text.

FIGURE 19.2

Using a shape object with text to display help for the user

Part IV: Developing Excel Applications

664

Most of the time, you won’t want the text box to be visible. Therefore, you can add a
button to your application to execute a macro that toggles the Visible property of
the text box. An example of such a macro follows. In this case, the TextBox control is
named HelpText.

Sub ToggleHelp()
 ActiveSheet.TextBoxes("HelpText").Visible = _
 Not ActiveSheet.TextBoxes("HelpText").Visible
End Sub

Using a worksheet to display help text
Another easy way to add help to your application is to create a macro that activates a sep-
arate worksheet that holds the help information. Just attach the macro to a button control
and—voilà!—quick-and-dirty help.

Figure 19.3 shows a sample help worksheet. We designed the range that contains the help
text to simulate a page from a yellow notebook pad—a touch that you may or may not like.

To keep the user from scrolling around the HelpSheet worksheet, the macro sets the
ScrollArea property of the worksheet. Because this property isn’t stored with the
workbook, it must be set when the worksheet is activated.

Sub ShowHelp()
 'Activate help sheet
 Worksheets("HelpSheet").Activate
 ActiveSheet.ScrollArea = "A1:C35"
 Range("A1").Select
End Sub

The worksheet is protected to prevent the user from changing the text and selecting cells,
and the first row is frozen so that the Return to the Form button is always visible, regard-
less of how far down the sheet the user scrolls.

The main disadvantage of using this technique is that the help text isn’t visible along with
the main work area. One possible solution is to write a macro that opens a new window to
display the sheet.

On the Web
A workbook that demonstrates using a text box for help is available on the book’s website in the textbox\form-
letter.xlsm file.

Chapter 19: Providing Help for Your Applications

665

19

Displaying help in a UserForm
Another way to provide help to the user is to display the text in a UserForm. In this sec-
tion, I describe several techniques that involve UserForms.

FIGURE 19.3

An easy method is to put user help in a separate worksheet.

On the Web
This book’s website contains a workbook named worksheet\formletter.xlsm that demonstrates using a
worksheet for help.

Part IV: Developing Excel Applications

666

Using Label controls to display help text
Figure 19.4 shows a UserForm that contains two Label controls: one for the title and one
for the help text. A SpinButton control enables the user to navigate among the topics.
The text itself is stored in a worksheet, with topics in column A and text in column B. A
macro transfers the text from the worksheet to the Label controls.

Clicking the SpinButton control executes the following procedure. This procedure sets
the Caption property of the two Label controls to the text in the appropriate row of the
worksheet (named HelpSheet).

Private Sub sbTopics_Change()
 Dim HelpTopic As Long

 HelpTopic = Me.sbTopics.Value
 Me.lblTitle.Caption = _
 Sheets("HelpSheet").Cells(HelpTopic, 1).Value

 Me.lblTopic.Caption = _
 Sheets("HelpSheet").Cells(HelpTopic, 2).Value

 Me.Caption = APPNAME & " (Help Topic " & HelpTopic & " of " _
 & Me.sbTopics.Max & ")"
End Sub

Here, APPNAME is a global constant that contains the application’s name.

FIGURE 19.4

Clicking one of the arrows on the SpinButton changes the text displayed in the labels.

On the Web
A workbook that demonstrates this technique is available on the book’s website in the userform1\formletter
.xlsm file.

Chapter 19: Providing Help for Your Applications

667

19

Using a scrolling label to display help text
The next technique displays help text in a single Label control. Because a Label control
can’t contain a vertical scroll bar, the label is placed inside a Frame control, which can
contain a scroll bar. Figure 19.5 shows an example of a UserForm set up in this manner. The
user can scroll through the text by using the frame’s scroll bar.

Using Control tips in a UserForm
Every UserForm control has a ControlTipText property, which can store brief descriptive text. When
the user moves the mouse pointer over a control, the Control tip (if any) is displayed in a pop-up
window. See the accompanying figure.

FIGURE 19.5

Inserting a Label control inside a Frame control adds scrolling to the label.

Part IV: Developing Excel Applications

668

The text displayed in the label is read from a worksheet named HelpSheet when the User-
Form is initialized. Here’s the UserForm_Initialize procedure for this worksheet:

Private Sub UserForm_Initialize()
 Dim LastRow As Long
 Dim r As Long
 Dim txt As String

 Me.Caption = APPNAME & " Help"
 LastRow = Sheets("HelpSheet").Cells(Rows.Count, 1).End(xlUp).Row
 txt = ""

 For r = 1 To LastRow
 txt = txt & Sheets("HelpSheet").Cells(r, 1).Text & vbCrLf
 Next r

 With Me.lblMain
 .Top = 0
 .Caption = txt
 .Width = 260
 .AutoSize = True
 End With

 Me.frmMain.ScrollHeight = Me.lblMain.Height
 Me.frmMain.ScrollTop = 0
End Sub

Note that the code adjusts the frame’s ScrollHeight property to ensure that the scrolling
covers the complete height of the label. Again, APPNAME is a global constant that contains
the application’s name.

Because a label can’t display formatted text, underscore characters are used in the Help-
Sheet worksheet to delineate the help topic titles.

Using a ComboBox control to select a help topic
The example in this section improves upon the preceding example. Figure 19.6 shows a
UserForm that contains a ComboBox control and a Label control. The user can select a
topic from the drop-down combo box or view the topics sequentially by clicking the Previ-
ous or Next button.

On the Web
A workbook that demonstrates this technique is available on the book’s website in a file named userform2\
formletter.xlsm.

Chapter 19: Providing Help for Your Applications

669

19

This example is a bit more complex than the example in the preceding section, but it’s also
much more flexible. It uses the label-within-a-scrolling-frame technique (described previ-
ously) to support help text of any length.

The help text is stored in a worksheet named HelpSheet in two columns (A and B). The
first column contains the topic headings, and the second column contains the text. The
combo box items are added in the UserForm_Initialize procedure. The CurrentTopic
variable is a module-level variable that stores an integer that represents the help topic.

Private Sub UpdateForm()
 Me.cbxTopics.ListIndex = CurrentTopic - 1
 Me.Caption = APPNAME & _
 " (" & CurrentTopic & " of " & TopicCount & ")"

 With Me.lblMain
 .Caption = HelpSheet.Cells(CurrentTopic, 2).Value
 .AutoSize = False
 .Width = 212
 .AutoSize = True
 End With

 With Me.frmMain
 .ScrollHeight = Me.lblMain.Height + 5
 .ScrollTop = 1
 End With

 If CurrentTopic = 1 Then
 Me.cmdNext.SetFocus
 ElseIf CurrentTopic > TopicCount Then

FIGURE 19.6

Using a drop-down list control to select a help topic

Part IV: Developing Excel Applications

670

 Me.cmdPrevious.SetFocus
 End If

 Me.cmdPrevious.Enabled = CurrentTopic > 1
 Me.cmdNext.Enabled = CurrentTopic < TopicCount
End Sub

Displaying Help in a Web Browser
This section describes two ways to display user help in a web browser.

Using HTML files
Yet another way to display help for an Excel application is to create one or more HTML files
and provide a hyperlink that displays the file in the default web browser. The HTML files
can be stored locally or on your corporate intranet. You can create the hyperlink to the
help file in a cell (macros not required). Figure 19.7 shows an example of help in a browser.

FIGURE 19.7

Displaying help in a web browser

On the Web
A workbook that demonstrates this technique is available on the book’s website in the userform3\form-
letter.xlsm file.

Chapter 19: Providing Help for Your Applications

671

19

Easy-to-use HTML editors are readily available, and your HTML-based Help system can be
as simple or as complex as necessary. A disadvantage is that you may need to distribute a
large number of HTML files. One solution to this problem is to use an MHTML file, which we
describe next.

Another advantage of this method is that you can change your help files without having to
redeploy the entire application. For example, if you find an error in your help file, you can
replace just the file with the correction in it.

Using an MHTML file
MHTML, which stands for MIME Hypertext Markup Language, is a web archive format.
MHTML files can be displayed by Microsoft Internet Explorer (and a few other browsers).

The nice thing about using an MHTML file for an Excel Help system is that you can cre-
ate these files in Excel. Just create your help text using any number of worksheets. Then
choose File ➪ Save As, click the Save As Type drop-down list, and select Single File Web
Page (*.mht; *.mhtml). VBA macros aren’t saved in this format.

In Excel, you can create a hyperlink to display the MHTML file.

Figure 19.8 shows an MHTML file displayed in Internet Explorer. Note that the bottom of
the file contains tabs that link to the help topics. These tabs correspond to the worksheet
tabs in the Excel workbook used to create the MHTML file.

On the Web
A workbook that demonstrates this technique is available on the book’s website in the web browser\form-
letter.xlsm file.

On the Web
A workbook that demonstrates this technique is available on the book’s website in the mhtml_file\form-
letter.xlsm file. Also included is the workbook used to create the MHTML file (helpsource.xlsx). Appar-
ently, some versions of Internet Explorer won’t display an MHTML file that’s hyperlinked from a Microsoft Office file
if the filename or path includes space characters. The example on the book’s website uses a Windows API function
(ShellExecute) to display the MHTML file if the hyperlink fails.

CautiOn
If you save a multisheet Excel workbook as an MHTML file, the file will contain JavaScript code, which may generate a
security warning when the file is opened.

Part IV: Developing Excel Applications

672

Using the HTML Help System
One of the most common Help systems used in Windows applications is compiled HTML
Help, which creates CHM files. In this section, we briefly describe the HTML help-authoring
system. Details on creating such Help systems are well beyond the scope of this book. How-
ever, you’ll find lots of information and examples online.

FIGURE 19.8

Displaying an MHTML file in a web browser

nOte
If you plan to develop a large-scale Help system, we strongly recommend that you purchase a help-authoring soft-
ware product. Help-authoring software makes it much easier to develop help files because the software takes care
of many of the tedious details for you. Many products are available, including freeware, shareware, and commercial
offerings.

Chapter 19: Providing Help for Your Applications

673

19

A compiled HTML Help system transforms a series of HTML files into a compact Help system.
Additionally, you can create a combined table of contents and index as well as use key-
words for advanced hyperlinking capability. HTML Help can also use additional tools, such
as graphics files, ActiveX controls, scripting, and Dynamic HTML (DHTML). Figure 19.9
shows an example of a simple HTML Help system.

HTML Help is displayed by HTML Help Viewer, which uses the layout engine of Internet
Explorer. The information is displayed in a window, and the table of contents, index, and
search tools are displayed in a separate pane. In addition, the help text can contain stan-
dard hyperlinks that display another topic or even a document on the Internet. It’s also
important that HTML Help can access files stored on a website so that you can direct users
to more up-to-date information.

You need a special compiler (HTML Help Workshop) to create an HTML Help system. HTML
Help Workshop, along with lots of additional information, is available free from Microsoft’s
website. Navigate to the following page for more information and downloads:

https://docs.microsoft.com/en-us/previous-versions/windows/desktop/htmlhelp/

microsoft-html-help-1-4-sdk

Figure 19.10 shows HTML Help Workshop with the project file that created the Help system
shown in Figure 19.9.

FIGURE 19.9

An example of HTML Help

On the Web
A workbook that demonstrates this technique is available on the book’s website in the html help\
formletter.xlsm file.

https://docs.microsoft.com/en-us/previous-versions/windows/desktop/htmlhelp/microsoft-html-help-1-4-sdk
https://docs.microsoft.com/en-us/previous-versions/windows/desktop/htmlhelp/microsoft-html-help-1-4-sdk

Part IV: Developing Excel Applications

674

Using the Help method to display HTML Help
Use the Help method of the Application object to display a help file—either a WinHelp
HLP file or an HTML Help CHM file. This method works even if the help file doesn’t have
context IDs defined.

The syntax for the Help method is as follows:

Application.Help(helpFile, helpContextID)

Both arguments are optional. If the name of the help file is omitted, Excel’s help file is dis-
played. If the context ID argument is omitted, the specified help file is displayed with the
default topic.

The following example displays the default topic of myapp.chm, which is assumed to be in
the same directory as the workbook from which it’s called. Note that the second argument
is omitted.

FIGURE 19.10

Using HTML Help Workshop to create a help file

Chapter 19: Providing Help for Your Applications

675

19

Sub ShowHelpContents()
 Application.Help ThisWorkbook.Path & "\myapp.chm"
End Sub

The following instruction displays the help topic with a context ID of 1002 from an HTML
help file named myapp.chm:

Application.Help ThisWorkbook.Path & "\myapp.chm", 1002

Associating a help file with your application
You can associate a particular HTML help file with your Excel application in one of two
ways: by using the Project Properties dialog box or by writing VBA code.

In Visual Basic Editor (VBE), choose Tools ➪ xxx Properties (where xxx corresponds to your
project’s name). In the Project Properties dialog box, click the General tab and specify a
compiled HTML help file for the project. This file should have a .chm extension.

The statement that follows demonstrates how to associate a help file with your application
by using a VBA statement. The following instruction sets up an association with myfuncs
.chm, which is assumed to be in the same directory as the workbook:

ThisWorkbook.VBProject.HelpFile = ThisWorkbook.Path & "\myfuncs.chm"

When a help file is associated with your application, you can call up a particular help topic
in the following situations:

 ■ When the user presses F1 while a custom worksheet function is selected in the
Insert Function dialog box.

 ■ When the user presses F1 while a UserForm is displayed. The help topic associated
with the control that has the focus is displayed.

Associating a help topic with a VBA function
If you create custom worksheet functions with VBA, you might want to associate a help file
and context ID with each function. After these items are assigned to a function, the help
topic can be displayed from the Insert Function dialog box by pressing F1.

nOte
If this statement generates an error, you must enable programmatic access to VBA projects. In Excel, choose Devel-
oper ➪ Code ➪ Macro Security to display the Trust Center dialog box. Then select the option labeled Trust Access to
the VBA Project Object Model.

Part IV: Developing Excel Applications

676

You may prefer to write VBA code that sets up the context ID and help file for your custom
functions. You can do this by using the MacroOptions method.

The following procedure uses the MacroOptions method to specify a description, help
file, and context ID for two custom functions (AddTwo and Squared). You need to execute
this macro only one time.

Sub SetOptions()
 ' Set options for the AddTwo function
 Application.MacroOptions Macro:="AddTwo", _

Activity
To specify a context ID for a custom worksheet function, follow these steps:

1. Create the function as usual.

2. Make sure that your project has an associated help file (refer to the preceding section).

3. In VBE, press F2 to activate the Object Browser.

4. Select your project from the Project/Library drop-down list.

5. In the Classes window, select the module that contains your function.

6. In the Members Of window, select the function.

7. Right-click the function and then select Properties from the shortcut menu.

The Member Options dialog box is displayed, as shown in Figure 19.11.

8. Enter the context ID of the help topic for the function.

You can also enter a description of the function.

FIGURE 19.11

Specify a context ID for a custom function.

nOte
The Member Options dialog box doesn’t let you specify the help file. It always uses the help file associated with
the project.

Chapter 19: Providing Help for Your Applications

677

19

 Description:="Returns the sum of two numbers", _
 HelpFile:=ThisWorkbook.Path & "\myfuncs.chm", _
 HelpContextID:=1000, _
 ArgumentDescriptions:=Array("The first number to add", _
 "The second number to add")

 ' Set options for the Squared function
 Application.MacroOptions Macro:="Squared", _
 Description:="Returns the square of an argument", _
 HelpFile:=ThisWorkbook.Path & "\myfuncs.chm", _
 HelpContextID:=2000, _
 ArgumentDescriptions:=Array("The number to be squared")
End Sub

After executing these procedures, the user can get help directly from the Insert Function
dialog box by clicking the Help on This Function hyperlink.

On the Web
A workbook that demonstrates this technique is available on the book’s website in the function help\
myfuncs.xlsm file.

679

CHAP T ER

20
Leveraging Class Modules

IN THIS CHAPTER
Introducing class modules

Exploring some typical uses for class modules

Seeing examples that demonstrate some key concepts related to class modules

What Is a Class Module?
For many VBA programmers, the concept of a class module is a mystery. This feature can be con-
fusing, but the examples in this chapter will help to make it less mysterious.

A class module is a special type of VBA module that you can insert in a VBA project. Basically, a
class module enables the programmer (you) to create a new object. As you should know by now, pro-
gramming Excel really boils down to manipulating objects. A class module allows you to create new
objects, along with corresponding properties, methods, and events.

At this point, you might be asking, “Do I really need to create new objects?” The answer is “No.”
You don’t need to, but you might want to after you understand some of the benefits of doing so. In
many cases, a class module simply serves as a substitute for functions or procedures, but it could
be a more convenient and manageable alternative. In other cases, however, you’ll find that a class
module is the only way to accomplish a particular task.

The following are some typical uses for class modules:

To encapsulate code and improve readability By moving all of your code related to payroll,
for example, into custom objects representing employees and paychecks, you can keep your
code more organized.

To handle events of objects not exposed by Excel Examples of this include application
events, chart events, or query table events. Chapter 15, “Implementing Advanced UserForm
Techniques,” shows an example of using application events.

Excel® 2019 Power Programming with VBA, First Edition. Michael Alexander and Dick Kusleika.
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.

Part IV: Developing Excel Applications

680

To encapsulate a Windows application programming interface (API) function to
make it easier to use in your code For example, you can create a class that makes
it easy to detect or set the state of the Num Lock or Caps Lock key. Or, you can cre-
ate a class that simplifies access to the Windows Registry.

To enable multiple objects in a UserForm to execute a single procedure Normally,
each object has its own event handler. The example in Chapter 15 demonstrates how
to use a class module so that multiple command buttons have a single Click event-
handler procedure.

To create reusable components that can be imported into other projects After
you create a general-purpose class module, you can import it into other projects to
reduce your development time.

Built-in class modules
If you’ve been following the examples in this book so far, then you’ve already used a class
module. Excel automatically creates a class module for the Workbook object, each Work-
sheet object, and any UserForm objects. That’s right: the ThisWorkbook module is
just a class module. And when you insert a UserForm into your project, you’re inserting a
class module.

The difference between a UserForm’s class module and a custom class module is that the
UserForm has a user-interface component (the form and its controls) that a custom class
module doesn’t have. However, you can create properties and methods in a UserForm’s class
module to extend its functionality, because it’s just a class module.

Custom class modules
The remainder of this chapter deals with creating custom class modules. Unlike built-in
class modules, where Excel defines the object and its properties and methods, custom class
modules allow you to define them. What custom objects you create depends on your appli-
cation. If you’re writing a contact manager application, you might have a Company class
and a Contact class. For a sales commission calculator, you might have a Salesperson
class and an Invoice class. One of the benefits of class modules is that you can design
them to fit your specific needs perfectly.

Classes and objects
The terms class and object are used interchangeably by many VBA developers. They are very
closely related, but there is a minor distinction. A class module defines an object, but it’s
not the actual object.

Think of a class module as a blueprint for a house. The blueprint describes all of the prop-
erties and dimensions of the house, but it’s not a house. You can create a bunch of houses
from one blueprint. Similarly, you can create a bunch of objects from one class.

Chapter 20: Leveraging Class Modules

681

20

Objects, properties, and methods
It’s helpful to think of objects, properties, and methods in terms of grammar. The objects
are the nouns. They are things. They may represent tangible things like an employee, a
customer, or a dump truck. They may also represent intangible things like a transaction.
When you’re designing your application using a class module, start by identifying the
objects that live in your domain.

Objects have properties. Properties are the adjectives in the grammar analogy. They describe
the characteristics of an object. One characteristic of a house is how many cars fit in the
garage. If you create a house class, you might also create a GarageCarCount property.
Similarly, you might create an ExteriorColor property that holds the color of the paint
used on the outside of the house. You don’t have to create a property for every conceivable
characteristic of an object. You only create properties for characteristics that are important
to your application. As an example, Excel has a Font object that has a Size property. You
can read this property to determine the font size, or you can set this property to change
the font size.

Finally, methods are the verbs of the class grammar. Methods describe actions that the class
module takes. In general, there are two types of methods: methods that change more than
one property at a time and methods that interact with the outside world. Excel’s Workbook
object has a Name property. You can read the Name property, but you can’t change it. To
change the Name property, you have to use a method (like Save or SaveAs) because the
outside world, namely, the operating system, cares about the actual name of the workbook.

Creating a NumLock Class
One of the benefits of class modules is to give complicated, hard-to-use code (like Windows
APIs) a better interface. Detecting or changing the state of the Num Lock key requires a
couple of Windows API functions and is fairly complicated. You can put the API functions
into a class module and build your own properties and methods that are far easier to use
than the API functions.

In this section, we provide step-by-step instructions for creating a useful, albeit simple,
class module. This class module creates a NumLock class that has one property (Value) and
one method (Toggle).

After the class is created, your VBA code can determine the current state of the Num Lock
key by using an instruction such as the following, which displays the Value property:

MsgBox clsNumLock.Value

In addition, your code can toggle the Num Lock key by using the Toggle method:

clsNumLock.Toggle

Part IV: Developing Excel Applications

682

The class is designed so that you can’t simply set the Value property. The Value prop-
erty isn’t just a value that you’re storing in a class, but the actual state of the keyboard.
To change the Value property, you define a method that interacts with the keyboard
via the Windows API, and that changes the property value. It’s important to understand
that a class module contains the code that defines the object, including its properties and
methods. You can then create an instance of this object in other VBA code modules and
manipulate its properties and methods.

To understand better the process of creating a class module, you might want to follow the
instructions in the following sections. Start with an empty workbook.

Inserting a class module
Activate Visual Basic Editor (VBE), and choose Insert ➪ Class Module. This step adds an
empty class module named Class1. If the Properties window isn’t displayed, press F4 to
display it. Then change the name of the class module to CNumLock (see Figure 20.1).

FIGURE 20.1

An empty class module named CNumLock

Chapter 20: Leveraging Class Modules

683

20

Adding VBA code to the class module
In the next step, you create the code for the Value property. To detect or change the state
of the Num Lock key, the class module needs the Windows API declarations that detect and
set the Num Lock key. That code follows.

Private Declare PtrSafe Sub keybd_event Lib "user32" _
 (ByVal bVk As Byte, _
 ByVal bScan As Byte, _
 ByVal dwFlags As Long, ByVal dwExtraInfo As Long)

Private Declare PtrSafe Function GetKeyboardState Lib "user32" _
 (pbKeyState As Byte) As Long
Private Declare PtrSafe Function SetKeyboardState Lib "user32" _
 (lppbKeyState As Byte) As Long

'Constant declarations
Const VK_NUMLOCK = &H90

Next, you need a procedure that retrieves the current state of the Num Lock key. This is
called the Value property of the object in this example, but you can use any name for the
property. To retrieve the state, insert the following Property Get procedure:

Public Property Get Value() As Boolean
 ' Get the current state
 Dim Keys(0 To 255) As Byte

 GetKeyboardState Keys(0)
 Value = CBool(Keys(VK_NUMLOCK))
End Property

This procedure, which uses the GetKeyboardState Windows API function to determine
the current state of the Num Lock key, is called whenever VBA code reads the Value prop-
erty of the object. For example, after the object is created, a VBA statement such as this
executes the Property Get procedure:

MsgBox clsNumLock.Value

If the Value property were read/write, you would need a Property Let procedure to
go with your Property Get. Since we’re setting the Value property via the Toggle
method, there is no Property Let procedure.

 The details of Property procedures are described later in this chapter, in the “Programming
properties of objects” section.

Part IV: Developing Excel Applications

684

Next, you need a procedure to toggle the NumLock state. This procedure is called the
Toggle method.

Public Sub Toggle()
 ' Toggles the state
 ' Simulate Key Press
 keybd_event VK_NUMLOCK, &H45, KEYEVENTF_EXTENDEDKEY Or 0, 0

 ' Simulate Key Release
 keybd_event VK_NUMLOCK, &H45, KEYEVENTF_EXTENDEDKEY _
 Or KEYEVENTF_KEYUP, 0
End Sub

Note that Toggle is a standard Sub procedure (not a Property Let or Property Get
procedure). A VBA statement such as the following one toggles the state of the clsNum-
Lock object by executing the Toggle procedure:

clsNumLock.Toggle

Using the CNumLock class
Before you can use the CNumLock class, you must create an instance of the object. The
following statement, which resides in a standard VBA module (not the class module), does
just that:

Dim clsNumLock As CNumLock

Note that the object type is CNumLock (that is, the name of the class module). The object
variable can have any name, but this example uses the convention of prefixing class
modules with a capital C and prefixing the object variables that are derived from those
class modules with cls. So, the CNumLock class is instantiated as the clsNumLock
object variable.

The following procedure reads the Value property of the clsNumLock object, toggles
the value, reads the value again, and displays a message to the user describing what
just happened.

Public Sub NumLockTest()
 Dim clsNumLock As CNumLock
 Dim OldValue As Boolean

 Set clsNumLock = New CNumLock
 OldValue = clsNumLock.Value
 clsNumLock.Toggle
 DoEvents
 MsgBox "Num Lock was changed from " & _
 OldValue & " to " & clsNumLock.Value
End Sub

Chapter 20: Leveraging Class Modules

685

20

Figure 20.2 shows the result of running NumLockTest. Using the NumLock class is much
simpler than dealing directly with the API functions. After you create a class module, you
can reuse it in any other project simply by importing the class module.

Coding Properties, Methods, and Events
The example in the preceding section demonstrates how to create a new object class with
a single read-only property named Value and a single method named Toggle. An object
class can contain any number of properties, methods, and events.

The name that you use for the class module in which you define the object class is also the
name of the object class. By default, class modules are named Class1, Class2, and so on.
You’ll want to provide a more meaningful name for your object class.

Programming properties of objects
Most objects have at least one property, and you can give them as many as you need. After
a property is defined and the object is created, you can use it in your code using the stan-
dard dot syntax.

object.property

The VBE Auto List Members option works with objects defined in a class module, which
makes it easier to select properties or methods when writing code.

FIGURE 20.2

A message box shows the change in status of the Num Lock key.

On the Web
The completed class module for this example is available on the book’s website. The workbook, named Keyboard
Class.xlsm, also contains a class module to detect and set the state of the Caps Lock key and the Scroll
Lock key.

Part IV: Developing Excel Applications

686

Properties for the object that you define can be read-only, write-only, or read/write. You
define a read-only property with a single procedure, using the Property Get keywords.
Here’s an example of a Property Get procedure:

Public Property Get FileNameOnly() As String
 Dim Sep As String, LastSep As Long

 Sep = Application.PathSeparator
 LastSep = InStrRev(FullName, Sep)
 FileNameOnly = Right(FullName, Len(FullName) - LastSep)
End Property

You may have noticed that a Property Get procedure works like a Function procedure.
The code performs calculations and then returns a property value that corresponds to the
procedure’s name. In this example, the procedure’s name is FileNameOnly. The property
value returned is the filename part of a path string (contained in a Public variable named
FullName). For example, if FullName is c:\data\myfile.txt, the procedure returns a
property value of myfile.txt. The FileNameOnly procedure is called when VBA code ref-
erences the object and property.

For read/write properties, you create two procedures: a Property Get procedure (which
reads a property value) and a Property Let procedure (which writes a property value).
The value being assigned to the property is treated as the final argument (or the only argu-
ment) of a Property Let procedure.

Two example procedures follow:

Dim XLFile As Boolean

Property Get SaveAsExcelFile() As Boolean
 SaveAsExcelFile = XLFile
End Property

Property Let SaveAsExcelFile(bVal As Boolean)
 XLFile = bVal
End Property

A Public variable in a class module can also be used as a property of the object. In the
preceding example, the Property Get and Property Let procedures could be elimi-
nated and replaced with this module-level declaration:

Public SaveAsExcelFile As Boolean

nOte
Use Property Set in place of Property Let when the property is an object data type.

Chapter 20: Leveraging Class Modules

687

20

In the unlikely event that you need to create a write-only property, you create a single
Property Let procedure with no corresponding Property Get procedure.

The previous examples use a Boolean module-level variable named XLFile. The Property
Get procedure simply returns the value of this variable as the property value. If the object
were named FileSys, for example, the following statement would display the current
value of the SaveAsExcelFile property:

MsgBox FileSys.SaveAsExcelFile

The Property Let statement, on the other hand, accepts an argument and uses the argu-
ment to change the value of a property. For example, you could write a statement such as
the following to set the SaveAsExcelFile property to True:

FileSys.SaveAsExcelFile = True

In this case, the value True is passed to the Property Let statement, thus changing the
property’s value.

You’ll need to create a variable that represents the value for each property that you define
within your class module.

Programming methods for objects
A method for an object class is programmed by using a standard Sub or Function proce-
dure placed in the class module. An object might or might not use methods. Your code exe-
cutes a method by using standard notation.

object.method

Like any other VBA method, a method that you write for an object class will perform some
type of action. The following procedure is an example of a method that saves a workbook
in one of two file formats, depending on the value of the XLFile variable. As you can see,
nothing about this procedure is special.

Sub SaveFile()
 If XLFile Then
 ActiveWorkbook.SaveAs FileName:=FName, _
 FileFormat:=xlWorkbookNormal
 Else
 ActiveWorkbook.SaveAs FileName:=FName, _
 FileFormat:=xlCSV
 End If
End Sub

nOte
Normal procedure-naming rules apply to property procedures, and you’ll find that VBA won’t let you use some names
if they are reserved words. If you get a syntax error when creating a property procedure, try changing the name of the
procedure.

Part IV: Developing Excel Applications

688

Class module events
Every class module has two events: Initialize and Terminate. The Initialize event
occurs when a new instance of the object is created; the Terminate event occurs when
the object is destroyed. You might want to use the Initialize event to set default prop-
erty values.

The frameworks for these event-handler procedures are as follows:

Private Sub Class_Initialize()
 ' Initialization code goes here
End Sub

Private Sub Class_Terminate()
 ' Termination code goes here
End Sub

An object is destroyed (and the memory it uses is freed) when the procedure or module in
which it is declared finishes executing. You can destroy an object at any time by setting it
to Nothing. The following statement, for example, destroys the object named MyObject:

Set MyObject = Nothing

Exposing a QueryTable Event
Excel automatically creates class modules for some objects, like ThisWorkbook and
Sheet1. These class modules expose events like Workbook_SheetActivate and Work-
sheet_SelectionChange. Other objects in the Excel object model have events, but you
have to create a custom class module to expose them. In this section, we’ll show you how to
expose the events of a QueryTable object.

Figure 20.3 shows a worksheet with a web query that starts in cell A5. The web query pulls
financial information from a website. The only thing that’s missing is the date when this
web query was last updated so that you can know whether the prices are current.

In VBA, a web query is a QueryTable object. The QueryTable object has two events:
BeforeRefresh and AfterRefresh. Those events are pretty well named, and you’ve
probably already figured out when they fire.

To be able to use the QueryTable events, you need to do the following:

 ■ Create a custom class module.
 ■ Declare a QueryTable using the WithEvents keyword.
 ■ Write the event procedure code.
 ■ Create a Public variable to keep the object in scope.
 ■ Create a procedure to instantiate the class.

Chapter 20: Leveraging Class Modules

689

20

Those are the basic steps for exposing events of any object that supports events. (Not all of
them do.) When you use the WithEvents keyword, VBA will only let you declare objects
that support events.

FIGURE 20.3

A web query for financial information

Activity
Follow these steps to add a message to a worksheet informing the user when a web query was
last updated:

1. In the VBE, choose Insert ➪ Class Module to insert a new class module.

2. Press F4 to go to the Properties window, and name the module CQueryEvents.

3. Type the following code in the class module:

Private WithEvents qt As QueryTable

Public Property Get QTable() As QueryTable
 Set QTable = qt

End Property

Continues

Part IV: Developing Excel Applications

690

Public Property Set QTable(rQTable As QueryTable)
 Set qt = rQTable
End Property

The first line declares a module-level variable that will store the web query. You can see that
it was declared with the WithEvents keyword. Next, Property Get and Property Set
procedures are written so that you can set the variable from outside of the class.

4. From the drop-downs at the top of the code pane (see Figure 20.4), select qt and After-
Refresh. This will insert the Sub and End Sub statements for the event module. If the VBE
inserts statements for the default event procedure, BeforeRefresh in this case, you can
delete them.

FIGURE 20.4

The code pane lists available events.

continued

Chapter 20: Leveraging Class Modules

691

20

5. Type the following code into the event procedure:

Private Sub qt_AfterRefresh(ByVal Success As Boolean)
 If Success Then

 Me.QTable.Parent.Range("A1").Value = _
 "Last updated: " & Format(Now, "mm-dd-yyyy hh:mm:ss")
 End If
End Sub

The event procedure has a built-in argument, Success, that is True if the query updated without
errors. Now that the class is set up, you need to create an object based on it.

6. Insert a standard module (Insert ➪ Module). You can accept the default name of Module1
for this exercise or change it if you want.

7. Type the following code into the module:

Public clsQueryEvents As CQueryEvents

Sub Auto_Open()
 Set clsQueryEvents = New CQueryEvents
 Set clsQueryEvents.QTable = Sheet1.QueryTables(1)
End Sub

A globally scoped variable (declared with the Public keyword) will stay in scope for as long
as the worksheet is open. This means that the class will continue to “listen” for events until
you close the workbook. The Auto_Open procedure runs when the workbook is first opened.
It creates the clsQueryEvents object and then sets the events variable to the web query
on Sheet1.

8. Run Auto_Open from the Immediate Window or by pressing F5 in the VBE.

That’s it. You now have code that will run after the web query on Sheet1 is refreshed. You can
click Refresh All on the Data tab of the Ribbon to test the code. If you followed the steps,
you should see something similar to Figure 20.5.

Continues

Part IV: Developing Excel Applications

692

Creating a Class to Hold Classes
One of the benefits of using class modules is to organize your code according to the objects
the code affects. You may, for instance, create a CEmployee class for your code that deals
with employees. But you probably don’t have just one employee. Often, you create many
objects from one class, and a great way to keep track of them is within another class.

In this section, you’ll learn how to create parent classes and child classes in a commission-
calculating application. You’ll create a CSalesRep child class and keep track of all
instances of it in a CSalesReps class. (Naming the parent class as the plural of the child
class is a common convention.) Similarly, you’ll create a CInvoices parent class to hold
CInvoice objects.

On the Web
A workbook named Query Table Events.xlsm is available on this book’s website. It contains the web query
used in the example in this section. Another workbook, named Query Table Events Complete.xlsm, con-
tains the web query and the completed code.

On the Web
A workbook with all of the data and code for this section is available on this book’s website. The workbook is named
Commission Calc.xlsm.

FIGURE 20.5

After a web query is refreshed, the last update time is recorded.

continued

Chapter 20: Leveraging Class Modules

693

20

Creating the CSalesRep and CSalesReps classes
Figure 20.6 shows two tables. The first table lists all the sales representatives and some
commission information. The second table is a list of invoices. Start by creating a CSales-
Rep class module and include the following code:

Private mSalesRepID As Long
Private mSalesRep As String
Private mCommissionRate As Double
Private mThreshold As Double

Public Property Let SalesRepID(ByVal lSalesRepID As Long)
 mSalesRepID = lSalesRepID
End Property

Public Property Get SalesRepID() As Long
 SalesRepID = mSalesRepID
End Property

Public Property Let SalesRep(ByVal sSalesRep As String)
 mSalesRep = sSalesRep
End Property

Public Property Get SalesRep() As String
 SalesRep = mSalesRep
End Property

Public Property Let CommissionRate(_
 ByVal dCommissionRate As Double)
 mCommissionRate = dCommissionRate
End Property

Public Property Get CommissionRate() As Double
 CommissionRate = mCommissionRate
End Property

Public Property Let Threshold(ByVal dThreshold As Double)
 mThreshold = dThreshold
End Property

Public Property Get Threshold() As Double
 Threshold = mThreshold
End Property

You’ll notice that there is a private variable for every column in the sales rep table and a
Property Get and Property Let statement for every variable. Next, add another class
module named CSalesReps. This will be the parent class that holds all of the CSales-
Rep objects.

Part IV: Developing Excel Applications

694

In the parent class, create a Collection variable that will hold all of the children.

Private mSalesReps As New Collection

Now you need to add a way to get the children into the collection. Create an Add method,
an Item property, and a Count property in the CSalesReps class module using this fol-
lowing code:

Public Sub Add(clsSalesRep As CSalesRep)
 mSalesReps.Add clsSalesRep, CStr(clsSalesRep.SalesRepID)
End Sub

Public Property Get Count() As Long
 Count = mSalesReps.Count
End Property

Public Property Get Item(lId As Long) As CSalesRep
 Set Item = mSalesReps(lId)
End Property

FIGURE 20.6

Excel tables hold the information for the objects.

Chapter 20: Leveraging Class Modules

695

20

You might notice that all you’ve done is mimic the Collection object’s Add method and
Item and Count properties. The Collection object’s key argument must be a unique
string, so you used the SalesRepID property and the CStr() function to ensure that the
key is unique and a string.

That’s all there is to creating a parent class. Simply add a Collection variable and mimic
whichever of the Collection’s properties and methods you need.

Creating the CInvoice and CInvoices classes
The following is the code for the CInvoice class:

Private mInvoice As String
Private mInvoiceDate As Date
Private mAmount As Double

Public Property Let Invoice(ByVal sInvoice As String)
 mInvoice = sInvoice
End Property

Public Property Get Invoice() As String
 Invoice = mInvoice
End Property

Public Property Let InvoiceDate(ByVal dtInvoiceDate As Date)
 mInvoiceDate = dtInvoiceDate
End Property

Public Property Get InvoiceDate() As Date
 InvoiceDate = mInvoiceDate
End Property

Public Property Let Amount(ByVal dAmount As Double)
 mAmount = dAmount
End Property

Public Property Get Amount() As Double
 Amount = mAmount
End Property

We won’t go into as much detail on CInvoice because, like CSalesRep, it simply creates
a property for every column in the table. But it doesn’t create one for the SalesRepID
column, and you’ll see why later in this section. The following code is in the CInvoices
class module:

Private mInvoices As New Collection

Public Sub Add(clsInvoice As CInvoice)
 mInvoices.Add clsInvoice, clsInvoice.Invoice
End Sub

Part IV: Developing Excel Applications

696

Public Property Get Count() As Long
 Count = mInvoices.Count
End Property

Like CSalesReps, this class has a Collection, an Add method, and a Count property.
It doesn’t have an Item property because that’s not currently needed. But you can add an
Item property later if the application requires it. Now you have two parent classes and two
child classes. The final step before you can start creating objects is to define the relation-
ship between them. In CSalesRep, include the following code:

Private mInvoices As New CInvoices

Public Property Get Invoices() As CInvoices
 Set Invoices = mInvoices
End Property

Now the hierarchy is CSalesReps ➪ CSalesRep ➪ CInvoices ➪ CInvoice.

Filling the parent classes with objects
With your classes defined, you can create new CSalesRep and CInvoice objects and add
them to their respective parent classes. The following two procedures do just that.

Public Sub FillSalesReps(ByRef clsSalesReps As CSalesReps)
 Dim i As Long
 Dim clsSalesRep As CSalesRep
 Dim loReps As ListObject

 Set loReps = Sheet1.ListObjects(1)
 'loop through all the sales reps
 For i = 1 To loReps.ListRows.Count
 'create a new sales rep object
 Set clsSalesRep = New CSalesRep

 'Set the properties With loReps.ListRows(i).Range
 clsSalesRep.SalesRepID = .Cells(1).Value
 clsSalesRep.SalesRep = .Cells(2).Value
 clsSalesRep.CommissionRate = .Cells(3).Value
 clsSalesRep.Threshold = .Cells(4).Value
 End With

 'Add the child to the parent class
 clsSalesReps.Add clsSalesRep
 'Fill invoices for this rep
 FillInvoices clsSalesRep
 Next i
End Sub

Chapter 20: Leveraging Class Modules

697

20

Public Sub FillInvoices(ByRef clsSalesRep As CSalesRep)
 Dim i As Long
 Dim clsInvoice As CInvoice
 Dim loInv As ListObject

 'create a variable for the table
 Set loInv = Sheet2.ListObjects(1)

 'loop through the invoices table
 For i = 1 To loInv.ListRows.Count
 With loInv.ListRows(i).Range
 'Only if it's for this rep, add it
 If .Cells(4).Value = clsSalesRep.SalesRepID Then
 Set clsInvoice = New CInvoice
 clsInvoice.Invoice = .Cells(1).Value
 clsInvoice.InvoiceDate = .Cells(2).Value
 clsInvoice.Amount = .Cells(3).Value
 clsSalesRep.Invoices.Add clsInvoice
 End If
 End With
 Next i
End Sub

The first procedure accepts a CSalesReps argument. This is the class at the top of the
hierarchy. The procedure loops through all of the rows in the sales rep table, creates a new
CSalesRep object, sets the properties of the new object, and adds it to the parent class.

Inside the loop, the FillSalesReps procedure calls FillInvoices and passes it a
CSalesRep object. Only those invoices that relate to the CSaleRep object are created and
added to it. There isn’t just one CInvoices parent class like there’s only one CSalesReps
class. Instead, each CSalesRep has its own CInvoices instance that holds the invoices
that relate to it. This relationship of using a parent class like CInvoices acting as a child
to another class is a complicated but powerful coding technique.

Calculating the commissions
Insert a new standard module, and type the following code to calculate the commission and
output the results:

Public Sub CalculateCommission()
 Dim clsSalesReps As CSalesReps
 Dim i As Long

 'Create a new parent object and fill it with child objects
 Set clsSalesReps = New CSalesReps
 FillSalesReps clsSalesReps

 'Loop through all the reps and print commissions
 For i = 1 To clsSalesReps.Count
 With clsSalesReps.Item(i)

Part IV: Developing Excel Applications

698

 Debug.Print .SalesRep, _
 Format(.Commission, "$#,##0.00")
 End With
 Next i
End Sub

You may have noticed that the previous procedure uses a Commission property that
has not yet been created. In the CSalesRep class, insert the following code to create a
Commission property:

Public Property Get Commission() As Double
 If Me.Invoices.Total < Me.Threshhold Then
 Commission = 0
 Else
 Commission = (Me.Invoices.Total - Me.Threshhold) _
 * Me.CommissionRate
 End If
End Property

If the total of all of the invoices is less than the threshold, this procedure sets the
commission to zero. Otherwise, the total sales in excess of the threshold is multiplied by
the commission rate. To get the total of the invoices, this property uses a Total property
from CInvoices. Since you haven’t created that property yet, insert the following code
into CInvoices to do so:

Public Property Get Total() As Double
 Dim i As Long

 For i = 1 To mInvoices.Count
 Total = Total + mInvoices.Item(i).Amount
 Next i
End Property

Figure 20.7 shows the output in the Immediate Window from running Calculate-
Commissions. You probably noticed that using the class module requires a little more
setup than writing normal procedures. Besides, for an application as simple as this, it may
not be worth the effort. As your applications get more complicated, however, you’ll find
that organizing your code in class modules will make it more readable, easier to maintain,
and easier to modify should the need arise.

FIGURE 20.7

The commission calculation is output to the Immediate Window.

699

CHAP T ER

21
Understanding
Compatibility Issues

IN THIS CHAPTER
Increasing the probability that your Excel 2019 applications will also work with previous versions of Excel

Declaring API functions that work with 32-bit Excel 2019, 64-bit Excel 2019, and earlier versions of Excel

Being aware of issues when you’re developing Excel applications for international use

What Is Compatibility?
Compatibility is an often-used term among computer people. In general, it refers to how well soft-
ware performs under various conditions. These conditions might be defined in terms of hardware,
software, or a combination of the two. For example, software written for Windows may not run
directly on other operating systems, such as macOS or Linux.

In this chapter, we discuss a more specific compatibility issue involving how your Excel 2019 appli-
cations will work with earlier versions of Excel for Windows and Excel for Mac. The fact that two
versions of Excel might use the same file format isn’t always enough to ensure complete compati-
bility between the contents of their files. For example, Excel 97, Excel 2000, Excel 2002, Excel 2003,
and Excel 2008 for Mac all use the same file format, but compatibility problems are rampant. Just
because a particular version of Excel can open a worksheet file or an add-in doesn’t guarantee that
that version of Excel can carry out the VBA macro instructions contained within it. Another exam-
ple: Excel 2019 and Excel 2007 both use the same file format. If your application uses features that
were introduced in Excel 2010 or newer, you can’t expect that Excel 2007 users will magically have
access to these new features.

Excel is a moving target, and you can’t guarantee complete compatibility. In most cases, you must
do quite a bit of additional work to achieve compatibility.

Types of Compatibility Problems
You need to be aware of several categories of potential compatibility problems. These issues are
listed here and discussed further in this chapter:

Excel® 2019 Power Programming with VBA, First Edition. Michael Alexander and Dick Kusleika.
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.

Part IV: Developing Excel Applications

700

File format issues You can save workbooks in several different Excel file formats.
Earlier versions of Excel might not be able to open workbooks that were saved in a
newer version’s file format. For more information about sharing Excel 2007 through
Excel 2019 files, see the sidebar “The Microsoft Office Compatibility Pack.”

New feature issues It should be obvious that you can’t use a feature introduced in a
particular version of Excel in previous versions of Excel.

Microsoft issues Microsoft itself is responsible for some types of compatibility issues.
For example, as we note in Chapter 18, “Working with Shortcut Menus,” index num-
bers for shortcut menus haven’t remained consistent across Excel versions.

Windows versus Mac issues If your application must work on both platforms, plan to
spend lots of time ironing out various compatibility problems. Also, note that VBA
was removed in Excel 2008 for Mac but then came back in Excel 2011 for Mac.

Bit issues Excel 2010 was the first version of Excel that’s available in both 32-bit and
64-bit editions. If your VBA code uses API functions, you’ll need to be aware of some
potential problems if the code must run in both 32-bit and 64-bit Excel, as well as
other versions of Excel.

International issues If your application will be used by those who use a different
language version of Excel, you must address a number of issues.

After reading this chapter, it should be clear that you can ensure compatibility in only one
way: test your application on every target platform and with every target version of Excel.

Note
Now that Microsoft Office is available on the Web and on mobile devices such as tablets and phones, you can expect
compatibility issues to get even more complicated. These nondesktop versions of Office do not support VBA, add-ins,
or features that rely on ActiveX controls.

Note
If you’re reading this chapter in search of a complete list of specific compatibility issues among the various versions
of Excel, you will be disappointed. As far as we know, no such list exists, and it would be virtually impossible to com-
pile one because these types of issues are too numerous and complex.

tip
A good source for information about potential compatibility problems is Microsoft’s support site. The URL is
www.support.microsoft.com. Information at this site can often help you identify bugs that appear in a
particular version of Excel.

Chapter 21: Understanding Compatibility Issues

701

21

Avoid Using New Features
If your application must work with both Excel 2019 and earlier versions, you need to avoid
any features that were added after the earliest Excel version that you will support. Another
alternative is to incorporate the new features selectively. In other words, your code can
determine which version of Excel is being used and then take advantage of the new fea-
tures or not.

VBA programmers must be careful not to use any objects, properties, or methods that aren’t
available in earlier versions. In general, the safest approach is to develop your application
for the lowest version number. For compatibility with Excel 2003 and newer, you should use
Excel 2003 for development; then test thoroughly by using newer versions.

Determining Excel’s version number
The Version property of the Application object returns the version of Excel. The returned value is
a string, so you might need to convert it to a value. Use the VBA Val function to make the conversion.
The following function, for example, returns True if the user is running Excel 2007 or newer:

Function XL12OrLater()
 XL12OrLater = Val(Application.Version) >= 12
End Function

Excel 2007 is version 12, Excel 2010 is version 14, Excel 2013 is version 15, and Excel 2016 is version 16.
You might expect Excel 2019 to be version 17—and you wouldn’t be alone. But Application.Version
still returns 16 in Excel 2019. We presume that this is an error, but Microsoft has neither acknowledged
this nor indicated that this will get fixed. Don’t be surprised if it gets fixed in the future, but for now
there’s no easy way to distinguish Excel 2016 and Excel 2019.

Microsoft Office Compatibility Pack
If you plan to share your Excel 2019 application with others who use an Excel version older than Excel
2007, you have two choices.

 ■ Always save your files in the older XLS file format.

 ■ Make sure that the recipients of your files have installed Microsoft Office Compatibility Pack.

Microsoft Office Compatibility Pack is a free download available at www.microsoft.com. When it’s
installed, Office 2003 users can open, edit, and save documents, workbooks, and presentations in the
new file formats for Word, Excel, and PowerPoint.

Keep in mind that this compatibility pack doesn’t endow earlier versions of Excel with any of the new
features in Excel 2007 and newer versions. It simply allows those users to open and save files in the
new file format.

Part IV: Developing Excel Applications

702

A useful feature introduced in Excel 2007 is the Compatibility Checker, shown in
Figure 21.1. Display this dialog box by choosing File ⇨ Info ⇨ Check for Issues ⇨ Check
Compatibility. Compatibility Checker identifies any compatibility issues that might cause a
problem if the file is opened using an earlier version of Excel.

Unfortunately, the Compatibility Checker doesn’t look at the VBA code, which is a prime
candidate for compatibility problems. However, you can download Microsoft Office Code
Compatibility Inspector (search for it at www.microsoft.com). This tool installs as an
add-in and adds new commands to the Developer tab. It may help you locate potential
compatibility problems in your VBA code. Inspector adds comments to your code to iden-
tify potential problems and also creates a report. The Microsoft Office Code Compatibility
Inspector was written for Office 2010, and apparently it has not been updated since (but it
still installs). Figure 21.2 shows a summary report.

FIGURE 21.1

Compatibility Checker

Chapter 21: Understanding Compatibility Issues

703

21

But Will It Work on a Mac?
Excel for Mac represents a small proportion of the total Excel market, and many developers
choose simply to ignore it. The good news is that the file format is compatible across both
platforms. The bad news is that the features supported aren’t identical, and VBA macro com-
patibility is far from perfect. And, as we noted, Excel 2008 for Mac had no support for VBA.

You can write VBA code to determine on which platform your application is running.
The following function accesses the OperatingSystem property of the Application
object and returns True if the operating system is any version of Windows (that is, if the
returned string contains the text Win):

Function WindowsOS() As Boolean
 WindowsOS = Application.OperatingSystem Like "*Win*"
End Function

Subtle (and not so subtle) differences exist between the Windows versions and the Mac ver-
sions of Excel. Many of these differences are cosmetic (for example, different default fonts),
but others are more serious. For example, Excel for Mac doesn’t include ActiveX controls.
Also, some Mac versions use the 1904 date system as the default, but Excel for Windows uses
the 1900 date system by default, so workbooks that use dates could be off by four years.

Another limitation concerns Windows API functions: they won’t work with Excel for Mac.
If your application depends on such functions, you need to develop a workaround.

Here’s an example of a potential compatibility problem: If your code deals with paths and
filenames, you need to construct your path with the appropriate path separator (a colon for
the Mac, a backslash for Windows). A better approach is to avoid hard-coding the path sep-
arator character and instead use VBA to determine it. The following statement assigns the
path separator character to a variable named PathSep:

PathSep = Application.PathSeparator

FIGURE 21.2

A summary report from Microsoft Office Code Compatibility Inspector

Part IV: Developing Excel Applications

704

After this statement is executed, your code can use the PathSep variable in place of a
hard-coded colon or backslash.

Rather than try to make a single file compatible with both platforms, most developers
choose to develop on one platform and then modify the application so that it works on the
other platform. In some situations, you’ll probably need to maintain two separate versions
of your application.

You can make sure that your application is compatible with a particular Mac version of
Excel in only one way: by testing it thoroughly on a Mac—and being prepared to develop
some workarounds for procedures that don’t work correctly.

Dealing with 64-Bit Excel
Starting with version 2010, you can install Excel as a 32-bit application or as a 64-bit appli-
cation. The latter works only if you’re running a 64-bit version of Windows. The 64-bit ver-
sion can handle much larger workbooks because it takes advantage of the larger address
space in 64-bit Windows.

Most users don’t need the 64-bit version of Excel because they don’t work with massive
amounts of data in a workbook. Remember, the 64-bit version offers no performance boost.
Some operations may actually be slower in the 64-bit version.

In general, workbooks and add-ins created using the 32-bit version will work fine in the
64-bit version. Note, however, that ActiveX controls will not work in the 64-bit version.
Also, if the workbook contains VBA code that uses Windows API functions, the 32-bit API
function declarations won’t compile in the 64-bit version.

For example, the following declaration works with 32-bit Excel versions but causes a com-
pile error with 64-bit Excel:

Declare Function GetWindowsDirectoryA Lib "kernel32" _
 (ByVal lpBuffer As String, ByVal nSize As Long) As Long

The following declaration works with Excel 2010 and newer (both 32-bit and 64-bit) but
causes a compile error in previous versions of Excel:

Declare PtrSafe Function GetWindowsDirectoryA Lib "kernel32" _
 (ByVal lpBuffer As String, ByVal nSize As Long) As Long

To use this API function in both 32-bit and 64-bit Excel, you must declare two versions of
the function by using two conditional compiler directives.

oN the Web
Ron de Bruin, a Microsoft Excel MVP in the Netherlands, created a web page with many examples relevant to VBA
compatibility between Excel for Mac and Excel for Windows. The URL for the web page is www.rondebruin.nl/
mac.htm.

www.rondebruin.nl/mac.htm
www.rondebruin.nl/mac.htm

Chapter 21: Understanding Compatibility Issues

705

21

 ■ VBA7 returns True if your code is using version 7 of VBA (which is included in
Office 2010 and newer).

 ■ Win64 returns True if the code is running in 64-bit Excel.

Here’s an example of how to use these directives to declare an API function that’s compat-
ible with 32-bit and 64-bit Excel:

#If VBA7 And Win64 Then
 Declare PtrSafe Function GetWindowsDirectoryA Lib "kernel32" _
 (ByVal lpBuffer As String, ByVal nSize As Long) As Long
#Else
 Declare Function GetWindowsDirectoryA Lib "kernel32" _
 (ByVal lpBuffer As String, ByVal nSize As Long) As Long
#End If

The first Declare statement is used when VBA7 and Wind64 are both True, which is the
case only for 64-bit Excel 2010 and newer. In all other versions, the second Declare state-
ment is used.

Creating an International Application
The final compatibility concern deals with language issues and international settings. Excel
is available in many different language versions. The following statement displays the
country code for the version of Excel:

MsgBox Application.International(xlCountryCode)

The United States/English version of Excel has a country code of 1. Other country codes are
listed in Table 21.1.

TABLE 21.1 Excel Country Codes

Country Code Country/Region Language

1 United States English

7 Russia Russian

30 Greece Greek

31 The Netherlands Dutch

33 France French

34 Spain Spanish

36 Hungary Hungarian

39 Italy Italian

42 Czech Republic Czech

45 Denmark Danish

Continues

Part IV: Developing Excel Applications

706

Excel also supports language packs, so a single copy of Excel can display any number of
different languages. The language comes into play in two areas: the user interface and the
execution mode.

You can determine the current language used by the user interface by using a statement
such as this:

Msgbox Application.LanguageSettings.LanguageID(msoLanguageIDUI)

The language ID for English U.S. is 1033.

If your application will be used by those who speak another language, you need to ensure
that the proper language is used in your dialog boxes. Also, you need to identify the user’s
decimal and thousands separator characters. In the United States, these are almost always
a period and a comma, respectively. However, users in other countries might have their
systems set up to use other characters. Yet another issue is date and time formatting: the
United States is one of the few countries that uses the month/day/year format.

If you’re developing an application that will be used only by people within your company,
you probably won’t need to be concerned with international compatibility. But if your

Country Code Country/Region Language

46 Sweden Swedish

47 Norway Norwegian

48 Poland Polish

49 Germany German

55 Brazil Portuguese

66 Thailand Thai

81 Japan Japanese

82 Korea Korean

84 Vietnam Vietnamese

86 People’s Republic of China Simplified Chinese

90 Turkey Turkish

91 India Indian

92 Pakistan Urdu

351 Portugal Portuguese

358 Finland Finnish

886 Taiwan Traditional Chinese

966 Saudi Arabia Arabic

972 Israel Hebrew

982 Iran Farsi

TABLE 21.1 (continued)

Chapter 21: Understanding Compatibility Issues

707

21

company has offices throughout the world or you plan to distribute your application out-
side your country, you need to address a number of issues to ensure that your application
will work properly. We discuss these issues in the following sections.

Multilanguage Applications
An obvious consideration involves the language used in your application. For example, if
you use one or more dialog boxes, you probably want the text to appear in the language of
the user. Fortunately, changing the language isn’t too difficult (assuming, of course, that
you or someone you know can translate your text).

The first step of the multilingual wizard contains three option buttons that enable the user
to select a language. The text for the three languages is stored in a worksheet.

The UserForm _ Initialize procedure contains code that attempts to guess the user’s
language by checking the International property:

Select Case Application.International(xlCountryCode)
 Case 34 'Spanish
 UserLanguage = 2
 Case 49 'German
 UserLanguage = 3
 Case Else 'default to English
 UserLanguage = 1 'default
End Select

Figure 21.3 shows the UserForm displaying text in all three languages.

FIGURE 21.3

The wizard demo in English, Spanish, and German

oN the Web
The book’s website contains an example that demonstrates how to allow the user to choose from three languages in
a dialog box: English, Spanish, or German. The example is in the Multilingual Wizard.xlsm file.

Part IV: Developing Excel Applications

708

VBA Language Considerations
In general, you need not be concerned with the language in which you write your VBA
code. Excel uses two object libraries: the Excel object library and the VBA object library.
When you install Excel, it registers the English language version of these object libraries as
the default libraries (regardless of the language version of Excel).

Using Local Properties
If your code will display worksheet information, such as a formula or a range address, you
probably want to use the local language. For example, the following statement displays the
formula in cell A1:

MsgBox Range("A1").Formula

For international applications, a better approach is to use the FormulaLocal property
rather than the Formula property:

MsgBox Range("A1").FormulaLocal

Several other properties also have local versions. These are shown in Table 21.2. (Refer to
the Help system for specific details.)

TABLE 21.2 Properties That Have Local Versions

Property Local Version Return Contents

Address AddressLocal Address

Category CategoryLocal Function category (XLM macros only)

Formula FormulaLocal Formula

FormulaR1C1 FormulaR1C1Local Formula, using R1C1 notation

Name NameLocal Name

NumberFormat NumberFormatLocal Number format

RefersTo RefersToLocal Reference

RefersToR1C1 RefersToR1C1Local Reference, using R1C1 notation

FIGURE 21.3 (continued)

Chapter 21: Understanding Compatibility Issues

709

21

Identifying System Settings
Generally, you can’t assume that the end user’s system is set up like the system on which
you develop your application. For international applications, you need to be aware of the
following settings:

Decimal separator The character used to separate the decimal portion of a value

Thousands separator The character used to delineate every three digits in a value

List separator The character used to separate items in a list

You can determine the current separator settings by accessing the International prop-
erty of the Application object. For example, the following statement displays the dec-
imal separator, which won’t always be a period:

MsgBox Application.International(xlDecimalSeparator)

The 45 international settings that you can access with the International property are
listed in Table 21.3.

TABLE 21.3 Constants for the International Property

Constant What It Returns

xlCountryCode Country version of Microsoft Excel

xlCountrySetting Current country setting in the Windows Control Panel

xlDecimalSeparator Decimal separator

xlThousandsSeparator Thousands separator

xlListSeparator List separator

xlUpperCaseRowLetter Uppercase row letter (for R1C1-style references)

xlUpperCaseColumnLetter Uppercase column letter

xlLowerCaseRowLetter Lowercase row letter

xlLowerCaseColumnLetter Lowercase column letter

xlLeftBracket Character used instead of the left bracket ([) in R1C1-style
relative references

xlRightBracket Character used instead of the right bracket (]) in R1C1-style
references

xlLeftBrace Character used instead of the left brace ({) in array literals

xlRightBrace Character used instead of the right brace (}) in array literals

xlColumnSeparator Character used to separate columns in array literals

xlRowSeparator Character used to separate rows in array literals

Continues

Part IV: Developing Excel Applications

710

TABLE 21.3 (continued)

Constant What It Returns

xlAlternateArraySeparator Alternate array item separator to be used if the current
array separator is the same as the decimal separator

xlDateSeparator Date separator (/)

xlTimeSeparator Time separator (:)

xlYearCode Year symbol in number formats (y)

xlMonthCode Month symbol (m)

xlDayCode Day symbol (d)

xlHourCode Hour symbol (h)

xlMinuteCode Minute symbol (m)

xlSecondCode Second symbol (s)

xlCurrencyCode Currency symbol

xlGeneralFormatName Name of the General number format

xlCurrencyDigits Number of decimal digits to be used in currency formats

xlCurrencyNegative A value that represents the currency format for negative
currency values

xlNoncurrencyDigits Number of decimal digits to be used in noncur-
rency formats

xlMonthNameChars Always returns three characters for backward-compatibility;
abbreviated month names are read from Microsoft Win-
dows and can be any length

xlWeekdayNameChars Always returns three characters for backward-compatibility;
abbreviated weekday names are read from Microsoft Win-
dows and can be any length

xlDateOrder An integer that represents the order of date elements

xl24HourClock True if the system is using 24-hour time; False if the
system is using 12-hour time

xlNonEnglishFunctions True if the system isn’t displaying functions in English

xlMetric True if the system is using the metric system; False if the
system is using the English measurement system

xlCurrencySpaceBefore True if a space is added before the currency symbol

xlCurrencyBefore True if the currency symbol precedes the currency values;
False if it follows them

xlCurrencyMinusSign True if the system is using a minus sign for negative num-
bers; False if the system is using parentheses

xlCurrencyTrailingZeros True if trailing zeros are displayed for zero currency values

xlCurrencyLeadingZeros True if leading zeros are displayed for zero currency values

Chapter 21: Understanding Compatibility Issues

711

21

Date and Time Settings
If your application writes formatted dates and will be used in other countries, you might
want to make sure that the date is in a format familiar to the user. The best approach is to
specify a date by using the VBA DateSerial function and let Excel take care of the for-
matting details. (It will use the user’s short date format.)

The following procedure uses the DateSerial function to assign a date to the StartDate
variable. This date is then written to cell A1 with the local short date format.

Sub WriteDate()
 Dim StartDate As Date
 StartDate = DateSerial(2016, 4, 15)
 Range("A1").Value = StartDate
End Sub

If you need to do any other formatting for the date, you can write code to do so after the
date has been entered in the cell. Excel provides several named date and time formats, plus
quite a few named number formats. The Help system describes all of these formats (search
for named date/time formats or named numeric formats).

Constant What It Returns

xlMonthLeadingZero True if a leading zero is displayed in months (when months
are displayed as numbers)

xlDayLeadingZero True if a leading zero is displayed in days

xl4DigitYears True if the system is using four-digit years; False if the
system is using two-digit years

xlMDY True if the date order is month-day-year for dates dis-
played in the long form; False if the date order is day/
month/year

xlTimeLeadingZero True if a leading zero is displayed in times

Part V

Appendix: VBA Statements
and Functions Reference

Excel® 2019 Power Programming with VBA, First Edition. Michael Alexander and Dick Kusleika.
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.

APPENDIX

715

 VBA Statements and Func

Reference

T
his appendix contains a complete listing of all Visual Basic for Applications (VBA) statements
(Table A.1) and built-in functions (Table A.2). For details, consult Excel ’ s online help.

 VBA Statements
 VBA statements are keywords defi ned in the Visual Basic for Applications specifi cation that make
up the VBA language. Statements are used to control program fl ow, manipulate data, handle errors,
communicate with the fi le system, and act as labels. In contrast, functions primarily return a value
or values.

 TABLE A.1 Summary of VBA Statements

Statement Action

AppActivate Activates an application window

Beep Sounds a tone through the computer ’ s speaker

Call Transfers control to another procedure

ChDir Changes the current directory

ChDrive Changes the current drive

Close Closes a text fi le

Const Declares a constant value

Date Sets the current system date

Declare Declares a reference to an external procedure in a Dynamic Link Library (DLL)

DefBool Sets the default data type to Boolean for variables that begin with speci-
fi ed letters

DefByte Sets the default data type to Byte for variables that begin with speci-
fi ed letters

Continues

Excel® 2019 Power Programming with VBA, First Edition. Michael Alexander and Dick Kusleika.
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.

Part V: Appendix

716

TABLE A.1 (continued)

Statement Action

DefCur Sets the default data type to Currency for variables that begin with speci-
fi ed letters

DefDate Sets the default data type to Date for variables that begin with speci-
fi ed letters

DefDec Sets the default data type to Decimal for variables that begin with speci-
fi ed letters

DefDbl Sets the default data type to Double for variables that begin with speci-
fi ed letters

DefInt Sets the default data type to Integer for variables that begin with speci-
fi ed letters

DefLng Sets the default data type to Long for variables that begin with speci-
fi ed letters

DefLngLng Sets the default data type to LongLong for variables that begin with speci-
fi ed letters

DefLngPtr Sets the default data type to LongPtr for variables that begin with speci-
fi ed letters

DefObj Sets the default data type to Object for variables that begin with speci-
fi ed letters

DefSng Sets the default data type to Single for variables that begin with speci-
fi ed letters

DefStr Sets the default data type to String for variables that begin with speci-
fi ed letters

DefVar Sets the default data type to Variant for variables that begin with speci-
fi ed letters

DeleteSetting Deletes a section or key setting from an application ’ s entry in the Win-
dows Registry

Dim Declares variables and (optionally) their data types

Do-Loop Loops through a set of instructions

End Used by itself, exits the program; also used to end a block of statements that
begin with If , With , Sub , Function , Property, yy Type , or Select

Enum Declares a type for enumeration

Erase Reinitializes an array

Error Simulates a specifi c error condition

Event Declares a user-defi ned event

Exit Do Exits a block of Do-Loop code

Exit For Exits a block of For-Next code

Appendix: VBA Statements and Functions Reference

A
P
P
E
N
D
I
X

717

Statement Action

Exit Function Exits a Function procedure

Exit Property Exits a property procedure

Exit Sub Exits a subroutine procedure

FileCopy Copies a fi le

For Each-Next Loops through a set of instructions for each member of a series

For-Next Loops through a set of instructions a specifi c number of times

Function Declares the name and arguments for a Function procedure

Get Reads data from a text fi le

GoSub...Return Branches to and returns from a procedure

GoTo Branches to a specifi ed statement within a procedure

If-Then-Else Processes statements conditionally

Implements Specifi es an interface or class that will be implemented in a class module

Input # Reads data from a sequential text fi le

Kill Deletes a fi le from a disk

Let Assigns the value of an expression to a variable or property

Line Input # Reads a line of data from a sequential text fi le

Load Loads an object but doesn ’ t show it

Lock...Unlock Controls access to a text fi le

LSet Left-aligns a string within a string variable

Mid Replaces characters in a string with other characters

MkDir Creates a new directory

Name Renames a fi le or directory

On Error Gives specifi c instructions for what to do in the case of an error

On...GoSub Branches, based on a condition

On...GoTo Branches, based on a condition

Open Opens a text fi le

Option Base Sets the default lower limit for arrays

Option Compare Declares the default comparison mode when comparing strings

Option Explicit Forces declaration of all variables in a module

Option Private Indicates that an entire module is Private

Print # Writes data to a sequential fi le

Private Declares a local variable

Property Get Declares the name and arguments of a Property Get procedure

Continues

Part V: Appendix

718

TABLE A.1 (continued)

Statement Action

Property Let Declares the name and arguments of a Property Let procedure

Property Set Declares the name and arguments of a Property Set procedure

Public Declares a public variable

Put Writes a variable to a text fi le

RaiseEvent Fires a user-defi ned event

Randomize Initializes the random number generator

ReDim Changes the dimensions of an array

Rem Specifi es a line of comments (same as an apostrophe ['[])

Reset Closes all open text fi les

Resume Resumes execution when an error-handling routine fi nishes

RmDir Removes an empty directory

RSet Right-aligns a string within a string variable

SaveSetting Saves or creates an application entry in the Windows Registry

Seek Sets the position for the next access in a text fi le

Select Case Processes statements conditionally

SendKeys Sends keystrokes to the active window

Set Assigns an object reference to a variable or property

SetAttr Changes attribute information for a fi le

Static Declares variables at the procedure level so that the variables retain their
values as long as the code is running

Stop Pauses the program

Sub Declares the name and arguments of a Sub procedure

Time Sets the system time

Type Defi nes a custom data type

Unload Removes an object from memory

While...Wend Loops through a set of instructions as long as a certain condition remains true

Width # Sets the output line width of a text fi le

With Sets a series of properties for an object

Write # Writes data to a sequential text fi le

Appendix: VBA Statements and Functions Reference

A
P
P
E
N
D
I
X

719

 NOTE
 Excel 2019 has no new VBA functions.

 Functions
 Functions are code that is built in to the VBA standard library. A function may accept zero,
one, or multiple arguments and returns a value (although the value maybe something com-
plex, like an object).

 You can use Excel ’ s worksheet functions directly in your VBA code. Excel worksheet
functions that don ’ t have a VBA equivalent are methods of the WorksheetFunction
object. For example, VBA doesn ’ t have a function to convert radians to degrees, but Excel
has a worksheet function for this procedure, so you can use a VBA instruction such as the
following:

 Deg = Application.WorksheetFunction.Degrees(3.14)

 TABLE A.2 Summary of VBA Functions

Function Action

Abs Returns the absolute value of a number

Array Returns a variant containing an array

Asc Converts the fi rst character of a string to its ASCII value

Atn Returns the arctangent of a number

CallByName Executes a method, or sets or returns a property of an object

CBool Converts an expression to a Boolean data type

CByte Converts an expression to a Byte data type

CCur Converts an expression to a Currency data type y

CDate Converts an expression to a Date data type

CDbl Converts an expression to a Double data type

CDec Converts an expression to a Decimal data type

Choose Selects and returns a value from a list of arguments

Chr Converts a character code to a string

CInt Converts an expression to an Integer data type

CLng Converts an expression to a Long data type

CLngLng Converts an expression to a LongLong data type

CLngPtr Converts an expression to a LongPtr data type

Cos Returns the cosine of a number

Continues

Part V: Appendix

720

TABLE A.2 (continued)

Function Action

CreateObject Creates an Object Linking and Embedding (OLE) Automation object

CSng Converts an expression to a Single data type

CStr Converts an expression to a String data type

CurDir Returns the current path

CVar Converts an expression to a variant data type

CVDate Converts an expression to a Date data type (for compatibility, not recommended)

CVErr Returns a user-defi ned error value that corresponds to an error number

Date Returns the current system date

DateAdd Adds a time interval to a date

DateDiff Returns the time interval between two dates

DatePart Returns a specifi ed part of a date

DateSerial Converts a date to a serial number

DateValue Converts a string to a date

Day Returns the day of the month of a date

DDB Returns the depreciation of an asset

Dir Returns the name of a fi le or directory that matches a pattern

DoEvents Yields execution so the operating system can process other events

Environ Returns an operating environment string

EOF Returns True if the end of a text fi le has been reached

Error Returns the error message that corresponds to an error number

Exp Returns the base of natural logarithms (e) raised to a power

FileAttr Returns the fi le mode for a text fi le

FileDateTime Returns the date and time when a fi le was last modifi ed

FileLen Returns the number of bytes in a fi le

Filter Returns a subset of a string array, fi ltered

Fix Returns the integer portion of a number

Format Displays an expression in a particular format

FormatCurrency Returns an expression formatted with the system currency symbol

FormatDateTime Returns an expression formatted as a date or time

FormatNumber Returns an expression formatted as a number

FormatPercent Returns an expression formatted as a percentage

FreeFile Returns the next available fi le number when working with text fi les

Appendix: VBA Statements and Functions Reference

A
P
P
E
N
D
I
X

721

Function Action

FV Returns the future value of an annuity

GetAllSettings Returns a list of settings and values from the Windows Registry

GetAttr Returns a code representing a fi le attribute

GetObject Retrieves an OLE Automation object from a fi le

GetSetting Returns a specifi c setting from the application ’ s entry in the Windows Registry

Hex Converts from decimal to hexadecimal

Hour Returns the hour of a time

IIf Evaluates an expression and returns one of two parts

Input Returns characters from a sequential text fi le

InputBox Displays a box to prompt a user for input

InStr Returns the position of a string within another string

InStrRev Returns the position of a string within another string from the end of the string

Int Returns the integer portion of a number

IPmt Returns the interest payment for a given period of an annuity

IRR Returns the internal rate of return for a series of cash fl ows

IsArray Returns True if a variable is an array

IsDate Returns True if a variable is a date

IsEmpty Returns True if a variable has not been initialized

IsError Returns True if an expression is an error value

IsMissing Returns True if an optional argument was not passed to a procedure

IsNull Returns True if an expression contains a Null value

IsNumeric Returns True if an expression can be evaluated as a number

IsObject Returns True if an expression references an OLE Automation object

Join Combines strings contained in an array

LBound Returns the smallest subscript for a dimension of an array

LCase Returns a string converted to lowercase

Left Returns a specifi ed number of characters from the left of a string

Len Returns the number of characters in a string

Loc Returns the current read or write position of a text fi le

LOF Returns the number of bytes in an open text fi le

Log Returns the natural logarithm of a number

LTrim Returns a copy of a string with no leading spaces

Mid Returns a specifi ed number of characters from a string

Continues

Part V: Appendix

722

Part V: AppendixPart V: AppendixPart V: Appendix

TABLE A.2 (continued)

Function Action

Minute Returns the minute of a time

MIRR Returns the modifi ed internal rate of return for a series of periodic cash fl ows

Month Returns the month of a date as a number

MonthName Returns the month of a date as a string

MsgBox Displays a modal message box

Now Returns the current system date and time

NPer Returns the number of periods for an annuity

NPV Returns the net present value of an investment

Oct Converts from decimal to octal

Partition Returns a string representing a range in which a value falls

Pmt Returns a payment amount for an annuity

Ppmt Returns the principal payment amount for an annuity

PV Returns the present value of an annuity

QBColor Returns a red/green/blue (RGB) color code

Rate Returns the interest rate per period for an annuity

Replace Returns a string in which a substring is replaced with another string

RGB Returns a number representing an RGB color value

Right Returns a specifi ed number of characters from the right of a string

Rnd Returns a random number between 0 and 1

Round Returns a rounded number

RTrim Returns a copy of a string with no trailing spaces

Second Returns the seconds portion of a specifi ed time

Seek Returns the current position in a text fi le

Sgn Returns an integer that indicates the sign of a number

Shell Runs an executable program

Sin Returns the sine of a number

SLN Returns the straight-line depreciation for an asset for a period

Space Returns a string with a specifi ed number of spaces

Spc Positions output when printing to a fi le

Split Returns a one-dimensional array containing a number of substrings

Sqr Returns the square root of a number

Str Returns a string representation of a number

StrComp Returns a value indicating the result of a string comparison

Appendix: VBA Statements and Functions Reference

A
P
P
E
N
D
I
X

723

Function Action

StrConv Returns a converted string

String Returns a repeating character or string

StrReverse Returns a string, reversed

Switch Evaluates a list of Boolean expressions and returns a value associated with the fi rst
True expression

SYD Returns the sum-of-years ’ digits depreciation of an asset for a period

Tab Positions output when printing to a fi le

Tan Returns the tangent of a number

Time Returns the current system time

Timer Returns the number of seconds since midnight

TimeSerial Returns the time for a specifi ed hour, minute, and second

TimeValue Converts a string to a time serial number

Trim Returns a string without leading spaces and/or trailing spaces

TypeName Returns a string that describes the data type of a variable

UBound Returns the largest available subscript for a dimension of an array

UCase Converts a string to uppercase

Val Returns the number formed from any initial numeric characters of a string

VarType Returns a value indicating the subtype of a variable

Weekday Returns a number indicating a day of the week

WeekdayName Returns a string indicating a day of the week

Year Returns the year of a date

725

 Index

 Symbols and Numerics
 = (equal sign), 76
 64-bit Excel, 704–705
 64-bit functions, 179

 A
AbortProc variable, 186
 absolute references, macros, 23–26
 Access, 354–356
Activate event, 190, 191, 197
Activate method, 310–311
 activating charts, 310–311
 active cell, chart data, 324–325
 active chart, 306, 313
 active workbook, ADO in, 395–397
 ActiveX controls, 8, 9

versus form controls, 11
 Toolbox, 475–477

AddIn object, 589–593
AddinInstall event, 190
 add-ins, 569

 accessing as workbook, 592–593
 Add-in Manager, 572–580
 COM, 572
 creating, 574–575, 577
 descriptive information, 577
 distributing, 579
 fi les, 6
 installation, 578–579
 modifying, 580
 password-protected, 14
 performance, 593–594
 procedures, 583–587
 reasons for, 570–572
 testing, 579
 troubleshooting, 594–597
versus workbooks, 569–570

AddIns collection
 adding items, 587–588
 removing items, 588–589

 Add-ins dialog box, 573–574
AddinUninstall event, 190
 ADO (ActiveX Data Objects), external data and

 active workbook and, 395–397
 code, 394–395
 connection string, 390–392
 object library references, 392–394
 recordsets, 392

AfterCalculate event, 207
AfterSave event, 190
 alignment

ChartObject object, 317–318
 controls, 448–450

ALLBOLD function, 264–265
 Analysis TookPak, 569
And operator, 77
AnimateChart procedure, 347
 AppActivate, 373–374
 application development, 4

 distribution, 16–17
 documentation, 16
 Help system, 16
 installed version of Excel, 17
 language, 17–18
 planning, 6–7
 system speed and, 18
 testing, 12
 updates, 17
 user interface, 7–11
 video mode and, 18
 visual appeal, 15

Application object, 43, 45–46
 application-level events

AfterCalculate, 207
 enabling, 206–208
 monitoring, 209–210
NewWorkbook, 207
OnKey, 212–215
OnTime, 210–211
SheetActivate, 207
SheetBeforeDoubleClick, 207

Excel® 2019 Power Programming with VBA, First Edition. Michael Alexander and Dick Kusleika.
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.

Index

726

SheetCalculate, 207
SheetChange, 207
SheetDeactivate, 207
SheetFollowHyperlink, 207
SheetPivotTableUpdate, 207
SheetSelectionChange, 207
WindowActivate, 207
WindowDeactivate, 207
WindowResize, 207
WorkbookActivate, 207
WorkbookAddinInstall, 207
WorkbookAddinUninstall, 207
WorkbookBeforeClose, 207
WorkbookBeforePrint, 207
WorkbookBeforeSave, 207
WorkbookDeactivate, 207
WorkbookNewSheet, 207
WorkbookOpen, 207, 208–209

applications
events, 184
international, 705–707
multilanguage, 707–708
spreadsheet applications, 3–4
starting others from Excel, 369–375

APPNAME function, 267
arguments, 47

versus cell references, 158
event-handler procedures, 188–189
Function procedures, 153

array argument, 159–160
indefinite number, 166–167
none, 153–156
one, 156–158
optional, 160–162
two, 159

passing, to procedures, 119–122
Array function, 162–164
arrays, 78

bubble sorts, 256
counting sorts, 256
declaring, 78–79
dynamic, 79
multidimensional, 79
one-dimensional, transferring, 241–242
quick sorts, 256
worksheet sorts, 256

assignment operators, 76
assignment statements, 62, 76

Auto Syntax Check, 66
automation, 351

Access, 354–356
example, 354
Outlook, 365–369
PowerPoint, 360–365
Word, 356–360

B
bad loops, 96
BeforeClose event, 190, 195–197
BeforeDelete event, 197
BeforeDoubleClick event, 197, 204–205
BeforePrint event, 189, 190, 193–194
BeforeRightClick event, 197, 205
BeforeSave event, 190, 192–193
beta testing, 13
binding, 352–353
blogs, 58
Boolean data type, 67
Boolean properties, toggling, 251
Boolean values, 65
Boolean variables, Static, 186
bubble sorts, 256
bugs, 12

date bug, 75
built-in class modules, 680
built-in data types, 66, 67
built-in dialog boxes, 435–438
built-in functions, 82–84
buttons

command buttons, 480
macros, assigning, 30–31
Ribbon, 601–610
wizards, 536–538

Byte data type, 67

C
Calculate event, 197
Call keyword, 112, 116
calls, 105
Case keyword, 95
Case statement, 94
cells

active, chart data, 324–325
counting, 228

values in ranges, 267–268

application-level events (continued)

Index

727

data types, 236–238
formatting, 264–265
information, 51
locking, 13
nonempty, 268–269
references versus arguments, 158
selecting, by value, 243–244
values, prompting for, 223–224
values in, 225–226

Cells property, 49–51
Change event, 197, 198–203
Chart Elements, 309–310
Chart object, 305–306

ChartTitle object, 307
Export method, 321–322
public, 337

chart sheets, 305, 309
chart tips, 343–345
Chart _ Deactivate procedure,

335–336
ChartIsSelected function, 313
ChartObject object, 307

alignment, 317–318
deleting charts, 313–314
sizing, 317–318

ChartObjects collection, deleting charts,
313–314

charts
activating, 310–311
active chart, 306, 313
copying, as picture, 341
creating, multiple, 318–320
data used, 322–327
deactivating, 312
dead, 341–342
embedded, 305

creating, 308–309
events, 337–338
printing full page, 340

events, 183, 334–336
embedded charts, 337–338, 338–340

exporting, graphics, 321–322
FormatAllCharts macro, 315–316
gridlines, 310
labels, custom, 328–331
looping through, 314–317
macros, 305
modifying, 309–310
moving, 311–312

names, 312
ranges, determining, 325–327
scrolling, 345–347
Sparklines, 347–350
unlinked, 341–342
UserForms, 331–333, 561–562

Chart _ Select procedure, 336
ChartStyle property, 310
ChartTitle object, Text property, 307
ChDir statement, 406
ChDrive statement, 406
check boxes, 522
CheckBox control, 10–11, 444

event list, 467–468
class modules, 337, 679–680

built-in, 680
classes, 680
events, 688
methods, 681
NumLock class, 681–685
objects, 680

methods, 687
parent classes, 696–697
properties, 685–687

parent classes, 692–696
objects, 696–697

properties, 681
QueryTable object, 688–692
uses, 679

Close button, disabling, 486
code

entering, 62–63
event handler, 187–188
examples, 53–54
execution, controlling, 88–103
macros, 22
pivot tables, 292

Code window, 33–37
collections, 44

constructs, 85–87
SparklineGroups, 348
UserForms controls, 474
Workbook Connections, 389

color, UserForms, 559–560
columns, hiding, 14
COM (Component Object Model), add-ins,

572
ComboBox control, 445
command buttons, 480

Index

728

CommandBar object, 436, 637
controls, referencing, 640–641
properties, 641–642

Type, 637–638
referencing, 639
ShowShortcutMenuItems procedure, 642–643
ShowShortcutMenuNames procedure, 638–639

CommandButton control, 10, 443, 445
comments, 61, 63–64
comparison operators, 76
compatibility, 699–701

64-bit Excel, 704–705
applications, 705–708
date settings, 711
language, 708
local properties, 708
Macs, 703–704
new features and, 701–703
system settings, 709–710
time settings, 711

conditional formatting, functions, 151–152
connection strings, 390

Data Source argument, 390
Extended Properties argument, 390
Password argument, 390
Provider argument, 390
User ID argument, 390

Const statement, 73
constants, 72–74
Control Panel dialog boxes, 374–375
controls. See ActiveX controls

CheckBox, 10
CommandButton, 10, 443
forms, macro buttons, 30–31
Image, 331
Label, 516–518
ListBox, 490
naming conventions, 453–454
OptionButton, 450–451
properties, 450–451
ScrollBar, 10
SpinButton, 468–470
Toolbox, 474–477
UserForms, 443–444

alignment, 448–450
CheckBox, 444
collection, 474
ComboBox, 445
CommandButton, 445

Frame, 445
Image, 445
Label, 445
ListBox, 445
movable, 545–546
MultiPage, 445
OptionButton, 446
RefEdit, 446, 482–483
referencing, 473
ScrollBar, 446
SpinButton, 446
TabStrip, 446
TextBox, 446
ToggleButton, 446–447

worksheets, 447–448
Copy method, 218–219
COUNTBETWEEN function, 267–268
COUNTIFS function, 268–269
counting sorts, 256
CreateChart procedure, 319–320,

331–332
CreateObject function, 353
CreatePivotTable procedure, 290–293
Currency data type, 67
custom functions, 144, 146–147

limitations, 148
storage, 178

Customize Ribbon panel, 437
Cut method, 219

D
data forms, 438–440
data structure, planning, 6
data types, 65

built-in, 66, 67
Date, 74–75
Decimal, 66
determining, 68–69
Double, 66
InputBox method, 423
Integer, 66
Long, 66
user-defined, 81–82
Variant, 67

DataLabelsFromRange procedure, 330
Date data type, 67, 74–75
DateAndTime procedure, 251–252
dates, 74–75

Index

729

bug, 75
date saved display, 265–266
displaying, 251–252
functions, extended, 170–172
settings, 711

Deactivate event, 190, 193, 197
deactivating charts, 312
dead charts, 341–342
debugging, functions, 172–173
Decimal data type, 66, 67
Define Name dialog box, 437–438
DescribeFunction procedure, 176
Dev Center, 58
dialog boxes

Add-ins, 573–574
built-in, 435–438
command buttons as menu, 480
Control Panel, 374–375
custom, 9
Define Name, 437–438
Excel, emulating, 477
Excel Options, 10
Format Cells, 13
Import Data, 382–383
Insert Function and Function Arguments,

177–178
Insert Function dialog box, 173–178
list box as menu, 480–481
Macro, 25–26, 109–110
Macro Options, 110–111
modal, 519–523
modeless, 519–523
New Formatting Rule, 152
Protect Sheet, 13–14
Record Macro, 20–23, 110–111
References, 114, 354
Tab Order, 455

Dim statement, 61, 70–71, 147
Dir statement, 406–409
DLLs (Dynamic Link Libraries), 178,

277–278
Do Until loops, 102–103
Do While loops, 100–102
Docking tab (VBE), 42
documents

hiding, 14
trusted documents, 28

Double data type, 66, 67
dynamic arrays, 79

E
early binding, 352
Editor Format tab (VBE), 41
Editor tab (VBE), 39
EmbChartClass, 339
embedded charts, 305, 306

creating, 308–309
events, 337–338, 338–340
printing, full page, 340

emulation
Excel dialog boxes, 477
MsgBox function, 541–545
SUM function, 167–170
task pane, 550–551

End Function statement, 147
End-If statement, 89
equal sign (=), 76
Eqv operator, 77
EraseRange procedure, 423–424
Error function, 123
error handling, 6

examples, 124–127
trapping, 123–124

error messages, 123–124
Error statement, 123
error values, Function procedures, 165–166
event-handlers, 184–189, 458
events, 183

applications, 184
AfterCalculate, 207
enabling, 206–208
monitoring, 209–210
NewWorkbook, 207
OnKey, 212–215
OnTime, 210–211
SheetActivate, 207
SheetBeforeDoubleClick, 207
SheetCalculate, 207
SheetChange, 207
SheetDeactivate, 207
SheetFollowHyperlink, 207
SheetPivotTableUpdate, 207
SheetSelectionChange, 207
WindowActivate, 207
WindowDeactivate, 207
WindowResize, 207
WorkbookActivate, 207
WorkbookAddinInstall, 207

Index

730

WorkbookAddinUninstall,
207

WorkbookBeforeClose, 207
WorkbookBeforePrint, 207
WorkbookBeforeSave, 207
WorkbookDeactivate, 207
WorkbookNewSheet, 207
WorkbookOpen, 207, 208–209

BeforePrint, 189
charts, 183, 334–340
class modules, 688
controls, 467–468
disabling, 186–187
enabling, 186
MouseOver, 343–345
not associated with object, 210
Object Browser and, 206
procedures, 118
sequences, 184
SheetActivate, 184, 188–189
SheetDeactivate, 184
SpinButton control, 468–470
UserForms, 184
workbook-level, 189–190

Activate, 190, 191
AddinInstall, 190
AddinUninstall, 190
AfterSave, 190
BeforeClose, 190, 195–197
BeforePrint, 190, 193–194
BeforeSave, 190, 192–193
Deactivate, 190, 193
NewSheet, 190, 192
Open, 190, 191
SheetActivate, 190, 192
SheetBeforeDoubleClick, 190
SheetBeforeRightClick, 190
SheetCalculate, 190
SheetChange, 190
SheetDeactivate, 190
SheetFollowHyperlink, 190
SheetPivotTableUpdate, 190
SheetSelectionChange, 190
WindowActivate, 190
WindowDeactivate, 190
WindowResize, 190

WorkbookNewSheet, 184
workbooks, 183

worksheet events
Activate, 197
BeforeDelete, 197
BeforeDoubleClick, 197, 204–205
BeforeRightClick, 197, 205
Calculate, 197
Change, 197, 198–203
Deactivate, 197
FollowHyperlink, 197
LensGalleryRender, 197
PivotTableAfterValueChange, 197
PivotTableBeforeAllocateChanges, 197
PivotTableBeforeCommitChanges, 197
PivotTableBeforeDiscardChanges, 197
PivotTableChanageSync, 197
PivotTableUpdate, 197
SelectionChange, 197, 203–204
TableUpdate, 197

worksheets, 183
Excel Object Model, 43
Excel Options dialog box, 10
Excel versions, 6
ExecuteMso method, 436
Exit Sub statement, 347
Export method, 321–322
exporting, charts, graphics, 321–322
ExportRange function, 401
expressions, 76
extended date functions, 170–172
external data, 377

ADO (ActiveX Data Objects), 394–397
Power Query, 377–390

EXTRACTELEMENT function, 270–271

F
file operations, 405
FileCopy statement, 406
FileDateTime statement, 406
FileExists function, 259, 406
FileLen statement, 406
files

date saved, 265–266
EXIST function, 406
processing, 256–258
statements

ChDir, 406
ChDrive, 406
Dir, 406

events (continued)

Index

731

FileCopy, 406
FileDateTime, 406
FileLen, 406
GetAttr, 406
Kill, 406
MkDir, 406
Name, 406
RmDir, 406
SetAttr, 406

structure, planning, 6
unzipping, 415
zipping, 413–414

FileSystemObject object, 410–413
FILLCOLOR function, 265
FilterFile procedure, 404–405
fixed-length strings, 74
FollowHyperlink event, 197
fonts, listing, 254–255
For Each-Next With construct, 86–87
form controls, macro buttons, 30–31
Format Cells dialog box, 13
FormatAllCharts macro, 315–316
formatting

cells, 264–265
conditional, functions and, 151–152

Formula property, 325
formulas

conditional formatting, functions and, 151–152
functions, 150–152
hiding, 14
SERIES, 323–327, 341

For-Next loops, 97–100
Frame control, 445
friendly time, 253–254
FT function, 253–254
Function procedures, 143, 148–149. See also functions

arguments, 153–160, 166–167
elements, 149
error values, returning, 165–166
executing, 150–153
scope, 150
VBA arrays, returning, 162–165

functions, 62. See also Function procedures
64-bit, 179
ALLBOLD, 264–265
APPNAME, 267
arguments, 153
Array, 162–164
built-in, 82–84

categories, 176–177
ChartIsSelected, 313
COUNTBETWEEN, 267–268
COUNTIFS, 268–269
CreateObject, 353
custom, 144, 146–148, 178
date, extended, 170–172
debugging, 172–173
declaring, 148–149
displaying, 82
Error, 123
ExportRange, 401
EXTRACTELEMENT, 270–271
FileExists, 259, 406
FILLCOLOR, 265
FT, 253–254
GetAColor, 559–560
GetExecutable, 280
GetExitCodeProcess, 371
GetObject, 353
GetRegistry, 284
GetValue, 262–263
IIf, 92
ImportData, 401
ImportRange, 402–403
InputBox, 88, 419–422
ISBOLD, 264
ISFORMULA, 152
ISITALIC, 264
ISLIKE, 269–270
IsMissing, 163
ISNUMBER, 160
LASTINROW, 269
LASTPRINTED, 265–266
LASTSAVED, 265–266
LEFT, 160–161
MAX, 274–275
MONTHNAMES, 162–163
MsgBox, 84, 146, 426–431, 541–545
multifunctional, 272–273
MYSUM, 167–170
nesting, 145
PathExists, 259–260
procedures, 146
RAND, 155
RANDOMINTEGERS, 275–276
RangeNameExists, 260
RANGERANDOMIZE, 276–277
recalculation, 155–156

Index

732

REMOVEVOWELS, 145, 147
SAYIT, 265
SheetExists, 260–261
SHEETOFFSET, 273
Shell, 370–372
ShellExecute, 279, 372–373
SORTED, 277–278
SPELLDOLLARS, 271–272
Sqr, 83
STATFUNCTION, 272–273
SUM, 166–170
SUMARRAY, 150, 160
TRANSPOSE, 163
TypeName, 68–69
UPPER, 145
Windows API, 178–181
WorkbookIsOpen, 261
WORKBOOKNAME, 267
worksheets, 145
wrapper functions, 154
WriteRegistry, 284–285
XDATE, 171
XDATEADD, 171
XDATEDAY, 171
XDATEDIF, 171
XDATEDOW, 171
XDATEMONTH, 171
XDATEYEAR, 171
XDATEYEARDIF, 171

G
General tab (VBE), 41–42
GetAColor function, 559–560
GetAFolder method, 435
GetAttr statement, 406
GetExecutable function, 280
GetExitCodeProcess function, 371
GetKeyState API function, 181
GetObject function, 353
GetOpenFilename method, 431–434,

435
GetRegistry function, 284
GetSaveAsFilename method, 434–435
GetValue function, 262–263
GoTo statements, 88–89
graphics, charts, exporting, 321–322
gridlines, charts, 310

H
Help system, 16, 55, 659–677
HTML (Hypertext Markup Language), 405
hyperlinks, table of contents, 249

I
If-Then statement, 89–92
IIf function, 92
Image control, 331, 445
imageMso images, 613
Immediate window, 34, 118–119, 153
Imp operator, 77
Import Data dialog box, 382–383
ImportData function, 401
ImportRange function, 402–403
input boxes, 223, 419
Input statement, 400
InputBox function, 88, 419–422
InputBox method, 422–426
Insert Function and Function Arguments dialog

box, 177–178
Insert Function dialog box, 173–178
Integer data type, 66, 67
integers, random, 275–276
ISBOLD function, 264
ISFORMULA function, 152
ISITALIC function, 264
ISLIKE function, 269–270
IsMissing function, 163
ISNUMBER function, 160

K
key codes, OnKey event, 213–214
keys, shortcut keys, 8
keywords

To, 94
Call, 112, 116
Case, 95
Optional, 161
Public, 72, 107
Rem, 64
Set, 80
Static, 72
Sub, 106–107
vbModeless, 519
WithEvents, 338

Kill statement, 406

functions (continued)

Index

733

L
Label control, 445, 516–518
labels, charts, custom, 328–331
language compatibility, 708
language elements, 61–62
LASTINROW function, 269
LASTPRINTED function,

265–266
LASTSAVED function, 265–266
late binding, 352–353
LEFT function, 160–161
LensGalleryRender event, 197
list boxes

items, 492–502
multicolumn, 502–504
multiple lists, 498
multiple selections, 497–498
text boxes, 510–511
UserForms, 480–481
worksheets, 505–509

ListBox control, 445
adding items, 491–492
Collection object, 495
MultiSelect property, 497
RowSource property, 491–492,

494
Value property, 496

literals, 120–121
local variables, 70–71
locations, trusted, 28–29
locking, objects, 14
logical operators, 77
Long data type, 66, 67
loops, 96–103, 314–317

M
Macro dialog box, 25–26, 109–110
Macro Options dialog box, 110–111
macros, 19

assigning, 117–118
breakout prevention, 487
buttons, assigning, 30–31
charts, 305
code, 22
editing, 22–23
FormatAllCharts, 315–316
pausing, 226–227

Personal Macro Workbook, 29–30
Quick Access toolbar, 31–32
recording, 20–27
security, 28
ShowInstalledFonts, 254–255
testing, 22
VBA procedures and, 19
.xlsm file extension, 28

Macs, 703–704
mail merge with Word, 358–360
MakePivotTables procedure,

299–302
MAX function, 274–275
menu bar, VBE, 32–33
menus, shortcut menus, 8

disabling, 214–215
methods, 43, 51–52

Activate, 310–311
Copy, 218–219
Cut, 219
ExecuteMso, 436
Export, 321–322
GetAFolder, 435
GetOpenFilename, 431–434
GetOpenFileName, 435
GetSaveAsFilename, 434–435
InputBox, 422–426
Paste, 47
Select, 46
SpecialCells, 124–125

Microsoft Office Dev Center, 58
MkDir statement, 406
Mod operator, 163
modal dialog boxes, 519–523
modeless dialog boxes, 519–523
modeless UserForms, 457
modules

class modules, 337
procedures, 113–114

module-wide variables, 71–72
MONTHNAMES function, 162–163
MouseOver event, 343–345
MsgBox function, 84, 146, 426–431

emulating, 541–545
multidimensional arrays, 79
multifunctional functions,

272–273
MultiPage control, 445, 535–538
MYSUM function, 167–170

Index

734

N
Name statement, 406
named arguments, 47
naming conventions, controls, 453–454
nesting, functions, 145
New Formatting Rule dialog box, 152
NewSheet event, 190, 192
NewWorkbook event, 207
Not operator, 77
numbers, spelling out, 271–272
NumLock class, 681–685

O
Object Browser, 55–57

event location and, 206
Object data type, 67
Object Library, 351–352
object variables, 80–81
object-oriented programming, 43
objects

Application, 43
Chart, 305
class modules, 685–687
CommandBar, 436, 637
constructs

For Each-Next With, 86–87
With-End With, 85

FileSystemObject, 410–413
locking, 14
methods, 51–52
parents, 266–267, 696–697
properties, 45–46, 51–52
QueryTable, 688–692
Range, 46, 48
Recordset, 392
Series, 322
SummaryChart, 339
WorksheetFunction, 83

Offset property, 51–52
old-style toolbars, 632–635
On Error GoTo 0 statement, 125
On Error Resume Next statement, 125, 495
On Error statement, 124, 126, 370
one-dimensional arrays, transferring, 241–242
OnKey event, 212–215
OnTime event, 210–211
OOP (object oriented programming), 43

Open event, 190, 191
Open statement, 398–399
Operators, 76–77
Option Explicit statement, 69
Optional keyword, 161
OptionButton control, 446, 450–451
Or operator, 77
Outlook, 365–369

P
Parent property, 267
password-protected add-ins, 14
passwords, 14, 575
Paste method, 47
PathExists function, 259–260
paths, PathExists function, 406
patterns, strings, 269–270
performance, 7
Personal Macro Workbook, 29–30
Pivot Table Fields task pane, 298
pivot tables, 289–304
PivotCache, 297
PivotSheet worksheet, 297
PivotTableAfterValueChange event, 197
PivotTableBeforeAllocateChanges event, 197
PivotTableBeforeCommitChanges event, 197
PivotTableBeforeDiscardChanges event, 197
PivotTableChanageSync event, 197
PivotTableUpdate event, 197
Power Query, 377–378

connections, 386–390
Editor window, 380–382, 387
Import Data dialog box, 382–383
query management, 385–386
refreshing, 385
steps, 383–384
web queries, 378–379

PowerPoint, 360–365
predefined constants, 73–74
Print # statement, 400
printing, charts, embedded, full page, 340
private procedures, 107–108
procedures, 105

add-ins, 583–587
ambiguously named, 114
AnimateChart, 347
arguments, passing, 119–122
Chart _ Deactivate, 335–336

Index

735

Chart _ Select, 336
clicking objects, 117–118
CreateChart, 319–320
CreatePivotTable, 290–293
DataLabelsFromRange, 330
DateAndTime, 251–252
DescribeFunction, 176
EraseRange, 423–424
event-handlers, 184–189
events, 118
FilterFile, 404–405
Function, 143
functions in, 146
Immediate window, 118–119
Macro dialog box, 109–110
MakePivotTables, 299–302
modules, 113–114
naming, 107
private, 107–108
from procedures, 112–116
public, 107
recursion, 409–410
ReversePivot, 302–304
Ribbon, 111
scope, 107–108
shortcut keys, 110–111
shortcut menu, 112
ShowChart, 331
SparklineReport, 348
Sub, 143
UnzipAFile, 415
UpdateBox, 521
UserForm _ Initialize, 489–490
UserForm _ QueryClose, 486
workbooks, 114
WorkbookSetup, 185
ZipFiles, 413–414

programming, structured, 97
progress indicators, 523–524

integrated, 528–532
nongraphical, 532–534
stand-alone, 524–528

Project window, 33, 34
components, 185
modules, 185
objects

chart objects, 185
sheet objects, 185
UserForm, 185

projects, ThisWorkbook, 185
VBA modules, adding/removing,

35–36
properties, 43, 44–45, 51–52

Boolean, toggling, 251
Cells, 49–51
ChartStyle, 310
Formula, 325
objects, specifying, 45–46
Offset, 51–52
Parent, 267
Range, 48–49
references, 53
Resize, 223
Tag, 472
Values, 322, 325
XValues, 325

Properties window
OptionButton control, 450–451
UserForms, 442

Protect Sheet dialog box, 13–14
protecting cells, 13
Public keyword, 72, 107
public procedures, 107
public variables, 72, 122

Q
QueryTable object, 688–692
Quick Access toolbar, 31–32

buttons, 604–605
quick sorts, 256

R
RAND function, 155
random number generation, 516–518
RANDOMINTEGERS function,

275–276
randomizing ranges, 276–277
Range object

Cells property, 49–51
Count property, 228
Offset property, 51–52
Range property, 46, 48–49
Resize property, 223

Range property, 48–49
RangeNameExists function, 260
RANGERANDOMIZE function, 276–277

Index

736

ranges
arrays

one-dimensional, 241–242
transferring to, 242–243

cells
counting selected, 228
data types, 236–238
prompting for values, 223–224
selecting by value, 243–244
values in, 225–226

charts, determining, 325–327
copying, 218–219

noncontiguous, 244–246
variably sized, 219–221

data labels, 328–331
InputBox method and, 424
looping, 230–233
monitoring for changes, 199–203
moving, 219
randomizing, 276–277
in ranges, 236
reading, 238–239
referencing, 222
resizing, 223
rows, 233–236
selecting, 221–222

pausing macros, 226–228
from Userforms, 481–483

sorting, 277–278
type, 228–230
values, counting cells, 267–268
writing, 238–239
writing to, 239–241

read-only recommended workbooks, 14
Record Macro dialog box, 20, 110–111

Description option, 21
Macro Name option, 20
Shortcut Key option, 21
Store Macro In option, 21

recording macros, 20–27
Recordset object, 392
recursion, 409–410
ReDim statement, 79
RefEdit control, 446, 482–483
referenced workbooks, 114–115
references

cell references versus arguments, 158
properties, 53

References dialog box, 114, 354

relative references, macros, 26–27
Rem keyword, 64
REMOVEVOWELS function, 145, 147
reserved words, 65
Resize property, 223
reverse pivot tables, 302–304
ReversePivot procedure, 302–304
Ribbon

buttons
adding, 601–604, 607–610
Quick Access toolbar, 604–605

controls, 599
access, 629–630
Button, 600
CheckBox, 600
ComboBox, 600
demo, 616–625
dynamicMenu, 625–627
Menu, 601
SplitButton, 600

customizing, 8
creating custom, 606–628
limitations, 605–606

groups, 599
imageMso images, 613
procedures, 111
RibbonX code, 607–611

callback procedures, 612
check boxes, 613–616
Custom UI, 612

tabs, 599
activating, 631

RmDir statement, 406
rows

deleting, empty, 233–234
duplicating, 234–236
hiding, 14

Run Sub/UserForm command, 109

S
SAYIT function, 265
scope

procedures, 107–108
variables, 70–72

ScrollBar control, 10–11, 446
scrolling, charts, 345–347
security, 7

macros, 28

Index

737

Select Case statement, 93–96
Select method, 46
SelectionChange event, 197, 203–204
SERIES formula, 323–327, 341
Series object, 322, 341

Values property, 322
Set keyword, 80
SetAttr statement, 406
SheetActivate event, 184, 188–189, 190, 192, 207
SheetBeforeDoubleClick event, 190, 207
SheetBeforeRightClick event, 190
SheetCalculate event, 190, 207
SheetChange event, 190, 207
SheetDeactivate event, 184, 190, 207
SheetExists function, 260–261
SheetFollowHyperlink event, 190, 207
SHEETOFFSET function, 273
SheetPivotTableUpdate event, 190, 207
SheetSelectionChange event, 190, 207
Shell function, 370–372
ShellExecute function, 279, 372–373
shortcut keys, 8

procedures, 110–111
shortcut menus

adding/deleting, 654
context-sensitivity, 655–657
customizing, 8, 644–645
disabling, 214–215
events, 654–657
items

adding, 648–650
disabling, 648, 654–655
displaying, 642–643
hiding, 654–655

listing, 638–639
procedures, 112
resetting, 646–647
single workbook, 652–653
single-document interface, 644–645
submenus, 650–652

ShowChart procedure, 331
ShowInstalledFonts macro, 254–255
Single data type, 67
SORTED function, 277–278
sorting, ranges, 277–278
spaghetti code, 97
SparklineGroups collection, 348
SparklineReport procedure, 348
Sparklines, 347–350

special features, 7
SpecialCells method, 124–125
SPELLDOLLARS function, 271–272
SpinButton control, 446, 468–469

code-initiated events, 470
keyboard-initiated events, 469–470
mouse-initiated events, 469
TextBox and, 470–472

splash screen, 483–486
spreadsheet applications, 3–4
Sqr function, 83
Standard toolbar, 33
statements, 37

assignment statements, 61
Case, 94
ChDir, 406
ChDrive, 406
Const, 73
Dim, 61, 70–71, 147
Dir, 406
End Function, 147
End-If, 89
Error, 123
On Error, 124, 126, 370
On Error GoTo 0, 125
On Error Resume Next, 125, 495
Exit Sub, 347
FileCopy, 406
FileDateTime, 406
FileLen, 406
file-related, 406
GetAttr, 406
GoTo, 88
If-Then, 89–92
Input, 400
Kill, 406
MkDir, 406
Name, 406
Open, 398–399
Option Explicit, 69
Print #, 400
ReDim, 79
RmDir, 406
Select Case, 93–96
SetAttr, 406
Sub, 70
variables, 61
Write #, 400

STATFUNCTION function, 272–273

Index

738

Static keyword, 72
static variables, 72
Static variables, 70
status bar, progress display, 524
String data type, 67
strings, 172

EXTRACTELEMENT function, 270–271
fixed-length, 74
patterns, 269–270
variable-length, 74

structured programming, 97
Sub keyword, 106–107
Sub procedures, 108, 143

declaration, 106–107
elements, 106
example, 127–140
Run Sub/UserForm command, 109

Sub statement, 70
SUM function, 166–167

emulation, 167–170
SUMARRAY function, 150, 160
SummaryChart object, 339
synchronizing worksheets, 250
syntax, Auto Syntax Check, 66
system settings, 709–710
system speed, 18

T
Tab Order dialog box, 455
table of contents, hyperlink, 249
tables

pivot tables, 290–292
records, appending, 396–397

TableUpdate event, 197
TabStrip control, 446
Tag property, 472
talking worksheets, 265
task pane, emulation, 550–551
templates, UserForms, 477
TempString variable, 147–148
testing

macros, 22
UserForms, 456

testing applications, 12–13
text files, 397

binary access, 397
exporting ranges to, 401–402
file numbers, 399

file position, 399
filtering, 404–405
importing data, 401
importing to ranges, 402–403
logging Excel usage, 403–404
opening, 398–399
random access, 397
reading, 399
reading to, 400
sequential access, 397
writing, 399
writing to, 400

TextBox control, 446
time

displaying, 251–252
friendly time, 253–254

time settings, 711
title bar, UserForms, 546–547
To keyword, 94
ToggleButton control, 446–447
toolbars

old-style, 632–635
Quick Access, 31–32
simulation, UserForms, 548–550
Standard toolbar, 33

Toolbox
controls

ActiveX, 475–477
combining, 474–475
custom, 474–475
worksheets, 447–448

pages, 474
UserForm controls, 443

transparency, UserForms, 562–563
TRANSPOSE function, 163
trusted documents, 28
trusted locations, 28–29
TypeName function, 68–69

U
unlinked charts, 341–342
UnzipAFile procedure, 415
UpdateBox procedure, 521
UPPER function, 145
user forums, 57–58
user input, UserForms, 9
user interface, 7–8

ActiveX controls, 10–11

Index

739

dialog boxes, custom, 9
Ribbon, customizing, 8
shortcut keys, 9
shortcut menus, customizing, 8
visual appeal, 15

User-defined data type, 67
user-defined data types, 81–82
UserForm _ Initialize procedure, 489–490
UserForm _ QueryClose procedure, 486
UserForms, 9

alternatives, 419
chart display, 331–333, 561

GIFs, 562
Image control, 562

checkboxes, 522
checklist, 478
Close button, disabling, 486
closing, 458–459
color, 559–560
command buttons, 479–480
controls, 443–444

adding, 443
alignment, 448–450
CheckBox, 444
collection, 474
ComboBox, 445
CommandButton, 445
Frame, 445
hot keys, 455
Image, 445
Label, 445
ListBox, 445
movable, 545–546
MultiPage, 445
naming conventions, 453–454
OptionButton, 446
Properties window, 450–452
RefEdit, 446, 482–483
referencing, 473
ScrollBar, 446
SpinButton, 446
tab order, 454–455
TabStrip, 446
TextBox, 446
ToggleButton, 446–447
worksheets, 446–447

creating, 460–462
display, 463

modeless, 457

position, 456–457
variable-based, 457

emulating Excel dialog boxes, 477
events, 184, 467–468

event-handler procedures, 458, 465–466
multiple controls in one handler, 556–558
SpinButton control, 468–470

external controls, 513–515
inserting, 442
keyboard users, 454–455
Label control, 516–518
list boxes, 480–481
loading, 457
as menu, 479–481
MultiPage control, 512–513
progress indicator, 523–534
properties, common, 452–454
Properties window, 442
ranges, selecting, 481–483
resizable, 551–556
sizing, 487–488
sliding puzzle, 563–565
splash screens, 483–486
task pane emulation, 550–551
templates, 477
testing, 456, 464
title bar, none, 546–547
Toolbar simulation, 548–550
transparency, 562–563
video poker, 565–566
wizards, 534–540
worksheets, 488–490

users, needs determination, 5–6
utilities, availability, 140–141

V
values

closed workbooks, 262–263
maximum, 274–275
ranges, counting cells, 267–268

Values property, 322, 325
variable declaration statements, 61
variable-length strings, 74
variables, 62, 65

AbortProc, 186
date, 74–75
declaring, 67
object, 80–81

Index

740

public, 122
reserved words, 65
rules, 65
scope, 69–72
Static, 70
string, 74
TempString, 147–148
UserForm display, 457

Variant data type, 67
VBA procedures, macros and, 19
VBE (Visual Basic Editor)

Docking tab, 42
Edit toolbar, 64
Editor Format tab, 41
Editor tab, 39–40
General tab, 41–42
menu bar, 32–33
Project window

chart objects, 185
Class modules, 185
components, 185
sheet objects, 185
ThisWorkbook project, 185
UserForm objects, 185
VBA modules, 185

toolbars, Standard, 33
windows, 33–39

vbModeless keyword, 519
video mode, development and, 18

W
WindowActivate event, 190, 207
WindowDeactivate event, 190, 207
WindowResize event, 190, 207
windows

Code window, 33–34, 36–39
Immediate, 34, 118–119
Project window, 33, 34–36

Windows API
64-bit functions, 179
calls, DLLs (Dynamic Link Libraries),

277–278
declarations, 279–280
directories, 179–180
file associations, 280–281
functions, 178–181
printers, default, 281–282

Registry, reading to/writing from, 283–285
video display, 282–283

With-End With construct, 85
WithEvents keyword, 338
wizards, 534–535

buttons, 536–538
dependencies, 538–539
MultiPage control, 535–538
tasks, 540

Word
automation, 356
mail merge simulation, 358–360
sending Excel data to, 357–358

Workbook Connections collection, 389
WorkbookActivate event, 207
WorkbookAddinInstall event, 207
WorkbookAddinUninstall event, 207
WorkbookBeforeClose event, 207
WorkbookBeforePrint event, 207
WorkbookBeforeSave event, 207
WorkbookDeactivate event, 207
WorkbookIsOpen function, 261
WORKBOOKNAME function, 267
WorkbookNewSheet event, 184, 207
WorkbookOpen event, 207, 208–209
workbooks

add-ins, 569–570
closing

all, 247
value retrieval, 262–263

date saved, 265–266
events, 183, 189–190

Activate, 190, 191
AddinInstall, 190
AddinUninstall, 190
AfterSave, 190
BeforeClose, 190, 195–197
BeforePrint, 190, 193–194
BeforeSave, 190, 192–193
Deactivate, 190, 193
NewSheet, 190, 192
Open, 190, 191
SheetActivate, 190, 192
SheetBeforeDoubleClick, 190
SheetBeforeRightClick, 190
SheetCalculate, 190
SheetChange, 190
SheetDeactivate, 190
SheetFollowHyperlink, 190

variables (continued)

Index

741

SheetPivotTableUpdate, 190
SheetSelectionChange, 190
WindowActivate, 190
WindowDeactivate, 190
WindowResize, 190

files, 6
opened, tracking, 208–209
Personal Macro Workbook, 29–30
procedures, 114
protecting, entire workbook, 14
read-only recommended, 14
referenced, 114–115
saving, all, 246–247
selections, hiding all but, 247–248

WorkbookSetup procedure, 185
worksheet, synchronizing, 250
Worksheet object, ChartObject object,

307
worksheet sorts, 256
WorksheetFunction object, 83
worksheets

activating, 507–509
ActiveX controls, 10–11
controls, 447–448
events, 183

Activate, 197
BeforeDelete, 197
BeforeDoubleClick, 197, 204–205
BeforeRightClick, 197, 205
Calculate, 197
Change, 197, 198–203
Deactivate, 197
FollowHyperlink, 197
LensGalleryRender, 197
PivotTableAfterValueChange, 197
PivotTableBeforeAllocateChanges, 197
PivotTableBeforeCommitChanges, 197
PivotTableBeforeDiscardChanges, 197
PivotTableChanageSync, 197

PivotTableUpdate, 197
SelectionChange, 197, 203–204
TableUpdate, 197

functions, 145
hiding, 14
objects, locking, 14
rows, selecting, 505–507
scrolling, 488–490
table of contents, hyperlink, 249
talking, 265
zooming, 488–490

Worksheets collection, 44
wrapper functions, 154
Write # statement, 400
WriteRegistry function, 284–285

X
XDATE function, 171
XDATEADD function, 171
XDATEDAY function, 171
XDATEDIF function, 171
XDATEDOW function, 171
XDATEMONTH function, 171
XDATEYEAR function, 171
XDATEYEARDIF function, 171
XLAM files, 581–583
.xlsm file extension, 28
XLSM files, 581–583
.xlsx file extension, 28
Xor operator, 77
XValues property, 325

Y
YouTube training, 58

Z
ZipFiles procedure, 413–414

	Cover
	Excel 2019Power Programmingwith VBA
	Copyright
	About the Authors
	About the Technical Editors
	Credits
	Acknowledgments
	Contents at a Glance
	Contents
	Introduction
	Part I:Introduction to Excel VBA
	1 Essentials of SpreadsheetApplication Development
	2 Introducing Visual Basicfor Applications
	3 VBA Programming Fundamentals
	4 Working with VBA SubProcedures
	5 Creating Function Procedures
	6 Understanding Excel’s Events
	7 VBA Programming Examplesand Techniques
	Part II: Advanced VBA Techniques
	8Working with Pivot Tables
	9 Working with Charts
	10 Interacting with OtherApplications
	11 Working with ExternalData and Files
	Part III: Working with UserForms
	12Leveraging Custom Dialog Boxes
	13 Introducing UserForms
	14 Looking at UserForm Examples
	15 Implementing AdvancedUserForm Techniques
	Part IV:Developing ExcelApplications
	16Creating and Using Add-Ins
	17 Working with the Ribbon
	18 Working with Shortcut Menus
	19 Providing Help for YourApplications
	20 Leveraging Class Modules
	21 UnderstandingCompatibility Issues
	Part V
	Appendix.VBA Statements and Func Reference
	Index

