

Contents

	Cover Page

	Title Page

	Copyright Page

	Dedication

	Acknowledgments

	Contents at a Glance

	Table of Contents

	Introduction

	What You Will Learn

	Who Is This Book For?

	How This Book Is Structured

	Online Content

	Errata

	1. What Are HTML and CSS?

	What Is HTML?

	What Is CSS?

	How HTML and CSS Work Together

	Wrapping Up

	2. Creating a Website on Your Computer

	Using a Text Editor

	Using Advanced Tools

	Website Directory Structures and File Extensions

	Using CodePen for Quick Tests

	Wrapping Up

	3. HTML Syntax

	How HTML Tags Work

	Adding Comments

	Structuring an HTML Page

	The <meta> Tag

	What Is Semantic Markup?

	Wrapping Up

	4. Basic HTML Elements

	HTML Text Formatting

	Paragraphs and Headings

	Lists

	Quoting a Block of Text

	Formatting Text Inline

	Marking Up Code

	Wrapping Up

	5. Links

	Link Markup

	URL Structure

	Internal vs. External Linking

	Relative vs. Absolute Linking

	Other Types of Links

	Link Targets

	Wrapping Up

	6. Structure and Layout with HTML

	Webpage Layout

	Block vs. Inline Elements

	Page Sections

	Building a Blog Article Layout

	Wrapping Up

	7. Media

	How Does Media Work on the Web?

	Images

	Adding Images to a Page

	Responsive Images: Considering Different Devices and Connections

	The <picture> Element

	Using SVG

	Other Media

	Embedding Video

	Embedding Audio

	Storing Multimedia Files

	Wrapping Up

	8. Tables and Other Structured Data Elements

	Tables

	Description Lists

	Why Is Structured Data Important?

	Wrapping Up

	9. Web Forms

	Interacting with Webpages

	How a Web Form Works

	Components of an HTML Form

	The <form> Element

	Form Fields

	Labeling Fields

	Setting Up a Basic Form

	Creating Select Boxes

	Creating Radio Buttons

	Creating Checkboxes

	Creating Email Forms

	Special Field Types

	The <meter> Element

	Validating Forms

	Wrapping Up

	10. Advanced and Experimental Features

	It’s All About Browser Support

	Advanced Elements

	Experimental Features

	Wrapping Up

	11. Introduction to CSS

	What Are Styles?

	What Does Cascading Mean?

	CSS Syntax

	Using CSS on Your Webpage

	External Style Sheets

	Commenting Your CSS Code

	Wrapping Up

	12. Targeting Elements

	Targeting Elements by Tag

	Targeting Elements by Class

	The Cascade, Inheritance, and Parent-Child Relationships

	Selecting Elements by their Relationships

	Specificity and Precedence in the Cascade

	Targeting Elements with Specific Attributes

	Advanced Targeting

	Wrapping Up

	13. Styling Text

	Choosing Fonts

	Google Fonts

	Including External Fonts with @font-face

	Sizing Text

	Formatting Text

	Formatting for Readability

	Wrapping Up

	14. Color in CSS

	How Computer Monitors Work

	Representing Color in CSS

	Gradients

	The border Property

	Wrapping Up

	15. Using CSS for Page Layout

	The Box Model

	Padding and Margins

	Element Flow

	Creating Layers and Overlapping Elements

	Creating an Overlay Using z-index

	A Note About Creating Layouts

	Wrapping Up

	16. Layouts with CSS Grid and Flexbox

	Modern Solutions for an Important Problem

	Using Flexbox

	Using CSS Grid Layout

	Browser Support

	Wrapping Up

	17. Responsive Design and Media Queries

	Defining Media Queries

	Responsive Layouts

	Making a Full-width Layout Responsive

	Not Just for Screen Widths

	Wrapping Up

	18. CSS Transformations and Animations

	CSS Transitions

	CSS Transformations

	CSS Animations

	Wrapping Up

	19. CSS Variables

	What Are Variables?

	Simplifying Styles with Variables

	Calculations with Variables

	Wrapping Up

	20. CSS Preprocessors

	How CSS Preprocessors Work

	Getting Started with Sass

	Writing Sass

	Wrapping Up

	21. Getting Your Website Online

	Choosing Hosting and a Domain

	Pre-Launch Check

	Making Your Site Live

	Testing Your Site

	Wrapping Up

	22. Testing Your Website

	Why Test Your Website?

	Validating Markup

	Browser Testing

	Device Testing

	Troubleshooting with Chrome Developer Tools

	Wrapping Up

	23. Improving Website Performance

	What Do We Mean by Performance?

	Know How Your Website Performs

	Performance Testing Tools

	Minify HTML and CSS Files

	Optimize Your Images

	Load Your Critical CSS First

	Wrapping Up

	24. Web Accessibility

	Including as Many People as Possible

	What You’ve Done so Far

	Additional Tags and Attributes

	Accessibility Tests and Validation

	Finding Your WCAG Rating

	Wrapping Up

	25. Going Beyond HTML & CSS

	JavaScript

	Common JavaScript Libraries

	Version Control

	Build Tools

	Wrapping Up

	Final Wrap-up

	What’s Next?

	Index

	i

	ii

	iii

	iv

	v

	vi

	vii

	viii

	ix

	x

	xi

	xii

	xiii

	xiv

	xv

	xvi

	xvii

	xviii

	1

	2

	3

	4

	5

	6

	7

	8

	9

	10

	11

	12

	13

	14

	15

	16

	17

	18

	19

	20

	21

	22

	23

	24

	25

	26

	27

	28

	29

	30

	31

	32

	33

	34

	35

	36

	37

	38

	39

	40

	41

	42

	43

	44

	45

	46

	47

	48

	49

	50

	51

	52

	53

	54

	55

	56

	57

	58

	59

	60

	61

	62

	63

	64

	65

	66

	67

	68

	69

	70

	71

	72

	73

	74

	75

	76

	77

	78

	79

	80

	81

	82

	83

	84

	85

	86

	87

	88

	89

	90

	91

	92

	93

	94

	95

	96

	97

	98

	99

	100

	101

	102

	103

	104

	105

	106

	107

	108

	109

	110

	111

	112

	113

	114

	115

	116

	117

	118

	119

	120

	121

	122

	123

	124

	125

	126

	127

	128

	129

	130

	131

	132

	133

	134

	135

	136

	137

	138

	139

	140

	141

	142

	143

	144

	145

	146

	147

	148

	149

	150

	151

	152

	153

	154

	155

	156

	157

	158

	159

	160

	161

	162

	163

	164

	165

	166

	167

	168

	169

	170

	171

	172

	173

	174

	175

	176

	177

	178

	179

	180

	181

	182

	183

	184

	185

	186

	187

	188

	189

	190

	191

	192

	193

	194

	195

	196

	197

	198

	199

	200

	201

	202

	203

	204

	205

	206

	207

	208

	209

	210

	211

	212

	213

	214

	215

	216

	217

	218

	219

	220

	221

	222

	223

	224

	225

	226

	227

	228

	229

	230

	231

	232

	233

	234

	235

	236

	237

	238

	239

	240

	241

	242

	243

	244

	245

	246

	247

	248

	249

	250

	251

	252

	253

	254

	255

	256

	257

	258

	259

	260

	261

	262

	263

	264

	265

	266

	267

	268

	269

	270

	271

	272

	273

	274

	275

	276

	277

	278

	279

	280

	281

	282

	283

	284

	285

	286

	287

	288

	289

	290

	291

	292

	293

	294

	295

	296

	297

	298

	299

	300

	301

	302

	303

	304

	305

	306

	307

	308

	309

	310

	311

	312

	313

	314

	315

	316

	317

	318

	319

	320

	321

	322

	323

	324

	325

	326

	327

	328

	329

	330

	331

	332

	333

	334

HTML and CSS

Visual Quickstart Guide

9th Edition

Joe Casabona

[image: Logo of Peachpit Press.]

Visual QuickStart Guide

HTML and CSS, 9th Edition

Joe Casabona

Peachpit Press

www.peachpit.com

Copyright © 2021 by Pearson Education, Inc. or its affiliates. All Rights Reserved.

San Francisco, CA

Peachpit Press is an imprint of Pearson Education, Inc.

To report errors, please send a note to errata@peachpit.com

Notice of Rights

This publication is protected by copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise. For information regarding permissions, request forms and the appropriate contacts within the Pearson Education Global Rights & Permissions department, please visit www.pearson.com/permissions.

Notice of Liability

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been taken in the preparation of the book, neither the author nor Peachpit shall have any liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the instructions contained in this book or by the computer software and hardware products described in it.

Trademarks

Visual QuickStart Guide is a registered trademark of Peachpit Press, a division of Pearson Education.

Unless otherwise indicated herein, any third party trademarks that may appear in this work are the property of their respective owners and any references to third party trademarks, logos or other trade dress are for demonstrative or descriptive purposes only. Such references are not intended to imply any sponsorship, endorsement, authorization, or promotion of Pearson Education, Inc. products by the owners of such marks, or any relationship between the owner and Pearson Education, Inc., or its affiliates, authors, licensees or distributors.

Executive Editor: Laura Norman

Development Editor: Victor Gavenda

Senior Production Editor: Tracey Croom

Copy Editor: Scout Festa

Proofreader: Becky Winter

Compositor: Danielle Foster

Indexer: Valerie Haynes-Perry

Cover Design: RHDG / Riezebos Holzbaur Design Group, Peachpit Press

Interior Design: Peachpit Press with Danielle Foster

Logo Design: MINE™ www.minesf.com

ISBN-13: 978-0-13-670256-6

ISBN-10: 0-13-670256-2

ScoutAutomatedPrintCode

Dedication

To my wife, Erin. Your love and support has allowed me not only to write this book, but to have the life I’ve always wanted.

To my daughter, Teresa. You make me smile and laugh every day. And to my son, Louis. Welcome to the world, buddy.

I love you all.

Acknowledgments

Writing a book, especially a good one, takes time and a group of solid people. And this one wouldn’t have happened without the great team I got to be a part of. I want to extend a special thank you to:

	Laura Norman, who helped me get back in the book writing game with this title, for her support and guidance along the way.

	Victor Gavenda, for his development editing and deep knowledge of the VQS format, and for making it seem like I have good control over the English language.

	Faraz Kelhini, the tech editor. His feedback and suggestions made for a much better read.

	Scout Festa, for excellent copyediting.

	Tracey Croom and the entire Pearson design team, for making this book look fantastic.

	Shawn Hesketh, a friend and mentor who taught me all the good things I know about screencasts.

	Brian Richards, for helping me work though some of the more advanced topics in this book.

	My friends and family, for the support and encouragement throughout the writing process.

	Everyone who has contributed by letting me use a screenshot, image, or resource that they created.

	To TT at my local Starbucks. He always saw me coming and had my order ready.

	To you, the readers. Thank you for allowing me to contribute to your learning journey.

	Finally, to Elizabeth Castro for creating this title, and to Bruce Hyslop for passing me the torch.

Contents at a Glance

Introduction

Chapter 1 What Are HTML and CSS?

Chapter 2 Creating a Website on Your Computer

Chapter 3 HTML Syntax

Chapter 4 Basic HTML Elements

Chapter 5 Links

Chapter 6 Structure and Layout with HTML

Chapter 7 Media

Chapter 8 Tables and Other Structured Data Elements

Chapter 9 Web Forms

Chapter 10 Advanced and Experimental Features

Chapter 11 Introduction to CSS

Chapter 12 Targeting Elements

Chapter 13 Styling Text

Chapter 14 Color in CSS

Chapter 15 Using CSS for Page Layout

Chapter 16 Layouts with CSS Grid and Flexbox

Chapter 17 Responsive Design and Media Queries

Chapter 18 CSS Transformations and Animations

Chapter 19 CSS Variables

Chapter 20 CSS Preprocessors

Chapter 21 Getting Your Website Online

Chapter 22 Testing Your Website

Chapter 23 Improving Website Performance

Chapter 24 Web Accessibility

Chapter 25 Going Beyond HTML & CSS

Final Wrap-up

Index

Table of Contents

Introduction

Chapter 1 What Are HTML and CSS?

What Is HTML?

What Is CSS?

How HTML and CSS Work Together

Wrapping Up

Chapter 2 Creating a Website on Your Computer

Using a Text Editor

Using Advanced Tools

Website Directory Structures and File Extensions

Using CodePen for Quick Tests

Wrapping Up

Chapter 3 HTML Syntax

How HTML Tags Work

Adding Comments

Structuring an HTML Page

The <meta> Tag

What Is Semantic Markup?

Wrapping Up

Chapter 4 Basic HTML Elements

HTML Text Formatting

Paragraphs and Headings

Lists

Quoting a Block of Text

Formatting Text Inline

Marking Up Code

Wrapping Up

Chapter 5 Links

Link Markup

URL Structure

Internal vs. External Linking

Relative vs. Absolute Linking

Other Types of Links

Link Targets

Wrapping Up

Chapter 6 Structure and Layout with HTML

Webpage Layout

Block vs. Inline Elements

Page Sections

Building a Blog Article Layout

Wrapping Up

Chapter 7 Media

How Does Media Work on the Web?

Images

Adding Images to a Page

Responsive Images: Considering Different Devices and Connections

The <picture> Element

Using SVG

Other Media

Embedding Video

Embedding Audio

Storing Multimedia Files

Wrapping Up

Chapter 8 Tables and Other Structured Data Elements

Tables

Description Lists

Why Is Structured Data Important?

Wrapping Up

Chapter 9 Web Forms

Interacting with Webpages

How a Web Form Works

Components of an HTML Form

The <form> Element

Form Fields

Labeling Fields

Setting Up a Basic Form

Creating Select Boxes

Creating Radio Buttons

Creating Checkboxes

Creating Email Forms

Special Field Types

The <meter> Element

Validating Forms

Wrapping Up

Chapter 10 Advanced and Experimental Features

It’s All About Browser Support

Advanced Elements

Experimental Features

Wrapping Up

Chapter 11 Introduction to CSS

What Are Styles?

What Does Cascading Mean?

CSS Syntax

Using CSS on Your Webpage

External Style Sheets

Commenting Your CSS Code

Wrapping Up

Chapter 12 Targeting Elements

Targeting Elements by Tag

Targeting Elements by Class

The Cascade, Inheritance, and Parent-Child Relationships

Selecting Elements by their Relationships

Specificity and Precedence in the Cascade

Targeting Elements with Specific Attributes

Advanced Targeting

Wrapping Up

Chapter 13 Styling Text

Choosing Fonts

Google Fonts

Including External Fonts with @font-face

Sizing Text

Formatting Text

Formatting for Readability

Wrapping Up

Chapter 14 Color in CSS

How Computer Monitors Work

Representing Color in CSS

Gradients

The border Property

Wrapping Up

Chapter 15 Using CSS for Page Layout

The Box Model

Padding and Margins

Element Flow

Creating Layers and Overlapping Elements

Creating an Overlay Using z-index

A Note About Creating Layouts

Wrapping Up

Chapter 16 Layouts with CSS Grid and Flexbox

Modern Solutions for an Important Problem

Using Flexbox

Using CSS Grid Layout

Browser Support

Wrapping Up

Chapter 17 Responsive Design and Media Queries

Defining Media Queries

Responsive Layouts

Making a Full-width Layout Responsive

Not Just for Screen Widths

Wrapping Up

Chapter 18 CSS Transformations and Animations

CSS Transitions

CSS Transformations

CSS Animations

Wrapping Up

Chapter 19 CSS Variables

What Are Variables?

Simplifying Styles with Variables

Calculations with Variables

Wrapping Up

Chapter 20 CSS Preprocessors

How CSS Preprocessors Work

Getting Started with Sass

Writing Sass

Wrapping Up

Chapter 21 Getting Your Website Online

Choosing Hosting and a Domain

Pre-Launch Check

Making Your Site Live

Testing Your Site

Wrapping Up

Chapter 22 Testing Your Website

Why Test Your Website?

Validating Markup

Browser Testing

Device Testing

Troubleshooting with Chrome Developer Tools

Wrapping Up

Chapter 23 Improving Website Performance

What Do We Mean by Performance?

Know How Your Website Performs

Performance Testing Tools

Minify HTML and CSS Files

Optimize Your Images

Load Your Critical CSS First

Wrapping Up

Chapter 24 Web Accessibility

Including as Many People as Possible

What You’ve Done so Far

Additional Tags and Attributes

Accessibility Tests and Validation

Finding Your WCAG Rating

Wrapping Up

Chapter 25 Going Beyond HTML & CSS

JavaScript

Common JavaScript Libraries

Version Control

Build Tools

Wrapping Up

Final Wrap-up

What’s Next?

Index

Introduction

In This Introduction

What You Will Learn

Who Is This Book For?

How This Book Is Structured

Online Content

Errata

When I started making websites, back in 2000, it was a much simpler time. I was able to build a full website with just HTML and CSS and a few images. There were also fewer browsers and devices. But as the web evolved and computers got smarter and more powerful, the needs of both web users and web developers changed. This made some things easier. It also made learning more complicated.

Today, a website that doesn’t use any JavaScript is a rare sight (and site!). There are so many build tools, libraries, and development philosophies that learning how to make a website can seem overwhelming.

But there’s good news: at the heart of it all are still just plain and simple HTML and CSS.

What You Will Learn

The building blocks of the web are plain HTML and CSS—and you can make a website knowing just those two technologies. That’s what you learn in this book. Specifically, you’ll get the ins and outs of what it takes to write good, meaningful, and well-structured HTML. You’ll learn how to write proper, maintainable CSS to make your HTML look nice. And you’ll learn how to get it all online.

Websites are meant to be universal files that can be accessed and displayed everywhere by everyone. Accessibility— in multiple senses of the word—is the name of the game, and learning to design and build websites that can be reached by all users, regardless of their personal abilities, using any device they choose.

To make a webpage, you need only what you already have on your computer: a text editor, a place to save files, and a browser. This book teaches you how to put all those pieces together.

Current technologies

On top of learning how to write HTML and CSS (and get it online), you’ll get a crash course in what it’s like to build a professional website today. You’ll learn about important aspects of web design, such as performance (making sure your website loads quickly and doesn’t burden the user). You’ll learn about how to make your website accessible so that anyone can use it, including those who are color blind or rely on a screen reader.

This book also explores modern tools like CSS preprocessors, JavaScript libraries, and version control. It’s good to know these things as you move forward because they will probably be the next step on your learning journey. This brings us to the next question: who is this book for?

Who Is This Book For?

In short, this book is written for anyone who wants to learn HTML and CSS. It assumes no prior knowledge.

That means that if you want to make a website for your hobby, this book is for you. If you’re taking a beginner course (or teaching a beginner course), it’s for you too. Or if you want to become a professional web developer, hey, it’s for you too. After all, books like this are how I got my start. You’ll get all the tools you need to get a website online. And then I’ll give you some options for what you can learn next.

However, if you’re looking for advanced techniques, like using HTML Canvas, writing JavaScript from scratch, or using advanced build tools like node.js, this book is not for you. Though I will say that after reading through the official HTML and CSS documentation thoroughly, you’ll probably pick up some new things. I know I did.

How This Book Is Structured

This book is structured so that each chapter builds on the last. That means you’ll first learn exactly what HTML and CSS are and what the purpose of each is. Then you’ll learn about how to organize your website’s files and directories. Then, on to the crux of the matter!

Both the HTML and CSS sections of the book start with the most basic markup or code and move to more complex techniques. If you’re starting with no knowledge, it’s best to take the chapters in order.

This book, like others in the Visual QuickStart Guide series, uses a combination of explanatory text and step-by-step tasks to teach you HTML and CSS. Each chapter begins with text that introduces a topic, and a series of short sections present specific features within that topic.

These sections typically begin with an explanation of the feature, which is followed by one or more tasks that walk you through implementing the feature. Code samples and images accompany each task to show you what to do.

If you’re brushing up or using this book as a reference, each chapter also stands alone—so if you need a refresher on forms or on the box model, you can just check out those chapters. While the book is not comprehensive, it covers all the important parts and it points you in the right direction for the rest.

The book ends with some bigger concepts to consider once you’re comfortable putting an entire website together.

Although you’ll get all the building blocks to make a full site, we won’t build a single site from scratch. There will, however, be full-page examples for you to follow, as well as starter files to work from.

Code

There are three ways code is presented in the book.

Code within regular narrative text (which you’ll usually see in numbered steps) is set in a distinctive font. Here are a couple of examples: </head> and .nav-main {.

Blocks of code appear as standalone paragraphs within the flow of text, or as separate numbered Code samples (CODE 00.1).

Both of the previous types can include small portions that are highlighted in red to draw your attention to them:

Click here to view code image

Jump to Contact

→Form

You’ll encounter most of the code in the step-by-step tasks. They’ll show you exactly what to type and then show you the results. So please follow along—there’s nothing like learning by doing!

In the actual code files, I include inline comments to help you understand what’s going on. These comments use special markup to prevent them from appearing on the page when it’s rendered in a web browser.

CODE 00.1 A sample code block

Click here to view code image

p.introduction {

 color: red;

 font-family: Monaco, monospace;

 font-size: 16px;

}

HTML comments look like this:

Click here to view code image

<!-- This is an HTML comment -->

CSS comments look like this:

/* This is a CSS comment */

Much of the code is available for download at peachpit.com (see “Online Content,” below). You can also find it, along with links and other useful resources, at casabona.org/vqs/.

Supplemental information

Throughout the book there are two other elements to look out for: tips and sidebars.

Tip

Tips are formatted like this and include helpful notes, links, and other information that’s good to know.

This Is a Sidebar

Sidebars, as the name implies, include more information than a tip but don’t really fit in the main body of the text, which is designed to give you hands-on experience.

Sidebars support the step-by-step tasks and are designed to enhance and strengthen the skills you’re learning.

[image: Video play icon.] VIDEOS
Sample Video Title

This book is heavily supplemented with videos, which you can access via the online Web Edition (see “Online Content”). The videos reinforce bigger points, expand on skills taught in step-by-step tasks, and highlight topics that are more easily demonstrated in video than in static images.

Online Content

Your purchase of this Visual QuickStart Guide includes online materials provided by way of your Account page on peachpit.com.

Code samples

Some of the code examples shown in the book are provided for your personal use and study. They’re organized in folders by chapter.

Web Edition

The Web Edition is an online interactive version of the book, providing an enhanced learning experience. Your Web Edition can be accessed from any device with a connection to the internet, and it contains the following:

	The complete text of the book

	Hours of instructional video keyed to the text

Accessing the code samples and Web Edition

Note: If you encounter problems registering your product or accessing the code samples or Web Edition, go to www.peachpit.com/support for assistance.

You must register your purchase on peachpit.com in order to access the online content:

	Go to www.peachpit.com/htmlvqs.

	Sign in or create a new account.

	Click Submit.

	Answer the question as proof of purchase.

	The code samples can be accessed from the Registered Products tab on your Account page. Click the Access Bonus Content link below the title of your product to proceed to the download page. Click the lesson file links to download them to your computer. As a courtesy, the code samples are also available—along with other useful learning resources—from casabona.org/vqs/.

The Web Edition can be accessed from the Digital Purchases tab on your Account page. Click the Launch link to access the product.

Note that if you purchased a digital product directly from peachpit.com, your product will already be registered. However, you still need to follow the registration steps and answer the proof of purchase question before the Access Bonus Content link will appear under the product on your Registered Products tab.

Errata

Finally, try as I might to get rid of them all, there still may be some errors in the final, printed text. You can find a list of those on the book’s page at www.peachpit.com/title/9780136702566. Click the Updates tab to report an error or to see any corrections that are available.

I hope you enjoy the book and get a lot out of it, whether you’re learning or using it as a reference.

1

What Are HTML and CSS?

In This Chapter

What Is HTML?

What Is CSS?

How HTML and CSS Work Together

Wrapping Up

The web has come a long way since it launched, in 1991. We’ve seen some big evolutions: from plain, static pages to slightly nicer-looking websites, to fully interactive web-based applications that we can access from anywhere in the world—including the device in our pocket.

And while the web has evolved considerably over that time, at its very core are still two important technologies: HTML and CSS. But what are they, and why should you know them?

What Is HTML?

HTML stands for HyperText Markup Language and it does two important things: it describes how webpages should look, and it defines the semantics of those pages.

But what is a markup language? Well, websites are made up of a bunch of different components. A variety of kinds of data—text, images, audio, video, and downloadable media—are part of a website. Those files—every component of the website—are stored on a server for you and other people to access.

Think of it this way: imagine that accessing a website from a server is like ordering takeout. You order from your favorite restaurant (sending a request across the internet), the kitchen staff (the server) selects the items you need, and then the delivery person (the internet again) brings the food (the files for the website) to your door (your computer).

All of this data is presented to you in your browser (Chrome, Firefox, Safari, Microsoft Edge, etc.) in a human-readable way.

Because humans and computers don’t read data the same way, there needs to be something that tells computers how to display all of this data in a structured way—to render it—so humans can read it.

The raw data files that the server sends you come with one or more files written in HTML. To continue our takeout analogy, you can think of an HTML file like a bento box (or, if you’re not into Japanese cuisine, like a cafeteria tray). It acts as a container that keeps the different types of data organized and presents them in a useful arrangement.

That’s where markup comes in. An HTML file is simply a text file marked up with special codes that tell the web browser how to display the data it’s receiving from the server on the computer’s screen. HTML markup draws from a large collection of text tags that are embedded in the text and tell the computer—specifically the browser—how a website should look.

Semantics in this context is important because it gives meaning to those tags (also known as elements). For example, there’s an <h1> HTML element (for Heading 1) (FIGURE 1.1), which tells the browser and search engines that the enclosed text is a heading—and not just any heading, but the most important heading. The browser then knows to display it in big bold letters … that is, unless you use CSS, or Cascading Style Sheets (which you’ll learn about later), to tell the browser to display it differently.

[image: A screenshot of the browser window displays the output of the heading tag in HTML. The code for the heading tag, <h1>This is a heading</h1>" is displayed at the top. The output "This is a heading" is displayed in a big bold text at the bottom.]

Figure 1.1 A heading tag in HTML

While you could just put a bunch of plain text into a file and open it in a browser, that text will have no structure or meaning. It will all run together, and there will be no visual hierarchy. It will just be a blob of text.

Let’s start by looking at the simple Word document in FIGURE 1.2. You can see there are multiple headings at different sizes, paragraphs with spacing, and text that’s formatted as bold or italic type.

[image: A screenshot shows the Microsoft word document with quick access toolbar, menu bar, and standard toolbar. On the right, the styles pane is displayed. The word document has two headings in different sizes followed by the paragraphs with spacing. The text of the paragraphs is formatted as bold or italic type.]

Figure 1.2 A Microsoft Word document

This visual hierarchy gives the reader an idea of how they should approach the text: when a new section starts, where emphasis in the text lies, and more. In Word you do this using the Styles pane. On a webpage, you do that by adding HTML tags to the HTML file.

To create a simple hierarchy with HTML:

	Open Notepad on Windows, or TextEdit on Mac.

	Type <h1>Bigger headings are more important</h1>.

	Type <h2>This is smaller</h2>.

	Type <h3>This is smaller still</h3>.

	<p>This is body copy, and is most common.</p>.

	Save the file as hierarchy.html.

	Double-click the file to open it in your browser.

Your browser should display four paragraphs of text, decreasing in size from top to bottom (FIGURE 1.3).

[image: An example for a simple hierarchy in HTML is depicted. Four paragraphs of text at different sizes arranged one below the other are displayed. The paragraphs from top to bottom are displayed in the order of bigger to smaller sizes.]

Figure 1.3 A simple hierarchy in HTML

[image: Video play icon.] VIDEO 1.1
Creating a Visual Hierarchy with HTML

See how you can create an outline, or visual hierarchy, using only HTML markup.

Current version: HTML5

At the time of this writing, the current version of HTML is HTML5. This version introduced lots of new elements and simplified a lot of the markup.

Because it’s likely that you’re just entering the wonderful world of HTML, using HTML5 mostly means you have a ton of great features at your disposal, and that those features are well supported. But it is good to know that HTML5 is backwards compatible, and much of it works with old and new browsers.

Luckily, browsers are pretty forgiving of HTML versions and even of errors in your markup, so you won’t have to worry about completely breaking anything with your code!

What Is CSS?

If HTML provides the structure for a webpage, then CSS supplies the style—and it’s right in the name! CSS stands for Cascading Style Sheets, and it describes how a webpage should look: it prescribes colors, fonts, spacing, and much more. In short, you can make your website look however you want.

While HTML uses tags, CSS uses rulesets. They look like this:

h1 {

 color: black;

 font-size: 30px;

}

A great example of how CSS works is the website CSS Zen Garden. You can visit the site at csszengarden.com and, by changing the CSS, completely change the look and feel of the pages without changing the underlying HTML markup. Much like when you apply different themes or layouts to documents in Microsoft Word, changing the CSS styles on a webpage makes the page look different, but the hierarchy of the content stays the same (FIGURE 1.4).

[image: The home page of the CSS Zen Garden is presented.]

Figure 1.4 CSS Zen Garden

The CSS Zen Garden webpage shows the logo of the CSS Zen Garden at the top. It displays the content for the following headings: The road to enlightenment, so what is this about, and participation. Additional details are listed on the right pane. The layout of the web page shows different text styles, font-size, color, color border for different elements, and other aspects that enhance the look of the webpage.

[image: Video play icon.] VIDEO 1.2
Changing Styles on CSS Zen Garden

Let’s take a look at CSS Zen Garden in action! You’ll see how to change a bunch of styles to see how the appearance of the site changes. And then you’ll take a quick peek at the markup to see that it’s not changing.

[image: Video play icon.] VIDEO 1.3
Applying Simple Styles to Markup

Start with your HTML markup from earlier and add some styles to it.

While browsers come with their own default styles, you can easily override them with your own styles, in the form of CSS files called style sheets.

Current version: CSS3

CSS is currently on version 3 (CSS3) and is constantly evolving as browsers and computers get more powerful.

With CSS3 you get animations, more visual effects, and much, much better support for layout features like columns and grids, among other features.

For feature support, CSS3 is more dependent on the user’s browser than is HTML. With HTML, browsers treat unknown tags as plain text, so they still render properly. But older browsers likely will not support newer features in CSS3—and that will affect how your pages look and function. You’ll learn more about that later in the book.

How HTML and CSS Work Together

Even though HTML and CSS perform different functions for a website, they are almost always coupled in learning materials such as this book.

That’s because they are the two core languages necessary for making modern websites. Although technically only HTML is required to make a webpage, without CSS you’ll get a bland website that doesn’t look like much more than a Word document (FIGURE 1.5).

[image: A screenshot of a webpage that is made with only HTML and no CSS.]

Figure 1.5 HTML, no CSS

In the webpage, the navigation links, heading, body, menu items, and search box are listed one below the other. They are left-aligned with the same text formatting and font sizes. Below this, an image is displayed that is aligned left and not fitted properly to the layout of the page. The right side of the webpage looks empty because all the other elements are left-aligned.

[image: Video play icon.] VIDEO 1.4
Styles vs. No Styles

First, I’ll show you a plain website with no CSS, and then I’ll apply a style sheet to show you how dramatically it can change.

These days, with the power of HTML5 and CSS3, we can create with our websites unique experiences that would have required a true programming language like JavaScript just a few years ago (FIGURE 1.6).

[image: A screenshot of a webpage that is made with CSS is shown.]

Figure 1.6 The HTML page from Figure 1.5, this time with CSS

In the HTML page, the heading "How I built it" is displayed on the top-left corner of the page. The menu items such as home (selected), listen, sponsor, shop, subscribe, contact, and search icon are displayed on the top right corner. On the content pane, an image is displayed at the left with the subscribe button below it. The heading and description are displayed to the right of the image, where the heading is shown in big bold letters, and the content is and center-aligned. Below the image, another heading followed by a paragraph is displayed. A photograph of a person is displayed to the right of this paragraph. The whole page looks occupied with images and text.

Exciting times

Because of the synergy between HTML5 and CSS3, we live in a pretty exciting time for website creation. Things we once had to hack together are now natively supported (like columns of text), and HTML is getting more semantic and accessible.

That means more people with different abilities can use websites, search engines are getting more useful information, and websites should load faster, because you don’t need to add workarounds or extra processing to make certain aspects of your website work.

Much of that has to do with advancements in web browser development.

Wrapping Up

Another reason HTML and CSS are so often discussed together is that they’re both processed by the user’s browser. Other web technologies, programs, and apps work differently. Some might be processed by a server, or some on a developer’s computer and exported. HTML and CSS are uniquely positioned because the source code is accessible to the user in the browser.

When something new gets added to HTML or CSS, it’s up to each individual browser to implement the changes. That means that Google Chrome, Firefox, Safari, and Microsoft Edge may implement the new features at different times.

As a result, the websites you create might look different in each browser.

We’ll talk more about testing your websites in a later chapter, but knowing this will help you understand the true power of HTML and CSS: any device that has a browser can view your website.

It also means that you don’t need any additional tools, equipment, or expenses to start making websites. You can do it right from your computer.

Let’s do that now.

[image: Video play icon.] VIDEO 1.5
Browser Comparison

See how one website can look different when viewed in Chrome, Safari, and Microsoft Edge.

2

Creating a Website on Your Computer

In This Chapter

Using a Text Editor

Using Advanced Tools

Website Directory Structures and File Extensions

Using CodePen for Quick Tests

Wrapping Up

The beauty of HTML and CSS being interpreted by the browser is that you can basically create HTML and CSS on anything that has a browser. Although this book focuses on working on a Mac or a Windows computer, you can definitely get it done on a Chromebook, an iPad, or, in a pinch, even your phone.

It also means that (assuming you have a device with a browser on it) you can do it at no initial cost. In Chapter 21 you’ll learn about the two components you need to get your website online: a server (also known as a hosting service) and an address for that server (known as a domain). You don’t need either of them to start working with HTML and CSS, nor do you need to pay for any other software. Everything used in this chapter is free!

There are three components to creating a website on your computer:

	A text editor

	A folder structure

	A web browser

Using a Text Editor

A text editor is a program that lets you write plain text (that is, text without any formatting) on your computer. In Windows, Notepad serves that purpose, and macOS ships with TextEdit (FIGURE 2.1). Be careful: TextEdit lets you add simple formatting to plain text, so you’ll need to make sure to save the file in plain text format and add the .html extension to the file name. Don’t save the file in the default rich text format (.rtf).

[image: The TextEdit window for macOS is shown. The title of the TextEdit "This is Text Edit!" is displayed in the middle of the title bar. The toolbar with various menus is displayed, followed by the ruler.]

Figure 2.1 TextEdit for macOS

To create a new webpage:

	Open Notepad on Windows, or TextEdit on macOS.

In the following steps, enter each tag on a separate line of code.

	Type <html>.

	Type <head>.

	Type </head>.

	Type <body>.

	Type </body>.

	Type </html>.

	Save the file as index.html.

[image: Video play icon.] VIDEO 2.1
Creating a New Webpage

Use a simple text editor to create a basic HTML webpage and save the file.

[image: Video play icon.] VIDEO 2.2
Installing VS Code

Download, install, and customize Visual Studio Code.

Using Advanced Tools

There are also a multitude of advanced tools specifically for writing code and markup. They include features like:

	Syntax highlighting to make your code easier to read

	Autocompletion to allow you to write code faster

	Real-time compiling

	Error checking

	Version control

Some are souped-up text editors, like Notepad++ (for Windows) and Atom and Visual Studio Code (VS Code), which are both cross-platform.

Some are integrated development environments (IDEs) that have whole suites of tools built in. Coda for Mac is a popular one, but there’s also the cross-platform PHPStorm. These are generally used for programming in languages like PHP or Python.

I recommend VS Code (FIGURE 2.2). It’s free, well made, and stable, and the user interface is completely customizable. The ability to customize the interface of VS Code will make reading HTML and CSS easier, and it allows you to highlight the markup for an HTML tag or CSS statement, which we’ll cover in later chapters.

[image: An example of HTML markup codes written in the Visual Studio Code of MacOS is presented. In the HTML markup code, the HTML tags such as the doctype, html, head, meta, title, link, and body are highlighted.]

Figure 2.2 HTML markup in VS Code showing syntax highlighting in action

Website Directory Structures and File Extensions

With a code editor in place, it’s time to talk about the actual files you’ll need for your website, and the folder, or directory, structure you’ll use to store them.

Since you’re developing right on your computer, you could technically just throw all the files onto the desktop and work from there. But I strongly recommend against that. Instead, you should create a proper directory structure.

Your initial examples and projects will use only one or two files. But as your websites get more complex, you’ll need more files (and more types of files). Having a good file structure will keep your site organized. It will help you, and anyone else who might maintain your code, find things easily.

Naming conventions

Before you set up the directory on your computer, let’s talk about naming conventions. When it comes to naming files, you’ll use one file extension for HTML files (.html) and one for CSS files (.css).

All file names should be lowercase and should use hyphens (-) in place of spaces. So “My Cool File” would have the file name my-cool-file.html.

The same convention goes for directories: their names should be all lowercase, and if you’re going to use multiple words, use hyphens to separate them.

Tip

A file extension tells the computer how to handle the file. Usually this means telling the computer which program should open the file, or what kind of information the file contains.

[image: Video play icon.] VIDEO 2.3
Setting Up a Directory Structure

Your website will end up using a lot of files on your computer, and the way you organize those files into directories is important.

To set up a directory structure:

	If you’re on Windows, go to and open the My Documents folder. On macOS, open the Documents folder in your home, or user, folder.

	Right-click in the folder window and choose New Folder. This is the topmost folder in your directory structure, which is also called the root folder of the website.

	Name that folder website.

You can name the folder anything you’d like.

	Double-click the new folder to open it.

	Create a new folder called images.

	Find the index.html file you created in the previous task. Move it into the website folder.

Tip

This book uses Google Chrome throughout to test web pages that we create, but you can use Safari, Edge, Firefox, or the latest version of any modern browser you’d like!

Accessing your files

When you want to open an HTML file, you can double-click its icon on your computer to open it in the browser. Taking files online so that other people can open them is a bit of a different story, and I’ll talk more about that in Chapter 21. But there is one important piece of information you should know.

To access a file online, you need to know its path—that is, its location in the file system hierarchy. File paths use the format /directory/file-name. Many times, when we use a browser to visit a website, we don’t specify the name of the file we wish to access. The browser could be visiting a domain (peachpit.com) or a specific subfolder in that domain (peachpit.com/store/). A domain serves as the “address” for a website. You can think of it the same way you’d think of a mailing address for house.

Continuing the home address analogy, to get to a specific file on the web you have to know the route to follow to reach it. This is provided by the file’s Uniform Resource Locator (URL). The URL of a file incorporates the name of its domain and the file’s path (FIGURE 2.3).

[image: The directory structure of the website is shown.]

Figure 2.3 The URL of a webpage reflects its location in the website’s directory structure.

A figure depicts the organization of files into a hierarchy of folders. Here, MySite.com acts as the root directory. The subdirectory of MySite.com is a store directory. All HTML files, index.html, and about.html are contained in the directories. The root directory provides the location, MySite.com/store/cart.html towards the store directory.

What if you don’t know the exact URL of the page you want to visit, but you know the domain name of its website? In these cases, most web servers will choose a default file to show you. This default file is most often named index.html and sits at the root of the directory we’re accessing. So the main page for your website (its home page) will have the file name index.html.

Mimicking a web server

Another reason to forge good organizational habits early in this process is that web servers—where your files will eventually live—are organized in a specific way, with your site’s files living in some publicly available folder, usually named public_html, public, html, or even root.

If you’d like to get a good idea of how web servers work (although it isn’t necessary to understand this now), you could download a program that creates a small server on your computer. For Windows, that will be the software bundle WAMP (Windows, Apache, MySQL, PHP). For macOS, that will be MAMP (Mac, Apache, MySQL, PHP). Don’t worry. In both cases, all four components come in a single installer.

This is definitely overkill for what we need right now, but let’s file it under “good to know.”

[image: Video play icon.] VIDEO 2.4
How Default Files Work

To see how default files work, you’ll first visit a website where you specify the file name, and then you’ll visit two different URLs where the file name is not specified.

[image: Video play icon.] VIDEO 2.5
Setting Up MAMP

Install MAMP on a Mac, and then look at how the file structure lines up with the URL structure.

[image: Video play icon.] VIDEO 2.6
CodePen Demo

Use CodePen to create a quick HTML and CSS example.

Using CodePen for Quick Tests

There’s one more option for quickly testing code without the need for a web server, but you will need an internet connection.

The popular website CodePen provides an interface that lets you write and test code in a single window. You can see how this works in FIGURE 2.4.

[image: A screenshot represents the editing interface of the CodePen website.]

Figure 2.4 The CodePen code editing interface

The code editing interface of the online editor CodePen shows two vertical sections one for code editing and the other for displaying the output. The code editing section has two separate horizontal sections one for editing HTML markups and another section for editing CSS codes. A third section is blank. The HTML and CSS codes are written in the respective sections. At the bottom, the output is displayed on the output screen. Save, settings, change view, sign up, and log in options are provided at the top-right corner of the interface.

You enter your HTML and CSS into one of the panels at the top of the page, while the bottom of the page displays the results in real time. So if you want to rapidly see the effects of what you’re writing without opening and refreshing your browser, CodePen is a great option. It’s especially good for rapid prototyping.

Wrapping Up

Now that you have your text editor, your local website directory, and a fast way to test code, you’re ready to start writing HTML.

In the next chapter we’re going to dive into how HTML works. Let’s do it!

3

HTML Syntax

In This Chapter

How HTML Tags Work

Adding Comments

Structuring an HTML Page

The <meta> Tag

What Is Semantic Markup?

Wrapping Up

As mentioned in Chapter 1, HTML is the language that defines every webpage. But what exactly does that mean, and what are the terms we should use when talking about HTML?

HTML is a set of text tags. These tags are inserted into the content of the HTML files that create your webpages, and they define the type of content being displayed in the browser.

In this chapter you will learn all about HTML, from the terms you need to know, to how to write tags, to the general makeup of an HTML document.

How HTML Tags Work

Take a look at one of the most common HTML tags (FIGURE 3.1). The <p> is a standard HTML tag. It starts with a less-than sign (<), followed by the letter p (the name of the tag), and ends with a greater-than sign (>). Taken together, these constitute an HTML tag.

[image: A figure shows an example of an HTML element. The line numbers from 42 to 51 are listed vertically on the left. In the 46th line, opening paragraph tag, content, and closing paragraph tag (with a forward slash) are displayed, which reads <p>This is a paragraph</p>.]

Figure 3.1 An HTML element

Note that HTML tags usually work in pairs that frame the content to which they apply. The only difference between the first and second p tags is the addition of the forward slash (/) after the left angle bracket that encloses the second p tag. This denotes the closing tag, and treated as a unit, the whole statement creates an HTML element: opening tag, content, and closing tag.

The p in between the angle brackets is the character—this tells the browser what the content is. In this case, “p” stands for “paragraph” and causes the browser to display the content between the tags as a block of text.

One might read this aloud as, “An opening paragraph tag, followed by text, then a closing paragraph tag.” Depending on the tag, the browser will display the text differently.

Tip

You’ll often see the less-than and greater-than symbols that enclose a tag referred to as left and right angle brackets, respectively, even though they’re not technically equivalent. Another convenient way to refer to the symbols collectively is to call them inequality symbols.

[image: Video play icon.] VIDEO 3.1
Changing a Tag

I’ll demonstrate how changing a tag changes the way the browser displays text.

[image: Video play icon.] VIDEO 3.2
Excluding Necessary Attributes

See what happens if you exclude a necessary attribute from an HTML tag, such as or <a>.

To change an HTML tag and see the result in the browser:

	In your text editor, type <p>This is text</p> (FIGURE 3.2).

[image: A figure shows an example of HTML tags to tag a text as a paragraph. The line numbers from 1 to 5 are listed vertically on the left. In the third line, opening paragraph tag, content, and closing paragraph tag (with a forward slash) are displayed, which reads <p>This is text</p>.]

Figure 3.2 Using HTML tags to define text as a paragraph

	Save the file as tag.html.

	Double-click the file to open it in your browser (FIGURE 3.3).

[image: The browser displays the output of the tagged text as "This is text," left-aligned.]

Figure 3.3 How the tagged text looks in a browser

	Back in the editor, replace <p> with <h1>.

	Replace </p> with </h1> (FIGURE 3.4).

[image: A figure shows an example of an h1 tag in HTML. The line numbers from 1 to 5 are listed vertically on the left. In the third line, opening header tag, content, and closing header tag (with a forward slash) are displayed, which reads <h1>This is text</h1>.]

Figure 3.4 The same bit of text but with <h1> tags replacing the <p> tags

	Save the file.

	In the browser, refresh the page to see how the text changes size and style (FIGURE 3.5).

[image: The browser displays the output of the header tag with the text as "This is text," left-aligned. The font size is larger than the paragraph tag content.]

Figure 3.5 Our familiar text, now rendered as a top-level heading

Attributes

There’s one more key piece of text you might find in HTML tags: attributes. Attributes provide additional information about the element they’re being applied to. Let’s look at our paragraph tag again, this time with an attribute:

Click here to view code image

<p lang="en">This is a paragraph.</p>

The attribute should go after the character in the opening tag. There are two parts to an attribute: the name (lang) and the value (en). This attribute tells the browser, “This paragraph is in English.”

Two other notes about attributes:

	Elements can have any number of attributes.

	Some elements, like images () or hyperlinks (<a>), require specific attributes to work properly.

Adding Comments

Finally, it’s considered a best practice to annotate your HTML code with information about the code itself by adding comments. You can do this to label sections of the code or to explain the purpose of individual pieces of code. These comments are helpful when you revisit the code later to update it, or especially when someone else works on the code.

Comments don’t appear on the page when it’s rendered in a browser. This is useful during development, because you can “comment out” a piece of code to try out the effect of turning it off temporarily without actually deleting it from the file.

To add comments to HTML:

	In your HTML file, find the spot where you want the comment to start and type <!--.

	Do one of the following:

If you’re adding a comment, type the text of the comment followed by -->.

If you’re commenting out existing code, place the insertion point at the end of the code and type -->.

See CODE 3.1 for an example of commented code. FIGURE 3.6 shows the rendered page.

[image: A screenshot shows the output of code 3.1 on the rendered page in a browser. The output has a heading, "Hi! I'm Joe Casabona." at the top. Below this heading, a description is displayed with few links. The commented code of the page is hidden to the user.]

Figure 3.6 When Code 3.1 is rendered in a user’s browser, the commented code is invisible to the user.

Tip

Even though commented code doesn’t appear when a browser renders the page, the comments are not completely hidden! Any user can view the page’s source code (you’ll learn how to do that in Chapter 22) and see the full text of any comments, so be careful not to store anything embarrassing or offensive in comment text.

CODE 3.1 This code contains two comments that mark the beginning and end of a section of the page, and one paragraph element that’s been commented out.

Click here to view code image

<!doctype html>

<html class="no-js" lang="">

 <head>

 <link href="style.css" rel="stylesheet" type="text/css" />

 <title>Joe Casabona - Done for You Podcasts and Courses</title>

 </head>

 <body>

 <main>

 <h1>Hi! I’m Joe Casabona.</h1>

<!-- Start of Site Description -->

<div>

 <p>I create online courses at

 Creator Courses

 and for

 LinkedIn

 →Learning

, host a podcast called

How I Built It,

and have been making websites for 20 years.</p>

</div>

<!--

<p>This content won't display because it's been commented out.</p>

-->

<!-- End of Site Description -->

 </main>

 </body>

Structuring an HTML Page

Now that you have a basic understanding of how HTML tags work, you need an understanding of the structure of an entire page. The essential components of a standard HTML page can be distilled into a boilerplate file. You can use this boilerplate file as a template for new HTML documents (FIGURE 3.7).

[image: A figure shows the boiler plate file of HTML markup. The file name boilerplate.html is displayed on the top left corner. The following tags are written in the file in the same order. <!doctype html>, <html class="no-js" lang="">, <head>, </head>, <body>, </body>, and </html>.]

Figure 3.7 HTML boilerplate file markup

These components should exist on every HTML page:

	A DOCTYPE declaration (to tell the browser what version of HTML we’re using) as the very first line.

	An opening <html> tag. All other tags on the page will be placed between the opening and closing html tags.

	Opening and closing <head> tags.

	Opening and closing <body> tags.

	A closing </html> tag ends the document. Nothing should come after that.

Tip

Older versions of HTML required that “DOCTYPE” be set in all uppercase letters, but in HTML5 the term is case-insensitive.

<html>, <head>, and <body> tags

Aside from the DOCTYPE, three different tags define the overall structure of a webpage:

	The <html> tags mark the opening and closing of the entire document. Every other tag (aside from DOCTYPE) will go between these tags.

	The <head> element is where information about the page goes. In most cases, none of this information will be displayed in the browser window.

	The <body> element is where all the page content goes. If there’s text between the <body> and </body> tags, it will likely be displayed to the user.

There are some exceptions to these rules about the <head> and <body> and what gets displayed. A good example for the <head> is the <title> element. The <title></title> tags go in the <head> and define the text that gets displayed in the tab of your browser (FIGURE 3.8).

[image: The browser window shows the title element "Joe Casabona - Done for you" at the top. The address bar of the tab is displayed with the address casabona.org.]

Figure 3.8 The <title> element as displayed in the browser

The <meta> Tag

The <meta> tag, much like the <title> tag, belongs in the <head> of the document. However, unlike <title>, this displays no information to the user.

Instead, the <meta> tag is used to send information about the web page to search engines. Its most common attributes are name and content, which are used for name-value pairs. One example of this is to provide the description of a document:

Click here to view code image

<meta name="description" content="A basic HTML boilerplate file.">

A list of common values for the name attribute are:

	author: Defines the name of the author of the document

	description: Provides the description of the document that should show up in search engine results

	color-scheme: Determines whether a page supports dark mode on devices that allow it.

	viewport: Gives information about the initial size of the document. This is used on mobile devices only.

	robots: Determines whether the document should be included in search engine results.

Tip

The <meta> tag does not use a closing tag or slash.

Tip

The name/content combination for the <meta> tag is the most common. But there are other attributes for more advanced definitions and functionality. You can find them here: developer.mozilla.org/en-US/docs/Web/HTML/Element/meta

To create an HTML boilerplate file:

	Create a new file in your text editor.

	Type <!DOCTYPE html>.

This is the DOCTYPE declaration. In HTML5, just “html” is used. In older versions, the definition is a bit more verbose.

	Type <html> to start the document.

	Type <head>.

	Type <title>HTML Boilerplate</title>.

	Type <meta name="author" content="your name">.

Be sure to replace your name with your own name.

	Type </head>.

	Type <body>.

	Type </body>.

	Type </html> to close the document.

	Save the file as boilerplate.html in your website folder.

[image: Video play icon.] VIDEO 3.3
Creating an HTML Boilerplate File

I’ll walk you through creating an HTML boilerplate file.

What Is Semantic Markup?

As you’ve learned, the tags tell the browser the kind of content being presented. But why is that important?

By using the appropriate tags, we’re describing our content—to the user, to the browser, and to search engines and other computer-based processors. This allows each to interpret the information the way they see fit. This could mean displaying it in a certain color, or highlighting it in specific search results.

For example, Google displays site navigation directly in search results, as long as the appropriate semantic tags are used (FIGURE 3.9).

[image: A screenshot features the site navigation links on the webpage as a result of any particular search.]

Figure 3.9 Site navigation links can be displayed in search results.

The webpage of Google shows a few search results. The title "Joe Casabona - Done for you Podcasts and Courses" is displayed on the top of the search results. The site navigation links such as blog, about me, services, and speaking are displayed below the search result, the links are highlighted. The photograph of the author Joe Casabona is displayed on the right side. Other possible results related to the search are displayed at the bottom of the page.

In short, semantic markup means our webpage is more accessible to everyone. It can be more easily translated for international visitors, and assistive technology (like screen readers) can understand its content better.

Wrapping Up

HTML tags are the building blocks of the web. They create structure and assign meaning to our text. This helps everything and everyone who visits your webpage understand it better.

Now that you have a basic understanding of how HTML works and why we should use it, let’s use it for our most common task: formatting content.

[image: Video play icon.] VIDEO 3.4
Screen Reader in Action

Let’s see how assistive technology takes advantage of semantic markup.

4

Basic HTML Elements

In This Chapter

HTML Text Formatting

Paragraphs and Headings

Lists

Quoting a Block of Text

Formatting Text Inline

Marking Up Code

Wrapping Up

There’s a wide range of HTML elements, and technically all formatting of those elements happens in CSS. But certain HTML elements come with semantic meaning for how text should be presented on the screen.

In this chapter, we look at the most basic elements, and how they can come together to create a well-formatted, readable, and meaningful page.

HTML Text Formatting

If you’ve created text in Word or Google Docs, you’ll know that formatting can be done with the press of a few buttons. Select the text and choose a style from the menu, and formatting is applied. White space is added between paragraphs and headings, bullets are added to unordered lists, you can change the color of text, and more.

It’s not quite like that in HTML. If you just write text in an HTML document, there will be no formatting. All the text will run together, new lines will be ignored, and certain characters will not display properly.

While browsers do use a default style sheet to format all HTML elements, we still need to use HTML to describe every piece of content on the page. Without the HTML, the browser won’t know what kind of text is on the page.

So let’s start with the most common elements: headings and paragraphs.

Paragraphs and Headings

You were introduced to paragraphs in the last chapter. They are blocks of text that generally contain one idea, in one or more sentences.

To create paragraphs:

	Open the boilerplate.html file and save it as chapter4.html.

	On a new line after the opening <body> tag, type <p>.

	Type This is a paragraph!.

	Type </p>.

	On a new line, type <p>This is another paragraph.</p>.

	On a new line, type <p>This is a third paragraph.</p>.

	Save the file, then open it in your browser.

You’ll end up with what you see in FIGURE 4.1.

[image: The output window in HTML shows three lines of text tagged as paragraphs: This is a paragraph!, This is another paragraph, and this is a third paragraph.]

Figure 4.1 Three blocks of text, formatted as paragraphs in HTML

[image: Video play icon.] VIDEO 4.1
HTML with No Elements

To see how much of an impact elements have on a webpage, let’s look at an HTML page that has no markup.

[image: Video play icon.] VIDEO 4.2
Creating Paragraphs

As an exercise, create a few paragraphs on a page and then see what they look like in the browser.

[image: Video play icon.] VIDEO 4.3
How to Order Headings

Because of the strong semantic meaning associated with headings, they need to be ordered properly.

Headings are slightly different. HTML allows for six levels of headings, with Heading 1 (<h1>) being the most important and Heading 6 (<h6>) the least important (FIGURE 4.2).

[image: The syntax and the output for all the heading tags from <h1> to <h6> available in HTML are shown.]

Figure 4.2 All the headings available in HTML, from <h1> to <h6>

The text editor window on the left displays the heading tags in HTML. The heading tags from h1 to h6 are displayed as follows: <h1>This is a Heading 1</h1>, <h2>This is a Heading 2</h2>, <h3>This is a Heading 3</h3>, <h4>This is a Heading 4</h4>, <h5>This is a Heading 5</h5>, and <h6>This is a Heading 6</h6>. The web browser on the right displaying the output of the headers from <h1> to <h6> are as follows: This is a Heading 1, This is a Heading 2, This is a Heading 3, This is a Heading 4, This is a Heading 5, and This is a Heading 6. These texts are formatted in bold and the font size decreases from top to bottom.

The principal role of headings is to create a visual hierarchy on a page. Paragraphs should be organized into sections, with headings at the top of those sections.

Headings also add meaning to the text—meaning that’s important to search engines.

Semantically, there should only be one Heading 1 on a page. As we move down the page, we should make sure to keep our headings in the right hierarchical order.

The smaller the heading number, the bigger the idea it should represent. So <h2> tags should represent only the big ideas on a page.

Lists

After paragraphs and headings, the next most common element you’ll find in text is a list. If you look back at a Word or Google Doc you’ve done recently, you’ll likely find bulleted lists show up at least a few times.

There are two different types of lists you can create in HTML: ordered and unordered.

Ordered lists (by default) are prefixed by numbers. Unordered lists have bullets ([image: Bullet point]) prefixed.

Depending on the type of list you want to create, use an tag (for an ordered list) or a tag (for an unordered list). Between the opening and closing tags, each item on the list will be enclosed in tags (for list item).

To create an unordered list:

	In your HTML file, type to begin the list.

	Type Apples to create the first of three items on the list.

	Type Bananas.

	Type Cherries.

	Type to end the list.

And in FIGURE 4.3, you see how it looks.

[image: The output of the unordered list created by the tag in HTML is displayed in a browser. Following are listed that are prefixed with bullets: Apples, Bananas, and Cherries.]

Figure 4.3 The unordered list you created, as rendered in the browser

Tip

You’ll learn how to change the default symbol for bullets when we talk about CSS, but you can use anything to represent the bullets, even your own images. Visually, though, ordered lists should always be represented with numbers.

Tip

Notice that list items are indented. When embedding HTML elements within other elements, it’s common to indent them to make the markup more readable.

[image: Video play icon.] VIDEO 4.4
Creating Ordered and Unordered Lists

Learn how to create both types of lists, and nest one list within another.

Quoting a Block of Text

Traditionally, in printed material, quotations of substantial amounts of text are set apart from the surrounding content by indentations or changing the type style. HTML includes the block-level element <blockquote> (which conveniently contains “block” in its name) to accomplish the same thing in the browser. By default, <blockquote> elements are indented compared to other block elements, but you can use CSS to change the indentation.

To provide a source for the quotation, include the cite attribute with the URL of the source as its value. You can also use the <cite> element to give the title of the source in text (CODE 4.1, FIGURE 4.4). It’s normally styled in italics by the browser, but you can change that with CSS. If you wish to provide a link to the source as well, combine the <cite> element with an <a> element.

CODE 4.1 An example of a <blockquote> with the cite attribute together with an example of the <cite> element

Click here to view code image

<p><cite>The Importance of Being Earnest

→</cite> is only one of many sources of

→witty sayings by Oscar Wilde. To take

→one example:</p>

<blockquote cite="https://en.wikiquote.org

→/wiki/Oscar_Wilde">

<p>I never travel without my diary. One

→should always have something sensational

→to read in the train.</p>

</blockquote>

[image: The output of quoting a block of text is displayed in a browser. The paragraph content at the top is left aligned and another paragraph below this is center aligned. The cite element "The Importance of Being Earnest" is styled in italics.]

Figure 4.4 Code 4.1 as rendered in a browser

To quote a paragraph with citation:

	Type <blockquote>.

	Type <p>.

	Type the quote.

	Type </p>.

	Type <cite>.

	Type the source of the quote.

	Type </cite>.

	Type </blockquote>.

Formatting Text Inline

The last of the basic elements we’ll cover are inline elements—that is, elements that are used inside other elements.

Paragraphs, headings, and lists are “block-level” elements. They are self-contained sections that start on a new line and take up the entire width of the container. But inline elements do not start on a new line and are only as wide as the content. An example is the tag.

In the following task you'll create a short paragraph (a block element) and change the formatting of some of the text in the middle of it (an inline element).

To bold text with the tag:

	Type <p>We use the strong tag to.

	Type draw attention.

	Type to text by bolding it.</p>.

You can see the result in FIGURE 4.5.

[image: The result of the code with the paragraph and strong tags shows the following, We use the strong tag to draw attention to text by bolding it. The words "draw attention" are bolded to highlight the importance among the other words.]

Figure 4.5 The paragraph produced by the code in this example

Notice that the tag is inside the <p> tag but still inline with the text. And by default, the browser bolds text. However, there’s another benefit to using the tag. It tells browsers and search engines that this text is slightly more important than the normally formatted text.

Tip

To draw attention to text without making it semantically more important, you can use the tag instead. In HTML5 this is the Bring Attention To element; previously it was known as the Boldface element. It should be noted that you shouldn’t rely on either one (or) to bold text. That should be done with CSS.

The catalog of tags for formatting inline text is extensive; here are the most common ones (FIGURE 4.6):

	 is used for emphasis. It shows as italicized text. Use the <i> tag if you want to set the text apart without semantically noting “emphasis.”

	<u> is used to underline text. It shows as text with a line drawn under it.

	<s> is used to cross something out because it is no longer correct. It shows as text with a line through it. You may also come across <strike> in older code, but it’s now been replaced by <s>.

	 looks similar to <s>, but lends a slightly different meaning to text. marks something that has been deleted from the original document.

	<ins>, which is usually underlined by default, notes something that has been inserted into the document.

	<mark> is used to highlight text. It adds a yellow background to text, as if a highlighter pen has been drawn across it.

	<small>, which renders text smaller than the default size, is used for notes, side comments, and fine print.

	<sup> is superscript, and makes text appear smaller and raised slightly above the baseline. This is often used for exponents, or bibliographic citations.

	<sub> is used to display subscript text. Like <sup> reduces text size but is lowered below the baseline than normal text.

	<time> represents a specific time and is often combined with the datetime attribute to convert human readable time into a machine-readable format.

You’ll find a list of valid datetime values here: developer.mozilla.org/en-US/docs/Web/HTML/Element/time.

	<abbr> represents an abbreviation and is usually rendered with a dotted underline. You can include the fully expanded version of the abbreviation in the title attribute, which is usually displayed in a tooltip on mouseover.

	
 creates a line break. It’s useful for situations when you want to make lines a specific length, as in poetry or in a mailing address.

[image: The list of formatting markup and their default styles in a browser is featured.]

Figure 4.6 All of the listed formatting markup and their default styles in Chrome.

The different formatting of text with the default styles in chrome are displayed. The different formats are as follows. This is emphasized text()- This text is italicized as a result of emphasis tag . This is underlined text (<u>)- This text is underlined. This is crossed out / incorrect text (<s>)- This text is struck through. This is deleted text ()- This text is struck through. This is inserted text <<ins>). This is marked text (<mark>)- This text is highlighted. This is small text (<small>)- This text is small in size when compared with other text. Normal text for reference This is superscript (<sup>)- "This is superscript" is in superscript. Normal text for reference This is superscript (<sub>)- "This is superscript" is in subscript. This is the time element: 12:00 am. A cursor over the text HTML shows the abbreviation "Hypertext Markup Language" as a result of abbr tag. An example of a line break tag is also displayed.

Tip

This is only a sampling of the tags available in HTML for formatting inline text. You can find a more comprehensive list of tags at developer.mozilla.org/en-US/docs/Web/HTML/Element#Inline_text_semantics

[image: Video play icon.] VIDEO 4.5
Converting a Fully Formatted Word Doc to HTML

You’ve learned enough formatting in HTML to start with a Word document and convert it to HTML.

Marking Up Code

There are also two HTML tags specifically used for marking up code:

	<code> is displayed in a monospace font and is used to represent a short snippet of computer code.

	<pre> is also displayed in a monospace font and represents preformatted text. That means any text, including white spaces, appears exactly as it was typed.

Tip

When using < and > in the <code> element, you should use the HTML entities: < and >, respectively. To learn about HTML entities visit developer.mozilla.org/en-US/docs/Glossary/Entity.

If you need to display multiple lines of code, place the <code> element inside a <pre> element. The only time you should use <code> by itself is for an inline element (CODE 4.2, FIGURE 4.7).

CODE 4.2 Examples of a <code> element inline in a paragraph, and another where it contains several lines of code inside a <pre> element.

Click here to view code image

<p>If you need to display multiple lines of code, place the <code> <code> </code>element

→inside a <code> <pre></code> element. </p>

<p>In completely unrelated news, here’s a bit of the code for a table that you’ll encounter

→again in Chapter 8:</p>

<pre><code>

<table border="1">

 <thead>

 <th colspan="4">Aaron Judge</th>

 <th>RF</th>

 </thead>

 <tbody>

 <tr role="header">

 <td>Year</td>

</code></pre>

[image: The browser window shows the output of the code 4.2.]

Figure 4.7 Code 4.2 as rendered in Chrome.

The browser window displays the following: If you need to display multiple lines of code, place the <code> element inside a <pre> element. In completely unrelated news, here's a bit of the code for a table that you'll encounter again in Chapter 8: <table border="1"> <thead> <th colspan="4">Aaron Judge</th> <th>RF</th> </thead> <tbody> <tr role="header"> <td>Year</td>

Working with Other Languages

If you’re working with languages that use a right-to-left (RTL) script like Arabic or Hebrew, then there are two elements that will be helpful to you: <bdi> and <bdo>.

<bdi> is the Bidirectional Isolate element. Place text within it to isolate it from the rest of the text around it to prevent rendering issues. This is helpful if your main text uses a left-to-right (LTR) script but you want to include a quotation or a name written in a right-to-left script.

If you want to override the current directionality of the text (which is generally defined by the browser), you can use the Bidirectional Text Override element (<bdo>) element with the dir attribute. It accepts the values rtl or ltr.

Finally, if the entire direction of the page is RTL, you can apply the dir="rtl" attribute to the <html> element.

There’s a thorough explanation at w3.org: www.w3.org/International/questions/qa-html-dir.

Wrapping Up

With that, you have the basics down. You know how to format text and create a nice visual hierarchy in the browser. This will make your website much easier to read. Now let’s talk about what makes the web … well, the web: hyperlinks!

5

Links

In This Chapter

Link Markup

URL Structure

Internal vs. External Linking

Relative vs. Absolute Linking

Other Types of Links

Link Targets

Wrapping Up

The element that has made the web at least somewhat interactive since the very beginning is the hyperlink.

Hyperlinks, or simply links, allow us to connect pages to each other to form a website, and let us send visitors to pages that are external to our website. They play an important role in the organization and SEO (search engine optimization) of websites. But how exactly do they work? What can we link to?

Link Markup

A link (or hyperlink) is a way to connect one webpage to another. Links also allow users to jump to a different section of a webpage, download documents, and more. To distinguish them visually from other webpage content, textual links are usually given a distinctive appearance, using color (typically blue for a link that has not yet been visited), special text formatting, or both.

Links are represented in HTML by the <a> (or anchor) tag. The <a> tag is one of those HTML tags that can include a number of attributes.

In this case, the link takes users to a page on a different website, so we need to include the attribute href, for hypertext reference. The value of the href attribute is the URL (Uniform Resource Locator) of the destination—the page you’re linking to. The enclosed content of the <a> element is typically some label text—usually the name of the page the link will take the user to. This label is the only part of the link that the user sees.

Tip

The <a> tag does not absolutely require the href attribute, but it must be present for the tag to work correctly as a hyperlink.

Let’s see how to set up the markup for a link to Google.

To create a hyperlink:

	In your HTML file, type <a to start the anchor element.

	Type href="https://google.com"> to define the destination of the link.

	Type Visit Google to provide a label for the user to click.

	Type to finish the link (FIGURE 5.1).

[image: The markup to create a hyperlink to google.com is shown, which reads Visit Google]

Figure 5.1 The markup for the link to google.com

	Save the file and view it in your browser (FIGURE 5.2).

[image: The output of the markup for the Google link displayed in a browser shows "Visit Google." The hyperlink is in color and underline.]

Figure 5.2 This hyperlink to google.com stands out by its color and underline.

Tip

Link labels don’t have to be text. As you’ll learn in Chapter 7, you can use an image as a clickable link too.

While the markup for a link may look straightforward, there are several nuances to creating links. Key to creating links is understanding how URLs are structured.

[image: Video play icon.] VIDEO 5.1
The Components of Hyperlink Markup

Create a simple link to a different (external) website.

[image: Video play icon.] VIDEO 5.2
Walking Through a URL

Take a closer look at Figure 5.3, and learn more about each section in detail.

[image: Video play icon.] VIDEO 5.3
HTTP vs. HTTPS

Learn how the HTTP and HTTPS protocols are different.

URL Structure

At this point, it’s worth taking a closer look at URLs. In FIGURE 5.3, you’ll see the components of a common URL.

[image: A figure depicts the components of a URL.]

Figure 5.3 The components of the URL https://www.wordpress.org

The components of the URL https://www.wordpress.org is shown. Here, https:// represents the protocol- This tells the server and browser how to communicate. It can be https (secure) or http (not secure). www. represents the subdomain- A separate section of the website. www is often used as an alternative to the top domain. This is optional. wordpress.org represents the Domain name- The name and top-level domain (TLD) are what you get when you purchase, or register, a domain name. The subdomain is optional, and both the subdomain and protocol can be configured through hosting. In which, wordpress represents the Name- The name of the website, and .org represents the TLD, or extension- There are many to choose from including .com, .org, and .me. Certain TLDs, (such as .edu, .gov, and country TLDs like .it) require verification to make sure the purchaser is authorized to use the TLD. In other words, I would not be able to purchase a .gov TLD because I am not a government entity.

Tip

URLs are the most common type of a broader set of Uniform Resource Identifiers (URIs). URIs tell the browser how to handle the resources that are being linked to.

URLs are made up of these sections:

	The protocol (either http or https).

	The subdomain (optional).

	The name of the website.

	The top-level domain (or TLD). This is also known as the extension.

To link to a specific file within a site, you need to provide these items as well:

	The path (folder hierarchy) containing the file.

	The file name.

In order to reach a website at all, you need to provide at least these three parts of the URL: the protocol, the name, and the TLD. Paths, subdomains, and file names need to be included only when you want to reach those specific areas of the website.

Ultimately, where a link sends your users is based on what kind of URL—or how much of the URL—you include.

First, let’s look at how linking to pages within your website compares with linking to pages outside your website.

Internal vs. External Linking

This concept is pretty clear. Internal links are links to pages within your own website (or on the same domain). External links are links to someone else’s webpage.

Tip

Even though subdomains appear to be part of your website, they are still considered external. For example, sub.casabona.org is not the same site as casabona.org.

As far as markup goes, internal and external links use exactly the same structure, except (as you’ll learn later in this chapter) external links are always absolute. That is, they need to include the entire URL, including the protocol. If one of those items is missing or incomplete, the link will not work.

If you’re linking internally, there’s something else to consider: you don’t always need to include the entire URL, because it’s implied. This is the result of the difference between absolute and relative links.

[image: Video play icon.] VIDEO 5.4
Errors in External Links

How important is it to include the protocol? This video shows what happens when an external link isn’t structured properly.

Relative vs. Absolute Linking

Back in Chapter 2, you learned about file structures and how websites are organized (FIGURE 5.4). You also saw how URLs incorporate part of a file’s directory structure. When we talk about relative versus absolute linking, we’re talking about how much of the URL and directory structure we want to include.

[image: A figure represents the structure of the directory created in Chapter 2.]

Figure 5.4 The directory structure we created in Chapter 2

The directory structure in Chapter 2 summarizes the following information: Root directory- MySite.com is mainly linked to four files/directories such as index.html (file), about.html (file), store (directory), and Centnet.html (file). Further, the directory store is linked to another set of files within it, which are index.html and cart.html. The absolute link for store and cart.html is MySite.com/store/cart.html, which is also linked under the root directory MySite.com.

With an absolute link, you include the entire URL in the anchor element markup. Always use an absolute link when linking to an external site, but you'll usually use relative links for files on your own site.

Tip

There are times when an absolute link is appropriate even for files within your own site. This is generally the case with dynamically generated content—that is, content generated automatically by a script.

Say you want to link to a specific file called cart.html on the website mysite.com. You’ll need to know the location of the file in the site’s directory structure to link to it. If cart.html is in a top-level folder (i.e., a folder in the root directory) called /store/, then the absolute link for this file is https://mysite.com/store/cart.html.

Relative links, on the other hand, don’t include the complete URL of the location you’re linking to. The structure of the link markup is based only on where the linked file is relative to the current file. So relative links are commonly used to link within pages on a single website, whose files share one common directory.

There are several different types of relative links we can create, as shown in TABLE 5.1.

	Same folder: The linked file is in the same folder as the linking file. The relative link would just be the file name (e.g., file.html).

	Child folder: The linked file is one folder down from the linking file (in other words, in a folder contained in the linking file’s folder). The relative link starts with a forward slash (/), then includes the folder name, another forward slash, and the file name (/folder-name/file.html).

	Parent folder: The linked file is one folder up from the linking file. The relative link would be two periods and a forward slash (../) and then the file name (../file.html).

These patterns can be repeated for any number of folders. So if a file is three folders up from the current file, the relative link would be ../../../file.html. And there can be great-, great-great-, great-great-great-grandchildren, and so on.

Table 5.1 Types of relative links

	Relative link type

	Relative path

	Example from our sample directory

	Same Folder: Both files are in same folder

	file.html

	From the home page: about.html

	Child: Linked file is in next folder down

	/folder-name/file.html

	From home: /store/cart.html

	Grandchild: Linked file is two folders down

	/child-folder/folder-name/file.html

	From home: /store/orders/001.html

	Parent: Linked file is next folder up

	../file.html

	From /store/ to home: ../index.html

	Grandparent: Linked file is two folders up

	../../file.html

	From /store/orders/ to home: ../../index.html

Looking at our example website again, to make a link from the home page (mysite.com/index.html in the root directory) to cart.html, you could use a relative link. Since cart.html is in the child folder /store/, we could link to it using a relative path: /store/cart.html.

To create a relative link:

	In your website folder on your computer, create a new folder called images.

	Go to unsplash.com and download any image you’d like. Save it into the images folder you just created and name the image file unsplash.jpg.

	In the website folder, make a duplicate of the file boilerplate.html and rename the new file 5.html.

	Open the file 5.html.

	Right after the opening <body> tag, type <a href=".

	Type /images/unsplash.jpg">.

	Type Check out this image!.

	Type .

	Save the file and open it in your browser.

	Click the link to display the image in the webpage.

[image: Video play icon.] VIDEO 5.5
Creating Relative Links

Let’s take a closer look at the markup for creating relative links, and learn how those links behave in the browser.

Other Types of Links

Aside from internal and external links, here are two other types of links you can add to a webpage. You can link to a specific section of a page, and you can link to other applications, like email.

Linking to a specific section of the page

This is a great way to highlight specific content or drive a user to a pertinent area. There are two parts to this link:

	Assign a unique name to the section you want to link to by including the id attribute. For example, say you want to add a link to your page that takes people to a contact form. If the contact form is under the heading “Contact Me!” you would assign an id attribute ("contact", perhaps) to the heading:

<h3 id="contact">Contact Me!</h3>

	Link to that id in the anchor tag:

Jump to Contact Form

The id attribute is often assigned to a heading tag (as in the “Contact Me!” example) because heading tags denote the beginnings of sections. But id is a standard attribute that can be applied to any HTML element.

In our link, we identify the section using the hash tag, or number sign (#), followed by the value of the id attribute (e.g., #contact). The hash tag tells the browser “this is a specific location on the page.”

[image: Video play icon.] VIDEO 5.6
Link to a Specific Location on a Page

You’ll see the markup for linking to a page section, as well as how the browser behaves when you link to a page section.

To create a link to a specific location on a page:

	In your HTML file, type or copy and paste several text paragraphs (be sure to enclose them in <p> tags) between the opening and closing <body> tags. If you wish, make the last paragraph a brief biographical sketch of yourself.

	Place the insertion point in front of the last <p> tag to create a heading before the last paragraph. Type <h3>About Me</h3> to define the heading.

Now, add an id attribute to this heading so you can link directly to it.

	Place the insertion point in the opening tag of the heading element and type id="aboutme".

The entire line of code should look like this:

<h3 id="aboutme"

	Go back to the top of the document, and right after the opening <body> tag, type <a href=".

	Type #aboutme"> to tell the link to jump to the anchor you just created.

	Type Skip to "About Me" to create the label for the link that will be displayed to the user.

	Type to close the anchor element.

	Save the file and open it in a browser to test the link.

In many real-world implementations, you’ll see the browser smoothly scroll to the linked section. In order to achieve that effect, you’ll need to add some CSS to your website.

Linking to more than just webpages

Finally, links can do more than just take you from one webpage to another. There is a growing set of Uniform Resource Identifiers (URIs) that tell the browser which specific applications a link should open in. While email links are the most common, you can also specify telephone numbers (tel:), file servers (ftp:), and more.

Email links are links that will open an email app on your device, with the email address (and potentially other information) filled in. To create one, you structure the link like this:

Click here to view code image

→Email Joe

Notice that there’s no URL here, just the prefix mailto: and the email address.

Tip

Using mailto: is a great way to get a lot of spam email. A much more secure and user-friendly way to add an email form to your webpage is to use a form. You’ll learn about forms in Chapter 9.

[image: Video play icon.] VIDEO 5.7
Advanced Mailto Links

You can include more than just the main recipient’s email address in email links. You can also add CC and BCC addresses, attach a subject line to the message, and even include message text.

[image: Video play icon.] VIDEO 5.8
Open a Link in a New Window

Construct a link that opens a page in a new window.

Link Targets

Before we wrap up the chapter, there’s one more attribute you should know about, and that’s target.

You’ve likely browsed websites on which the links opened in new tabs or windows. A common reason is that the webpage author hopes the user will close the new tab when they’re done and return to their site.

That’s achieved by using the target attribute and the value blank. For example, to open casabona.org in a new tab, use this link:

Click here to view code image

<a href="https://casabona.org"

→target="_blank">Link that opens in a

→new tab.

Other Link Targets

While not as common as _blank, several other link targets can be used in HTML:

	_self opens the link in the same window (the default).

	_parent: If the current page was opened in a new window, you can use this to open subsequent links in the original window.

	_top opens the page in the full body of the window (useful if using the <iframe> element).

	An <iframe> is a way to embed the content of one page into another, and is now used much less often than in the past. Today, you’re most likely to encounter them when you embed a YouTube video on a page, which you’ll learn about in Chapter 7.

	framename opens the page in a specific <iframe>.

To create a link that opens in a new window:

	In your HTML file, type <a href= "https://google.com".

	Type target="_blank">.

	Type Visit Google.

	Save the file.

	Open the file in your browser and click the link to see it open the home page of google.com in a new window.

While it’s considered best practice to open links in the same window, there might be legitimate reasons to send the user to a new window. If you do decide to open links in new windows, you should at least let the user know what to expect. You can do so by adding simple text (like “new window”) to the link label or by adding an icon, as shown in FIGURE 5.5.

[image: A screenshot shows the contents within a border. The content consists of a link with the new window indicator icon displayed at the end of the link.]

Figure 5.5 An example of a new window indicator icon from CodePen (codepen.io/svinkle/pen/BreKRJ)

Wrapping Up

With your knowledge of formatting, organization, and now linking, you’re ready to move into the structure and layout side of HTML.

In the next chapter, you’ll learn about the building blocks that are used to lay out a webpage.

6

Structure and Layout with HTML

In This Chapter

Webpage Layout

Block vs. Inline Elements

Page Sections

Building a Blog Article Layout

Wrapping Up

Aside from formatting text, HTML gives us a set of tools for defining areas of a webpage. While they don’t affect the way a page looks (that’s what CSS is for), it’s yet another way to apply semantic meaning to webpages for users and anything else that’s reading the page.

In this chapter, you’ll learn the kinds of areas you can create on a page, find out more about block versus inline elements, and get a preview of the CSS box model. Let’s dive in!

Webpage Layout

If you’ve been to any website, you’ll know that the items on a page are grouped into areas with specific functions, such as a header, a footer, a main area (which can contain several elements), and a sidebar. As an example, take a look at the home page of the New York Times with a box drawn around each item (FIGURE 6.1).

[image: The webpage layout of the New York Times home page is shown.]

Figure 6.1 The layout for the New York Times home page

A screenshot shows the webpage layout of the New York Times home page. The title "The New York Times" is enclosed inside a box. The header part contains five different sections that are enclosed inside separate boxes. The body of the page contains many contents each enclosed in an individual box. The contents inside each box are formatted in HTML and styled with CSS.

Each of these boxes is an area defined in HTML and styled with CSS. But the browser knows how to arrange the areas thanks to the HTML elements used to define them.

If you’d like to see how a page is structured in the Chrome browser, you can do so using the Web Developer extension. This extension adds a number of developer-friendly tools to Chrome, including options for drawing an outline around individual webpage elements.

You’ll start by downloading the extension from the Chrome Store and installing it.

[image: Video play icon.] VIDEO 6.1
Preview of the Box Model

The term box model is used for CSS. It defines the box around each element—its padding (spacing from content to borders), margins (spacing around the outside of the box), borders, and content. It’s integral to understanding how to best style a page.

But its building blocks (pun a little intended) are here in the HTML. Each element can be considered its own box. How it looks, and how it’s positioned, is defined by the CSS.

To outline webpage elements in Chrome:

	Open the Google Chrome web browser and go to the Extensions section of the Chrome Store: chrome.google.com/webstore/category/extensions (FIGURE 6.2).

[image: The chrome web store of the chrome browser is displayed. A search box is presented at the top left for searching extensions. On the left, the extensions (selected) and themes are displayed. The categories and other few features are also displayed.]

Figure 6.2 The Chrome Store offers a wide range of extensions that add functionality to the browser.

	Enter Web Developer into the Search field and press Return/Enter. The page displays the results of the search (FIGURE 6.3).

[image: The chrome web store of the chrome browser is displayed.]

Figure 6.3 Searching for “Web Developer” returns a long list of results.

In the chrome web store, a search box is presented at the top left for searching extensions. The search box is searched for "Web Developer" and several results are displayed. The displayed results are as follows: web developer, web developer toolbar, web developer practicing, web developer tools, and web developers shortcut, etc. The extension web developer is displayed on the right. A button "Add to chrome" is displayed near the web developer extension.

	Find Web Developer by chrispederick.com in the results (it should be near the top) and click it to load its page into the browser (FIGURE 6.4).

[image: The chrome web store of the chrome browser is displayed.]

Figure 6.4 The Web Developer page in the Chrome Store

In the chrome web store, the page of the web developer is displayed. A button "Add to chrome" is displayed on the right side of the web developer extension. In this extension page, 4 tabs are displayed: Overview (selected), reviews, support, and released. A screenshot of a browser window is displayed that has the title "JavaScript."

	Click the Add To Chrome button and follow the installation instructions.

When the installation is complete, you’ll notice a new cog icon in the toolbar [image: Cog icon].

	Click the cog icon. A tabbed set of controls appears.

	Click the Outline tab. A menu lists sets of elements that can be outlined (FIGURE 6.5).

[image: The screenshot of the chrome web browser shows the several menus under the outline tab. The "outline block level elements" menu is highlighted.]

Figure 6.5 Select Outline Block Level Elements on the Outline tab to draw a box around each block-level element.

	Click to select the elements you want to outline. Outline Block Level Elements is a good starting point, so select that item in the menu.

An outline is drawn around each block-level element on the page (FIGURE 6.6).

[image: A screenshot shows the elements outlined in the New York Times webpage.]

Figure 6.6 The home page of nytimes.com with elements outlined using the Web Developer extension in Chrome

The webpage layout of the New York Times home page is shown. The title "The New York Times" is outlined by a box. The header part contains five different sections that are outlined by separate boxes. The body of the page contains many elements each outlined by a box.

[image: Video play icon.] VIDEO 6.2
Outlining Elements with the Web Developer Extension

In this video, you’ll see how to use the Web Developer extension for Chrome to outline elements of a webpage.

[image: Video play icon.] VIDEO 6.3
Outlining Block and Inline Elements Together

The Web Developer extension doesn’t outline inline elements, so here I apply CSS to block and inline elements so that you can see more clearly how they work with each other.

Block vs. Inline Elements

Chapter 4 touched on this a bit, but there are essentially two kinds of HTML elements: block elements and inline elements. The best way to think about them is by how much page width they take up.

Block elements take up the full available width, thus creating their own block on a page. Style-wise, each element fits into the box model and has its own spacing. A paragraph is a block element (FIGURE 6.7).

[image: An output of the HTML code shows "This paragraph takes up the entire width of the page," which is outlined by a box and this paragraph occupies the full width of the browser.]

Figure 6.7 A paragraph takes up the full available width.

Inline elements, on the other hand, take up only the width they need. Again, looking at this stylistically, by default there is no spacing applied directly to inline elements. , , and <a> are all inline elements (FIGURE 6.8).

[image: An output of the HTML code shows "This link only uses the space it needs," which is outlined by a box and this paragraph occupies the full width of the browser. The words "This link" is outlined by another box that occupies only the required width.]

Figure 6.8 A link takes up only the width that it needs to take up.

All the elements that we consider “layout elements” in the next section are block elements.

Tip

One caveat, which will come up in the CSS chapters: you can change the default type of any element. So if you want to turn links into block elements, adding a little CSS will make it happen.

Page Sections

Before diving into the actual elements, it’s important to define (at least loosely) the areas that will be included in the page design. A good way to get an idea of a page’s design and layout is to sketch out a wireframe. A wireframe is a blueprint or a general framework of a webpage. Its focus is on content priority and lacks the niceties of visual design, like text styling or colors. In short, it should tell us where content and elements go. A typical webpage layout includes a few basic areas (FIGURE 6.9).

[image: A figure depicts the layout of a webpage and the basic areas included within it.]

Figure 6.9 A wireframe of a webpage that uses common page sections

In the webpage layout, the basic areas are as follows: Header at the top includes Nav, Main area in the middle include section and aside, where the section contains the article. Footer area at the bottom.

Now that you have a better understanding of how a page is laid out, here are the seven HTML elements that define these areas.

[image: Video play icon.] VIDEO 6.4
Walking Through the Wireframe

This wireframe has several areas that are worth pointing out, along with some caveats and nice-to-knows. Let’s take a closer look at it.

Header, footer, nav

The first areas to examine are the header, footer, and navigation. They are grouped because you can have each on a macro (site-wide) level and a micro (area-specific) level.

The header is the area that contains information at the top of a webpage or section of a webpage. A site’s header generally includes the site title and maybe a tagline or logo. Other elements, like articles, can also have a header tag, which might include the title, date, and author’s name. The navigation is also usually found in the header. The tag for this element is <header>.

The navigation includes links to other important pages on the site. On a micro level, groups of pages or articles can have their own navigation (if an article is spread across several pages, for example). Its tag is <nav>.

The footer is at the bottom of the page or section of a page and is generally used to provide extra information. For a section of a page, it could display the date it was published or tags or keywords. For the entire site, the footer can include additional links, copyrights, or other legal disclosures. You can get really creative with this section! Its tag is <footer>.

Both the header and footer can be pretty flexible as far as content and layout, but navigation tends to follow a more specific structure. That’s because unordered lists (which use the element) are recommended for navigation, since they are an unordered list of links!

Lists for Navigation

Over the years, the use of unordered lists for navigation has been hotly debated. There are several arguments for and against.

The recommendation here comes from the HTML5 specification explicitly using lists in their nav examples (html.spec.whatwg.org/multipage/sections.html#the-nav-element) and from accessibility experts stating their importance in relation to screen readers.

Several years ago, CSS-Tricks published an article about it that garnered a lot of strong opinions. Their postmortem on the article is a great summary of the pros and cons of lists in nav: css-tricks.com/wrapup-of-navigation-in-lists/.

A simple site navigation element might have links to the home, about, and contact pages (FIGURES 6.10 and 6.11).

[image: The HTML code for a simple navigation element is shown.]

Figure 6.10 The HTML markup for a simple navigation element

The text editor displays the HTML code for a simple navigation element. The header part of the editor has HTML, CSS, JS, and Result tabs. Few lines of code is displayed. The code is as follows. <nav role="main"> a href="#">Home a href="#">Home a href="#">Home </nav>

[image: The web browser displays the output of the simple navigation elements. Following are the link elements displayed that are prefixed with bullets and are underlined: Home, About, and Contact.]

Figure 6.11 The simple navigation element as rendered in a web browser

To create simple site navigation:

For this task, assume there are three pages: a home page (index.html), an about page (about.html), and a contact page (contact.html).

	Type <nav to create the opening of the navigation element.

	Type the attribute role="main" because this will be the page’s primary navigation element.

	Type > to close the opening tag.

	Type to begin the unordered list of links to other pages in the site.

	Create a navigation item for the home page by typing

Home .

	Do the same for the about page; type

About .

	Add the last link, for the contact page. Type

 Contact.

	Type .

	Type </nav>.

Tip

If you’re creating links but you don’t have a target URL or file name yet, you can use the hash symbol (#). This tells the browser “this is a link, but it doesn’t go anywhere.”

Section, article, aside, main

With the more general areas of a website covered, let’s move to the content that changes with each page.

A section (tag: <section>) is any discrete area of a website with related content. For example, on a home page there might be an “about me” section, an “articles” section, and a “photo gallery” section. You have a lot of flexibility here.

An article (tag: <article>) is an area that is often self-contained and can stand on its own (and is often related to syndication). Blog posts or a page’s main copy are usually described as articles.

An aside (tag: <aside>) is auxiliary information that’s related to, but not integral to, the main content. Asides are often described as “sidebars,” but they don’t need to be physically to the side of the content. The tips in this book can be considered asides.

[image: Video play icon.] VIDEO 6.5
Making a Header with Navigation

Take your site navigation one step further and put it in a full header, with a site title.

ID and class

id and class are two attributes that can be applied to any element. They’re used to apply some definition to the element they’re assigned to.

Generally, each ID is unique (as in, only one element has a specific ID), and a class can be assigned to multiple elements.

In practice, IDs are usually used by JavaScript, and classes are used by CSS.

With all of our building blocks in place, you can create a simple blog layout. You can use a sample content generator (like loremipsum.io) or come up with your own.

To match the aside tag, there’s also a <main> tag, which would denote the main content of the page. This will likely be a wrapper for your articles or sections.

If you’re looking at other websites’ markup, you might have noticed a very common tag: <div>. This tag, short for “division,” predates the ones we’ve talked about and is often used for areas of a website that don’t have an otherwise clearly defined purpose. Really, it’s an all-purpose tag, if you’re not sure what to use.

Tip

I’d recommend giving divs an ID or class to make it clearer to those reading your code what kind of content they’re looking at.

Building a Blog Article Layout

Now that you have all the building blocks (pun totally intended), you can put together a simple blog article page (CODE 6.1). Anything not relevant to this chapter is omitted and replaced with three dots (...).

To create a page header:

	Type <header to open the header tag.

	Type role="banner".

	Type > to close the opening header tag.

	On a new line, type <h1 id="site-title">Welcome to my Site!</h1>.

We’ve added the ID site-title to tell browsers and search engines “this is the name of the site.”

	Add the navigation created earlier in this chapter.

	Type </header> to close the page header tag.

Tip

As you become familiar with more samples of code from pages around the web, you might notice that sometimes they use “id,” and sometimes they use “role” instead. That’s because there are specific roles defined for accessibility. We’ll talk about that more in Chapter 24, but for now, you can get a full list of roles at developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Techniques.

Tip

Some HTML elements will not have a role assigned to them, because they already communicate a role. For example, we don’t need to assign the role “main” to the <main> element.

To create the main article section:

	Open the wrapper for the content by typing <div class="wrapper">.

You’re opening the wrapper div element here, but you’ll close it when we create the <aside> element.

	Open the main section by typing <main>.

	Type <article>.

	Type <header> to open the article’s header.

	Add a headline using the <h2> tag: type <h2>10 Reasons HTML is so great!</h2>.

Use an h2 tag here because the site title should be the only h1 on the page.

	Type </header>.

	Type all of the content for the article. This should include text like paragraphs, lists, images, and hyperlinks.

	Type <footer> to open the article’s footer.

	The publish date will go here. Type <p>Published March 6 at 11:06pm</p>.

	Type </footer>.

	Type </article> and then </main> to close out the rest of the elements.

CODE 6.1 The markup for a simple blog article

Click here to view code image

<html>

 ...

 <body>

 <header role="banner">

 <h1 class="site-title">Welcome to my site!</h1>

 <nav>

 <ul role="main">

 Home

 About

 Contact

 </nav>

 </header>

 <div class="wrapper">

 <main role="main">

 <article role="article">

 <header>

 <h2>10 Reasons HTML is so great!</h2>

 </header>

 ...

 <footer>

 <p>Published March 6th at 11:06pm</p>

 </footer>

 </article>

 ...

 </main>

 <aside>

 <h3>Related Articles</h3>

 Wait until you see CSS

 ...

 </aside>

 </div>

 <footer>

 <p>Copyright Joe Casabona</p>

 </footer>

 </body>

</html>

To create a sidebar:

	Type <aside>.

	Type the heading <h3>Related Articles </h3>.

	Created an unordered list of articles. Type .

	Add the first item: type Wait until you see CSS.

	Add as many related articles as you’d like.

	Type .

	Type </aside> to close the aside element.

	Type </div> to close the wrapper div.

To create a site footer:

	Type <footer>.

	Add one paragraph for the copyright line. Type <p>Copyright [YOUR NAME]</p>.

	Type </footer>.

For the complete markup, see Code 6.1. To see the page rendered in a browser, see FIGURE 6.12.

[image: A web page shows a sample blog article with different HTML elements.]

Figure 6.12 A sample blog article page containing a header, site navigation, a main article section, a sidebar, and a footer

The webpage showing the sample block article displays the heading "Welcome to my site." The page displays the navigation elements such as Home, About, and Contact. These links are listed as a round bulleted list and underlined. Another heading "10 reasons HTML is so great" is displayed followed by a paragraph content. A link is displayed at the bottom under the heading related articles. The footer contains the text "Copyright Joe Casabona."

Tip

Reminder: all the source code for this book can be found at GitHub.com/jcasabona/html-css-VQS.

Wrapping Up

You now have the basic HTML elements that are necessary to semantically lay out a page. You can find a complete list of semantic elements available in HTML5 at www.w3schools.com/html/html5_semantic_elements.asp.

Up until now we’ve focused a lot on text and how it’s laid out. Now let’s turn our attention to something more visually appealing: media.

[image: Video play icon.] VIDEO 6.6
Building a Blog Article Layout

In this video, you’ll go through all the markup that’s required to create a single blog article. You’ll also see how the article looks in the browser.

7

Media

In This Chapter

How Does Media Work on the Web?

Images

Adding Images to a Page

Responsive Images: Considering Different Devices and Connections

The <picture> Element

Using SVG

Other Media

Embedding Video

Embedding Audio

Storing Multimedia Files

Wrapping Up

You’ve learned how to add text and create semantic layouts, and that’s great! But media—images, video, and audio—is what makes websites really stand out.

Media in this case refers to any non-plain-text file. And in this chapter, you’ll learn how to embed images, videos, and audio. You’ll also learn the ins and outs of finding good resources and where to host multimedia.

How Does Media Work on the Web?

The nice thing about using media on a webpage is that all you have to do is store the media files on your web server and insert links to them into your HTML files. The browser will know how to open most common forms of media (FIGURE 7.1).

[image: The web browser window shows an image of the Andromeda galaxy, the image occupies the entire region of the page.]

Figure 7.1 An image open in a browser window

But if you use HTML tags to tell the browser the type of media you’re linking to, you can display that media directly on the page—without having to open separate windows or applications (FIGURE 7.2).

[image: The web browser window shows an image of the Andromeda galaxy in the universe, the image is left-aligned. The text "The Andromeda Galaxy has diameter of about 220,000 light years, and contains about 1 Trillion stars. That's double our galaxy - the Milky Way!" is displayed on the top of the image.]

Figure 7.2 An image embedded on a page

This is known as embedding the media file. The media can be viewed, watched, or listened to without the user leaving the page.

Thanks to features of HTML5, you can tell the browser how to handle images, video, and audio. You can embed them directly into the page, and even give some instruction on how to display or control them—play, pause, mute, rewind, and more.

Other forms of media, like Microsoft Word documents, PDFs, and presentation software slide shows, can be linked in the browser but not embedded. The browser will rely on another program on the device to handle opening the file.

Web Image Format Acronyms

The image formats most commonly used on websites are usually referred to by cryptic acronyms. Here they are, along with what they stand for:

	JPG/JPEG: Joint Photographic Experts Group, in honor of the organization that invented the format

	GIF: Graphics Interchange Format

	PNG: Portable Network Graphic

	SVG: Scalable Vector Graphic

Images

Chances are that of all the types of media, you’ll work with images the most, so that’s a fantastic starting point.

Types of images

There are lots of different types of image that can be stored in a variety of file formats; these formats serve different purposes. For example, the most common type of image used on webpages is photos. They are typically in JPEG format, which compresses them so that their file sizes are not gigantic. Simple animated images will be in GIF format. Lightweight graphics will often be in PNG format; they can use transparent backgrounds. And more complex graphics that need to be displayed at several different sizes are usually in scalable vector format (or SVG). You can resize SVGs without worrying that you will lose image quality.

The types of images supported in HTML are determined by the browser, and as a result, certain file types will work only in certain browsers.

Pixel vs. Vector Graphics

As far as the web is concerned, there are two basic categories of graphics: pixel (JPEG, PNG, GIF) and vector (SVG).

Pixel graphics are made up of a grid of colored dots (pixels, short for “picture elements”), so an 800×600 pixel graphic is 800 dots wide by 600 dots tall. If you try to display a pixel graphic at a bigger size (“Scale it up”), you’ll run into pixelation. In other words, the browser will actually increase the size of each pixel, so you will start to see big colored squares.

Vector graphics aren’t stored as those dots. They are a set of instructions to the browser for how to draw the image. That means that there’s no inherent size associated with it. You tell the browser the image dimensions you want, and it will adjust the instructions accordingly.

While pixel graphics are great for images with continuous tones of color like photos, vector graphics are much better for sharp-edged graphics like logos, icons, and images representing data.

[image: Video play icon.] VIDEO 7.1
Scaling SVGs

To understand why SVGs are an important part of web design, you’ll see the effects of scaling a JPEG versus scaling an SVG.

The most common image types will work in all browsers: JPEG, GIF, PNG, and SVG. These images use the file name extensions .jpg, .gif, .png, and .svg, respectively (FIGURE 7.3).

[image: The web browser window shows the image of the Andromeda galaxy. The filename of the image space.jpg at the address bar of the browser is highlighted.]

Figure 7.3 This image of space is called space.jpg.

Tip

For a full table of image types, file name extensions, and supported browsers, see developer.mozilla.org/en-US/docs/Web/HTML/Element/img.

Adding Images to a Page

Once you’ve got the images you want to use in the right format, it’s time to add code to your HTML to insert the images into the page’s flow. Next, you’ll learn about two elements you can use to place an image on a page: and <figure>.

The tag

For all supported image types except SVG (that’s coming later), you will use the image embed tag . This tag is unique because in addition to requiring an attribute (src), it has no end tag. Here’s some sample markup:

Click here to view code image

<img src="space.jpg" alt="A view

→of the Andromeda Galaxy"

→title="A view of the Andromeda

→Galaxy" />.

All images should also include an alt attribute, whose value is text that describes the image. While this isn’t required for the tag to work, it is required to make your website accessible (for more on website accessibility, see Chapter 24).

The title attribute can also include this text. The main difference (besides semantic meaning) is that the title will appear in a tool tip when you hover over an image (FIGURE 7.4).

[image: The image of the Andromeda galaxy in a web browser windows is shown. The title of the image "A view of the Andromeda galaxy" is displayed by hovering the cursor over it.]

Figure 7.4 The image’s title showing on hover

[image: Video play icon.] VIDEO 7.2
Adding an Image to a Webpage

You will see how to add an image to a page, as well as how to design the folder structure of the website to make sure the image appears properly.

To add an image to a webpage:

	Type <img to open the image embed tag.

	Type src= followed by the path to the image. In this example, type "space.jpg".

	Add the alt and title attributes. Type alt="A view of the Andromeda Galaxy" title="A view of the Andromeda Galaxy".

	Close the img tag by typing />.

	Save the file and open it in your browser to see the result (Figure 7.2).

The <figure> tag

If you want to make meaningful additions to the flow of your page, or group an image with a caption, you’ll use a figure with an optional caption element. Its tag is <figure>, and to associate a caption with it you insert the element <figcaption> inside it. The structure looks like this:

Click here to view code image

<figure>

 <img src="space.jpg" alt="A view

 →of the Andromeda Galaxy" />

 <figcaption>A view of the

 →Andromeda Galaxy</figcaption>

</figure>

Note these points about the use of the figure tag:

	You can put more than one image in a <figure> tag if they make sense together in context.

	Everything inside the opening and closing <figure> tags creates a single, self-contained unit.

	Since figures are self-contained, you should be able to move a figure up or down on a page without changing the meaning of the page.

That last point also means that not all images are figures.

Figures: Not Just for Images

As it turns out, the <figure> tag can be a pretty flexible element. Since it’s a self-contained piece of content that should add value to the document, a figure doesn’t just need to be an image or set of images.

You can put code, audio, video, or even ads (which can have their own specific requirements) in figures.

To add a figure to the page:

	Type <figure> to open the figure element.

	Add the image from earlier, without the title attribute. Type .

	Type <figcaption>A view of the Andromeda Galaxy.</figcaption> to add a caption to the image.

	Type </figure> to close the figure element.

	Save the file and open it in your browser (FIGURE 7.5).

[image: The browser window shows the photograph of the Andromeda galaxy with the caption "A view of the Andromeda galaxy."]

Figure 7.5 Our photo of the Andromeda galaxy, now with a caption

[image: Video play icon.] VIDEO 7.3
Using Figures for Code Samples

Figures aren’t just for images. In this video, you learn how to use the <code> tag to add a figure that contains code to a webpage.

Responsive Images: Considering Different Devices and Connections

One of the biggest issues with adding images to webpages is that, depending on the file size of the images, they can unnecessarily bloat the site and make it very slow to download. Here’s an example: the full size of the space image is 6200×6200, coming in at 4.2MB (4200KB).

If we resize it to 1920×1920, 30 percent of the original size, the file size is 415KB. That’s 9 percent of the original file size!

That size difference will have a considerable effect on the time it takes to download the page, and it will have little to no effect on how most visitors see the image; 1920 pixels is still overkill if you consider that most mobile screen sizes are considerably smaller.

[image: Video play icon.] VIDEO 7.4
Image Download Test

Seeing is believing! Here’s a download test comparing the performance of different image sizes and connection speeds.

[image: Video play icon.] VIDEO 7.5
Resizing an Image

Using the srcset attribute requires that multiple versions of the same image be available to the browser. In this video, you’ll learn how to use a couple of popular applications to resize an image.

However, you might wonder what happens if someone is viewing the page on a big monitor or even a TV, where they would rather take advantage of the full size of the screen. That’s where the srcset attribute comes in.

This attribute tells the browser that it has a range of image files to choose from when rendering the element.

Here’s an example:

Click here to view code image

<img srcset="

 space-original.jpg 4x,

 space-large.jpg 3x,

 space-medium.jpg 2x,

 space-small.jpg 1x"

src="space-medium.jpg" />

Note that src is included to provide a fallback for browsers that don’t support srcset yet.

Within the srcset attribute, include a comma-separated list of different images (or the same image at different sizes). For each image, provide its path as well as a relative size value (that is, 4 times, 3 times, etc.) notated as 4x, 3x, etc. (Note that 1x is implied and not required).

These numbers represent the pixel density of the user’s browser (the number of pixels available in a chosen area of the display), and they tell the browser how to choose which image to download and serve to the user depending on the device’s pixel density. If the device has a very high pixel density, it can choose to display the 4x image. If its display has a lower resolution, it might download and display only the 2x or 1x image. This will save on load time and bandwidth.

Alternatively, you can specify the image widths in pixels instead of expecting the browser to use pixel density to decide which file to use. So you would replace 4x with 6200w (6200 pixels is the original image’s width), 3x could be replaced with 4650w, and so on. This gives the browser more information about the image, so it can replace the images while taking into account both the characteristics of the device and the image width.

To add an image using srcset:

	Create three sizes for your image: 1024, 800, and 600 pixels wide.

See Video 7.5 to learn how, if you need to.

	Save them in the same folder as your HTML file.

For the purposes of this task, name the images following the pattern space-[size].jpg, which gives us space-original.jpg, space-1024.jpg, and so on.

	In your HTML document, type <img srcset=".

	On the next line, type space-original.jpg 6200w,.

	Press Return or Enter, then type space-1024.jpg 1024w,.

	Press Return or Enter, then type space-800.jpg 800w,.

	Press Return or Enter, then type space-600.jpg 600w".

	We also need a fallback for older browsers that don’t support srcset. Type src="space-1024.jpg".

	Type /> to close the image tag.

Tip

If you want to learn a lot more about optimizing images, especially for mobile, Smashing Magazine has a fantastic write-up: www.smashingmagazine.com/2019/10/imagekit-guide-optimizing-images-mobile/.

The <picture> Element

If you want more fine-grained control of when images show up, you could use the <picture> element. It’s very similar to using srcset, but the markup is a bit different.

One thing it makes use of is media queries, which you’ll learn more about in Chapter 17. The quick explanation is that you can use CSS to get information about the browser, like screen width, and then adjust the display of your website based on that information.

To use the <picture> element to show different images:

	Create three sizes for your image: 1024, 800, and 600 pixels wide.

See Video 7.5 to learn how to create these versions of your image if you need to.

	Save them in the same folder as your HTML file.

For the purposes of this task, the images will be named following the pattern space-[size].jpg, which gives us space-original.jpg, space-1024.jpg, and so on.

	In your HTML document, type <picture>.

	On a new line, type <source.

[image: Video play icon.] VIDEO 7.6
Seeing srcset in Action

This video shows you how to add a responsive image using srcset, and then you’ll see what happens as the browser is resized.

	Type media="(min-width: 1025px)".

This is the media query. It says, “If the browser has a minimum width of 1025px, use this image.”

	Type srcset="space-original.jpg">.

	On a new line, type <source media="(min-width: 801px)" srcset="space-1024.jpg">.

	On a new line, type <source media="(min-width: 601px)" srcset="space-800.jpg">.

	On a new line, type .

This serves as a fallback in two cases: for browsers that don’t support the picture and source elements, and for when every media query returns false. In this case, it’s for when the browser window has a width of 600px or smaller.

	Type </picture>.

Ultimately, there’s no major difference between srcset and picture, except that srcset does a bit more of the work for you; srcset is the method more commonly used today.

Using SVG

If you can use Scalable Vector Graphics (SVG), that would go a long way in saving you on file size. But SVGs may not be as straightforward to use, mostly because they have to be designed in a program like Adobe Illustrator.

SVGs are best used for illustrations or logos and can’t be used for photographs (FIGURE 7.6). These are computer-generated graphics that are more abstract than photographs, which accurately depict real life. Illustrations and logos can be described as rules more efficiently.

[image: The browser window shows an example of Scalable Vector Graphics (SVG). The file 7.html displays an image of a rocket on the browser.]

Figure 7.6 This image is a good example of an SVG.

The reason for that is the same reason they scale so well: the image data is stored not as pixels, but by mathematical instructions for drawing the image. That means that if you resize the image, the display pixels are recalculated for the resolution of the screen. So the image is sharp and crisp at any size, without pixelation. See FIGURE 7.7 for an example of the source code for Figure 7.6.

[image: A screenshot shows a sample source code for a Scalable Vector Graphics.]

Figure 7.7 A sample of source code for an SVG

The sample source code for a Scalable Vector Graphics is as follows: Line 1: <svg version="1.1" id equals "Layer_1" xmlns:x="ampersand nsextend;" xmlns:i equals"ampersand ns_ai;" xmlns:graph equals "ampersand ns_graphs;" xmlns equals "http://www.w3.org/2000/svg" Line 2: xmlns:xlink equals "http://www.w3.org/1999/xlink" x equals "Opx" y equals "Opx" viewBox equals "0 0 595.28 595.28" Line 3: enable-background equals new 0 0 595.28 595.28" xml:space equals "preserve"> Line 4: <switch> Line 5: <foreignObject requiredExtensions equals "ampersand ns_ai;" x equals "0" y equals"0' width equals"1" height equals"1"> Line 6: <i:pgfRef xlink:href equals"hash adobe_illustrator_pgf"> Line 7: </i:pgfRef> Line 8: </foreignObject> Line 9: <g i:extraneous equals "self"> Line 10: <g> Line 11: <rect x equals "0.003" y equals "0.002" fill equals "iFFFFPF" width equals "595.274' height equals "595.275"/> Line 12: <g> Line 13: <path fill equals "hash E1E5DF" d equals "M297.747,403.664c29.556,0,54.446-5.031,61.986-10.525c17.453-33.18,31.096-78.601,31.096-132.696 c0-118.29-78.843-235.861-93.03-236.425v-0.015c-0.015,0-0.037,0.007-0.052,0.007c-0.022,0-0.037-0.007-0.059-0.007v0.015 c-14.188,0.564-93.031, 118.135-93.031,236.425c0, 54.088,13.643,99.516,31.096,132.696 C243.301,398.631,268.184,403.664, 297.747,403.664z"/> Line 13: <path fill equals "hash D7D8D6" d equals "M308.257,401.289c-23.061-29.555-44.547-71.848-54.136-125.073 c-20.807-115.441,34.804-243.917,49.25-249.054c-2.344-2.012-4.246-3.088-5.572-3.144v-0.015c-0.015,0-0.037,0.007-0.052,0.007 c-0.022,0-0.037-0.007-0.059-0.007v0.015c-14.188,0.564-93.031,118.135-93.031, 236.425c0,54.088,13.643,99.516, 31.096,132.696 c7.548,5.494, 32.431,10.525,61.994,10.52505.749,0,11.313-0.195,16.613-0.547C311.84, 402.631,309.767,402.02,308.257,401.289Z" line 14 />

Another nice thing about SVGs is that they can be treated like any other image, using the img tag. Here’s the HTML for including Figure 7.6 on a webpage:

Click here to view code image

<img src="rocket.svg" alt="my rocket

→ship" />

But when you add a size to it, the graphic scales appropriately (FIGURE 7.8):

[image: A screenshot depicts the magnified clear view of the top portion of a rocket which is an example of Scalable Vector Graphics.]

Figure 7.8 What happens when you scale an SVG to over 9000px. Notice there is no pixelation.

Click here to view code image

<img src="rocket.svg" width="9001px"

→alt="my rocket ship" />

You can also add an SVG directly to a webpage using the <svg> tag. Here’s what that could look like:

Click here to view code image

<svg>

 <circle cx="100" cy="100" r="50"

 →fill="red" />

</svg>

The result is shown in FIGURE 7.9.

[image: A figure presents a red circle, which is a Scalable Vector Graphics Circle in a webpage.]

Figure 7.9 Embedding an SVG circle directly on a webpage

[image: Video play icon.] VIDEO 7.7
Experimenting with SVG

In this video, you’ll take drawing SVG one step further by seeing how changing the values (including the shape element) affects the SVG.

To use SVG to draw a square:

Here, you’ll make a blue square.

	Type <svg id="square">.

The id can be anything. I used square to clearly describe what is being drawn.

	On the next line, type <rect.

	Type x="0" y="0".

This tells the browser the starting coordinates of the shape. In this case, you want the shape to be in the upper-left corner of the page, so you can start at 0, 0 (as in 0 pixels to the left, and 0 pixels down). I encourage you to experiment with these numbers to see what they do.

	Type width="100" height="100".

This sets the dimensions of the square.

	Type fill="blue".

This defines the color of the fill.

	Close the rect element by typing />.

	Close the SVG by typing </svg>.

See the resulting image in FIGURE 7.10.

[image: A figure shows a blue Scalable Vector Graphics Square.]

Figure 7.10 Your code created this blue SVG square.

Tip

SVG is a great format to use for icons on your website because their code is lightweight. The other way is to use icon fonts, which you’ll learn about in Chapter 13.

HTML Shapes

To help draw SVGs, HTML has a set of elements for basic shapes. They are circle, rect (for rectangles), line, polyline, polygon, and path. You can learn more about each of these at https://developer.mozilla.org/en-US/docs/Web/SVG/Tutorial/Basic_Shapes.

This book does not go into depth about these elements, because in general you can use tools like Illustrator to create SVGs.

Other Media

Aside from images, you can embed videos and audio directly into a webpage. In this section, you’ll learn not only how to do that, but also the kinds of video and audio files that can be displayed by common modern web browsers. You’ll also learn about factors to consider when storing large media on your server.

Video and audio file “formats”

When web developers talk about embedding video and audio files in webpages, they generally refer to a file’s format to distinguish one kind of file from another. Yet web developers use “format” in a general sense to describe a combination of characteristics of a file, whereas video and audio professionals use the word in a stricter sense. These divergent uses of the word can lead to confusion and misunderstanding, so it’s worth taking a moment to try to sort out the issue.

What distinguishes one kind of media file from another is a complex mix of technical parameters, which can be broken down into file type, codec, and format:

File type: Also called a file container, this is the way that the video or audio data is packaged into a file that a computer can read. Anything with a file extension is a file type, like .MOV, .MP4, etc. Each of these file types can contain video or audio data stored in one of several different ways (or even other kinds of data, like image data, subtitles, etc.). These file types are often called “formats,” even though the video in one .MP4 file, for example, might be of a very different type from the video in another .MP4 file.

[image: Video play icon.] VIDEO 7.8
Creating a Graphic with Canva

In this video, you’ll learn how to use Canva to make a simple image, which you can then use on your website.

Finding and Making Images

Finding the right images has gotten considerably easier over the last few years, but it can still be a slog.

First and foremost, don’t just do a Google search. The images you’ll find that way can be subject to copyright, and it’s not always the safest way to get what you’re looking for: royalty-free images. These are images you can get for free, or pay for, and use on your own websites.

A great source for free royalty-free images is Unsplash (https://unsplash.com). There’s lots of fantastic stuff here. If you don’t find what you’re looking for there, both https://depositphotos.com/ and https://istock.com are good sources, but you will have to pay.

If you want to make your own images, apps like Photoshop and Affinity Photo are popular choices. But I love https://canva.com. You can easily create graphics of any size, use their templates, and find great stock photos there too. You can use it for free, and you can pay for upgrades that give you more features.

Codec: Recording video or audio data directly from a camera or a microphone produces truly vast amounts of digital data. To make this data more manageable, it’s almost always compressed for storage, then decompressed when it’s needed for editing or playback. The media industry uses numerous standards for this process; these are known as codecs short for “compressor/decompressor.” You can think of the codec as the “language” in which the video or audio data is stored. H.264 is a very common video codec, and MP3 is an audio codec. Confusingly, H.264 video is usually stored in a .MP4 or .MOV file, but MP3 audio is often stored in a .MP3 file. (Note that not all video in a .MP4 or .MOV file uses the H.264 codec).

Format: This refers to the internal structure of the media data. For video, this includes frame size, frame rate, and pixel aspect ratio. Features of audio formats include the number of channels and configuration of those channels (whether stereo, multiple-mono, 5.1 surround-sound, etc.).

Like most of the web world, in this book I’ll use “format” in a more general sense. When I talk about files in the MP4 format, I mean “video encoded using the H.264 codec and using MP4 as the file type.”

When you embed video or audio in your webpage, take care to choose files in formats that the most common browsers support. The best solution for video is usually to choose MP4, because all browsers support it, with some exceptions (TABLE 7.1).

Table 7.1 Video Formats

	Format

	Supported Browsers

	MP4*

	All (Internet Explorer, Firefox, Chrome, Safari, Opera)

	WebM

	Chrome, Firefox, Opera

	Ogg

	Chrome, Firefox, Opera

*Except for H.265-encoded video

If you use MP4, be sure your video is encoded with H.264. Quite a bit of video created on Apple iPhones since 2017 uses the H.265 codec (or HEVC) which is incompatible with some browsers. You might also consider either Ogg or WebM for performance or for reasons of personal preference.

As with embedding video, when you embed audio in your webpage you need to be mindful of the formats that are supported. WAV is supported by all browsers except Internet Explorer. The MP3 format is supported by all browsers (TABLE 7.2).

Table 7.2 Audio Formats

	Format

	Supported Browsers

	MP3

	All (Internet Explorer, Edge, Firefox, Chrome, Safari, Opera)

	WAV

	Chrome, Firefox, Safari, Opera, Edge

	Ogg

	Chrome, Firefox, Opera

You’ll notice that Ogg is both a video and audio format.

Tip

It’s possible WebM will overtake Ogg because it has big names (like Google) behind it. There are also some clear performance benefits to using it.

Embedding Video

You can embed a video on your webpage with the <video> element. There are a few attributes to know as well: width, height, and controls. The controls attribute has no value, but adding it tells the browser to include the play, pause, and volume buttons (FIGURE 7.11).

[image: A screenshot shows a webpage with a video embedded in the page along with a video play button, screen maximize button, and a volume button. The screen shows a portion of the moon on a dark background.]

Figure 7.11 This webpage has an embedded video with playback controls displayed.

Tip

Current browsers don’t natively support responsive (i.e., resizeable) videos like they do with images, but there are a few third-party options you can try. The best option at the time of this writing is the JavaScript library fitvids.js: fitvidsjs.com/.

Between the opening and closing <video> tags, you need to include the video source.

Luckily, you can add multiple video sources (which can use different formats), and the browser will pick the best one.

You should always include an MP4, since that is supported by all browsers.

To embed a video on a webpage:

Tip

If you need a free stock video for this task, check out www.pexels.com/videos. Here, the file is named moon.mp4.

	Type <video.

	Type width="800px".

You can skip the height attribute since the browser will intelligently resize the video to the appropriate height based on the width.

	Type controls>.

	Type <source src="moon.mp4".

	Type type="video/mp4">.

This is not completely necessary in modern browsers, but it’s still good to include, especially if you use multiple sources.

	Type </video>.

The final result is what you see in Figure 7.11.

[image: Video play icon.] VIDEO 7.9
Embedding a Video

In this video, in addition to adding a video to your webpage, you’ll see how different attributes affect the display.

[image: Video play icon.] VIDEO 7.10
Converting and Embedding Audio

In this video, you’ll not only add an audio file to your webpage, you’ll also see how to convert an audio clip to the MP3 format.

Embedding Audio

Adding audio to a webpage is very similar to adding video. The HTML is formatted exactly the same, except you’ll use the <audio> tag instead of the <video> tag:

Click here to view code image

<audio controls>

 <source src="small-step.wav"

 →type="audio/wav">

 <source src="small-step.mp3"

 →type="audio/mp3">

</audio>

Tip

Note that in this code sample I covered my bases by using both WAV and MP3 sources. If you don’t have an MP3 version of your audio, you can use a free online converter like online-audio-converter.com/. Free programs like Audacity (which is also cross-platform) can also do it for you. You can download it from www.audacityteam.org.

To embed audio on a webpage:

	Type <audio.

	Type controls>.

	Type <source src="small-step.wav" type="audio/wav">.

As a reminder, this relative path means the WAV file is in the same directory as the HTML file.

	Type <source src="small-step.mp3" type="audio/mp3">.

	Type </audio>.

The result will display a simple audio player in the page (FIGURE 7.12).

[image: A screenshot presents the player for an embedded audio clip. A play button, the duration of the audio clip, the audio track bar, and the volume control are displayed in the player.]

Figure 7.12 This is the player for an embedded audio clip.

Tip

If you need audio for this task, check out www.free-stock-music.com/. The sample file here is from NASA and is named small-step.mp3.

Storing Multimedia Files

Small files like images, SVGs, and PDFs can be stored directly on your server, in the same folder as your website. That’s because these files don’t require the user to interact with them and therefore are not resource intensive. In other words, they don’t require a lot of computing power (as would playing a video game), so they won’t cause stress on your website.

Multimedia—audio and video—will use considerable resources and bandwidth that your web server is likely not specialized for. This can lead to your website crashing or quickly running out of storage and bandwidth.

Instead, you should use specialized services to host your media, and then embed links to those services into your website using the embed code provided by the service. You can also get plain links (directly to an .mp3 or .mp4 file) and embed them using the audio or video element.

For video, many great services are available. Both YouTube (FIGURE 7.13) and Vimeo are free. If you need more in terms of features or control, Vimeo also offers paid plans (FIGURE 7.14).

[image: A screenshot depicts the home page of YouTube. Different navigation bars are aligned along the left pane of the page. The trending video thumbnails are displayed in two rows.]

Figure 7.13 YouTube provides a great service for hosting free videos.

[image: A screenshot shows the web page of Vimeo which offers different plans for hosting videos. It presents the various plans along with the amount and the features provided in each plan. The plans mentioned are as follows: Plus, Pro, Business, and Premium.]

Figure 7.14 Vimeo offers hosting plans at a variety of price points.

For hosting audio, things are a little tough. SoundCloud is a popular free option, but it comes with limitations. Podbean is a podcasting service that has a free tier, but you’re probably better off paying for a service.

Libsyn is a great audio hosting service that starts at $5 a month (FIGURE 7.15).

[image: The web page of Libsyn with popular plans is shown.]

Figure 7.15 Libsyn offers a variety of audio hosting plans.

The screenshot shows the web page of Libsyn which offers different plans for hosting audios. It presents the various popular plans, the cost, and features provided in each plan. The plans mentioned are as follows: Classic 50, Classic 250, Advanced 400, and Advanced 800. The amounts for each are 5 dollars, 15 dollars, 20 dollars, and 40 dollars, respectively.

Any of these services will save you time and bandwidth (and probably a little strife too).

[image: Video play icon.] VIDEO 7.11
Using Libsyn to Host Audio

In this video, you’ll get a quick look at using Libsyn for audio hosting, and you’ll learn how to embed a Libsyn file on a website.

Tip

A bonus of Libsyn (and most audio hosting services) is that you’ll get a direct download link. This is a full URL that you can use with the <audio> tag to embed the audio in your webpage. You’re not required to use Libsyn’s embeddable player, like with some services.

To embed a YouTube video on your site:

	Go to YouTube.com and find a video you’d like to embed.

	Click the Share button ([image: Share button]) to open the Share dialog (FIGURE 7.16).

	Click Embed. The Embed Video dialog opens (FIGURE 7.17).

	Copy the code in the top half of the dialog (it starts with <iframe and ends with </iframe).

	Open your HTML file.

	Paste the embed code you just copied into the HTML file after the opening <body> tag, and save the file (FIGURE 7.18).

	Open the HTML file in a web browser.

You should see your YouTube video appear on a webpage as shown in FIGURE 7.19.

[image: A screenshot shows the YouTube share dialog box.]

Figure 7.16 The YouTube share dialog

The YouTube share dialog box is shown. A button to embed the video is displayed on the extreme left. The icons of Facebook, twitter, blogger, Reddit, and Tumblr are displayed in the order from left to right. Below that, a text field displays the YouTube video link to be copied. A checkbox to select the starting duration as 0:03 is also displayed.

[image: A screenshot displays a YouTube embed screen. A video is displayed which is paused. An embed video dialog box is present on the right side of the page. An embed code is present on the top portion of the dialog box.]

Figure 7.17 The YouTube Embed screen with embed code

[image: A screenshot presents the YouTube embed code in an HTML file. The YouTube embed code is copied within the body tag, which includes the frame width, height, source link, frame border, and the permission to accelerometer, autoplay, encrypted-media, gyroscope, picture-in-picture, and full screen.]

Figure 7.18 The YouTube embed code in an HTML file

[image: A screenshot shows a YouTube video on a webpage. The video is paused. The name of the video is displayed on the top left corner and the two options, watch later and share are displayed on the top right corner of the video.]

Figure 7.19 A YouTube video embedded on a webpage

[image: Video play icon.] VIDEO 7.12
Embedding a YouTube Video

This video will show you how to grab any public YouTube video and embed it on your webpage.

Wrapping Up

Phew! That was a lot to take in—but now you know how to add all sorts of media to your website. This will make it more visually appealing and interactive, and it will add something beyond just text. After all, a picture’s worth a thousand words, right?

8

Tables and Other Structured Data Elements

In This Chapter

Tables

Description Lists

Why Is Structured Data Important?

Wrapping Up

The main goal of HTML is to structure, define, and describe content. At this point you’ve seen most types of data: paragraphs and headings, images and other media, links, and layout elements. But there’s a whole world of data out there that enhances websites by being described properly.

In this chapter, you’ll learn about some of the more advanced types of structured data, like tables and definition lists. You’ll also learn about schemas, a way for you to describe your own data.

Tables

Tables have been used on webpages as long as there have been webpages. They are used to display “tabular” data, which is data that is presented in rows and columns (FIGURE 8.1).

[image: A figure depicts a table in HTML. The column headers are Team and Location. The Team and Location mentioned in the table are as follows: Yankees - Bronx, NY; Red Sox - Boston, MA; Dodgers - Los Angeles, CA; Phillies - Philadelphia, PA.]

Figure 8.1 A basic table in HTML

Tip

Before the adoption of CSS and more modern web standards, tables were used for layout. This is considered very bad practice now. As you saw in Chapter 6, there are a whole host of tags dedicated to creating semantic layouts.

Table markup

Several elements go into making a table:

	<table>: This is the parent element. All the data in the table will be wrapped in the opening and closing table tags.

	<caption>: Specifies a title or caption for the table. If included, this should be the first child element of the table.

	<thead>: This stands for “table header” and will contain the column headings.

	<tbody>: Stands for “table body” and contains the primary content (or data) of the table.

	<tr>: Short for “table row.” Each row of data goes in between opening and close tr tags.

	<td>: This is a cell of data (td stands for “table data”).

	<th>: If contained inside <thead>, th (table heading) can replace td as the table cell. Data tagged with <th> will usually appear in bold by default.

	<tfoot>: The “table footer,” this contains the table’s footer (example in FIGURE 8.2).

[image: A table in HTML is shown, with the sum of values in a column.]

Figure 8.2 This table shows the sum of the values in each column at its bottom, so using <tfoot> for the totals is appropriate.

A figure shows a table that displays the total of the values in a column at the bottom. The column headers are Team and Home Runs. The Team and Home Run mentioned in the table are as follows: Yankees - 306, Red Sox - 245, Dodgers - 279, and Phillies - 215. The total is displayed as 1,045 in the last row.

The Element

As you learn about more specific types of elements, note that there’s one that is used almost like a wildcard: the element.

This is a generic inline element that has no inherent meaning, much like <div> at the block level. It’s often used to apply classes or other helpful attributes to content, in the event that there is not a specific HTML element for it.

CODE 8.1 The HTML markup behind the baseball table shown in FIGURE 8.3

Click here to view code image

<table border="1">

 <caption>Baseball players with their

 → teams and numbers.</caption>

 <thead>

 <tr>

 <th>Player</th>

 <th>Team</th>

 <th>Number</th>

 </tr>

 </thead>

 <tbody>

 <tr>

 <td>Derek Jeter</td>

 <td>Yankees</td>

 <td>2</td>

 </tr>

 <tr>

 <td>David Ortiz</td>

 <td>Red Sox</td>

 <td>34</td>

 </tr>

 <tr>

 <td>Roy Halladay</td>

 <td>Phillies</td>

 <td>34</td>

 </tr>

 <tr>

 <td>Mike Piazza</td>

 <td>Mets</td>

 <td>31</td>

 </tr>

 </tbody>

</table>

[image: A baseball player table created using HTML code is shown.]

Figure 8.3 A table of baseball players, their teams, and their numbers

The table captioned "Baseball players with their teams and numbers" is shown. The column headers are player, Team, and number. The row-wise data mentioned in the table are as follows: (Derek Jeter, Yankees, 2); (David Ortiz, Red Sox, 34); (Roy Halladay, Phillies, 34); (Mike Piazza, Mets, 31).

Sample table markup

CODE 8.1 shows the markup for a simple table that lists baseball players, the teams they were on when they retired, and their uniform numbers.

A quick note on this code: the border attribute is actually deprecated in HTML5. You should use CSS to define borders. It’s used here only so you can see the different cells in the table.

Let’s take it one section at a time, beginning with the header. Adding this header will make three columns with bold text, denoting column headings (FIGURE 8.4).

[image: A figure depicts the column headers of the baseball players' table. The headers are Player, Team, and Number, displayed in bold characters within three consecutive cells of a table.]

Figure 8.4 The header for the baseball players table as it will appear when rendered in a browser

A table header and a table row will look very similar in markup, but both should be included. We’ll walk through both so you can see how a table is built. The main difference is that th cells will appear in bold.

Tip

You can use CSS to move the caption to the bottom of the table.

To create the table header:

	Type <table border="1">.

The border attribute here would normally be excluded in favor of adding it via CSS, but it will make reading the table much easier for the purposes of this example. The 1 means “1 pixel” and it will create a border around the entire table and around each cell and header.

	Type <thead> to begin the header.

	Type <tr> to start the row within the header.

	Type <th>Player</th> to enter the first of the three column heads.

	Type <th>Team</th>.

	Type <th>Number</th>.

	Type </tr> to close off the row of column heads.

	Type </thead> to mark the end of the header.

To create a table row:

	Type <tbody>.

	Type <tr>.

	Type <td>Derek Jeter</td>.

	Type <td>Yankees</td>.

	Type <td>2</td>.

	Type </tbody>.

	Type </table>.

Tip

To avoid repetition, I’ve shown you how to code only the first row of the table. Repeat these steps (changing the data in the cells each time) to add as many rows as you’d like!

[image: Video play icon.] VIDEO 8.1
Building a Table

In this video, you will see in real time what happens as I build a table in CodePen.

CODE 8.2 The full code for the table, with important areas highlighted

Click here to view code image

<table border="1">

 <thead>

 <th colspan="4">Aaron Judge</th>

 <th>RF</th>

 </thead>

 <tbody>

 <tr role="header">

 <td>Year</td>

 <td>Team</td>

 <td>BA</td>

 <td>HR</td>

 <td>RBI</td>

 </tr>

 <tr>

 <td>2017</td>

 <td rowspan="3">NYY</td>

 <td>.284</td>

 <td>52</td>

 <td>114</td>

 </tr>

 <tr>

 <td>2018</td>

 <td>.278</td>

 <td>27</td>

 <td>67</td>

 </tr>

 <tr>

 <td>2019</td>

 <td>.272</td>

 <td>27</td>

 <td>55</td>

 </tr>

 <tfoot>

 <tr>

 <td colspan="2">Totals:</td>

 <td>.278</td>

 <td>106</td>

 <td>236</td>

 </tr>

 </tfoot>

</table>

Extending rows and columns

You aren’t limited to strictly structured rows and columns. Thanks to the attributes colspan and rowspan, which accept a numeric value for the number of cells the column or row should span (or take up), you can tell the table “this cell should take up two columns” or “this cell should take up three rows”:

<th colspan="2">

<th rowspan="3">

These attributes come in handy when you want to build a more complicated table—one that mimics a baseball card, for example (FIGURE 8.5 and CODE 8.2).

[image: A table with spanned columns and merged cells is shown.]

Figure 8.5 A complex, baseball card–like table for Aaron Judge (batting average, home runs, and runs batted in). However, the table header has the player’s name spanning four columns. The Totals cell in the footer spans two columns. And since he’s played for the same team for his entire career, the first Team entry takes up three rows.

A figure presents a table for Aaron Judge that displays batting average (BA), home runs (HR), and runs batted in (RBI). The table header that reads Aaron Judge spans 4 columns and the other header reads RF. The five column headers are as follows: year, team, BA, HR, and RBI. The years listed are 2017, 2018, and 2019 one below the other. The team mentioned is NYY corresponding to all the three years, and these three cells are merged. The row-wise data in the order of BA, HR, and RBI are as follows: 2017 - 0.284, 52, and 114; 2018 - 0.278, 27, and 67; 2019 - 0.272, 27, and 55; Totals - 0.278, 106, and 236.

Doing this takes a little bit of math to get right, but it can make your tables look better and help you align data just the way you want to.

Miscalculating the rowspan can make a trainwreck of your table (FIGURE 8.6). Since the table is expecting another cell to fill the 2019 row, the cells no longer line up and there’s a random blank space.

[image: A table with row span short by one row.]

Figure 8.6 What happens when a rowspan is short by one row

A figure presents a table for Aaron Judge that displays batting average, home runs, and runs batted in. The table has 5 columns and 6 rows. The table header that reads Aaron Judge spans 4 columns and the other header reads RF. The five-column headers read as follows: year, team, BA, HR, and RBI. The years listed are as follows: 2017, 2018, and 2019 one below the other. The team mentioned is NYY. But the row span is 2 rows. So the BA value corresponding to the year 2019 is shifted one cell left. The HR and the RBI values also shift one cell left. So, the BA value 0.272 comes under the column header Team for the year 2019 and the last cell in that row is vacant. The row-wise data in the order of BA, HR, and RBI are as follows: 2017 - 0.284, 52, and 114; 2018 - 0.278, 27, and 67; 2019 - 27, 55, and blank space; Totals - 0.278, 106, and 236.

Similar problems arise when a column spans one too many cells (FIGURE 8.7). In this instance, the browser creates an entirely new column with a single cell to account for the overflow.

[image: A table presents a table, with a new column for the overflow data.]

Figure 8.7 What happens when a colspan spans one column too many

A figure presents a table for Aaron Judge that displays batting average, home runs, and runs batted in. The table has 6 columns and 6 rows. The table header that reads Aaron Judge spans 4 columns and the other header reads RF and it spans 1 column. The five column headers read as follows: year, team, BA, HR, and RBI. The years listed are as follows: 2017, 2018, and 2019. The team mentioned is NYY for all three years. The data inferred from the table in the order of above mentioned years are as follows: BA: 0.284, 0.278, and 0.272; HR: 52, 27, and 27; RBI: 114, 67, and 55. The total of each column is displayed in the last row corresponding to each column of BA, HR, and RBI. The row header "totals" is displayed in a merged cell with column span 3. So the total values are displaced one cell to the right. The total for BA, HR, and RBI are as follows: .278, 206, and 236. The total of BA is displayed in the HR column, the total of HR is displayed in the RBI column, and the total of RBI is displayed in the sixth vacant column at the right end of the table.

To add colspan to a table header:

	Type <thead>.

	Type <tr>.

	Type <th but don’t add the closing >.

	Type colspan="4">.

Since the head has two columns but it’s a five-column table, this colspan should be 4—one for the cell and three for the cells that are skipped.

	Type Aaron Judge.

	Type <th>RF</th>.

	Type </tr>.

	Type </thead>.

The result is the heading you see in Figure 8.5.

[image: Video play icon.] VIDEO 8.2
Experimenting with colspan and rowspan

In this video you will start with a basic table and incorporate rowspan and colspan into the code to see how the table changes in real time.

[image: A figure presents the glossary of baseball terms.]

Figure 8.8 A description list of baseball terms and their definitions

A figure depicts the description list of the baseball terms. The term batting average is aligned to the left side of the page. The description "The total number of hits divided by the number of at-bats" for this is given in the next line, and it is aligned to the center. In the next line, the term Home Run is displayed. The description "A fair hit that allows the batter to round all of the bases and cross home" is written below it. The third term Runs Batted In is displayed and the description "Any run credited to a specific batter that results from a fair hit ball or base on balls" is displayed below it. The second and third cases follow the same pattern as the first.

CODE 8.3 The markup that creates the description list in Figure 8.8

Click here to view code image

<dl>

 <dt>Batting Average (BA):</dt>

 <dd>The total number of hits divided

 → by the number of at-bats.</dd>

 <dt>Home Run (HR):</dt>

 <dd>A fair hit that allows the batter

 → to round all of the bases and cross

 → home.</dd>

 <dt>Runs Batted In (RBI):</dt>

 <dd>Any run credited to a specific

 → batter that results from a fair hit

 → ball or base on balls.</dd>

</dl>

Description Lists

A description list is a fantastic example of structured, defined data. It’s an element that contains a list of terms and descriptions (or definitions) for those terms. A glossary is a perfect example (FIGURE 8.8).

Tip

Prior to HTML5, description lists were called definition lists.

The markup for a description list includes three tags:

	<dl>: This is the container for the entire list. dl stands for “description list.”

	<dt>: The dt (description term) is the term being described.

	<dd>: This is the “description details.” It’s the text that describes the term.

CODE 8.3 shows you the code for the description list in Figure 8.8.

Description lists aren’t limited to definition/term lists. You can also use them for recipes, upcoming events, or dialogue (like in a script).

Semantically, a <dd> will be associated with the preceding <dt>. That means that you can have multiple <dd> elements following a single <dt>, and vice versa. If you have two <dt>s in a row, the very next <dd> will be associated with both of them.

To create an events list using a description list:

	Type <dl> to start the list.

	Type <dt>Opening Day</dt> to enter the first term to be described.

	Type <dd>April 1, 2021</dd> to enter the description for the term you just added.

	Type <dt>All-Star Game</dt> to add a new term to the list.

	Type <dd>July 13, 2021</dd>.

	Type <dd>Game held at Truist Park, home of the Atlanta Braves</dd> to add a second line of information about the term.

	Type <dt>Postseason</dt>.

	Type <dd>October 2021</dd>.

	Type <dd>Rounds: Wild Card, Division Series, League Championship, World Series</dd>.

	Type <dd> The winners in each league will play in the World Series. </dd>.

	Type </dl> to close the description list.

The resulting list is shown in FIGURE 8.9.

[image: A figure presents the description list of events, that includes the date, location and, other details for each event.]

Figure 8.9 A description list of upcoming events in Major League Baseball

A figure depicts the description list of the upcoming events in Major League Baseball. The upcoming events mentioned are as follows: Opening day, All-Star Game, and Postseason. The details of each event are described below each event. The events are aligned to the left and the descriptions are aligned to the center. For the Opening day event, the date April 1, 2021, is displayed below it. For All-Star Game, the date July 13, 2021, and the location details are displayed one below the other. For Postseason, the event date October 2021 is displayed first. The details of the rounds are displayed below the date. The information regarding the winner is displayed on the last line.

This example shows that, by default, every <dd> is indented under the most recent <dt>, creating a nice visual hierarchy of terms and descriptions.

Tip

You can even use other HTML elements, like <p> or , inside description lists!

[image: Video play icon.] VIDEO 8.3
Writing a Script with a Description List

Even though description lists are not often used, they have many applications that can be creative as well as practical. This video will show you how to use one to write dialogue in a TV script.

On Indenting Your Code

HTML does not require that code use any particular style of indentation. I add indents manually in my code. Some HTML editing software will add them for you.

Through the book, you’ll notice the use of indentation for each child element, like so:

<parent>

 <child>

 <grandchild>

This makes the code easier to follow, and you can quickly locate opening and closing tags.

Why Is Structured Data Important?

You might be wondering why we need to use specific structures for different kinds of data. After all, we could easily use an unordered list for description lists.

But using the right tags to define data is important for browsers, users, and search engines. A great example of defining data in HTML is the <address> tag:

<address>

 Yankee Stadium

 1 E 161 St.

 The Bronx, NY 10451

</address>

… which renders as FIGURE 8.10.

[image: A figure shows an address displayed in three lines using the address tag. The address reads as follows: Yankee Stadium, 1 E 161 St., The Bronx, NY 10451. The italic font is used.]

Figure 8.10 The <address> tag in action

Aside from it being italicized, there’s not much visually different about an address. You could easily use a <p> or <div>. But the <address> tag tells the browser and search engines, “This is the contact information for this page.” Even better, if the <address> tag is nested in an <article> tag, it indicates contact information specifically for that article.

What this ultimately leads to is better, more informative search results for users. Here’s what happens if you search online for “Yankee Stadium address” (FIGURE 8.11).

[image: A screenshot presents a Google search results web page.]

Figure 8.11 The answer shows up directly on the search results page.

A screenshot displays a Google search results page. The search text field displays the text Yankee stadium address. The Yankee Stadium address is displayed below that. The images of the Yankee Stadium is present on the right side of the web page. Also, the page displays some questions asked by people related to Yankee Stadium.

Without semantic meaning applied to the text (in this case, as an <address> tag), Google would have a much harder time knowing which data on the page contained the correct answer.

Using Schema.org vocabulary for custom structured data

This is a bit beyond the scope of “basic HTML and CSS,” but it’s important to know in the context of this conversation.

There are a number of different ways of annotating your structured content. By annotating your data, you help search engines better understand your page content and enable them to display your site with interesting search appearance elements. While there are several types of specifications, Schema.org is the commonly used type we’ll use in this book. These sets of markup are called schemas. Driven primarily by Schema.org, these schemas provide a vocabulary that search engines can potentially use to better understand what you’re presenting.

Tip

Yoast, a company that specializes in search engine optimization (SEO), has a fantastic write-up on schema: yoast.com/structured-data-schema-ultimate-guide/.

Common examples of schemas drive search engine results that you regularly see: information on movies and TV shows, recipes, and so on (FIGURES 8.12 and 8.13).

[image: The Google search results page of the movie Field of Dreams.]

Figure 8.12 Google uses movie schema from several different sites (IMDB, Wikipedia, and YouTube, to name a few) to build a special display for movies to show up in searches.

A screenshot displays a Google search results page of the movie Field of Dreams. The search text field displays the text field of dreams. The page displays links with information about the movie Field of Dreams from different sites like Wikipedia and YouTube. Several images and details of the movie are displayed on the right side of the web page.

[image: A screenshot displays a Google search results page of the hot dog recipes. The search text field displays the text hot dog recipes. The links to recipes of hot dogs are displayed in card format on the page along with the thumbnail and rating for the link.]

Figure 8.13 Recipes show up in a card format on Google, allowing users to see what looks best to them and then click through to the recipe.

If you wanted to, you could create a more meaningful event list. The main driver is an attribute called itemscope, which states that the element is about a specific item. Then we’d use the attribute itemtype to get the right schema from Schema.org to go with it. We can add more information to an element with itemprop, which allows you to set item properties based on the type of data represented (e.g., events will have a date; recipes will not).

Tip

 Two hugely helpful resources are schema.org/docs/gs.html, for getting started, and schema.org/docs/full.html, which lists all the types of data.

[image: Video play icon.] VIDEO 8.4
Walking through Schema Examples

In this video, you’ll get a closer look at different types of schemas and how they affect search results.

To create an event with Schema.org vocabulary:

This task uses the following markup for an event that, alas, never took place:

Click here to view code image

 <dt>Field of Dreams Game</dt>

 <dd>August 13, 2020</dd>

 <dd>Game held in Dyersville,

 →Iowa</dd>

 <dd>Yankees vs. White Sox</dd>

	After <dt, type itemscope.

	Type itemtype={"https://schema.org/SportsEvent">.

	After the first <dd tag (the one containing the date), type itemprop="startDate" content="2020-08-13T19:00">.

This is a machine-readable version of the date and time.

	Replace Dyersville, Iowa with Dyersville, Iowa.

	Replace Yankees with Yankees.

	Replace White Sox with White Sox .

The resulting markup is shown in CODE 8.4.

CODE 8.4 Our miniature baseball database, now with Schema.org vocabulary added

Click here to view code image

<dt itemscope itemtype="https://schema.org/SportsEvent">Field of Dreams Game</dt>

 <dd itemprop="startDate" content="2020-08-13T19:00">August 13, 2020</dd>

 <dd>Game held in Dyersville, Iowa</dd>

 <dd>Yankees vs. White Sox

 → </dd>

While this doesn’t affect the display of your webpage, it gives search engines much more valuable information. You can imagine someone searching “Who is the home team for the Field of Dreams game?” Now search engines can find the answer in our tiny database.

Wrapping Up

You covered a lot of ground in this chapter, learning about important structures like tables and description lists. You also have a better understanding of structured data and its importance in creating a better, more user-friendly web.

9

Web Forms

In This Chapter

Interacting with Webpages

How a Web Form Works

Components of an HTML Form

The <form> Element

Form Fields

Labeling Fields

Setting Up a Basic Form

Creating Select Boxes

Creating Radio Buttons

Creating Checkboxes

Creating Email Forms

Special Field Types

The <meter> Element

Validating Forms

Wrapping Up

So far, everything you’ve learned about webpages and HTML has taught you how to build a one-way street. That is, you can post information to a webpage, but the website visitors have no way of interacting with you. That’s where web forms come in.

Web forms are the primary way users interact with websites. From contact forms to Google’s search box, forms drive engagement and make the web a more interactive place.

Interacting with Webpages

Forms allow users to submit information to your website. You then have the option to store the data or otherwise do something with it. Some examples of popular web forms:

	Contact forms

	Comments

	Forums

	Login boxes

	Post boxes (on social media websites)

	Search boxes

	Checkout pages, Add To Cart buttons, and payment submissions for online stores

	Chatbots

	Popup opt-in boxes

You’ve no doubt seen lots of forms (FIGURES 9.1, 9.2, and 9.3).

[image: A screenshot displays the Google home page with a search box. An icon is displayed above the search box.]

Figure 9.1 Google’s iconic minimalist home page, with only a search box

[image: The checkout form on an e-commerce site is shown.]

Figure 9.2 Checkout form on an ecommerce site

A screenshot presents a Checkout form on an e-commerce site. The page displays the fields to fill the billing details. The fields to enter the First name, last name, country or region, street address, city, state, zip, and email address are listed one below the other. The order details are displayed on the right side of the page. The order details include the total amount and the type of payment done.

[image: A screenshot displays the login page of Twitter. The text fields to enter the username and password are present on the page. A login button is displayed below the text field.]

Figure 9.3 Twitter’s login page

[image: Video play icon.] VIDEO 9.1
Interacting with Forms

There are lots of different forms you can build, as well as many different ways users can interact with those forms. In this video you’ll see some unique web forms and learn how they work.

How a Web Form Works

There are several steps to building and processing a web form (FIGURE 9.4):

[image: A figure depicts the data flow entered into a web form. After submitting the data, the data will be directed to validate phase to validate it. Upon validating, the data is processed before showing confirmation to the user.]

Figure 9.4 The flow of the data that is entered into a web form

	Build the form using HTML.

	Validate the form to make sure all data is submitted properly.

	Submit and process the form.

Processing can happen in several ways. You could simply email the contents of the form somewhere, you could store it in a database, you could use it to change your site in real time, and much more.

	Display confirmation to the user.

Keep this in mind as you read this chapter, though: you’re learning how to build the form in HTML, and you’re using HTML elements to perform basic validation of the input data.

But with regard to submitting the data, you can’t do as much with just HTML. Submission often requires the use of another programming language, which goes beyond the scope of this book. That said, you will learn basic form processing to email the form contents. In Chapter 10, you’ll even learn a simple technique for storing the data.

Components of an HTML Form

Every form is wrapped in a <form> element, which consists of the opening <form> tag and the closing </form> tag.

The bulk of the form itself is made up of fields that can accept data from users. Most of these elements are created with <input> tags, though there are others you’ll also learn about.

Tip

Webpages can include more than one form, so placing fields inside the opening and closing form tags signals to a browser that all the fields belong to the same form.

The <form> Element

Every form needs an opening <form> tag and a closing </form> tag, which together define a form element. The form element requires an action attribute, and it should have method and name attributes as well:

Click here to view code image

<form name="search-form"

→ method="GET" action="process.php">

The name attribute is a simple way to uniquely identify the form (each form should have a unique name). Webpages can contain more than one form, and the name attribute allows you to easily reference the form in both CSS and JavaScript.

The method attribute determines how the form data should be sent, and can take one of two values.

GET is the default value. This method transmits data from one page to another in a URL as name-value pairs (FIGURE 9.5).

[image: A screenshot shows the URL that is used to obtain the results of a form. The URL is as follows: /process.php question mark search-term=Atlantis and submit equals Search.]

Figure 9.5 Using the GET method, you can see the results of a form in the URL.

Attributes are a good example of name-value pairs. They have a name (like the role attribute) and a value (like “main”). In a URL, name-value pairs appear in this format: role=main.

When a user fills out your form and clicks Submit, the browser takes all the data from the form and then inserts it into the URL. In the above example, the URL would look something like this: process.php?name_of_field=value_the_user_input.

The other method value is POST. In this method, data is transmitted in the HTTP request and is not shown in the URL. The data is sent, in this instance, to process.php via the server.

[image: Video play icon.] VIDEO 9.2
Comparing the GET and POST Form Submission Methods

To get a better idea of how each action behaves, here you’ll see what happens with a GET method compared to a POST method.

The action attribute tells the browser where to send the form information. It’s what does the form processing, whether that’s emailing its contents or storing it in a database. If you do not include the action attribute, modern browsers will assume the current page will also process the form.

Tip

Forms are often processed using a server-side language like PHP, Python, or C#. While that’s outside the scope of this book, you can download the process.php file from the Github repo (short for repository, or a place where we can store our code for others to download) for this book (see “Code" in the Introduction).

Tip

Privacy and data storage laws are becoming stricter around the world. Depending on where you live, you may need to alert the user to how you’re using the data or ask them to explicitly give your website permission to let you store it.

Deciding Between GET and POST

Both GET and POST have pros and cons. With GET, the data entered by the user is visible in the URL, so you should never use it to pass sensitive data, like passwords. But using GET (and therefore allowing form data to be visible) is great if you want to make the results shareable or if you want to let the user save them. An example that uses GET is Google search results.

On the other hand, the length of a GET request is limited, ranging from 2000 to 8000 characters, depending on the server and browser configurations.

There is no limit on results when using POST, and it’s more secure, but the results pages cannot be shared, nor can the results of a specific form submission be saved.

Form Fields

There are several form fields that you can define in HTML, and each allows the user to interact with the form in a different way.

Input fields

The most common tag you’ll find between the opening and closing <form> tags is <input>. This element creates a field into which users can insert data. It looks something like this:

Click here to view code image

<input type="text" name="search"

→ value="" />

Let’s take each attribute one by one.

The type attribute determines the kind of data a user can input. While text is the most common (and the default when the type attribute is not defined), there are lots of values the type attribute can have. You’ll see most of them throughout this chapter.

Tip

For a complete (and regularly updated) list, check out developer.mozilla.org/en-US/docs/Web/HTML/Element/input.

The name attribute assigns a name to the input field. Remember those name-value pairs from earlier? The name is derived from the name attribute. It should be unique to prevent overriding data.

The value part of the name-value pairs is derived from the value attribute. Notice that the value attribute in the above example is blank. You can add one, but whatever the user inputs will overwrite it (FIGURE 9.6).

[image: A screenshot presents a text field where the value attribute can be entered. The text in this field reads "This is a value."]

Figure 9.6 A text field with the value attribute

With some form fields—namely, those that take on the appearance of a textbox (a single-line white field with gray border, which accepts a limited amount of text)—there is another attribute. Instead of setting the value attribute, you can use the placeholder attribute. This adds grayed-out text to the field, to suggest the type text that can go in the field.

If the user does not fill out the field, it will have no value (FIGURE 9.7).

[image: A screenshot displays a field to enter the placeholder attribute. The grayed-out text in the field reads "This is a placeholder."]

Figure 9.7 A field with the placeholder attribute

Each form should also have a submit field, which has its own input type. When the browser sees this input type, it will generate a button for the user to click, in order to send the form’s data using the method and action you defined in the opening <form> tag.

Although you can set the value of a submit input type, it is immutable outside of markup, so the user cannot change it.

Putting it all together, you get this:

Click here to view code image

<form name="search-form" method="GET"

→ action="process.php">

 <input type="text"

 →name="search-term" />

 <input type="submit" name="submit"

 →value="Search" />

</form>

… which looks like FIGURE 9.8 in the browser.

[image: A screenshot shows a search text field along with a search button. The text "Atlantis" is entered in this field.]

Figure 9.8 A simple search form

Tip

You can use type="search" for input on search forms as well, and a submit button will automatically be included.

If a user were to enter Atlantis into the search form, the URL would look like this:

Click here to view code image

yoursite.com/process.php?search-term=

→ Atlantis

Input types

Text and submit are not the only types of input available. You can submit data using a variety of formats (FIGURE 9.9, CODE 9.1):

[image: A figure displays different types of input fields available in a form.]

Figure 9.9 What each input type looks like

A figure presents different Input types available for forms. A single-line text field is displayed. A text area is displayed for multiple line entries. A field to enter a password is another type of input field, where the entered characters are displayed as dots. Three radio buttons are displayed for three options, where one option is selected. Checkboxes are another type of input field, where three checkboxes are presented for three options. Select box with up and down arrows is displayed below it. A choose file button to upload files is shown, which helps in choosing the file to be uploaded. A submit button is displayed at the bottom to submit the inputs entered in the form.

	text: A single line of text.

	password: A field designed for users to add passwords or other sensitive text. This field obfuscates input, using dots to hide its contents.

	radio: A button (typically circular) usually created in groups. Only one of the buttons in a group can be selected at a time, which makes radio buttons the ideal way to offer your user a range of options from which they must choose one.

Use the checked attribute to select a default value.

	checkbox: A set of square boxes that present the user with several options. One or more can be selected.

Use the checked attribute to select a default value.

	email: This input type tells the browser to make sure the user has entered a properly formatted email address.

	file: A text field with a Choose File button. Clicking the button opens a file navigation dialog box the user can use to find and select a file on their computer for upload to a server.

	submit: A button that, when clicked, sends the form for processing.

	image: Works just like the submit button, but you can use an image you provide instead of the standard browser-rendered submit button.

Due to advancements in CSS, you see this used a lot less than it once was.

	hidden: Creates a form field that cannot be seen or edited by users. This is often used to capture dynamically generated content, like a timestamp or ID. For example, on a blog post, a comment form would have a hidden field with the ID of the post so that the blog publisher knows which post the comment belongs to.

There are also a few fields that act like text fields but require specific kinds of text. They are email, date, search, tel, and url. You will learn more about them in the “Validating Forms” section of this chapter.

CODE 9.1 The HTML code used to generate the inputs in Figure 9.9

Click here to view code image

<form name="input-reference" method="get" action="process.php">

<input type="text" name="text" value="This is text"/>

<textarea name="textarea">This is a textarea</textarea>

<input type="password" name="password" value="This is password"/>

<p>Radio Buttons:</p>

<input type="radio" name="radio-option" value="1st option" />1st option

<input type="radio" name="radio-option" value="2nd option" checked />2nd option

<input type="radio" name="radio-option" value="3rd option" />3rd option

<p>Checkboxes:</p>

<input type="checkbox" name="check-option1" value="Atlantis" /> 1st option

<input type="checkbox" name="check-option2" value="Snow White" /> 2nd option

<input type="checkbox" name="check-option3" value="Aladdin" /> 3rd option

 <select name="select">

 <option>This is a Select Box</option>

 <option value="1st option">1st option</option>

 <option value="2nd option">2nd option</option>

 <option value="3rd option">3rd option</option>

 </select>

 <p>File Upload:</p>

 <input type="file" name="file" />

 <input type="submit" name="submit" value="Submit" />

 <input type="image" name="image-submit" src="submit-img.png" alt="Submit" />

 </form>

Other field types

Aside from the <input> tag, there are two other field elements worth mentioning.

A <textarea> field allows users to enter a block or paragraph of text; it also uses a closing </textarea> tag. The default text of this field goes in between the opening and closing tags. See Code 9.1 for an example.

The <select> element creates a dropdown menu, or list of options. By default, only one option in the list can be selected. You can allow the reader to select more than one option by including the multiselect attribute.

To populate a <select> field, you’ll need to include the <option> element between the opening and closing <select> tags. In this instance, <select> should include the name attribute, but each <option> tag should have its own value attribute.

See Code 9.1 for an example. You’ll create your own select box in an upcoming task!

Tip

You can also use the select="selected" attribute on any <option> element to set that as the default option. By default, it will be the first option listed.

Why Use Hidden Fields?

You might be wondering why someone would use a hidden field on their form if a user can’t see it. There are several possible reasons, but the main use case is gathering extra information about the user’s visit, like the time of day, the URL they were visiting, or the user’s IP address.

A hidden field can also be used to defend against spam. If the field is filled out, there’s a good chance a spambot did it, not a person. You can then throw out those submissions.

Labeling Fields

Although the placeholder attribute does a reasonable job of communicating the kind of information the user should enter into many form fields, there’s a better, more semantic way: use a <label> element with your <input> elements.

Click here to view code image

<div>

 <label for="first_name">First

 → Name:</label>

 <input type="text"

 → name="first_name"

 → id="first_name" placeholder=

 → "Milo" />

</div>

In the browser, this code is rendered as a text box labeled with the kind of data the user is expected to enter (FIGURE 9.10).

[image: A screenshot displays a form field with the label. "First name" is the label and a text field to enter the label is displayed along with it. The name is entered as "Milo" in this field.]

Figure 9.10 A form field with label

You’ll notice that the label has a for attribute. That attribute matches the id attribute on the input element. This tells the browser, “This label belongs to the <input> element whose ID matches the for attribute.”

Aside from improving user experience, labeling your input fields provides accessibility benefits:

	If a visitor to your site is using a screen reader, it can read the text of the label out loud when the input element has user focus (for example, when the user taps it or clicks it with a mouse).

	Because clicking the label activates the form field, the overall “hit area” for the form element is increased. This can make it easier for users with decreased mobility to activate the input fields.

Setting Up a Basic Form

Before moving on and creating examples of form inputs, you’ll write a simple form skeleton, to which you can add the example inputs you create in the rest of the tasks.

Tip

Even when labels are applied to inputs throughout a webpage, it’s common to omit them for submit buttons.

To create a form skeleton:

	Type <form name="example-form".

	Type method="GET">.

	Leave a blank line between the previous line and the next line.

	On the next line, type <input type="submit" name="submit" value="Submit" />.

	On the next line, type </form>.

You should now have this:

Click here to view code image

<form name="example-form"

→ method="GET">

 <input type="submit" name="submit"

 →value="Submit" />

</form>

Creating Select Boxes

Select boxes are an intuitive way to allow your users to pick from a list of items. There are two ways a select box can work: as a simple dropdown menu, which allows only one option to be selected, or as a multiselect box, where several items can be selected. The following tasks will show you how to build both. Using the form skeleton you created in the previous task, insert the code you will build in the following task right after the opening <form> tag.

To create a select box:

	First, create the label for the select box. Be sure to include the for attribute with the ID for the label. For this example, type <label for="next-movie">What movie do you want to see next?</label>.

	Type the opening tag for the select box: <select.

	Give the box a name and assign its ID by typing name="next-movie" id="next-movie">.

Next, define the <option> elements that will be listed on the menu. This example uses movie titles.

	Type <option value="Toy Story 4"> Toy Story 4</option>.

	Type <option value="Onward">Onward </option>.

	Type <option value="Fast 9">Fast 9 </option>.

	Type </select>.

This creates a box that lists three options, from which the user can pick one (FIGURE 9.11).

[image: A screenshot presents a select box which is a dropdown menu against a question. Three options are listed in the dropdown list next to the question. Here, the first option is selected.]

Figure 9.11 A select box with all options showing

[image: Video play icon.] VIDEO 9.3
Converting a Select Box to a Multiselect Box

In this video, you’ll see what happens when you convert a select box into a multiselect box, and how each field works.

To create a multiselect box:

	Type <label for="seen-movies">What movies have you seen?</label>.

	Type <select name="seen-movies" id="seen-movies".

	Type multiple> and press Return/Enter.

Each of the following option elements belongs on its own line.

	Type <option value="Atlantis"> Atlantis</option>.

	Type <option value="Snow White">Snow White</option>.

	Type <option value="Aladdin"> Aladdin</option>.

	Type </select>.

This creates a box that lists three options. The user can hold the Shift key while clicking to select more than one contiguous option, or they can hold Command (macOS)/Ctrl (Windows) to select multiple noncontiguous options (FIGURE 9.12).

[image: A screenshot presents a multiselect box which is a dropdown menu against a question. Three options are listed in the dropdown menu for a question. Two options "Snow White" and "Aladdin" are selected.]

Figure 9.12 A multiselect box with two options selected

Creating Radio Buttons

Radio buttons are another way to present a user with options and have them pick one (the select box is the first way). Once a radio button is selected, it cannot be deselected without selecting another radio button.

Using the form skeleton you created in a previous task, place the following code from the task right after the opening <form> tag.

To create radio buttons:

	If you want to provide a title or other introductory text for your buttons, include it in a paragraph element. For this example, type <p>What is your favorite movie?</p>.

	Type <input type="radio" name= "favorite-movie" id="atlantis" value="Atlantis" /> <label for="atlantis">Atlantis</label>.

	Type <input type="radio" name= "favorite-movie" id="snow-white" value="Snow White" /> <label for="snow-white">Snow White </label>.

	Type <input type="radio" name= "favorite-movie" id="aladdin" value="Aladdin" checked /> <label for="aladdin">Aladdin</label> (FIGURE 9.13).

[image: A screenshot presents the question "What is your favorite movie" and three options are listed below the question in a row. A set of three radio buttons are displayed against each option. The radio button against the last option "Aladdin" is selected.]

Figure 9.13 A set of radio buttons with the default option selected

Note the checked attribute on this input.

Notice the value of the name attribute of all three buttons is the same. That’s to tell the browser, “These buttons belong together.”

Creating Checkboxes

Checkboxes are a great way to present the user with multiple options and allow them to accept more than one. Unlike radio buttons, where the user can only choose one, there is generally no limit on the number of checkboxes a user can select.

Using the form skeleton you created in a previous task, place the following code from the task right after the opening <form> tag.

To create checkboxes:

	Type the introductory text, if any; in this case, use <p>What movies do you want to see?</p>.

	Type <input type="checkbox" name="want-to-see-1" id="atlantis" value="Atlantis" checked/> <label for="atlantis">Atlantis</label>.

Note the checked attribute.

	Type <input type="checkbox" name= "want-to-see-2" id="snow-white" value="Snow White" /> <label for="snow-white">Snow White </label>.

	Type <input type="checkbox" name="want-to-see-3" id="aladdin" value="Aladdin" /> <label for="aladdin">Aladdin</label> (FIGURE 9.14).

[image: A screenshot presents the question "What movies do you want to see?" and three options are listed below the question in a row. A set of three checkboxes are displayed against each option. The checkbox against the first option "Atlantis" is selected.]

Figure 9.14 A set of checkboxes

Notice that the names of these checkboxes have a number appended. If they were named the same, they would all effectively represent one option because as we learned earlier, the name attribute of each form field on a page must be unique. This rule does not apply to radio buttons, of course.

Tip

It’s possible to use advanced programming languages like PHP to name a group of checkboxes the same and still keep them as a group, but that’s beyond the scope of this book.

[image: Video play icon.] VIDEO 9.4
Creating Checkboxes and Radio Buttons

Checkboxes and radio buttons act a little differently from other input types. In this video you’ll learn how to write them, see what their differences are, and learn when to use each.

Creating Email Forms

Email forms are super common online, as are inputs to capture email in general. That’s why the email input type exists. It will self-validate to make sure the user is entering an email address that’s in the proper format (but it won’t know whether the email address actually exists).

To create a simple email opt-in form:

	Type the opening tag for the form element, making sure to include the name or id, method, and action attributes. For this example, use <form name="optin" method="GET" action="process.php">.

Our example form includes two <input> elements, each with a label: a text input for the user’s first name, and the email input.

	Create the label for the user’s name: <label for="first-name">First Name:</label>.

	Type <input type="text" name="first_name" id="first-name" placeholder="First Name" />.

	Type <label for="email-address"> Email Address:</label>.

	Type <input type="email" name="email_address" id="email-address" placeholder="Email Address" />.

	Type <input type="submit" name="submit" value="Join the List!" />.

	Type </form> (FIGURE 9.15).

[image: A screenshot displays an email opt-in form. The text fields to enter the first name and the email address are displayed along with the field label. Also, a "join the list" button is displayed. All of these fields and a button lie in a single row.]

Figure 9.15 A simple email opt-in form

Special Field Types

There is a set of input types that add special controls and selectors. They offer a better way for users to insert properly formatted data. This reduces the need to take separate measures to validate and makes the input more reliable.

Tip

You can view a more comprehensive list of these special inputs at www.w3schools.com/html/html_form_input_types.asp.

Date

The date input type (FIGURE 9.16) brings up a calendar for users to pick a date from (FIGURE 9.17). The browser display (what you see in the box) depends on the user’s locale (where they are located, based on what the browser knows). The date is always sent in the format YYYY-MM-DD.

[image: A screenshot presents a date input field. The format to enter the date is displayed as mm/dd/yyyy in the field.]

Figure 9.16 The date field, with a locale of “en-US” for English, United States

[image: A figure shows a Google chrome date picker. A calendar for July 2020 is shown. The date can be selected in the format mm/dd/yyyy from the drop-down list below. Day 8 is selected in the calendar. A forward and backward button is displayed to navigate through the dates.]

Figure 9.17 The date picker, as implemented by Google Chrome

<input type="date"

→ name="release-date" />

You can constrain a user’s selection to a specific range of dates by using the min and max attributes:

Click here to view code image

<input type="date" name="release"

→ min="1937-12-21" max="1992-11-11" />

Note that the min and max attributes affect the date picker, but a user will be able to manually set any date, even if it’s outside the range. This is a good use case for validation with JavaScript.

[image: Video play icon.] VIDEO 9.5
Building a Rental Application

To get you more familiar with the various input types, in this video you’ll build a small application for someone who’s looking to rent an apartment.

[image: Video play icon.] VIDEO 9.6
Working with Dates on Forms

In this video you’ll see the date field in action on forms, as well as how the dates are formatted once a user submits the form.

[image: Video play icon.] VIDEO 9.7
Picking Colors

In this video you’ll see how the color picker works in Chrome and what kind of data is passed for processing.

Finally, there are a few other date- and time- related inputs:

	datetime-local: This allows the user to select a date and time without including the time zone. That means that even if you’re in New York and your user is in London, you’ll both see the same date and time inputs.

	time: Allows the user to select a time with no time zone included.

	month: Allows the user to select a month and year.

	week: Allow the user to select a week number and year.

Tip

At the time of this writing, month and week have only partial browser support, but they are supported by all major browsers. They are displayed as text fields if a browser does not support them.

When capturing times in a form, since time zones are not supported, you’ll need to capture them a different way. You can use a hidden field for this if you don’t want the user to change the time zone (this works best for local events or appointments). If you want them to select their own time zone, you can use a select box.

Color

The color input type allows users to select a color through use of a color picker (FIGURE 9.18):

[image: A figure shows a Google chrome color picker. A circular color wheel with multiple colors is displayed at the center of the window. The red color is selected here. Different shades of red color can be selected by a color scale displayed below the circle. Also, different options for applying colors are available at the top.]

Figure 9.18 The color picker, as implemented by Google Chrome

Click here to view code image

<input type="color" name="carpet-color"

→ value="#FF0000" />

The value is a seven-character code in hexadecimal format (which you’ll learn all about in Chapter 14). The default value of color is black unless you specify a different value.

Range

The range input type creates a slide controller that allows users to adjust the value of a parameter by sliding the controller along a scale. You can set min and max attributes to limit the possible range of values (FIGURE 9.19). The default values for min and max are 0 and 100, respectively.

[image: A figure shows a slide controller. A round button is present at the center portion of the scale. The button can be slid on the scale to select the range of fields.]

Figure 9.19 The range field, as implemented by Google Chrome

Click here to view code image

<input type="range" name="rating"

→ min="0" max="10" />

You can also use the step attribute, which allows you to set a specific increment by which values can change. The default value is 1. The step attribute happens to be supported for date inputs as well, but it is best for imprecise values, as in a volume controller.

[image: Video play icon.] VIDEO 9.8
Using Range

In this video you’ll see how the range field is implemented in Chrome. Included is a small bit of JavaScript so you can see the value change in real time.

Grouping Fields Together

If your form is lengthy, you can make it easier for your users to scan it by using two elements for organization: <fieldset> and <legend>.

You can place any number of form fields and labels into a <fieldset> element. By default, they will have a grey border around them.

You can then use the <legend> element to caption the <fieldset>. The <legend>, by default, will appear aligned in the middle of the top border of the <fieldset> (FIGURE 9.20).

[image: An example of a fieldset with a caption and border is presented.]

Figure 9.20 The <fieldset> element with <legend>

A screenshot shows a fieldset with the legend. The fieldset is displayed inside a border. The heading of the fieldset, "Elements with Multiple Options" is aligned in the middle of the top border of the fieldset. Inside the border, radio buttons, checkboxes, and a select box are given one below the other.

CODE 9.2 Markup for two <meter> elements: one with, and one without, min and max values defined.

Click here to view code image

<label for="fuel">Fuel level:</label>

<meter id="fuel" value="0.2">

 At 20%

</meter>

<label for="donations">Donations:</label>

<meter id="donations" min="0" max="100000"

→ value="60000">

 at $60,000

</meter>

The <meter> Element

One pretty nifty element is <meter>, which graphically represents a value over a range. It accepts several attributes, but the ones to know about are value, min, and max. The attributes min and max are optional. If they are not specified, they default to 0 and 1, respectively, and value is a fraction. If min and max are defined, they determine the scale for value. You can see <meter> in action in FIGURE 9.21, which is generated by CODE 9.2.

[image: Two-meter elements indicate how close the current value is to the optimum range.]

Figure 9.21 The two <meter> elements created by Code 9.2

A figure shows various states of the meter element under two different combinations of input values. Here, two icons representing the battery level is given. The first icon represents the fuel level, and the level is low. The second icon represents the Donations, and the level is more than half.

Validating Forms

Validation is an incredibly important part of any form. There are three primary ways to validate forms:

	The built-in HTML5 validation for specific fields like email, URL, phone number, and more, as well as the validation attributes required and, if needed, pattern.

	You can use JavaScript to validate data when it is input by the user, especially if that data isn’t automatically validated by one of the input types. One example in the US is the zip code; they should follow a specific format, but there is no input type defined for them.

	A server-side script written in a language like PHP. Validating at this stage makes sure all data is in the right format, and that there are no malicious attempts at hacking before you process it. While you don’t need to know server-side validation for the examples in this book, once you start learning how to write server-side code, you will need to keep this in mind as you process forms.

For the purposes of this book, using the built-in HTML validation works well. As you begin to do more advanced form processing, knowing how to validate with both JavaScript and a server-side language is important.

Javascript and PHP are outside the scope of this book, but there are a couple of helpful files in the Github repo for this book.

Instead, here’s how to apply some great form validation with HTML5 only.

The most basic validation you can add is to ensure that required fields are filled out. That is as simple as adding the required attribute:

Click here to view code image

<div>

<label for=first_name">First Name*:

→ </label>

<input type="text" name="first_name"

→ id="first_name" placeholder="First

→ Name" required/>

</div>

Tip

It’s also a good practice to provide a visual indicator that a field is required. Common methods include adding an asterisk (*) or the word required in parentheses next to the label.

[image: Video play icon.] VIDEO 9.9
Building and Testing a Valid Form

Testing webpages is just as important as building them, and in this video, you’ll see how to build a small form using the validation methods, and then you’ll test it to make sure it works properly.

If the required field is not filled out, modern browsers will display an error message (FIGURE 9.22).

[image: A figure presents the text fields to enter the first name and the email address. The error message, "Please fill out this field" is displayed against the "first name" text field.]

Figure 9.22 The error message when a required field is not filled out

Similarly, there is a set of input types that have automatic validation:

	email: Looks for a valid email address (FIGURE 9.23).

[image: A screenshot displaying an error message for e-mail is given.]

Figure 9.23 The error message when a valid email is not entered

A screenshot presents two text fields requiring the First name, and Email Address. The first name is filled as Joe, and the email address is filled as joe. An error message "Please include an '@ (at symbol)' in the email address. 'joe' is missing an '@ (at symbol)'." is displayed pointing the text field of the Email Address.

	url: Looks for a valid URL format.

	number: Looks for a valid numerical value. Using the min and max attributes will validate on a specific range:

Click here to view code image

<input type="number" name="age"

→ mix="13" max="150" />

	tel: Looks for a telephone number.

This requires the pattern attribute.

The final piece of validation that can be applied in HTML is the pattern attribute. This requires knowledge of regular expressions (regex), but it allows you to supply the description of a pattern, which all input can be validated against. Here’s an example of a US telephone format:

Click here to view code image

<input type="tel" name="phone_number"

→ id="phone_number"

→ pattern="[0-9]{3}-[0-9]{3}-[0-9]{4}"/>

Tip

Regular expressions are a way of performing complex searching of text by describing what they should look like. For example, the regex [0-9]{3} means “any three digits between 0 and 9, inclusive of 0 and 9.” A great resource for learning regex is regexone.com/.

Wrapping Up

There’s a lot to know about forms, but thanks to HTML5 and advances in browser technology, you can do a lot more with plain HTML today than you could even just a few years ago.

I encourage you to experiment with all the different inputs and data types to learn exactly how they work. You’ll find that you can build some pretty impressive, and interactive, webpages.

10

Advanced and Experimental Features

In This Chapter

It’s All About Browser Support

Advanced Elements

Experimental Features

Wrapping Up

HTML is constantly changing and evolving to meet the needs of modern web developers, users, and devices. A perfect example of this is the srcset attribute, which allows the use of multiple images with the and <source> elements.

This wasn’t part of the original HTML5 spec, but it was added because enough people requested and voted on the proposal. In this chapter, you’ll learn about some of the cool advanced features built into HTML5, what’s coming down the pike, and how to start using those experimental features today.

It’s All About Browser Support

Hopefully it’s clear by now that how webpages render and work is highly dependent on the browser on which your end user views them. A page with one set of markup will render differently in two different browsers (FIGURE 10.1).

[image: A figure depicts an example of rendering the website in different browsers.]

Figure 10.1 A website rendered in Chrome compared to its rendering in Firefox

The screenshot on the top shows the web page opened in a chrome browser. A photo of a man laughing is given on the left side of the page above the heading 'Get in touch'. On the right side of the page, text fields are given. It requires details like name, email, the reason for contact, and message. A submit button is given at the bottom of the page. The screenshot on the bottom shows the web page opened in the Firefox browser. A photo of a man laughing is given on the left side of the page above the heading 'Get in touch'. On the right side of the page, the text fields are given. It requires details like name, email, the reason for contact, and message. Several options are listed in the menubar. A submit button is given at the bottom of the page.

That’s a result of the fact that some browsers support new features before others, and the way a new feature is implemented in one browser might be totally different from its implementation in another.

The HTML specification (or spec) is the document that describes new features in HTML and how they should work. Then it’s up to browsers to implement that spec. Things have gotten a lot better in recent years, with browser developers working together to make sure there’s not a lot of disparity between them.

But you should still be mindful that some browsers might support new features sooner than others, and until a feature is marked as an official part of the HTML spec, its functionality could change from browser to browser.

[image: Video play icon.] VIDEO 10.1
Rendering Elements Differently in Different Browsers

To drive home this idea, I’ll show you a few live examples of how different browsers implement different HTML elements.

Checking browser support with “Can I Use …”

The best place to check browser support is the website caniuse.com (FIGURE 10.2).

[image: A screenshot of caniuse.com with search results for srcset is shown.]

Figure 10.2 Caniuse.com

A screenshot shows a webpage of Caniuse.com. A big header is given with a search box, and the srcset is searched in the box. Below the header, the search results are given under the heading 'srcset and sizes attributes' with two enabled buttons current aligned and show all. Sixteen tabs are present in the middle. Each tab has more than two links to provide the support information, browser version, and percentage of total usage. The notes tab at the bottom of the page shows the details on how to enable firefox settings.

Caniuse.com allows you to look up an HTML or CSS tag or attribute, and it gives you a full report on how it’s used and what browsers support it. It will also give you helpful information like global usage statistics, whether some browsers provide partial support, and known issues.

Tip

You’ll find caniuse.com especially handy when you start to use CSS.

Checking this site is a good idea if you want to implement something (especially for new and experimental features) and you’re not sure how widely supported it is.

Fallbacks and polyfills

In the event that you want to use a feature of HTML that might not be supported by all browsers, as a contingency plan you can implement fallbacks or polyfills.

A fallback is code or content used in the event that the original code or content isn’t supported by the current browser. It’s a way of saying to the browser, “If you don’t understand the main code, use this other code instead.”

HTML is very forgiving, so unsupported markup is just ignored. This is great for you as a web designer, because it means that if you want to use something like srcset, you can. Just make sure to include a standard src attribute as a fallback for browsers that don’t yet support srcset.

The same goes for most elements. Either there’s a default fallback (like unsupported form elements defaulting to the text input type) or you can define your own fallback (as in the srcset/src example). In features you’ll see later in the book, you can even define an error message that users will see if their browser doesn’t support the feature. Each of these prevent your website from completely breaking in older browsers.

You can also add a polyfill. Mozilla (the creators of the Firefox browser) defines it like this: A polyfill is a piece of code (usually JavaScript on the Web) used to provide modern functionality on older browsers that do not natively support it.

Basically, you add code that you can download to older browsers to support newer elements. While writing JavaScript is outside the scope of this book, one example is using a polyfill to add srcset support to old browsers. You can download the polyfill, called Picturefill.js, from scottjehl.github.io/picturefill/. Include a reference to the code in the head of your HTML document by using the <script> element, which allows you to pull in code that is not HTML or CSS. It’s most commonly used for JavaScript, and it works very similarly to the <style> element, which you’ll learn about when you get to the CSS section of the book. For the examples in this chapter, the script element is being used to pull in an external JavaScript file.

Assuming the file picturefill.js is in the root directory, add the highlighted code to the <head> element:

Click here to view code image

<head>

 <script src="picturefill.js">

 →</script>

</head>

This script will do the heavy lifting of checking the browser to see if srcset is supported and, if it’s not, creating the attribute for you to use.

What Are Progressive Web Apps (PWAs)?

PWAs are websites written in such a way that they provide on a mobile device an experience that feels like that of a native mobile application.

They use some combination of HTML, CSS, and JavaScript, while also getting help from the browser and operating system.

The Product Feedback app on apple.com, Smashing Magazine, Twitter, and Uber all use PWAs for their mobile sites.

[image: Video play icon.] VIDEO 10.2
Examples of the <canvas> Element in Use

The <canvas> element is good at more than just drawing shapes. In this video you’ll see fantastic interactive examples of <canvas> being implemented.

Advanced Elements

So what exactly qualifies as an advanced HTML element? For me, it’s any element that is supported by HTML5 but requires something extra (usually JavaScript) to work. Everything you should know about JavaScript would certainly fill more than one book, so there won’t be much JavaScript here.

The <canvas> element

The <canvas> element allows you to create drawings by writing JavaScript (FIGURE 10.3). In more advanced examples, you can even allow website visitors to use their mouse cursor to draw in real time.

[image: A Figure drawn using the Canvas element in a digital platform is presented.]

Figure 10.3 A house drawn with the <canvas> element

A screenshot shows a two-dimensional figure of a house in a plain field with fences near the house. The sun is present in the top left corner and a cloud is observed above the roof. The figure is drawn in using <Canvas> element in a digital platform.

This is an example of an element that requires heavy JavaScript to use. HTML5 basically gives you a way to execute JavaScript in real time to draw things, and then a set of functions to help you draw. This demonstrates how powerful HTML and the browser have become.

Adding support for offline storage

One great feature of HTML5 that has evolved as a result of its use on mobile devices is support for offline storage. This allows you to tap into the browser’s local storage and keep content there in case the user’s device goes offline (FIGURE 10.4).

[image: A screenshot of mobile.twitter.com while the internet is not connected.]

Figure 10.4 When viewed with a broken internet connection, the Twitter mobile site uses offline storage to show most of the page.

A screenshot of mobile.twitter.com without an internet connection is shown. A search box is present at the top of the page near the display image. An icon representing that the internet being lost is given in the middle. A try again button is also given below the icon. Home, search, bell, and mail icons are given at the bottom of the screenshot.

Designing your website to allow offline storage also lets you store assets on the user’s device and helps the site to load faster.

While offline storage does use some JavaScript to store and retrieve data, the code is very readable. This task demonstrates the basic idea. It builds on the example you saw in the Chapter 9 section “Input fields” which gave you the code for building a search box.

To store data offline:

	In between the opening and closing <head> tags, type <script>.

This tag tells the browser that the following markup is JavaScript and should be processed as such.

	Type localStorage.setItem ("lastSearch", "Atlantis");.

In Chapter 9, you created a search box and entered the term “Atlantis.” You’re building on that same code example here.

localStorage.setItem creates a key name-value pair. You’ll learn more about variables in a later chapter, but for the purposes of this task, know that we are storing something named “lastSearch” and it has a value of “Atlantis.”

	Type </script>.

This produces no visible change on the webpage, but it tells the browser, “Store this, just in case you go offline.”

Retrieving information is just as straightforward.

[image: Video play icon.] VIDEO 10.3
Store Form Data in Offline Storage

In Chapter 9, you learned how to build web forms. In this video, you will store some of that data using offline storage.

[image: Video play icon.] VIDEO 10.4
How Twitter Uses Offline Storage

One of the clearest examples of offline storage is the Twitter mobile web app. Once it’s loaded, most areas, like the header, logo, and navigation, will not need to refresh, because they’re stored on-device. The site will just load new tweets. Here’s what that looks like in action.

To retrieve offline storage data:

	After the opening <body> tag, type <div id="last-search">.

You’re using the general-purpose div here because it’s not a specific section of the website. The id attribute provides context for what information it contains.

	Type <script>.

	Type document.write(localStorage. getItem("lastSearch"));.

document.write tells JavaScript to display text in the browser for the user to see. Unlike with HTML, which will display anything that isn’t a tag, you need to explicitly tell JavaScript when something should be displayed.

localStorage.getItem tells JavaScript to retrieve the item you stored in the last task.

	</script>.

	</div>.

	Open your HTML file in the browser to view the results (FIGURE 10.5).

[image: A screenshot presents the offline access of HTML output in a browser. The webpage 10.html displaying the word 'Atlantis' even when the page has no internet connection.]

Figure 10.5 The data retrieved from offline storage

sessionStorage

If you’re looking for a way to store content online or offline that’s a bit more temporary than localStorage, look at sessionStorage, which has been part of HTML much longer.

A page session lasts as long as the browser is open. It can even persist through page reloads. If you visit a site, refresh a page, and see that it remembers certain data you’ve provided, it might have been stored as session data.

sessionStorage works similarly to localStorage, but with localStorage, the data is stored on the user’s device and survives even if the browser is closed. sessionStorage is deleted when the browser is closed or the device is restarted.

Experimental Features

The HTML5 spec is a living document that is constantly changing and being updated based on proposals from developers, companies, and individuals like you.

It’s often hard to nail down what new features are being worked on, what’s been accepted, and what’s going to become official.

Caniuse.com can be a good resource for this, especially the news page: caniuse.com/#info_news.

Many advanced features being developed for HTML today are application programming interfaces (APIs). These APIs, like Canvas and Local Storage, are aided by JavaScript. But there’s one fantastic feature that is as easy to implement as an attribute is.

Lazy loading

Lazy loading is a technique used to download and display only the parts of your webpage that a user sees in the browser window. This allows the browser to download only what it needs, making webpages load faster.

Traditionally this has been done with JavaScript or another scripting language. However, native support for the feature is now being added to browsers (FIGURE 10.6).

[image: A screenshot of caniuse.com with search results for loading is shown.]

Figure 10.6 The caniuse.com page for native lazy loading

A screenshot shows a webpage of Caniuse.com. A big header is given with a search box, and loading is searched in the box. Below the header, the search results for loading are given under the heading 'lazy loading via attribute for images and iframes' with two enabled buttons current aligned and show all. It gives the author control over when the browser should start loading the resource. Sixteen tabs are present in the middle. Each tab has more than two links to provide the support information, browser version, and percentage of total usage. The notes tab at the bottom of the page shows the details on how to enable lazy image loading.

[image: Video play icon.] VIDEO 10.5
Using Lazy Loading on Images

In this video you’ll get to see the impact the loading attribute has on website load times, and what it looks like in Chrome.

To add lazy loading to images:

	Type <img src="space.jpg".

	Type loading="lazy".

This attribute is where the magic happens! You’re telling the browser that this image should be lazy-loaded. Since the browser has this information, it checks to see whether the image is showing in the user’s viewport (the browser window), and if it is, the image will be loaded.

	Type alt="This is outer space."/>.

That’s it! Now the browser will download and display this image only if the user has scrolled to its vicinity.

Wrapping Up

With that look at some of the more advanced features of HTML, you’ve come to the end of the HTML section of this book. You can now mark up a page, display text and media, and build forms!

But that’s only half the battle. Now that you have the “function” aspect of a website down, it’s time to look at the “form” aspect: making websites look good with CSS.

11

Introduction to CSS

In This Chapter

What Are Styles?

What Does Cascading Mean?

CSS Syntax

Using CSS on Your Webpage

External Style Sheets

Commenting Your CSS Code

Wrapping Up

So far, you’ve learned all about HTML and how to structure a website. But you may have noticed that we haven’t talked much about style or design. If HTML provides the function of a webpage, then CSS provides the form.

CSS is used to change the look and feel of webpages by targeting HTML elements and applying different styles. As you’ll soon learn, you can change fonts, colors, sizes, and so much more with CSS. But it’s also used for positioning elements, layout, and even printed pages.

What Are Styles?

What exactly do we mean when we talk about styles on websites? Back in Chapter 1 you learned how using HTML to structure a web document relates to structuring a document created in Microsoft Word.

If you’ve ever applied custom formatting to the text in a Word document, like changing the color of the text or picking a new font, you’ve applied styling to the text. Microsoft Word makes it easy to do this: just select some text and choose a menu command or click a button, and the text changes appearance! You can also style text on webpages, but there are no handy menu commands or buttons.

Word-processing applications also let you save sets of formatting characteristics that you might want to apply to more than one item; these sets are called styles. You might want all of your headings to use 20-point boldface font and be bright blue, for example. Rather than choosing those formatting options by hand for each heading, you can define the style you want for headings and apply it very easily.

Much as we write HTML code to give overall structure to a webpage, we write code of a different type to change the styling of text on a webpage. That’s where CSS (Cascading Style Sheets) comes in.

CSS uses code to define the styles that should be applied to each element in your webpage. A collection of these code statements is a style sheet, and style sheets can be stored in the HTML document they apply to or in separate text files.

CSS styles can be applied to both inline elements and block-level elements. To continue the analogy with word processors, a style applied to an inline element is akin to a character style (which applies only to specific letters or words), and a style applied to a block-level element is similar to a paragraph style (which affects an entire paragraph).

What Does Cascading Mean?

An important concept of CSS is the “cascading” part of the name. One can imagine that “style sheets” are files where the styles are defined. But what exactly does “cascading” mean?

The word might conjure the idea of a waterfall, since that’s what it’s most commonly associated with. Generally, a cascade is a waterfall that drops in successive steps.

When applied to style sheets or any information, it means that previous information is built upon or successively passed on.

In short, the “cascading” part of CSS means that styles are generally applied in the order in which they’re encountered by the browser, from the top of the style sheet to the bottom. If you define on line 1 that paragraphs should have red text, and on line 10 you say they should have green text, the paragraphs will have green text.

[image: Video play icon.] VIDEO 11.1
Demonstrating the Cascade in CSS

In this video, you’ll see the cascade in action when we change the color of text by adding different styles below the original styles. You’ll see them update in real time as you edit them in CodePen.

Why is this important?

Understanding how styles cascade is integral to styling websites as well as to troubleshooting. Not only do styles used later in a document take precedence over those used earlier, but styles can also be built upon. This is especially evident while setting font sizes.

Tip

“CSS” and “style sheets” are often used interchangeably.

In CSS, you can say something like “I want paragraph text to be two times bigger than the default font size.” Without understanding the cascade, you will get unexpected results in your styles (FIGURE 11.1).

[image: A screenshot displaying the change in font due to an error in the CSS.]

Figure 11.1 In this example, the nested list uses a bigger font than the main list because of an error in the CSS.

A screenshot presenting two bullet points that read, "this is the main item and this is a second main item." The main item has two sub-bullet points that read, "This is a nested item' and 'This is a second nested item.' These sub points apply bigger fonts than the main item due to errors in the cascading style sheet. This causes the font size of each main item to be smaller than its sub-points.

With that out of the way, it’s time to learn how to write some CSS!

Tip

Not all web browsers handle cascading styles the same way. See “Browser Support” at the end of Chapter 16 for more information.

CSS Syntax

A CSS statement, also referred to as a ruleset, contains several parts. Here’s an example of a ruleset:

p {

 font-size: 20px;

 color: red;

}

Here you’ll find the selector followed by an opening curly brace, then the property, a colon, and the value. Taken together, the property and the value make up a declaration (FIGURE 11.2). Each declaration ends with a semicolon. A ruleset can have several declarations. It’s a good practice, for readability, to have one declaration per line.

[image: The rule set for CSS syntax is displayed.]

Figure 11.2 A simple diagram of a ruleset, with each section labeled

A CSS rule-set consists of a selector and a declaration block. The declaration block contains one or more declarations separated by semicolons. The format of syntax is given as p, open brace, color colon red semicolon open brace. Here, p is the selector; color denotes property, and red denotes value. The property and value together are mentioned as a declaration block. The region that starts from the first open brace to the second open brace is defined as a declaration.

After the declarations, you find a closing curly brace. Everything between the opening and closing curly braces is called a declaration block.

The selector is the HTML element you want to style with the CSS (this is also referred to as targeting an element). There are lots of ways to target elements. For this chapter, you should focus on using the element name (p, h1, and so on). However, as you’ll learn in Chapter 12, you can also target elements based on their attributes—most notably, their class name.

With CSS, you have a ton of flexibility to design pretty much anything you want on a website. And there’s no better demonstration of that than CSS Zen Garden (FIGURE 11.3).

[image: The homepage of the CSS zen garden is displayed.]

Figure 11.3 CSS Zen Garden (csszengarden.com) is a popular website that clearly demonstrates the power of CSS.

A screenshot shows the home page of the csszengarden.com. The page header is given on top. A dropdown box for all designs is given at the top right of the page. The left side of the page provides a detailed description of the styles of CSS zen garden. Different designs and designers are listed on the right side of the page.

The idea behind CSS Zen Garden is that several people submitted style sheets for the same HTML markup. The goal was to make the styles as different from each other as possible. If you click through the submissions, you’ll see they accomplished that goal! Bounce back to Chapter 1 to see CSS Zen Garden in action in Video 1.2.

Tip

To make your rulesets more readable, have only one declaration per line. Most text editors will not do this for you unless you create a custom workflow (which could be complicated), so doing it manually will help form the habit!

Tip

In Chapter 12, you’ll learn about targeting elements, and in the following chapters you’ll learn about a variety of properties and their values.

Using CSS on Your Webpage

There are two principal ways of adding CSS to any webpage:

	As an internal style sheet in the HTML document

	As an external style sheet in a separate file

Internal style sheets

To use an internal style sheet (that is, one that’s embedded in the page that it applies to), you use the <style> tag. This is most commonly placed between the opening and closing <head> tags, but it can be referenced anywhere before the </html> tag. It will look something like this:

<style>

 p {

 font-size: 20px;

 color: red;

 }

</style>

You would use this format for one-off references—styles that apply only to the page you’re using it on.

Tip

Before HTML5, you would use the type attribute with the <style> tag to explicitly tell the browser you’re writing CSS, like this: <style type="text/css">. In HTML5, text/css is the assumed value.

[image: Video play icon.] VIDEO 11.2
Using an Internal Style Sheet

In this video, you will use an internal style sheet to add CSS to a webpage and see how the page changes in real time.

To add CSS to your webpage using an internal style sheet:

You can use any HTML file you’ve created for this task. If you’d like a starting point you can use the file found at github.com/jcasabona/html-css-vqs/ch11/starter.html.

	On the line before the closing </head> tag, type <style>.

	Type the selector for the element you are styling—in this case, p.

	Type a left curly bracket ({) to begin the declaration block.

Next, you’ll add the properties for the size of the font and its color. Enter each one on its own line.

	Type font-size: 20px;.

	Type color: red;.

	Type } to close the declaration block and the style rule.

	Type </style>.

The resulting markup will look something like FIGURE 11.4.

[image: The screenshot shows an example of an internal style sheet. The CSS style is added to the HTML code. The font size is set at 20 pixels, and the color is set as red.]

Figure 11.4 An internal style sheet CSS added to an HTML file

Inline Styles

There is a third method of using CSS, but its use is frowned upon these days. If you want a style to apply only to a single element, you can use an inline style. With inline styles you embed the style information directly in the element’s tag.

For example, if you want to format just one paragraph to make it stand out from the rest of the page, you could give it a vivid color and super-size the font. The code would look something like this:

<p style="color: chartreuse; font-size: 64px;">

The syntax is similar to “normal” CSS, but it uses the style HTML attribute right after the element’s opening tag, and the value of the attribute is presented as a series of CSS property-value pairs.

Inline styles are not considered good practice, because they mix up the style information with the HTML and the content, making revising or maintaining the code more difficult.

Depending on the contents of the file, the page will look something like FIGURE 11.5.

[image: A figure shows the changes in the text by adding CSS styles to a webpage.]

Figure 11.5 The result of adding the above CSS to a webpage, along with what the page looked like before the styles were added

A screenshot showing the appearance of the webpage before and after adding the CSS styles. It defines three levels of headings. The header, "HTML Ipsum Presents" acts as the top-level heading. Before adding styles, the text is displayed in larger and bolder font than the normal text. The text under this heading appears in black. It is followed by the lower-level headings such as header level 2 and header level 3. The font size of the header level 2 is smaller than the top-level heading. It has some contents listed in two lines with a short paragraph. The font size of the header level 3 appears to be smaller than level 2. It consists of two bullet points along with source code. After adding CSS styles, the text under the top-level heading appears in red. The short paragraph under header level 2 is displayed in red color.

This is great if you are designing a single page or have page-specific styles. But what if you want to use styles across multiple pages? That’s what .css files are for!

External Style Sheets

You can take all of the CSS in between those <style> tags and place it in a separate file with the extension .css. You’ll then reference that file in the head of your HTML file by using the <link> tag.

If you name the file style.css, that might look something like this:

<link rel="stylesheet"

→ href="style.css" />

The <link> tag is using two attributes here:

	rel specifies the relationship between the current document and the linked document. In this case, the link is a style sheet.

	href is a relative or absolute URL.

In the actual style.css file, you will have only the CSS rulesets—no <style> tags required!

Tip

There are lots of ways to organize your CSS. Many people create a separate folder for the styles and organize them by section. For the purposes of this book, all CSS goes in one file.

[image: Video play icon.] VIDEO 11.3
Moving Internal CSS to an External File

See the previous task in action. You’ll create a new file and move internal CSS to it.

To move internal CSS to an external file:

	In the HTML file, copy all the CSS that’s between the <style> and </style> tags.

In the above example, it would be:

p {

 font-size: 20px;

 color: red;

}

	Create a new file in your text editor called style.css. Save it in the same folder as your HTML file.

	Paste the copied styles into style.css.

	Back in your HTML file, delete everything from <style> to </style>.

	Type <link rel="stylesheet" type="text/css" href="style.css" />.

That’s it! You’re now referencing your CSS from an external file. From here on out, that’s how all our CSS will be written, unless otherwise specified.

Commenting Your CSS Code

Just as with HTML, you can include nonfunctional text inside your CSS (whether it’s internal or external). This allows you to make notes and document your styles. Here’s a CSS comment:

/* This is a CSS Comment */

Each comment starts with a forward slash (/) and asterisk (*), followed by the comment text, and closes with another asterisk and forward slash. What you see above is a single line comment, but you can also add multiple-line comments:

/* This is

a comment that spans

multiple lines. */

You can use CSS comments to add descriptions of the styles, note the specific purpose of the css file, credit the file’s author, or create sections in your CSS file (this can be helpful if your style sheet is especially long).

[image: Video play icon.] VIDEO 11.4
Review of the new File System

Before moving on, we review how the website directory is organized.

Wrapping Up

CSS opens up a whole world of opportunity for you to take a website and make it your own through design.

In the next several chapters, you’ll see how to customize everything, create stunning layouts, and even learn a few shortcuts to save you some time.

But first, you need to learn how to target all the elements.

12

Targeting Elements

The crux of styling websites is understanding which elements to target and how targeting them affects the rest of your style sheet.

In This Chapter

Targeting Elements by Tag

Targeting Elements by Class

The Cascade, Inheritance, and Parent-Child Relationships

Selecting Elements by their Relationships

Specificity and Precedence in the Cascade

Targeting Elements with Specific Attributes

Advanced Targeting

Wrapping Up

At face value, you can target any HTML element and apply a set of styles to it. However, you can also target elements within other elements, elements with specific attributes, and much more.

As you’ll see, you can get incredibly specific with how you target elements on a webpage.

Targeting Elements by Tag

The clearest way to target any element in HTML is by its tag—namely, p, h1, ul, or any other HTML tag. The example you saw in Chapter 11 worked this way, and doing this will target every instance of that element. So if you target the <p> tag and have seven paragraphs, all of them will adopt the styles you have defined for the paragraph element.

Tip

This is also referred to as a type selector.

To target an element by its tag:

	In your style.css file, type the tag for the element you want to target, without the < and > characters. For this example, use p.

	Type { to open the style declaration block.

Every ruleset is contained between { and }.

	Type color: (the property you wish to define).

	Type green; (the value of the color property).

	Type } to close the style declaration.

This turns all paragraph text green (FIGURE 12.1).

[image: An example of setting the text color for a web page to green is shown.]

Figure 12.1 All the paragraphs on the page adopt the style of green text.

A screenshot shows HTML code in the left side, and the output for the code in the right side. The screen on the left shows the HTML code on the upper part and CSS code on the lower part. The upper part displays two paragraphs followed by three bullet points. In the lower part, the css style is added and the font color is given as green. This is reflected in the output page where the font color of the whole text is green except for a bullet marked list.

Targeting multiple elements

You can also target multiple elements, as long as they’re separated by commas. So if you want all paragraphs, unordered lists, and ordered lists to have green text, the CSS code in Figure 12.1 would look like this:

p, ul, ol {

 color: green;

}

This would change the page to look like FIGURE 12.2.

[image: An example is displayed for setting all the text to green. The output contains three paragraphs followed by three bulleted marked points and ends with a short paragraph. When HTML code is added with CSS, it makes all the text in the output to green.]

Figure 12.2 Now all paragraphs and lists (ordered and unordered) have green text.

[image: Video play icon.] VIDEO 12.1
Setting Basic Styles on HTML Elements

In this video, you’ll learn some of the most common CSS properties you’ll use for styling elements, and you’ll set baseline styles for your website.

Targeting Elements by Class

The best way to target some instances of an element without targeting all of them is to use a descriptor on all the elements you want to target. The class attribute is used for this:

<p class="standout">

I chose the value (or name) standout for the class attribute because I’m going to style any elements with this class to make them stand out more. Your class names can be anything, but web developers increasingly argue that they should be semantically descriptive, not stylistically descriptive. For example, don’t set class="green" merely because the text is green. If the text needs to be red sometime in the future, the class name will no longer make sense.

Then in your style sheet, you can target any class by preceding the value with a period (.), like this:

.standout {

 color: green;

}

This says, “For any element with the class standout, make the text color green.”

You can also get more specific by combining element and class to say, “Only paragraphs with the class standout should be targeted”:

p.standout {

 color: green;

}

To make the first paragraph of a page bigger:

	In your HTML file, find the first paragraph and add to it a class attribute with a value of “intro” by typing <p class="intro">.

Assigning the intro class to the first paragraph of each page allows you to style it differently from the other paragraph elements.

	In your CSS file, on the next blank line, type p.intro {.

This limits the style declaration to paragraphs of class intro.

	Type font-size: 24px;.

The default font-size for most browsers is 16px, so the text in any <p> element with the class intro will be larger than the default size for the page.

	Type }.

	Save the files and open the HTML file in the browser to see the result (FIGURE 12.3).

[image: An example of setting the font size for a text in the web page.]

Figure 12.3 With the new class and style, the first paragraph on the page is now bigger than the others.

A screenshot shows HTML code in the left side, and the output for the code in the right side. The screen on the left shows the HTML code on the upper part and CSS code on the lower part. The upper part displays three paragraphs followed by three bullet points. In the lower part, the css style is added where the font size is given 24 pixel for introduction. This is reflected in the output page where the font size of heading is bigger than the font size of the rest of the text.

Classes are a powerful way to add extra specificity to your styles and to highlight certain text.

[image: Video play icon.] VIDEO 12.2
Targeting Specific Classes

In this video you’ll create an HTML page with various classes on it, then write CSS to target those classes.

[image: Video play icon.] VIDEO 12.3
Creating a Set of Alert Elements

In this video you’ll create a set of alert classes to use throughout your website.

About Naming Classes

Naming conventions for CSS classes have been hotly debated. The schools of thought move between “the class name should describe the content of the element” and “the class name should describe the styles being applied.” As more semantic HTML has emerged, along with more CSS frameworks, a strong argument exists for style-descriptive names.

You’ll notice that the examples in this chapter use both. The truth is, it depends. If you’re working on rulesets that can be applied specifically to achieve a certain style, then they should be named appropriately (.green-text is a good example of this). But if you’re making a ruleset to create a specific type of element and the style can change, a more descriptive class is appropriate (.button and .alert are good examples).

Targeting multiple classes

Just like with elements, you can target multiple classes with a single style by using a comma-separated list:

.intro, .outro {...}

And you can target elements if, and only if, they have multiple classes by “daisy-chaining” them, like this:

.class-one.class-two {...}

A good example of why you might want to do this is if you have a base style but want to alter a single instance of that style. Say we have a class called alert, with these properties (FIGURE 12.4):

[image: A screenshot shows a simple warning alert box in red background with the text, "this is an alert."]

Figure 12.4 Here’s the simple alert class, applied to a paragraph.

.alert {

 background: red;

 color: white;

 font-weight: bold;

 padding: 5px;

}

Assume that you’ve defined this as the default style for alerts on the site. But perhaps there is a single instance where you want to use a background color of blue. To achieve that, start by creating a new class whose background color is styled blue:

.alert.blue-background {

 background: blue;

}

Then combine the two styles. In the HTML file it will look like this: <p class="alert blue-background"> (FIGURE 12.5).

[image: A screenshot shows a simple warning alert box in blue background with the text, "this is a blue alert."]

Figure 12.5 The alert element, now with a blue background

This technique can also work without combining the styles in the CSS. So if you wanted more than just alerts to have blue backgrounds, you could target the rule like this:

.blue-background {

 background: blue;

}

In this case, you don’t have to change the HTML, and everything will still work as expected!

Tip

There is one caveat to the less specific method: you need to make sure the generic class (in this case, .blue-background) comes after the class you want to change in the CSS (in this case, .alert). Otherwise, the less specific class will override the generic class, thanks to the cascade.

The Cascade, Inheritance, and Parent-Child Relationships

In Chapter 11, you were introduced to the idea of the cascade, the principle that the lower on a CSS style sheet a ruleset is, the more likely it is that it will be used to style the element it’s targeting. But that’s only part of the story.

Throughout this chapter, you get the other part of the story: styles are applied depending on how you target elements. You’ve learned how to target elements and classes, and soon you’ll see how to be really specific with your targeting. But before we get to that, you need to understand inheritance and the family tree of HTML elements (FIGURE 12.6).

[image: A typical simple family tree is shown. Here, the parent acts as a root node. It has two children. The second child has three grandchildren. The first grand child includes two great-grandchildren.]

Figure 12.6 A simple family tree. Descending elements fall “under” their parent elements, inheriting styles that aren’t specifically overridden by a declaration.

Just about any set of HTML markup will include elements in parent-child relationships. In fact, all the HTML markup on a given page is a descendant of the <html> element, which is considered the root of the document—the topmost level, or the start of the family tree.

FIGURE 12.7 will help you visualize the family tree structure. In this example, <article> is the parent element of the elements between its opening and closing tags. It has three children: <h1>, <p>, and <p>. The first <p> contains one child element, which is <a>. The second <p> has two children: and . And <a>, , and are also grandchildren, or descendants, of <article>. CODE 12.1 shows how these relationships might appear in HTML.

[image: A chart displays the family terms of the HTML element.]

Figure 12.7 This chart should help you visualize the “family” terms that are applied to HTML elements.

A tree provides terms to describe relationships between elements. The tree describes one element contained in another as a descendant of the first. It contains <h1>, <p>, and <p> that exist side-by-side at the same level in the tree as adjacent siblings contained within article. Here, <a> is a child of <p>. Both and are a children of <p>.

Another way to think of children and descendants is that they exist within another element. Siblings exist next to each other. So in Figure 12.7, <h1>, <p>, and <p> are siblings. So are and .

CODE 12.1 A sample of HTML demonstrating the family relationships shown in Figure 12.7.

Click here to view code image

<article>

 <h1>Welcome to Joe’s Website!</h1>

 <p>Joe Casabona is an accredited college course

 →developer and professor.</p>

 <p>He also has his Master’s Degree in Software Engineering, is a Front End

 →Developer, and hosts multiple podcasts.</p>

</article>

Selecting Elements by their Relationships

You can select elements according to their relationships with other elements in the same family tree. For example, you can choose to target only the descendants of a particular parent element.

To target only the descendant of a particular element:

	Type the selector of the ancestor element. For example, to target only links inside paragraphs, you would first type p.

	Type a space (this is very important).

	Type the name of the descendant element, which in our example is a.

	Type the declaration block for the style.

Our complete example looks like this:

p a {

 background: lightgrey;

 color: darkblue;

}

This turns gray the backgrounds of all anchor tags inside paragraphs (FIGURE 12.8).

[image: An example of setting the background and font color for a text in the web page.]

Figure 12.8 Notice that links in paragraphs have a gray background, but links in unordered lists () do not.

A screenshot shows HTML code in the left side, and the output for the code in the right side. The screen on the left shows the HTML code on the upper part and CSS code on the lower part. The upper part displays three paragraphs followed by three bullet points. In the lower part, the css style is added where the background is given as lightgrey, and font color is given as darkblue. This is reflected in the output page where the links, Joe Casabona, and creator courses are highlighted in lightgrey and the font color is in darkblue. The link "podcasting" in the bulleted list appears in dark blue but it is not highlighted in light grey.

Targeting specific types of elements works well if you want to apply styles uniformly across those elements, and it’s often used to define what are referred to as “base” styles. Those can include:

	Site-wide text colors

	Font face/typography

	Font sizes

	Spacing between elements

	Heading sizes

… and anything else you want to define on a global level.

But what happens when you only want to target certain elements? There are a few ways to do that.

CODE 12.2 The two <a> elements are child elements of different parents.

Click here to view code image

<footer>

 <p>This is the footer with a

 →link in it</p>

 Click here to learn more

</footer>

Selecting a child element (>)

Using a child selector says, “Target any elements that are direct children of a specific element.” This is slightly different from the descendant selector because with child selectors, there can be no other element between the element on the left side of the child selector and the right side. In CODE 12.2, <p> and the second <a> are children of <footer>, but the first <a> is a child only of <p>.

To target only the direct child of a particular element:

	Type the selector of the parent element. Building on the example in Code 12.2, use footer.

	Type a greater-than symbol >.

	Type the selector of the element that is the immediate child of the parent. In this case, use a.

	Type the declaration block for the style.

This is how you would style only links that are direct children of the footer element (in our example, the second a element):

footer > a {...}

But footer a {...} would not work. It is not specific enough, and all links inside the <footer> tag would be styled.

Selecting an adjacent sibling (+)

To target an element that immediately follows another, use the adjacent sibling selector. For example, you would use an adjacent sibling selector to apply a style to the first paragraph after the heading in the following HTML, but not to the second:

<h1>Here's the Scoop!</h1>

<p>...</p>

<p>...</p>

To target an adjacent sibling element:

	Type the selector for the first element—in this case, h1.

	Type a plus sign +.

	Type the selector for the sibling to which you want the style to apply. In our example, that’s p.

	Type the declaration block for the style.

Tip

This is a more succinct way to style a single paragraph than using the custom intro class style, as we did earlier in the chapter.

Using a general sibling selector (~)

Similarly, if you do want to target all paragraphs that are siblings of the h1, rather than just the first one, use the general sibling selector, like so: h1~p {...}.

Tip

As of CSS3, child and descendant selectors are officially called child combinator and descendant combinator, but many people still use the old terminology.

[image: Video play icon.] VIDEO 12.4
Putting Child and Sibling Selectors to Work

The best way to understand these selectors is to see them in action, and in this video, you’ll get a single HTML example to see how the different selectors affect it.

Specificity and Precedence in the Cascade

Throughout this chapter, the topics of specificity and precedence have been unavoidable. CSS relies heavily on both to apply the appropriate styles to elements. Precedence of a style is based on two criteria:

	The order of styles in the style sheet

	Specificity of the selector

If a ruleset comes later in the style sheet, it takes precedence over earlier styles that target the same element, unless the earlier style is more specific. Things can get a little confusing at this point, but in general, here are some reasons a ruleset is more specific:

	It has more selectors (p a is more specific than a).

	A class is applied (p.alert is more specific than p).

	Multiple classes are applied (.alert.blue-background is more specific than .alert).

Whenever you’re troubleshooting CSS, always check to make sure another style isn’t taking precedence over the style you expect to be applied.

Note that elements will inherit any styles that aren’t explicitly changed with a more specific or more recent selector. For example, text (in most browsers) defaults to color: black; and font-size: 16px; until you change it in CSS.

[image: Video play icon.] VIDEO 12.5
A Look at Styles and Precedence

In this video you’ll see how changing specificity and order affect precedence, demonstrated by applying styles to elements and changing them in real time on CodePen.io.

!important: Proceed with Caution

In your travels, you might come across the value !important at the end of CSS declarations, like this:

p {

 color: blue !important;

}

The !important tag says, “Never override this style, even if another ruleset takes precedence.” In this example it means your paragraph text will always be blue.

This may seem like an easy fix when you can’t figure out why your CSS isn’t working, but it is often unnecessary and makes your CSS unmanageable. My rule is that if you use !important, you need to add a comment to the style sheet explaining why you used it.

Styling with IDs

Tip

A tip right off the bat! This section is included for completeness, since you might see CSS out in the wild using IDs. But as you’ll see, you shouldn’t use them to target elements.

In the early days of CSS, there was another way to target elements for CSS, and that was with the id (identifier, or ID) attribute:

<p id="intro">

To use an ID in your CSS, instead of prepending the value with a . (period), as you do with classes, you’d use #:

#intro {

 font-size: 24px;

}

While this method works, you should not use IDs in your CSS unless you have a rock-solid reason (if I were to use the word never in programming/computing, I’d use it here).

That’s because when it comes to precedence, ID trumps pretty much everything.

Instead, classes should always be used for styles. Today, IDs are more often used to target elements in JavaScript.

[image: Video play icon.] VIDEO 12.6
Trying to Override IDs in CSS

To demonstrate why you shouldn’t use IDs in CSS, this video demonstrates what happens when one is used, and how hard it is to override.

Targeting Elements with Specific Attributes

So far you’ve learned how to use type and class selectors to target elements, and how to get more specific by targeting descendants and multiple classes. But even more options are available.

Classes aren’t the only attributes you can target. In fact, you can target any attribute with this syntax: element[attr], where attr represents the name of an attribute. The name of the attribute is enclosed in square brackets. So to target all images with an alt attribute, use this:

img[alt] {

 background: blue;

}

The Difference Between ID and Class

There’s a semantically significant difference between classes and IDs that give some insight into why IDs take so much precedence.

Classes can be assigned to multiple elements on a page. You might find the class alert or button several times on a webpage.

IDs, on the other hand, should be completely unique to a single element on the page. You should only find an ID once on a webpage.

You can even target attributes with specific values; the value is also inside the square brackets and follows the attribute. So to apply a specific color to links that go to a specific URL, you would use something like this example:

a[href="https://google.com"] {

 color: green;

}

Lastly, a few selectors let you search on attribute values by inserting a special character before the equals sign (=). For example, adding an asterisk (*) to the attribute tells CSS to find any attribute whose value contains the text after the equals sign. So to highlight all images with the word dog in the alt tag, you would use the following:

img[alt*="dog"] {

 background: red;

}

To highlight links that go to sites in the .org domain, use the dollar sign ($) attribute selector to search for URLs that end in .org:

a[href$=".org"] {

 background: yellow;

}

Tip

There’s a lot more you can do with attribute selectors. Check out MDN for a comprehensive guide: developer.mozilla.org/en-US/docs/Web/CSS/Attribute_selectors.

Advanced Targeting

In addition to targeting specific elements and classes, you can use a set of advanced selectors known as pseudo-selectors. Right now, we’ll focus on a specific subset of these selectors known as pseudo-classes. There are two types of pseudo-classes: those that focus on state and those that focus on order.

The pseudo-classes that are based on a particular state of an element allow us to target elements based on how a user is interacting, or has interacted, with the element. They are always preceded by a colon (:). Here’s an example:

a:link

Tip

There are a lot of pseudo-classes! This chapter introduces the idea and points out some popular ones, but you can see a comprehensive list at developer.mozilla.org/en-US/docs/Web/CSS/Pseudo-classes.

User interaction states

Likely the most common pseudo-classes you’ll use are those for link states. They allow us to give the user a visual cue as to how they are interacting with an element. For example, these states tell the user if they have or have not clicked a link:

	:link for links that have not been clicked or visited

	:visited for links that have been clicked or visited

The following states, which allow us to tell a user if they are currently interacting with an element, are most often associated with links but can be applied to any element:

	:hover for when a visitor’s pointer is hovering over the target element.

	:active is used when an element is “activated” by a user. A good example of this is a button click.

	:focus is used when a user clicks, taps, or uses the keyboard to select an element. This is known as giving the element focus, and it’s often used with form elements.

To style link states:

	Type a, a:link {.

	Type color: green;.

	Type font-weight: bold;.

	Type }.

	Type a:visited { .

	Type color: grey;.

	Type }.

	Type a:focus, a:hover, a:active {.

	Type color: red;.

	Type }.

This creates link states in which non-visited links are green, visited links are grayed out, and active/hovered-on links are red (FIGURE 12.9).

[image: An output of an HTML code after the application of CSS styles is shown.]

Figure 12.9 The user has already visited the first link on the page (now colored gray) and is hovering over the “Creator Courses” link, giving it focus. They have not visited the Podcasting link, so it is green.

A screenshot shows output of a HTML code with css added. It displays three paragraphs followed by three bulleted points and ends with a short paragraph. Here, the font color of the words Joe Casabona is in grey, Creator courses is in red, and the bullet marked point podcasting is in green. The pointer is placed over the creator courses.

Order-based selectors

Another common set of pseudo-classes is based on the order of the elements. There can be a lot of combinations for these, but here are the ones you’ll see most:

	:first-child for the first child of a specific element within the parent.

	:last-child for the last child of a specific element within the parent.

	:nth-child(even) or :nth-child(odd) for the even or odd child of a specific element within a parent.

	:nth-child(x), where x is an integer, targets the number x child on a specific element within a parent.

	:first-of-type for the first type of a specific element within a parent.

Tip

The difference between :first-child and :first-of-type can be confusing, but it boils down to this, using p:first-child and p:first-of-type as an example: if the first child of some element—say, <article>—is a <p>, first-child and first-of-type will be the same. However, if the first child is <h1>, first-child styles won’t apply to the p, only first-of-type styles will.

[image: Video play icon.] VIDEO 12.7
Reimagining the p.intro Class with Advanced Selectors

Now that you have a few more tools in your selector kit, you’ll see where you can remove classes and instead target by using pseudo-selectors.

To create a list with alternating background colors:

	Type ul li:nth-child(even) {.

This targets instances of that are descendants of .

	Type background: lightgrey;.

	Type }.

	Type ul li:nth-child(odd) {.

	Type background: lightblue;.

	Type }.

Even-numbered list items now have a light gray background, and odd-numbered items have a light blue background (FIGURE 12.10).

[image: A screenshot shows output of a HTML code.]

Figure 12.10 Using nth-child, you can create a list with alternating background colors.

A figure shows three bullet marked list with alternating background colors. The background of the first and third point is in dark blue, while the background of the second point is in light grey. The font color of the third point in dark blue.

This is a great way to style tables!

The universal/wildcard selector (*)

There’s one more selector you should know about it, but use it with caution—the universal selector:

* { ... }

This targets all elements on the page, and it could have unexpected results. You can also get slightly more specific with it and target everything within a certain element:

article * { ... }

This is often used to set site-wide styles for font face, size, or other items that need to be the same.

CSS Resets

A common practice is to use a CSS reset. Because each browser has its own default style sheet applied, you can get mixed results after applying your styles. A CSS reset makes sure every browser starts at the same point with regard to styles.

It might be tempting to use the * selector to reset everything in one fell swoop. But then you’ll also reset important default styles like bold and italic text, or possibly link colors, padding, and more.

You should be more surgical with CSS resets. A great and very popular reset is Eric Meyer’s, which you can get at meyerweb.com/eric/tools/css/reset/.

Wrapping Up

You got a lot of information in this chapter, and it’s okay if some of it hasn’t sunk in yet! I suspect you’ll regularly refer to this chapter. I know I will!

But it provides important groundwork for the chapters to come. Now that you know what’s possible in terms of targeting, it will be easier to envision how the styles you’re about to learn can transform your websites.

13

Styling Text

In This Chapter

Choosing Fonts

Google Fonts

Including External Fonts with @font-face

Sizing Text

Formatting Text

Formatting for Readability

Wrapping Up

When it comes to styling text, you have a ton of freedom to make it look however you like. But understanding the effect it makes is important. How you style your text can have the biggest impact on the general design of your site.

Typography is a huge part of design, and getting it right can take your site to the next level. While this book doesn’t go into a full study of typography, you will get everything you need to customize the text on your site with CSS.

Choosing Fonts

When you’re thinking about which font (or typeface) to use on your website, first consider which fonts are actually available to you.

Today, the world is your oyster when it comes to fonts. But there used to be only a small number of cross-platform fonts that you could be confident the user would see correctly. They are still called web-safe fonts. The following are fonts that have traditionally been considered web-safe:

	Arial

	Courier New

	Georgia

	Verdana

	Trebuchet MS

	Times New Roman

Tip

By default, browsers use Times New Roman as the font for text. This is a very safe font that comes on pretty much every device.

That’s why we have the syntax for font handling that we do today—you list the main font you want to use, and then provide one or two fallback choices. This is also called a font stack.

In CSS, the property used to specify the font used for an element is font-family. The value of font-family is a comma-separated list of fonts you want to use, from highest to lowest priority. The font you want to use is listed first, followed by the fallbacks in the order in which you want to use them.

Tip

While it might seem like font-family refers to the overall list of the individual fonts you want to use, that’s not the case. A font, also known as a typeface, should include several styles, such as roman, bold, italic, and so on. The entire set of styles taken together is the font family.

Here’s an example:

Click here to view code image

p {

 font-family: Cambria, "Times New

 →Roman", serif;

}

This says, “Use the font Cambria. If that’s not available, use Times New Roman. If that’s not available, use the system’s default serif font.”

Tip

You’ll learn about popular sources for fonts later in the chapter. But first, you should know about what types of fonts are available to you.

Tip

Nowadays, “font” and “typeface” are generally used interchangeably. In earlier times, though, when typesetting was done with metal or wood, they had distinct meanings. A typeface was the overall design of a set of letterforms (Garamond), but a font was subset of that collection of a specific style and size (Garamond Italic 14-point).

Types of fonts

Always try to group a font with fallbacks that look similar. That’s because in the event that a fallback is used, you want your site to look as close as possible to what you originally intended.

Fonts used with CSS are broken down into a few categories, based on their style (FIGURE 13.1):

[image: A screenshot shows an example of five different types of font styles. The font styles are serif, sans serif, monospace, cursive, and fantasy.]

Figure 13.1 An example of each major font style

[image: Video play icon.] VIDEO 13.1
Using Distinct Styles for Heading and Body Elements

In this video, you apply different fonts to different sections of your site. A common practice is to have different fonts for the headings and the body copy.

	Serif, which is a font that has extra strokes on the ends of each letter.

	Sans serif, which lacks the extra strokes.

	Monospace, or fonts where every character has exactly the same width. These fonts are often reminiscent of classic typewriter text. They’re also commonly used to represent computer code.

	Cursive, which are fonts designed to look like handwriting.

	Fantasy, which are highly decorative fonts.

To set the default font for a whole website:

	At the top of your style.css file, type body {.

This targets the <body> tag. All the elements within this tag will inherit the font styles that we assign to it.

	Type font-family:.

	Type Futura, Helvetica, Arial, sans-serif;.

Futura is a great sans serif font but is installed by default only on macOS, so this font stack provides fallbacks that are more widely available.

	Type }, save the file, and open it in your browser.

The text on the page is now displayed in a sans serif font (FIGURE 13.2).

[image: A story named 'A case of identity' by sir Arthur conan Doyle is displayed in futura font. The heading is bigger and bolder than the rest of the text. The story includes three paragraphs.]

Figure 13.2 Viewed in macOS, the page now uses Futura, with a fallback to more common fonts on other systems.

Pairing Fonts

When pairing fonts (choosing multiple fonts to display on a page), try to find ones that complement each other.

Your goal is to provide visual distinction between different types of text, such as headings and body copy. Here are some tips:

	Pair a serif font with a sans serif font.

	Differentiate using size and weight.

	Don’t pick fonts within the same classification (fonts that look similar).

	Give each font its own role. If you’re using one for the heading (say, Futura bold), don’t also use it for the body.

There’s a lot to know around typography and font theory—more than this book can cover. But one really great resource is On Web Typography, by Jason Santa Maria (abookapart.com/products/on-web-typography).

Google Fonts

While the main source for fonts is the user’s device, there are also many ways to use fonts from other sources. It’s now possible to use basically any font you like.

A common source of fonts is Google Fonts, a library of free open source fonts that anyone can include on their website (FIGURE 13.3). There are tons of fonts to choose from, as well as recommended pairings and more!

[image: A screenshot presents some examples of Google fonts.]

Figure 13.3 The Google Fonts (fonts.google.com) homepage

The homepage of Google fonts is shown. Catalog tab is selected in fonts.google.com. A search box is given. Drop down list for sentences, categories, language, font properties are given in the top. A text field is given for typing something. Options to change the font size and color are also given. Six types of fonts with an example for each style is listed below. The text "all their equipments and instruments are alive" is given in roboto font; the text, "i watched the storm, so beautiful yet terrific" is given in lemonade; the text, "almost before we knew it, we had left the ground" is given in open sans; the text, "a shining crescent far beneath the flying vessel" is given in lato; the text, "it qs going to be a lonely trip back" is given in odibee sans, et cetera.

Tip

There are other services that work similarly to Google Fonts, like Adobe Fonts (fonts.adobe.com) and H&Co for the web (www.typography.com/webfonts), but most of them cost money.

[image: Video play icon.] VIDEO 13.2
Browsing Google Fonts

A crash course on how to use Google Fonts, from finding the fonts and creating collections to getting the embed link.

To add Google Fonts to your website:

	Visit fonts.google.com.

	Find a font you like and click it.

For this task, I’ll use Roboto (FIGURE 13.4).

[image: A figure illustrates an example of the Roboto served by Google fonts. It includes 12 types of styles. The text, "almost before we knew it, we had left the ground" is displayed on Roboto font.]

Figure 13.4 The Roboto font option on fonts.google.com. Clicking this takes you to a list of all the styles you can select.

	Click Select This Style for each style you want to include ([image: Select This Style button]).

I’ll select Regular 400, Regular 400 Italic, and Bold 700.

	In the Selected Family box that appears, click Embed (FIGURE 13.5).

[image: A dialog of the selected family from Google fonts is shown.]

Figure 13.5 The Embed tab on Google Fonts. This is where you will find the CSS code to copy.

A screenshot of a selected font-family dialog is shown with two tabs. Embed tab is selected from the two tabs. Two buttons for link and import (highlighted) is present. It is followed by an HTML code for a Roboto font. A section below represents the CSS rules for specifying guidelines. Here, CSS styles are added where the font-family is set to Roboto and sans-serif.

	Click @import.

	Copy the text between the <style> tags, without including the tags themselves.

	Paste the copied text into your style.css file, at the top.

	Below that, type body {.

	Type font-family: Roboto, sans-serif;.

	Type }, save the file, and open it in your browser.

Your webpages now use Roboto as the default font for body text (FIGURE 13.6).

[image: A story named 'A case of identity' by sir Arthur conan Doyle is displayed in Roboto font. The heading is bigger and bolder than the rest of the text. The story includes three paragraphs.]

Figure 13.6 An HTML page using the Roboto font

Tip

Google Fonts is a great way to include a nice-looking font for free, but be aware that using too many fonts in your design increases the number of files the browser needs to download, and it will slow down your site for users.

[image: Video play icon.] VIDEO 13.3
Embedding Fonts from Google Fonts

In this video, you’ll explore even more options for using Google Fonts on your website, plus some pitfalls to look out for.

Including External Fonts with @font-face

If you don’t find a font you want in one of the online services, you can download and use an external font by linking to it using the @font-face at-rule.

An at-rule is a CSS statement that tells CSS how to perform or behave. All at-rules start with an at sign: @. You’ll see several at-rules throughout the rest of the book. The @font-face at-rule tells CSS to use the provided files as a font.

The statement begins with the at-rule, followed by an opening curly brace. That’s followed by the font-family property, which tells the browser how to reference the font by creating a new font family to use. Since it’s a declaration, it ends in a semicolon.

The font-family declaration is followed by another property, src. It behaves much like the <srcset> implementation of src. In this syntax, src is followed by a colon and two values: url, encapsulated by parentheses and single quotes, and format, also encapsulated by parentheses and single quotes. The URL can be relative or absolute. The format is the file format, which will most likely match the font file’s extension. More on font formats later in the chapter.

src can accept multiple sources separated by commas, and the last source ends in a semicolon. Here’s an example:

Click here to view code image

@font-face {

 font-family: 'Best Font';

 src: url('bestfont.woff')

format('woff'),

 url('bestfont.ttf')

format('ttf) ;

}

Reference the font like this in your CSS:

Click here to view code image

font-family: 'Best Font', sans-serif;

In this instance, you’ll likely pay for a font, and they can range from a few dollars to hundreds. However, you can download free fonts from websites like Font Squirrel (FIGURE 13.7).

[image: A screenshot shows the home page of the font squirrel. A header is displayed on the top left of the page. Eight menus are shown along with a search bar. It lists the names and examples of various fonts. The right side of the page displays the font lists and find fonts.]

Figure 13.7 The Font Squirrel (fontsquirrel.com) homepage

Tip

Be aware of licensing issues! Even though you can technically upload any font to your server for your website doesn’t mean you can legally. If you’re using this technique, make sure you have a license to use the font on the web.

There are two caveats to using this method. The first is that different browsers support different font file formats.

Luckily, it can pretty much be boiled down to two: WOFF (Web Open Font Format) and WOFF2. Most modern websites use WOFF2 because it offers 30 percent compression gain over WOFF, making it faster for browsers to download. Optionally, you can use TTF (True Type Font).

In either case, you might have to convert your font into one of the above formats. To do so, you can use a webfont generator called Transfonter (FIGURE 13.8).

[image: A screenshot presents the transfonter web generator.]

Figure 13.8 The Transfonter webfont generator (transfonter.org)

A screenshot shows the web generator tab of the transfronter window. The main heading "transfonter" is present with buttons for add fonts and convert below it. On-off switch for family support is turned on. The options WOFF, and WOFF2 is selected under the Formats section. Details of demo page language, Subsets, Characters, and Unicode ranges are given in the left bottom. Four drop-downs are listed in the right bottom.

[image: Video play icon.] VIDEO 13.4
Converting a Font with Transfonter

In this video, you’ll download a font and then process it using the webfont generator at transfonter.org to output the font in the formats you need.

The other caveat is that you’ll need to include each style of the font as a separate @font-face directive in your style.css file. So regular, bold, and italic (as well as other variations) all have their own files that need to be included (FIGURE 13.9). This can make your style file lengthy, but it might be worth it to get that perfect font.

[image: A screenshot presents the design of the Jetbrains Mono font family in eight different styles. It features Jetbrains Mono, Jetbrains Mono Italic, Jetbrains Mono medium, Jetbrains Mono medium italic, Jetbrains Mono bold, Jetbrains Mono old italic, Jetbrains Mono extra bold, Jetbrains Mono extra bold italic.]

Figure 13.9 JetBrains Mono is a font with many styles.

Tip

The browser can fake certain styles, like bold and italic, but the text can end up looking warped. It’s best to use the specifically designed style instead.

Tip

If you want to see this in action, open the Google Fonts import file to see lots of @font-face inclusions. Do that by copying the URL in your @import statement and pasting it into your browser.

To add a custom font to your CSS with @font-face:

	At the top of the file style.css, type @font-face { to begin the @font-face rule.

It’s assumed all fonts for this task are in the same folder as style.css.

	Type font-family:.

	Type the name of the font family you want to include—for example, 'JetBrains Mono';.

Use any font you like, and name the font family whatever you like.

	Type src: url('jetbrains-mono.woff2') format('woff2'),.

	Type url('jetbrains-mono.woff') format('woff'),.

	Type src: url('jetbrains-mono.woff') format('woff');.

	Type }.

	Type body {.

	Type font-family: 'Jetbrains Mono', Courier, monospace;.

	Type }.

Now you’re ready to use a custom font on your website (FIGURE 13.10)!

[image: A story named 'A case of identity' by sir Arthur conan Doyle is displayed in JetBrains Mono font. The heading is bigger and bolder than the rest of the text. The story includes three paragraphs.]

Figure 13.10 JetBrains Mono is now being used on this page.

Now that you know how to choose the font, it’s time to look at what else you do to style your text.

[image: Video play icon.] VIDEO 13.5
Using @font-face

In this video, you’ll get an in-depth look at using @font-face, as well as at including (versus excluding) multiple styles.

Sizing Text

You resize text using the font-size property, like this:

p {

 font-size: 18px;

}

Several different units of measurement can be used for font-size:

	Pixels (px): This is a fixed measurement, which means 18px will always be 18px. Designers like this because it gives them the most control over the font size.

	Percentage (%): This is a percentage of the parent element’s font. In most browsers, the default size is 16px, so if we want headings to be 32px, we could specify a font size of 200%.

	Em (em): Traditionally in typography, this has meant “the size of a capital M.” Today, it’s a way of measuring font-size as a multiplier relative to the parent. So using the example above, if we want a 32px heading, we could specify 2em (or two times the parent’s font size).

	Root em (rem): This behaves just like em, except it is always based on the root (or default) size. In this case, it is based on the font-size applied to the body selector. This makes the relative font sizes much easier to keep track of, because you don’t have to worry about multipliers on children or grandchildren.

Tip

Many people use a CSS reset (see Chapter 12) to make the default font-size value 10px, which makes for much easier font size arithmetic.

Tip

Relative font sizes (%, em, rem) were often favored by web designers because they take custom user settings into account. This was an accessibility and inclusion benefit for those who have trouble seeing. But now, modern browsers zoom the entire page when a user increases the size of the visuals on a page.

One way to use font-size is to establish a harmonious relationship between the sizes of heading and body text (FIGURE 13.11).

[image: A short paragraph titled, 'A case of identity' by sir Arthur Conan Doyle is displayed. The heading is bigger and bolder than the rest of the text.]

Figure 13.11 Notice that the h1 is double the size of the body copy.

[image: Video play icon.] VIDEO 13.6
Font Size Demo

In this video, you’ll see how each measurement unit affects font size.

To set the size of headings relative to the size of body text:

	In style.css, type h1 {.

	Type font-size: 2em;.

	Type }.

Size isn’t the only thing you can change. In fact, there’s a whole set of text formatting properties available to you.

[image: Video play icon.] VIDEO 13.7
Creating a Heading Hierarchy with Font Sizes

Using em or rem can make it easy to create a nice visual hierarchy for your text and headings—something called a type scale. In this video, you’ll do just that.

Formatting Text

There are lots of properties for formatting text, but here are the most common ones.

font-weight

The font-weight property allows you to apply a different boldness to text. There are two primary values:

	normal, which is unbolded text

	bold, which creates bold, darker text

But as CSS has evolved, there are now some other values to consider:

	lighter makes text thinner than the normal weight.

	bolder makes text thicker than the bold weight.

	Numbered values: You can define a weight at 100, 200, 300, 400, 500, 600, 700, 800, or 900. 400 is akin to normal; 700 is akin to bold (FIGURE 13.12).

[image: A screenshot presents the different variations of font-weight. Lighter, Normal, Bold, and Bolder are mentioned.]

Figure 13.12 Font weight variations

Tip

Depending on the font, many of these may depend on the style. If you don’t have a font’s style for a 900 weight, the browser will default to the highest weight you have.

For example, to make all your links bold, you would define the style for the anchor element this way:

a {

 font-weight: bold;

}

font-style

Next up is the font-style property, which italicizes text (FIGURE 13.13). There are three values:

[image: A screenshot presents the different variations of the font style. Normal, Italic, and Oblique are mentioned.]

Figure 13.13 Font style variations

	normal, which is normal, straight text.

	italic, which uses the italic style to show italic text.

	oblique, which uses the oblique style if it exists. If there is no such style, the browser tilts normal text slightly to make it look oblique.

Tip

Often italic and oblique look the same. If there is no italic style supplied, the browser defaults to oblique. If neither is supplied, the browser simulates the style.

Here’s an example:

h3 {

 font-style: italic;

}

text-decoration

The text-decoration property allows you to add emphasis lines to your text. There are several values (FIGURE 13.14):

[image: A screenshot presents the different variations of text decorations. None, Underline, Overline, and Line through are mentioned.]

Figure 13.14 Text decoration variations

	none: There is no change to the text.

	underline adds a line under the text. Use this to force links to be underlined (most modern browsers display link underlines when the user hovers over them).

	overline adds a line over the text.

	line-through adds a line through the text (like a strike).

If you have an article or story with a byline, you can use text-decoration to make the byline stand out a little bit.

As an example, here’s one way to style a byline class:

.byline {

 text-decoration: underline;

}

You can make text-decoration accept multiple values by listing them separated by spaces. So if you want to have an overline and an underline, for example, you can do the following:

.byline {

 text-decoration: underline

 →overline;

}

Finally, text-decoration is actually shorthand for three other properties. Include them in this order, separated by spaces:

	text-decoration-line, which uses the values you’ve seen above.

	text-decoration-style, which changes what the line looks like. The default value is solid; the other options are double (two solid lines), dotted (a line made out of dots), dashed (a line made out of dashes), and wavy (a squiggly line) (FIGURE 13.15).

[image: A screenshot presents the different variations of the text-decoration style. A solid line, dotted line, wavy line, double line, and dashed line are mentioned.]

Figure 13.15 Text decoration style variations

	text-decoration-color, which accepts any color.

This allows you to add more personality to the line (FIGURE 13.16):

[image: A figure shows the text, 'by Sir Arthur Conan Doyle' which is underlined in a wavy line.]

Figure 13.16 The byline class with a wavy blue line instead of the standard solid black line

.byline {

 text-decoration: underline

 →wavy blue;

}

You can take this example a little further and apply some of the other properties you’ve learned as well.

To format a byline class:

	In style.css, type .byline to target the byline class.

	Type { to begin the style declaration.

	Type font-style: italic;.

	Type font-weight: bold;.

	Type text-decoration: underline;.

	Type } to close the style declaration.

Now, text assigned the byline class is styled bold, italic, and underlined (FIGURE 13.17).

[image: A figure shows an example of a byline class applied in a paragraph. It is a short paragraph titled, 'A case of identity' written by Sir Arthur Conan Doyle. Here, the author's name is given in the byline.]

Figure 13.17 The byline class applied to the author credit paragraph

Formatting for Readability

The styles in the previous section are mostly used to apply emphasis or draw attention to text. But there are also styles that improve text readability—things like line and text spacing, alignment, and more. Here are the common ones.

Alignment and justification

Using CSS, you can align text both horizontally and vertically.

With the text-align property, you can align the edge of the text to the left or right margin, center the text, or even justify it.

Justified text expands every line (except the last line) so that it takes up the full width of the container (FIGURE 13.18).

[image: A short paragraph is given as an example of justified text. Space is added between words so that both edges of each line are aligned with both margins. The last line in the paragraph is aligned left.]

Figure 13.18 Justified text

With vertical-align, you can move elements vertically as they line up next to each other. So when you have two elements next to each other and one is taller than the other (for example, an image next to text), you can use vertical-align to line up their top edges. It’s also useful for vertically aligning text in tables.

Tip

Don’t use vertical-align to set text in the middle or bottom of a container. Other features of CSS, like flexbox (which you’ll learn about later), serve that purpose.

vertical-align values include the following:

	baseline aligns the element with the baseline of the parent (the baseline is the line on which most letters of a font sit).

	sub aligns the element with the subscript baseline of the parent (about 50 percent below the baseline).

	super aligns the element with the superscript baseline of the parent (about 50 percent above the baseline).

	text-top aligns the top of the element with the top of its parent’s font.

	text-bottom aligns the bottom of the element with the top of its parent’s font.

Along with the above, you can use the following values for table cells:

	top aligns the text in the cell with the top of the cell.

	middle aligns the text in the cell into the middle of the cell.

	bottom aligns the text in the cell with the bottom of the cell.

	You can see them in FIGURE 13.19.

[image: A figure demonstrates the different vertical-alignment values of an element relative to the entire line. Top, middle, subscript, text-top, baseline, bottom, superscript, and text bottom are mentioned.]

Figure 13.19 vertical-align values demonstrated

Text spacing

Finally, there are several properties for spacing text, all using the same unit measurements as font-size (though em is popular for these properties):

	line-height: The amount of space a line takes up, including font size and leading (the whitespace between lines). For most fonts, this is around 1.2em (or 1.2 times the font size).

	letter-spacing: The amount of space between each letter (also known as kerning).

	word-spacing: The amount of space between each word.

	text-indent: Indents the first line by some amount. Most often, px is used here.

Tip

To figure out the line height, subtract the font-size value from the line-height value. So if line-height is 20px and font-size is 16px, the space between lines is 4px.

Tip

If you want to move text completely off canvas, you can apply a negative text-indent value (like -9999px). This gives you the element to work with, without the text. You might do this if you want to make text animate on a hover state (you’ll learn more about animations in Chapter 18).

To set the internal spacing for paragraphs:

	Type p {.

	Type line-height: 1.5em;.

	Type letter-spacing: 0.1em;.

	Type word-spacing: 0.2em;.

	Type }.

You can see in FIGURE 13.20 that this gives the text a completely different feel.

[image: Before and after adjustment of line, letter, and word spacing in a paragraph is shown.]

Figure 13.20 Before and after adjusting line, letter, and word spacing

A screenshot presents the sample three-line paragraph with its line, letter, and word spacing adjusted. Before formatting, the spacing between the lines is less. After formatting, the line space between each line of the paragraph is a little bit more than before and the lines are elongated to five lines with the adjustment of the letter, and word spacing.

[image: Video play icon.] VIDEO 13.8
Using text-indent to Hide Text

Using the text-indent property, you’ll learn how to hide written text and replace it with a background image.

More Text-Related Properties

Even with all the ground this chapter covers, there are still more text-related properties. Here’s a quick list of other helpful properties:

	text-transform allows you to change the capitalization of an element’s text.

	hyphens specifies whether text should be hyphenated at line breaks.

	overflow-wrap specifies whether the browser should insert line breaks into otherwise unbreakable text (like long words).

	white-space specifies how to handle whitespace inside an element.

	word-break specifies whether to insert a line break when a word would flow outside an element.

	text-shadow allows you to apply drop shadows to text and adjust their styling.

To learn more about these properties, check out developer.mozilla.org/en-US/docs/Learn/CSS/Styling_text/Fundamentals.

Wrapping Up

Using these properties, you can completely transform the look and feel of your site without doing much else. FIGURE 13.21 shows a great-looking page that is 99 percent powered by the techniques you learned in this chapter.

[image: A figure shows an example of a beautifully designed website that is created using text styles. The vertical-align value of the header is top, and the author's credit is underlined.]

Figure 13.21 A beautiful website whose design is created by text styles

But still, typography is only a small part of the vast toolset you have in CSS. Another great way to customize your site is with color, the subject of the next chapter.

[image: Video play icon.] VIDEO 13.9
Building the Page from Figure 13.21

In this video, you’ll see how the page from Figure 13.21 was put together using primarily typographic parameters.

14

Color in CSS

In This Chapter

How Computer Monitors Work

Representing Color in CSS

Gradients

The border Property

Wrapping Up

The web has come a long way since its beginning. It used to be that the only way to get fun colors or complex graphics into a webpage was by incorporating images. But now that the web supports a wide range of colors—along with gradients, patterns, and more—you can use CSS to add a lot of color.

Finding the right color scheme for a website is key to good design. In this chapter, you’ll learn all the CSS you need to know in order to customize the colors of elements, sections, and states.

How Computer Monitors Work

Before jumping into choosing colors, you should know a little bit about how computers represent colors. The screens of computer monitors are made up of millions of tiny squares called pixels.

When you turn a screen on, light shines through those pixels to illuminate them, and each pixel colors the light with a combination of red, green, and blue. A Venn diagram (FIGURE 14.1) is a good way to show the three primary colors—red, green, and blue—and the colors they produce when combined.

[image: A Venn diagram shows three circles of the different colors red, green, and blue intersecting with each. The intersection is equally proportional to the three circles.]

Figure 14.1 A Venn diagram for combining red, green, and blue

You can see that as they overlap, they begin to form other, secondary colors:

	Combining red and green produces yellow.

	Combining green and blue produces cyan.

	Combining blue and red produces magenta.

	Combining all three colors produces white.

	A lack of color produces black.

Armed with that information, you can generate a numerical code for any color.

Representing Color in CSS

In CSS, there are four ways you can define colors:

	RGB: A comma-separated list of the amount of red, green, and blue in a color, from 0–255.

	Hexadecimal (or hex) values: A six-character code that defines the amount of red, green, and blue in a color preceded by a hashtag (#).

	Color names: There is a set of predefined names for colors, like blue, aquamarine, and rebeccapurple. You can see the full list of names, and their colors, at htmlcolorcodes.com/color-names/.

	HSL: This defines the color in terms of hue (as an angle on the color wheel), saturation (as a percentage), and lightness (as a percentage). This is an uncommon method.

Both RBG and HSL can also accept an alpha value, which defines the opacity of the color.

Hexadecimal colors

FIGURE 14.2 is a pretty basic table. In the top row, the letters R, G, and B (representing red, green, and blue) are at the heads of the columns. Underneath it, you have six Fs, two in each column. This second row shows how you represent colors in CSS.

[image: A table with three columns presents the division of red, green, and blue. The data is provided a pair of F for each color division.]

Figure 14.2 Red, green, and blue divided into columns

The three pairs of Fs represent hexadecimal values, which are numbers in base 16. They include the standard digits from base 10 (0–9) and continue up the scale using the letters A–F to represent 10–15. A two-character hexadecimal number can range from 00–FF, or from 0–255 in decimal (base 10) notation.

Because these numbers cover a huge range of values (over 16 million), you can use them to create almost any color you’d like. The first two characters state how much red goes into a color, the middle two how much green, and the last two how much blue. A value of all Fs is white, and all 0s is black. You can think of all 0s as the complete lack of any color, and all Fs as the maximum amount of any color.

For example, “pure” red is #FF0000 (it has the most red there can be, no green at all, and no blue at all). Purple in this instance would be #FF00FF (maximum red, no green, maximum blue).

To set a color for a style:

	In style.css, type the name of the selector you want the style rule to apply to—in this case, body.

	Type { to begin the declaration block.

	Type the name of the property you want to define and the value of that property. In this example, to turn the page black, type background: #000000;.

	Type the next property you want to define and its value. Here, to make the body text white, type color: #FFFFFF;.

	Type } to close the declaration block and the style rule.

FIGURE 14.3 shows the result.

[image: A figure shows an example of using a CSS style rule in a text to change the background color. The vertical-align value of the header is middle, and the author's credit is underlined.]

Figure 14.3 Using a CSS style rule to define the background and text colors with hex values

[image: Video play icon.] VIDEO 14.1
Using a Color Picker

Aside from getting the color code, a good color picker will recommend complementary colors to use in color schemes. You’ll learn about two tools that help you do that.

Color Contrast

Color contrast is an important concept to understand because bad contrast makes your website harder to read. It can also negatively affect those who have color blindness. That’s why most books are white pages with black text—in most cases, it’s easiest to read.

You want to get the right contrast between background and text colors to enhance the legibility of the page. Make sure your text stands out on the page, as far as color, font size, and line height go. Dark text on a light background is generally pretty safe. If you want a dark background, darker grays work best, along with increasing the line height.

Of course, you’re not expected to know every color’s hex code (or RGB/HSL value) off the top of your head. Lots of tools can help you find the values for the colors you want to use. The website htmlcolorcodes.com has a fantastic one (FIGURE 14.4).

[image: Illustration of HTML color picker is shown.]

Figure 14.4 The color picker at htmlcolorcodes.com/color-picker/

A screenshot shows a color picker from htmlcolorcodes.com. HEX type, RGB number, and HSL percent are given at the top. A spectrum of colors is given in the middle where the shade of any color can be made. Also, the HEX color code value is listed to the right. Other Hex types such as #FF5733, #FFBD33, #DBFF33, and #75FF33 are given in the bottom.

Using RGB and RGBA to set color

Using RGB to set color is very much like using hex: you specify numerical values for red, blue, and green, but in decimal notation, not hexadecimal notation. For example, to specify pure red, type rgb(255, 0, 0). To specify purple (a mixture of red and blue), type rgb(255, 0, 255).

Both hex and RGB share one big problem: there’s no way to change the opacity of a color. Luckily, there’s a variant of RGB that does allow you to set the opacity level: RGBA.

The A in RGBA stands for alpha channel. It adds to the color specification a component that lets you set the opacity value from 0 (completely transparent) to 1 (completely opaque, the default value) (FIGURE 14.5).

[image: The different stages of the opacity of a red overlay are depicted in a screenshot.]

Figure 14.5 A photo with a red overlay at different stages of opacity

There are six copies of the same photograph with an overlay of red color which varies corresponding to the value of opacity. In the first photograph, the opacity value is 0 percent so that the photo is completely transparent. In the second, third, fourth, and fifth photographs, the opacity values are 25, 50, 75, and 90 percent respectively. In the sixth photograph, the opacity value is 100 percent indicating that the photo is completely hidden by the bright red overlay. As the value of opacity increases, the level of transparency decreases.

For example, to define a semitransparent red background, you would type rgba(255, 0, 0, 0.5).

To define background color using RGBA:

	Type body {.

	Type background: rbga(0, 0, 0, 0.25);.

	Type }.

That gives you a page that looks like FIGURE 14.6.

[image: An image shows a page titled, "A Case of Identity." The page is filled with a semi-transparent grey background. The text in both bold and normal font is readable.]

Figure 14.6 A page with a semitransparent black background

You can also use the opacity property to change the transparency of an element. This property accepts values between 0 and 1, but that applies to the entire element—including text, images, and anything else—and not just its background.

[image: Video play icon.] VIDEO 14.2
Using Transparency to Make Text Stand Out

To demonstrate how transparency can make a section stand out, in this video you’ll learn how to create a semitransparent white box on a darker background.

Using HSL and HSLA

HSL is a relatively new way to define colors based on the color wheel (FIGURE 14.7).

[image: A color wheel in which the value of hue (H) in degrees is shown. In this color wheel, the range of the colors marked are as follows: Yellow - 60 degrees, Green - 120 degrees, Cyan - 180 degrees, Blue - 240 degrees, Magenta - 300 degrees, and Red - 360 or 0 degrees.]

Figure 14.7 A color wheel for determining hue—the H in HSL

The value of hue, or H, is its position on the color wheel, which is measured in degrees from 0 to 360. This makes it a little easier to figure out the color as you increment or decrement the H value. Especially with hex, it might be hard to look at a value and figure out what color it will translate to. With HSL, thanks to the hue, beginners have a better understanding of what color they’ll see based on the value.

Saturation, or S, is the amount of gray in a color (or conversely, how pure the color is). This is represented as a percentage, where 0 percent is gray and 100 percent is full saturation of the hue.

Lightness, or L, is the amount of white or black in the color, again as a percentage: 0 percent is no light (black), and 100 percent is full light (white). This is true no matter what the hue or saturation. Using HSL, red would be hsl(0, 100%, 50%).

Like RGB, HSL can also accept an alpha value for opacity. So a semitransparent red would be hsla(0, 100%, 50%, 0.5).

With that, you’ve seen the most common properties for controlling color in CSS: background (which changes the background color) and color (which changes the text or foreground color). But there are a few other ways you can use color in CSS.

[image: Video play icon.] VIDEO 14.3
Generating HSL Values

Since HSL is a little different from hex and RGB, in this video you’ll see how HSL values are generated, and how they can be more intuitive to use than the former methods.

Gradients

Using CSS you can generate a gradient to smoothly transition between two or more colors, or color stops. There are two types of gradients: linear-gradient() (which transitions in a straight line) and radial-gradient() (which transitions outward from the center).

Tip

CSS also includes the conic-gradient() type, but at the time of this writing it isn’t supported by all the major browsers.

Gradients in CSS are actually functions that generate a background image. Because of that, there is a lot of information you can send to them.

In their most basic form, you just need the type of gradient you want to use and two colors. Each function has built-in defaults to take care of the rest:

Click here to view code image

background: linear-gradient(red, orange);

background: radial-gradient(red, orange);

The first line generates a red-to-orange linear gradient (FIGURE 14.8). If direction isn’t assigned, top to bottom is assumed.

[image: An example image for a linear-gradient background is shown. Here, the red-to-orange color is spread linearly in the top to bottom direction. That is, the red shade covers the top area and the orange color covers the bottom area.]

Figure 14.8 A simple red-to-orange linear gradient

The second line generates a red-to-orange radial gradient. By default, the first color listed is at the center (FIGURE 14.9).

[image: An example image for a radial-gradient background is shown. Here, the red color shade is present at the center of the rectangular region. The red shade lightens on moving to the corners and the orange color covers the corner areas.]

Figure 14.9 A simple red-to-orange radial gradient

You have lots of other options when designing gradients:

	More than one color

	Direction

	Color stops (as in, stop red at 10 percent and begin the transition to orange)

	Size

Let’s take a look at the functions and the information you can send to them.

Linear gradients

The linear-gradient() function accepts two types of values: those for direction and those for a color list.

Here’s how to define direction with linear-gradient:

	angle: The starting angle of the gradient. It defaults to 180 degrees.

Angles can be defined using four units: deg, grad, rad, and turn. You can learn more about each unit at developer.mozilla.org/en-US/docs/Web/CSS/angle.

	side-or-corner: This is a set of keywords that correspond to specific angles. This value starts with the word to and then contains up to two keywords: one for the horizonal line (left or right) and one for the vertical (top or bottom).

to bottom, to top, to right, and to left correspond to, respectively, 180deg, 0deg, 90deg, and 270deg.

To create a full two-color background using linear-gradient():

	Type body {.

	Type background:.

	Type linear-gradient(to open the function.

	Type to right.

This specifies the direction the gradient should go. “From left” is implied.

	Type rgba(0,0,0,0.25) 68%,.

This defines the first color as black at 25 percent opacity. The color stops at 68 percent of the width of the container.

	Type rgb(0,0,0) 69%.

Stopping the second color 1 percent later gives a definitive border.

	Type); to close the function.

	Type } to close the style declaration.

The result is a background that serves as a content area, with a black background for a sidebar (FIGURE 14.10).

[image: An example image for the two-color background using linear-gradient is shown. The first 68 percent of the width of the rectangular content area is filled with black color having 25 percent opacity (which is, grey). The remaining 32 percent width on the right is filled with black color having 0 percent opacity.]

Figure 14.10 Creating a background with sidebar using linear-gradient

And here’s the code:

Click here to view code image

body {

 background: linear-gradient

 →(to right, rgba(0,0,0,0.25)

 →68%, rgb(0,0,0) 69%);

}

Radial gradients

With radial gradients, you define the color stop list in the same way, but defining the gradient is a bit different. You can use these values to define radial-gradient():

	<position>: This is relative to the top left of the container, and can be top, bottom, left, right, or center. It can also be a numeric offset (two numbers, on the x and y axes).

	<shape>: This is how the gradient will be drawn. You can use ellipses (the default) or circle.

Tip

You can define how big a radial gradient is with <extent-keyword>, which is a bit advanced. Read about it at developer.mozilla.org/en-US/docs/Web/CSS/radial-gradient.

[image: Video play icon.] VIDEO 14.4
Experimenting with Gradients

There are many different properties you can assign to gradients. In this video, you’ll learn more about them and see what they do.

To create a radial gradient:

	Type body {.

	Type background:.

	Type radial-gradient(.

	Type circle at center,.

	Type red, blue.

	Type);.

	Type }.

The result is a background that looks like a long circle in the middle, transitioning to blue around the edges (FIGURE 14.11).

[image: An example image of a radial gradient is shown. In this image, both the left and right corners of the rectangular background are filled with blue shade, and the center appears like an elongated circle with a red shade.]

Figure 14.11 Creating a radial gradient

Tip

CSS Tricks has a very comprehensive writeup on gradients: css-tricks.com/css3 -gradients/.

Just as with colors, there are helpful tools with which you can generate the CSS code for gradients. One good tool is cssgradient.io/ (FIGURE 14.12).

[image: A screenshot of the tool "cssgradient.io" is shown.]

Figure 14.12 cssgradient.io

The screenshot of the "cssgradient.io" window shows two buttons such as linear and radial gradient at the bottom left corner, where the linear option is selected. It consists of a color shade panel with four adjustable sliders at the top, with the value displayed near each slider. The fields to enter the HEX and stop value are present for each color code and a preview is available based on the selected values. There is an image upload option at the bottom.

Background Images

Gradients are treated as background images in CSS (using the background-image property). The background property is shorthand, and the browser is smart enough to figure out what you mean.

But that means you can set images as backgrounds in CSS. Here’s the syntax for that:

background: url(‘url/of/image’);

You can also set parameters for other values. One is position, which is measured relative to the upper-left corner of the screen by default. You can provide x or y coordinates or keywords, like top, bottom left, right, and center.

You can also state whether you want the background to repeat, and more.

[image: Video play icon.] VIDEO 14.5
Background Images

Gradients are one implementation of background images, but there are several more background-related properties. These include background-position, background-repeat, and background-size.

In this video you’ll learn more about how to use images for backgrounds.

The border Property

The other (much less complicated) CSS property that uses color is border, which is shorthand for three properties: border-width, border-style (from a set of options; see FIGURE 14.13), and border-color. The styles are as follows:

[image: The types of border styles are shown.]

Figure 14.13 Border styles

The various border styles such as solid, dashed, double, groove, ridge, inset, and outset are shown. All the border styles are of 1 pixel and in black color. The solid border resembles a straight dark line. The dashed border resembles a dashed line, the dotted border is of dots arranged in a straight line, a double border consists of a double line, and a groove border has the top borderline with a dark shade of black color and the bottom borderline with a light shade of black color. A ridge border has the top borderline with a light shade of black color and the bottom borderline with a dark shade of black color, the inset border is a dark thickened straight line, and the outset border is a thickened straight line with a light shade of black color throughout.

	solid

	dashed

	dotted

	double

	groove

	ridge

	inset

	outset

	hidden

	none

A definition looks like this:

border: 1px solid #000000;

To define a border around paragraph elements:

	Type p {.

	Type border:.

	Type 1px.

	Type solid.

	Type red;.

	Type }.

You end up with something like FIGURE 14.14.

[image: A paragraph within a red rectangular border is shown.]

Figure 14.14 A red border around a paragraph

You can also use each of these properties, and the same declarations, for each individual border, the top, bottom, left, and right. Use the following syntax:

border-[side]

border-[side]-[property]

So if you want to style just the top border:

p {

 border-top: 1px solid red;

}

or

p {

 border-top-style: solid;

}

Tip

The main reason to use border instead of a text decoration like underline or overline is that those apply only to the text; border includes the whole container.

There’s a lot more you can do regarding borders or box decorations in general.

[image: Video play icon.] VIDEO 14.6
Doing More with Borders

Aside from changing border style, width, and color, you could change border-radius, giving elements a nice rounded/button effect. You could also add a box-shadow. See those CSS border properties and more in action.

[image: Video play icon.] VIDEO 14.7
Creating a Stylized Aside Section

With all of these nifty new things you can do with colors, it’s time to see it all come together. In this video, you’ll style <aside> to stand out in a body of text.

Wrapping Up

Understanding color is a fundamental part of creating websites. Luckily, there are a lot of online resources dedicated to making it easier.

With your color schemes, you can design pages that come to life or even evoke an emotional response. With this fundamental concept down, it’s time for you to start manipulating the elements and laying them out just the way you like them.

15

Using CSS for Page Layout

In This Chapter

The Box Model

Padding and Margins

Element Flow

Creating Layers and Overlapping Elements

Creating an Overlay Using z-index

A Note About Creating Layouts

Wrapping Up

You’ve learned how to use CSS to change the appearance of text and manipulate colors. Those are likely the most common actions you’ll take with CSS, but it is much more powerful than that.

You can place elements wherever you want on a page without changing the underlying CSS. In Chapter 6 you learned about using HTML to structure a page. Now it’s time to learn how CSS can change the layout.

The Box Model

In Chapter 6, you were briefly introduced to the box model. The simplest way to put it is that CSS treats every HTML element as if it’s in its own box. By default, when a browser renders a webpage, the boxes flow onto the page in sequence as it encounters them in the code. This is sometimes called normal flow.

FIGURE 15.1 shows an example from the New York Times.

[image: The homepage of the New York times shows various news details within borders. Each of these borders vary in width, height, border color, thickness, visibility, margins, and padding around the content of the box.]

Figure 15.1 Elements outlined on the New York Times homepage, illustrating the box model

For each element, you can control a number of parameters:

	The width and height of its box

	Border color and thickness around the box

	Whether or not the border is visible

	Whether the box itself is visible

	Where the box fits in the flow of elements on the page

	How much space is around the box (margins), and around the content within the box (padding)

You can also change the position of an element in the flow of a page by choosing whether to make it an inline element or a block element. This can have an effect on how much space is (or can be defined) around the box.

[image: Video play icon.] VIDEO 15.1
Demonstrating Flow

In this video, you’ll see the different ways an element can be arranged, and how changing the CSS affects the flow of a page.

The CSS display property

Using the display property, you can change the flow of an element. These are the most common values:

	block makes an element start on a new line and take up the full width of the container (forming a block of content, if you will).

	inline leaves an element in its position in the flow of content. It will not start on a new line, and it will take up only the horizontal space it needs. Certain properties, like height and width, have no effect on inline elements.

	inline-block is a hybrid of inline and block. The element will display inline but take on the properties of a block, like height, width, and spacing.

	none completely hides the element and removes it from the flow. It will only be viewable in source code.

Tip

There’s another property, called visibility. If it’s set to hidden, users will not be able to see the element, but it will still take up the same amount of space on the page. It will not be removed from the flow.

Tip

There are several other display properties that are less common. Two you’ll learn about in depth in Chapter 16 are flex and grid.

To set a link to display as a block-level element:

	In your style sheet, type the selector you want to change. In this example, use a.

	If you want the style to apply to a specific class, type a period followed immediately by the class name, then add a left curly brace. Here, use .button {.

	Type the property you want to assign to the selector. In this case, use display: block;.

	Type } to close the style declaration.

This moves any link (<a> tag) of the class button from inline to its own block (FIGURE 15.2).

[image: A link is displayed as a block-level element in a paragraph. In the given paragraph within a border, the link, "Click the Button" appears at the bottom of the paragraph in a new line. The continuation of the sentence in the paragraph appears in a new line below the link.]

Figure 15.2 This <a> tag of the class button now sits on its own line.

Height and width

Unless you specifically define a height and width, they’ll default to a size big enough to hold the content (with the caveat that block-level elements are the full width of their parent container). To define a specific size, you can use the height and width properties. They accept the same units you would use to measure text size: px, em, rem, and %.

Tip

Using % will cause the targeted element to take up that percentage of the parent container. So if the container is 100px and you define, say, a width of 50%, the target element will be 50px wide.

To set a specific height and width for an element:

	In your style sheet, define the element to which you want to apply the rule, followed by a left brace. In this example, use aside {.

	Type width: followed by the desired width. In this case, 400px;.

	Type height: followed by the desired height. In this case, 200px;.

	Type } to end the style declaration.

This gives you a 400x200 box for all aside elements (FIGURE 15.3).

[image: A screenshot shows an aside element added to a paragraph to differentiate it from the rest of the document. A sentence in two lines is displayed within a border of specific height and width. This border represents the full container with space below the displayed text.]

Figure 15.3 An aside element with a set width and height. A border has been added to show the full container.

Tip

You can also use the value auto for either height or width. This is especially useful when resizing images. If you want images to be 600px wide, using a height of auto will make sure the image maintains the correct aspect ratio.

Finally, you can set minimum and maximum values for both height and width.

The minimum properties are min-width and min-height. They say, “Do not drop the container’s size below this value.” If you set min-width: 300px; the container will always be at least 300px wide but can be wider, depending on the content.

And max-width and max-height say, “Do not let a container go beyond this size.” So max-height: 500px means the container can be shorter than, but will never be taller than, 500px.

Each of these can make sense depending on the context. But the main thing to remember is that the height and width properties are fixed. They will always be exactly the size you define, no matter the size of the browser window or parent container (FIGURE 15.4).

[image: A screenshot displays the contents of a page displayed within the border, leaving out the text at the left end of the page. This is because an element of incorrect width and height is defined for this container.]

Figure 15.4 This element’s width has been set bigger than the browser’s width, causing the content to go beyond the user’s viewable window.

[image: Video play icon.] VIDEO 15.2
Adjusting Heights and Widths in Layout

Now that you know all about managing height and width, it’s time to put that knowledge to the test. In this video, you’ll set and adjust the widths and heights of various elements to make everything line up nicely.

Using overflow

You may find yourself in situations where setting a specific height or width causes the box to break and text to flow outside of that box.

Luckily, the overflow property is there to help you. The two values that can help you out here are:

	hidden: Hides any content that goes beyond the container.

	scroll: Adds scroll bars to the container.

Padding and Margins

In Chapter 14, you learned how to adjust spacing for text to make it more readable and how to add whitespace when necessary. You can do the same thing with entire elements and everything they contain—text, images, and otherwise.

As stated earlier, there are two ways to add spacing to an element: around the outside of the whole box, which is margin, and around the content inside the box, which is padding. That, taken with height, width, and border, creates the complete amount of space a block-level element takes up (FIGURE 15.5).

[image: A figure depicts the box model of cascading style sheets.]

Figure 15.5 How padding, margin, height, width, and border affect a block-level element

The CSS box model wraps around every HTML element. It consists of: margins, borders, padding, and the actual content. The width and height properties define the content. Padding surrounds the area around the content. A border goes around the padding and content. Margin is present outside the border.

You can define padding and margin values using the same units as those for height and width. Using a single value for either property applies the same value to all four sides of the element.

To add padding and margin to a paragraph:

	In your style sheet, type the selector you wish to target, followed by a left curly brace. In this case, use p {.

	Type padding: followed by the value; this example uses 20px;.

	Type margin: and the value; here, use 20px;.

	Type } to close the declaration.

This adds a little extra spacing to your paragraphs (FIGURE 15.6).

[image: A screenshot shows two paragraphs within a border with usual spacing between the paragraphs, indicating that there is no padding and spacing applied here.]

[image: A screenshot shows two paragraphs within a border and there is an extra space between these two paragraphs and between the border and the paragraphs indicating that the padding and spacing are applied.]

Figure 15.6 The first image shows two paragraph elements with neither padding nor spacing. The second has both.

[image: Video play icon.] VIDEO 15.3
Building a Completely Styled Button

Now that you know how to turn links into blocks and add spacing, you can create a real-looking button using only CSS. You’ll learn how in this video.

Finer control over values

With both padding and margin, you’re not locked into assigning a single value to the attribute for the entire element. You can define a different value for the left, top, right, and bottom of each box. There are a few ways to do it.

You can explicitly define each side, as shown in TABLE 15.1.

Table 15.1 Padding and Margin Side Properties

	Padding

	Margin

	padding-left

	margin-left

	padding-top

	margin-top

	padding-right

	margin-right

	padding-bottom

	margin-bottom

You can also use a shorthand version, in which you set the values for each of the four sides individually in a single declaration:

Click here to view code image

padding: [top] [right] [bottom] [left];

margin: [top] [right] [bottom] [left];

For each property the values are applied in clockwise order around the element, starting from the top. Slightly shorter would be:

Click here to view code image

padding: [top/bottom] [left/right];

margin: [top/bottom] [left/right];

Here, you have two values instead of four, where the first value sets the top and bottom spacing, and the second value sets the left and right spacing.

Finally, there’s also a three-value declaration:

Click here to view code image

padding: [top left/right bottom];

margin: [top left/right bottom];

Here, the first value is for the top spacing, the middle value is for the left and right, and the last is for the bottom.

Shorthand Properties

Shorthand properties are properties in CSS that combine several different properties into one. You’ve seen some, like border (which combines border-width, border-style, and border-color), and padding and margin in this chapter.

They are a convenient and generally cleaner way to write CSS when you want uniformity (for example, when you want all borders to be the same color).

On the other hand, there are factors you need to keep in mind when using shorthand properties, particularly default values of properties and issues of inheritance.

To learn more about shorthand properties, check out this page at MDN: developer.mozilla.org/en-US/docs/Web/CSS/Shorthand_properties.

Using margin: auto

Sometimes when you set a width, you might want to center the container on the page. That’s very easy to do using the margin property. You can set margin to the value auto, and it will calculate the width of the parent container, subtract the width of your target element, and distribute the leftover value evenly on both sides.

Say you have a wrapper class that has a width of 800px:

.wrapper {

 width: 800px;

}

On most tablets and desktop devices, the width of the window (and therefore, the entire website) will be more than 800px, and your content will look like what you see in FIGURE 15.7, where there is a lot of space to the right of the container.

[image: A screenshot shows the usage of the wrapper class in a fixed-width container. Three paragraphs on the Case of identity are presented within the border. Here, all the contents are aligned to the left of the window.]

Figure 15.7 A fixed-width container (.wrapper) without using margin: auto aligns the content all the way to the left of the window.

Using the keyword auto with margin allows you to automatically center that content in the middle of the window.

You can use the auto keyword in two ways: as the only value for margin (margin: auto) or in conjunction with a set top and bottom (margin: 30px auto). Both cases result in horizontal centering. The latter also includes a 30px margin before and after the container.

To center an element automatically with margin: auto:

	In your style sheet, type the selector you wish to target, followed by a left curly brace. In this case, use .wrapper {.

	On a new line, type width:, followed by the value. In this case, 800px;.

Setting a width for the container isn’t strictly necessary, but without it you will not see the results of using the auto keyword.

	On a new line, type margin:, then the values, including values for options like top or bottom margins. In this case, type 30px auto;.

	On a new line, type }.

Your full ruleset looks like this:

.wrapper {

 width: 800px;

 margin: 30px auto;

}

That results in a div with the class wrapper being center aligned on a page (FIGURE 15.8).

[image: A screenshot shows a fixed-width container with the usage of the keyword, "auto: margin." Three paragraphs on the Case of identity are presented within the border. Here, all the contents are aligned to the center of the window.]

Figure 15.8 Centering a container using margin: auto

Element Flow

By default, elements flow onto the page in the order they appear in the HTML, depending on whether they are a block or inline element. FIGURE 15.9 shows how the elements on a page naturally flow, with block-level elements outlined. You can see that block-level elements take up the entire width of the page and dictate most of the natural flow. Links and other text formatting fall in line with those blocks (like the links in the unordered list).

[image: A screenshot of the page "codepen.io/chriscoyier/full/JpLzjd" is shown.]

Figure 15.9 This fantastic screenshot shows this page from Chris Coyier: codepen.io/chriscoyier/full/JpLzjd.

The page from Chris Coyler displays the block-level elements. Six headers in bold are displayed one below the other, with decreasing font size. Each of these is marked within borders. Three bulletins with links are shown in three consecutive newlines, which are placed within a border. A paragraph of three lines that includes a link is shown within a border.

However, there are a few ways to change the flow of elements. You might want to do this to pull out certain content (like a quote or an aside), draw attention to an image, or even reorder elements when viewing the site on a smaller device.

The most common way to change the flow of HTML elements is to use the float property.

CODE 15.1 The CSS used to style the page in Figure 15.10

main {

 width: 800px;

 margin: 0 auto;

}

aside {

 border: 1px solid #333333;

 padding: 30px;

 width: 200px;

 float: right;

}

Using floats

The float property takes an element out of its normal flow and places it to the right or left inside the container:

aside {

 float: right;

}

This moves the aside element to the right and lets everything else flow around it (FIGURE 15.10). You can see the code in CODE 15.1.

[image: A screenshot shows an example of the float property. The screenshot displays a container with a floating content within a border towards the right of the window. A paragraph which is left aligned flows around it.]

Figure 15.10 An aside that floats to the right of the rest of the content

Note that the floated element will be surrounded by any elements below it, so if you want it to appear in the top of a container, it will have to be the first element.

You can even use float to create a grid of elements. Floating all elements of a particular type takes them out of the normal flow and lines them up next to each other. Before the creation of the layout modules Flexbox and CSS Grid (which you’ll learn about in Chapter 16), this is how many web designers created column-based layouts.

[image: Video play icon.] VIDEO 15.4
Making a Simple Two-column Layout with Floats

While there are newer ways to create layouts in CSS, using floats is still pretty popular. In this video, you’ll learn how to do that, and all the nuances of doing it correctly.

To create a grid layout with floats:

	In your style sheet, type the selector you wish to target, followed by a left curly brace. This example targets paragraphs, so use p {.

	Type float:.

	Type left; to force the element to float on the left side of its container.

To force the element to float on the right side, you would use the value right.

	Type margin: to set the spacing between the elements. For this example, use 15px;.

	Type width: to set the width of each element. This example uses 300px;.

	Type } to close the style declaration.

This makes the paragraphs flow onto the page in a grid (FIGURE 15.11).

[image: A screenshot shows an example of setting paragraphs in a grid using the float property.]

Figure 15.11 A grid of paragraphs achieved using the float property

The screenshot displays several paragraphs arranged in grids with equal spacing in between. Eight paragraphs are displayed in two rows and four columns. The paragraphs vary in length but the grids in the top row are of equal length and the grids in the bottom row are of equal length. The extra space after the end of the paragraph is left blank.

Clearing floats

While this can work, it can also cause havoc for any elements in the normal flow. Elements can end up in unexpected places to work their way around floated elements. And although there are better ways to achieve a grid (as you’ll see in Chapter 16), you could always use the clear property, which tells the element to place itself below any floated content:

.next-section {

 clear: left;

}

Other values for this property include right and both.

Tip

Using the clear property for layout is sometimes referred to as the clearfix. You might even see a class named clearfix that’s designed for this very purpose.

Using the position property

Another way to place elements and containers precisely is by using the position property. It accepts several values, which I’ll list in a moment.

This property is often accompanied by a set of properties that position elements in specific areas of the window or container: left, right, top, and bottom. These all accept the normal units (px, em, rem, %), and they all have slightly different meanings depending on the value of position. Here are the values for position, and positioning properties:

	static: This is the default value. There is no special positioning.

	relative: Places the container based on its normal position. The directional properties will move the container away from its normal position.

So left: 50px moves the container to the right by 50 pixels, similar to margin.

	fixed: The container is in a fixed position on the page, so no matter what part of the page is being displayed to the user, the container will be in the same spot.

The directional properties in this instance are exact coordinates; left: 0; top: 0; means the container will be at the left edge at the very top of the window.

	absolute: The container is positioned in a fixed position in its parent container.

Directional properties work the same way as those for the fixed position.

	sticky: The container is positioned relatively (as in the normal flow) until the user reaches a specific scroll position. Then it sticks in place on the screen.

For example, top: 0 positions the element relatively in the normal flow until the page is scrolled and there are zero pixels between the element’s top edge and the visible area of the webpage. Beyond that threshold, the element behaves as if it used fixed positioning and will be fixed to zero pixels from the top.

To get a better idea of how each of these work, check out Video 15.5.

[image: Video play icon.] VIDEO 15.5
Demonstrating the position Property

Visualizing how the position property works, even with the help of screenshots, can be tough. This video goes through all the properties and values and shows how they work.

To make a sticky sidebar:

The starting markup for this task is listed below. Since there’s no HTML5 element specifically for “wrapping” other elements (from a semantic meaning standpoint), it’s common practice to use the <div> element with a wrapper class:

<div class="wrapper">

 <aside>

 ...

 </aside>

 <main>

 ...

 </main>

</div>

	In your style sheet, type .wrapper {.

	Type width: 800px;.

	Type margin: 30px auto;.

	Type }.

	Type main {.

	Type width: 500px;.

	Type }.

	Type aside {.

	Type width: 260px;.

	Type padding: 15px;.

	Type float: right;.

	Type position: sticky;.

	Type top: 0;.

	Type }.

This code produces a two-column layout with a sticky sidebar. You can also add a background and border to aside to distinguish it a bit (FIGURE 15.12). You can see the code in CODE 15.2 and 15.3.

[image: A screenshot shows a sticky sidebar. It displays a two-column layout in which the content of two paragraphs is present towards the left of the window and a sticky sidebar with grey background color is placed at the top right corner of the window within a border.]

Figure 15.12 A two-column layout with a sticky sidebar

CODE 15.2 The HTML code used in Figure 15.12

Click here to view code image

<div class="wrapper">

 <aside>

 This is one of 56 short stories

 →written about Sherlock Holmes by

 →Sir Arthur Conan Doyle. It was

 →published in 1891.

 </aside>

 <main>

 <p>“My dear fellow,” said Sherlock

 →Holmes as we sat on either

 →side of the fire in his lodgings

 →at Baker Street, “life is

 →infinitely stranger than

 →anything which the mind of

 →man could invent. We would not

 →dare to conceive the things

 →which are really mere

 →commonplaces of existence.

 →If we could fly out of that

 →window hand in hand, hover

 →over this great city, gently

 →remove the roofs, and peep in

 →at the queer things which

 →are going on, the strange

 →coincidences, the plannings,

 →the cross-purposes, the

 →wonderful chains of events,

 →working through generations,

 →and leading to the most outré

 →results, it would make

 →all with its conventionalities

 →and foreseen conclusions most

 →stale and unprofitable.”</p>

<p>“And yet I am not convinced of it,” I answered. “The cases which come to light in the papers are, as a rule, bald enough, and vulgar enough. We have in our police reports realism pushed to its extreme limits, and yet the result is, it must be confessed, neither fascinating nor artistic.”</p>

 </main>

</div>

CODE 15.3 The CSS code used in Figure 15.12

Click here to view code image

.wrapper {

 width: 800px;

 margin: 30px auto;

}

main {

 width: 500px;

}

aside {

 width: 260px;

 padding: 15px;

 float: right;

 position: sticky;

 top: 0;

 background:rgba(0,0,0,0.085);

 border: 1px solid #333333;

}

p:nth-of-type(1) {

 line-height: 1.5em;

 letter-spacing: 0.1em;

 word-spacing: 0.2em;

}

Creating Layers and Overlapping Elements

Although taking elements out of the natural flow can create interesting layouts for your content, you can run into situations where content overlaps and becomes unreadable. For example, if you had not set the width property on the main div in the previous task, your users would have run into a problem (FIGURE 15.13). Because we’ve fixed the position of the aside, the browser is essentially saying, “Keep the aside in this spot, no matter what the rest of the flow looks like.” That means when the user scrolls, the main text overlaps the aside.

[image: A screenshot displays a two-column layout with a sticky sidebar at its top-right corner. Here, the body content present around the sticky sidebar overlaps with the content that is present within the sidebar which becomes unreadable to the user.]

Figure 15.13 Overlapping elements as a result of positioning

CSS has a fix for that: the z-index property. You can think of z-index as a layer or stacking property, where the value is an integer. The closer the integer is to 0, the “lower” on the page the element is (FIGURE 15.14). You can also think of elements with a lower z-index as being “behind” elements with a higher z-index.

[image: The three-dimensional view of the z-index property shows five stacks arranged one above the other. It runs perpendicular to the display and positioned on the Z-axis. The stack represents canvas.]

Figure 15.14 A visualization of what z-index represents on a webpage

A ruleset that uses z-index looks something like this:

aside {

 position: fixed;

 top: 0;

 z-index: 10;

}

Tip

z-index works only if the element has a position other than static.

Tip

Choosing z-index values in multiples of 10 or 100 is a good convention to follow. That gives you some wiggle room on bigger projects, where you might later realize you need to add an in-between value to existing values.

Creating an Overlay Using z-index

One practical example of using z-index is to create a piece of content that should be shown in front of the rest of the content. You see this with popups asking you to join mailing lists, for example.

In this task, you will learn the basics of how to do that. In the real world, you might make the overlay dismissible with a bit of JavaScript, but you will clearly see how z-index works.

To create an overlay using z-index:

The markup being styled will be the following:

Click here to view code image

<div class="overlay">

 <h3>This is an important alert!

 →</h3>

</div>

<header>

 <h1>A Case of Identity</h1>

</header>

<main>

 (content goes here)

</main>

	In your stylesheet, first type the element you want to apply the styles to, followed by a left curly brace. In this case, .overlay {.

	Now set the position of the element to absolute by typing, on a new line, position: absolute;.

	Since the element is absolute, you can now use positional properties to move it. Move it down the page a little bit. On a new line, type top: 10%;.

	Move the element in front of all other elements using z-index. Since the default z-index is 0, on a new line type z-index: 1000;.

This will make sure the overlay is above the rest of the content—as long as nothing has a z-index over 1000.

	Strictly so you can more easily see the result, apply a background color to the element. On a new line, type background: #cfcfcf;.

	You can also center the text. On a new line type text-align: center;.

	Finally, adding some padding so it stands out a bit more. On a new line, type padding: 40px;.

	On a new line, type }.

This results in a block of text that is layered on top of the main page (FIGURE 15.15).

[image: A screenshot shows an overlay obtained using the keyword "position: absolute" and z-index. It displays the text " This is an important alert" over a block of a grey background. This is placed over the content in the page, hiding the content.]

Figure 15.15 An overlay created using position: absolute and z-index.

[image: Video play icon.] VIDEO 15.6
Creating a Pricing Table

In this video, you make a three-column pricing table using the methods you’ve learned in this chapter.

A Note About Creating Layouts

In recent years, great strides have been made in creating layouts with CSS. The practice of laying out elements on a webpage moved from tables, in HTML, to floating elements and clearing them using CSS. There are many frameworks designed to help you to create beautiful grid layouts. A framework is a set of structured files (HTML, CSS, and maybe JavaScript) that give you a head start on creating websites. See the sidebar “Using CSS Frameworks” to learn more.

But now, CSS Grid and Flexbox (two suites of layout properties you’ll see in Chapter 16) have much wider browser support, so they should be used instead of floating and clearing elements. They allow for code that is semantic, much cleaner, and easier to support. The techniques you saw in this chapter—floats, positioning, and changing the default flow—still have their place in web design, though.

At this point, you have enough tools in your toolbox to create nice-looking layouts. In Video 15.6, you put most of that to the test by creating a pricing table.

Using CSS Frameworks

CSS frameworks—sets of prefabricated styles that help you fast-track development—are hugely helpful because streamlining the web design workflow is not just about layout but also about using a set of common elements.

Plus, the best frameworks continue to be updated to support new methods. Bootstrap, a very popular CSS framework, supports Flexbox for layouts now.

In this article, Rachel Andrews weighs the pros and cons of using a framework: www.smashingmagazine.com/2018/11/css-frameworks-css-grid/.

Two popular frameworks I recommend are Bootstrap (getbootstrap.com) and Foundation (get.foundation).

Wrapping Up

You know all about how to change the default flow of a page and the elements/containers on it. You’ve learned about common methods like floating (and clearing those floats), changing the position of elements, and z-index.

You can probably imagine that you’ll run into a lot of fringe cases when you try to make these properties work for complex layouts—which is why frameworks became popular in the first place. But CSS has solved that with two important new systems: CSS Grid and Flexbox.

16

Layouts with CSS Grid and Flexbox

In This Chapter

Modern Solutions for an Important Problem

Using Flexbox

Using CSS Grid Layout

Browser Support

Wrapping Up

In the last chapter, you learned the finer points of how the box model can be styled, and some of the longer-standing methods for manipulating layout.

But new tools have been introduced in CSS to give you better control over your markup and to give it more semantic meaning. Those tools are the CSS Grid Layout Module and the CSS Flexible Box Layout Module, known more familiarly as CSS Grid and Flexbox. In this chapter, you’ll learn what they are, how they work, and when to use each.

Modern Solutions for an Important Problem

Part of the reason Flexbox and CSS Grid (or simply Grid) have emerged is because they are a modern solution to an important problem: creating flexible layouts that work properly on different screen sizes.

With the advent of responsive web design (RWD), floating elements to create column layouts revealed a critical bug that also affected SEO: you could not control the stacking order.

That means if you float the aside element, as in Chapter 15, that element needs to go above the main content. Search engines will prioritize the aside, and if you stack the content, the aside will always be first (Video 16.1).

[image: Video play icon.] VIDEO 16.1
Stacking Order

In this video, you’ll see the stacking order of a multicolumn layout as the screen gets smaller, using simple floats for layouts.

CSS Grid vs. Flexbox: Which should you use?

This chapter shows you both CSS Grid and Flexbox, but it’s good to know what the difference is so that you can keep it in mind moving forward.

The most common answer to this question is that Flexbox organizes content in one dimension—by rows or columns. CSS Grid organizes content in two dimensions—rows and columns.

Both are well supported by browsers at this point, as these tables at caniuse.com demonstrate (FIGURES 16.1 and 16.2).

[image: A screenshot of the CSS flexible box layout module is shown.]

Figure 16.1 Browser support for Flexbox

In the CSS flexible box layout module, elements are arranged in a vertical stack for various types of browsers. The five tabs in this module are Notes, sub-features, known issues, resources, and feedback. The elements can be obtained in current alignment, usage-relative, or date-relative forms of alignment and it can also be obtained by applying the filter. At the top right corner of the module, the percentage of global usage and unprefixed usage are displayed for all users. The elements are displayed for IE, Edge, Firefox, Chrome, Safari, Opera, IOS Safari, Opera Mini, Android Browser, Opera mobile, chrome for Android, Firefox for android, UC browser for android, Samsung internet, and so on.

[image: A screenshot of the CSS grid layout (level 1) module is shown.]

Figure 16.2 Browser support for CSS Grid

In the CSS grid layout (level 1) module, elements are arranged in a vertical stack for various types of browsers. The four tabs in this module are Notes, known issues, resources, and feedback. The elements can be obtained in current alignment, usage-relative, or date-relative forms of alignment and it can also be obtained by applying a filter. At the top right corner of the module, the percentage of global usage and unprefixed usage are displayed for all users. The elements are displayed for IE, Edge, Firefox, Chrome, Safari, Opera, IOS Safari, Opera Mini, Android Browser, Opera mobile, chrome for Android, Firefox for android, UC browser for android, Samsung internet, and so on.

Responsive Web Design

With the emergence and increasing popularity of mobile devices, the importance for making websites work on small screens was a catalyst for the responsive web design (RWD) movement. Among other things, RWD ensures that your website looks good no matter what device it’s being viewed on.

With a feature of CSS called media queries, which you’ll learn about in Chapter 17, you can create CSS rules for your layout based on the size of the screen.

RWD provides a bevy of benefits, chief among which are:

	You don’t need a separate site for mobile devices.

	Your site loads faster.

	Your layouts are optimized.

And both give you similar results quickly (FIGURES 16.3 and 16.4).

[image: A screenshot shows a simple flexbox. There are three paragraphs arranged in a three-column layout with the content wrapped within the containers. Each column has a common background color. The entire content is present within a solid border.]

Figure 16.3 A simple Flexbox example

[image: A screenshot shows a simple CSS grid. There are six paragraphs arranged in six grids. These grids are arranged in two rows and three columns. The content wrapped within the containers. Each column has a common background color. The entire content is present within a solid border.]

Figure 16.4 A simple CSS Grid example

What you’ll quickly find is that CSS Grid is a bit more granular. Before we dig into that, let’s take a look at Flexbox.

Resources Galore!

This chapter introduces you to both Flexbox and CSS Grid, but there is a lot to know, so it is not comprehensive. Here are some fantastic resources and even some interactive guides to help you though:

	CSS-Tricks’s A Complete Guide to Flexbox: css-tricks.com/snippets/css/a-guide-to-flexbox

	CSS Tricks’s A Complete Guide to Grid: css-tricks.com/snippets/css/complete-guide-grid

	Grid by Example: gridbyexample.com

	Flexbox Froggy: flexboxfroggy.com

	Grid Garden: cssgridgarden.com

Using Flexbox

We start by setting the display property to the value flex, which will lay out the element and its children according to the CSS Flexible Box Layout Module, known by its close friends as Flexbox.

It essentially enables you to use a set of properties that also use the word flex in the parent and child elements.

All of these properties have default values, so you will see results as soon as you use the display property to enable Flexbox. Let’s say you have a set of paragraphs inside a div container (FIGURE 16.5).

[image: The screenshot displays six sets of paragraphs within a container. The paragraphs are displayed one below the other and occupy the entire page.]

Figure 16.5 Paragraphs pre-Flexbox

Tip

Flexbox commonly refers to the feature in CSS. There is no property called “flexbox.”

To enable Flexbox on an element:

	Type the element or selector you want to target. In this case, it’s div {.

	On the next line, type display: flex;.

	On the next line, type } to close the style declaration.

This gives you FIGURE 16.6 (some styling has been added so that you can better see the effects).

[image: The screenshot displays the paragraphs with the applied flexbox. Here, the six sets of paragraphs within the container are arranged side-by-side in six unequal columns. Each row contains a part of all six paragraphs with no proper differentiation and space.]

Figure 16.6 Paragraphs with Flexbox applied

You might notice that the paragraphs are not equal width and that they’re very cramped, with all six on the same line/row.

That’s because display: flex takes all the child elements and converts them into columns of content. In fact, they don’t even need to be the same type of element. Here’s another example, with more than just paragraph elements (FIGURE 16.7).

[image: A screenshot shows the flexbox applied to all children.]

Figure 16.7 Flexbox applied to all children

The screenshot of the code for applying a flexbox to all children is given on the left. The code defines the header, paragraph, and the aside content within the appropriate tags. The "display: flex" keyword is added to the code. The screenshot on the right shows the resulting content on the screen. The headed "Welcome" is displayed in the left-most column. The paragraph is displayed to the right of it, and slightly above it. The aside text is displayed in the top right corner, which is to the right, and above the paragraph.

Luckily, this doesn’t extend to all descendants, just children. So without much fuss, you can get a pretty good two- or three-column layout working.

How width works in Flexbox

By default, display: flex takes all child elements and evenly distributes them into columns. But there are a few ways to define column widths, which Flexbox will take into account.

The first is simply by defining the width property. Flexbox will respect a defined width (meaning it will use the defined width instead of overriding it). Because Flexbox lends itself well to multiple screen sizes (meaning the overall width of your container will change), this book uses percentages. But you can use any unit you want.

Later in the chapter, you will learn about an even better way to define the width of child containers, called flex-basis, so keep an eye out for that!

In the next task, the goal is to take the provided markup and make a two-column layout where the <article> element is 70 percent of the width of the <main> container, with the <aside> occupying the other 30 percent.

To create a two-column layout with Flexbox:

Here is the starting markup:

<main>

 <article>

 ...

 </article>

 <aside>

 ...

 </aside>

</main>

	In your style sheet, target the element you want to use Flexbox on. In this case, type main {.

	On a new line, type display: flex;.

	On a new line, type } to close the style declaration.

	Target the children of the element you’re using Flexbox on. Type main article {.

	On a new line, type width: 68%;.

Since the width property doesn’t take into account padding, you need to account for it so you don’t break the main container with overflowing elements. Because of that, subtract 2 percent from the overall 70 percent width you want the <article> element to take up.

	On a new line, type padding: 2%;.

	On a new line, type }.

	Now target the other child element. On a new line, type main aside {.

Just as with <article>, to prevent the content from overflowing the container, subtract the padding from the width of the element.

	On a new line, type width: 28%;.

	On a new line, type padding: 2%;.

	On a new line, type }.

This gives you a two-column layout that stacks properly (FIGURE 16.8).

[image: A screenshot for a two-column layout with flex is shown.]

Figure 16.8 A two-column layout with flex

The screenshot displays a set of paragraphs within the container in two-columns in which the left column occupies 72 percent of the page width and the right column occupies the remaining 28 percent. Three paragraphs are displayed on the left column and one paragraph with blank space below is displayed on the right column. All these paragraphs are left-aligned.

Wrapping elements

If you want child elements (also known as flex items) to naturally move to a new row so they maintain their defined widths instead of being forced onto one line, use the flex-wrap property. It has three values:

	nowrap is the default value. It forces all flex items onto one line. If no widths for flex items are defined, each item will take up a width equal to that of its parent. If widths are defined, nowrap may cause overflow.

	wrap breaks the flex items up into multiple lines.

	wrap-reverse behaves like wrap but reverses the order of the flex items.

Here’s a simple example of the syntax:

main {

 display: flex;

 flex-wrap: wrap;

}

With this property, you will also need to apply a width (or max-width) to the child elements. That’s because if they are block elements, they’ll naturally take up the full width of the parent container.

To create a three-column layout with flex-wrap:

The markup is six <p> tags inside a <main> element:

<main>

 <p>...</p>

 <p>...</p>

 <p>...</p>

 <p>...</p>

 <p>...</p>

 <p>...</p>

</main>

[image: Video play icon.] VIDEO 16.2
Using flex-item Properties

Flexbox comes with a set of properties to apply to items. In this video, you’ll learn how to use them, instead of width, to create the two-column layout.

	In your style sheet, type main {.

	On a new line, type display: flex;.

	On a new line, type flex-wrap: wrap;.

	On a new line, type }.

	On a new line, type main p {.

	On a new line, type width: 30%;.

	On a new line, type padding: 1.5%;.

This is so that the total left/right padding is 3 percent, giving the total column width 33 percent. This divides the <main> element neatly into three equal columns.

	Type }.

This gives you even columns split across two rows (FIGURE 16.9).

[image: A screenshot for the three-column layout by using flex-wrap is shown. The screenshot displays six sets of paragraphs within the container in three columns and two rows. The paragraphs are of different lengths but the columns are of equal width.]

Figure 16.9 Using flex-wrap to make a three-column layout

Tip

When you create columns using the float property, you need to use the clear property to make sure elements line up properly under the floated area. Note that you don’t need to use clear on any of the elements that use Flexbox. The Flexbox properties are designed to create columns and position multiple pieces of content.

You can also set a more dynamic width that will take other parameters (like margins and spacing) into account by using the flex-basis property, which allows you to set the basic size of the flex item. It accepts any unit that width accepts (px, em, %, etc.).

The flex-basis property also accepts a number of keywords, but most don’t have browser support. To see a list of them and how they work, view this page in Firefox: developer.mozilla.org/en-US/docs/Web/CSS/flex-basis.

Aligning elements

There are even more clever ways you can use Flexbox properties to align and space columns without the need to do mental math to figure out the amount of padding needed. One way is for horizontal alignment, and one is for vertical.

In the last example, you used the padding property to get evenly spaced columns. But there is a better way: the justify-content property. Before jumping into that, though, there’s another property you should know about: flex-direction.

The flex-direction property tells the browser how to align the items. It has four values:

	row (the default) displays items left to right.

	row-reverse displays items right to left.

	column displays items vertically, top to bottom.

	column-reverse displays items vertically, bottom to top.

Tip

If the browser is set to display text from right to left (as required by some languages, such as Hebrew and Arabic), HTML elements flow onto the page in the same direction. Using either row or row-reverse with flex-direction will reverse the flow. You can also set the direction with the dir attribute in HTML or the direction property in CSS.

To convert a row of items to a column:

	In your style sheet, type main {.

	Type display: flex;.

	Type flex-direction: column;.

	Type }.

This gives you a single, contained column of content (FIGURE 16.10). To better demonstrate how the property works, I applied a 45 percent width to the child elements.

[image: An example of using the flex-direction property is shown. The screenshot displays four paragraphs aligned one below the other from top to bottom in a single contained column.]

Figure 16.10 flex-direction in action

[image: Video play icon.] VIDEO 16.3
Using flex-basis, flex-flow, and justify-content

Flexbox allows you to easily do some clever things with your columns. In this video, you’ll see three helpful properties in action.

Tip

You can use flex-flow as shorthand for the flex-direction and flex-wrap properties. You would write the rule like this: flex-flow: [flex-direction-value] [flex-wrap-value].

With the justify-content property, you are able to distribute the content evenly or to one side. The property has several values, some of which are listed below, and you can see them demonstrated in Video 16.3. The values distribute the content according to the flow established by flex-direction:

	flex-start (the default): Items are placed at the beginning of the container (similar to left alignment).

	flex-end: Items are placed at the end of the container (similar to right alignment).

	center: Items are centered within the parent.

	space-between: Items are evenly distributed within the parent, with no space between the items and the edge of the parent container.

	space-around: Items are evenly distributed within the parent, with equal space between them (but not evenly spaced between the edges).

	space-evenly: Items are distributed within the parent, with equal space between them and the edges.

To create evenly spaced columns without padding:

	In your style sheet, type main {.

	Type display: flex;.

	Type justify-content: space-evenly;.

	Type flex-wrap: wrap;.

	Type }.

	Type main p {.

	Type flex-basis: 30%;.

We’re using flex-basis here instead of width because it’s a little smarter. It can control width or height, based on flex-direction.

	Type }.

This gives you the same results seen in Figure 16.9, without the need for the additional padding declaration.

flex-grow, flex-shrink, and flex

flex-basis is often used with flex, which is a shorthand property for flex-grow, flex-shrink, and flex-basis. These are applied to the flex items.

flex-grow is how much each item should grow relative to the remaining space in the parent container, if necessary, and is represented as a single unit. So flex-grow: 2 says, “This item should take up twice as much of the remaining space as the other items if it needs to grow.”

Conversely, flex-shrink is how much each item should shrink relative to the space in the parent container. So flex-shrink: 2 says, “This item should take up half as much space as the other items if it needs to shrink.”

These are combined into flex, which is the recommended property for setting flex-item sizes. Taking the example in the previous task, we might instead write:

main {

 flex: 1 1 30%;

}

where the values represent flex-grow, flex-shrink, and flex-basis, respectively.

However, you could write the rule by omitting flex-shrink:

main {

 flex: 1 30%;

}

Using flex allows the browser to intelligently determine the other values and is smart enough to know how to use the values provided.

Vertical alignment

You can use Flexbox to align elements vertically. While you can use vertical-align in specific instances, which you saw in Chapter 13, you may not always get the results you expect. The align-items property improves upon vertical-align.

For flex items, use the align-items property, which can have the following values:

	stretch (the default) fills the full height of the container with the content.

	flex-start starts content at the top of the container.

	flex-end starts the content at the bottom of the container.

	center centers the content vertically in the container.

	baseline aligns items on the “baseline” of the content—where the text sits.

The align-items property accepts many more values, which are listed and described at http://developer.mozilla.org/en-US/docs/Web/CSS/align-items#Syntax.

You can see these values in action in Video 16.4.

[image: Video play icon.] VIDEO 16.4
The align-items Property in Action

Much as with justify-content, it’s better to see the align-items property in action. In this video, you’ll see the effects of each value on real content.

To create a set of bottom-aligned columns:

	In your style sheet, type main {.

	Type display: flex;.

	Type align-items: flex-end;.

	}.

Your result will look like FIGURE 16.11. I applied additional styles to the children to highlight the changes.

[image: A bottom-aligned column using a flexbox is shown. The screenshot shows three paragraphs displayed in three columns. The content is bottom aligned. The short paragraph in the first column starts in the middle and ends at the bottom of the container, leaving space at the top.]

Figure 16.11 Bottom-aligned columns using Flexbox

These properties and examples will give you a great start to using Flexbox. Check out the sidebar “Resources Galore!” to learn more and go even deeper.

But now it’s time to look at a way to do layouts that’s even more flexible: CSS Grid.

Using CSS Grid Layout

CSS Grid Layout (or Grid, as it’s more commonly known) also requires the use of the display property, but you’ll need to use a second property: grid-template-columns. This tells the browser how many columns to create and how wide they should be. If you want three equal-width columns, the code looks like this:

Click here to view code image

main {

 display: grid;

 grid-template-columns: 30% 30% 30%;

}

That results in FIGURE 16.12.

[image: The screenshot shows a set of six paragraphs within grids, arranged in two rows and three columns. The paragraphs within each grid are left aligned with the space below the paragraphs left blank.]

Figure 16.12 Paragraphs with Grid applied

You can also space them out a bit using grid-gap, which works similarly to padding, except the two values are for row and column spacing, respectively:

Click here to view code image

main {

 display: grid;

 grid-template-columns: 30% 30% 30%;

 grid-gap: 10px 20px;

}

If there’s one value (grid-gap: 15px), it’s applied to both rows and columns.

Tip

You can use the grid-template-rows property to set up rows in your Grid layout, similar to the way you use grid-template-columns to create columns.

Tip

An entire book could be written about Grid—and it has been: Rachel Andrew’s The New CSS Layout (abookapart.com/products/the-new-css-layout).

Tip

The same rules for children and descendants that apply for Flexbox apply for Grid.

To create a two-column layout with Grid:

Here is the starting markup:

<main>

 <article>

 ...

 </article>

 <aside>

 ...

 </aside>

</main>

	In your style sheet, type main {.

	Type display: grid;.

	Type grid-template-columns: 68% 28%;.

	Type grid-gap: 15px;.

	Type }.

This gives you a nice two-column layout (FIGURE 16.13).

[image: The screenshot shows the set of paragraphs in a two-column layout with an applied grid.]

Figure 16.13 A two-column layout with Grid

In the screenshot of the two-column layout, the first column occupies 68 percent of the container's width and the second column occupies 28 percent of the container. The first column contains three paragraphs. The second column contains one paragraph, where the remaining space is left blank.

Using the fr unit

You might have noticed in the last task that once again, some weird math was required to make sure everything fit properly in the container. But CSS Grid introduces a much, much better way to do it: the fr (fractional) unit. Here’s an example:

Click here to view code image

grid-template-columns: 1fr 2fr 1fr;

The fr unit is a single integer measurement that basically reads like a recipe: “This column should be 1 part of the leftover (or available) space, this column 2 parts, and the last column should be 1 part of the leftover space.”

The fantastic thing about the fr unit is that it takes into account all space already taken up, like padding and grid-gap. That means no mental math! Here’s the new ruleset for main, with a two-column layout:

Click here to view code image

main {

 display: grid;

 grid-template-columns: 2fr 1fr;

 grid-gap: 15px;

 padding: 15px;

}

This gives you a clean, evenly spaced set of columns (FIGURE 16.14).

[image: The screenshot shows the set of paragraphs in a two-column layout using fr units. The first column occupies 2 parts of the container's width and the second column occupies 1 part of the container.]

Figure 16.14 A two-column layout using fr units

Creating Grid templates

Another truly fantastic feature of Grid is the ability to define templates right in the CSS. You’ll get a quick explanation here, but for a more in-depth look, check out Video 16.5.

Here’s an example (in HTML markup and CSS statements) that you can work from. The HTML defines three principal elements in the class wrapper (CODE 16.1).

And now the CSS for these elements (CODE 16.2).

The first set of rules (for header, main, and aside) does something really important here: it tells the CSS how these elements will be referenced by name in the Grid template using a property called grid-area. This property allows you to reference the selector by a friendlier name in the property grid-template-areas.

In the rule for .wrapper, the differentiator from other code examples in this chapter is the use of grid-template-areas, which allows you to reference the names assigned by grid-area and define what columns and rows each grid-area should span. Note that grid-template-areas does not assume the grid-area names will match the HTML elements or selectors. Any non-numeric string can be used. For example, note that I assigned the name sidebar to the aside element.

Because this is a three-column grid (as we established with the grid-template-columns property), grid-template-areas shakes out like this:

	Each line is a row.

	Each string is a cell/column in the grid.

[image: Video play icon.] VIDEO 16.5
Grid Templates

In this video, you’ll get an in-depth look at defining and using Grid templates.

CODE 16.1 The HTML

<div class="wrapper">

 <header>

 ...

 </header>

 <main>

 ...

 </main>

 <aside>

 ...

 </aside>

</div>

CODE 16.2 The CSS

Click here to view code image

header {

 grid-area: header;

}

main {

 grid-area: main;

}

aside {

 grid-area: sidebar;

}

.wrapper {

 display: grid;

 grid-template-columns: 1fr 1fr 1fr;

 grid-template-areas:

 "header header header"

 "main main sidebar";

 grid-gap: 20px;

 width: 900px;

 margin: 0 auto;

}

[image: Video play icon.] VIDEO 16.6
Aligning Grid Elements

You can align elements in Grid very similarly to how you would do so in Flexbox. This video runs through those examples.

What this says is, “On the first row, the header grid area should take up all three columns. On the second row, main should take up the first two columns, with sidebar taking up the last.” The result is something like FIGURE 16.15.

[image: A screenshot shows a two-column layout using grid templates. The first column with a header, sub-header, and three paragraphs occupies most of the space. The remaining space is occupied by the second column, which contains one small paragraph. The content in each column is left-aligned.]

Figure 16.15 Our previous two-column example, now using Grid templates

As you can imagine—and as you’ll see in Video 16.5 and Chapter 17—this is a powerful way to define flexible layouts for the content.

Tip

If you want to leave a column or cell blank, use a period (.).

Browser Support

The next important consideration when using CSS is browser support. In Chapter 10, you learned about caniuse.com and the fact that some browsers are faster to implement new features than others. That’s even more evident with CSS than with HTML. There is greater disparity among browsers as to which features are implemented and how they are implemented.

In FIGURE 16.16 you can see that with the most recently available version of each major browser (excluding Internet Explorer 11, as development has shifted to Microsoft Edge), there’s a mixed bag of support, from not supported and partial support to fully supported.

[image: A screenshot of the caniuse table layout for browser support of some recent features in CSS is shown.]

Figure 16.16 The caniuse.com table showing browser support of recent CSS features

The caniuse website table shows elements for various features of CSS stacked horizontally. The browsers listed here are Edge 79, Firefox 72, Chrome 79, and Safari 13. The CSS features listed here include color adjust, line clamp, read-only and read-write selectors, text orientation, text stroke and text fill, user select, media queries, backdrop filter, cross fade function, image set, reflections, position: sticky, masks, appearance, and initial letter. The words yes, no, or partial in the cells depict if the browsers support these features. There are some cells with the text "WebKit" or "moz" at the top-right corner that indicates the vendor prefixes.

You might also notice the boxes with text in the upper-right corner of some cells. Those are called vendor prefixes.

Using Prefixing Tools

There are loads of tools to help you automatically add the prefixes you need, so you don’t need an encyclopedic knowledge of which prefixes to use and when:

	CSS-Tricks’s writeup: css-tricks.com/how-to-deal-with-vendor-prefixes/

	Autoprefixer: autoprefixer.github.io/

	Should I Prefix: shouldiprefix.com/

You can also use a CSS preprocessor like Sass, which you’ll learn about in Chapter 20.

[image: Video play icon.] VIDEO 16.7
Prefixes in Action

In this video you’ll see how prefixes affect different CSS properties, adding support for new and experimental features.

Vendor prefixes

Vendor (or browser) prefixes are vendor-specific CSS properties that can be used for experimental or beta features. Prefixes are used for a few reasons:

	They don’t use any specific property from the CSS spec. Instead, they use a “working copy” of some property. For example, there’s a property called transition, which might have a working, but not finalized, definition. Prefixes allow browsers to implement their version of transition based on the working spec.

	They allow web designers to use features of CSS that are implemented in some browsers without worrying they will break the website in browsers that don’t support that feature.

	Once the CSS property is fully implemented, the prefixed property is ignored and its presence doesn’t break the site. That means prefixes keep websites backward and forward compatible. Even so, you should clean up old prefixes when they’re not needed.

Tip

At the time of this writing, vendor prefixes are still common practice, but as noted on MDN’s web documentation, browsers are “working to stop using vendor prefixes for experimental features.” One reason is to prevent the use of highly experimental features on a production website. You can read more about it at developer.mozilla.org/en-US/docs/Glossary/Vendor_Prefix.

The major browser prefixes are as follows:

	-webkit- is used for Chrome, Safari, newer versions of Opera, and all iOS browsers.

	-moz- is used for Firefox.

	-o- is for older versions of Opera.

	-ms- is for Internet Explorer and Microsoft Edge.

Tip

Besides -ms-, Microsoft Edge supports a number of -webkit- prefixed features to improve compatibility.

When formatting your declarations, order them so that all the prefixes come before the non-prefixed property (due to the cascade!).

As an example, see the following code for a CSS transition. It creates a simple animation when any property for a changes (for example, if the background color changes on hover). You’ll learn about CSS animations in Chapter 18.

Click here to view code image

a {

 background: #880000;

 -webkit-transition: all 1s linear;

 -moz-transition: all 1s linear;

 -ms-transition: all 1s linear;

 -o-transition: all 1s linear;

 transition: all 1s linear;

}

You’ll learn more about testing later in the book, but as far as prefixes go, it’s best to see what support new features have and use them accordingly.

For the purposes of simplicity, examples in this book exclude prefixes.

Wrapping Up

There’s a lot to digest here, and you’ve only scratched the surface. However, this gives you a fantastic jump-off point for building incredible layouts in CSS.

The whole reason for this type of power is the topic covered in Chapter 17: responsive design. Being able to flexibly change how content is laid out without having to modify the markup allows you to create fantastic content no matter what screen your site is being viewed on.

17

Responsive Design and Media Queries

In This Chapter

Defining Media Queries

Responsive Layouts

Making a Full-width Layout Responsive

Not Just for Screen Widths

Wrapping Up

In today’s world, websites can be viewed on computers, tablets, phones, watches, glasses, or even kitchen appliances. It’s impossible to design for every single scenario, and that’s where responsive web design (RWD) comes in. RWD ensures that your website looks good no matter what device it’s viewed on.

This is achieved through media queries—we can write CSS that essentially asks the browser questions and then presents styles based on the answers.

Defining Media Queries

Unlike most of the CSS declarations you’ve seen so far, media queries aren’t just sets of properties and values. They are containers for other rulesets. Those rulesets are then implemented based on the results of the media query. All media queries are formatted like this:

Click here to view code image

@media [media type] and ([media features]) {

 [Rulesets go here]

}

As you’ll see later, there are lots of different types and features to check for. But for now, here’s a common media query:

Click here to view code image

@media screen and (min-width: 600px) {

 main {

 display: flex;

 }

}

This says, “If the user is viewing this site on a screen whose viewport is at least 600px wide, display all <main> elements as flex.”

Throughout the book you’ve seen references to screen size, window width, and browser size. While each term refers to how wide an area your website renders in, the most succinct term is viewport, which refers to the exact area of the screen that is rendering your website.

Other media types include all, print (for printing a webpage), and speech (for use with screen readers).

Using breakpoints

A common term in RWD is breakpoint, the point at which your layout changes to accommodate the viewport. It allows you to make your layouts more useable based on the size of the device your users are viewing the site on.

For example, if you have a navigation menu that is 601px wide, it won’t look great on devices with a viewport of less than 601px. You can use a breakpoint to say, “Once the viewport is wider than this size, change the layout of the navigation menu.”

So if you select a media query for min-width: 600px, your breakpoint is 600px.

RWD Best Practices

There have been lots of discussions over the years as to the best practices for responsive web design. Should you use em or px? How should you organize your media queries? Should you start big and get smaller or vice versa?

Here is what I do in this book:

	Use px because there is less ambiguity about the actual width than with em and rem; px is more predictable (10px is always 10px), and that’s especially useful for learning.

	Organize style sheets based on media query, with the base CSS before the media queries.

	Take a mobile first approach.

Mobile first is the web design strategy that posits that you design for the smallest screen first and move up from there. Its main benefit is that it forces you to assess your content and design elements. It helps you include only what you need, and then hopefully you realize that’s all you need!

Choosing breakpoints is an important decision because it ensures your layout doesn’t, well, break. Many breakpoints focus around specific devices—usually iOS devices—but as the field of screen sizes increases, this is not a good approach.

Instead, choose your breakpoints based on the point at which your content starts to look bad.

If you’re starting mobile first, that means adding a breakpoint that takes effect when the page is on devices with larger screens. As the viewport expands past the breakpoint, it can switch to different layout settings, such as multicolumn layouts or layouts that are centered in the screen.

If you’re starting by designing your pages for large screens (a large tablet or desktop), when the page is viewed on a smaller device you select your breakpoint by resizing the browser window (and therefore the viewport) down until the content becomes unreadable.

Ultimately, you’ll probably have three major breakpoints (where there’s a major shift in content) and three to four minor breakpoints (with smaller fixes for specific content). But that’s a guide, and it’s completely up to you. Do what works best for your design.

Tip

Since this book works with relatively basic layouts, it covers two or three total breakpoints.

[image: Video play icon.] VIDEO 17.1
Choosing Breakpoints

In this video, you’ll see how to choose breakpoints by resizing the browser window until a site starts to look bad.

Responsive Layouts

So how do you make responsive layouts? Where do you start, and how do you structure your code? I recommend setting all the base styles above any media queries (as in, write them down in your style sheet first) and starting with the smallest layout. Media queries should modify your website as the viewport gets bigger. Here’s a simple example to start.

To change the background color at 600px:

	In your style sheet, type body to establish the default values for the page.

	Type { to begin the rule.

	Type background: followed by the hex code for the starting background color. For this example use #FF0000;.

	Type color: followed by the hex code for the text color. In this case, use #FFFFFF;.

	Type } to close the rule.

	Type @media to begin the media query.

	Type the name of the media type you want to target. Because you want to implement a different style rule when the user’s browser window changes, use screen.

	Type and.

	Type the name and value (in parentheses) of the media feature that should trigger a change in the background color. This value is your breakpoint for the page, and you want the break to occur when the browser window is 600px or wider, so use (min-width: 600px) {.

	Type the element you want this rule to affect. In this case, body {.

	Type the attribute and value that you want to change at the breakpoint. In this example, use background: #0000FF;.

	Type }.

	Type } to close the media query.

Now resize the browser window. When it is below 600px wide, the background is red (FIGURE 17.1). When it’s 600px or wider, the background is blue (FIGURE 17.2).

[image: The screenshot shows a page in the browser window having a width lesser than 600 pixels. The page is elongated vertically and the background color is red. The font color is a lighter shade of brown with the caption in white font.]

Figure 17.1 The page when the browser window is less than 600px wide

[image: The screenshot shows a page in the browser window having a width of 600 pixels or more. The page seems to be horizontally elongated and the background color is blue. The font color is white for both the header and the content.]

Figure 17.2 The page when the browser window is 600px or wider

Note that the font color was set outside the media query. The goal is to avoid repetition in your code that might bloat your style sheet. Any styles set inside media queries will apply only when the media query is true. So if you have multiple media queries but don’t want the color to remain the same, you’d have to set it in every media query.

This is another benefit of the mobile first approach. You will likely start at default displays for smaller screens and then introduce changes as the page is displayed in larger viewports, allowing you to set as many default styles as possible before you start making changes.

For example, here is a simple CSS Grid layout that shows the pitfalls encountered when defining the bigger screen first (CODE 17.1). It tells divs to display their children in columns as long as the viewport is wider than 599px. At 599px or smaller, it display divs as a block.

CODE 17.1 Styles for a CSS Grid layout, designing for larger screens first

Click here to view code image

div {

 display: grid;

 grid-template-columns: 1fr 1fr 1fr;

 grid-gap: 15px;

 padding: 15px;

}

@media screen and (max-width: 599px) {

 div {

 display: block;

 padding: 0;

 }

}

CODE 17.2 Much more succinct Grid code, designing for smaller screens first

Click here to view code image

@media screen and (min-width: 600px) {

 div {

 display: grid;

 grid-template-columns: 1fr 1fr 1fr;

 grid-gap: 15px;

 padding: 15px;

 }

}

In the media query, you’re actually resetting the div back to its default display mode.

You can avoid the dangers of designing for the large screen first by treating the larger screen as the special case, and allowing the smaller screen to use the browser’s default settings.

And now, we’ll define media queries used in designing for small screens first (CODE 17.2). You don’t have to reset div to its original state because it maintains that state (display: block) until you change it for bigger viewports.

This is a seemingly trivial example, but in the mobile first layout, it wasn’t necessary to define any special styles, because the browser defaults were adequate. The desktop-first layout required some resetting of styles. You can imagine that using multiple breakpoints, or more varied styles and layouts, will compound the cases in which you find yourself redefining styles.

Tip

In a desktop-first layout, notice that max-width is 599px versus a 600px min-width. You might run into issues like that—where you have an “off by one pixel” declaration—if you want to get your designs pixel-perfect. If you want the design to change at 600px, min-width makes that a little clearer, since 600px is in the actual definition.

As you create your layouts, think about how to reduce the number of styles you override and how to make your style sheets easier to manage.

Making a Full-width Layout Responsive

So what goes into making a fully responsive layout? Here, you’ll build it in sections. CODE 17.3 shows the HTML markup you’ll work with. CODE 17.4 shows the initial CSS styles, in a style.css file. Both are available at github.com/jcasabona/html-css-vqs/Ch17/.

CODE 17.3 The HTML markup for the rest of this chapter

Click here to view code image

<div class="wrapper">

 <header>

 <h1>A Case of Identity</h1>

 <p class="byline">by Sir Arthur Conan Doyle</p>

 </header>

 <main>

 <p> “My dear fellow,” said Sherlock Holmes as we sat on either side of the fire in his

 →lodgings at Baker Street, “life is infinitely stranger than anything which the

 →mind of man could invent. We would not dare to conceive the things which are really

 →mere commonplaces of existence. If we could fly out of that window hand in hand,

 →hover over this great city, gently remove the roofs, and peep in at the queer things

 →which are going on, the strange coincidences, the plannings, the cross-purposes,

 →the wonderful chains of events, working through generations, and leading to the most

 →outré results, it would make all fiction with its conventionalities and foreseen

 →conclusions most stale and unprofitable.”</p>

 </main>

 <aside>

 This is one of 56 short stories written about Sherlock Holmes by Sir Arthur Conan

 →Doyle. It was published in 1891.

 </aside>

 <footer>

 <p>The <i>Sherlock Holmes</i> series is in the public domain.</p>

 </footer>

</div>

CODE 17.4 The starting CSS (or base styles) for the markup shown in Code 17.3

Click here to view code image

@import url('https://fonts.googleapis.com/css?family=Playfair+Display:400,400i,500,500i,600,

→600i,700,700i,800,800i,900,900i&display=swap');

body {

 font-family: 'Playfair Display', serif;

 background-color:#fcf6e7;

 margin: 0;

 padding: 0;

}

header,

footer {

 background: #282009;

 color: #FFFFFF;

 padding: 30px;

 text-align: center;

}

h1 {

 font-weight: 900;

}

main,

aside {

 margin: 30px;

}

aside {

 background: #272727;

 color: #FFFFFF;

 padding: 30px;

}

.byline {

 font-family: Futura, sans-serif;

 font-style: italic;

}

p {

 font-size: 18px;

 margin: 30px 0;

}

FIGURE 17.3 shows the smallest screen and FIGURE 17.4 the largest screen.

[image: A screenshot shows a browser window in a mobile layout.]

Figure 17.3 The mobile layout

In the screenshot, all the contents are aligned vertically in a single column with the browser's default styles. There is an aside placed below the body content. The background color of the header, footer, and the aside is black whereas the font color of the content within it is white. The background color of the body is a white shade whereas the font color of the body content is black.

[image: A screenshot shows a browser window in a desktop layout.]

Figure 17.4 The desktop layout

In the screenshot, all the contents are aligned horizontally in a single row with the browser's default styles. There is an aside placed to the right of the body content. The background color of the header, footer, and the aside is black whereas the font color of the content within it is white. The background color of the body is a white shade whereas the font color of the body content is black.

Tip

To keep the source code clean, we define only the essential styles.

Starting small: mobile first styles

Most of the styles in Code 17.4 are for general look and feel and are not related to layout. On the smallest screens, everything will be a single column, so the browser’s default styles for the elements will work. The changes you see for margin, padding, fonts, and colors were just to add some personality to the page and make the layout changes more obvious (like giving the aside a different background color from the body).

So now it’s time to answer the question of when to start changing the layout—at what point can you begin to space the content out a bit more?

As you try to figure this out, the best thing to do is resize your browser. Since this layout lends itself very well to a one-column format, not a whole lot needs to be done in terms of adjusting it. Complicated layouts require more complicated media queries.

However, there are a few things that can be done to take advantage of more screen real estate.

The mid-sized screen layout

One way you can take advantage of more screen space when your page is being viewed on bigger devices is to spread out the header text a bit. One way to do this is to set up a grid on the <header> element and use columns to space the child elements.

Tip

The examples in this chapter use the styles shown in CODE 17.4, which you should add to your style.css file, as the starting point. Continue to add the new styles presented in each task to the end of the same file.

[image: Video play icon.] VIDEO 17.2
Making a Full Three-Column Layout Responsive

Though this book preaches mobile first, you may be in a situation where you have a full site design and need to make it mobile friendly. This video shows you how to do just that. Then you’ll see what it looks like as the browser resizes.

To create a two-column layout at a breakpoint:

	Start by defining your media query, based on the breakpoint at which you’ve chosen to change your layout. Type @media screen and (min-width: 768px) {.

Add this code to the end of your style sheet (assuming you’re using the code from Code 17.4).

	Target the element you’d like to change at your determined breakpoint. Type header {.

	Add the styles for this element at the specific breakpoint, one per line. Type display: grid;.

	Type grid-template-columns: 2fr 1fr;.

	Type grid-gap: 15px;.

	Type justify-items: center;.

	Close the ruleset for your element by typing }.

	Close the media query by typing }.

Once you extend your browser window to a width of at least 768px, your header will move the byline out from under the heading and to its right (FIGURE 17.5).

[image: A screenshot shows a header with the viewport having a width greater than 768 pixels. The header seems to be horizontally elongated. The background color of the header is black while the fonts are in white.]

Figure 17.5 The header once the viewport is widened beyond 768px

This is a good first step, but the real fun starts at the next breakpoint: 1000px.

The large-screen layout

On a large screen, you can really take advantage of the screen real estate. Using a multicolumn layout for large screens is a great way to show more information to the user, now that they have the room for it. A wrapper div comes in handy here. This div “wraps” the elements—header, main, aside, and footer—so that they are all siblings. That means you can apply display: grid to the .wrapper selector and easily control how each child element (or grid item) is displayed.

Since the large screen layout builds upon all the styles added to style.css before it, add the following styles to the end of style.css.

To set up a grid layout at a specific breakpoint:

	You want this layout to go into effect at the largest breakpoint you determined works best for your layout. Type @media screen and (min-width: 1000px) {.

	You will also need to create the grid-areas. Based on Code 17.3, type header { grid-area: header; }.

Because of the cascade, this will essentially be added on to previous rulesets targeting header.

	On a new line, type main { grid-area: main; }.

	On a new line, type aside { grid-area: sidebar; }.

	On a new line, type footer { grid-area: footer; }.

Be sure to leave off the } that would close the media query. We’re not done with it yet!

With those defined, it’s time to convert the wrapper div into a grid with a template layout.

To convert wrapper to a grid layout:

	It’s time to target your entire layout at this breakpoint. Type .wrapper {.

	A grid lends itself well to controlling each element of the layout. On a new line, type display: grid;.

	On a new line, type grid-gap: 15px;.

	Determine how many columns you want in your layout. For this example, choose five to make it clear we won’t have a main section and aside that are the same widths. On a new line, type grid-template-columns: 1fr 1fr 1fr 1fr 1fr;.

	Type grid-template-areas:.

	Type "header header header header header".

Remember from the mid-sized layout task, that header is also using grid. This controls the width of the header element, which we want to extend across the entire page.

	Type "main main main main sidebar".

	Type "footer footer footer footer footer";.

	Close the .wrapper ruleset by typing }.

	Close the media query. On a new line, type }.

Now the sidebar shows up to the right of the main content, just like in Figure 17.4.

Now for the fun part: resize the browser window and watch your layout change!

There are a few more stylistic changes you can make, like increasing the heading font size and tightening up some styles, but you’ve just taken your first layout and made it responsive.

The rest of this chapter explores other functions of CSS media queries.

[image: Video play icon.] VIDEO 17.3
Creating a Responsive Nav Menu

A common pattern for responsive design is replacing the menu items with a single label or icon that, when clicked or tapped, reveals the menu. In this video, you’ll learn how to do that.

Not Just for Screen Widths

The only media type you’ve seen in action so far is screen, and the only feature you’ve seen is related to width. While these are the most common implementations for media queries, they aren’t the only ones. For starters, there’s another common media type to look at: print.

Creating a print style sheet

Because computers print websites more or less exactly as they appear in the browser window, such printouts often aren’t very helpful to those who want readable text (FIGURE 17.6).

[image: An example for printing a webpage is shown.]

Figure 17.6 Trying to print a webpage

The browser window shows the webpage with the title Joe Casabona, which is the page that is trying to print. It is a single page with two parts, the top part displays the photograph of Joe Casabona with a question, how can I help tell you a story, followed by its answer. The bottom part of the print displays a two-line instruction followed by a voice recorder icon for podcast consulting at the center. Launch you podcast button is displayed at the bottom of the page.

Luckily, you can add a media query to apply print styles to the page. Here’s how to do it, starting with the markup from the previous section.

To add printer styles to a website:

	At the bottom of your style sheet, type @media print { to target printers.

	Type the elements you want to include in the printout. For this example, you want the whole page, so include body, header, aside, footer {.

	On a new line, type background: #FFFFFF;.

This step and the next set the background color and text to white and black, respectively, so the text is more easily readable when printed.

	On a new line, type color: #000000;.

	On a new line, type }.

	On a new line, type .wrapper {.

This is the crux of the print styles.

	On a new line, type display: block;.

Simply setting the display to block makes the browser ignore all grid-related properties (like grid-template-columns) and moves the content into one column.

	On a new line, type width: 75%;.

This is a stylistic decision on my part, but it gives the reader plenty of margin on either side of the content.

	On a new line, type margin: 0 auto;.

	On a new line, type } to close the .wrapper ruleset.

	On a new line, type } to close the media query.

This creates a single column of black text that looks great when printed (FIGURE 17.7).

[image: A sample webpage that is printed by implementing printer styles is shown.]

Figure 17.7 The printed page

The screenshot of a printed page with a single column of black text is shown. The content pane displays the printed text of the book titled "A Case of Identity." The task pane on the right displays the details of the print properties such as the destination, pages, copies, layout, and more environments.

On Hiding Elements

One all-too-common practice in responsive design is just hiding elements that don’t “fit” on smaller screens. While the mobile first approach should help solve this, it’s still something to be mindful of. If you need to hide an element for small screens, you should question whether you need it at all.

One exception to this rule is print styles. If your goal is to make sure the main content is readable when printed, it might be a good idea to hide certain elements (like comments or images).

Aside from media types (all, print, screen, speech), you can also target specific media features.

Targeting specific media features

Tip

You can get a list of media features at developer.mozilla.org/en-US/docs/Web/CSS/@media. But keep in mind that specific devices might have their own implementation.

You might want to target a specific feature on touch devices, check if a device is in portrait or landscape, or much more. This is what the extended media features are for. A great example is checking to see whether a user has enabled dark mode.

To apply dark mode styles:

	At the bottom of your style sheet, type @media screen.

	To specify one or more media features, type and followed by the name of the media feature in parentheses. To check for dark mode, type (prefers-color-scheme: dark) {.

	Type the selectors you want the style to apply to; in this case, body, header, aside, footer {.

	To make sure the text harmonizes with the overall inky environment, reverse the usual black-on-white colors. Type background: #272727; to make the page a dark gray.

	Type color: #FFFFFF; to make the text white.

	Because it’s light text on a dark background, a bit more spacing will make the text easier to read. Type line-height: 2em;.

	Type }.

	Type one more }.

Now, when you visit the site on a device using dark mode, it will look like FIGURE 17.8.

[image: The browser window shows the webpage of a book titled "A Case of Identity," printed by implementing dark mode. The background is dark, and the text is white.]

Figure 17.8 Dark mode styles applied to a webpage

Experiment with more of these media features, as you can do checks for the following:

	Pointer (cursor) support (with any-pointer)

	Hover support (with any-hover)

	Retina displays (with resolution, min-resolution)

	Inverted colors (with prefers-color-scheme)

And much more. The possibilities for customizing a website’s experience are growing quickly!

[image: Video play icon.] VIDEO 17.4
Advanced Media Queries

The examples in this book only scratch the surface of what you can do with media queries. In this video, you learn how to write more advanced media queries by combining checks and using logical operators.

Wrapping Up

Media queries are essential to creating great user experiences no matter what device your site is being used on. From adjusting layout based on width to swapping out colors in dark mode, your styles are completely customizable based on the user’s preferences and their browser’s capabilities.

And now that you’re familiar with everything from the basics to layouts in CSS, it’s time to get a little more advanced and look at CSS animations.

18

CSS Transformations and Animations

In This Chapter

CSS Transitions

CSS Transformations

CSS Animations

Wrapping Up

It used to be that if you wanted to add a little extra flourish to your webpages, you’d need to use JavaScript or, if you go far back enough, Flash. The added flourish could be a simple transition or a little animation, but now CSS has the ability to apply transformations to properties as well as to create frame-by-frame animations.

While you won’t be making the next Toy Story in your browser, you will be able to easily create interactions that improve a user’s experience with your website. This chapter gives you a small taste of what’s possible!

CSS Transitions

CSS transitions are some of the simplest but most delightful effects you can apply to your elements. Normally, when you change the value of a CSS property, the change happens instantaneously. A CSS transition allows you to change those values over time, which adds nuance and visual cues to your user interface. They generally occur due to some user interaction, like a hover.

The main property here is transition, and it’s a shorthand property for transition-property, transition-duration, transition-timing-function, and transition-delay. In transition, they are replaced by these four values:

	property: The CSS property that you want to animate. It can be any CSS property that supports transitions—which is most but not all of them. See a full list at developer.mozilla.org/en-US/docs/Web/CSS/CSS_animated_properties.

	duration: The amount of time, in seconds, the transition should take.

	timing-function: The mathematical description of the rate at which the property changes, which can itself change over time. Common examples are ease (the default), linear, ease-in, ease-out, and ease-in-out. You can even make your own timing function with cubic-bezier.

	delay: The amount of time, in seconds, before the transition starts.

When you write the transition property, it accepts the four values in this order:

Click here to view code image

transition: [property] [duration] [timing-function] [delay]

Further, each option can have a value of 0 or 1, except property, which should have a value of none, all, or a specific CSS property. Listing just a property will assume default values for duration (0s), timing-function (ease), and delay (0s). And if you supply two numbers (in seconds), the timing-function defaults to ease.

Tip

Transitions can be applied in other ways, such as through adding a class in JavaScript.

[image: Video play icon.] VIDEO 18.1
Demo of Transition Functions

It’s easiest to show how these transitions work in a video. So here, you’ll see each as a 1.5-second transition applied to the width property.

CODE 18.1 The background color of this button will change when the user hovers their pointer over it.

Click here to view code image

<!--Here's the HTML for the button. -->

Click Here

/*Here follows the CSS that defines the appearance of the button.*/

a.button {

 background: #880000;

 border-radius: 40px;

 color: #ffffff;

 display: block;

 font-size: 1.5rem;

 max-width: 150px;

 padding: 15px;

 text-align: center;

 text-decoration: none;

}

/*And let's add a hover state to the button.*/

a.button:hover {

 background: #008800;

}

One common application of transitions is to change background colors. CODE 18.1 shows a button defined in CSS (FIGURE 18.1).

[image: Click Here button, which is the initial output of the code 18.1.]

Figure 18.1 button produced by Code 18.1 in its initial state.

In this example, when the user hovers their pointer over the button, only one thing changes: the background property changes from dark red to dark green. But it’s a sudden, simple change. Adding a transition can make that change smoother.

To add a background transition to an element with CSS:

	Using the sample CSS as a starting point, after text-decoration in the a.button ruleset, type transition:.

	Next to transition:, type background 1s ease-in;.

This says, “Add a 1-second ease-in transition to the background property.”

That’s it! Mouse over your button to watch a much smoother transition from dark red to dark green. As an added bonus, the browser reverses the timing function when you un-hover, so you get a nice transition both on hover and when you move off the element.

Tip

For a transition to work, the property you wish to target must be defined in both states, and those properties must have different values.

Tip

The transition in this example is purposefully a little longer than usual so you can see the effect in action. A more common duration is half a second.

As mentioned earlier, you can also use a delay value to introduce a pause before the transition. You do this by adding a fourth value to the transition property—a number in seconds. Here’s an image with a transition effect on hover (FIGURE 18.2):

[image: The browser shows an image of Joe Casabona with the title "How I Built It" before the transition effect on the hover state. The size of the image and the text appear smaller than the image after the transition.]

[image: The browser shows an image of Joe Casabona with the title "How I Built It" with a transition effect on the hover state. The size of the image and the text appear larger than the image before the transition.]

Figure 18.2 An image before and after the transition to the hover state is invoked

Click here to view code image

img {

 padding: 20px;

 width: 250px;

 transition: width 2s ease 0.5s

}

img:hover {

 width: 350px;

}

The last point we’ll make about transitions in this chapter is that you can use the keyword all to target all the properties in the style declaration.

To enlarge an input field on focus:

	In your style sheet, type input {.

	Type font-size: 1.5rem;.

	Type padding: 5px;.

	Type transition: all 1s ease-out;.

This transition applies the timing function ease-out (start fast and get slower) to all properties with different values upon state change, over the course of 1 second.

	}.

	Type input:focus {.

	Type font-size: 2rem;.

	Type padding: 10px;.

	Type }.

Your input field will now enlarge when the user clicks it, taps it, or activates it by pressing the Tab key.

[image: Video play icon.] VIDEO 18.2
Increasing the Size of an Input Field

In this video, you create an input field that increases in size when the cursor is focused on it.

CSS Transformations

Another way to add simple effects to your webpages is with CSS transformations. While commonly triggered by actions by the user—like hovering, clicking, or focusing on a form element—that’s not necessarily the case, as you’ll see later in this chapter.

Tip

This chapter talks a lot about 2D and 3D planes. As a refresher, the x axis is the horizontal axis, going left to right. The y axis is the vertical axis, going down to up. The z axis is the depth axis, going front to back (where back is away from the viewer).

[image: Video play icon.] VIDEO 18.3
Transformation Examples

In this video, you’ll see the visual effect created by each transformation.

The transform property lets you transform an HTML element by rotating it, scaling it, skewing it, or repositioning it in the horizontal and/or vertical directions. It’s even possible to combine several transformations to achieve interesting visual effects:

	scale(x,y) changes the size of the element. It affects font-size, height, width, and padding. Use scaleX() and scaleY() to scale only a single axis. Units are a multiplier (0.5 to shrink by half, 2 to double the size, etc.).

	skew(x,y) tilts an entire container based on the values. Use skewX() and skewY() to skew only a single axis. Units are degrees.

	translate() moves a container from side to side, up and down, or both. Generally combined with the animate property. Units are standard measurement units you’ve seen throughout the book (px, em, etc.), as well as other advanced units that can represent numbers to the browser.

	rotate() rotates the element clockwise from its current position. Units are degrees.

Tip

There are two more functions—matrix() and perspective()—but they are a little more complicated to implement. To learn more, read this article: css-tricks.com/almanac/properties/t/transform/.

Tip

It’s easy to get carried away implementing transformations because they can do cool things to your elements, but unless you’re creating advanced animations, use them sparingly so they stand out.

Writing transformations

The syntax for writing a transformation is a little simpler than for transitions, but transformations can be used for more advanced animations, as you’ll see later. Here’s a basic declaration that incorporates a transformation:

Click here to view code image

div.diamond {

 background: #FF0000;

 width: 200px;

 height: 200px;

 margin: 50px;

 transform: rotate(45deg);

}

The above code results in a rotated 200 by 200 square, which looks like a diamond (FIGURE 18.3). Note that this is a static transformation, which can serve as a design element. Other transformations, like scale(), are better served when combined with a user event or an animation.

[image: The output of CSS rotate transformation shows a 200 by 200 square that is rotated such that it looks like a diamond.]

Figure 18.3 A rotate transformation applied to a square

Tip

You’ll notice that the transform property takes elements out of their original flow. That’s something to keep in mind as you move forward.

To skew a div slightly on hover:

	In your style sheet, type div {.

	Type background: #FF0000;.

	Type width: 200px;.

	Type height: 200px;.

	Type transition: transform 1s linear;.

This is so the element skews smoothly with a well-timed animation, instead of making the element jump to the skewed state.

	Type }.

	Type div:hover {.

	Type transform: skewX(-20deg);.

When you use degrees as the unit, you can also use negative values.

	Type }.

Now when the user’s mouse hovers over the square, it skews to the right (FIGURE 18.4).

[image: The output of skew transformation shows a square that is skewed to the right on hover mode, such that the right-skewed square looks like a parallelogram.]

Figure 18.4 A square with a skewX() transformation applied on hover

[image: Video play icon.] VIDEO 18.4
Creating an Image Gallery with Mouseover Effects

In this video, you’ll learn how to combine transformations and make an attention-grabbing effect when a user hovers over an image.

3D Transformations

The following functions have 3D versions:

	scale3d(x,y,z)

	rotate3d(x,y,z)

	translate3d(x,y,z)

	matrix3d()

They each apply their transformations to the z axis as well, and this is where the perspective() function comes in handy—it sets the perspective for all child elements to make sure 3D animations are all based on the same viewpoint.

While this book doesn’t get into the nitty-gritty of 3D transformations, they are good to know about if you want to take CSS animations to the next level or do some academically cool stuff.

CSS Animations

The final and most robust way to add flair to your webpages is CSS animations. These are done using two properties: animation and @keyframes.

@keyframes is a way for you to timestamp the steps of your animations. This essentially puts your animations on a timeline that you can change. So you can say, “At start (0% of the timeline), the container should do this. At 50%, it should change to this, and at end (100%) it should be this.” You reference the timeline (or keyframes) by assigning a name to them. See CODE 18.2 for a simple example (FIGURE 18.5).

[image: Two states of the switch animation are shown.]

Figure 18.5 The two states of the switch animation

The initial state of switch animation shows a square with a red background. The final state of switch animation shows a square with a blue background, which changes its color from red to blue on a loop.

CODE 18.2 A div with an animation applied to it. The animation property references the name (switch) that is given to the @keyframes controlling the animation.

Click here to view code image

div {

 width: 200px;

 height: 200px;

 background: red;

 animation: switch 4s infinite;

}

@keyframes switch {

 0% {

 background: red;

 }

 50% {

 background: blue;

 }

 100% {

 background: red;

 }

}

Tip

If two steps have the same value, use comma-separation as a form of shorthand: @keyframes switch { 0%, 100% { background: red; } }.

This code applies an animation that switches the background color from red to blue on a loop. animation is a shorthand property that lets you set the value of multiple properties. Here’s what’s used in Code 18.2:

	animation-name: This matches the @keyframes name.

	animation-duration: How long the animation should take in seconds.

	animation-iteration-count: How many times the animation should run. The keyword infinite is a placeholder for no limit.

There are other animation properties that can be represented in the animation shorthand property. Here’s the full list in the order they’re expected:

	animation-name

	animation-duration

	animation-timing-function

	animation-delay

	animation-iteration-count

	animation-direction

	animation-fill-mode

	animation-play-state

Since this is an introduction to animations, this book doesn’t cover everything. If you’d like to learn more, check out this MDN article: developer.mozilla.org/en-US/docs/Web/CSS/animation.

[image: Video play icon.] VIDEO 18.5
Rainbow Animation

In this video, you expand on the switch animation and use keyframe stops to change the div to every color in the rainbow.

Tip

There are several other animation properties you can add as well, including delays and timing functions. Check out all the properties here: css-tricks.com/almanac/properties/a/animation/#article-header-id-0.

Combining animations

You can add more than one animation at once. To demonstrate, you’ll convert the switch square to a circle. border-radius is used for this task because the value you provide for the property lets you set how much you want to “round off” the corners, as a percentage. Setting it to 50 percent rounds them so much that the square looks like a circle.

To convert a square to a circle:

	In the 0% keyframe, below background: red;, type border-radius: 0%;.

	In the 50% keyframe, below background: blue;, type border-radius: 50%;.

	In the 100% keyframe, below background: red;, type border-radius: 0%;.

This creates a red square that transforms into a blue circle (FIGURE 18.6).

[image: The transformation of a red square to a blue circle is shown.]

Figure 18.6 Red square transforming to blue circle

The initial state of switch animation shows a square with a red background. The final state of combining animation shows a circle with a blue background, which changes its shape from a square to circle and color from red to blue on a loop.

Animations using the transform property

Using transform in animations is a great way to save performance and do neat things like actually moving objects. This is where the translate() function from earlier comes into play. Using the CSS code below as a starting point, you’ll make the ball that is generated by the following style declaration bounce up and down (FIGURE 18.7). In your HTML, add the following:

[image: The output of transform property in animation using CSS shows a black ball that will bounce in the next task.]

Figure 18.7 The ball that will bounce in the next task.

<p class="ball"></p>

And in your CSS, add the following:

p.ball {

 width: 50px;

 height: 50px;

 border-radius: 50%;

 background: #000000;

}

To bounce the ball:

	In p.ball, after background: #000000;, type animation: bounce 1s infinite alternate;.

bounce is the name we’re giving to the animation we’re about to define.

The infinite value means “Loop this animation and never stop it.”

The alternate value means “Execute the animation, and then play the animation in reverse.”

	Type animation-timing-function: linear;.

This timing function, linear, says that the item should animate at an even, consistent speed the whole time.

	Type } to close the p.ball declaration.

	Type @keyframes bounce {.

This is where we define our animation. Notice that the name, bounce, is also referenced in the animation property in step 1.

	Type 0% {.

On Performance

Adding too many animations to your pages can cause performance issues in the browser. That’s because they place heavy demands on the CPU (central processing unit), and they can potentially crash the browser.

There are a few animations you can use safely because the browser itself implements them, which means the GPU (graphics processing unit) can assist. They are the standard transform properties built into CSS with the addition of opacity:

	opacity

	translate

	rotate

	scale

To learn more, check out this fantastic article: www.html5rocks.com/en/tutorials/speed/high-performance-animations/.

	Type transform: translate(0px, 0px);.

We define no translation at 0 percent (or the first step of the animation) so that the ball returns to its starting state.

	Type }.

	Type 100% {.

This sets a keyframe at the very end of the animation (at 100 percent of the timeline).

	Type transform: translate(0px, 400px);.

Since the translate property moves the element along the x and y axes, this says, “Move the ball 400px along the y axis.” Since the starting point is 0px, the ball will move down 400px.

	Type }.

	Type }.

CODE 18.3 The bouncing ball CSS.

Click here to view code image

p.ball {

 width: 50px;

 height: 50px;

 border-radius: 50%;

 background: #000000;

 animation: bounce 1s infinite

 →alternate;

 animation-timing-function: linear;

}

@keyframes bounce {

 0% {

 transform: translate(0px,0px);

 }

 100% {

 transform: translate(0px, 400px);

 }

}

For a complete listing of the final CSS see CODE 18.3. To see the results (and expand upon them), check out Video 18.6 (FIGURE 18.8).

[image: The output of a bouncing ball designed using the transform and translate properties in CSS is shown. The bounce effect is represented by six vertically overlapped balls where the opacity of the balls change as the balls bounce from top to bottom.]

Figure 18.8 The ball starts at the top of the parent, bounces to the bottom, and then repeats.

[image: Video play icon.] VIDEO 18.6
Follow the Bouncing Ball

In this video, you expand on the bounce animation and make the ball bounce from one corner of the container to the other and then back.

Wrapping Up

What a chapter! Now you know how to add effects and animations to your elements. This will help you create more dynamic pages, and it allows for smoother, less jarring state changes to let the user know what’s happening on your page.

Of course, you’ve only scratched the surface. There’s a ton to know about CSS animations, and lots of fantastic examples out there. To go deep with CSS animations, check out this article on CSS-Tricks: css-tricks.com/almanac/properties/a/animation/.

And if you want to see what you can do, the “picked pens” on CodePen never disappoint: codepen.io/.

You may have noticed a lot of repetition of CSS properties (like font, color, and background) in this chapter and elsewhere. The next chapter shows you how to remove some of that repetition with CSS variables.

19

CSS Variables

In This Chapter

What Are Variables?

Simplifying Styles with Variables

Calculations with Variables

Wrapping Up

As you start to build more complex websites, your style sheets will also grow in complexity. Luckily, there are ways to manage complex CSS and get it under control.

In Chapter 20, you will be introduced to CSS preprocessors, which are essentially programming languages that are mostly CSS with added functionality. But if you’re not yet ready to dive into something like that, CSS natively supports variables, which will go a long way toward taming your CSS.

Tip

The official specification name for variables is custom properties: developer.mozilla.org/en-US/docs/Web/CSS/--*.

What Are Variables?

So far, as you’ve written CSS you’ve needed to manually type styles each time you want to use them. For example, let’s say you have an accent color on your website of #EB1DFE ([image: AccentColor: #EB1DFE]). You can apply that to buttons, borders, links, and so on. But for each instance, you’ll need to type #EB1DFE.

But what if you decide to change it to a different accent color? You’ll need to find all the references and manually change them. More so, if you want to change only some of them, a file-wide Find/Replace won’t work. But there’s a better way. You can use custom properties, which are often referred to as variables.

Variables act like placeholders; they are a way to store information in order to reference it later, and they are a part of every programming language. With variables, there are two components: the name and the value. When you define (or set) a variable, you assign it a value. Then you can use the variable name instead of the value.

In CSS, to reference a variable, you use the function var() and place the variable between parentheses. A function in this instance is a way to execute a piece of code that tells the browser, “Grab the value of the variable and use that.”

Tip

By convention, the names of variables use camel case. That means each word in the name except the first is capitalized, and there are no spaces between the words: thisIsCamelCase.

The beauty of variables is you only need to change the accent color value in one place, and it will update everywhere.

To make a CSS variable assignment:

	In your style sheet, at the top, type :root {.

This defines the scope of the variable (more on that later).

	Now it’s time to make the assignment. Type --accentColor: #EB1DFE;.

Every variable needs to start with a double hyphen (--). The name should describe what it’s representing.

The value can be any valid CSS value. In this case, it’s a hex representation of a color.

	Type }.

	On the next line, type a { to assign the style to links.

	Type color: var(--accentColor);.

	Type }.

This makes all your links a nice pink (FIGURE 19.1).

[image: A hyperlink "Look at Me!" with an underlined is shown. The link is in pink color.]

Figure 19.1 A link using the color assigned by a CSS variable

To see the full syntax, check out CODE 19.1.

CODE 19.1 The code that creates and uses the variable --accentColor

Click here to view code image

:root {

 --accentColor: #EB1DFE;

}

a {

 color: var(--accentColor);

}

[image: Video play icon.] VIDEO 19.1
Changing Multiple Elements by Changing a Single Variable

Using CodePen, I show you how a single variable change updates multiple elements on a page.

It may seem trivial here, but imagine you’ve used the color dozens of times through multiple style sheets. It can be a daunting task to remember where the instances are and then update all of them, especially if a simple find and replace won’t work—what if you want to keep some of the values but not all of them?

Since variables are native CSS, they work just like any other property or ruleset:

	They cascade, which means they can easily be overwritten.

	They can be manipulated by JavaScript (which is outside the scope of the book).

	They don’t require any additional tools to work.

Tip

You can also include a fallback value in the var() function. This means that if you try to use a variable that has no value assigned to it, a default value will be used. For example, if you write color: var(--primaryColor, #FF0000);, the color #FF0000 will be used if the --primaryColor variable is not valid.

Variable scope

When you talk about variables, you can’t ignore a discussion about scope. The scope of a variable determines the context in which it’s “visible,” or can be referenced. In the accent color task, you used the keyword :root, which means, “The scope of this variable is the entire document.” But you could have just as easily used div or p, making the scope only those elements. You can also change the scope by defining the same variable in a different ruleset (FIGURE 19.2).

[image: An example of changing the variable scope is represented. The output of two variables with different ruleset shows a pink hyperlink "Visit Google" and a green hyperlink "Learn More" with underlines.]

Figure 19.2 Changing the scope of a variable changes the styles.

To change the scope of a CSS variable:

Here is your HTML:

Click here to view code image

<main>

 Visit Google

</main>

<aside>

 →Learn More

</aside>

	In your style sheet, type :root {.

	Type --accentColor: #EB1DFE;.

	Type }.

	On a new line, type the name of the element whose property you want to change. In this case, use aside {.

	Type the name of the variable for the property you want to change. For this example, use --accentColor: #008800;.

	Type }.

	On a new line, type a {.

[image: Video play icon.] VIDEO 19.2
Changing the Scope of Variables

When you change the scope of a variable, you can more succinctly update your rulesets. Here’s a demo on CodePen.

	Type color: var(--accentColor);.

This single declaration is all that is needed. If the <a> tag is the descendant of an <aside> element, its --accentColor value will be #008800. Otherwise, it will be #EB1DFE.

	Type }.

You can think of variables as phone numbers, where the area code is the scope. Two people in the US can have the same phone number if they aren’t in the same area code (just ask anyone whose number is 867-5309, from the Tommy Tutone song “Jenny”).

If you don’t dial the area code, your local area code is assumed. If you dial the area code, you’re changing the scope of the phone number. Variables are the same way.

Spanning Multiple Files

It hasn’t been discussed much in this book, but you’re not limited to one CSS file per website. You can have multiple CSS files and use them to organize different aspects of your styles.

While there is much debate over what loads faster (one giant CSS file or several smaller CSS files), there is some benefit to using multiple CSS files, especially as it pertains to variables. You can keep all of your variables in a single file—say, variables.css—and load it before any other CSS file. You would list this as the first <link> reference in your HTML. The browser loads CSS files (and all files) in the order in which it encounters them.

Then you can cleanly define variables and their scopes and leave the actual rulesets to a separate CSS file (often named main.css or style.css).

Simplifying Styles with Variables

The ability to change the scope of CSS variables means you can write more succinct CSS. In the scope task, you saw that there were two variable definitions but only one ruleset for the <a> tag. This doesn’t just apply to element rulesets. You can change variables through media queries too.

This gives you the chance to define nearly all of your styles early in your CSS, without the need to create large sections of code dedicated to media queries. If you change only the variable values, and not entire styles, your media queries will be much shorter, and there’s less work for the browser to do, making your website more efficient.

To create a grid using variables and media queries:

Here’s the HTML code you’re working with:

Click here to view code image

<div>

 <p>This is grid item 1</p>

 <p>This is grid item 2</p>

 <p>This is grid item 3</p>

</div>

	At the top of your style sheet, type :root {.

This line will define the default values for our CSS variables. We start mobile first, so the grid template will be a single column.

	On a new line, type --gridTemplate: 1fr;.

Remember here that we are only defining the variable, and not the style. That comes later.

	On a new line, type --gridGap: 0;.

	On a new line, type }.

	On a new line, type @media screen and (min-width: 600px) {.

This is the only reference to a media query, and its sole purpose is to change the values of the variables, not to assign actual styles. At the 600px breakpoint, the variables will change.

	On a new line, type :root {.

Since the scope of the variables in step 1 is :root, we need to reference that same scope in the media query.

	On a new line, type --gridTemplate: 1fr 1fr 1fr;.

At 600px, we want the grid layout to change from one column to three columns, so we’re changing the value of the variable.

	On a new line, type --gridGap: 10px;.

The same goes for the gap between columns. Changing the variable here will change the styles at the 600px breakpoint.

	On a new line, type } to close the :root variable declarations.

	On a new line, type } to close the media query.

	On a new line, type div {.

This is the only div ruleset we’ll need, thanks to CSS variables.

	On a new line, type display: grid;.

	On a new line, type grid-gap: var(--gridGap);.

The variable --gridGap will change based on the media query declaration above, making this div responsive without explicitly putting it into its own media query ruleset.

[image: Video play icon.] VIDEO 19.3
Complex Layouts with Variables

Taking the grid task a step further, this video shows you how to make a complex layout using CSS variables.

	On a new line, type grid-template-columns: →var(--gridTemplate);.

Same goes for --gridTemplate. This value will change based on the breakpoint.

	On a new line, type } to close the div.

The resulting code stacks paragraph elements inside the div in a single column when the viewport is narrow (FIGURE 19.3). If the viewport is widened beyond 600px, the paragraphs are distributed into three columns (FIGURE 19.4). See CODE 19.2 for the complete code listing.

[image: The window shows an example of grid items listed vertically in a single column when the viewport is narrow or less than 600px. The listed items from top to bottom shows, This is grid item 1, This is grid item 2, and This is grid item 3.]

Figure 19.3 The CSS variables produce a single column of grid items when the viewport is less than 600px wide.

[image: A screenshot shows an example of grid items listed horizontally in three columns when the viewport is widened above 600px. The listed items from left to right shows, This is grid item 1, This is grid item 2, and This is grid item 3.]

Figure 19.4 Once the viewport is 600px or wider, the values of the CSS variables change, creating a three-column grid.

For comparison’s sake, CODE 19.3 shows the code you’d have to write if you didn’t use CSS variables.

CODE 19.2 This concise code uses variables to create a responsive grid layout.

Click here to view code image

:root {

 --gridTemplate: 1fr;

 --gridGap: 0;

}

@media screen and (min-width: 600px) {

 :root {

 --gridTemplate: 1fr 1fr 1fr;

 --gridGap: 10px

 }

}

div {

 display: grid;

 grid-template-columns:

 →var(--gridTemplate);

 grid-gap: var(--gridGap);

}

CODE 19.3 The code to create a very simple grid without CSS variables. This quickly gets much more complicated with bigger grids or more breakpoints!

Click here to view code image

div {

 display: grid;

 grid-gap: 0;

 grid-template-columns: 1fr;

}

@media screen and (min-width: 600px) {

 div {

 grid-gap: 10px;

 grid-template-columns: 1fr 1fr 1fr;

 }

}

Calculations with Variables

Aside from the var() function, CSS also provides the calc() function, which allows you to perform basic arithmetic operations in CSS. You can do the following:

	Addition with the plus sign (+)

	Subtraction with the minus sign (-)

	Multiplication with the asterisk (*)

	Division with the forward slash (/)

This allows you to include calculations either in new variables or on the fly—that is, in the property definition. One big benefit is that you can mathematically define padding and properly scale font sizes, making your styles more consistent.

In other words, we can size various properties proportionally derived from a couple of base values.

To proportionally change a variable with calc():

This HTML is straightforward:

Click here to view code image

<h1>This is a heading</h1>

<p>This is body text!</p>

	At the top of your style sheet, type :root {.

	On a new line, type --fontSize: 1.25rem;.

	On a new line, type --fontSizeHeading: calc(.

This opens up the calc() function for us.

	Type var(--fontSize) * 3.

This is the operation. Remember that we need to use the var() function to get the value of --fontSize. Then we multiply it by 3. We’ll use this calculated value for h1, and we want it to be three times as large as the body’s font size.

Manipulating Variables with JavaScript

Though JavaScript is generally outside the scope of this book, it’s worth talking about it in the context of variables.

One of the most powerful aspects of CSS variables is their ability to be manipulated by JavaScript. This allows you to make changes to variables, and therefore to your layout and styles, in real time and on the fly.

Perhaps you want to change the background color based on how long a user has been on your site. You can change the CSS variable that controls the background, based on a JavaScript counter.

As you begin to master HTML and CSS, learning JavaScript is the next logical step, and this is one more reason to check it out.

CODE 19.4 The CSS that uses calc() to create a heading size proportional to the body font size

Click here to view code image

:root {

 --fontSize: 1.25em;

 --fontSizeHeading: calc(var(

 →--fontSize) * 3);

}

body {

 font-size: var(--fontSize);

}

h1 {

 font-size: var(--fontSizeHeading);

}

	Close the function with);.

	On a new line, type }.

	On a new line, type body {.

	On a new line, type font-size: var(--fontSize);.

	On a new line, type }.

	On a new line, type h1 {.

	Type font-size: var(--fontSizeHeading);.

You could also use font-size: calc(var(--fontSize) * 3); and forgo defining a second variable.

	On a new line, type }.

You can see the full CSS in CODE 19.4. The result is that the body copy is slightly bigger than the browser default, and the <h1> tag is three times as big as the body copy (FIGURE 19.5).

[image: A comparison of the default and the developed header and body parts of a variable in chrome and the one resulted using calc () function.]

Figure 19.5 On the left are the default sizes for Chrome. On the right, the new sizes, including the heading size resulting from the calc() function.

In the figure, the size of the body and header in that is default in chrome, and their corresponding new sizes designed using the calculate function is shown. The header is larger than the body in both cases, whereas the default size (left) is too smaller compared to the newly designed variable size (right) using the calc () function.

Wrapping Up

CSS variables can change the way you write CSS, especially as it becomes more complex. Between overriding it easily and making calculations, you can do some pretty powerful stuff.

And there’s something else that can take your CSS to the next level: preprocessors.

20

CSS Preprocessors

In This Chapter

How CSS Preprocessors Work

Getting Started with Sass

Writing Sass

Wrapping Up

CSS includes functions that make writing rulesets easier, but there are even more powerful tools that can streamline and optimize your CSS code.

These tools are called CSS preprocessors, and they operate at a level above CSS. That is, they take what you write and convert it to CSS. Preprocessors add features that otherwise wouldn’t exist in CSS, the ability to reuse rulesets easily without copying and pasting, and loops (a way to automatically write code based on a set of criteria). Let’s take a closer look.

How CSS Preprocessors Work

A CSS preprocessor is essentially a programming language that produces valid CSS. You write in the unique syntax of the preprocessor (which you’ll learn about in this chapter), and the preprocessor takes what you write and converts it into CSS.

Doing this allows the preprocessors to add new features to CSS without changing how the browser works. Think of it this way: if you want more storage space in your laptop, you’re probably not going to crack it open to replace the hard drive—you’ll buy an external hard drive. It sits on the outside of your computer, but it still offers more space for you.

CSS preprocessors act similarly. They add more features you can use to write CSS without cracking open the browser to add the support. And the beauty of most preprocessors is that they look enough like CSS that if you already know CSS you can quickly get started using one.

Why use a preprocessor over native CSS?

With CSS variables, CSS Grid, Flexbox, and the continued evolution of CSS, the gap between native CSS and preprocessors is closing (FIGURE 20.1).

[image: The Sass syntax with its output is shown.]

Figure 20.1 What Sass syntax looks like, and the CSS it outputs

The pre-processor syntax is shown as follows: $ bgColor: #EB1DFE; body open bracket, background: $bgColor; h1 open curly bracket, background: #FFFFFFF; padding: 15px; close curly bracket, close curly bracket. The CSS syntax represented in the figure is as follows: body open curly bracket, background: #EB1DFE; close curly bracket, body h1 open curly bracket, background: #FFFFFFF; padding: 15px; close curly bracket.

Still, preprocessors offer a number of benefits over native CSS:

	Easier nesting and cascading. Instead of writing out the entire selector (like div.wrapper main section p.alert), you can nest a selector inside another one to create a visual hierarchy similar to HTML. You’ll learn more about this later.

	Repeatable/reusable rulesets. You saw this a bit with variables, but preprocessors allow you to programmatically generate CSS rulesets. For example, instead of manually writing the calculations for scaled headings, as you did in Chapter 19, you can write a few lines of code saying, “Starting with h1, decrease the size of each heading by 20 percent.”

	Built-in functions. Easily generate color schemes, perform advanced math operations, and more with built-in functions.

	Organization. Create multiple preprocessor files and compile them into a single CSS file.

	Auto-prefixing. Automatically prefix your CSS properties without having to add them manually every time.

Your mileage will vary based on the preprocessor you choose. On that note, while there are a few different preprocessors to choose from, this book uses Sass/SCSS.

Tip

This chapter is a primer on preprocessors; it is a little less hands-on than previous chapters because entire books have been written about specific preprocessors. But as you continue your web design education, it’s highly likely you’ll come across one.

Popular CSS Preprocessors

There are many CSS preprocessors to choose from, but there are two very popular preprocessors: Sass (sass-lang.com) and Less (lesscss.org).

They differ in nuances of features and syntax, but if you’re starting from zero, either one should be fine for you.

Statistically (at the time of this writing), Sass is a lot more popular, which means you’ll likely find more tutorials, examples, and support.

If neither appeals to you, there’s also Stylus (stylus-lang.com), which has been praised for its simple and clean syntax.

Getting Started with Sass

When deciding whether it’s worthwhile to use Sass or any other CSS preprocessor, keep in mind that you will need to add a compiler to your workflow. Throughout this book, you’ve been able to write HTML and CSS in your text editor, save it, and immediately open the file in your browser. With Sass there’s an extra step involved: the Sass file needs to be compiled.

Before you get started, you should know there are technically two versions of Sass you can write: Sass and SCSS. The main difference is the syntax. Sass looks more like a programming language, and SCSS looks more like CSS. This book uses SCSS. All files written with SCSS use the file name extension .scss.

For the purposes of this book, there are two ways you can get started with Sass:

	You can use CodePen. This does not require installing anything additional on your computer. You can practice writing it, see the results, and then determine later if you’d like to continue with it. As an added bonus, you can copy the compiled CSS and paste it right into your own .css files.

	You can install an app that compiles Sass. This allows you to write Sass files and create CSS files, which you can then use on your websites.

Here’s how to do both.

To write Sass using CodePen:

	Go to codepen.io.

	Do one of the following to create a Pen (a scratchpad for code snippets):

If you already have an account and are logged in to it, click Pen in the left sidebar under the Create heading (FIGURE 20.2).

[image: The creation of a new Pen in CodePen for the users logged into an account is depicted and offline users is depicted.]

Figure 20.2 Two ways of creating a new Pen: first, for users logged into an account; second, for users who aren’t logged in.

The screenshot of the CodePen webpage for a user that has logged in to an account is shown. The navigation pane has two sections such as Create and Your. Under create section, the options to choose Pen (drop-down list), Project, and Collection are displayed. Under Your section, the options to choose Dashboard, Activity, Assets, and Pinned Items are displayed. The content pane displays a search tab on the top. The "Pen" option under the create section is highlighted.

The screenshot of the CodePen webpage for the users that have not logged in is shown. The navigation pane displays a button for Start Coding. Below this, Explore section shows three options, Picks, Popular, and Topics. The "Start Coding" button at the top is highlighted.

If you do not have an account or you are logged out, click the Start Coding button.

	In the new Pen, find the CSS box, and click the Open CSS Settings button; it has a cog icon ([image: Cog icon]).

	In the dialog box that opens, click the CSS Preprocessor menu (FIGURE 20.3).

[image: Comparison of websites in safari and chrome browser is shown.]

Figure 20.3 The CSS Settings dialog box on CodePen

Two screenshots are shown. The first one is as follows: The website of "How I Built It" in the Chrome browser is shown. It displays the title "A podcast helping small business owners grow" with a short description and a subscribe button. The bottom of the page has a description under the title "Hosted by Joe Casabona," with his photograph to the right of the content. The layout, text, and other elements of the page looks complete and appealing to the users. The second one is as follows: The website of "How I Built It" in the Safari browser is shown. It displays the title "A podcast helping small business owners grow" with a short description and a subscribe button. The bottom of the page has a description under the title "Hosted by Joe Casabona," with his photograph to the right of the content. The layout, text, and other elements of the page looks complete and appealing to the users.

	Choose SCSS from the CSS Preprocessor menu.

	Click Close. Now the CSS box should be labeled CSS (SCSS).

You’re able to type Sass syntax into it now.

	Let’s start small. You’ll learn about variables later in the chapter, but for now, know that the syntax is a dollar sign ($) and the variable name. Create a variable for background color by typing $bgColor: #EB1DFE;.

This creates a variable assignment where $bgColor has the value #EB1DFE.

	On a new line, type body {.

	On a new line, type background: $bgColor;.

The background of the pen should immediately turn a dark pink.

	On a new line, type }.

	To view the compiled CSS, click the arrow button on the right ([image: Down-arrow button]).

	Choose View Compiled CSS (FIGURE 20.4).

[image: The CSS (SCSS) settings dialogue box displays seven menu options, in which "View Compiled CSS" menu is selected. This menu allows the user to view the compiled CSS.]

Figure 20.4 The menu that allows you to display compiled CSS in the pen

Your SCSS code is replaced with compiled CSS, and “Compiled” appears in the title bar of the CSS box.

To write Sass using an app on your computer:

	Go to scout-app.io.

	Under Sass for Web Designers, download the version of Sass for your computer’s operating system (FIGURE 20.5).

[image: The screenshot of the Scout-App website titled Sass for Web Designers is shown. On the left, four download buttons namely downloading Linux 32-Bit, OSX, Linux 64-bit, and Windows are displayed. On the right, a screen to play a video is present.]

Figure 20.5 The Scout-App website, showing the download buttons

For macOS, click the OSX button; for a PC, click Windows.

	Install the application.

When the installation is complete, you’ll add a project to Scout.

	On your desktop, create a new website folder. I’ve called mine website. Then create two new subfolders named scss and css.

	Launch Scout-App, and click the folder icon under Import Projects (FIGURE 20.6).

[image: The Scout App - Sass GUI window displays an overview of the Import Projects area.]

Figure 20.6 You can load an existing website into Scout-App by dragging its folder into the Import Projects area or by clicking the folder icon.

The screenshot features the Import Projects area in the Scout-App. The welcome screen of the Scout-App has an Import Projects dialogue box, in which a folder icon in the center indicates drag and drop anywhere to import projects. Below this, two buttons namely Add a Project and Add Group of Projects are displayed. By clicking the folder icon or dragging the folder into the import project area helps the user to load an exiting website.

A file navigation folder opens.

	Select the website folder you created in step 4.

	On the Add Project screen (FIGURE 20.7), click in the Input Folder field and navigate to the scss folder you just created.

[image: The Scout App - Sass GUI window displays an overview of the Project Management screen.]

Figure 20.7 The Scout-App Project screen is where you manage your projects.

The screenshot of the Scout-App website folder displaying the status of all projects is shown. The Scout-App has the following tabs at the top, File, View, and About. The Navigation pane has menu items that include Website (with a play icon), Add Project, and Status of all Projects. The content pane displays the website details with the logo, followed by the fields to select the input and output folders for Stylesheet Directories. The radio buttons to choose the type of environment such as Development, Production, and Line Edgings are located below each type.

Scout-App is now watching the input folder for any changes.

	Click in the Output Folder field, and select the css folder you just created.

Scout-App will automatically save any changes from the input folder into this output folder.

	Test this out. In a text editing program, create a new file (it doesn’t need any content) and save it as style.scss in the scss folder.

	Check the css folder. You should now have a new file named style.css.

If you don’t, you may need to press the play button next to the project name.

Tip

One great feature of Sass is that it can compile a minified version of your CSS—meaning without spaces or line breaks. This reduces the file size and lets browsers download it faster. You will learn more about the advantages of this in Chapter 23.

[image: Video play icon.] VIDEO 20.1
Configuring Sass on Your Computer

If you want to write Sass and generate CSS from it, you’ll need a Sass compiler. Here’s how to install one on your machine.

Writing Sass

At the beginning of this chapter I mentioned that there are full books and courses created just for Sass. But there are a few features worth highlighting:

	Nesting selectors

	Variables that don’t rely on browser support

	Math operators

	Extending rulesets

Nesting CSS selectors in Sass

One of the cooler features of Sass is its ability to reformat selectors in nested form, which saves you from having to write out increasingly long selectors for specificity. The benefit, besides a better visual representation of the family tree than in normal CSS, is that you can include declarations alongside the dependents you want. For example, this Sass code:

Click here to view code image

.wrapper {

 background: #000000;

 color: #FFFFFF;

 main {

 aside {

 border: 1px solid #FFFFFF;

 }

 }

}

… compiles to this in CSS:

.wrapper {

 background: #000000;

 color: #FFFFFF;

}

.wrapper main aside {

 border: 1px solid #FFFFFF;

}

Notice that the CSS targets aside elements that are children of main and grandchildren of .wrapper. By writing the ruleset as nested selectors, it reads, “aside is inside main, and both of them are inside .wrapper.” This ensures specificity and makes your CSS easier to read. And as your CSS grows, you won’t have to worry about specificity as much—as long as you have the proper nesting.

An important character for nesting is the ampersand (&). It serves as a placeholder for the parent selector. So .wrapper main would become & main. This is helpful, as it allows you to use the parent (or outer) selector in more advanced ways, like for pseudo-selectors. Here’s how to use the parent selector.

To target :first-child while nesting in Sass:

	In your style.scss file, type p {.

	Type color: #880000;.

	On a new line, indent and type &:first-child {.

	Type color: #008800;.

	Type font-size: 1.5rem;.

	Type }.

	Type }.

The resulting Sass will look like this:

p {

 color: #880000;

 &:first-child {

 color: #008800;

 font-size: 1.5rem;

 }

}

It will be compiled to this CSS:

p {

 color: #880000;

}

p:first-child {

 color: #008800;

 font-size: 1.5rem;

}

If you’re using Scout-App, your output might look a little different. Make sure that in your project settings, Production is selected and Expanded is chosen from the Output Style menu (FIGURE 20.8).

[image: The Environment section under project settings in the Scout-App is shown.]

Figure 20.8 The settings in Scout-App that will give you fully expanded CSS output

The screenshot shows the radio buttons under the Environment section that enables expanded CSS output. Two radio buttons that include development, production (selected) are present. Under the production radio button, a drop-down list box that is set to expanded is shown, indicated as output style. Below this, two radio buttons under line endings such as LF (default) (Selected) and CRLF are provided.

[image: Video play icon.] VIDEO 20.2
More Nesting Examples

I demonstrate more examples of nesting that use the & feature, as well as some media queries.

Variables and mathematical operators

In Chapter 19, you learned about CSS custom properties (variables) and functions. While variables in Sass became popular before the advent of custom properties in CSS, the preference for web developers today is to use CSS’s built-in variables.

Still, Sass variables are worth covering, as you’ll likely see them if you continue to develop with Sass.

Variables and math in Sass work very similarly to native CSS variables. The main difference is the syntax. To define a variable in Sass, instead of using two hyphens (--), you use a dollar sign ($):

$bgColor: #EB1DFE;

Then you just type the variable name, as opposed to using the var() function, like in CSS:

body {

 background: $bgColor;

}

Most of the same benefits (like the ability to change multiple values at the same time by reassigning a variable) apply to Sass variables, with a few exceptions:

	They cannot be changed in real time.

	They cannot be manipulated by JavaScript.

	They don’t cascade.

To define and use a variable in Sass:

	At the top of your style.scss file, before any other declarations, type $fontSize: 1.25rem;.

	On a new line, type body {.

	Type font-size: $fontSize;.

	Type }.

	Save the file.

	Open the style.css file and examine the compiled CSS. It should look like this:

body {font-size: 1.25rem;}

While this is a single declaration using a variable, you can imagine using the $fontSize variable in several places. If that ever needs to change, all you’d need to do is reassign $fontSize and then recompile the Sass.

The arithmetic operations in Sass are the same as in CSS (+, -, *, /) and there is one more: modulo or “remainder,” and that’s represented by a percent sign (%).

The modulo operator divides two numbers, but instead of returning a result, it returns the remainder. For example, 15 % 2 returns the value 1.

Using the same Sass from the previous task, you can use a multiplier on the font size.

To increase font size with multiplication:

	In your style.scss file, on a new line after the closing } on the body ruleset, type h1 {.

	Type font-size: $fontSize * 3;.

	Type }.

The compiled CSS will look like this:

h1 {font-size: 3.75rem; }

Notice that you don’t have to specify the unit on the multiplier—it will use the unit provided in the variable. If you use different units in arithmetic operators (like rem * px), you will get an error.

Tip

Math in Sass doesn’t stop with arithmetic operators. There are also built-in math functions for rounding, min, and max. Learn more here at sass-lang.com/documentation/modules/math.

Repeatable rulesets with @extend

In CSS, variables make it easier to reuse repeatable properties, as you saw in Chapter 19. But what if you could do it with entire rulesets? With the extend rule in Sass, you can! The extend rule allows one selector to use (or inherit) the ruleset from another selector. It’s written @extend [selector].

To use @extend for alerts:

	In your style.scss, file, create the class you want to extend. For this task, it will be a class that’s used for alert boxes. Type .alert {.

	Type background: #880000;.

	Type color: #FFFFFF;.

	Type padding: 10px;.

	Type text-align: center;.

	Type }.

	Now it’s time to create the class that extends .alert. This class will change the alert slightly, showing a different background color to denote a “friendly,” less urgent message. Type .alert-good {.

	Type @extend .alert;.

This tells Sass that .alert-good should use all of the rules defined in .alert.

	Type background: #000088;.

This overrides the original rules to show the change in .alert-good. In this instance, it’s only the background color.

	Type }.

	Save the file and examine the compiled CSS file (CODE 20.1).

With extend rules, you don’t need to copy and paste or otherwise rewrite rulesets! Sass also neatly compiles classes that use extend rules to prevent code bloat. Notice how it combines the selectors into a comma-separated list instead of repeating the rulesets for each selector (FIGURE 20.9).

[image: The use of .alert and .alert-good classes is shown. Two alert boxes of different colors, one below the other are displayed with the text, This is the .alert class in action, and This is the .alert-good class in action.]

Figure 20.9 The .alert and .alert-good classes in use

CODE 20.1 The resulting CSS after using extend for the .alert and .alert-good classes

.alert, .alert-good {

 background: #880000;

 color: #ffffff;

 padding: 10px;

 text-align: center;

}

.alert-good {

 background: #000088;

}

You can also use multiple extends in a ruleset, which allows you to include multiple definitions without having to write them (FIGURE 20.10). The class will simply inherit the styles from both selectors. So if you have a class called .big:

[image: An example of using multiple extends in a ruleset that includes multiple definitions is illustrated.]

Figure 20.10 The .alert-good class is extending both .alert and .big.

The output window depicting the extension of .alert-good class into the .alert and .big alert boxes is shown. At the top, the alert box indicating "This is the .alert class in action" is displayed. Below this, a large portion that indicates "This is the .big class in action" is displayed. The alert box indicating "This the .alert good class in action" is displayed at the bottom.

.big {

 font-size: 3rem;

}

You can do something like this, using the Sass from the previous task:

.alert-good {

 @extend .alert;

 @extend .big

 background: #000088;

}

The resulting CSS can be seen in CODE 20.2.

Finally, you can also write placeholder classes that exist only to be extended. There are no references to placeholder classes in the compiled CSS. This is strictly for you to use in Sass. Placeholders are great if you have a style you want to use across multiple rulesets, but you don’t want those rulesets associated with a usable class, which would muck up your CSS.

You define a placeholder class with the percent sign (%). The % is an indicator in Sass that you’re using a placeholder class and that it should not be compiled as a usable class in CSS.

To write a placeholder class:

	In your style.scss file, type % followed by the name of the placeholder class you want to define. In this case, use notify {.

	Type margin: 0 auto;.

	Type padding: 10px;.

	Type text-align: center;.

	Type }.

	Type .alert {.

	Type @extend %notify;.

	Type background: #880000;.

	Type color: #FFFFFF;.

	Type }.

	Type .error {.

	Type @extend %notify;.

	Type background: #FEB728; ([image: Color: #FEB728]).

	Type }.

	Save the .scss file and examine the compiled CSS (CODE 20.3).

CODE 20.2 The results of .alert-good extending two other classes. Notice that .alert-good is referenced in both the .alert and .big declarations.

.alert, .alert-good {

 background: #880000;

 color: #ffffff;

 padding: 10px;

 text-align: center;

}

.big, .alert-good {

 font-size: 3rem;

}

.alert-good {

 background: #000088;

}

With placeholder classes, applying that class name to an element (notify in this case) will do nothing.

Notice there’s no reference to %notify, and that all the properties from %notify are grouped together, leaving only the custom properties in their own rulesets (FIGURE 20.11).

[image: The use of .alert and .error classes is shown. Two alert boxes of different colors, one below the other are displayed with the text, This is the .alert class in action, and This is the .error class in action.]

Figure 20.11 The .alert and .error classes generated from the %notify placeholder class

Tip

There’s one more aspect of Sass that’s important: mixin. It is similar to extend, but there are some important differences to understand. I chose to include extend here because it’s more in line with what you’ve already learned. If you want to learn about mixin, you can do so at sass-lang.com/documentation/at-rules/mixin.

CODE 20.3 These classes were generated from a placeholder class in Sass.

.alert, .error {

 margin: 0 auto;

 padding: 10px;

 text-align: center;

}

.alert {

 background: #880000;

 color: #ffffff;

}

.error {

 background: #feb728;

}

Wrapping Up

This was only a brief introduction to CSS preprocessors, and you’ve only scratched the surface with Sass. But it’s important to know about as you continue to build websites, and you’re very likely to come across it.

With that, the CSS section of this book is complete. From here, you’ll learn important concepts and tools to help you build better websites. But there’s one important step to take first: we need to get your website online!

21

Getting Your Website Online

In This Chapter

Choosing Hosting and a Domain

Pre-Launch Check

Making Your Site Live

Testing Your Site

Wrapping Up

You have the HTML down. You have the CSS down. Your files are nice and organized. How do you show it to people?

Getting your website online requires two components you saw all the way back in Chapter 2: a domain and a server. Once you have those, there’s a clear process you’ll walk through to get your website online. Then you can send it to everyone you know!

Choosing Hosting and a Domain

The time has come for you to make some decisions. You need to purchase both a domain and web hosting for your website. When you purchase a plan from a hosting company, the company provides you with the technologies and services that you need for your website to be seen on the internet.

At the most basic level, your hosting provides you with a publicly accessible space on a server that stores and manages connections to your website. People will connect to your website via the domain.

There are lots of different hosting companies. Many specialize in specific types of websites, but any hosting you get will be able to serve up HTML and CSS. So how do you choose?

Evaluating hosting

When choosing the right hosting for your needs, there are a few ways to evaluate them. While there isn’t a “one-size-fits-all” hosting company, drawing up a list of your needs will help you narrow down the requirements a bit. So what do you look for?

	Can you talk to a person? If you’re going to be setting up and supporting your own website, you should make sure the hosting company you go with provides good technical support! Great documentation and videos are fine, but chat and phone support are incredibly important as well.

	Will there be automatic backups? This isn’t a deal breaker as far as choosing the plan, but it’s important to know whether you will need to make your own backups or if they handle that for you.

	Will they help make your site secure? This can come in many forms, including site monitoring, free SSL (see the “Secure Domains” sidebar), protection from cyber attacks, and repairing your website if it’s hacked.

Tip

Many people use the term SSL when speaking of website security in general, even though SSL technically refers only to the Secure Sockets Layer cryptographic protocol. That technology itself has been deprecated in favor of the newer Transport Layer Security (TLS) protocol.

Pricing can also be a factor. You generally get what you pay for, and at this stage of the game, you probably don’t need anything too crazy, especially if you’re still honing your skills. There are two hosts I’d recommend:

	Web Hosting for Students: If you need something really cheap to $25/year (FIGURE 21.1): webhostingforstudents.com/.

[image: The webpage of Web Hosting for Students (WH4S) is shown.]

Figure 21.1 Web Hosting for Students

The webpage of Web Hosting for Students is shown. The page has the following tabs at the top, students, teachers, schools, learn hosting, about us, support, and log in on the top. Below this, the title "Web Hosting for Students" is shown at the center with the price just for 25 dollars a year. The descriptions for Priced for Students and Not just for .edu Students are provided at the bottom. Besides, the photographs of students working on the laptop are presented on the page.

	SiteGround: Once you’re ready to publish your site to the world (also known as “going live”), you’ll need to move on from a basic service like Web Hosting for Students. SiteGround is versatile and works well for lots of types of sites (FIGURE 21.2). If you use the link from this book, you’ll get a special offer for your first year: casabona.org/go/siteground/.

[image: A screenshot of the Site Ground webpage is shown. It displays tabs for hosting, technology, about us, and affiliates at the top. The content pane displays Get Started buttons for Web Hosting, WordPress Hosting, and WooCoommerce Hosting.]

Figure 21.2 SiteGround

Choosing a domain

Usually, you can purchase domains from the same place you get your hosting, but it’s not always recommended in case one day you decide you want to change hosts.

Certain companies offer one free domain with an account, but if you’d like to purchase a domain separately, which I recommended, hover.com is a great service. They offer a number of different top-level domains (TLDs) from .com and .org to .io, .me, and .xyz.

Tips on choosing a domain name:

	Make it unique and easy to remember. You want your domain to stand out, but not so much that it’s difficult to remember when someone tries to visit.

	Make it easy to type and speak. A domain with a tricky name will send people to the wrong place or dissuade them from visiting at all. On that same token, try to avoid numbers and hyphens. They are very hard to speak (is the number typed out or is it the digit?), and hyphens are often forgotten about.

	Try to acquire a name in the .com domain first. About 70 percent of domains use the TLD .com, even as the number of TLDs grows. That means that most people will have an easier time remembering a .com domain and will likely try that first.

	Make it as short as possible. This goes back to making it easy to remember, speak, and type—joesbakery.com is easier to remember (and spell) than joesdowningtownbakery.com.

	Avoid copyrighted names. Make sure you’re not using a copyrighted term in your domain. The last thing you want to do is change it because you’ve infringed someone’s copyright. An example is wordpress. According to the WordPress Foundation, who holds the copyright for WordPress, you cannot use wordpress in a domain name.

	Be aware of word combinations. This sounds silly and somewhat juvenile, but you don’t want to accidentally create a vulgar domain.

Secure Domains

You might notice that some domains use the http:// prefix and others use https://. The difference is that https:// indicates that the site accepts connections using the Hypertext Transfer Protocol Secure, which in turn employs Transport Layer Security, or TLS. In general conversation, TLS is often lumped in together with its predecessor, SSL. A domain using HTTPS will be offered a TLS certificate.

This means any data sent to and from your website will be transmitted securely; you will want this if you’re processing payments, taking user information, or logging in with a username and password.

There are also search engine optimization (SEO) benefits. Google uses https as a “ranking signal”—something it uses to evaluate how high to rank your website in search results. In Chrome, it warns users when https is not in use.

This is configured by the server, and SiteGround offers free TLS/SSL certificates through Let’s Encrypt.

	Snag the matching social media if you can. Matching domain names with social media accounts takes away the guesswork for users.

Keep in mind that this is not a checklist. If you have the perfect domain but it uses a number, use the number. Since you can point two domains to the same website, grab it spelled out and with a digit. If a .com isn’t available, buy the .org instead.

The goal is to do the best you can, and most of all make it relevant to your website’s topic.

One Note on Email

“Do I get an email address?” is a common question when purchasing a domain and hosting. Email is a separate service and therefore not always included.

You will usually find email offered as an add-on to hosting, but there are alternative solutions available. Hover.com offers email forwarding, for example.

You can also sign up for something like Google Apps for Business, though this requires extra setup.

To register your domain:

	Visit hover.com.

	Use the search box to type in your domain idea (FIGURE 21.3).

[image: A screenshot of hover website is shown. The page has three tabs at the top, find a domain (selected), transfer, and renew. On selecting find a domain option, it displays a search box titled "Every great idea deserves a great domain name," which allows the user to find a domain.]

Figure 21.3 The search box on hover.com

You can include or exclude a TLD. Hover will still show you a full list of available domains.

	Press Enter or click the search icon.

	You’ll be taken to a screen of available domains. Click the plus sign next to the one you want.

	Click the Shopping Cart button in the top right (FIGURE 21.4).

[image: A screenshot of the hover.com webpage displays a search box that is set to joeteacheshtml, and a shopping cart option that is set to 12.99 U.S dollars.]

Figure 21.4 The Shopping Cart button on hover.com

	Go through the checkout process and create your account!

[image: Video play icon.] VIDEO 21.1
Registering a Domain

Here’s the entire process, start to finish, of registering a domain with hover.com.

Connecting your domain

Once you’ve purchased your domain, if you haven’t done it through your hosting company, you’ll need to point it to your host. This will vary based on both your host and your domain registrar.

Your host should provide instructions for changing what’s called the DNS, Domain Name System. You can think of it as a big lookup table (or address book), associating servers with domains.

Tip

Once you purchase your domain and point it to a server, it may take 24 to 48 hours to work. This is a process known as propagation.

In Video 21.2, you’ll see how to do it with Hover and SiteGround.

[image: Video play icon.] VIDEO 21.2
Pointing Your Domain to SiteGround

Here’s how you’ll point your domain, registered through Hover, to SiteGround hosting.

Pre-Launch Check

Before taking your site online, you’ll want to run through a quick checklist:

	Is your website folder organized the way you’d like it to be? You will upload it just that way, so double-check.

	Are all of your links, embeds, and references properly formatted? Make sure that if you’re linking to something in a child folder, it’s in the right place, and that all images and other media display properly.

	Are there any references to files that start with file: or C:? These are absolute links to the files on your computer, and they will not work for anyone other than you once they are uploaded, so make sure to change them to relative links.

It’s best to click through each page and make sure everything looks and works as you expect. Once you do that, you’re ready to upload your files to your server.

Making Your Site Live

With your hosting and domain purchased, it’s time to get your site online—sometimes referred to as deploying your site. To do that, you’ll need to use something called File Transfer Protocol, or FTP.

FTP is how you send files from your computer to the server. To do this, you’ll need an FTP program. A free (and widely used) one is FileZilla (FIGURE 21.5). You can download it at filezilla-project.org.

[image: A screenshot of the FileZilla FTP application is shown.]

Figure 21.5 FileZilla, a popular FTP program

The FileZilla web Application shows four options to enter the Host, Username, Password, and the port followed by a quick connect button with a drop-down list box. Below this, a list of connection status information is displayed. The local site and remote site path fields are located on the left and right respectively, and below each site are their corresponding files located under each path is displayed. Here, the index.html file and the style.css file are located in the remote site. The corresponding file name, size, type, last modified date, permissions, and owner or group information are provided beside each file.

Finding FTP Information

Finding the FTP information for your server will vary from host to host. For SiteGround, it’s best to use their documentation, just in case it changes after the time of this writing: www.siteground.com/tutorials/ftp/accounts/.

Once you download that, you’ll see you need some information:

	Host

This might also be listed as host address, IP address, domain, or server address.

	Username

	Password

	Port

A port is a communication gateway in a computer (or other device) defined in software. Usually, individual ports allow for a specific network service to pass through. You can think of it as a docking bay or as a locker that you have the key to.

This information can be found through your hosting account. Look for a section of the documentation that includes “FTP” in the title.

Once you find that information, you’ll fill it into the appropriate fields in FileZilla. Then you’ll connect to your server. Once you connect, you’ll see two panels: on the left-hand side will be your computer; on the right, your server.

To send files to your server with FileZilla:

	Using the information from your hosting provider, fill in the host, username, password, and port.

	Click Quickconnect.

	Once the right panel populates, you’ll want to locate the public_html or www folder. This is where all web-accessible files will live.

You might already be in that folder. You can use the Remote Site bar above the right panel to see where you are (FIGURE 21.6).

[image: The remote site box in FileZilla is shown. The remote site box displays the location of each file that is uploaded to the server. Below this, four folders are also shown.]

Figure 21.6 The Remote Site box in FileZilla will show you where you’re uploading files to on your server.

[image: Video play icon.] VIDEO 21.3
Uploading Your Files

You’ll get a quick tour of FileZilla, find your FTP information (if you use SiteGround), and then upload your files.

	In the panel on the left, make sure you’re displaying the contents of your website folder.

	Drag each file and folder in your website folder from the left panel to the right panel (FIGURE 21.7).

[image: A screenshot of the FileZilla FTP after uploading your site is shown.]

Figure 21.7 The state of FileZilla once you upload your site

The FileZilla web Application shows four options to enter the Host, Username, Password, and the port followed by a quick connect button with a drop-down list box. Below this, a list of connection status information is displayed. The local site and remote site path fields are located on the left and right respectively, and below each site are their corresponding files located under each path is displayed. Here, the images folder, index.html file, and style.css file are located in the remote site. The corresponding file name, size, type, last modified date, permissions, and owner or group information are provided beside each file.

Remember not to just drag the website folder over. This will result in your website files being located in a child folder.

	Once the files upload, visit your domain with a browser. The files on your website should render properly and display as you designed them!

Testing Your Site

Now that your website is uploaded to the server, it’s time to give it a test. Use your browser to visit your site at the domain you purchased, click through all of the links, and make sure your images and other media are showing up properly.

Check each file

If you can, check the site on a computer other than your own to double-check that you didn’t leave any absolute links to files on your computer in the HTML documents. Those will still work for you (because they’re located on your computer), but they won’t work for anyone else.

The same goes for all links. You’ll want to make sure internal links are still going to your site, and that external links are reaching the intended destination.

Test in common browsers

You’ll learn more about testing in the next chapter, but for the purposes of making sure your freshly uploaded site is working properly, you’ll want to check in at least a few browsers, like Safari, Edge, Chrome, and Firefox.

As you’ve seen, browsers handle things differently, and checking your site in multiple browsers will increase the changes that you’ll find something that’s broken before your users do.

Wrapping Up

Congratulations! You did it! You’ve uploaded your site to a server and it’s now live. But your job is not done.

With all of the basics down, it’s time to dive into some advanced but important topics. And the first is testing your site for a multitude of issues, from broken HTML and CSS to device support.

404 Errors

Something you haven’t seen yet, for your own site at least, is a 404 error. This is a common error for websites that means “file not found.”

If someone tries to visit a file on your website that doesn’t exist, the server will send a 404 error, alerting the user that what they’re trying to access isn’t there.

404 errors can happen because of a typo in a file, because of a file that was never uploaded to the server, or when a link to an external site lacks the https:// prefix, among other reasons.

22

Testing Your Website

In This Chapter

Why Test Your Website?

Validating Markup

Browser Testing

Device Testing

Troubleshooting with Chrome Developer Tools

Wrapping Up

Now that you know how to build and launch a website, it’s time to look at some other areas of web design that you should become familiar with. The first is testing.

Up until now you’ve been writing some code and checking it in whatever browser you use. Perhaps you’ve been resizing the browser to see how it looks at different sizes. But there’s a bit more you can and should do.

Why Test Your Website?

You might be wondering why you have to test your website beyond just checking it in your browser to make sure it doesn’t look broken. Because websites need to run properly everywhere that a web browser can run (which is basically everywhere), we need to test everywhere. That means testing in major browsers, on different platforms, and at different device screen sizes.

There are also a lot of unknowns in web development. You don’t know what users are going to do. You don’t know if they have an ad-blocker that’s somehow affecting your website. You don’t know the speed of their internet connection.

Finally, since HTML is very forgiving—you can write HTML in several different ways and the code will still work for you—you could run into situations where devices other than your own interpret your markup differently. This is especially true if your HTML is not valid—that is, written properly to specification, as defined by the DOCTYPE.

When you test your website, you should follow a three-pronged plan:

	Validate your HTML and CSS.

	Test in browsers.

	Test on devices.

As you do those things, you can troubleshoot the problems you encounter using some very helpful tools.

Validating Markup

You want to validate your markup first because it will find any glaring errors in your HTML—absent closing tags, improper usage, or syntax errors.

Syntax errors are found in code that’s incorrectly typed (FIGURE 22.1). Perhaps the closing bracket (>) is missing from a tag or you left a quotation mark out of your HTML. These lapses can cause big errors on your page that could go unnoticed if your browser of choice doesn’t flag them.

[image: A screenshot represents an example of the syntax error in the html code.]

Figure 22.1 Invalid code alerts generated by a syntax error in HTML. These are two of the many issues the error causes.

The screenshot highlighting the two errors in the html source coding is shown. The top of the screen displays two errors. The first is the error in < attribute name. Probable cause : > missing immediately before, at line 10, column 41. The second is the error because a slash was not immediately followed by >, at line 10 column 43. Below this, the document check completed status is indicated. Below the indication are the source HTML coding listed from 1 to 13 in which the 10 code <p class="hello" This is a paragraph</p> is highlighted. Further, the status, used the HTML parser, and total execution time: 6 milliseconds is displayed at the bottom.

Luckily, there’s a single validator that will check your HTML and CSS and even look for broken links.

The W3C markup validator

The World Wide Web Consortium (W3C) is the international organization that creates the standards and specifications for HTML and CSS.

They also happen to have a markup validator that you can use to make sure your HTML and CSS code meets their standards (FIGURE 22.2).

[image: A screenshot of the W3C Markup Validation Service home page is shown.]

Figure 22.2 The W3C Markup Validation Service home page (validator.w3.org/)

The home page of the W3C Markup Validation Service is shown. It displays three tabs at the top, validate by URI (selected), validate by file upload, and validate by direct input. The validate by URI includes an address field followed by a check button to check for more options. Below this, an instruction with few hyperlinks followed by hyperlinks for home, about, news, docs, help and FAQ, feedback, and contribute are located at the bottom.

There are three ways to send your markup to the validator:

	Provide the URI (or the domain) of the file.

	Upload the file.

	Copy and paste the markup into a textbox (called direct input).

Since the CSS for your site is in a separate file, file upload and direct input will be a little tricky (though not impossible). In general, you should choose the URI option.

To validate your markup:

	Visit validator.w3.org.

	Click the Validate by URI tab.

	Type your website’s domain into the Address field.

	Click the Check button.

	Review your results and fix the errors. These can break your site in certain browsers.

You may also see warnings that indicate improper or unnecessary use. You can (and should) fix these, but they do not risk breaking your website.

Though validating your code will likely save you a lot of time by helping you eliminate errors on your website, that doesn’t mean it will solve all of your issues. For that, you’ll need to do your own testing, starting with different browsers.

[image: Video play icon.] VIDEO 22.1
Using the W3C Markup Validator to Find and Fix Errors

Now that you know how to use the validator, it’s time to see how to use the information it provides to make fixes.

Browser Testing

The low-hanging fruit for testing is browser testing. That’s when you view your website in the major browsers to make sure everything looks good. Remember that browsers may not implement new HTML features at the same time, and each browser interprets CSS differently. So you’ll want to check your website in the following desktop browsers. You can get three of the four depending on your operating system:

	Chrome (download for macOS/Windows)

	Firefox (download for macOS/Windows)

	Safari (macOS only; comes on macOS)

	Edge (comes on Windows; download for macOS)

For each browser, check each page of your website to make sure things don’t look completely broken. That means broken or misaligned layouts, unreadable text, or other things that look completely off.

Websites do not need to look the same in every browser, though! So if there are some minor differences due to padding, that’s okay. The CSS reset method mentioned in Chapter 12 should take care of most of those issues, but don’t sweat the minor differences too much (FIGURE 22.3).

[image: A screenshot of the website with the information on "How I Built It" in the Chrome browser is shown.]

[image: A screenshot of the website with the information on "How I Built It" in the Safari browser is shown.]

Figure 22.3 Comparing a website in Chrome and Safari. The site looks exactly the same in both browsers—huzzah!

The website of "How I Built It" in the Chrome browser is shown. It displays the title "A podcast helping small business owners grow" with a short description and a subscribe button. The bottom of the page has a description under the title "Hosted by Joe Casabona," with his photograph to the right of the content. The layout, text, and other elements of the page looks complete and appealing to the users.

The website of "How I Built It" in the Safari browser is shown. It displays the title "A podcast helping small business owners grow" with a short description and a subscribe button. The bottom of the page has a description under the title "Hosted by Joe Casabona," with his photograph to the right of the content. The layout, text, and other elements of the page looks complete and appealing to the users.

Browser and device testing tools

You won’t always have access to every browser or to a wealth of devices to test your websites on. Luckily, there are several tools that will help you with your testing when you need it.

The longtime favorite for many pros is BrowserStack (browserstack.com), which will provide real-time testing on actual devices, giving you a more robust and accurate testing environment (FIGURE 22.4).

[image: A screenshot of the website with the information on "How I Built It" with BrowserStack is shown.]

Figure 22.4 Testing a website with BrowserStack

The website of "How I Built It" in the Safari browser is shown. It displays the title "A podcast helping small business owners grow" with a short description and a subscribe button. The bottom of the page has a description under the title "Hosted by Joe Casabona," with his photograph to the right of the content. On the bottom-right portion of the page, a menu with seven options to switch browser, local testing, 1440 times 789 widescreen, report a bug, settings, change location, and stop session are listed, where the switch browser option is selected.

They offer a free tier if you’re starting out, but it can get expensive pretty quickly, especially if you need to test for more than 30 minutes. Another option is LambdaTest (lambdatest.com). There is a free tier here that will let you perform a limited amount of real-time browser testing. It should be enough for the types of sites created in this book.

Device Testing

In the world of mobile browsers and the Internet of Things (a system that connects almost any kind of object to the internet), it’s important to make sure your websites work on mobile devices and on networks with different internet speeds.

While BrowserStack is a great option for doing browser testing to test on browsers and devices you don’t natively have access to, it’s important for you to test on devices you’re physically using as well (even if it’s not all of them). You’ll want to make sure that your site:

	Resizes correctly on a real screen

	Loads quickly

	Is using supported features or appropriate fallbacks

It’s important to use real devices for this because although you can check actual devices through your computer on BrowserStack or by emulating devices (using a computer-generated version of the device), there’s nothing like the real thing.

What you should test

There is a seemingly infinite number of combinations of devices, operating systems, and connection speeds, and it’s impossible to test all of them. So what do you do?

For devices, you should check a resource like Device Atlas, which will tell you the most popular mobile devices by country (deviceatlas.com/device-data/explorer/).

On the actual devices, you should test the built-in browser. You should look up what the most popular browsers are to make sure you’re covering the bases. Statcounter has good data for this: gs.statcounter.com/ (FIGURE 22.5).

[image: A screenshot shows the built-in browser stats in the Statcounter GlobalStats webpage.]

Figure 22.5 Browser stats from Statcounter

The browser stats displayed on the Statcounter webpage is shown. The page displays the following menus at the top, Press Releases, FAQ, About, and Feedback pages. Below this, the data of six different browsers are shown as follows, Google (63.69 %), Safari (18.35 %), Firefox (4.42 %), Samsung Internet (3.36 %), Edge Legacy (2.18 %), and UC Browser (1.99 %). The content pane displays a graph of Browser Market Share Worldwide from March 2019 to March 2020, which includes the Edit chart data button on its right. The bottom of the page has hyperlinks to save chart image, to download data, and to embed HTML.

You’ll want to test the most popular browsers and devices at least, to make sure everything is working.

Internet connection speeds are a little easier to simulate. There are a few testing tools you’ll learn about later in this chapter, and in Chapter 23 when you learn about improving performance. But for now, here’s a short list of connections you should check:

	High-speed internet (if your site loads slowly here, you’ll need to make some adjustments).

	Current cellular internet connections—5G at the time of this writing.

	Two previous generations of cellular networks (4G and 3G at the time of this writing).

	Extremely slow internet.

For this you might try a crowded coffee shop or library.

The goal here is to make sure your site doesn’t load too slowly. It creates a poor user experience.

Finding test devices

Whereas checking browsers and simulating slow internet connections can be done in software, testing on actual devices requires access to hardware.

You’re probably not buying a ton of hardware to test your websites, but you can send the site to a few friends who have different devices and different-sized devices.

You can also leverage social media here. Send out a message asking people to visit your site and send a screenshot or report what’s going on. You can even ask them to use yourbrowser.is (yourbrowser.is/generate) to generate a report about their device so you don’t need to guess (or have them guess) (FIGURE 22.6).

[image: A screenshot displays the browser information generated by yourbrowser.is. The details of a device that has twenty-three different applications with their current state of operation are displayed.]

Figure 22.6 My browser information, as reported by yourbrowser.is

As a last-ditch effort, you could always go to a cellphone carrier’s store and test devices there! I’ve done it when in a pinch (though just be aware that they might not like it).

If you’re really stuck, an emulator is better than nothing. By using Xcode on macOS (FIGURE 22.7) and Android Studio on macOS or PC, you can emulate devices to test on.

[image: The Xcode simulator output on iPhone 11 Pro max mobile is shown. It displays the webpage of how I built it with the description and other menu options. The partial view of the page is displayed.]

Figure 22.7 The iPhone 11 Pro Max, displayed in XCode’s Simulator

To emulate an iPhone with Xcode for macOS:

	In your Applications folder, double-click the Xcode icon.

If it’s not pre-installed, you can download it from the App Store. You may need to update it. If you do, run those updates.

If the Welcome To Xcode window opens, click the X in the upper-left corner to dismiss it.

	After Xcode opens, in the main menu bar, choose Xcode > Open Developer Tool > Simulator.

Simulator might take a few minutes to open, depending on the speed of your machine.

	Once Simulator loads the iOS or iPadOS device, click the Safari icon.

	In the address bar, type the URL of your website.

	If you want to test other devices, you can choose Hardware > Device, then choose the operating system and device you want to test.

Even if you already have an iPhone, this is an easy way to test your site on other iPhone versions or on various iPad models.

[image: Video play icon.] VIDEO 22.2
Using the Xcode Simulator

Once you access the Simulator in Xcode, there are several features worth exploring. Here’s a quick tour of them.

[image: Video play icon.] VIDEO 22.3
Emulating Android Devices

If you already have an iPhone but want to test your site on Android devices, you can do so with Android Studio. Here’s how.

Troubleshooting with Chrome Developer Tools

One staple of web development troubleshooting has been to use the development tools built into web browsers. All of the major browsers offer these, but we’ll use the developer tools provided in Chrome, officially named Chrome DevTools. This is a set of tools you can use to check markup, CSS, webpage load speed, and downloads. You can also test responsive web designs as well as perform a whole host of other tasks that will make your job as a web designer easier.

To access Chrome DevTools:

	In Chrome, click the menu button in the upper-right corner of the window ([image: Menu button]) to open a menu.

	Choose More Tools > Developer Tools from the menu.

A new screen will pop up on the right, showing the source code of your website (FIGURE 22.8).

[image: A screenshot shows the Development tools Panel in Google Chrome.]

Figure 22.8 The Chrome DevTools panel is to the right of the browser window by default.

The screenshot of the chrome window displays the home page of 'How I built it.' It presents the details of recent episodes for helping small business owners hosted by Joe Casabona. The current sponsor is ahrefs. The development tools panel is displayed on the far right of the browser. Tabs such as elements, console, sources, network, and performance are displayed on the top of the Development tools panel. The tab 'elements' is selected. An HTML code is displayed under this tab.

[image: Video play icon.] VIDEO 22.4
Chrome DevTools Overview

In order to quickly familiarize you with Chrome DevTools, you’ll get an overview of what each tab does and how to navigate the panel.

A common use case for Chrome DevTools (and for the developer tools in any browser) is to change part of the CSS on the site to get a preview of how it looks before committing those changes to code.

For example, if your intended three-column layout is displaying as two columns, you can adjust the CSS in developer tools, note the required changes, and then make them to the actual source file.

This is a bit faster than making the changes in code, saving, uploading, and testing.

You can also test color schemes, fonts, and other styles much more quickly.

To modify CSS with Chrome DevTools:

	Visit your website.

	Open Chrome DevTools.

	Select one of the elements from your markup by clicking it in DevTools (FIGURE 22.9).

[image: A screenshot displays the elements tab of the Chrome Development tools Panel.]

Figure 22.9 Selecting an HTML element in Chrome DevTools

The screenshot of the browser window displays a text titled "A Case of Identity" by Sir Arthur Conan Doyle. The Development tools panel is displayed on the far right of the browser. Tabs such as Elements, Console, Sources, Network, and Performance are shown in the panel. The tab 'elements' is selected. The markup code in the element tab corresponding to the first paragraph of the text is selected. The first paragraph displayed in the browser window is selected.

	In the Styles tab (which displays the CSS for the page), at the bottom of the Elements panel below the HTML listing, click next to the opening curly brace for that element’s ruleset (FIGURE 22.10). This will create a new line in the ruleset.

[image: A screenshot shows the styles tab of the elements panel.]

Figure 22.10 Modifying CSS in Chrome DevTools

The screenshot of the styles tab shows a few CSS declarations. A curly brace is present at the start and end of the tab. A colon and a semicolon are shown in the line below the opening curly brace, indicating the addition of a new line. The properties mentioned in the CSS declarations are as follows. font-size, padding-left, font-weight, and text-shadow.

	Place your cursor on that new line, and type color:.

	Press Return/Enter to move to the next field.

	Type #FF0000;.

Now, all of the next in that element should turn red.

Mobile device testing with Chrome DevTools

Another common use case for Chrome DevTools is to test different screen widths and even connection speeds. While this isn’t a substitute for actual device testing, this will help you find media query and performance issues.

To test in different screen sizes:

	Visit your website.

	Open DevTools.

	Click the Toggle Device Toolbar button ([image: Toggle Device Toolbar button]).

	Notice that your website’s width has now changed (FIGURE 22.11), and there’s a new toolbar with an item labeled Responsive. Click that label and choose one of the other devices from the list.

[image: A screenshot shows the toggle device toolbar button of the Chrome Development tools panel.]

Figure 22.11 The Responsive device test section of Chrome DevTools

The screenshot of the Development tools panel shows the toggle device toolbar button located to the left of the 'elements' tab. The homepage of the website, "How I built it" is displayed in the browser window. The width of the website is shortened. The display of the website resembles the display of the website on a smartphone device. A toolbar below the URL box contains the following drop-downs. Responsive, zoom percentage, and online. The dimensions of the website are also displayed in the toolbar.

	Now click the menu again and choose Responsive. In this mode, you can manually change the width. Change it to one of your breakpoints.

	In that same toolbar, there’s a menu labeled Online. That lets you control the load time of the website. Choose Low-End Mobile and refresh the page. You should notice it takes much longer for your website to load.

You can see exactly how long by consulting the Network tab of the Elements panel. See more in VIDEO 22.5.

[image: Video play icon.] VIDEO 22.5
Responsive Testing in Chrome

Chrome offers a robust set of tools for testing your website on a variety of mobile devices and networks. Here’s a walkthrough of those features and the information you can get from them.

Wrapping Up

Testing is an important part of web design because it ensures your website works for as many people as possible. By checking for valid markup and viewing your website in as many browsers and on as many devices as feasible, you’re helping your website visitors.

Another way you can help your visitors is by making sure your website loads quickly. Let’s look at how to do that in the next chapter.

23

Improving Website Performance

In This Chapter

What Do We Mean by Performance?

Know How Your Website Performs

Performance Testing Tools

Minify HTML and CSS Files

Optimize Your Images

Load Your Critical CSS First

Wrapping Up

Depending on the study cited, from 40 to 80 percent of users will abandon a website if it takes more than four seconds to load. According to one study, Amazon loses $1.6 billion per year for every second of load time (medium.com/@vikigreen).

While your losses won’t be quite that great (at least when you’re starting out), you should always look to improve the performance of your website because a slow website will cost you users. Aside from that, better performance will improve your site’s user experience (UX), increase user engagement with your content, and even help boost your site’s page rank in Google.

What Do We Mean by Performance?

Before getting too far into the weeds, you need to know what web professionals mean by performance. Getting to the heart of it, performance is measured by two criteria:

	Load time: How long it takes for a website to be delivered to the user from the time they request it.

	Interface efficiency: How long it takes for something to happen once a user interreacts with your website—clicking a link, filling out a form, and so on.

Tip

Load time is sometimes also measured as “perceived” load time. This essentially means that if you show the user something, even if it isn’t the entire website, they’ll feel like the website is loading faster.

Tip

Interface efficiency is also referred to as “responsiveness.” So as not to confuse this with the practice of designing websites for all screen sizes, I use the term efficiency.

The goals in making your site perform as well as possible in terms of page load speed and how quickly it reacts to user interactions (referred to as being more performant) are a fast load time (under three seconds for any network speed) and to provide the user with feedback as soon as they do something on your website. This can be as simple as hover states on links.

Now that you know what performance means and why your website should be performant, let’s take a look at the how.

Know How Your Website Performs

Before you start optimizing for performance, you need to know how well your website performs in the first place. Often this has to do with the amount of data you’re sending from the server to the user’s browser. The more data, the slower a website loads.

Common performance factors

You’ll learn about some tools to help you pinpoint specific performance issues, but there are a few common culprits:

	Images: Huge image files represent a lot of data that needs to be transmitted. And often, they don’t need to be as big as they are.

	Other media: You might consider images first because they are more in your control. With other media, like audio and video files, you’re probably uploading them to a service like SoundCloud or YouTube, and those services work hard on improving performance. Even so, embedding too many videos or pieces of audio on a page can still slow down your website.

	Bloated HTML and CSS: Using too much markup or too many styles can lead to bigger HTML and CSS files, which leads to slower load times. Later in this chapter I’ll talk about ways to diagnose those problems and find solutions to them. On top of that, as you include more files (like JavaScript libraries), downloading each one requires a separate request to the server. More requests also lead to longer load times.

	Hosting: It’s easy to blame hosting for performance issues, but the truth is a bad host will result in a slower site. If you’re using a hosting company that overworks its servers or underinvests in resources for those servers, you can have a single line of text in a file load slowly. While you’re learning, it’s okay to skimp in this area because it’s the biggest cost to you, but once you’re ready to do this professionally, a good host is a must.

Tip

I recommend SiteGround to most people when they need web hosting.

Performance Testing Tools

While media, bloated code, and hosting are all areas you can keep an eye on when developing your website, it’s worth using third-party tools to help you pinpoint performance issues on your website.

There are several web-based tests that will load your website and then give you a list of areas to fix. Popular ones include PageSpeed Insights from Google (FIGURE 23.1), GTmetrix (FIGURE 23.2), and Pingdom (FIGURE 23.3).

[image: A screenshot of the webpage, Google PageSpeed Insights is shown.]

Figure 23.1 Google’s PageSpeed Insights for Casabona.org (developers.google.com/speed/pagespeed/insights/)

The screenshot of the Google page speed Insights for the website, casbona.org is shown. Tabs such as Home and Docs are displayed at the top of the page. The tab 'Home' is selected. An address bar is provided at the top beside the button, analyze. The address, 'casabona.org' is entered in the address bar. In the content pane, a pie chart displays the number '57'. The lab data for First contentful paint is displayed.

[image: A screenshot of the webpage, Gmetrix is shown.]

Figure 23.2 GTmetrix ratings for Casabona.org (gtmetrix.com/)

The screenshot of the Gmetrix Performance Report for Casabona.org is shown. Tabs such as features, resources, blogs, and Gmetrix Pro are displayed at the top. The latest performance report for casbona.org is displayed in the content pane. Data such as page speed score and YSlow score are displayed under the title, "Performance Scores. " Data such as fully loaded time, total page size, and requests are displayed under the title, "Page details. " Buttons such as re-test and compare are present to the right of the report.

[image: A screenshot of the webpage, Pingdom is shown.]

Figure 23.3 Pingdom’s rating for Casabona.org (tools.pingdom.com/)

The screenshot of the Pingdom website speed test results for the website, casbona.org is shown. A URL bar is provided at the top beside the button 'Start test. A drop-down, test from is present beside the URL bar. The address, 'casabona.org' is entered in the URL bar. The results are displayed below. Buttons such as Download HAR and share results are present at the top of the result section. Data such as performance grade, page size, load time, and requests are included in the results. A section at the bottom of the page is titled 'Improve page performance. '

They each use slightly different methods for measuring performance, but they’ll all help by pointing out what you can improve.

Tip

Some might argue that the best tool to pay attention to is Google’s PageSpeed Insights because it will give your site a rank based on performance. However, the Google search algorithm may also affect your PageSpeed rank, so getting multiple opinions is a good idea.

[image: Video play icon.] VIDEO 23.1
Doing a Live GTmetrix Test

GTmetrix is an in-depth performance testing tool that pulls scores from multiple sources and gives you suggestions based on each. This video takes you on a quick tour of the interface, and gives you advice on what to do with the information the service provides.

To use PageSpeed Insights:

	In your browser, visit developers.google.com/speed/pagespeed/insights/.

	In the text box labeled Enter A Web Page URL, type your website’s address (FIGURE 23.4).

[image: A screenshot of the URL box of the Pagespeed insights is shown. A button, 'analyze' is provided beside the URL box.]

Figure 23.4 PageSpeed Insights URL box

	Click the Analyze button.

Once the tool completes analysis, you’re given two scores: one for mobile and one for desktop.

	Click Desktop, on the left toward the top of the page (FIGURE 23.5).

[image: A screenshot shows the mobile and desktop buttons of the Pagespeed Insights webpage. The buttons are placed adjacent to each other.]

Figure 23.5 The Mobile and Desktop buttons that reveal, and let you switch between, the scores on PageSpeed Insights

PageSpeed Insights gives you data based on how well your website has performed for other people. It then gives you detailed descriptions of each metric.

	Click the three-line icon next to Lab Data to view those descriptions ([image: Three-line icon]).

	Under both Opportunities and Diagnostics, you see scores and recommendations. Click the down arrow ([image: Down-arrow button]) to view the recommended fixes you can make.

The Chrome DevTools Network tab

Chrome DevTools, which you learned about in Chapter 22, has more than just tools for reviewing HTML, CSS, and responsive design.

You learned how to test in Chrome on low-speed internet connections, but the Network tab will give you a more detailed breakdown of your website’s performance (FIGURE 23.6).

[image: A screenshot shows the 'Network' tab of the Chrome Development tools panel.]

Figure 23.6 The Network tab in Chrome DevTools with results loaded from Casabona.org

The screenshot of the browser window displays the homepage of casabona.org. The development tools panel is displayed in the bottom half of the browser window. Tabs such as elements. console, sources, network, performance, memory, application, security, and Audits are displayed at the top of the panel. The tab 'Network' is selected in chrome dev tools. The top section of the Network panel displays the timeline. The bottom section displays the website file list.

To view results in the Network tab in Chrome DevTools:

	Visit your website in Chrome.

	Open Chrome DevTools by clicking the menu button and choosing More Tools > Developer Tools.

	Click the Network tab.

	On macOS, press Command-R to reload the page and see the network activity results. On Windows, press Ctrl-R.

Your website reloads, and the Network tab is populated with data organized into two sections: a timeline and a list of all the files (HTML, CSS, images, etc.) that your website loads, with load times.

Using the information from the Network tab, you can look at slow-loading files and determine how you can optimize your site.

Speaking of which, let’s look at a few techniques for optimizing your website, starting with some low-hanging fruit: making your HTML and CSS files smaller.

[image: Video play icon.] VIDEO 23.2
A Closer Look at the Network Tab

Knowing how the Network tab works can help you fast-track performance testing based on internet speeds and other factors. Let’s take a closer look at this fantastic tool.

Minify HTML and CSS Files

Minifying HTML and CSS files is the act of removing unnecessary characters in order to make the files as small as possible.

When you write HTML, every character counts towards the total file size, even spaces and line breaks—the computer still needs to represent them as data. Generally, one character = one byte (though some characters use more). So “Hello World” has a size of 11 bytes. Since you generally see sizes in kilobytes (KB), megabytes (MB), or gigabytes (GB), TABLE 23.1 shows how many bytes are in each unit of measurement. You may see people use a simple power of 10 conversion (1000 bytes in a KB; 1,000,000 bytes in a MB, etc). However, when converting values to computer storage, you should use the exact values provided in the table.

Table 23.1 Byte Conversion Chart

	Unit

	Size in Bytes

	Kilobyte (KB)

	1024

	Megabyte (MB)

	1,048,576

	Gigabyte (GB)

	1,073,741,824

In both HTML and CSS, spaces and line breaks are unnecessary; they are only there because it’s easier for us to read the files with proper spacing included. The same goes for comments. While they give cues to developers as to what’s going on in the code, they do not affect how the browser renders a site, so they aren’t needed. Removing spaces, line breaks, and comments can lead to considerable space savings (FIGURE 23.7).

[image: A screenshot shows the original and minified versions of the CSS code of the styles tab. It displays the CSS code in individual lines that extend for 6400 lines on the left half of the screen. In the minified version on the right half of the screen, the entire CSS code is displayed in a single line.]

Figure 23.7 On the left you see the CSS from Casabona.org, which is nearly 6400 lines of code and 129KB in size. On the right, you see the minified version, one (very long) line and 97KB. That’s 40 percent smaller!

There are lots of online tools for minifying both HTML and CSS. Some give you options for degrees of minification (just remove line breaks, remove all spaces, etc.). Make sure that whatever minification is done, it doesn’t end up breaking your code. I’ve gotten consistent (and good) results from Minify Code (FIGURE 23.8).

[image: A screenshot of the homepage of minifycode.com is shown.]

Figure 23.8 Minifycode.com allows you to minify HTML, CSS, and JavaScript.

The screenshot of the home page of minifycode.com displays the following tabs. Javascript minifier, CSS minifier, HTML minifier, Javascript beautifier, CSS beautifier, and HTML beautifier. The processes of minification and beautification are explained below.

To minify HTML using Minify Code:

	Visit minifycode.com.

	Click the HTML Minifier button.

If your browser window is a smaller size, you may see a blue icon in the top right. Click it to reveal the navigation menu.

	Open the index.html file for your website in a text editor.

	Copy all the text from your index.html file.

	Paste the text into the textbox on the Minify Code page.

	Click the Minify HTML button.

Your HTML is replaced with the minified version.

	Copy that code.

	Create a new folder called minified.

	In that folder, create a new file called index.html.

	Paste the minified HTML into the new index file and save the file.

	Upload the new, minified version of index.html to your web server.

Your mileage will vary depending on how much markup you have in your file. The bigger savings are often seen with minifying CSS. That process looks exactly the same as the previous task, but you’ll use the CSS minifier on minifycode.com instead of the HTML minifier.

Tip

As you delve deeper into web development, you will likely use tools that help you automate some of your work. Minifying is a great candidate for automation.

Tip

Because minified code is not useful when you’re actually writing HTML or CSS, you should keep an unminified copy of your code (the “development” version) and minify only what you plan to upload to your server (the “production” version).

Tip

If you ever want to “unminify” something, a process called beautifying, minifycode.com can do that too!

Optimize Your Images

Another quick win for improving performance is optimizing your images. There are three ways you can do this.

First, when you can, use SVG for simple graphics, since they are inherently smaller than pixel-based images like JPEGs.

Tip

If you have a very complex SVG, you might save in load time, but the browser will take a lot longer to render the image.

Second, if you are using pixel-based images, make sure your images are the appropriate size for the space they’re in. For example, if you have an image sized to 500x250, you shouldn’t be shrinking a 2000x1000 image by 75 percent; use a 500x250 image sized at 100 percent. You can do this easily in HTML using the techniques you learned in Chapter 7.

Another image format that has gained popularity is WebP. Developed by Google, the format makes images about 26 percent smaller than their PNG counterparts. It uses the .webp extension, and it’s supported by all major browsers except Safari at the time of this writing. You can learn more about how to use WebP at css-tricks.com/using-webp-images/.

Finally, you can compress your images. Compression is a way of shrinking a file size at the code level without altering what the file represents. In fact, minifying is a form of compression. We get a much smaller file size, but your website still looks the same. Another example is shorthand in text messaging or chat. Instead of “laugh out loud,” most people write “LOL.” It’s much shorter but means the same thing.

Why compress images?

Images often contain extra information that bloats the file size, like metadata about the image. This can be where the photo was taken, what camera was used, date and time, and more.

None of this matters to people visiting your website, especially when it’s loading slowly. So you can use compression and optimizing tools to remove that metadata and reduce image file sizes without losing quality (FIGURE 23.9).

[image: Two screenshots show the original and compressed versions of an image of the Galaxy. There are no significant differences.]

Figure 23.9 On the left is the original image, and the compressed version is on the right. Notice that there’s no difference in quality.

There are several free image-optimizing tools for macOS and Windows, as well as web-based services. For macOS, I recommend ImageOptim (imageoptim.com/). It’s been around for a long time, it works well, and it can integrate with other services through its API (for a price).

For Windows, RIOT (riot-optimizer.com/) is a free tool that works well.

ImageOptim also has a web interface with limited functionality (FIGURE 23.10).

[image: A screenshot of the webpage, imageoptim.com is shown.]

Figure 23.10 The interface for imageoptim.com/online has several options for optimizing your images.

The screenshot displays the compression settings of JPEG and PNG, used on the webpage, imageoptim.com. The option 'quality' includes three radio buttons such as low (smallest file), medium (selected), and high. The option 'color quality' includes three radio buttons such as messy, auto (selected), and sharp. Radio buttons such as JPEG, PNG, and dunno (selected) are included in the option 'Format. ' A submit button and a button to choose files from the storage are provided at the bottom.

To use ImageOptim to compress an image:

	Go to imageoptim.com/online.

	Keep all the settings at their default values for now.

You can always experiment with these settings!

	Click Choose Files and select one of the images from your website folder.

This website supports selecting multiple images if you want to process more than one at a time.

	Once you’ve selected your image, click Submit.

	After ImageOptim finishes compressing the image, you’ll be prompted to download the new version. Save it to the minified folder you created in a separate task.

	Upload the image to your website, replacing the old one.

Again, your mileage will vary depending on the image you use. But for the image used in Figure 23.9, the original was 4.3MB and the reduced version was 3.9MB.

Between using something like ImageOptim and sizing your images properly, your website should load a lot faster. But there’s something else you can do that will make a huge difference, which I cover in the next section.

Getting Creative with Images

Aside from sizing and compressing, you can get creative with the way you process and display images.

For example, the less complex the image, the less space it takes up. Consider using black and white or duotone images instead of full color—that can go a long way toward reducing file size.

Advanced Hosting Techniques

There are two terms you’ll likely hear as you learn more about webpage loading speed and performance.

The first is cache. Caching copies some of your website files to be stored on the visitor’s computer for faster access. Much like the local storage you learned about earlier, a cache is where a browser stores certain files that are unlikely to change often (like images and your CSS). This reduces the number of requests your browser has to make to the server, because the files are already technically on the user’s computer.

The second is content delivery network (CDN). This is a set of servers your website files are distributed to. When a user makes a request to your website, the server closest to the user serves up the needed files.

You can think of cache and a CDN this way: imagine that your favorite ice cream place is 20 minutes away from your home. The “request” for ice cream would take 20 minutes.

With cache, it would be as if you bought a gallon of the ice cream to keep in your freezer.

With a CDN, it would be as if the ice cream shop worked out a deal with your grocery store, which is only 10 minutes away, to sell the ice cream there.

Load Your Critical CSS First

Another term you’ll probably see, especially if you review your PageSpeed Insights results, is the term render-blocking resources. These are any files that need to be downloaded before the page can be displayed at all. The fewer render-blocking resources, the faster your page is perceived to load.

Imagine you’re going on a trip but you didn’t pre-pack a bag. Each time you get into your car, you realize you forgot something, so you run back inside to get it. It takes you much longer to get on the road. Each forgotten item is like a render-blocking resource. If you had packed a bag earlier, you would have been able to leave faster.

This is also known as time to first paint. The first paint is the very first render of your website. When users see a blank screen, they know the website is taking time to load. Your goal is to eliminate this blank screen as soon as possible, even if it’s not the full site (FIGURE 23.11).

[image: A screenshot shows the first paint of the webpage, filamentgroup.com.]

[image: A screenshot shows the last paint of the webpage, filamentgroup.com.]

Figure 23.11 Filament Group’s site employs several performance boosters, including critical CSS. You can see its first paint, where you can start reading the content, versus the last paint, which includes all the images, bells, and whistles.

The screenshot of the webpage, filamentgroup.com displays the following tabs at the top. About, Work, Blog, Code, and Hire Us. The tagline of the website is incompletely displayed. A few of the featured projects are displayed. None of the images are displayed in the first paint of this website.

The screenshot of the webpage, filamentgroup.com displays the following tabs at the top. About, Work, Blog, Code, and Hire Us. The tagline of the website reads, "we design responsive, accessible, performant, resilient, and beautiful websites." A couple of the featured projects are displayed along with a cover image.

Part of the reason I left this until last in the chapter is that it’s more complicated than the other techniques we’ve covered. It’s not just shrinking a file or some other basic task.

The lazy loading technique from Chapter 10 is one way to remove certain render-blocking resources and get your website loaded faster. However, everything you include in the <head> element of your website is also, by default, render-blocking.

For the purposes of this book, render-blocking resources means your CSS file. If it’s absolutely massive, it will take your website longer to load. So you can employ the following technique:

Move the most important CSS—that is, the CSS required to style the first part of the website—to an internal style sheet (see Chapter 11). Load the rest of the CSS later in the document, like right before the </body> tag.

Tip

There are lots of tools to help load only the critical CSS, and many are automatic. Unfortunately, they rely on tools we haven’t learned about in this book. If you’re curious, Smashing Magazine offers a good overview: www.smashingmagazine.com/2015/08/understanding-critical-css/.

Determine your critical CSS

If you’re not using automated tools, your first job is to determine which CSS is critical and which is not. Many times, the determining factor is the fold (FIGURE 23.12). This is any content that shows up in the user’s browser before they scroll.

[image: An example of styling the critical CSS is depicted.]

Figure 23.12 The fold is what loads in the browser without scrolling. Critical CSS should style for above the fold.

The browser window shows an example of the fold, the one that loads in the browser without scrolling. The sample webpage displayed in the browser is divided into equals sections. The section at the top represents "above the fold," and the other section at the bottom represents "below the fold."

Tip

The term the fold comes from the newspaper industry! Newspapers were always stacked folded. So of course only the part of the front page above the fold was visible, and thus it got by far the most attention.

When working with many different devices, determining the fold is impossible, but for the purposes of this book, let’s work with your desktop browser window. Take a look at your website and see what renders in the browser before you do any scrolling. This is the stuff that you should target for your critical CSS.

You can also use a tool like the Critical Path CSS Generator by Sitelocity (FIGURE 23.13).

[image: A screenshot of the Critical Path CSS Generator section of Sitelocity is shown. A URL bar is provided above the button, 'Generate Critical Path CSS. ']

Figure 23.13 Sitelocity’s Critical Path CSS Generator will help you determine what your website’s critical CSS is (sitelocity.com/critical-path-css-generator).

Tip

In critical CSS, you can also leave out certain special effects, like text shadows or box shadows. The goal is a fast first paint. You can add bells and whistles later.

CODE 23.1 shows a simple HTML example with a single comment denoting where I’ve determined the fold to be.

In this instance, you’ll want to include some body styles and the header and .primary-content styles in your critical CSS. Everything else can be put in the style.css file. For simplicity’s sake, CODE 23.2 includes the critical CSS.

CODE 23.1 Critical CSS markup example

Click here to view code image

<html>

 <head>...</head>

 <body>

 <header>...</header>

 <main>

 <section class="primary-

 → content"> ...</section>

<!--Here is "the fold"-->

 <section class="secondary">...

 →</section>

 </main>

 <footer>...</footer>

 </body>

</html>

To add critical CSS inline:

	Open your HTML file (or create a new one using Code 23.1).

	On the line after the opening <head> tag, type <style>.

	Add your critical CSS. If you’re using the demo code, use Code 23.2 for this part.

	On the next line, type </style>.

CODE 23.2 The critical CSS

Click here to view code image

body {

 max-width: 700px;

 padding: 30px;

 margin: 0 auto;

 font-family: 'Playfair Display', serif;

 background-color:#fcf6e7;

}

h1 {

 color: #282009;

 font-size: 4em;

 font-weight: 900;

 letter-spacing: 0.08em;

}

.byline {

 font-family: Futura, sans-serif;

 font-style: italic;

 font-weight: bold;

 text-decoration: underline;

}

header img {

 width: 50px;

 height: auto;

 vertical-align: middle;

}

.primary-content {

 background: #FFFFFF;

 padding: 30px;

}

p {

 font-size: 24px;

}

	On a new line right before </body>, add a reference to your CSS file by typing <link href="style.css" rel="stylesheet" type="text/css" />.

	Save your files and upload them to your server.

	Visit the newly created HTML file. You should notice that some of the styles load initially, and then the rest of the styles finish loading once the browser gets to the style.css reference at the end of the document.

[image: Video play icon.] VIDEO 23.3
Testing Critical CSS

Once you add the critical CSS to your website, it’s important to test your files to make sure that the first paint looks usable and that the rest of the styles fully load later. Let’s create new HTML and CSS pages to see how quickly a page loads before and after adding the critical CSS.

Wrapping Up

In this chapter you’ve learned some important principles and techniques for speeding up your website. A fast website is important because it keeps users from abandoning it, and we want as many people to use our site as possible.

In that same vein, another way to ensure anyone who wanted to view your website can is to make it accessible. Let’s take a look at how in Chapter 24.

Conditionally Load Style Sheets

Aside from loading your critical CSS and then all the rest of your CSS in a single file, you can separate it out further by loading it conditionally based on media queries.

For example, let’s say you have three separate style sheets:

	One for general (noncritical) styles

	One for big device styles

	One for print styles

You can load them using media queries right in the HTML tag:

Click here to view code image

<link href="style.css" rel="stylesheet" type="text/css" />

<link href="large-screen-styles.css" rel="stylesheet" type="text/css"

→media="screen and (min-width: 1301px)"/>

<link href="print-styles.css" rel="stylesheet" type="text/css" media="print" />

This ensures that the last two style sheets are only loaded when they are needed.

24

Web Accessibility

In This Chapter

Including as Many People as Possible

What You’ve Done so Far

Additional Tags and Attributes

Accessibility Tests and Validation

Finding Your WCAG Rating

Wrapping Up

Throughout this book, you’ve learned how to make websites. You’ve learned how to support devices of all shapes and sizes. And you’ve learned how to make your website load as quickly as it can on internet connections fast and slow. But there’s one more way you can make sure your website works for whoever wants to view it: make it accessible.

Web accessibility means designing your website in such a way that people with disabilities can use it. This can be making sure your images have alt tags for screen readers, choosing color schemes that are readable for those who are color-blind, or even adding keyboard shortcuts to help those who can’t use a mouse to navigate.

Including as Many People as Possible

An important point to make at the outset is one that’s often stated by accessibility advocates: web accessibility doesn’t just help the disabled—it makes your website more usable for everyone.

Usability is a big reason this book has focused on semantics, using the right tags, and making your website work across multiple devices, screen sizes, and connection speed. You want to reach as many people as possible with your website. Another step in that process is realizing that you’re not designing your website just for yourself.

Tip

This chapter scratches the surface of accessibility and describes a few things you can do. If you want to learn more, there’s a fantastic book called Accessibility for Everyone, by Laura Kalbag: abookapart.com/products/accessibility-for-everyone.

A Note on the Legal Side of Things

There are also certain legal ramifications in certain countries for not making your website accessible. In the United States, the retailer Target and the pizza delivery company Domino’s both faced legal action for not having websites that were accessible enough.

While that shouldn’t be the main reason you make your website accessible, it is important to keep in mind that having a website that isn’t accessible is viewed as discriminatory.

Designing for a diverse set of users

When thinking about web accessibility, it’s important to remember that not everyone uses a computer with a keyboard and mouse.

About 12 percent of the United States population has some disability. That could range from color blindness to motor impairments, and everything in between. Here’s a short list of disabilities to think about, and how they can affect how people use your website:

	Partial eyesight loss can make small text hard to read and images hard to see clearly. Users may rely on a screen reader for help.

	Color blindness makes it hard to see or distinguish certain colors (FIGURE 24.1). If you’re using a color scheme that doesn’t have enough contrast, text may be completely invisible to some users (FIGURE 24.2).

[image: Four photographs are shown to depict the different color schemes applied to the same photograph.]

Figure 24.1 The same image as viewed by people with varying degrees of color blindness, from none to completely monochrome.

(1) Photograph of a kid playing in the backyard. All the colors displayed in the photograph are distinct. (2) Photograph of a kid playing in the backyard. Some of the colors displayed in the photograph are distinct. The overall shade of the photograph is in pink color. (3) Photograph of a kid playing in the backyard. A couple of colors displayed in the photograph are distinct. The overall shade of the photograph is in olive green color. (4) A monochrome photograph of a kid playing in the backyard.

[image: Two figures with different colors of text are shown to define an idea on the readability of the text for the people having color blindness.]

Figure 24.2 Green text on a black background is readable for those without color blindness. But for those who are green-blind, the text looks dark purple and becomes unreadable.

Figure on the left shows the text, "Here is some text against a color background" on a black background. The color of the text is green. Figure on the right shows the text, "Here is some text against a color background" on a black background. The color of the text is dark purple.

	Full or partial hearing loss means users will not be able to listen to videos or audio on your website. The best fix for this is to include transcripts and captions or subtitles for videos.

	Motor impairments may cause users to have difficulty using traditional pointing devices like a mouse. A screen reader can help with input, and making your website navigable by keyboard will help as well.

	Cognitive impairments like dyslexia or memory deficits can affect how people use your website. Using good, clear fonts and keeping your website clear of distractions isn’t just good UX, it can make it more accessible.

Making your website accessible, combined with tools available in browsers and other software, can make it so anyone can use your website without trouble.

Tip

Two good tools for figuring out workable color schemes are paletton.com/ and coolors.co/.

What You’ve Done so Far

Luckily, a lot of what you’ve done so far goes a long way toward making your website accessible. Using the appropriate HTML elements for sections of your website clues screen readers into what kind of content you’re building.

Using heading tags (and the right heading tags) breaks up long blocks of text and makes them easier to consume and understand.

With forms, using different fields for different types of input helps users better understand the type of data they’re inserting. Similarly, labels provide meaning to those fields.

Using the alt attribute on images allows images to be described when they can’t be downloaded or viewed.

Tip

For alt attributes, the more descriptive, the better. For Figure 24.1, an alt tag of “girl in yard” is better than nothing. But it’s not as good as “A girl toddler wearing a backwards hat and holding a pink bucket in a fenced-in yard.”

The testing you’ve learned about also helps with accessibility. By improving performance and testing on different browsers and devices, you’re ensuring your website can work anywhere and everywhere.

You can see how well you’ve done by turning off the styles on your website and viewing just the HTML (FIGURE 24.3). This is what both search engines and screen readers will see. In Chrome, you can do this using the Web Developer extension you downloaded in Chapter 6.

[image: A screenshot of the style disabled home page of casabona.org is shown. The webpage is devoid of design. The tabs are displayed in a bulletin list. The contents of the webpage are displayed in order.]

Figure 24.3 Casabona.org with all styles disabled. It’s not pretty, but it’s usable!

To turn off CSS in Chrome:

	Visit your website in Chrome.

	Click the Web Developer cog icon ([image: Cog icon]).

	Click the CSS Tab.

	Click Disable All Styles.

With no styles, does your website make sense? Does the information flow the way you expect it to? Is the information that should be at the top actually at the top?

Great! Your website is well on its way to being accessible. But there is more you can do. In the rest of this chapter, you’ll learn important tests and techniques that will help you make sure your website is accessible.

Additional Tags and Attributes

Accessibility is something you should plan for from the beginning of your project. Before you start using evaluation tools, do as much as you can during development to make your website accessible.

Using well-structured HTML is the best thing you can do to support accessibility, so make sure to use the skills you’ve learned throughout the book to make a website accessible at its core.

However, sometimes in the course of building your site you do need to use HTML elements that don’t necessarily have any meaning, like div or span. You might also create an area of your site that does not have an HTML tag that would give it meaning. Luckily, that’s where ARIA tags come in.

ARIA is the shorthand way of writing WAI-ARIA, or Web Accessibility Initiative–Accessible Rich Internet Applications. Most people just refer to it as ARIA.

ARIA is a way of providing to the browser more information about an element when the proper meaning isn’t built into HTML. You can do that by using two different types of attributes:

	role defines a type of user interface component based on its function (examples include button, alert, and search). This does not change how the element is displayed; it just gives the element more meaning (FIGURE 24.4).

[image: A screenshot shows the alert message "Now though Sunday, get 25 percent off! " written in a green alert box. The color of the text is white.]

Figure 24.4 An alert with basic styles applied. It also contains the more meaningful role="alert" attribute.

	States and properties provide further information about a particular element. For example, in a date selector, the value of the month may be a number (10, for example). The property aria-valuetext can have the value October so that screen readers can give the user more meaning for that particular element.

To add role to a div:

	In an HTML file, right after the opening <body> tag, type <div class="sale-alert".

	Type role="alert">.

Using the ARIA role attribute, we’re telling browsers and screen readers that this div is an alert and should be treated as such.

	Type Now though Sunday, get 25% off!.

	Type </div>.

Now your browser knows that this particular div is an alert on your site. This is particularly useful for screen readers, which can now tell users more than just “This is a container on a page.”

Tip

Get a full list of roles, states, and properties at developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/ARIA_Techniques.

States and properties

States and properties can be used to provide further descriptions of elements or to connect elements in a meaningful way. One way is by connecting a password hint to the password field with aria-describedby (CODE 24.1 and FIGURE 24.5).

CODE 24.1 A password field with the aria-describedby attribute applied

Click here to view code image

<label for="password">Enter a Password:</label>

<input type="password" id="password" name="password" aria-describedby="hint" />

<div id="hint">Must be at least 10 characters, and include a Capital letter, number, and special character.</div>

[image: A screenshot shows the textbox used to enter a password. The instruction, "Must be at least 10 characters, and include a capital letter, number, and special character" is displayed below the textbox.]

Figure 24.5 A password field with a hint box. Thanks to the use of the aria-describedby attribute, the browser knows the two elements are related.

[image: Video play icon.] VIDEO 24.1
Changing ARIA States and Properties

ARIA states and properties are often updated in real time through JavaScript. This video shows an example of different sections of an accordion list expanding, causing the ARIA state to change.

However, these can sometimes be a little tricky to apply for beginning users of HTML and CSS, since many are manipulated by JavaScript.

For example, you might design a menu that is shown and hidden by JavaScript based on a click event (like in Video 24.1). You can add aria-expanded="true" to the event when the menu is open, and aria-expanded="false" when it’s closed.

Tip

A property of an element is relatively static (for example, aria-labelledby identifies the label of an element), but a state is a dynamic property (for example, whether a checkbox is selected or unselected). In practice, though, it’s not important to be aware of the distinction, and most people use attribute to refer to both of them.

Tip

One interesting example of how ARIA properties are used is the aria-live property. It allows you to define live regions, or regions that get updated in real time. Setting its value to polite will announce a live change when the user isn’t actively scrolling or typing. Setting the value to assertive will interrupt what the user is doing to make the announcement. You might use polite for something like Twitter, when there are new tweets. Use the assertive value for something truly important, like an error or warning.

Accessibility Tests and Validation

Once you’ve got your website created, there are a few ways to test and validate your work to ensure it is accessible.

The Web Content Accessibility Guidelines (WCAG) are maintained by the Web Accessibility Initiative (www.w3.org/WAI/standards-guidelines/wcag/). They are part of the World Wide Web Consortium (W3C), which develops and maintains web standards. You can test your website against WCAG to learn how to make your website more accessible.

The guidelines are currently in their second version (WCAG 2.1), and there are three levels of accessibility, ranging from Level A to Level AAA:

	Level A is the lowest level of conformance. This is a great place to start to make sure your website is minimally compliant.

	Level AA is the next level up, where your website meets more criteria in the guidelines. This is the goal most organizations aim for because it’s reasonably achievable without much added cost.

	Level AAA is the highest level and very difficult (and costly) to achieve. For the most part, only accessibility-focused organizations aim for this rating.

Testing tools

There are three testing tools you’ll learn how to use to evaluate your website:

	Our old friend Google Chrome DevTools (FIGURE 24.6).

[image: A screenshot shows the accessibility panel of the Development tools Panel in Google Chrome.]

Figure 24.6 The accessibility audit built into Chrome

The screenshot of the chrome window displays the webpage casabona.org. The left of the page shows the introduction part of Joe Casabona. The development tools panel is displayed on the far right of the browser. The accessibility option under the Audit tab is displayed in the panel.

	WAVE by WebAIM gives detailed test results and feedback. It is highly recommended by web accessibility experts (FIGURE 24.7).

[image: A screenshot shows the homepage of Wave by WebAIM.]

Figure 24.7 WAVE by WebAIM (wave.webaim.org/) is a tool for accessibility testing.

The screenshot of the webpage of Wave by WebAIM displays the following sections at the top. Site-wide wave tools, browser extensions, API, Help, About, Terms of Use, and Feedback. A webpage address bar is provided at the top. An introduction to the Wave Web Accessibility tool is presented in the content pane.

	A Chrome extension named Colorblindly tests for color blindness (FIGURE 24.8).

[image: A screenshot of the Colorblindly extension in Google chrome is shown.]

Figure 24.8 Colorblindly is a free Chrome extension that applies color filters to any website to simulate different types of color blindness.

The screenshot of the colorblindly extension shows the tabs, overview, reviews, and related. The tab 'Overview' is selected. Three images with and without a filter are displayed side by side. The filter applied images are for the people with the condition of Tritanopia(blue-blind).

[image: Video play icon.] VIDEO 24.2
Digging into the Accessibility Test in Chrome

The accessibility test built into Chrome is a fantastic starting point for checking your website. It provides a score and some helpful tips. Here’s how it works.

To test accessibility with Google Chrome:

	Visit your website in Chrome.

	Open the DevTools by clicking the menu and choosing More Tools > Developer Tools.

	Click the Audits tab.

You may need to click the double arrow ([image: Double arrow icon]) to reveal the Audits tab.

	Deselect all categories except Accessibility (FIGURE 24.9).

[image: A screenshot shows the Audits tab of the Chrome development tools panel.]

Figure 24.9 The report settings for the Audits tool in Chrome

The screenshot of the Audits tab shows the following three sections. Categories, Community plugins (beta), and Device. Checkboxes such as performance, progressive web app, best practices, accessibility, and SEO are provided under Categories. The accessibility of the checkbox is selected. Two radio buttons, mobile, and desktop are provided under Device. The radio button, the desktop is selected. The checkbox, publisher ADs are provided under Community plugins. A generate report button is provided at the top.

	Under Device, select Desktop.

	Click the Generate Report button.

The report gives you a score and a list of areas you can fix, as you saw in Figure 24.6.

To use WAVE for detailed testing:

	Visit wave.webaim.org.

	In the Web Page Address field at the top of the page, enter your website’s URL.

The test renders, and it gives you a detailed report of accessibility features, warnings, and errors (FIGURE 24.10).

[image: A screenshot shows the summary of the WAVE test results for casabona.org.]

Figure 24.10 The results of the WAVE test for Casabona.org

The screenshot of the browser window shows the homepage of casabona.org. The summary of the test results is displayed to the left of the browser window. The summary includes the number of errors, contrast errors, alerts, features, structural elements, and Aria. The details of individual elements on the webpage are displayed with the help of an icon. The right side of the page shows the introduction part of Joe Casabona.

It also gives you a report on your color contrast (FIGURE 24.11).

[image: A screenshot shows the contrast tab of the Wave Results.]

Figure 24.11 The contrast test results in WAVE

The screenshot of the Wave test results displays the following tabs: summary, details, reference, structure, and Contrast. The tab 'Contrast' is selected. Two sections, foreground color, and background color are shown at the top. The color, color code, and a slider to modify the lightness are shown in each of the sections. The contrast ratio and the text size sections are shown below. The results of normal and large text sizes are shown. An option to desaturate the page is provided at the bottom with a description.

This test is much more interactive and provides tons of detailed analysis to make sure your website is not only accessible but also web structured and free of markup errors.

[image: Video play icon.] VIDEO 24.3
Using WAVE

There are a lot of features in WAVE, so we walk through the interface to show you what the icons mean and how you can use the data provided by the test.

To test for color blindness with Colorblindly:

	In Chrome, visit the Google Chrome Web Store (chrome.google.com/webstore) and search for colorblindly.

	On the Colorblindly extension page, click the Add To Chrome button to install the extension. A new icon ([image: New icon]) will appear in your browser bar.

	Visit your website.

	Click the Colorblindly icon.

	Select the Green-Weak/Deuteranomaly option in the menu (FIGURE 24.12).

[image: A screenshot shows a list of the forms of color blindness simulated by the extension Colorblindly.]

Figure 24.12 The forms of color blindness Colorblindly can simulate

The screenshot of the Colorblindly extension displays the following radio buttons. Trichromacy or normal, blue cone monochromacy or achromatomaly, monochromacy or achromatopsia, green-weak or deuteranomaly, green-blind or deuteranopia, red-weak or protanomaly, red-blind or protanopia, blue-weak or tritanomaly, blue-blind or tritanopia. The radio button 'green-weak or deuteranomaly' is selected. An information icon is shown at the bottom.

This is the most common form of color blindness.

	Review your website to make sure you can still read everything!

	Repeat steps 5 and 6 for each form of color blindness.

Finding Your WCAG Rating

You may have noticed in all those tests that you weren’t given a specific WCAG level rating. There’s one more test you can conduct for that, using AChecker (FIGURE 24.13).

[image: A screenshot of the webpage, Achecker is shown.]

Figure 24.13 AChecker (achecker.ca/checker/) compares your website against the WCAG guidelines and shows you what you need to fix.

The screenshot of the webpage, Achecker shows the following tabs at the top. Web page URL, HTML file upload, Paste HTML Markup. The tab 'Web page URL' is selected. An address bar is provided at the top above the 'check it' button. The 'check it' button is highlighted. The bottom half displays the options such as guidelines to check against and report format. Various radio buttons are provided under 'Guidelines to check against'. The radio buttons included are BITV 1.0 (Level 2), section 508, Stanca Act, WCAG 1.0 (Level A), WCAG 1.0 (Level AA), WCAG 1.0 (Level AAA), WCAG 2.0 (Level A), WCAG 2.0 (Level AA), And WCAG 2.0 (Level AAA). The radio button WCAG 2.0 (Level AA) is selected. Two radio buttons such as view by guideline and view by line number are provided under-report format. The radio button, view by the guideline is selected.

To check your site against WCAG level guidelines:

	Visit achecker.ca/checker/.

	Select the Web Page URL tab.

	In the Address field, type your website’s URL.

	Click Options.

	Under Guidelines To Check Against, make sure the most recent WCAG Level A option is selected.

At the time of this writing, it’s WCAG 2.0 (Level A).

We’re starting simple with WCAG Level A so that you can get the baseline issues fixed.

	Under Report Format, select View By Line Number.

	Click the Check It button.

On the Report page, you are given a list of issues you need to fix, broken down by line number, in order to become Level A compliant (FIGURE 24.14).

[image: The screenshot shows the Achecker results for casabona.org.]

Figure 24.14 AChecker WCAG Level A results for Casabona.org

The screenshot shows the Achecker results for casabona.org under the section Accessibility review. An address bar is provided at the top above the 'check it' button. The address of casabona.org is entered in the address bar. The Accessibility review section shown below displays the results. The accessibility review displayed is based on the Guideline, WCAG 2.0. Various tabs such as known problems, likely problems, potential problems, HTML Validation, and CSS Validation are displayed at the top. The tab 'known problems' is selected. An error in one of the lines is displayed under this tab.

Wrapping Up

With that, you have enough tools to keep you busy! Over the last few chapters you’ve learned how to test your website, make it more performant, and make it more accessible. You’re well on your way to becoming a fantastic web developer!

But in this chapter and throughout the book, you’ve seen references to another important aspect of web development: JavaScript. While that topic is too much to cover in this book, in Chapter 25 you will get a quick introduction to it as well as to some other technologies you might want to check out.

25

Going Beyond HTML & CSS

In This Chapter

JavaScript

Common JavaScript Libraries

Version Control

Build Tools

Wrapping Up

HTML and CSS form the bedrock of any website. And now you know how to structure and style webpages, as well as how to make them fast and accessible.

But they are only the beginning of your web development journey. Now that you know the foundation, it’s time to show you a few tools worth looking at while you master HTML and CSS, starting with JavaScript.

JavaScript

You’ve seen the term JavaScript more than once in this book. You even got to write a tiny bit in Chapter 10 when you learned about local storage. But it hasn’t yet been properly defined for you.

JavaScript is a programming language that is often used in web development. In the browser, it’s a client-side language (like HTML and CSS). It usually adds dynamic features to a webpage in the form of manipulating elements, changing styles on the fly, advanced form validation, and more.

As you learn JavaScript, you’ll want to strike a balance when using it. Loading too many different JavaScript files can make your page take longer to load. Using too much JavaScript can also affect your browser’s performance, since it’s executing code in real time.

If you’ve ever had a browser crash on you, there’s a decent chance JavaScript was at least partially to blame.

The <script> tag

JavaScript is included on a webpage using the <script> tag, which you saw in Chapter 10. There are two ways to use the <script> tag:

	You can write the code inline—between the <script> and </script> tags—like you did with local storage.

	You can include the src attribute, like you did with the picturefill.js example: <script src="picturefill.js"></script>.

And as with the <style> tag, you can include the <script> tag anywhere within the <head> or <body> tags.

Although you won’t learn how to write proper JavaScript here, you’ll likely come across common JavaScript libraries (or applications) that you can use on your website without actually writing any (or writing very little) yourself.

Common JavaScript Libraries

There are tons of JavaScript libraries out there, and it seems new ones come out every week. You’ll likely want to try your hand at a bunch once you get your legs under you, but I’d caution you to be judicious in what you decide to learn. In particular, when evaluating a library, make sure of the following:

	It has been around for at least one and a half to two years. That shows that the developers are invested in it.

	It is well supported by the developers and the users. More people using it means it’s more likely to stick around.

	You actually need it! There’s a JavaScript library for everything under the sun. But remember that the more resources you use, the heavier your page becomes. Only load the things you need to load.

Start with jQuery

jQuery (jquery.com) has been around for a very long time (especially in web years) (FIGURE 25.1). Even though its usage is on the decline, it’s still a great way to dip your toe in the waters of JavaScript because it simplifies a lot of common actions without weighing down your site with excess code.

[image: A screenshot of the homepage of jQuery is shown.]

Figure 25.1 The homepage for jQuery (jquery.com), a longstanding and popular JavaScript library

The screenshot of the jQuery homepage displays the following tabs at the top. Download, API Documentation, Blog, Plugins, and Browser Support. The significant features of jQuery are displayed right below the tabs. A download jQuery button is provided beside the features. An introduction to jQuery is shown in the content pane. The section such as other related projects and a brief look is provided below.

Here’s how it works: you include jQuery on your webpage, and then you can use it instead of vanilla JavaScript (that is, regular JavaScript) to perform tasks like showing or hiding elements, fading elements in or out, and more.

Tip

jQuery (and JavaScript in general) allows you to change areas of your website based on user interaction. Be mindful about using JavaScript when you should be using CSS.

Other popular JavaScript technologies to consider

I recommend jQuery because its barrier to entry is a lot lower than that of other JavaScript libraries. But several have gained popularity and are worth considering because you’ll likely see them come up a lot:

	React.js: Created by Facebook and made open source, React has found its way into lots of major projects, so this one is definitely worth looking into (FIGURE 25.2)

[image: A screenshot of the homepage of React is shown.]

Figure 25.2 React.js (reactjs.org/) is an open source library that has gained a lot of popularity in recent years.

The screenshot of the homepage of React displays the following menus at the top. Docs, Tutorial, Blog, and Community. The cover of the webpage contains the options, get started, and take the tutorial. Descriptions are displayed under the following three titles in the content pane. Declarative, Component-based, and learn once, write anywhere.

	Angular: This one was created by another heavy hitter, Google. It’s been around a bit longer than React and is used to help with building single-page applications and websites (FIGURE 25.3)

[image: The screenshot of the webpage of Angular displays the logo of Angular at the top. A get started button is provided beside the logo. The tagline of the logo reads, 'One framework. Mobile and desktop'.]

Figure 25.3 Angular by Google (angular.io/) makes it particularly easy to create interactive experiences on both desktop and mobile.

	Node.js: This is an open source library that’s a little different from the others—it executes JavaScript outside your browser on a server, and is often used for tools that help you build websites rather than on the websites themselves. Node is very popular, so you’ll definitely come across it (FIGURE 25.4).

[image: A screenshot of the homepage of the node is shown.]

Figure 25.4 Node.js (nodejs.org/) is a bit different because it’s not usually run in the browser.

The screenshot of the webpage of the node displays the following menus at the top. Home, About, Downloads, Docs, Get Involved, Security, and News. Buttons are provided to download the versions 12.6.3 LTS and 14.1.0 for macOS (64 bit). The 12.6.3 LTS version is recommended for most users. The 14.0.1 current version contains the latest features. A signup link is provided at the bottom.

	Vue.js: Finally, Vue is a relative newcomer in the space, but it has been adopted by many for its ease of use, especially when creating user interfaces (FIGURE 25.5).

[image: A screenshot of the homepage of vuejs is shown.]

Figure 25.5 Vue.js (vuejs.org/) is younger than the rest, but it’s gained popularity because it has a low learning curve and is fast.

The screenshot of the webpage of vue.js shows the logo at the top of the content pane. The content pane is titled 'The progressive Javascript Framework. ' Links such as why vue.js, get started, and Github are provided in the content pane beside the logo. The versatile, approachable, and performance features of vue.js are described at the bottom.

Use JavaScript Only When You Need To

Once you learn JavaScript, you might be tempted to make changes to your CSS, or even to your content, using only JavaScript because it’s easier. I strongly recommend you don’t.

HTML, CSS, and JavaScript all have their place, and you shouldn’t use JavaScript to change styles when CSS would be a better fit. Remember that adding JavaScript can impact performance in more ways than one.

As you evaluate whether or not to use JavaScript, ask yourself if it’s something HTML or CSS can (and should) handle. If not, figure out how to add the script to your page while burdening it the least.

Version Control

Throughout this book, you’ve likely been making edits to your files, changing styles, adding and removing content, and then saving over the old changes.

While that’s okay as you learn, in a more professional environment (especially working with teams), you’ll want a way to be able to undo changes if you need to. That’s where version control comes in.

Version control is the systematic management of changes to the pieces of a project. In the case of a website, you use version control to track and organize multiple copies of its files as they continue to be developed. You keep a single copy of your live site (called the master) and you create a development copy to work on (FIGURE 25.6). Each copy of the code is referred to as a branch.

[image: An overview of master, development, and feature branches depicts an idea of version control.]

Figure 25.6 A visualization of master, development, and feature branches. Each circle represents a commit, and each dotted line is the creation of a branch. Each solid line is a merge.

The figure shows the relationship between the three branches, master, development, and feature. The master branch at the top shows two circles connected by a solid line. The development branch at the middle shows three circles connected by two solid lines. Further, a dotted line is drawn from master to development on the left, and a solid line is drawn from master to development on the right. The feature branch at the bottom shows eight circles connected by four solid lines and a dotted line. Further, a dotted line is drawn from development to feature on the left, and a solid line is drawn from development to feature on the right. Note: circle represents a commit, the solid line represents a merge, and the dotted line represents the creation of a branch.

Version Control Workflows

There are lots of opinions on what the proper version control flow should be. This book outlines the basic idea of version control, but individual teams implement their own processes.

In fact, the process outlined above is a popular one based on GitFlow (nvie.com/posts/a-successful-git-branching-model/). But there are many out there you can try based on project and team needs.

For smaller projects where it’s just me, I’ve used a master/feature branch flow, where I create a branch for each feature, no matter how small, and then merge it back with the master when I’m done.

As you start to experiment with version control, the master/feature flow is a good way to familiarize yourself with the process.

How version control works:

	Your live site, the code that’s currently uploaded to your server, is the master branch. This changes only when you’re ready to launch a new version of your website.

	There is a second copy of the live site, often known as the development branch. This allows you to make changes to your website without irrevocably breaking your live site.

	Each new feature (design changes and new sections, images, or content) goes in its own feature branch. This lets you compartmentalize your changes, working on one at a time. Again, this makes it so you can work on one section of your website with the confidence that you won’t break the entire site.

	Whenever you add a change and save it, it’s called a commit.

	Once you’re ready to add the new features to your website, you add them to the development branch. This process is known as merging and pushing. A merge takes your code and combines it with the development branch. A push sends your newly updated branch to the repository. The repository is where all the files and changes are tracked, and it can be a folder on your computer or it can be uploaded to a server that has Git enabled (more on Git in a moment).

If you’re working with other people, it ensures that you don’t have any conflicts with another feature branch someone else is working on.

	Finally, once the development branch is in a state where you’re ready to make the new site live, you merge the entire development branch into the master branch.

Use Git for version control

There are several version control tools out there (much like there are many JavaScript libraries), but Git is the clear winner (unlike with JavaScript technologies).

The great thing about Git is that it’s free, and you can install it right on your computer—no additional tools needed.

However, the easiest way to get started is to sign up for a GitHub account (FIGURE 25.7). GitHub is a free tool that adds a nice interface and social interactions on top of Git.

[image: A screenshot shows the Github profile of Joe Casabona.]

Figure 25.7 A typical GitHub profile. You can see information about the developer and the available repositories.

The screenshot of the Github profile of Joe Casabona displays the following tabs at the top. Overview, repositories, projects, stars, followers, following. The tab 'Repositories' is selected. A search bar is provided under this tab. Few repositories are also listed under this tab. The display picture, a description of the user, user location, mail, and website links are shown at the left of the profile. A sign in or sign up button is provided at the top right of the page.

You can then get the GitHub desktop client, which allows you to easily interact with GitHub. Create codebases (called repositories, or repos) and start playing around. You can even make copies of pre-existing codebases (like the one for this book). That process is called forking. Downloading the code that you want to make edits to is called cloning.

[image: Video play icon.] VIDEO 25.1
Using GitHub

GitHub is a fantastic and free tool for use with Git. It’s one of the easiest ways to get started with Git.

Here you’ll learn how to interact with GitHub using the desktop app.

To create a GitHub account:

	Visit github.com.

	Fill out the signup form (FIGURE 25.8).

[image: A screenshot of the signup page of the Github is shown.]

Figure 25.8 The GitHub signup page

The screenshot of the webpage of Github shows the following tabs at the top. Why GitHub, team, enterprise, explore, market place, and pricing. Sign in and Signup buttons are provided at the right side of the page. The content pane of the Github page displays the signup form. Textboxes to enter the user name, email, and password are provided above the Sign up for Github button. The left side of the page displays a short description of the Github platform.

	Verify that you’re a human being.

	Answer a few short questions about how you’re going to use GitHub.

	Verify your email address.

Now you’re ready to start using GitHub!

To add a repository to your account:

	Make sure you’re logged in to your GitHub account.

	Visit the GitHub repository you want to make a copy of. Try out github.com/jcasabona/html-css-vqs.

	Click the Fork button on the top right of the page (FIGURE 25.9).

[image: A screenshot shows the fork button on the Github page of Joe Casabona.]

Figure 25.9 The Fork button lets you add a copy of the codebase to your account.

The screenshot of the Github page displays the tabs such as Code, Issues, Pull Requests, Actions, Projects, Wiki, Security, and Insights at the top. The tab 'Code' is selected. Buttons such as Watch, Star, and Fork are provided on the top right of the page. The fork button is highlighted. The code section has no descriptions, websites, or topics provided. Six options are given below: 1 commit, 1 branch, 0 packages,0 releases, 1 contributor, and MIT. Buttons such as branch, new pull request, create a new file, upload files, find file, and clone or download.

The repo is now part of your account! You can make changes to it without getting permission from the owner of the original codebase.

Build Tools

The final big concept in this chapter is build tools. We touched on this a little bit in Chapter 20 with CSS preprocessors, but there are a whole set of tools to help you build websites. They are called build tools, and they can do everything from setting up your folder structures and compiling Sass to checking your code for errors before you upload it to your server.

Developers like build tools because they automate a lot of complex processes for them, but they also complicate the overall web development process. Instead of opening up your text editor and writing HTML and CSS, you first need to learn to use the command line, install a set of tools, and configure everything properly. I personally try to avoid build tools unless I’m working on a big, complex project, or with a large team where consistency across work environments is important.

This is definitely the most complicated topic in this chapter, so we aren’t going to dive deep into it, but I do want to share with you some popular build tools you might hear mentioned:

	Gulp and Grunt: I’m lumping these two together because they are so similar that distinguishing them on features won’t yield much. Gulp (FIGURE 25.10) is a little newer and a little cleaner, which means it’s a little more readable. Grunt (FIGURE 25.11) has been around a little longer and has more features and integrations.

[image: A screenshot of the home page of Gulp is shown.]

Figure 25.10 Gulp (gulpjs.com) is a lightweight and popular build tool.

The screenshot of the webpage of Gulp displays the following tabs at the top. Get started, API, Plugins, Donate, and Enterprise. A pictorial representation of the work done by Gulp is displayed in the content pane. The work done is as follows. The typescript, PNG, and Markdown are transformed into Javascript, WebP, and HTML by the Gulp.

[image: A screenshot of the home page of Grunt is shown.]

Figure 25.11 Grunt (gruntjs.com) is another widely popular, feature-packed build.

The screenshot of the webpage of Grunt displays the following tabs at the top. Getting started, Configuring tasks, Plugins, and Documentation. The links to the latest stable and development version of Grunt are displayed on the left. Descriptions on the need for a task runner and Grunt are shown in the content pane.

	CodeKit: If you’re a Mac user, CodeKit (FIGURE 25.12) is definitely the way to go when you’re starting out. It has a GUI, which means you’re not relying on the command line. It also means it’s much easier for beginners to understand. That said, it might not (emphasis on might) be as flexible a tool as Grunt or Gulp, and its code may not be as portable as that produced by those tools.

[image: The screenshot of the Codekit application displays the file browsing section. Various files are listed. The project history and contents are displayed on the far right of the application.]

Figure 25.12 CodeKit (codekitapp.com) is a fantastic Mac app that puts a GUI on top of the command-line build tools. This is a great way get started with build tools.

CSS Frameworks

A framework is a codebase that you can tap into and use in your own projects. It will do a lot of the foundational work so you can focus on building new aspects of your website.

They work by providing you with a core set of CSS classes and base styles to give you a head start on your projects.

Another way to level up your skillset, especially with CSS, is to learn a popular CSS framework:

	Bootstrap: This super-popular CSS framework was started by Twitter and is used by thousands of web developers. It’s great for making sure your CSS is rock solid and properly responsive. Get it at getbootstrap.com.

	Zurb Foundation: Foundation is a widely popular family of frameworks that provides not only CSS but also HTML and JavaScript. Developed by Zurb (get.foundation), it’s fast and customizable, and it’s used by brands like Mozilla, Disney, and Amazon.

	Tailwind CSS: Tailwind (tailwindcss.com) is a relative newcomer in the space. It touts itself as less “opinionated” than other frameworks because it provides you only the utilities you need without all the bloat of extra styles for things like buttons and cards.

Wrapping Up

As we conclude our journey together, I want to state that this chapter wasn’t meant to overwhelm you. I wanted you to see what else is out there, and the likely candidates for what to learn next.

Learning a CSS framework can make you a better CSS developer. And JavaScript goes hand in hand with HTML and CSS. Checking out jQuery and familiarizing yourself with the complex world of web programming languages are good next steps, especially if you want to create websites professionally.

We’re at the end of the book and what’s next is a quick recap of what you learned, together with a few helpful resources.

Final Wrap-up

What’s Next?

Congratulations! You’ve now completed HTML and CSS: Visual QuickStart Guide. We’ve covered a lot of ground, from basic HTML formatting and layouts to advanced techniques for styling text with CSS. We even took a look at important testing procedures, like those for rendering on mobile devices, performance, and accessibility. So what should your next steps be?

I recommend you continue honing your HTML and CSS skills. Here are a few useful resources:

	If you haven’t checked out the videos that accompany this book, definitely do that!

	You can get exercises and common patterns for HTML and CSS at casabona.org/vqs/.

	CodePen has fantastic examples of clever HTML, CSS, and JavaScript at codepen.io.

	Try out the free tutorials at Codecademy: www.codecademy.com/learn/learn-html for HTML and www.codecademy.com/learn/learn-css for CSS.

In Chapter 25, I threw a lot of different tools at you. It can seem daunting. But the next language you should learn is JavaScript. As it turns out, Peachpit has a Visual QuickStart Guide for that too: www.peachpit.com/store/javascript-visual-quickstart-guide-9780133846089.

Finally, I want to hear from you! Let me know what you thought of the book and show me what you’re working on. Find me on Twitter at @jcasabona.

Thanks for reading. I’m excited to see what you build!

Index

Numbers

3D transformations, 235

404 errors, 272

Symbols

/* and */, commenting CSS code, 128

+ (plus sign), adjacent sibling element selector, 138

* (asterisk), attribute values, 141

* (universal/wildcard selector), 144

< (less than sign, or left angle bracket), using with HTML tags, 18

> (greater than sign, or right angle bracket), using with HTML tags, 18

child element selector, 137

{} (curly braces), using with CSS style declaration blocks, 122

$ (dollar sign), attribute selector, 141

= (equals sign), attribute values, 141

/ (forward slash), using with tags, 18

(hash symbol), using with links, 52

./ parent folder, using in relative links, 40

% (percentage), font-size, 154, 177

~ (tilde), general sibling selector, 138

A

<a> tag, 43

<abbr> tag, 31

absolute vs. relative linking, 39–41, 268

accessibility, 303–311

action attribute, forms, 91

:active state, 142

<address> tag, 83

adjacent sibling selector (+), 138

Adobe Fonts, 148

alert elements, creating, 133

alignment and justification, 158–159

alt attribute, 61, 304

anchor tag, 43

<and>, using in <code> element, 32

Angular JavaScript technology, 316

animations, CSS (Cascading Style Sheets), 236–239

Apache web server, 14

APIs (application programming interfaces), 116

Arabic, RTL (right-to-left) script, 33

ARIA (Accessible Rich Internet Applications), 305–307

aria-describedby attribute, 306

Article page section, 50

<article> tag, 52, 83. See also blog article layout

Aside page section, 50

<aside> tag, 52–53, 173, 185

asterisk (*), attribute values, 141

asterisk (*), universal/wildcard selector, 144

at-rules, CSS, 150

attributes

accessibility, 305–306

action, 91

alt, 61, 304

aria-describedby, 306

border, 77

colspan, 79–80

itemscope, 84

looking up, 111

max, 102

method, 90

min, 102

name, 90, 92

placeholder, 93

required, 106–107

role (ARIA), 305

rowspan, 79–80

searching values, 141

srcset, 63–64

step, 104

style, 125

targeting elements with, 140–141

title, 61

type, 92, 124

using, 19

value, 93

audio, 68–69, 71

author value, name attribute, 23

autocompletion, 11

B

 tag, 30

background colors, 143, 167, 170, 217–219. See also colors

background images, 172. See also images

background transition, adding, 231–232

background-image property, 172

<bdi> and <bdo> elements, 33

blank value, target attribute, 43

block and inline elements, outlining, 49

<blockquote> element, 29

blog article layout, building, 54–56. See also <article> tag

<body> tags, 22, 147

boilerplate file, creating, 23. See also files

bold

font-weight, 156

text, 30

border attribute/property, 77, 172–173

box model, 46, 176–178

 tag, 31

browsers

comparison, 8

CSS (Cascading Style Sheets) support, 212–214

Flexbox, 197

Grid, 197

support, 110

testing, 276–277

testing sites in, 272

using, 13

build tools, 322–323

bulleted lists, 28

buttons, styling, 180

byline class, styling, 157–158

byte conversion chart, 291

C

caching files, 295

calculations with variables, 248–249

CanIUse.com, 111–112, 116, 212

Canva graphics, 68. See also graphics

<canvas> element, 113

capitalization of text, changing, 160

<caption> element, 76–77

cascade in CSS

explained, 121

and family relationships, 134

specificity and precedence, 139–140

CDN (content delivery network), 295

centering elements, 183

checkboxes, creating, 94, 100

child

family tree, 134

indenting, 82

relative link, 40

selecting, 137

Chrome

browser, 276, 304

DevTools, 281–284, 290, 308–309

extensions, 46–47

circle

converting square to, 237

element, 67

cite attribute, <blockquote> element, 29

classes. See also pseudo-selectors and -classes

attribute, 53

vs. IDs, 140

naming, 133

targeting elements by, 131–134

clear property, floats, 187

code

indenting, 82

marking up, 32

tag, 32

codecs, 68–69

CodeKit build tool, 323

CodePen

using with Sass, 253–255

using for tests, 15

using with tables, 78

color contrast, 166

color picker, Google Chrome, 103

color stops, 169

color wheel, 168

Colorblindly testing tool, 308, 311

colors. See also background colors

in CSS, 164–168

representing on computer monitors, 164

RGB and RGBA, 167

setting for styles, 165

color-scheme value, name attribute, 23

colspan attribute, 79–80

columns and rows

extending, 79–80

floats, 186

Grid, 196–199

comma-separated list, 133

comments, adding, 20–21

compiling, 11

compressing images, 293–295

computer monitors, representing colors, 164

conic-gradient(), 169

content generators, 53

critical CSS, loading first, 296–300

CSS (Cascading Style Sheets). See also style sheets; styles

animations, 236–239

browser support, 212–214

commenting code, 128

display property, 177

file sizes, 245

frameworks, 193, 323

Grid layout, 208–211

inline styles, 125

preprocessors, 252–253

representing colors, 164–168

resets, 144, 155

syntax, 122–123

transformations, 233–235

transitions, 230–232

turning off in Chrome, 304

using, 4–5, 124–126

CSS files, minifying, 291–293

CSS Tricks, 171, 199

CSS Zen Garden website, 4–5, 123

CSS3, 5

curly braces ({}), using with CSS style declaration blocks, 122

D

dates on forms, 102–103

<dd> tag, 81

declaration block, CSS, 122–123

default files, 14

 tag, 31

descendent, targeting, 136

description lists, 81–82

description value, name attribute, 23

desktop vs. mobile layout, 222

devices, testing, 276–280

directories, structure, 12

display property, CSS, 177

div, skewing on hover, 235

<div> tag, 53

<dl> tag, 81

DOCTYPE declaration, 22, 274

dollar sign ($), attribute selector, 141

domain name in URL, 37

domains, choosing and hosting, 13, 264–268

<dt> tag, 81

E

elements. See tags

em, font-size, 30, 154, 177

email and domains, 267

email format, forms, 94, 101

email links, specifying, 43

embedding content, 43, 58, 70–71

entities, 32

equals sign (=), attribute values, 141

error checking, 11

events list, creating, 82

@extend, alerts in Sass, 260

extensions in URL, 37

external style sheets, 124, 127

external vs. internal linking, 38

F

fallbacks and polyfills, 111

fields in forms, 90, 96–97, 102, 104

<fieldset> element, 104

<figure> tag, 62

file containers, 68

file extensions, 12

file format, forms, 95

“file not found” errors, 272

file system, reviewing, 128

file types, 68

files. See also boilerplate file

accessing, 13–14

caching, 295

default, 14

minifying, 291–293

FileZilla FTP program, 269–271

Firefox browser, 276

Flexbox, 196, 199–207

float property, 185–187

:focus state, 142

fold, explained, 298

folders

creating, 12

relative links, 40

font sizes, Sass CSS preprocessor, 259

Font Squirrel, 151

@font-face, 150–154

font-family property, 150–151

fonts, 146–148, 151, 155–156

Footer page section, 50–51

<footer> tag, 56

formats for media, 68–69

formatting text, 30–31, 158–160

forms

building and processing, 89

checkboxes, 100

components, 90

email, 101

fields, 92–96, 102

hidden fields, 96

input types, 94

interacting with, 88

labeling fields, 97

processing, 91

process.php file, 91

radio buttons, 99

select boxes, 98–99

<select> element, 96

setting up, 97

<textarea> field, 96

validating, 106–107

forward slash (/), using with tags, 18

framename link target, 43

frameworks, CSS, 193, 323

FTP information, finding for servers, 43, 269–271

G

GB (gigabyte), 291

general sibling selector (~), 138

GET value, forms, 90–91

GIF (Graphics Interchange Format) images, 59

Git, version control, 320

GitFlow, 319

GitHub, using, 320–321

Github repo, process.php file, 91

Google Chrome DevTools, 281–284 308–309

Google Fonts, 148–150

Google’s PageSpeed Insights, 288–289, 296

gradients, 169–171

grandchild, 40, 82, 134

grandparent, relative link, 40

graphics, pixel vs. vector, 59. See also Canva graphics

great-grandchild, family tree, 134

greater than sign (>), 18, 137 Grid, 196, 208–211

grid layout, 186, 224, 246–247

H

<h1> tag, 19

H.264 video codec, 69

hash (#) symbol, using with links, 52

<head> tags, 22

Header page section, 50–51

<header> tag, opening, 54

headings, 2–3, 19, 26–27, 147, 155

height property, 177–178

hex values, representing colors, 164–165

hidden fields, forms, 96

hidden format, forms, 95

hiding

elements, 226

text, 160

home page, 14, 40, 44, 46, 52

hosting

domains, 264–268

techniques, 295

:hover state, 142

hover.com, 267

href attribute, 43

HSL (hue, saturation, lightness), 164, 168

HTML (HyperText Markup Language)

without CSS, 5

without elements, 27

hierarchy, 3–4

minifying files, 291–293

overview, 2

shapes, 67

HTML elements. See tags

<html> and </html> tags, 22

HTML5 and CSS3, 4, 6–7, 116

HTTP vs. HTTPS, 37

I

<i> tag, 30

id attribute, 41–42, 53, 140. See also role vs. id

<iframe> link target, 43

image format, forms, 95

image gallery, creating, 235

images. See also background images; responsive images

adding to pages, 60–62, 64

compressing, 293–295

finding and making, 68

optimizing, 293–295

resizing, 63

types, 59–60

 tag, 60–61, 63

!important value, CSS, 139

index.html file, 10, 14

inheritance, 134–135

inline and block elements, outlining, 49

inline styles, CSS, 125

input fields, 92–93, 232

input types, forms, 94

<input> tag, forms, 90

<ins> tag, 31

Internet of Things, 277

iPhone, emulation with Xcode for macOS, 280

italic, font-style, 156

itemscope attribute, 84

J

JavaScript, 106, 248, 314–317

JPG/JPEG (Joint Photographic Experts Group) images, 59

jQuery library, 315

justification and alignment, 158–159

K

KB (kilobyte), 291

@keyframes, animations, 236

L

layers, creating, 190–191

layouts, 46–48, 193, 222, 224

lazy loading, 116–117, 297

left angle bracket (<), 18

<legend> element, 104

less than sign (<), 18

letter-spacing property, 159

 tag, 28

line breaks, inserting, 160

line element, 67

line height, figuring out, 159

linear-gradient(), 169–170

lines, text-decorating properties, 157

line-through, text-decoration, 156

:link state, 142

<link> tag, 127

links

(hash) symbol, 52

absolute vs. relative, 268

creating, 36

displaying as block-level elements, 177

internal vs. external, 38

locations on pages, 42

markup, 43

opening in windows, 43–44

relative vs. absolute, 39–41

sections of pages, 41–42

targets, 43–44

URIs (Uniform Resource Identifiers), 43

lists, 28, 143

localStorage, 115

M

mailto: links, specifying, 43

main article section, creating, 54

Main page section, 50

MAMP (Mac, Apache, MySQL, PHP), setting up, 14

margins and padding, 179–183

marking up code, 31–32

markup, 2, 5, 274–276. See also semantic markup

matrix(), transform, 233

max attribute, forms, 102

max-width and max-height properties, 178

MB (megabyte), 291

media formats, 58–59, 68–69

media queries, 64, 196, 216–217, 246–247

<meta> tag, 23

<meter> element, 105

method attribute, forms, 90

Microsoft Word document, 3

min attribute, forms, 102

minifying files, 291–293

min-width and min-height properties, 178

mobile vs. desktop layout, 222

monitors, representing colors, 164

monospace fonts, 146–147

month input type, 103

.MOV file extension, 68–69

-moz- browser prefix, 214

MP3 format, 71

.MP4 file extension, 68–69

-ms- browser prefix, 214

multimedia files, storing, 72–73

multiselect boxes, creating, 98–99

MySQL web server, 14

N

name attribute, 23, 90, 92

name in URL, 37

naming

classes, 133

directories, 12

nav menu, making responsive, 225

Nav page section, 50–52

nesting items, 121, 257–258

New York Times home page, 46, 48, 176

Node.js library, 317

O

-o- browser prefix, 214

offline storage, 114–115

order-based selectors, 143

ordered lists, 28

outlining

block and inline elements, 49

elements with Wed Developer extension, 48

overflow property, 179

overflow-wrap property, 160

overlay, creating using z-index, 192–193

overline, text-decoration, 156

P

<p> tag, 18

padding and margins, 179–183

page header, creating, 54

pages. See webpages

PageSpeed Insights, Google, 288–289, 296

paragraph text, 18

paragraphs

enlarging, 132

and headings, 26–27

internal spacing, 160

quoting with citations, 29

parameter value, adjusting, 104

parent, 40, 43, 82, 134

password field, aria-describedby attribute, 306

password format, forms, 94

paths, determining for files, 13, 67

percentage (%), font-size, 154, 177

performance, 286–290, 296

perspective(), transform, 233

PHP web server, 14

<picture> element, 64–65

p.intro class, 143

pixel density, 63

pixel vs. vector graphics, 59

pixels (px), font-size, 154

pixels, computer monitors, 164

placeholder attribute, forms, 93

plus sign (+), adjacent sibling element selector, 138

PNG (Portable Network Graphic) images, 59

polyfills and fallbacks, 111–112

polygon element, 67

polyline element, 67

position property, 187

POST value, forms, 90–91

<pre> tag, 32

prefixing tools, using, 213

preprocessors, CSS, 252–253

print style sheet, creating, 225

printer styles, adding to websites, 225–226

process.php file, downloading, 91

property, CSS, 122. See also shorthand properties

protocol in URL, 37

pseudo-selectors and -classes, 141–142. See also classes; selectors

public_html folder, 14

px (pixels), font-size, 154, 177

R

radial-gradient(), 169–171

radio buttons, creating, 99

radio format, forms, 94

range input type, 104

React.js technology, 316

readability, formatting for, 158–160

rect element, 67

regex (regular expressions), 107

relationships, selecting elements by, 136–138

relative vs. absolute linking, 39–41, 268

rem (root em), font-size, 155, 177

render-blocking resources, 296–297

required attribute, forms, 106–107

resets, CSS, 144, 155

resizing images, 63

responsive images, 63–64, 70, 217–224. See also background images; images

RGB (red, green, blue), 164, 167

right angle bracket (>), 18

robots value, name attribute, 23

role attribute, ARIA, 305–306

role vs. id, 54. See also id attribute

root em (rem), font-size, 155

root folder, 14

rotate(), transform, 233–234

rows and columns

extending, 79–80

Flexbox, 201

Grid, 196–199

rowspan attribute, 79–80

RTL (right-to-left) script languages, 33

rulesets, 4, 122–123, 191, 260

RWD (responsive web design), 196, 216

S

<s> tag, 30

sans serif fonts, 146–148

Sass CSS preprocessor, 253–262

saturation, 168

scale(x,y), transform, 233

Schema.org vocabulary, 84–85

screen layouts, 223–224

screen reader, 24

<script> tag, JavaScript, 314

SCSS, 253

search form, 93

<section> tag, 52

<select> element, forms, 96, 98–99

selectors, 122, 143. See also pseudo-selectors and -classes

_self link target, 43

semantic markup, 2, 24. See also markup

SEO (search engine optimization), 84, 266

serif fonts, 146–148

server-side script, validating forms, 106

sessionStorage, 115

shapes, elements for, 67

shorthand properties, 181. See also property

siblings, selecting, 138

sidebar

creating, 56

making sticky, 188–189

site footer, creating, 56

SiteGround, 264–265, 268–269, 287

sites. See websites

sizing text, 154–155

skew(x,y), transform, 233, 235

<small> tag, 31

space.jpg image, 60

spam, defending against, 96

 element, 76–77

square, converting to circle, 237

src property, font-family, 151

srcset attribute, 63–64

stacking order, 196

Statcounter tool, 278

step attribute, 104

<strike> tag, 30

 tag, 30

structure of webpages, 46–48

structured data, 83–85

style attribute, 125

style sheets, 5, 124–127, 300. See also CSS (Cascading Style Sheets); print style sheet

<style> tag, 124, 127

styles. See also CSS (Cascading Style Sheets)

heading and body elements, 147

and markup, 5

setting colors for, 165

setting on elements, 131

simplifying with variables, 246–247

and style sheets, 120–121

<sub> tag, 31

subdomain in URL, 37

subfolders, 13

submit format, forms, 95

<sup> tag, 31

SVG (Scalable Vector Graphic) images, 59, 65–67, 293

switch animation, states, 236

syntax

errors, 274

highlighting, 11

T

<table> element, 76–77

tables, 76–80

tags

<a>, 43

<abbr>, 31

accessibility, 305–306

<address>, 83

<article>, 52, 83

<aside>, 52–53, 173

, 30

<blockquote>, 29

<body>, 22

, 31

<canvas>, 113

centering with margin: auto, 183

changing, 19

creating, 18

<code>, 32

<dd>, 81

, 31

<div>, 53

<dl>, 81

<dt>, 81

, 30

<fieldset>, 104

<figure>, 62

flow, 184–189

<footer>, 56

<h1>, 19

<head>, 22

<header>, 54

<html> and </html>, 22

<i>, 30

, 60–61, 63

<input>, 90

<ins>, 31

<legend>, 104

, 28

<link>, 127

looking up, 111

<mark>, 31

<meta>, 23

<meter>, 105

overlapping, 190–191

<p>, 18

<pre>, 32

vs. rulesets, 4

<s>, 30

<script> in JavaScript, 314

<section>, 52

<select>, 96

selecting by relationships, 136–138

and semantics, 2

setting styles, 131

<small>, 31

<strike>, 30

, 30

<style>, 124, 127

<sub>, 31

<sup>, 31

targeting, 122, 140–141

targeting by class, 131–134

targeting by tags, 130–131

<time>, 31

<title>, 22

<u>, 30

, 28

using, 18–19

viewing in browser, 19

Tallwind CS framework, 323

targeting

elements, 122, 130–134, 140–141

media features, 227

targets, 43

<tbody> element, 76–77

tel: links, specifying, 43

templates, Grid, 210

testing

accessibility, 307–311

browsers, 276–277

CodePen, 15

critical CSS, 300

devices, 276–280

webpages, 107

websites, 272, 274

text

formatting, 156–158

hiding, 160

sizing, 154–155

spacing, 159

styles, 161

transparency, 167

text editor, using, 10–11

text formatting

forms, 94

inline, 30–31

overview, 26–27

<textarea> field, forms, 96

text-decoration property, 156–157, 173

TextEdit, 10

text-indent property, 159–160

text-shadow property, 160

text-transform property, 160

<tfoot> element, 76–77

<th> element, 76–77

<thead> element, 76–78

tilde (~), general sibling selector, 138

time input type, 103

<time> tag, 31

title attribute, 61

<title> element, 22

TLD (top-level domain) in URL, 37, 266

TLS (Transport Layer Security), 266

_top link target, 43

<tr> element, 76–77

transform property, animations, 238

transformations, CSS (Cascading Style Sheets), 233–235

transitions, CSS (Cascading Style Sheets), 230–232

translate(), transform, 233, 238

TTF (True Type Font), 152

Twitter, offline storage, 115

two-column layout, at breakpoint, 223

type attribute, 92, 124

type selector, 130–131

typefaces. See fonts

U

<u> tag, 30

 tag, 28

underline, text-decoration, 156

universal/wildcard selector (*), 144

unordered lists, 28

URL (Uniform Resource Locator), 13–14, 37–38

V

validating

accessibility, 307–311

forms, 106–107

markup, 274–276

value, CSS, 122

value attribute, forms, 93

variables

calculations, 248–249

and media queries, 246–247

overview, 242–245

in Sass, 259

simplifying styles, 246–247

vector vs. pixel graphics, 59

vendor prefixes, 212, 213

version control, 11, 318–321

vertical-align property, 159

video and audio files, 68–69

videos. See also multimedia files

alert elements, 133

align-items property, 207

Android devices, 280

ARIA states and properties, 306

attributes, 19

background images, 172

blog article layout, 56

boilerplate file, 23

borders, 173

bouncing ball, 239

box model, 46

breakpoints, 217

browser comparison, 8

browsers, 110

Canva graphics, 68

<canvas> element, 113

cascade in CSS, 121

checkboxes and radio buttons, 100

child and sibling selectors, 138

Chrome accessibility test, 309

Chrome DevTools, 281–284, 290

Chrome responsive testing, 284

VS Code, 11

CodePen demo, 15

color picker, 103, 165

colspan and rowspan, 80

converting and embedding audio, 71

converting fonts with Transfonter, 152

converting Word docs to HTML, 31

CSS Zen Garden, 5

dates on forms, 103

default files, 14

description lists, 82

directory structure, 12

embedding content, 70–71, 73

errors in external links, 38

figures for code samples, 62

file system, 128

FileZilla FTP program, 271

flex-basis property, 205

flex-flow property, 205

flex-item properties, 202

flow of pages, 176

font sizes, 155

forms, 88

GET and POST form submission, 91

GitHub, 320

Google Fonts, 148, 150

gradients, 171

Grid elements, 210–211

GTmetrix performance testing tool, 289

headers with navigation, 52

heading and body styles, 147

heading hierarchy with font sizes, 155

headings, 27

heights and widths in layout, 178

HSL values, 168

HTML with no elements, 27

HTTP vs. HTTPS, 37

image download test, 63

Image Gallery with Mouseover Effects, 235

images, 61

input fields, 232

internal CSS to external file, 127

internal style sheets, 124

justify-content property, 205

lazy loading, 116, 117, 297

Libsyn for hosting audio, 72–73

link markup, 43

links to page locations, 42

lists, 28

mailto links, 43

MAMP (Mac, Apache, MySQL, PHP), 14

media queries, 228

nesting items, 258

offline storage, 115

opening links, 43

ordered lists, 28

outlining block and inline elements, 49

overriding IDs in CSS, 140

paragraphs, 27

p.intro class and selectors, 143

position property, 187

prefixing tools, 213

pricing table, 193

rainbow animation, 237

range input type, 104

registering domains, 267

relative links, 41

rental application, 102

resizing images, 63

responsive nav menu, 225

responsive three-column layout, 223

Sass CSS preprocessor, 257

schemas, 85

screen reader, 24

select and multiselect boxes, 98

setting styles on elements, 131

srcset attribute, 64

stacking order, 196

styles and markup, 5

styles and precedence, 139

styles vs. no styles, 5

SVG (Scalable Vector Graphic) images, 60, 67

tables, 78

tags, 19

targeting classes, 132

text transparency, 167

text-indent to hide text, 160

transformations, 233

transition functions, 230

two-column layout with floats, 186

typographic parameters, 161

unordered lists, 28

URLs (Uniform Resource Locators), 37

validating forms, 107

variables, 243, 245, 247

visual hierarchy, 4

W3C markup validator, 276

WAVE testing tool, 310

Web Developer extension, 48

Xcode Simulator, 280

viewport value, name attribute, 23

:visited state, 142

VS Code, 11

Vue.js technology, 317

W

W3C markup validator, 274–276

w3.org website, direction of text, 33

WAI-ARIA (Web Accessibility Initiative—Accessible Rich Internet Applications), 305–307

WAV format, 69, 71

WAVE testing tool, 308, 310

WCAG (Web Content Accessibility Guidelines), 307, 311–312

Web Developer extension, 46–48

web forms. See forms

Web Hosting for Students, 264–265

web server, mimicking, 14

-webkit- browser prefix, 214

WebM vs. Ogg, 69

WebP image format, 293

webpages

basic areas, 50

creating, 10

embedding content, 43

layout, 46–48

linking, 36, 41–42

outlining elements, 47–48

sections, 50–53

structuring, 22

testing, 107

URL (Uniform Resource Locator), 13

websites

making live, 269–271

pre-launch check, 268

reaching, 38

testing, 272, 274

week input type, 103

white-space property, 160

width property, 177–178

wildcard/universal selector (*), 144

wireframe, using, 50–53

Word document

converting to HTML, 31

example, 3

word-break property, 160

word-spacing property, 159

wrapper

class, 182, 188

converting to grid layout, 224

X

Xcode for macOS, iPhone emulation, 280

Y

Yoast SEO (search engine optimization), 84

yourbrowser.is tool, 279

YouTube.com, 73

YYYY-MM-DD type, forms, 102

Z

z-index, 191–192

Zurb Foundation framework, 193, 323

Code Snippets

Many titles include programming code or configuration examples. To optimize the presentation of these elements, view the eBook in single-column, landscape mode and adjust the font size to the smallest setting. In addition to presenting code and configurations in the reflowable text format, we have included images of the code that mimic the presentation found in the print book; therefore, where the reflowable format may compromise the presentation of the code listing, you will see a “Click here to view code image” link. Click the link to view the print-fidelity code image. To return to the previous page viewed, click the Back button on your device or app.

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

 OEBPS/Images/8-13-hot-dog-recipe-search.jpg

OEBPS/Images/f0169-01.jpg
background: linear-gradient(_red, orang

OEBPS/Images/7-9-svg-circle.jpg

OEBPS/Images/16-3-flexbox-simple.jpg

OEBPS/Images/f0146-01.jpg
P {
font-family: Cambria, "Times New
Roman", serif;

OEBPS/Images/f0249-01.jpg
:oot {
--fontSize: 1.25em;
--fontSizeHeading: calc(var(
--fontsize) * 3);

}

body {
font-size: var(--fontSize);

h {
font-size: var(--fontSizeHeading);

OEBPS/Images/1-1-html-element.jpg
1+ <h1>This is a heading</h1>

This is a heading

OEBPS/Images/f0066-01.jpg
<img src="rocket.svg" alt="my rocket
ship" />

OEBPS/Images/f0043-02.jpg
ttps://casabona.org"
target="_blank">Link that opens in a
new tab.

OEBPS/Images/f0066-02.jpg
<img src="rocket.svg" width="9001px"
alt="my rocket ship" />

OEBPS/Images/f0066-03.jpg
<circle cx="100" cy="100" r="50"
fill="red" />
</svg>

OEBPS/Images/f0043-01.jpg

Email Joe

OEBPS/Images/f0306-01.jpg
<label for="password">Enter a Password:</label>
<input type="password" id="password" name="password" aria-describedby="hint" />
<div id="hint">Must be at least 10 characters, and include a Capital letter, number, and

special character.</div>

OEBPS/Images/5-2-link.jpg
Visit Google

OEBPS/Images/8-1-basic-html-table.jpg
Team Location

Yankees (Bronx, NY

Red Sox (Boston, MA

Dodgers |Los Angeles, CA

Phillies |Philadelphia, PA

OEBPS/Images/f0181-02.jpg
padding: |top/bottom| |left/right]|;
margin: [top/bottom] [left/right];

OEBPS/Images/7-14-vimeo-plans.jpg
owrms

Choose a plan.

OEBPS/Images/f0181-01.jpg
padding: [top]| |right| [bottom| |left];
margin: [top] [right] [bottom] [left];

OEBPS/Images/7-4-title-on-hover.jpg

OEBPS/Images/f0181-03.jpg
padding: |[top left/right bottom|;
margin: [top left/right bottom];

OEBPS/Images/13-17-byline-class.jpg
A Case of Identity

St Conan Dok

Py e e
ek e e L o
R R T AT

OEBPS/Images/9-15-email-optin-form.jpg
First Name: First Name Email Address: Email Address Join the List!

OEBPS/Images/9-21-required-field-message.jpg
First Name:
Email
Join the

[10] Prease fill out this field.

OEBPS/Images/1-5-html-only.jpg

OEBPS/Images/f0170-03.jpg
body {
background: linear-gradient
(to right, rgba(0,0,0,0.25)
68%, 1gb(0,0,0) 69%);

OEBPS/Images/18-2-image-hover-after.jpg
How I Built It

WITH JOE CASABONA

OEBPS/Images/7-8-svg-over-9000.jpg

OEBPS/Images/f0214-04.jpg
ht

background: #880000;
-webkit-transition: all 1s linear;
-moz-transition: all 1s linear;
-ms-transition: all 1s linear;
-o-transition: all 1s linear;
transition: all 1s linear;

OEBPS/Images/12-2-green-text.jpg
N A ———
s M D in S Engocei i e Exd Devcper s s i
s
o o 350 s e e el e vt 10y s o
e S S T R e
TR
RS

e o e A et e v T A

OEBPS/Images/18-3-roated-square.jpg

OEBPS/Images/23-10-imageoptim.jpg
JPEG and PNG compressors with speclal secret artisan-crafted
settings

OEBPS/Images/17-2-blue-bg.jpg
A Case of Identity

by Sir Athur Conan Doyl

“My dear fellow” said Sherlock Holmes as we saton either side of th fire in his lodgings at Baker Stret, “life s
infintely stranger than anything which the mind of man could invent. We would not dare o conceive the things
which are really mere commonplaces of existence.If we could ly outof that window hand in hand, hover over this
greatciy, genly remov the roofs, and peepin a the queer things which are going on, the srange coincidences, the
plannings, the cross-purposes, the Wonderful chains of events, working through generations, and leading to the most
outré esults, it would make allfcton with ts conventionalities and foreseen conelusions most stale and.
unprofiable”

“And yet 1 am not convinced ofiy” | answiered, “The cases which come (o
‘enough, and volgar enough. We have in our police reports realism pushed 10 is extreme
tmustbe confessed, neither fascinating norart

in the papersare, a5 a rule, bald
it and et the resulis,

A certain slection and discetion must be used in producing arealistic effec;” remarked Holmes. “Thisis wanting
i the police report, where more stressis Laid, perhaps, upon the plattudes of the magistrate than upon the details,
‘which o an observer contain the vital essence of the whol mattr. Depend upon i, ther i nothing so unnatural as
the commonplace.”

OEBPS/Images/6-7-block-element.jpg

OEBPS/Images/3-8-nav-in-search.jpg
@ ioncovboa-GorgleSeach X+

& googie.conVsesrchia-—pe+ cesabonatiog-josscasabon d=chrometie-UTF-8

About 12700 resuls (052 saconds)

Joe Casabona - Done for You Podcasts and Courses
hups //casabona.org

1m Joo Casabena 1o 3 things wel toach code, and podeast.| reato nline cources at Joe Casabona
GreatorGourses and for LnkedinLearing. When I ot doing that, 1 host podoast called How

<’

pores
ity i o poccasts
Joe Casabona # (@icasabona) - Twitter
htps:/witercomicasabona ¥ Books
pics
Optinbonstris givng Now Video oryalPodcast Trmefor agoodcd DESIGN
avy abcbookProon i Shootaut withthe fsnenedmarphone Honres 5
e Blck ey dels Rode Podmic ATZI0S, shocto. £ @
inonepiace: TwgoDecomvah? smymicsowdonce T (e e
Joeccasar200mpr P Joescasaeunsn gL)
e itercam 278k petttecomMALLC. e
> Viewon Twiter © Clim ths knowtadge pael

Joe Casabona - YouTube

ttps /v youtube. com » chanel

Videos to Help You Bull Webstes fom Scrsth. reating websies in 2018 can be adaunting
taskc Wi the numbr ofproicts. platforms, and oo, s har.

Joe Casabona - Course Creator, Developer, and Podcaster
hutps:/fwwwlinkedin.com jcasabona +

View Joe Cassbona' profie on Linkedln, the woridslrgest profsslonal communty. Joehas 3
b lted onther profie. See the complete profie on Linkedin

OEBPS/Images/1-6-htm-css.jpg
Kirar

A Podcast Helping
Small Business
Owners Grow

Hosted by Joe Casabona

OEBPS/Images/24-3-no-style.jpg

OEBPS/Images/13-7-font-squirrel.jpg
Acherus Grotesque AJBbCCDUE
Eurocine AaBbCCDAEEFIGgHN

INTRO RUST ABCDEFGHIJKLMN

OEBPS/Images/f0192-01.jpg
<div class="overlay">
<h3>This is an important alert!
</h3>
</div>
<header>
<hl>A Case of Identity</hl>
</header>
<main>
(content goes here)
</main>

OEBPS/Images/9-9-input-reference.jpg
Tsistent

Thsisatenares

Radio Buttons:

Istoption © 2nd option 3rd option
Checkboxes:
Ist option 2nd option

Thisie s SeoetBox £
File Upload:

Chocsaie Notiochosen

St

OEBPS/Images/16-13-2-col-grid.jpg

OEBPS/Images/13-5-family-selected.jpg
Selected family X

Review Embed

To embed a font, copy the code into the
<head> of your html

<link> @import

<link href="https://fonts.googl
eapis.com/css2?family=Roboto:it
al,wghtee, 400;0,700;1,4608displ
ay=swap" rel="stylesheet">

CSS rules to specify families

font-family: 'Roboto’, sans-ser
if;

OEBPS/Images/25-1-jquery.jpg

OEBPS/Images/fig23-12.jpg
Above the fold

Lk qul verem rem veruptar? Guitur?

Rit aimendis doloia coriaspe volluptis
unt. oceus, Ipsam, s corpos doloreptam
o, Les ma dolumauae custoreperc!
nonos sont s sequiam harum

Vol ndseri exaric lenietur?

Ueipsum accusam, qui que statia
volum nostescipsam osematia
sum rem bl psus ot nest.
latu acen vilsc atquae. Hatan
ebisit octas ot coleceperis
et conser corallus dolope,ossed Ipsandom aus,
TpiSTs dofecats aulrem e sTater S Aol
maloropro ot rernam fus moluptatr alquodio qut
corepel ctate dolo ilabore aut
dobis quibusac os i modiio. Ut
qui dem dolore rere e dit o
dolorop orch simagnis ovenest
peligenc sandiat

o dolorita cupta distenis ut

harunt rost, nvondert optis
mi.sum apis entonse vlicus dem verum et ase
dolumondalss sum ut atem ot vellous dolorioCum
volut il lumquis etu,sit fuga ltam,testom repelestia
sitadtatur sa ot vel o5t icls

Below the fold

OEBPS/Images/f0135-01.jpg
<article>
<h1>Welcome to Joe’s Website!</h1>
<p>Joe Casabona is an accredited college course
developer and professor.</p>
<p>He also has his Master’s Degree in Software Engineering, is a Front End
Developer, and hosts multiple podcasts.</p>
</article>

OEBPS/Images/f0248-03.jpg
<h1>This is a heading</hl1>
<p>This is body text!</p>

OEBPS/Images/f0019-01.jpg
n">This is a paragraph.</p>

OEBPS/Images/18-2-image-hover-before.jpg
How | Built It

WITH JOE CASABONA

4

OEBPS/Images/ch04_images.xhtml#f0029-01a

Skip to content		Home

		search iconSearch

		navigation arrowExpand Nav		Your O'Reilly		Profile

		History

		Playlists

		Highlights

		Featured		Navigating Change

		Recommended

		queue iconExplore		All Topics

		Early Releases

		Shared Playlists

		Most Popular Titles

		Resource Centers

		Live Events		Strata

		Open Source

		Infra & Ops

		Software Arch

		Practice		Katacoda Scenarios

		Jupyter Notebooks

		Sandboxes		Kubernetes

		Python

		TensorFlow

		Ubuntu

		Attend

		Certifications

		Newsletters

		settings iconSettings

		Support

		Sign Out

 Table of Contents for

 HTML and CSS: Visual QuickStart Guide

 		Search in book...

		

		Toggle Font Controls

				Twitter

		Facebook

		Google Plus

		Email

	

 Prev
 Previous Chapter
 Code Snippets

 Next
 Next Chapter
 Code Snippets

[image: Image]

[image: Image]

 Prev
 Previous Chapter
 Code Snippets

 Next
 Next Chapter
 Code Snippets

 Back to top

 		Settings

 		Support

 		Sign Out

 © 2020 O'Reilly Media, Inc.

 Terms of Service
 /

 Privacy Policy

OEBPS/Images/ch15_images.xhtml#f0189-01a

Skip to content		Home

		search iconSearch

		navigation arrowExpand Nav		Your O'Reilly		Profile

		History

		Playlists

		Highlights

		Featured		Navigating Change

		Recommended

		queue iconExplore		All Topics

		Early Releases

		Shared Playlists

		Most Popular Titles

		Resource Centers

		Live Events		Strata

		Open Source

		Infra & Ops

		Software Arch

		Practice		Katacoda Scenarios

		Jupyter Notebooks

		Sandboxes		Kubernetes

		Python

		TensorFlow

		Ubuntu

		Attend

		Certifications

		Newsletters

		settings iconSettings

		Support

		Sign Out

 Table of Contents for

 HTML and CSS: Visual QuickStart Guide

 		Search in book...

		

		Toggle Font Controls

				Twitter

		Facebook

		Google Plus

		Email

	

 Prev
 Previous Chapter
 Code Snippets

 Next
 Next Chapter
 Code Snippets

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

 Prev
 Previous Chapter
 Code Snippets

 Next
 Next Chapter
 Code Snippets

 Back to top

 		Settings

 		Support

 		Sign Out

 © 2020 O'Reilly Media, Inc.

 Terms of Service
 /

 Privacy Policy

OEBPS/Images/3-7-html-boilerplate-new3.jpg
© boilerplate.html X

Coua s wn

10
1

<tdoctype html>
<html class="no-js" lang=

<head>

</head>

<body>

</body>
</htnl>

OEBPS/Images/9-17-date-picker.jpg
July 2020 v

Sun Mon Tue Wed Thu

1
5 6 7 8
12 13 14 15
19 20 21 22
26 27 28 29

mn/dd/yyyy

2

9

16
23
30

Sat

"
18
25

OEBPS/Images/12-10-nth-child.jpg
« WordPress
o« HTML and CSS
o Podcasting

OEBPS/Images/ch19_images.xhtml#f0247-03a

Skip to content		Home

		search iconSearch

		navigation arrowExpand Nav		Your O'Reilly		Profile

		History

		Playlists

		Highlights

		Featured		Navigating Change

		Recommended

		queue iconExplore		All Topics

		Early Releases

		Shared Playlists

		Most Popular Titles

		Resource Centers

		Live Events		Strata

		Open Source

		Infra & Ops

		Software Arch

		Practice		Katacoda Scenarios

		Jupyter Notebooks

		Sandboxes		Kubernetes

		Python

		TensorFlow

		Ubuntu

		Attend

		Certifications

		Newsletters

		settings iconSettings

		Support

		Sign Out

 Table of Contents for

 HTML and CSS: Visual QuickStart Guide

 		Search in book...

		

		Toggle Font Controls

				Twitter

		Facebook

		Google Plus

		Email

	

 Prev
 Previous Chapter
 Code Snippets

 Next
 Next Chapter
 Code Snippets

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

 Prev
 Previous Chapter
 Code Snippets

 Next
 Next Chapter
 Code Snippets

 Back to top

 		Settings

 		Support

 		Sign Out

 © 2020 O'Reilly Media, Inc.

 Terms of Service
 /

 Privacy Policy

OEBPS/Images/4-3-unordered-list.jpg
* Apples
* Bananas|
e Cherries|

OEBPS/Images/23-13-sitelocity.jpg
Critical Path CSS Generator

Inernol OS5 Sl Shet Genrato o the above th o contnt.

OEBPS/Images/ch08_images.xhtml#f0079-01a

Skip to content		Home

		search iconSearch

		navigation arrowExpand Nav		Your O'Reilly		Profile

		History

		Playlists

		Highlights

		Featured		Navigating Change

		Recommended

		queue iconExplore		All Topics

		Early Releases

		Shared Playlists

		Most Popular Titles

		Resource Centers

		Live Events		Strata

		Open Source

		Infra & Ops

		Software Arch

		Practice		Katacoda Scenarios

		Jupyter Notebooks

		Sandboxes		Kubernetes

		Python

		TensorFlow

		Ubuntu

		Attend

		Certifications

		Newsletters

		settings iconSettings

		Support

		Sign Out

 Table of Contents for

 HTML and CSS: Visual QuickStart Guide

 		Search in book...

		

		Toggle Font Controls

				Twitter

		Facebook

		Google Plus

		Email

	

 Prev
 Previous Chapter
 Code Snippets

 Next
 Next Chapter
 Code Snippets

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

 Prev
 Previous Chapter
 Code Snippets

 Next
 Next Chapter
 Code Snippets

 Back to top

 		Settings

 		Support

 		Sign Out

 © 2020 O'Reilly Media, Inc.

 Terms of Service
 /

 Privacy Policy

OEBPS/Images/13-20-spaced-out-text.jpg
Before

After

"A certain selection and discretion must be used in producing a realistic effect,” remarked Holmes. "This is wanting in the
police report, where more stress is laid, perhaps, upon the platitudes of the magistrate than upon the details, which to an

observer contain the vital essence of the whole matter. Depend upon it, there is nothing so unnatural as the commonplace.”

"A certain selection and discretion must be used in producing a realistic effect," remarked
Holmes. "This is wanting in the police report, where more stress is laid, perhaps, upon the
platitudes of the magistrate than upon the details, which to an observer contain the vital
essence of the whole matter. Depend upon it, there is nothing so unnatural as the

commonplace

OEBPS/Images/14-3-black-bg.jpg
A Case of Identity

b Stk Coen Dot

“My e ellow.” i Shrtok Holmes as we 3at 8 cither 3 of he i

i Todgags a1 ket Swee. e i ey Sranger s saibng whieh

ot pupore, the wonderul hains of svets, Noking. thiowgh geseratons, i
s forssen soncasions mos sae 488 voprafiabl.”

prepes m»ELm:ihmwn.ax::—‘:.uT-‘w&«m‘ﬁu iz
e o (g

R e
pothiag 0 Unnatura 1 e SRS

OEBPS/Images/6-12-final-product.jpg
‘Welcome tomy se!

OEBPS/Images/24-11-wave-contrast.jpg
oe
Summary Details Reference Structure _Contrast

No contrast errors were detected in the page.
Manual testing is necessary to test for other
potential contrast issues.

Foreground Color —-Background Color
[#0000FF [#rerree |
== —3
Lightness Lightness

(@ e— | | e—
[N

Contrast Ratio: 8.59:1
Text size:

Normal Text: [Sample]
AA: Pass
AAA: Pass

Large Text:[Sample|
AA: Pass
AAA: Pass

Desaturate page

Contrast is not tested when background gradients,
transparency, etc. are present. A CSS background
color that provides sufficient contrast must be
defined when a background image s in place. This
provides fall-back contrast in case images or CSS
do not display.

OEBPS/Images/f0090-01.jpg
<form name="search-form"
method="GET" action="process.php">

OEBPS/Images/8-4-table-head.jpg
Player

| Team ‘Number

OEBPS/Images/3-5-commented-page.jpg
Hi! ’'m Joe Casabona.

Y erate online couresa Cator Courses and for Linkedin Leaming , bosta
podeast called o il 1, and have becn making websics for 20 year.

OEBPS/Images/25-10-gulp.jpg
Atoolkitto automate & enhance your
workflow
tvcrogogupandtna sty ot srscrptio
Sicmns e et worion %8

OEBPS/Images/24-13-achecker_alt.jpg
Address:
~ Options
Enable HTML Velidator Enable CSS Validator

‘Guldelines to Check Against

BITV 1.0 (Level 2) Section 508
WCAG 1.0 (Level A) WCAG 1.0 (Level AA)
WCAG2.0 (Level A) © WCAG 2.0 (Level AA)

Report Format
© View by Guideline View by Line Number

Show Source.

Stanca At
WCAG 1.0 (Level AAA)
WCAG 2.0 (Level ARA)

OEBPS/Images/8-3-baseball-table-new.jpg
Baseball players with their teams
and numbers.

Player Team |Number|
Derek Jeter ||Yankees |2
David Ortiz |Red Sox||34
Roy Halladay||Phillies |34
Mike Piazza |Mets 31

OEBPS/Images/23-6-chrome-network.jpg
© 00 & o Cossbona-Doneterves X+

& casabonorg Guest

Joe Casabona Home Online Courses Podcasting Blog Contact Q

4] Borems oo Ses Nowow Potomarce Monoy Acoaten Sy Augts
°

¥ Q| Paseeiog) Dasiecacne

U i an i T 5

Timeline

Free— e o — .

e = - fos - "

oy = po e = .

e e :

e B |
Website file list ==k “ oo vossess = e "

oo b= oo - e

Eee - ko = e e

e e e o o .

A e S e ke M s P e

D e

 Consce x

OEBPS/Images/15-6a-p-spacing-before.jpg
Aoyt 5ot i . s, “Ths e i coms gt e s, 13
e g, i . W vt ot o e el s
i, e it ot P g st S

At et 2 creion ot e d i oo s ek Hotoes,
e et b ol et s S b P o b AL B
it oo % e i b 28Ot o 1 ot b R
e i . e e g o e e o

OEBPS/Images/22-8-chrome-dev-tools.jpg

OEBPS/Images/f0239-01.jpg
p.ball {

width: 50px;

height: 50px;

border-radius: 50%;

background: #000000;

animation: bounce 1s infinite
alternate;

animation-timing- function: linear;

}

@keyframes bounce {
0% {
transform: translate(Opx,0px);
}
1o0% {
transform: translate(Opx, 400px);
}

}

OEBPS/Images/f0216-02.jpg
@media screen and (min-width: 600px) {
main {
display: flex;

OEBPS/Images/f0216-01.jpg
@media [media type| and ([media
features]) {
[Rulesets go here]
}

OEBPS/Images/7-17-youtube-embed-screen.jpg

OEBPS/Images/fig11-2.jpg
Selector Property

pf

p [I |
color:red; e

Declaration

OEBPS/Images/7-1-image-in-browser.jpg

OEBPS/Images/7-3-image-with-file-name.jpg

OEBPS/Images/video.jpg

OEBPS/Images/ch23_images.xhtml#f0299-01a

Skip to content		Home

		search iconSearch

		navigation arrowExpand Nav		Your O'Reilly		Profile

		History

		Playlists

		Highlights

		Featured		Navigating Change

		Recommended

		queue iconExplore		All Topics

		Early Releases

		Shared Playlists

		Most Popular Titles

		Resource Centers

		Live Events		Strata

		Open Source

		Infra & Ops

		Software Arch

		Practice		Katacoda Scenarios

		Jupyter Notebooks

		Sandboxes		Kubernetes

		Python

		TensorFlow

		Ubuntu

		Attend

		Certifications

		Newsletters

		settings iconSettings

		Support

		Sign Out

 Table of Contents for

 HTML and CSS: Visual QuickStart Guide

 		Search in book...

		

		Toggle Font Controls

				Twitter

		Facebook

		Google Plus

		Email

	

 Prev
 Previous Chapter
 Code Snippets

 Next
 Next Chapter
 Code Snippets

[image: Image]

[image: Image]

[image: Image]

 Prev
 Previous Chapter
 Code Snippets

 Next
 Next Chapter
 Code Snippets

 Back to top

 		Settings

 		Support

 		Sign Out

 © 2020 O'Reilly Media, Inc.

 Terms of Service
 /

 Privacy Policy

OEBPS/Images/9-6-input-value.jpg
This is a value

OEBPS/Images/19-4-grid-above-600.jpg
| This
is grid item |

i s grid item 2

is s grid item 3 |

OEBPS/Images/figure05-5new.jpg
This is a demo component to the article, Why let
someone know when a link opens a
new window? . Check it out for more details!

OEBPS/Images/7-7-svg-source.jpg

OEBPS/Images/f0079-01.jpg
<table border="1">
<thead>
<th colspan:
<th>RF</th>
</thead>
<tbody>
<tr tole="header">
<td>Year</td>
<td>Team</td>
<td>BA</td>
<td>HR</td>
<td>RBI</td>
</tr>
<tr>
<td>2017</td>
<td Towspan:
<td>.284</td>
<td>52</td>
<td>114</td>
</tr>
<tr>
<td>2018</td>
<td>.278</td>
<td>27</td>
<td>67</td>
</tr>
<tr>
<td>2019</td>
<td>.272</td>
<td>27</td>
<td>55</td>
</tr>
<tfoot>
<tr>
<td colspan="2">Totals:</td>
<td>.278</td>
<td>106</td>
<td>236</td>
</tr>
</tfoot>
</table>

">Aaron Judge</th>

">NYY</td>

OEBPS/Images/cog.jpg

OEBPS/Images/21-2-siteground.jpg
Tools And Services For Seamless Site Building

OEBPS/Images/15-2-link-block.jpg
W would s st conceive the tings which e el mers commonplaces of exsence
10 Could Ty 0t o ot window had n had, hover o s 1ot i, gty Ferove o
o014 pcp 1 he g g Whih e FOng on.

ey

OEBPS/Images/12-3-intro-paragraph.jpg

OEBPS/Images/7-6-svg.jpg
© x
© O il | sersjoscasabonaropboxbonks HTML20900¥20CS 20V

OEBPS/Images/14-12-css-gradient-io.jpg

OEBPS/Images/fig12-7.jpg
<article>

<h1> <p> <p>
1
<a>

OEBPS/Images/fig12-6.jpg
Parent

Child

—

Child

Grandchild

Grandchild

Grandchild

Great-
Grandchild

Great-
Grandchild

OEBPS/Images/f0029-01.jpg
<p><cite>The Importance of Being Earnest
</cite> is only one of many sources of
witty sayings by Oscar Wilde. To take
one example:</p>

<blockquote cite="https://en.wikiquote.org
Jwiki/Oscar_Wilde">

<p>I never travel without my diary. One
should always have something sensational
to tead in the train.</p>

</blockquote>

OEBPS/Images/15-1-nyt-outlined.jpg

OEBPS/Images/15-4-breakout.jpg
A Case of Identity

Arthur Conan Doyle

one of 6 short sories writtn about Sherlock Holmes by Sir Arthur Conan Doy

dcar fellow.” said Sherlock Holmes as we sat on
side of the fire in his lodgings at Baker Strect,
is infinitely siranger than anything which the

of man could invent. We would not dare to

ive the things which are really mere

onplaces of existence. If we could fly out of that
W hand in hand, hover over this great

remove the roofs, and peep in at the queer
which are going on, the strange coincidences.,

lannings, the cross-purposes., the wonderful chains
S Bt . P

OEBPS/Images/14-11-radial-gradient.jpg

OEBPS/Images/f0112-01.jpg
<head>
<script src="picturefill.js">
</script>
</head>

OEBPS/Images/25-11-grunt.jpg

OEBPS/Images/figure04-7.jpg
1 you need o display muliple lines of code, place the <code> element
inside a <pre> clement.

In compleely unrelated news, here's a bitof the code for able that you'l
‘encounter again in Chapter

<eable borders"1">
<thoad>
<th cotepans
enRr</an
</enoas>
Zenody
2lx rotorheader™s
pristeiie

R ——

OEBPS/Images/3-4-text-heading-new.jpg
U A WN R

<h1>This is text</hl>

OEBPS/Images/15-8-center-auto.jpg
Q A Case of Identity

T R A T

OEBPS/Images/figure04-4.jpg
The Importance of Being Earnest i only one of many sources of witty
sayings by Oscar Wilde. To take one example:

Inever travel without my diary. One should always have.
Something sensational to fead in the train.

OEBPS/Images/13-14-text-decoration-variations.jpg
None
Underline

Overline

Line-through

OEBPS/Images/14-5-opacity-chart.jpg

OEBPS/Images/9-8-search-form.jpg
Atlantis

Search

OEBPS/Images/24-4-alert.jpg
Now though Sunday, get 25% off!

OEBPS/Images/6-11-basic-nav-result.jpg
 Home
« About
« Contact

OEBPS/Images/20-6-scout-import.jpg
Welcome to Scout-App!

OEBPS/Images/11-3-css-zen-garden.jpg

OEBPS/Images/fig15-14.jpg
0
Xapuj-7

Canvas

OEBPS/Images/f0081-01.jpg
<dl>
<dt>Batting Average (BA):</dt>
<dd>The total number of hits divided
by the number of at-bats.</dd>

<dt>Home Run (HR):</dt>

<dd>A fair hit that allows the batter
to tound all of the bases and cross
home. </dd>

<dt>Runs Batted In (RBI):</dt>
<dd>Any tun credited to a specific
batter that Tesults from a fair hit
ball or base on balls.</dd>
</d1>

OEBPS/Images/14-8-simple-gradient.jpg

OEBPS/Images/25-8-github-signup.jpg
Built for
developers

OEBPS/Images/fxvi-03.jpg

OEBPS/Images/fxvi-02.jpg
p.introduction {
color: red
font-fanily: Monaco, monospace;

font-size: 16px;

OEBPS/Images/fxvi-01.jpg
<a hre’
Form

OEBPS/Images/f0246-01.jpg
<div>
<p>This is grid item 1</p>
<p>This is grid item 2</p>
<p>This is grid item 3</p>
</div>

OEBPS/Images/3-7-title-element.jpg
®®0® - joeCasabona-DoneforYouPe X +

¢ @
Joe Casabona

OEBPS/Images/9-20-fieldset.jpg
B with Mo Optes
Rt Busons:
toon dadogion i opin

OEBPS/Images/f0189-01.jpg
<div class="wrapper">
<aside>
This is one of 56 short stories

written about Sherlock Holmes by
sir Arthur Conan Doyle. It was
published in 1891.

</aside>

<main>

<p>“My dear fellow,” said Sherlock

Holmes as we sat on either
side of the fire in his lodgings
at Baker Street, “life is
infinitely stranger than
anything which the mind of
man could invent. We would not
dare to conceive the things
which are really mere
commonplaces of existence.
If we could fly out of that
window hand in hand, hover
over this great city, gently
remove the roofs, and peep in
at the queer things which
are going on, the strange
coincidences, the plannings,
the cross-purposes, the
wonderful chains of events,
working through generations,
and leading to the most outré
results, it would make
all with its conventionalities
and foreseen conclusions most
stale and unprofitable.”</p>

<p>“And yet I am not convinced of it,” I
answered. “The cases which come to
light in the papers are, as a tule,
bald enough, and vulgar enough. Ve have
in our police reports realism pushed to
its extreme limits, and yet the
tesult is, it must be confessed, neither
fascinating nor artistic.”</p>

</main>
</div>

OEBPS/Images/18-1-css-button.jpg
A A
Click Here
_ 4

OEBPS/Images/f0189-02.jpg
wrapper {
width: 800px;
margin: 30px auto;

main {
width: 500px;

aside {
width: 260px;
padding: 15px;
float: right;
position: sticky;
top: 0;
background: rgba(0,0,0,0.085) ;
border: 1px solid #333333;

}

p:nth-of-type(1) {
line-height: 1.5em;
letter-spacing: 0.lem;
word-spacing: 0.2em;

}

OEBPS/Images/ch03_images.xhtml#f0019-01a

Skip to content		Home

		search iconSearch

		navigation arrowExpand Nav		Your O'Reilly		Profile

		History

		Playlists

		Highlights

		Featured		Navigating Change

		Recommended

		queue iconExplore		All Topics

		Early Releases

		Shared Playlists

		Most Popular Titles

		Resource Centers

		Live Events		Strata

		Open Source

		Infra & Ops

		Software Arch

		Practice		Katacoda Scenarios

		Jupyter Notebooks

		Sandboxes		Kubernetes

		Python

		TensorFlow

		Ubuntu

		Attend

		Certifications

		Newsletters

		settings iconSettings

		Support

		Sign Out

 Table of Contents for

 HTML and CSS: Visual QuickStart Guide

 		Search in book...

		

		Toggle Font Controls

				Twitter

		Facebook

		Google Plus

		Email

	

 Prev
 Previous Chapter
 Code Snippets

 Next
 Next Chapter
 Code Snippets

[image: Image]

[image: Image]

[image: Image]

 Prev
 Previous Chapter
 Code Snippets

 Next
 Next Chapter
 Code Snippets

 Back to top

 		Settings

 		Support

 		Sign Out

 © 2020 O'Reilly Media, Inc.

 Terms of Service
 /

 Privacy Policy

OEBPS/Images/ch12_images.xhtml#f0135-01a

Skip to content		Home

		search iconSearch

		navigation arrowExpand Nav		Your O'Reilly		Profile

		History

		Playlists

		Highlights

		Featured		Navigating Change

		Recommended

		queue iconExplore		All Topics

		Early Releases

		Shared Playlists

		Most Popular Titles

		Resource Centers

		Live Events		Strata

		Open Source

		Infra & Ops

		Software Arch

		Practice		Katacoda Scenarios

		Jupyter Notebooks

		Sandboxes		Kubernetes

		Python

		TensorFlow

		Ubuntu

		Attend

		Certifications

		Newsletters

		settings iconSettings

		Support

		Sign Out

 Table of Contents for

 HTML and CSS: Visual QuickStart Guide

 		Search in book...

		

		Toggle Font Controls

				Twitter

		Facebook

		Google Plus

		Email

	

 Prev
 Previous Chapter
 Code Snippets

 Next
 Next Chapter
 Code Snippets

[image: Image]

[image: Image]

 Prev
 Previous Chapter
 Code Snippets

 Next
 Next Chapter
 Code Snippets

 Back to top

 		Settings

 		Support

 		Sign Out

 © 2020 O'Reilly Media, Inc.

 Terms of Service
 /

 Privacy Policy

OEBPS/Images/figure08-09-new.jpg
Opening Day
April 1,2021
Al-Star Game.
July 13,2021
Game held at Truist Park, home of the Atanta Braves
Postseason
October 2021
Rounds: Wild Card, Division Series, League Championship,
World Series
‘The winners in each league will play in the World Series

OEBPS/Images/ch14_images.xhtml#f0169-01a

Skip to content		Home

		search iconSearch

		navigation arrowExpand Nav		Your O'Reilly		Profile

		History

		Playlists

		Highlights

		Featured		Navigating Change

		Recommended

		queue iconExplore		All Topics

		Early Releases

		Shared Playlists

		Most Popular Titles

		Resource Centers

		Live Events		Strata

		Open Source

		Infra & Ops

		Software Arch

		Practice		Katacoda Scenarios

		Jupyter Notebooks

		Sandboxes		Kubernetes

		Python

		TensorFlow

		Ubuntu

		Attend

		Certifications

		Newsletters

		settings iconSettings

		Support

		Sign Out

 Table of Contents for

 HTML and CSS: Visual QuickStart Guide

 		Search in book...

		

		Toggle Font Controls

				Twitter

		Facebook

		Google Plus

		Email

	

 Prev
 Previous Chapter
 Code Snippets

 Next
 Next Chapter
 Code Snippets

[image: Image]

[image: Image]

 Prev
 Previous Chapter
 Code Snippets

 Next
 Next Chapter
 Code Snippets

 Back to top

 		Settings

 		Support

 		Sign Out

 © 2020 O'Reilly Media, Inc.

 Terms of Service
 /

 Privacy Policy

OEBPS/Images/double-aarow.jpg
»

OEBPS/Images/10-2-can-i-use.jpg

OEBPS/Images/20-2a-codepen-new-pen.jpg
CE@DEPEN Q Search CodePen..

CREATE

&<
= Picks

Collection

Your Pens Projects Posts Collections
Dashboard

Activity
Assets

Pinned Items

CE&DEPEN Q Search CodePen..

TRY OUR ONLINE EDITOR

sseccsnccnsnnssssee

Start Coding | <

EXPLORE
Picks
Popular
Topics

OEBPS/Images/6-1-nyt-layout.jpg

OEBPS/Images/ch18_images.xhtml#f0236-01a

Skip to content		Home

		search iconSearch

		navigation arrowExpand Nav		Your O'Reilly		Profile

		History

		Playlists

		Highlights

		Featured		Navigating Change

		Recommended

		queue iconExplore		All Topics

		Early Releases

		Shared Playlists

		Most Popular Titles

		Resource Centers

		Live Events		Strata

		Open Source

		Infra & Ops

		Software Arch

		Practice		Katacoda Scenarios

		Jupyter Notebooks

		Sandboxes		Kubernetes

		Python

		TensorFlow

		Ubuntu

		Attend

		Certifications

		Newsletters

		settings iconSettings

		Support

		Sign Out

 Table of Contents for

 HTML and CSS: Visual QuickStart Guide

 		Search in book...

		

		Toggle Font Controls

				Twitter

		Facebook

		Google Plus

		Email

	

 Prev
 Previous Chapter
 Code Snippets

 Next
 Next Chapter
 Code Snippets

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

 Prev
 Previous Chapter
 Code Snippets

 Next
 Next Chapter
 Code Snippets

 Back to top

 		Settings

 		Support

 		Sign Out

 © 2020 O'Reilly Media, Inc.

 Terms of Service
 /

 Privacy Policy

OEBPS/Images/8-7-colspan-error.jpg
Aaron Judge RF
Year |Team [BA |HR [RBI
2017 28452 114
2018NYY |.278/[27 |67
2019 272|127 |55
Totals: .278/|106 236

OEBPS/Images/ch07_images.xhtml#f0060-01a

Skip to content		Home

		search iconSearch

		navigation arrowExpand Nav		Your O'Reilly		Profile

		History

		Playlists

		Highlights

		Featured		Navigating Change

		Recommended

		queue iconExplore		All Topics

		Early Releases

		Shared Playlists

		Most Popular Titles

		Resource Centers

		Live Events		Strata

		Open Source

		Infra & Ops

		Software Arch

		Practice		Katacoda Scenarios

		Jupyter Notebooks

		Sandboxes		Kubernetes

		Python

		TensorFlow

		Ubuntu

		Attend

		Certifications

		Newsletters

		settings iconSettings

		Support

		Sign Out

 Table of Contents for

 HTML and CSS: Visual QuickStart Guide

 		Search in book...

		

		Toggle Font Controls

				Twitter

		Facebook

		Google Plus

		Email

	

 Prev
 Previous Chapter
 Code Snippets

 Next
 Next Chapter
 Code Snippets

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

 Prev
 Previous Chapter
 Code Snippets

 Next
 Next Chapter
 Code Snippets

 Back to top

 		Settings

 		Support

 		Sign Out

 © 2020 O'Reilly Media, Inc.

 Terms of Service
 /

 Privacy Policy

OEBPS/Images/13-19-vertical-align.jpg
| Baseline

| Text Bottom

OEBPS/Images/f0092-01.jpg
<input type— text"” name="search"
value="" />

OEBPS/Images/20-1a-sample-sass.jpg
$bgColor: #EB1DFE;

body { body 1
packerounds Sbecolors background: #EB1DFE;
g 3

background: #FFFFFF;| |POdY N1 €
padding: 15px; background: #FFFFFF;
3 padding: 15px;

3 3

OEBPS/Images/fig9-4.jpg
Submit

1

Confirm

Thank
You!

Validate

Process

OEBPS/Images/f0257-03.jpg
-wrapper {
background: #000000;
color: #FFFFFF;
main {
aside {
border: 1px solid #FFFFFF;
}

.. compiles to this in CSS:

.wrapper {
background: #000000;
color: #FFFFFF;
}
.wrapper main aside {
border: 1px solid #FFFFFF;
}

OEBPS/Images/f0234-01.jpg
div.diamond {
background: #FF0000;
width: 200px;
height: 200px;
margin: 50px;
transform: rotate(45deg);

OEBPS/Images/ps-down-arrow.jpg

OEBPS/Images/16-14-2-col-fr-grid.jpg

OEBPS/Images/19-2-link-scope.jpg
Visit Google

Learn More

OEBPS/Images/f0093-02.jpg
yoursite.com/process.php?search-term=
Atlantis

OEBPS/Images/f0093-01.jpg
<form name="search-form" method="GET"
action="process.php">
<input type="text"
name="search-tern" />
<input type="submit" name="submit
value="Search" />
</form>

OEBPS/Images/fig25-6.jpg
Feature

Feature 2

OEBPS/Images/22-11-rwd-tester.jpg
A Podcast
Helping
Small
Business
Owners

OEBPS/Images/16-8-two-col-flex.jpg

OEBPS/Images/8-5-complex-table.jpg
Aaron Judge RF
Year |Team [BA |[HR |[RBI

2017 28452 114
2018NYY |.27827 |67
2019 272|127 ||55
Totals: .278/|106/1236

OEBPS/Images/25-12-codekit.jpg

OEBPS/Images/25-9-github-fork.jpg
H jcasabona / html-css-vgs

<> Code Issues 0 Pull requests 0
No description, website, or topics provided.
-1 commit ¥ 1branch

Branch: masterv New pull request
B icasabona initial commit

D LICENSE

©2020 GitHub, Inc. Terms Privacy Security ~ Status

®Watch~ 1 Yrstar 0

Actions Projects 0 Wiki Security 0 Insights

@ 0 packages © 0 releases A1 contributor a5 MIT

Create newfile Upload files = Find file RO ITEES

Latest commit 997241 on Feb 3

Initial commit 4 months ago

Help Contact GitHub Pricing APl Trai

OEBPS/Images/11-1-child-list-bigger-text.jpg
+ This is a main item
o This is a nested item

o This is a second nested item
« This is a second main item.

OEBPS/Images/25-5-vue.jpg
The Progressive
JavaScript Framework

OEBPS/Images/fig15-5.jpg

OEBPS/Images/17-5-header-mid.jpg
ACase of Identity S AtrCoron Do

OEBPS/Images/9-22-email-validation-message.jpg
First Name: soe

Email Addressifeo]

[———

OEBPS/Images/15-3-sidebar.jpg
This is one of 56 short stories written about Sherlock Holmes
by Sir Arthur Conan Doyle. It was published in 1891.

OEBPS/Images/fig6-9.jpg
Header

Nav
Main
Section Aside
Article
Article

Footer

OEBPS/Images/3-1-paragraph-element-new3.jpg
<p>This is a paragraph</p>

OEBPS/Images/7-16-youtube-share-dialog.jpg
Share

- Q0000

Embed Facobock Twiter ddt Tombic

tos:fyoutu be/SNEXaU3QMAY copy

O swtat

OEBPS/Images/13-12-font-weight-variations.jpg
Lighter
Normal
Bold

Bolder

OEBPS/Images/18-4-skewed-square.jpg

OEBPS/Images/13-13-font-style-variations.jpg
Normal
Italic

Oblique

OEBPS/Images/23-8-minifiycode.jpg
Minity Code.

Whats minity?

OEBPS/Images/21-3-hover-search.jpg
Every great idea deserves a great domain name.

OEBPS/Images/14-1-rgb-venn.jpg

OEBPS/Images/8-12-field-of-dreams-search.jpg

OEBPS/Images/12-5-blue-alert.jpg

OEBPS/Images/16-9-three-col-wrap-flex.jpg

OEBPS/Images/22-2-validator.jpg

OEBPS/Images/13-16-text-decoration-wavy.jpg
by, Sir Arthur Conan Doyle

OEBPS/Images/9-3-twitter-login.jpg
v

OEBPS/Images/7-15-libsyn-plans.jpg
$5 $15 520 $40
Em Em Em Em

OEBPS/Images/f0071-01.jpg
<audio controls>
<source src="small-step.wav"
type="audio/wav">
<source src="small-step.mp3"
type="audio/mp3">
</audio>

OEBPS/Images/24-8-colorblindly.jpg
@ Coomindy

OEBPS/Images/16-10-dir-col-flex.jpg
Lorem ipsum dolor it ame, consectetur adipisicing elit, sed do
eiusmod tempor incididunt t abore et dolore magna aliqua. Ut enim
ad minim veniam, quis nostrud exercitation ullamco laboris isi ut
aliquip ex ea commodo consequat. Duis aute rure dolor in
reprehenderitin voluptate velit esse cillum dolore eu fugiat nulla
pariatur. Excepteur sint occaccat cupidata non proident, suntin culpa.
qui officia deserunt mollt anim id estlaborum,

Sed ut perspiciatis unde omis iste natus error sit voluptatem
accusantium doloremque laudantium, totam rem aperiam, caque ipsa
quac ab il inventore veritais et quasi architecto beatae viue dicta
‘sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit
‘aspernatur aut odit aut fugit, sed quia consequuntur magni dolores cos.
quiratione voluptatem sequi nesciunt, Neque porro quisquam est, qui
dolorem ipsum quia dolor it amet, consectetur, adipisci velit sed
quia non numquam eius modi tempora incidunt ut Iabore et dolore
magnam aliquam quaerat voluptatem. Ut enim ad minima veniam,
quis nostrum exercitationem ullam corporis suscipit abariosam, nisi
ut aliquid ex ca commodi consequatur? Quis autem vel cum jure
reprehenderit qui in ea voluptate velit esse quam nihil molestiac
consequatur, vl illum qui dolorem cum fugiat quo voluptas nulla
pariawr?

Atvero cos et accusamus et usto odio digissimos ducimus qui
blanditis pracsentium voluptatum deleniti stque corrupti quos dolores
et quas molestas excepturisint occsecati cupiditate non provident,
simlique sunt in culpa qui officia descrunt mollitia animi,id st
Taborum et dolorum fuga. Et harum quidem rerum facilis est
expedita distinctio. Nam libero tempore, cum soluta nobis esteligendi
‘optio cumque il impedit quo minus id quod maxime placeat facere
possimus, omis voluptas assumenda est, omis dolor repellendus.
Temporibus autem quibusdam et aut oficis debitis autrerum
necessitatibus saepe eveniet ut et voluptates repudiand int et
molestac non recusandac. taque carum rerum hic tenetur a sapiente
delectus,ut aut reiciendis voluptatibus majores alias consequatur aut
perferendis doloribus asperiores repellt,

Lorem ipsum dolor it ame, consectetur adipisicing elt, sed do
eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim
ad minim veniam, quis nostrud exercitation ullamco labori pisi ut
aliquip ex ea commodo consequat. Duis aute rure dolor in
reprehenderitn voluptate velit esse cillum dolore eu fugiat nulla
pariatur. Excepteur sint occaccat cupidatat non proident, suntin culpa.
qui officia deserunt mollt anim id est laborum.

OEBPS/Images/22-5-stat-counter.jpg
B stasomer

OEBPS/Images/14-14-border.jpg

OEBPS/Images/16-12-paragraphs-grid.jpg

OEBPS/Images/fig13-11.jpg
A Case of Identity

by Sir Arthur Conan Doyle

“My dear fellow,” said Sherlock Holmes as we sat on either side of the fire in his lodgings at Baker Street,
“life is infinitely stranger than anything which the mind of man could invent. We would not dare to
conceive the things which are really mere commonplaces of existence. If we could fly out of that window
hand in hand, hover over this great city, gently remove the roofs, and peep in at the queer things which are
going on, the strange coincidences, the plannings, the cross-purposes, the wonderful chains of events,
working through generations, and leading to the most outré results, it would make all fiction with its
conventionalities and foreseen conclusions most stale and unprofitable.”

OEBPS/Images/f0060-01.jpg
<img src="space.jpg" alt="A view
of the Andromeda Galaxy"
title="A view of the Andromeda
Galaxy" />.

OEBPS/Images/6-8-inline-element.jpg
[This Lind

only uses the space it needs.

OEBPS/Images/figure04-6-formatting-ref2.jpg
This is emphasised text ()

‘This is underlined text (1)

‘This s inserted text (<ins>)

“This i small text (<small>)

Normal text for reference ™S is SUPerseript (<sup>)

Normal text for referencehs s superscrip (<sb>)

Thiy

<tine datetime="0

the time element: 12:00am
00:00">12: 00am< /time>

HIML
X

<abbr title="Hypertext Markup Language"">HTML</abbr>

This paragraph
included a line break (
)

OEBPS/Images/9-5-get-url.jpg
/process.php?search-term=Atlantis&submit=Search

OEBPS/Images/25-4-node.jpg
o

Download for macoS (x64)
7S Current

Orhoe slockatthetong Temse

Sinupforode s veyher, th fici ode s onthy Newsete,

OEBPS/Images/15-9-element-flow.jpg
i ckn my gl i
[

OEBPS/Images/figure08-08-new.jpg
Batting Average (BA):
“The total number of hits divided by the mumber of at-bats.
Home Run (HR):
A fair it that allows the batter o round all of the bases and
cross home.
Runs Batted In (RB):
Any run credited to a specific batter that results from a fair
it ball or base on balls,

OEBPS/Images/6-2-chrome-store-extensions.jpg
~ chrome web store

o Themes

Categories

Al -

Features
O Rons Offine
By Google.

Free

Editor's Picks

Chrome favorites in extensions

Availablefor Android

oooao

Works with Google Drive

OEBPS/Images/20-5-scout-site.jpg
What's New in Scout-App

OEBPS/Images/9-11-select-box.jpg
What movie do you want to see nextEZEEILZIN
Onward
Fast9

OEBPS/Images/9-12-multiselect.jpg
Snow White
Aladdin
‘What movies have you seen?| |

OEBPS/Images/ch24_images.xhtml#f0306-01a

Skip to content		Home

		search iconSearch

		navigation arrowExpand Nav		Your O'Reilly		Profile

		History

		Playlists

		Highlights

		Featured		Navigating Change

		Recommended

		queue iconExplore		All Topics

		Early Releases

		Shared Playlists

		Most Popular Titles

		Resource Centers

		Live Events		Strata

		Open Source

		Infra & Ops

		Software Arch

		Practice		Katacoda Scenarios

		Jupyter Notebooks

		Sandboxes		Kubernetes

		Python

		TensorFlow

		Ubuntu

		Attend

		Certifications

		Newsletters

		settings iconSettings

		Support

		Sign Out

 Table of Contents for

 HTML and CSS: Visual QuickStart Guide

 		Search in book...

		

		Toggle Font Controls

				Twitter

		Facebook

		Google Plus

		Email

	

 Prev
 Previous Chapter
 Code Snippets

[image: Image]

 Prev
 Previous Chapter
 Code Snippets

 Back to top

 		Settings

 		Support

 		Sign Out

 © 2020 O'Reilly Media, Inc.

 Terms of Service
 /

 Privacy Policy

OEBPS/Images/19-3-grid-below-600.jpg
This is grid item 1

This is grid item 2

This is grid item 3

OEBPS/Images/ch13_images.xhtml#f0151-02a

Skip to content		Home

		search iconSearch

		navigation arrowExpand Nav		Your O'Reilly		Profile

		History

		Playlists

		Highlights

		Featured		Navigating Change

		Recommended

		queue iconExplore		All Topics

		Early Releases

		Shared Playlists

		Most Popular Titles

		Resource Centers

		Live Events		Strata

		Open Source

		Infra & Ops

		Software Arch

		Practice		Katacoda Scenarios

		Jupyter Notebooks

		Sandboxes		Kubernetes

		Python

		TensorFlow

		Ubuntu

		Attend

		Certifications

		Newsletters

		settings iconSettings

		Support

		Sign Out

 Table of Contents for

 HTML and CSS: Visual QuickStart Guide

 		Search in book...

		

		Toggle Font Controls

				Twitter

		Facebook

		Google Plus

		Email

	

 Prev
 Previous Chapter
 Code Snippets

 Next
 Next Chapter
 Code Snippets

[image: Image]

[image: Image]

[image: Image]

 Prev
 Previous Chapter
 Code Snippets

 Next
 Next Chapter
 Code Snippets

 Back to top

 		Settings

 		Support

 		Sign Out

 © 2020 O'Reilly Media, Inc.

 Terms of Service
 /

 Privacy Policy

OEBPS/Images/23-7-minified-css.jpg

OEBPS/Images/f0236-01.jpg
div {
width: 200px;
height: 200px;
background: ted;
animation: switch 4s infinite;

}
fkeyfranes switch {
0% {
background: red;

}
50% {
background: blue;

}
100% {
background: red;

OEBPS/Images/7-10-svg-square.jpg

OEBPS/Images/pref02_images.xhtml#fxvi-02a

Skip to content		Home

		search iconSearch

		navigation arrowExpand Nav		Your O'Reilly		Profile

		History

		Playlists

		Highlights

		Featured		Navigating Change

		Recommended

		queue iconExplore		All Topics

		Early Releases

		Shared Playlists

		Most Popular Titles

		Resource Centers

		Live Events		Strata

		Open Source

		Infra & Ops

		Software Arch

		Practice		Katacoda Scenarios

		Jupyter Notebooks

		Sandboxes		Kubernetes

		Python

		TensorFlow

		Ubuntu

		Attend

		Certifications

		Newsletters

		settings iconSettings

		Support

		Sign Out

 Table of Contents for

 HTML and CSS: Visual QuickStart Guide

 		Search in book...

		

		Toggle Font Controls

				Twitter

		Facebook

		Google Plus

		Email

	

 Prev
 Previous Chapter
 Index

 Next
 Next Chapter
 Code Snippets

Code Snippets

Many titles include programming code or configuration examples. To optimize the presentation of these elements, view the eBook in single-column, landscape mode and adjust the font size to the smallest setting. In addition to presenting code and configurations in the reflowable text format, we have included images of the code that mimic the presentation found in the print book; therefore, where the reflowable format may compromise the presentation of the code listing, you will see a “Click here to view code image” link. Click the link to view the print-fidelity code image. To return to the previous page viewed, click the Back button on your device or app.

[image: Image]

[image: Image]

[image: Image]

 Prev
 Previous Chapter
 Index

 Next
 Next Chapter
 Code Snippets

 Back to top

 		Settings

 		Support

 		Sign Out

 © 2020 O'Reilly Media, Inc.

 Terms of Service
 /

 Privacy Policy

OEBPS/Images/9-10-input-label.jpg
First Name: wilo

OEBPS/Images/21-4-hover-cart.jpg
| o IRES

OEBPS/Images/f0247-04.jpg
div {
display: grid;
grid-gap: 0;
grid-template-columns: 1fr;

@nedia screen and (nin-width: 600px) {
div {
grid-gap: 10px;
grid-tenplate-columns: 1fr 1fr 1fr;

OEBPS/Images/f0247-03.jpg
:toot {
--gridTenplate: 1fr;
--gridGap: 0;

@media screen and (min-width: 600px) {
:toot {
--gridTemplate: 1fr 1fr 1fr;
--gridGap: 10px

}
div {
display: grid;
grid-template-columns:
var(--gridTemplate);
grid-gap: var(--gridGap);

OEBPS/Images/15-11-paragraph-grid.jpg

OEBPS/Images/16-7-all-elements-flex.jpg

OEBPS/Images/20-8-scout-settings.jpg
Environment

x

outout e

OEBPS/Images/23-11b-last-paint.jpg
responsive, accessible,
performant, resilient, & beautiful websites.

OEBPS/Images/f0232-01.jpg
img {
padding: 20px;
width: 250px;
transition: width 2s ease 0.5s

img:hover {
width: 350px;
}

OEBPS/Images/12-1-green-paragraphs.jpg

OEBPS/Images/9-7-input-placeholder.jpg
This is a placeholder

OEBPS/Images/20-10-alerts-with-big.jpg
This is the .big class in
action

This is the .alert-
good class in action.

OEBPS/Images/20-7-scout-projects.jpg
website

Stylesheet Directories.

Environment

OEBPS/Images/16-6-paragraphs-flex.jpg

OEBPS/Images/f0095-01.jpg
nput-reference” method="get" action="process.php">
This is text"/>
textarea">This is a textarea</textarea>

“password” value="This is password"/>

"1st option" />Ist option
2nd option” checked />2nd option

<input type="radio" name="radio-option" value="3rd option" />3td option

<p>Checkboxes:</p>

check-optionl" value="Atlantis" /> 1st option
check-option2” value="Snow White" /> 2nd option
="check-option3" value="Aladdin" /> 3rd option

<select name="select">
<option>This is a Select Box</option>
<option value="lIst option">lst option</option>
<option value="2nd option">2nd option</option>
<option value="3rd option">3rd option</option>
</select>

<p>File Upload:</p>
<input type="file" name="file" />

<input type="submit" name="submit" value="Submit" />

<input type="image" nam
</form>

Submit" />

‘inage-subnit" stc="submit-ing.png" al

OEBPS/Images/25-3-angular.jpg

OEBPS/Images/23-2-gtmetrix.jpg
Latest Performance Report for:

Blesw: BlEwe: 16 64%e:

55

OEBPS/Images/24-10-wave-results.jpg
© How Can I Help You
Get Your Content Online?

S ourmae
W

CS———

OEBPS/Images/24-1-cb-normal.jpg

OEBPS/Images/14-2-rgb-columns.jpg

OEBPS/Images/18-6-animation-mid.jpg

OEBPS/Images/24-9-generate-report.jpg
dentityand fixcommon problems that afec your site’s performance,
accessibity,and user experience. Leam more

Categories
petormance.
Progressive Web Agp.
Bestpracices

Accessibity
se0

Communty Plugins(bets)
Publher Ads

Device
Mobie
O0esiop

OEBPS/Images/10-5-offline-storage.jpg

OEBPS/Images/f0220-01.jpg
<div class="wrapper">
<header>
<hI>A Case of Identity</hl>
<p class="byline">by Sir Arthur Conan Doyle</p>
</header>
<main>
<p> “My dear fellow,” said Sherlock Holmes as we sat on either side of the fire in his
lodgings at Baker Street, “life is infinitely stranger than anything which the
mind of man could invent. We would not dare to conceive the things which are really
mere commonplaces of existence. If we could fly out of that window hand in hand,
hover over this great city, gently remove the roofs, and peep in at the queer things
which are going on, the strange coincidences, the plannings, the cross-purposes,
the wonderful chains of events, working through generations, and leading to the most
outté tesults, it would make all fiction with its conventionalities and foreseen
conclusions most stale and unprofitable.”</p>
</main>
<aside>
This is one of 56 short stories written about Sherlock Holmes by Sir Arthur Conan
Doyle. It was published in 1891.
</aside>
<footer>
<p>The <i>Sherlock Holmes</i> series is in the public domain.</p>
</footer>
</div>

OEBPS/Images/fig5-3.jpg
Domain name. The name and top-level domain

protocol. This tells the (TLD) are what you get when you purchase,
server and browser how to or register, a domain name. The subdomain is
communicate. It can be https optional, and both the subdomain and protocol
(secure) or http (not secure) can be configured through hosting.
1 1
| 1 [|
https://www.wordpress.or
° ° °
| I | |
T T
subdomain. A separate section Name. The name
of the website. www is often of the website.

used as an alternative to the

top domain. This is optiond. TLD, or extension. There are many to choose

from including .com, .org, and .me. Certain TLDs,
(such as _edu, .gov, and country TLDs like .it)
require verification to make sure the purchaser
is authorized to use the TLD. In other words,

I would not be able to purchase a.gov TLD
because | am not a government entity.

OEBPS/Images/18-7-ball.jpg

OEBPS/Images/13-6-roboto-on-page.jpg
ACase of Identity

P~

ity ek e s s i o b Sk s
o e s e s e e,
e e e e e e e

OEBPS/Images/fig5-4.jpg
Mysite.com
—

Root:

index.htmi

about.html
—

store

index.html

Mysite.com/store/cart.htm

L

cart.htm!

Centnet html!

OEBPS/Images/select-style.jpg
|+ Select this style

OEBPS/Images/2-1-text-edit.jpg

OEBPS/Images/codepen-arrow-icon.jpg

OEBPS/Images/f0105-01.jpg
fuel">Fuel level:</label>
2"

At 20%

‘donations">Donations:</label>
onations™ min="0" max="100000"
value="60000">
at $60,000
</meter>

OEBPS/Images/23-5-ps-mobile-desktop.jpg
[0 wosiLE] DESKTOP

OEBPS/Images/accent-color.jpg

OEBPS/Images/22-6-your-browser.jpg

OEBPS/Images/f0221-01.jpg
@import url('https://fonts.googleapis. con/css?family=Playfair+Display:400,4001, 500, 5001, 600,
600i,700, 700,800,800, 900, 900i&display=swap');
body {
font-family: 'Playfair Display’, serif;
background-color:#fcf6e7;

margin: 0;
padding: 0;
header,
footer {

background: #282009;
color: #FFFEFF;
padding: 30px;
text-align: center;

b1 {
font-weight: 900;

main,
aside {
nargin: 30px;

aside {

background: #272727;
color: #FFFFFF;
padding: 30px;

_byline {
font-family: Futura, sans-serif;
font-style: italic;

p{
font-size: 18px;
margin: 30px 0;

OEBPS/Images/13-1-font-styles.jpg
Serif

Monospace

Fantasy

Sans serif

Cursive

OEBPS/Images/24-12-colorblindly-options.jpg
Colorblindly

O Trichromacy / Normal

(O Bive Cone Monochromacy / Achromatomaly
O Monochromacy / Achromatopsia

. Green-Weak / Deuteranomaly

O Green-Blind / Deuteranopia

(O RedWeak/ Protanomaly

O Red-Blind / Protanopia

O Blue-Weak / Tritanomaly

O Blue-Blind / Tritanopia o

OEBPS/Images/9-16-date-field-us.jpg
mm/dd/yyyy

OEBPS/Images/19-1-pink-link.jpg
Look at Me!

OEBPS/Images/3-5-rendered-heading.jpg
This is text

OEBPS/Images/7-13-youtube-home.jpg

OEBPS/Images/f0300-02.jpg
<link href="style.css" rel="stylesheet" type="text/css" />

<link href="large-screen-styles.css" rel="stylesheet" type="text/css"
media="screen and (min-width: 1301px)"/>

<link href="print-styles.css" rel="stylesheet" typ

OEBPS/Images/fig_01-02-new.jpg
[l oo i KA me A
e i ucw k¥ A-L-A-

This is a Heading

Hereis some prgraph(or by ek ncerthe
hesding Weknow he hesdngs wherewe should
ook st o gt the s of s body .

hiss 3 smllerheading.

Wl know tht s sl heoding s>
ew s topic under th main heading. Sometimes
W cven emphasic text by ki o, 506,
orboth.

e P

s swctns
sosasy

s g
o ot oy s

OEBPS/Images/15-15-z-index-overlay.jpg
A Case of Identity

“My dear felow, aid Sherlock Holmes a5 we sa o citherside ofthe fire in
NicTaoinesat R St it i inito strnger tha anying whichthe
1o conceive the things which are

could fly outof that window
 remove the rofs,and pecp in
‘This is an important alert! ‘ange coincidences, the

chains of events, working

Suté esuls, it would make all

conclusons most sale and

unprofiable.”

“And yet I am not convineed ofi" | answered. “The cases which come to
lightinthe papers are, a5 ule, bald enough, and vulgar enough. We have in
our polie reports realism pushed o is extreme limit, and yet the result s, it
must be confessed,neither fascinating nor artistic.”

OEBPS/Images/9-14-checkboxes.jpg
‘What movies do you want to see?

¥ Atlantis () Snow White () Aladdin

OEBPS/Images/f0209-06.jpg
grid-template-columns: 1fr 2fr 1fr;

OEBPS/Images/13-21-great-story.jpg
\? A Case of Identity

b SicArbr Gonon Dol

My dear felow.” said sherlack
D Lk e
e et
ERE T el
e
e
vk o o
e e T
!
g
e e
s oo st

A e ot comned o snvered. T cases
i come g e papers . s e bl g
Snd i coough e e inoue pol eports el
pushd 0 s e . et resltis. s b
ol e it orare”

“Acerin slection amddcrelion st b s rodcing
e et remarked s Thi s g e
Dol eort. where mor s s i, ek, o
s fthe magtte ha aon the el it
e coniahe il e of he Wi matr:
Dependupon i there s b s sl .
s

OEBPS/Images/13-3-google-fonts.jpg
Alltheir equipment and
instauments are lve

Almost before we.
knew it we had left
the ground.

A redfore sithoueteed
hejogged edgoof o
aing.

Ashiningcrescent far
beneaththe ying
vessel.

twatched the
storm, so
beautiful yet
terrific.

Pasgigloeslosiy
[

OEBPS/Images/f0209-07.jpg
main {
display: grid;
grid-template-columns: 2fr 1fr;
grid-gap: 15px;
padding: 15px;

OEBPS/Images/13-10-jetbrains-mono-on-page.jpg
A case of Taentity

OEBPS/Images/9-19-range.jpg

OEBPS/Images/fig2-3.jpg
Mysite.com
—

Root

index.htmi

about.html

MysSite.com/store/cart.html

= 4T
store

index.htm!

corthtrmf

OEBPS/Images/f0062-01.jpg
<figure>
<img src="space.jpg" alt="A view
of the Andromeda Galaxy" />
<figcaption>A view of the
Andromeda Galaxy</figcaption>
</figure>

OEBPS/Images/14-10-sidebar-gradient.jpg

OEBPS/Images/16-5-paragraphs.jpg

OEBPS/Images/f0085-08.jpg
<dt itemscope itemtype="https://schema.org/SportsEvent">Field of Dreams Game</dt>
<dd itemprop="startDate" content="2020-08-13T19:00">August 13, 2020</dd>
<dd>Game held in Dyersville, Iowa</dd>

<dd>Yankees vs. White Sox
</dd>

OEBPS/Images/14-9-radial-gradient.jpg

OEBPS/Images/f0085-01.jpg
<dt>Field of Dreams Game</dt>

<dd>August 13, 2020</dd>

<dd>Game held in Dyersville,
Towa</dd>

<dd>Yankees vs. White Sox</dd>

OEBPS/Images/22-3-browser-test-chrome.jpg
A Podcast Helping
Small Business
Owners Grow

Hosted by Joe Casabona

OEBPS/Images/f0107-02.jpg
<input type="tel" name="phone_number"
id="phone_number"

[0-91{3}-[0-9]{3}-[0-9]{a}"/>

OEBPS/Images/f0107-01.jpg
<1nput type="number” name="age"
50" />

OEBPS/Images/7-11-video-embed-with-controls.jpg

OEBPS/Images/22-10-cdt-css.jpg
element.style {
¥

P

@ font-size: 24px;
padding-left: 30px;
@ font-weight: 500;
text-shadow: Q1px 0 0 M#dbbc72;

OEBPS/Images/7-18-youtube-embed-code.jpg
<tdoctype hal>
@
P
<itionapten
<>
P
< frane wiathetS6R* heSonte"SIST arce"nttps://umm. youtube.con/
esbea/BNExaUSQate® franetorder="6" allows"acceleroneter
autoplay; encrypted-nedia; gyroscope; picture-in-picture’
Uoutuisereens</sfrane>
<o

g

 Eabedsing o YouTube Videos/i¢10

OEBPS/Images/16-15-2-template-grid.jpg
A Case of Identity

e e e o g ko e e R Bl

OEBPS/Images/23-1-google-insights.jpg

OEBPS/Images/3-2-text-as-paragraph-new.jpg
U s WN R

<p>This is text</p>

OEBPS/Images/f0210-08.jpg
header {
grid-area: header;

nain {
grid-area: main;
}

aside {
grid-area: sidebar;
}

.wrapper {
display: grid;
grid-template-columns: 1fr 1fr 1fr;
grid-template-areas:

eader header header”

ain main sidebar”;

grid-gap: 20px;

width: 900px;

margin: 0 auto;

OEBPS/Images/21-1-whfs.jpg

OEBPS/Images/chrome-device-toggle.jpg

OEBPS/Images/21-6-remote-site.jpg
Romoteste: fpubic. iy

OEBPS/Images/lab-data-button.jpg

OEBPS/Images/chrome-menu-button.jpg

OEBPS/Images/23-3-pingdom.jpg
Pingdom Website Speed Test

OEBPS/Images/14-13-border-styles.jpg

OEBPS/Images/f0097-01.jpg
<div>
<label for="first_name">First
Name :</1abel>
<input type—"text"

name="first_name"
id="first_name" placeholder=
"Milo" />

</div>

OEBPS/Images/4-4-strong.jpg
‘We use the strong tag to draw attention
to text by bolding it.

OEBPS/Images/12-8-target-descending-elements-with-source.jpg

OEBPS/Images/f0244-01.jpg
<main>

Visit Google
</main>
<aside>

Learn More
</aside>

OEBPS/Images/f0097-07.jpg
method="GET">

<input type="submit" name="submit"
value="Submit" />
</form>

OEBPS/Images/12-4-simple-alert.jpg

OEBPS/Images/ch20_images.xhtml#f0257-03a

Skip to content		Home

		search iconSearch

		navigation arrowExpand Nav		Your O'Reilly		Profile

		History

		Playlists

		Highlights

		Featured		Navigating Change

		Recommended

		queue iconExplore		All Topics

		Early Releases

		Shared Playlists

		Most Popular Titles

		Resource Centers

		Live Events		Strata

		Open Source

		Infra & Ops

		Software Arch

		Practice		Katacoda Scenarios

		Jupyter Notebooks

		Sandboxes		Kubernetes

		Python

		TensorFlow

		Ubuntu

		Attend

		Certifications

		Newsletters

		settings iconSettings

		Support

		Sign Out

 Table of Contents for

 HTML and CSS: Visual QuickStart Guide

 		Search in book...

		

		Toggle Font Controls

				Twitter

		Facebook

		Google Plus

		Email

	

 Prev
 Previous Chapter
 Code Snippets

 Next
 Next Chapter
 Code Snippets

[image: Image]

 Prev
 Previous Chapter
 Code Snippets

 Next
 Next Chapter
 Code Snippets

 Back to top

 		Settings

 		Support

 		Sign Out

 © 2020 O'Reilly Media, Inc.

 Terms of Service
 /

 Privacy Policy

OEBPS/Images/13-8-web-font-generator.jpg
o e e | peer | S,
transfonter

OEBPS/Images/ch06_images.xhtml#f0055-01a

Skip to content		Home

		search iconSearch

		navigation arrowExpand Nav		Your O'Reilly		Profile

		History

		Playlists

		Highlights

		Featured		Navigating Change

		Recommended

		queue iconExplore		All Topics

		Early Releases

		Shared Playlists

		Most Popular Titles

		Resource Centers

		Live Events		Strata

		Open Source

		Infra & Ops

		Software Arch

		Practice		Katacoda Scenarios

		Jupyter Notebooks

		Sandboxes		Kubernetes

		Python

		TensorFlow

		Ubuntu

		Attend

		Certifications

		Newsletters

		settings iconSettings

		Support

		Sign Out

 Table of Contents for

 HTML and CSS: Visual QuickStart Guide

 		Search in book...

		

		Toggle Font Controls

				Twitter

		Facebook

		Google Plus

		Email

	

 Prev
 Previous Chapter
 Code Snippets

 Next
 Next Chapter
 Code Snippets

[image: Image]

 Prev
 Previous Chapter
 Code Snippets

 Next
 Next Chapter
 Code Snippets

 Back to top

 		Settings

 		Support

 		Sign Out

 © 2020 O'Reilly Media, Inc.

 Terms of Service
 /

 Privacy Policy

OEBPS/Images/ch17_images.xhtml#f0216-01a

Skip to content		Home

		search iconSearch

		navigation arrowExpand Nav		Your O'Reilly		Profile

		History

		Playlists

		Highlights

		Featured		Navigating Change

		Recommended

		queue iconExplore		All Topics

		Early Releases

		Shared Playlists

		Most Popular Titles

		Resource Centers

		Live Events		Strata

		Open Source

		Infra & Ops

		Software Arch

		Practice		Katacoda Scenarios

		Jupyter Notebooks

		Sandboxes		Kubernetes

		Python

		TensorFlow

		Ubuntu

		Attend

		Certifications

		Newsletters

		settings iconSettings

		Support

		Sign Out

 Table of Contents for

 HTML and CSS: Visual QuickStart Guide

 		Search in book...

		

		Toggle Font Controls

				Twitter

		Facebook

		Google Plus

		Email

	

 Prev
 Previous Chapter
 Code Snippets

 Next
 Next Chapter
 Code Snippets

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

 Prev
 Previous Chapter
 Code Snippets

 Next
 Next Chapter
 Code Snippets

 Back to top

 		Settings

 		Support

 		Sign Out

 © 2020 O'Reilly Media, Inc.

 Terms of Service
 /

 Privacy Policy

OEBPS/Images/f0063-01.jpg
<1mg srcset=
space-original.jpg 4x,
space-large. jpg 3x,
space-medium. jpg 2x,
space-small.jpg 1x"

pace-medium.jpg" />

OEBPS/Images/17-6-print-bad.jpg
Joe Casabona

Crestor Cours - Lishedin
Lesrning How 1Bt .

Podcast Consulting

OEBPS/Images/f0106-01.jpg
<div>

<label for=first_name">First Name*:
</label>

<input type="text" name="first_name"
id="first_name" placeholder="First
Name" required/>

</div>

OEBPS/Images/f0151-01.jpg
@font-face {
font-family: 'Best Font';
src: url('bestfont.woff")
format('woff'),
url(’bestfont.ttf')
format('ttf) ;

OEBPS/Images/f0151-02.jpg
font-family: 'Best Font', sans-serif;

OEBPS/Images/15-7-left-default.jpg
CPA Case of Identity

by.Sir Arthur Conan Doyle

"My dear fellow,” said Sherlock Holmes as we sat on
cither side of the fire in his lodgings at Baker Street,

life is infinitely stranger than anything which the mind of
man could invent. We would not dare to conceive the.
things which are really mere commonplaces of cxistence.

If we could fly out of that window hand in hand, hover
over this great city, gently remove the roofs, and pecp in
at the queer things which are going on, the strange
coincidences, the plannings, the cross-purposes, the
wonderful chains of events, working through generations,
and leading to the most outré results, it would make all
fiction with its conventionalitics and forescen conclusions
most stale and unprofitable.

“And yet T am not convinced of " | answered. “The cases which come o
Hightn the papers are,as a rul, bild cnough, nd vulgar enough. We have in
ourpolice reportsrealism pushed 1 s extreme limis, and yet the result s, it
must b confessed, either fascinaing nor aristi.”

A certan selection and discetion must be used in prodicing ralistc
effec” remarked Holmes. i

stres is lid,peshaps, upon the pl
details, which to an observer
Depend uponi,tere is nothing so unnatural as the commonplace.”

OEBPS/Images/24-7-wave.jpg
@ WAVE

WAVE Web Accessibility Evaluation Tool

WAVE Webinar: What's new and what's coming?

e et G e

o T T s e

OEBPS/Images/17-8-dark-mode.jpg
ACaeottdenity e,

OEBPS/Images/5-1-link-markup.jpg
Visit Goog1e|

OEBPS/Images/14-6-black-transparent.jpg
CPACaseol‘ldenuy

St Ak Conen D

“My deae elow snid Sherock Mlmes 3 o st on itber side of he i
s Todgings i Baker Siset It Is iy siange b o

i of man coud faveat. We o not dare

aly mee <ommospices of exiieace. I we cond iy ou of s window hand
b, Rover over s e city. gy remove he oofs. axd pecp in 4 e
qase thags which ro goag on, he srange soacidences. the

Cros purposes, the wondert chins of events. o

e e e v o st e R Rk s
B o il e g o kT e

Ao sen oo st ol s T
B T P S e S RS s
e P e b e

OEBPS/Images/25-2-react.jpg
A ity o g s o

OEBPS/Images/21-5-filezilla.jpg

OEBPS/Images/1-4-css-zen-garden.jpg

OEBPS/Images/14-7-color.jpg
Red 360-0°

Magenta 300° Yellow 60°

Blue 240° Green 120°

Cyan 180°

OEBPS/Images/23-11a-first-paint.jpg
we design

OEBPS/Images/17-1-red-bg.jpg
A Case of Identity

by Sir Arthur Conan Doyle.

“My dear fellow,” said Sherlock Holmes as we sat oneithr side of
the fire in his lodgings at Baker Stret,“lif s infiniely sranger than
anything which the mind of man could invent. We would not dae to
‘conceive the things which are rally mere commonplaces of
existence. I we could fi out of that window hand in hand, hover
over this great ity gently remove the roof, and peep inaf the queer
things which are going on, the strange coincidences, the plannings,
the cross-purposes, the wonderful chains of events, working through
gencrations, and leading o the most ulré esults, it would make all
ficton with its conventionalites and forescen conclusions most stale
and unprofitable.”

“And yet T am not convinced ofit;” L answered. “The cases which
‘come tolight i the papers re, s a rule, bald enough, and vulgar
‘enough. We have in our policereportsrealism pushed to it extreme
limits, and yet the resut i, it mustbe confessed,neithr fascinating.
nor aristic”

“A cerain slection and discetion must be used i producing a
ralistic effet,” emarked Holmes. “Thisis wanting in the police
report, where more stess i Laid, perhaps, upon the platitudes of the
magistrate than upon the detais, which {0 an observer coniain the
vital essence o the whole mater. Depend upon i, there s nothing 50
unnaturalas the commonplace.

OEBPS/Images/09-21-meter.jpg
Fuel level: i

Donations: s

OEBPS/Images/13-2-body-font.jpg
A Case of Identity

by oAt g

ey d oo 5 Sk e e i o o i g o b S,
e i e o cod et W wodd e G i
o oo ey s e 4o e k1
Ry gy e o S8 8 b s Mo k3o o
e L B e Sl L
e, ot e 5 ot v ke S oo o
et ek i

e iy ok ek o bos ey e i b
B et s g e = o

Acatn o oo drcein ot b i ot e wmsed s T
e AT e e 20 g o i o b g o
e ot o el S o Spe o i
ettt iy

OEBPS/Images/13-18-justify-text.jpg
“My dear fellow, said Sherlock Holmes a5 we sat on cither side of the
fire in his lodgings at Baker Street, “ife is infinitely stranger than
anything which the mind of man could invent, We would not dare o
‘conccive the things which ae relly mere commonplaces of existence. If
we could fy out o that window hand in hand, hover over this great city,
gently remove the roofs, and pecp in at the qucer things which are going
on, the strange coincidences, the plannings, the cross-purposes, the
wonderful chain of events, working through generations, and leading (o
the most outré esulls, it would make all ction with its cowentionalties
‘and forescen conclusions most stale and unprofitable.

OEBPS/Images/6-3-search-results.jpg
%

WeBDEVELOPER

[r—

OEBPS/Images/2-2-vs-code-new.jpg
LIS [lstec]
0 o e x o
1 <tdocispe heat
O 2 el classetnosss® Lo
5
4 <renes
s Tt aarsetsrunt-as
6 clowiie
£ 7 <ets name="description” content="">
5 <oets nasesviewport” contentaruithadevice-vidth,
a9 instiat scate-t's
o
10 <link relstanifest® hrefa"site.uebaanifest”>
T <Lk relstapple-touch-icon® href"icon.png">
2 <t Place favicon.ico in the root airectory
5
10 <ok relsTstylesheet” hrefstess/norsatize.css®
35 <link relststylesheet® hrefatcss/main.cs"s
2
17 <ot nosesttheme-colar® content="HAESIRC">
1 e
1
2 <o
2
2 o lrwe 9
B classsbrowserupgrasersvau are using an
<strongoutdatede/strang> browser. Plesse <
href="http:/brovsenappy. con/*>upgrace your
browser <o Lsprove your experience ond
security.</p>
2 | <lenaiti
35| eesters
% <opedeasts 101105
® 7| onesder
»
BB < leconoier cassercontainer’s
3 <ot classstmoints

@oho

TR Y Lty [Ty o (o)

OEBPS/Images/18-8-bounce.jpg

OEBPS/Images/19-5-calc-h1.jpg
This is a heading

OEBPS/Images/ch10_images.xhtml#f0112-01a

Skip to content		Home

		search iconSearch

		navigation arrowExpand Nav		Your O'Reilly		Profile

		History

		Playlists

		Highlights

		Featured		Navigating Change

		Recommended

		queue iconExplore		All Topics

		Early Releases

		Shared Playlists

		Most Popular Titles

		Resource Centers

		Live Events		Strata

		Open Source

		Infra & Ops

		Software Arch

		Practice		Katacoda Scenarios

		Jupyter Notebooks

		Sandboxes		Kubernetes

		Python

		TensorFlow

		Ubuntu

		Attend

		Certifications

		Newsletters

		settings iconSettings

		Support

		Sign Out

 Table of Contents for

 HTML and CSS: Visual QuickStart Guide

 		Search in book...

		

		Toggle Font Controls

				Twitter

		Facebook

		Google Plus

		Email

	

 Prev
 Previous Chapter
 Code Snippets

 Next
 Next Chapter
 Code Snippets

[image: Image]

 Prev
 Previous Chapter
 Code Snippets

 Next
 Next Chapter
 Code Snippets

 Back to top

 		Settings

 		Support

 		Sign Out

 © 2020 O'Reilly Media, Inc.

 Terms of Service
 /

 Privacy Policy

OEBPS/Images/bullt-disc.jpg

OEBPS/Images/ch05_images.xhtml#f0043-02a

Skip to content		Home

		search iconSearch

		navigation arrowExpand Nav		Your O'Reilly		Profile

		History

		Playlists

		Highlights

		Featured		Navigating Change

		Recommended

		queue iconExplore		All Topics

		Early Releases

		Shared Playlists

		Most Popular Titles

		Resource Centers

		Live Events		Strata

		Open Source

		Infra & Ops

		Software Arch

		Practice		Katacoda Scenarios

		Jupyter Notebooks

		Sandboxes		Kubernetes

		Python

		TensorFlow

		Ubuntu

		Attend

		Certifications

		Newsletters

		settings iconSettings

		Support

		Sign Out

 Table of Contents for

 HTML and CSS: Visual QuickStart Guide

 		Search in book...

		

		Toggle Font Controls

				Twitter

		Facebook

		Google Plus

		Email

	

 Prev
 Previous Chapter
 Code Snippets

 Next
 Next Chapter
 Code Snippets

[image: Image]

[image: Image]

 Prev
 Previous Chapter
 Code Snippets

 Next
 Next Chapter
 Code Snippets

 Back to top

 		Settings

 		Support

 		Sign Out

 © 2020 O'Reilly Media, Inc.

 Terms of Service
 /

 Privacy Policy

OEBPS/Images/ch16_images.xhtml#f0209-06a

Skip to content		Home

		search iconSearch

		navigation arrowExpand Nav		Your O'Reilly		Profile

		History

		Playlists

		Highlights

		Featured		Navigating Change

		Recommended

		queue iconExplore		All Topics

		Early Releases

		Shared Playlists

		Most Popular Titles

		Resource Centers

		Live Events		Strata

		Open Source

		Infra & Ops

		Software Arch

		Practice		Katacoda Scenarios

		Jupyter Notebooks

		Sandboxes		Kubernetes

		Python

		TensorFlow

		Ubuntu

		Attend

		Certifications

		Newsletters

		settings iconSettings

		Support

		Sign Out

 Table of Contents for

 HTML and CSS: Visual QuickStart Guide

 		Search in book...

		

		Toggle Font Controls

				Twitter

		Facebook

		Google Plus

		Email

	

 Prev
 Previous Chapter
 Code Snippets

 Next
 Next Chapter
 Code Snippets

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

 Prev
 Previous Chapter
 Code Snippets

 Next
 Next Chapter
 Code Snippets

 Back to top

 		Settings

 		Support

 		Sign Out

 © 2020 O'Reilly Media, Inc.

 Terms of Service
 /

 Privacy Policy

OEBPS/Images/6-6-nyt-outlined.jpg

OEBPS/Images/f0023-01.jpg
<meta name="description” conten’
basic HTML boilerplate file.">

OEBPS/Images/15-12-sticky-sidebar.jpg
i e o 1 o Wt
e st e i T e AR

OEBPS/Images/22-7-iphone-sim.jpg
A @ howibuilt.t

A How | Buitt it

A Podcast

LAl

< (U] m

©

OEBPS/Images/ch09_images.xhtml#f0092-01a

Skip to content		Home

		search iconSearch

		navigation arrowExpand Nav		Your O'Reilly		Profile

		History

		Playlists

		Highlights

		Featured		Navigating Change

		Recommended

		queue iconExplore		All Topics

		Early Releases

		Shared Playlists

		Most Popular Titles

		Resource Centers

		Live Events		Strata

		Open Source

		Infra & Ops

		Software Arch

		Practice		Katacoda Scenarios

		Jupyter Notebooks

		Sandboxes		Kubernetes

		Python

		TensorFlow

		Ubuntu

		Attend

		Certifications

		Newsletters

		settings iconSettings

		Support

		Sign Out

 Table of Contents for

 HTML and CSS: Visual QuickStart Guide

 		Search in book...

		

		Toggle Font Controls

				Twitter

		Facebook

		Google Plus

		Email

	

 Prev
 Previous Chapter
 Code Snippets

 Next
 Next Chapter
 Code Snippets

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

[image: Image]

 Prev
 Previous Chapter
 Code Snippets

 Next
 Next Chapter
 Code Snippets

 Back to top

 		Settings

 		Support

 		Sign Out

 © 2020 O'Reilly Media, Inc.

 Terms of Service
 /

 Privacy Policy

OEBPS/Images/24-2-cb-unreadable.jpg
Here is some text against a color background Here is some text against a color background

OEBPS/Images/22-1-syntax-error.jpg

OEBPS/Images/yt-share-button.jpg
A SHARE

OEBPS/Images/11-4-inline-style-markup.jpg
CmNo U s wN R

<html>

<head>
<styles
p{
font-size: 20px;
color: red;
s
</style>

</head>

OEBPS/Images/pppeachbooklogo.jpg
@ Peachpit Press

OEBPS/Images/f0299-02.jpg
body {
max-uidth: 700px;
30px;
0 auto;
font-fanily: 'Playfair Display’, serif;
background-color :#fcf6e7;

}

h {
color: #282009;
font-size: 4em;
font-weight: 900,
letter-spacing:

.08em;

}

.byline {
font-family: Futura, sans-serif;
font-style: italic;
font-weight: bold;
text-decoration: underline;

header ing {
width: 50px;
height: auto;
vertical-align: middle;

.primary-content {
background: #FFFFFF;
padding: 30px;

pi{
font-size: 24px;
}

OEBPS/Images/f0299-01.jpg
<html>
<head>. . .</head>
<body>
<header>...</header>
<main>
<section class="
content">
<!--Here is "the fold"-->
<section class:
</section>
</main>
<footer>...</footer>
</body>
</html>

rimary-
.</section>

econdary”>. ..

OEBPS/Images/1-3-simple-html.jpg
Bigger headings are more important

This is smaller
This is smaller still

“This s body copy, and is st common,

OEBPS/Images/9-2-checkout.jpg
oumgantts

OEBPS/Images/10-1a-chrome-vs-firefox-chrome.jpg
Get in Touch!

Get in Touch!

OEBPS/Images/17-4-big-screen.jpg
A Case of Identity by Sir Arthur Conan Doyle

“My dear fellow:” said Sherlock Holmes as we sat on either side of the fire in his lodgings at Baker Street, initely “Thisis one of 36

1¢ which the mind of man could invent. We would not dare to conceive the th c shortstories

stranger than anyth
‘commonplaces of existence. Ifwe could fly out of that window hand in hand, hover over this great city, gently

remove the roofs, and peep in at the queer things which are going on, the strange coincidences, the pla

written sbout
Sherlock Holmes
by Sir Arthur

purposes, the wonderful chains of events, working through g ind leading to the most outré res Conan Doyle 1t
makeall fiction with its conventionalities and foreseen conelu was published in

o1,

‘The Sherlock Holmes series is in the public domain.

OEBPS/Images/f0102-02.jpg
<input type="date" name="release"
min="1937-12-21" max="1992-11-1

OEBPS/Images/16-4-grid-simple.jpg

OEBPS/Images/7-12-audio-embed.jpg
» 0:00/0:24

o

OEBPS/Images/13-4-roboto-box.jpg
Roboto 12 styles

Christian Robertson

Almost before
we knew it, we
had left the
ground.

OEBPS/Images/8-10-address-tag2.jpg
Yankee Stadium
1E 161 St.
The Bronx, NY 10451

OEBPS/Images/7-5-captioned-image.jpg

OEBPS/Images/6-4-web-developer-extension.jpg
i veoOeveoper

Ntpichrispadrick.cont

o

OEBPS/Images/2-4-codepen.jpg

OEBPS/Images/9-13-radio-buttons.jpg
What is your favorite movie?

Atlantis O Snow White ©® Aladdin

OEBPS/Images/17-3-small-screen.jpg
A Case of Identity

by Sir Arthur Conan Doyle

“My dear fellow,” said Sherlock Holmes as we sat on cither side:
of the fire n his lodgings at Baker Strect, “life is infiitely
stranger than anything which the mind of man could invent, We
would not dare to conceive the things which are really mere
commonplaces of existence. If we could fly out of that window
hand in hand, hover over this great ci ly remove the roofs,
and peep in at the queer things which arc going on, the strange
coincidences, the plannings, the cross-purposes, the wonderful
chains of events, working through generations, and I

the most outré results, it would make all fiction with its
conventionalities and forescen conclusions most stale and
unprofitable.”

Thisis o of 3 short stories written about Sherlock Holmes by
Sir Arthur Conan Doyle. Itwas published i 1591,

The Sherlock Holmes series is in the public domain.

OEBPS/Images/22-4-browserstack-test.jpg
A Podcast Helping
Small Business
Owners Grow

Hosted by Joe Casabona

OEBPS/Images/22-3-browser-test-safari.jpg
A Podcast Helping
Small Business
Owners Grow

Hosted by Joe Casabona

OEBPS/Images/figure-20-11-replacement.jpg
This s the

This s the exror class in a

OEBPS/Images/8-6-rowspan-error.jpg
Aaron Judge RF
Year |Team [BA |[HR |[RBI
2017 284/52 |[114
NYY
2018 278|127 |67
2019|272 |27 |55

Totals: .278/(106/(236

OEBPS/Images/3-3-paragraph-rendered.jpg
This is text

OEBPS/Images/cover.xhtml

Skip to content		Home

		search iconSearch

		navigation arrowExpand Nav		Your O'Reilly		Profile

		History

		Playlists

		Highlights

		Featured		Navigating Change

		Recommended

		queue iconExplore		All Topics

		Early Releases

		Shared Playlists

		Most Popular Titles

		Resource Centers

		Live Events		Strata

		Open Source

		Infra & Ops

		Software Arch

		Practice		Katacoda Scenarios

		Jupyter Notebooks

		Sandboxes		Kubernetes

		Python

		TensorFlow

		Ubuntu

		Attend

		Certifications

		Newsletters

		settings iconSettings

		Support

		Sign Out

 Table of Contents for

 HTML and CSS: Visual QuickStart Guide

 		Search in book...

		

		Toggle Font Controls

				Twitter

		Facebook

		Google Plus

		Email

	

 Next
 Next Chapter
 Title Page

[image: Image]

 Next
 Next Chapter
 Title Page

 Back to top

 		Settings

 		Support

 		Sign Out

 © 2020 O'Reilly Media, Inc.

 Terms of Service
 /

 Privacy Policy

OEBPS/Images/17-7-printer-styles.jpg

OEBPS/Images/7-2-image-on-page.jpg
he Andromeda Galaxy

OEBPS/Images/7-19-youtube-embed.jpg
Client Paid (Episode8)

s | €

OEBPS/Images/4-2-heading-scale-new_a.jpg
HTML

1+ <h1>This
2
3+ <h2>This
4
5v <h3>This
6
7 v <h4>This
8
9+~ <h5>This
10
11~ <h6>This

is

is

is

is

is

is

Q

Q

Q

Q

Q

Q

Heading 1</h1>
Heading 2</h2>
Heading 3</h3>
Heading 4</h4>
Heading 5</h5>

Heading 6</h6>

This is a Heading 1

This is a Heading 2
This is a Heading 3

This is a Heading 4

This is a Heading 5

This is a Heading 6

OEBPS/Images/15-10-float-right.jpg
CIDA Case of Identity

.-
il R

OEBPS/Images/16-11-bottom-flex.jpg

OEBPS/Images/20-4-view-compiled.jpg
CSS (scss) v

$bgCo}{or: d Format css

} Analyze CSS
Maximize CSS Editor

Minimize CSS Editor

Fold All
Unfold All

OEBPS/Images/4-1-paragraphs.jpg
‘This is a paragraph!
‘This is another paragraph.

‘This is a third paragraph.

OEBPS/Images/8-11-address-search.jpg
1161 51, Tho Bron,NY 10451

OEBPS/Images/23-9-compressed-images.jpg

OEBPS/Images/f0242-05.jpg
:toot {
--accentColor: #EBIDFE;
}

af

color: var(--accentColor);
}

OEBPS/Images/16-1-flexbox-support.jpg

OEBPS/Images/16-2-grid-support.jpg

OEBPS/Images/25-7-github.jpg

OEBPS/Images/24-14-achecker-results.jpg

OEBPS/Images/codepen-cog.jpg

OEBPS/Images/10-4-twitter-offline.jpg
3437

«search
aA & mobile twitter.com <
© < seacnmiter &

iz

Looks like you lost your connection. Please checkit and try
again.

OEBPS/Images/24-6-chrome-test.jpg
How Can 1 Help You
Get Your Content Online?

Hitm 30s Casabons

3

Toots, Tips, and Ticks

OEBPS/Images/9-18-color-picker.jpg
@ o

OEBPS/Images/9-1-google-home.jpg

OEBPS/Images/figure-15-13-no-callout.jpg

OEBPS/Images/dark-yellow.jpg

OEBPS/Images/18-5-animation-start.jpg

OEBPS/Images/f0231-01.jpg
<!--Here's the HTML for the button. -->
Click Here

/*Hete follows the CSS that defines the
appearance of the button.*/
a.button {
background: #880000;
border-radius: 40px;
color: #ffffff;
display: block;
font-size: 1.5rem;
max-width: 150px;
padding: 15px;
text-align: center;
text-decoration: none;

/*And let's add a hover state to the
button.*/
a.button:hover {
background: #008800;
}

OEBPS/Images/colorblindly-icon.jpg

OEBPS/Images/f0104-01.jpg
<ilnput type=’
mii

OEBPS/Images/10-6-lazy-load-can-i-use.jpg

OEBPS/Images/15-6b-p-spacing-after.jpg
. i g W vt o o s ot e o e
o3 el e S g o S

et i s e
e g e A e et 4o of Wi S
Befen o .t e o el B e

OEBPS/Images/13-9-font-specimen.jpg
Jej:?vr"a:"ms Mono AaBbCcDdEeFfGgH
JetBrains Mono Italic AaBbCcDd
JetBrains Mono Medium AaBbCcDd
Brains Mono Medium Italic
JetBrains Mono Bold AaBbCcDdEe
JetBrains Mono Bold Italic Aa
JetBrains Mono ExtraBold AaBbC
JetBrains Mono ExtraBold Ital

OEBPS/Images/24-5-pw.jpg
Entera Password:
Mt beat st 10 characters, and ncde Capitaleter number, and specal charscter,

OEBPS/Images/9780136702542.jpg
R
HTML and CSS

Ninth Edition

@ INCLUDES WEB EDITION WITH FREE VIDEO

OEBPS/Images/6-5-outline-elements.jpg

OEBPS/Images/12-9-link-states.jpg
e oo e g e gt .
e i Mo e e et e et s s e s

S

S ——
AR S R R R

OEBPS/Images/20-9-alerts-compiled.jpg
‘This s the .alert-good class in action.

OEBPS/Images/8-2-table-with-footer.jpg
Team |Home Runs
Yankees 306

Red Sox||245
Dodgers 279

Phillies |215

Total: 1,045

OEBPS/Images/22-9-cdt-select.jpg
QA Case of Identity

o s Shertock

OEBPS/Images/f0230-02.jpg
transition: [property| [duration |
[timing-function] [delay]

OEBPS/Images/23-4-ps-text-box.jpg

OEBPS/Images/10-3-canvas.jpg

OEBPS/Images/06-10-new.jpg
pr

is< hrefsoame /o>l
Qise hrefas Hone /ol
Qi href s Hame /a1
s

OEBPS/Images/f0208-01.jpg
main {
display: grid;
grid-template-columns: 30% 30% 30%;

OEBPS/Images/f0055-01.jpg
<html>

<body>
<header role="banner">
<hl class="site-title">llelcome to my site!</h1>
<nav>
<ul role="main">
‘index. html">Home</1i>
‘about . html">About</1i>
Contact</1i>

</nav>
</header>

<div class="wrapper">
<main Tole="main">
<article role="article">

<header>
<h2>10 Reasons HTML is so great!</h2>
</header>
<footer>
<p>Published March 6th at 11:06pm</p>
</footer>
</article>
</main>
<aside>
<h3>Related Articles</h3>

Wait until you see CSS</1i>

</aside>
</div>
<footer>
<p>Copyright Joe Casabona</p>
</footer>
</body>

</html>

OEBPS/Images/f0208-02.jpg
main {
display: grid;
grid-template-columns: 30% 30% 30%;
grid-gap: 10px 20px;

OEBPS/Images/20-3-codepen-css-modal.jpg
Pen Settings x
2
g
Pen Details CSS Base a
Privacy 8 ® Normaize
Behavior ® Reset
- © Neither
Tnpieic Vendor Prefixir a
(=] ® Autoprefixer
® Prefifree
© Neither

Any URLs added here will be added as <Link>s in order, and before the

€55 in the editor. If you ink to another Pen, it will include the CS5 from
that Pen. If the preprocessor matches, it willattempt to combine them
before processing,

OEBPS/Images/f0032-01.jpg
<p>If you need to display multiple lines of code, place the <code> <codetgt; </code>element
inside a <code> &1t;predgt;</code> element. </p>

<p>In completely untelated news, here’s a bit of the code for a table that you’ll encounter
again in Chapter 8:</p>

<pre><code>
<table border:
< theaddgt;
<th colspan="4"ggt;Aaron Judgetlt;/thigt;
<thtgt ;RF≪ /thigt;
< /theaddgt ;
&1t; thodydgt;
<tr role="header"sgt;
<tdegt;Yeartlt; /tddgt;
</code></pre>

agt;

OEBPS/Images/14-4-color-picker.jpg

OEBPS/Images/f0137-01.jpg
<footer>
<p>This is the footer with a
>link in it</p>
Click here to learn more

</footer>

OEBPS/Images/f0219-02.jpg
@nedia screen and (min-width: 600px) {
div {
display: grid;
grid-tenplate-colums: 1fr 1fr 1fr;
grid-gap: 15px;
padding: 15px;

OEBPS/Images/11-5a-inline-style-frontend-before.jpg
Before

HTML Ipsum Presents

Pullcncsue abltant morbl tiqueseneciu et malesuad fmes o s cgestas. Vestbulam o i, g i, i cgt,empor i at i Donc e bcry it Bt quam gestos smpe.
Acncan urices i v e M placert lifnd 1o Quique st e st spicllcorer e, Nesiblm . il Cocatu 5o, e Seae, oAt i amel, il Acnea (ot ol et
ncdt conimentm, 0 75U T 1, gl enpus 0 oo ol Do 10,11 8 i i Fclits. UL s

Header Level 2

1 Lorempsum dolorsi s consecttseraipscing o
2 Alquam tociduntmauris s

Lorerpsum ol sit e, consectcta dipiscing . i magn. Cra i i s gt conge, U .t et gl molestie graid. Cambitr mssa, Donee lifnd. o at st molls el
et mlestada o, t ot st s et Q. Vivars e o .

Header Level 3

+ Loremipsum dolo st ame, consetctue dipiscing .
. liqua ncidntmauris i

e 1 ¢

After

HTML Ipsum Presents

Pellentesque habitant morbi tristique scnctus ct nctus ¢t melcsuada fames ac furps cgostas. Vestibulum tortor quam, feugiat vitae, ultricios cget, tempor sit amet, ante. Donce
eu libero st amet quam egestas semper. Aenean ulricies i vitae est. Maurisplacera leifend Ieo. Quisque sit ametest e sapien ullamcorper pharera. Vestibulum erat wis,
condimentum sed, commodo vitae, omare sit amet, wisi. Acoean fermentum, lit eget tincidunt condimentum, eros ipsum rutrum orci, sagits tempus lacus enim ac dui
‘Donec non enianin turpis pulvinar faciliss. Ut fels.

Header Level 2

1 Lorenfpsm delor i amet, comecteue dpiscog el
2. Al oot maurs e i,

Lorem ipsum dolor st ame, consectetur adipiscing el Vivamus magna. Cras i m a elis aliquet congue. Ut st et lgula molestie gravida, Curabitar massa.
Doneselifend, ibero at sagiis molis, ellus e malesuada elus, at luctustrpis i st amet quam. Vivams preum omre .

Header Level 3

« Lo psum dlo st e, conscteeradipscin i
© KT Gocidnt s e i,

e
St oo
e

OEBPS/Images/f0219-01.jpg
div {
display: grid;
grid-template-columns: 1fr 1fr 1fr;
grid-gap: 15px;
padding: 15px;

@media screen and (max-width: 599px) {
div {
display: block;
padding: 0;

OEBPS/Images/f0103-01.jpg
<input type="color" name="carpet-color"
value="#FF0000" />

OEBPS/Images/13-15-text-decoration-style.jpg
A solid line

Adotted ling

Awavyline

A double line

Adashed line

OEBPS/Images/f0021-01.jpg
<!doctype html>
<html class="no-js" lang="">
<head>
<link href="style.css" rel="stylesheet" type="text/css" />
<title>Joe Casabona - Done for You Podcasts and Courses</title>
</head>
<body>
<main>
<hI>Hi! I'm Joe Casabona.</hl>
<!-- start of Site Description -->
<div>
<p>I create online courses at
Creator Courses
and for
LinkedIn
Learning
, host a podcast called
How I Built It,
and have been making websites for 20 years.</p>
</div>
<t--
<p>This content won't display because it's been commented out.</p>
-->
<!-- End of Site Description -->
</main>
</body>

OEBPS/Images/16-16-caniuse-browsers-css.jpg

OEBPS/Images/21-7-uploaded-site.jpg

OEBPS/Images/f0077-01.jpg
<table border="1">
<caption>Baseball players with their
~teams and numbers.</caption>
<thead>
<tr>
<th>Player</th>
<th>Team</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Derek Jeter</td>
<td>Yankees</td>
<td>2</td>
</tr>
<tr>
<td>David Ortiz</td>
<td>Red Sox</td>
<td>34</td>
</tr>
<tr>
<td>Roy Halladay</td>
<td>Phillies</td>
<td>34</td>
</tr>
<tr>
<td>Mike Piazza</td>
<td>Mets</td>
<td>31</td>
</tr>
</tbody>

</table>

